理论力学(第二版)参考答案上部
理论力学 第二版 (金尚年 马永利 著) 高等教育出版社 课后答案 1-4章答案
G F
课
w.
θ
cos − − cos
kh
运动方程为 ̇ 2 Fr 0 ̈ − r mr ̈ 2r ̇ F ̇ mr 由径向方程 ̇ ̈ r 2 r 方程的解为 r Ae t Be −t 带入初始条件
da
x
R2 z2 r2
课
2.9 体系的动能为
后
̇ sin cos 0 ̈ sin 2 2mr 2 ̇ mr 2
网
−
∂L ∂
ww
w.
kh
da
w.
co
m
5
d ∂L − ∂L ̇ dt ∂ ∂ 2 ̈ ̇ 0 ̇ mr 2mrr 2.11 体系的动能为 T 势能为 V mgz mg R 2p 该体系只有一个自由度,取R为广义坐标,拉各朗日函数为 ̇2 2 ̇ 2 R22 R L m R R − mg R 2 2p p2 相应的拉各朗日方程为 d ∂L − ∂L ̇ dt ∂R ∂R ̇2 mg ̈ 1 R 2 2m R mR R − mR 2 2 2p p p2 ̇ 0,R ̈ 0则 对于平衡点R g R 2p 2 m R ̇ 2 R2 ̇2 z ̇ 2 2 ̇2 2 m R ̇ 2 R22 R R 2 p2
课
后
答 案
网
Chap3
7
ww
w.
kh
da
w.
co
m
3.1 tanh
L r2
dr
a r2
2mE
L r2
−
L r2
dr
2ma−L 2 r2
E
金尚年版理论力学第二版答案
v E v E = 0 er R
v v 和均匀磁场 B = B 0 k
v &v v v & & v = R e r + R ϕ eϕ + z e z
qE && & & mR − mRϕ 2 − 0 − qB0 Rϕ = 0 R 化简得: d qB & (mR2ϕ + 0 R2 ) = 0 2 dt d & dt (mz) = 0
4R 2 & 2 m &2 mg 2 2 &2 ( R + R θ + 2 R )− R L = T −V = 2 a a 代入完整保守体系的拉格朗日方程,并化简得
4 R 2 && 8 R & 2 2 gR 1 + R + 2 R − R θ& 2 + = 0 2 a a a && && R θ + 2θ R = 0
M R o'
m 2 & & T = ( r + r 2ϕ 2 ) 2
由几何关系:
∴
V =0
θ ωt
o
x
r = cos θ , ϕ = θ + ω t 2R m L = T −V = ( − 2 R sin θ ⋅ θ& ) 2 + (θ& + ω ) 2 ⋅ ( 2 R cos θ ) 2 2 = 2 mR 2 ⋅ (θ& 2 + 2ω θ& cos 2 θ + ω 2 cos 2 θ )
α
2.7 用拉格朗日方程写出习题1.21的运动微分方程 解:建立柱坐标系,取R,ϕ 为广义坐标
陈世民理论力学简明教程(第二版)课后答案-精选.pdf
。
解:建立自然坐标系有:
a
d e
dt
2
en
且: d
dt d
2
2k
2kd
ds 2k
dt
ds 2k
ds dt
d
d 2k
dt
积分得: ue 2k (代入 0 u ) 又因为: y 2 2px 在 (p 2 ,p) 点处斜率:
k 1 dy1
d 2px
dx
x
p 2
dx
在 ( p 2 , p) 点处斜率:
p 1
水平线之间的夹角又为 角度时所需时间。
解:依牛顿第二运动定律有: m x mk x , m y mg mk y
积分并代入初始条件: t 0 时: 0x 0 sin , 0 y
解得: x 0 cos e kt , y ( 0 sin
g )e
kt
g
k
k
当再次夹角为 时: y tan
x
0 cos
可解出: t
无滑动地滚动,如图所示,求圆盘边上 M点的深度 υ和加速度 α(用
参量 θ,Ψ表示)。
解:依题知:
Байду номын сангаас
r Rr
r Rr
且 O点处: ek cos( )er sin( )e
则:
rM rO O rOM
(R r)eR rer
[(R r)cos(
) r]er (R r)sin(
)e
rM
rM (
)sin(
)er [(R r)cos(
由 r e t,
t 得: r e t ,
且设: rer r e
则: 得: e
en
r2
2
华科理论力学教材(第2版2020年7月第4次印刷)课后习题解答(z2)
1.4.2. 构架整体、AB 部分、弯杆 BC。 P A
B
C
解:2.
1.4.3. 三铰拱整体、AB 部分、BC 部分。 P
F
B
A
C
解:3.
F A
B
F' CBy
FCBy
P
F' CBx
FA
FCBx
FCy
C FCx
目录
1.4.4. A 形构架整体、AB 杆、BC 杆、DE 杆及销钉 B(力 P 作用在销钉 B 上)。
的大小。
FR
F2 60
F1
60
F3
题 2.3 图
目录
解:(1) R F1 F2 F3 上式向 F2 所在方向投影得:
1 2
R
F2
F1
cos
30
∴ R 2F2 2F1
3 100 2173 2
3 200N 2
∴ R 的大小为 200N,指向与假设相反。
( 2 ) Z 0 , ( 设 Z ' 为 F2 的 正 方 向 ) F2 F1 cos 30 0
上的 G 通过三力汇交法得到 O 处的合力为 45 度,则本次作业也认为是正确的
1.4.9.上题中,若销钉 A、C 均与 AC 杆固连,画出 AC 杆受力图。又若销钉 A、B 均与 AB 杆固连,画出 AB 力图。 解:[9.1]若销钉 A、C 均与 AC 杆固连,画出 AC 杆受力图
F
' A
A
F地
题第一步,只要求真解在受力图的可能范围内,通过以后计算可知,销钉 B 对构件 BA 的作
用力为 0,故可假设为任何方向。 1.4.11. 机构整体、连杆 AB、圆盘 O、滑块 B。
理论力学(周衍柏第二版)思考题习题答案
为常数。我们对②式两边求导 ④
由于③=④,所以 ⑤
对⑤式两边积分 ⑥ ⑦
以雨滴下降方向为正方向,对①式分析 ⑧
( 为常数)
当 时, ,所以
第三章习题解答
长为 的均质棒,一端抵在光滑墙上,而棒身则如图示斜靠在与墙相距为 的光滑棱角上。求棒在平衡时与水平面所成的角 。
解 如题3.2.1图所示,
均质棒分别受到光滑墙的弹力 ,光滑棱角的弹力 ,及重力 。由于棒处于平衡状态,所以沿 方向的合力矩为零。即 ①
由①②式得: 所
一均质的梯子,一端置于摩擦系数为 的地板上,另一端则斜靠在摩擦系数为 的高墙上,一人的体重为梯子的三倍,爬到梯
的顶端时,梯尚未开始滑动,则梯与地面的倾角,最小当为若干
解之得
微积分常数,取 ,故
令
所以
第二章习题
求均匀扇形薄片的质心,此扇形的半径为 ,所对的圆心角为2 ,并证半圆片的质心离圆心的距离为 。
解 均匀扇形薄片,取对称轴为 轴,由对称性可知质心一定在 轴上。
有质心公式
设均匀扇形薄片密度为 ,任意取一小面元 ,
又因为
所以
对于半圆片的质心,即 代入,有
如自半径为 的球上,用一与球心相距为 的平面,切出一球形帽,求此球形冒的质心。
直线 在一给定的椭圆平面内以匀角速 绕其焦点 转动。求此直线与椭圆的焦点 的速度。已知以焦点为坐标原点的椭圆的极坐标方程为
式中 为椭圆的半长轴, 为偏心率,常数。
解:以焦点 为坐标原点
则 点坐标
对 两式分别求导
故
如图所示的椭圆的极坐标表示法为
对 求导可得(利用 )又因为
即
所以
故有
陈世民理论力学简明教程(第二版)课后答案
第零章 数学准备一 泰勒展开式 1 二项式的展开()()()()()m23m m-1m m-1m-2f x 1x 1mx+x x 23=+=+++!!2 一般函数的展开()()()()()()()()230000000f x f x f x f x f x x-x x-x x-x 123!''''''=++++!!特别:00x =时, ()()()()()23f 0f 0f 0f x f 0123!x x x ''''''=++++!!3 二元函数的展开(x=y=0处)()()00f f f x y f 0x+y x y ⎛⎫∂∂=++ ⎪∂∂⎝⎭,22222000221f f f x 2xy+y 2x x y y ⎛⎫∂∂∂++ ⎪ ⎪∂∂∂∂⎝⎭!评注:以上方法多用于近似处理与平衡态处的非线性问题向线>性问题的转化。
在理论力问题的简单处理中,一般只需近似到三阶以内。
二 常微分方程1 一阶非齐次常微分方程: ()()x x y+P y=Q通解:()()()P x dx P x dx y e c Q x e dx -⎛⎫⎰⎰=+ ⎪⎝⎭⎰注:()()(),P x dxP x dx Q x e dx ⎰±⎰⎰积分时不带任意常数,()x Q 可为常数。
2 一个特殊二阶微分方程2y A y B =-+ 通解:()02B y=K cos Ax+Aθ+注:0,K θ为由初始条件决定的常量 3 ,4 二阶非齐次常微分方程 ()x y ay by f ++=通解:*y y y =+;y 为对应齐次方程的特解,*y 为非齐次方程的一个特解。
非齐次方程的一个特解 (1) 对应齐次方程0y ay by ++=设x y e λ=得特征方程2a b 0λλ++=。
解出特解为1λ,2λ。
*若12R λλ≠∈则1x 1y e λ=,2x 2y e λ=;12x x 12y c e c e λλ=+*若12R λλ=∈则1x 1y e λ=,1x 2y xe λ=; 1x 12y e (c xc )λ=+*若12i λαβ=±则x 1y e cos x αβ=,x 2y e sin x αβ=;x 12y e (c cos x c sin x)αββ=+(2) "(3) 若()2000x f a x b x c =++为二次多项式*b 0≠时,可设*2y Ax Bx C =++ *b 0≠时,可设*32y Ax Bx Cx D =+++注:以上1c ,2c ,A,B,C,D 均为常数,由初始条件决定。
理论力学(周衍柏 第二版)第2章习题解答
垂直 x 轴方向有:
mv0 = mv1 cosθ1 + mv2 cosθ2 ①
可知
0 = mv1 sinθ1 − mv2 sinθ2 ②
( ) v02 = v12 + v22 + 2v1v2 cos θ1 + θ2 ③
整个碰撞过程只有系统内力做功,系统机械能守恒:
由③④得
1 2
mv02
=
1 2
mv12
求绕此轴的动量矩。
2.6 一炮弹的质量为 M1 + M 2 ,射出时的水平及竖直分速度为U 及V 。当炮弹达到最高点 时,其内部的炸药产生能量 E ,使此炸弹分为 M1 及 M2 两部分。在开始时,两者仍沿原方
向飞行,试求它们落地时相隔的 距离,不计空气阻力。
2.7 质量为 M ,半径为 a 的光滑半球,其低面放在光滑的水平面上。有一质量为 m 的 质点 沿此半球面滑下。设质点的初位置与球心的连线和竖直向上的直线间所成之角为α ,并且 起始时此系统是静止的,求此质点滑到它与球心的连线和竖直向上直线间所成之角为θ 时θ
机枪后退的速度为
M ′ u − (M + M ′)2 − M 2 μg
M
2mM
2.16 雨滴落下时,其质量的增加率与雨滴的表面积成正比例,求雨滴速度与时间的关系。
2.17 设用某种液体燃料发动的火箭,喷气速度为 2074 米/秒,单位时间内所消耗的燃料为
原始火箭总质量的 1 。如重力加速度 g 的值可以认为是常数,则利用此种火箭发射人造太 60
竖直方向
vx = u cosθ − V ③
vy = usiaθ ④ 在 m 下滑过程中,只有保守力(重力)做功,系统机械能守恒: (以地面为重力零势能面)
《工程力学(第2版)》课后习题及答案—理论力学篇
第一篇理论力学篇模块一刚体任务一刚体的受力分析(P11)一、简答题1.力的三要素是什么?两个力使刚体平衡的条件是什么?答:力的三要素,即力的大小、力的方向和力的作用点。
两个力使刚体处于平衡状态的必要和充分条件:两个力的大小相等,方向相反,作用在同一直线上。
2.二力平衡公理和作用与反作用公理都涉及二力等值、反向、共线,二者有什么区别?答:平衡力是作用在同一物体上,而作用力与反作用力是分别作用在两个不同的物体上。
3.为什么说二力平衡公理、加减平衡力系公理和力的可传性都只适用于刚体?答:因为非刚体在力的作用下会产生变形,改变力的传递方向。
例如,软绳受两个等值反向的拉力作用可以平衡,而受两个等值反向的压力作用就不能平衡。
4.什么是二力构件?分析二力构件受力时与构件的形状有无关系。
答:工程上将只受到两个力作用处于平衡状态的构件称为二力构件。
二力构件受力时与构件的形状没有关系,只与两力作用点有关,且必定沿两力作用点连线,等值,反向。
5.确定约束力方向的原则是什么?活动铰链支座约束有什么特点?答:约束力的方向与该约束阻碍的运动方向相反。
在不计摩擦的情况下,活动铰链支座只能限制构件沿支承面垂直方向的移动。
因此活动铰链支座的约束力方向必垂直于支承面,且通过铰链中心。
6.说明下列式子与文字的意义和区别:(1)12=F F ,(2)12F F =, (3)力1F 等效于力2F 。
答:若12=F F ,则一般只说明两个力大小相等,方向相反。
若12F F =,则一般只说明两个力大小相等,方向是否相同,难以判断。
若力1F 等效于力2F ,则两个力大小相等,方向和作用效果均相同。
7.如图1-20所示,已知作用于物体上的两个力F1与F2,满足大小相等、方向相反、作用线相同的条件,物体是否平衡?答:不平衡,平衡是指物体相对于惯性参考系保持静止或匀速直线运动的状态,而图中AC 杆与CB 杆会运动,两杆夹角会在力的作用下变大。
二、分析计算题1.试画出图1-21各图中物体A 或构件AB 的受力图(未画重力的物体重量不计,所有接触均为光滑接触)。
理论力学(周衍柏第二版)思考题习题答案
1.16答:若 ,在球坐标系中有
由于坐标系的选取只是数学手段的不同,它不影响力场的物理性质,故在三维直角坐标系中仍有 的关系。在直角坐标系中
故
事实上据“ ”算符的性质,上述证明完全可以简写为
这表明有心力场是无旋场记保守立场
1.17答平方反比力场中系统的势能 ,其势能曲线如题图1.17图所示,
由 。
若 ,其势能曲线对应于近日点 和远日点 之间的一段。近日点处 即为进入轨道需要的初动能若 则质点的运动无界,对应于双曲线轨道的运动;若 位于有界和无界之间,对应于抛物线轨道的运动;这两种轨道的运动都没有近日点,即对大的 质点的运动是无界的,当 很大时 ,还是选无限远为零势点的缘故,从图中可知,做双曲轨道运动比抛物轨道和椭圆轨道需要的进入轨道需要的动能要大。事实及理论都证明,平方反比引力场中质点的轨道正是取决于进入轨道时初动能的大小
1.3答:内禀方程中, 是由于速度方向的改变产生的,在空间曲线中,由于 恒位于密切面内,速度 总是沿轨迹的切线方向,而 垂直于 指向曲线凹陷一方,故 总是沿助法线方向。质点沿空间曲线运动时, z何与牛顿运动定律不矛盾。因质点除受作用力 ,还受到被动的约反作用力 ,二者在副法线方向的分量成平衡力 ,故 符合牛顿运动率。有人会问:约束反作用力靠谁施加,当然是与质点接触的周围其他物体由于受到质点的作用而对质点产生的反作用力。有人也许还会问:某时刻若 大小不等, 就不为零了?当然是这样,但此时刻质点受合力的方向与原来不同,质点的位置也在改变,副法线在空间中方位也不再是原来 所在的方位,又有了新的副法线,在新的副法线上仍满足 。这反映了牛顿定律得瞬时性和矢量性,也反映了自然坐标系的方向虽质点的运动而变。
理论力学(周衍柏 第二版)第1章习题解答
度 C 沿河宽不变,且小船可以看成一个质点,求船的轨迹。
1
1.18 一质点自倾角为 α 的斜面上方 O 点,沿一光滑斜槽 OA 下降。如欲使此质点到达斜面 上所需的时间为最短,问斜槽 OA 与竖直线所成之角 θ 应为何值?
O
θ
A
α
1.19 将质量为 m 的质点竖直抛上于有阻力的媒质中。设阻力与速度平方成正比,即
电子所带的电荷, v 为任一瞬时电子运动的速度。 1.23 在上题中,如
(a ) B = 0 ,则电子的轨道为在竖直平面 (xy平面) 的抛物线; ( b) 如 E = 0 ,则电子的轨道为半径等于 mV
eB
的圆。试证明之。
1.24 质量为 m 与 2m 的两质点, 为一不可伸长的轻绳所联结, 绳挂在一光滑的滑轮上。 在m 的下端又用固有长度为 a 、倔强系数 k 为 mg 的弹性绳挂上另外一个质量为 m 的质点。在
y A
r
a
C
ϕ
O
ψ
a B
x
第 1.3 题图
1.4 细杆 OL 绕 O 点以角速 ω 转动,并推动小环C在固定的钢丝 AB 上滑动。图中的 d 为已 知常数,试求小球的速度及加速度的量值。
L
A
d θ O
x
B
C
1.5 矿山升降机作加速度运动时,其变加速度可用下式表示:
πt ⎞ ⎛ a = c⎜1 − sin ⎟ 2T ⎠ ⎝
(a )
Fx = 6abz 3 y − 20bx 3 y 2 , Fy = 6abxz3 − 10bx 4 y , Fz = 18abxyz 2
(b )
F = iFx ( x ) + jFy ( y ) + kFz ( z )
理论力学(第二版)参考答案上部
理论力学(第二版)参考答案上部(一~三章)第一章1.2写出约束在铅直平面内的光滑摆线上运动的质点的微分方程,并证明该质点在平衡位置附近作振动时,振动周期与振幅无关. 解:设s为质点沿摆线运动时的路程,取=0时,s=0S== 4 a (1)设为质点所在摆线位置处切线方向与x轴的夹角,取逆时针为正,即切线斜率=受力分析得:则,此即为质点的运动微分方程。
该质点在平衡位置附近作振动时,振动周期与振幅无关,为.1.3证明:设一质量为m的小球做任一角度θ的单摆运动运动微分方程为θθθFrrm=+)2(θθsinmgmr= ①给①式两边同时乘以dθθθθθdgdr s i n=对上式两边关于θ 积分得cgr+=θθc o s212②利用初始条件θθ=时0=θ 故cosθgc-=③由②③可解得c o sc o s2-θθθ-∙=lg上式可化为dtdlg=⨯-∙θθθcoscos2-两边同时积分可得θθθθθθθθd g l d g l t ⎰⎰---=--=020222002sin 12sin 10012cos cos 12进一步化简可得θθθθd g l t ⎰-=0002222sin sin 121由于上面算的过程只占整个周期的1/4故⎰-==02022sin2sin124T θθθθd g l t由ϕθθsin 2sin /2sin 0=两边分别对θϕ微分可得ϕϕθθθd d cos 2sin2cos=ϕθθ202sin 2sin 12cos-=故ϕϕθϕθθd d 202sin 2sin 1cos 2sin2-= 由于00θθ≤≤故对应的20πϕ≤≤故ϕϕθϕθϕθθθθπθd g l d g l T ⎰⎰-=-=202022cos 2sinsin 2sin 1/cos 2sin42sin2sin 2故⎰-=2022sin 14πϕϕK d g l T 其中2sin 022θ=K通过进一步计算可得g lπ2T =])2642)12(531()4231()21(1[224222 +⨯⨯⨯⨯-⨯⨯⨯⨯++⨯⨯++n K nn K K1.5解:如图,在半径是R的时候,由万有引力公式,对表面的一点的万有引力为, ①M为地球的质量;可知,地球表面的重力加速度g , x为取地心到无限远的广义坐标,,②联立①,②可得:,M为地球的质量;③当半径增加,R2=R+,此时总质量不变,仍为M,此时表面的重力加速度可求:④由④得:⑤则,半径变化后的g 的变化为⑥对⑥式进行通分、整理后得:⑦对⑦式整理,略去二阶量,同时远小于R ,得⑧则当半径改变 时,表面的重力加速度的变化为:。
理论力学第二版第二章答案 罗特军
w.
kh
da
w.
三角形 EAB
1 aymax 2
co
正方形 ABCD
a2
静力学习题及解答—力系的简化
2.12 求图示均质混凝土基础重心的位置(图中长度单位为 m )
魏
体积 Si mm3 图形 1 图形 2 图形 3 图形形心:xC 10.08 2.40 1.89
泳
形心坐标 x mm 1.8 4.6 0.9 1.0 1.0 2.5
静力学习题及解答—力系的简化
2.6 底面为正方形的长方体棱边上作用有 8 个大小均等于 FP 的力,如图所示。试 求该力系的简化结果。
魏
泳
涛
m
因此,原力系合力为 4 FP k ,作用线过正方形中点。
课
后
答
四川大学 建筑与环境学院 力学科学与工程系 魏泳涛
案
网
ww
w.
kh
子力系 3: F7 和 F8 构成的力偶,力偶矩矢量为 FP ak 。
S 0
魏
π
y sin x
0
dy sin xdx 2
0
泳
π
涛
da w. co m
yC
π y sin x 1 1 π 2 π y d x d y d x y d y sin xdx 0 0 0 S S 2S 8
由对称性, xC
π 2
课
后
答
四川大学 建筑与环境学院 力学科学与工程系 魏泳涛
w.
co
静力学习题及解答—力系的简化
2.11 在图示变长为 a 的均质正方形薄板 ABCD 中挖去等腰三角形 EAB , 试求 E 点 y 坐标的最大值 ymax ,使剩余薄板的重心仍在板内。
理论力学 第二版 习题
质点力学1、已知一质点作平面运动时其速度的量值为常数C ,矢径的角速度的量值为常数ω,求质点的运动方程及轨迹。
解:222242ωωC C y x =⎪⎭⎫ ⎝⎛-+ 答:由上面轨迹方程知:此质点的运动为圆心在⎪⎭⎫⎝⎛ω20C ,,半径为ω2C 的圆。
2、一点沿半径为R 的圆周运动时,其切向加速度正比于法向加速度的平方根(比例系数k>0),试求该点的速度及沿轨迹的运动方程S(t),假定初速度为v 0。
⎪⎪⎭⎫⎝⎛-=⇒=⇒==⎰1000tRk ttRk tR k e k R v s dt ev s ev dtds v 3、 质量为m 的质点作一维简谐振动,当其通过原点O 时,速度为u ,如在任意时刻,质点坐标为x ,速度为v ,试证:v 2+ω2x 2=u 2。
4、船得一初速度v 0,在运动中船受到水的阻力,阻力的大小与船速的平方成正比,有比例系数为km ,其中m 为船的质量,问经过多少时间船速减为其初速度的一半。
当021v v =时0011121kv t v kt v v =⇒+== 5、一尊大炮放在高为h 的山顶上,如炮弹的腔口速度为0v,则欲使此炮弹射到地面时的射程为最大,腔口的速度和水平方向间的夹角应为若干?⎪⎪⎭⎫⎝⎛+=-20112csc v gh α 6、将一质点以初速度0v 抛出,0v与水平线所成之角为α ,此质点所受到的空气阻力为其速度的mk 倍,其中m 为质点的质量,k 为常数,试求此质点的速度与水平线所成之角又为α时所需的时间。
⎪⎪⎭⎫ ⎝⎛+=g kv k t αsin 21ln 10 7、将一质量为m 的物体竖直抛上与有阻力的媒质中,如单位质量受到的阻力为kv ,式中v 为质点的运动速度,试证:质点回到抛掷点时的速度等于在同样时间内质点在真空中作相似运动时的速度。
gT v V -=08、将一质量为m 的物体竖直抛上与有阻力的媒质中,设阻力与速度的平方成正比,即22xg mk R ±=,如上掷时初速度为0v,试证:此物体又落至投掷点时的速度为22211v k v v +=。
理论力学课后习题答案详解
理论力学习题解答 第 8 页 共 48 页
理论力学习题解答 第 9 页 共 48 页
理论力学习题解答 第 10 页 共 48 页
理论力学习题解答 第 11 页 共 48 页
理论力学习题解答 第 12 页 共 48 页
理论力学习题解答 第 13 页 共 48 页
理论力学习题解答 第 14 页 共 48 页
理论力学习题解答 第 36 页 共 48 页
理论力学习题解答 第 37 页 共 48 页
理论力学习题解答 第 38 页 共 48 页
理论力学习题解答 第 39 页 共 48 页
理论力学习题解答 第 40 页 共 48 页
理论力学习题解答 第 41 页 共 48 页
理论力学习题解答 第 42 页 共 48 页
理论力学习题解答
理论力学习题解答:
第 1 页 共 48 页
理论力学习题解答 第 2 页 共 48 页
理论力学习题解答
第二章:
第 3 页 共 48 页
理论力学习题解答 第 4 页 共 48 页
理论力学习题解答 第 5 页 共 48 页
理论力学习题解答 第 6 页 共 48 页
理论力学习题解答 第 7 页 共 48 页
理论力学习题解答 第 43 页 共 48 页
理论力学习题解答 第 44 页 共 48 页
理论力学习题解答 第 45 页 共 48 页
理论力学习题解答 第 46 页 共 48 页
理论力学习题解答 第 47 页 共 48 页
理论力学习题解答 第 48 页 共 48 页
理论力学习题解答 第 22 页 共 48 页
理论力学习题解答 第 23 页 共 48 页
理论力学习题解答 第 24 页 共 48 页
理论力学(第2版)习题答案
各章习题(计算题)部分答案第1章 略 第2章2-1 R 3284kN F .=,R cos()2063,.=︒F i ,R cos()1163,.=︒F j 2-2 3162kN T .=,30β=︒ 2-3 482.α=︒,R 496kN x F .= 2-4 11866N 50N x y F .F ==,2230N 40N x y F F ==-, 330N 60N x y F F ==, 44566N 566N x y F .F .==, 2-5 R 0F =2-6(a) 707kN 354kN 354kN Ax Ay B F .F .F .===,,(b) 05kN 5kN Ax Ay B F F F ===,,(c) 933kN 433kN 612kN Ax Ay B F .F .F .===,,(垂直于支撑面,指向简支梁) 2-7 min 15kN F =,N 25kN F =2-8 0866kN 05kN 1kN Ax Ay BD F .F .T ===,, 2-9 N N 1732kN 3464kN 15m A C F .F .AC .===,, 2-10 03436kN AB AC F F .==,2-11 BC F =,Ax F =,Ay F G = 2-12 N 65EF G F =+2-13 N N C D F F =2-14 231N 1155N 231N 845N AB AE BC BD F F .F F .====,,,2-15 (a) 33PF P F B Ay =-=,(b) P F F B A 32== (A F ,B F 方向相反,组成一力偶) (c) 0==B A F F2-16 1F,AB F,OA F =,7kN BC F =- 2-17 1905N 1905N 1905N 1905N Ax Ay Cx Cy F F F F =-===-,,, 2-18 3571N 3571N 3571N 3571N Ax Ay Cx Cy F F F F ==-=-=,,,·312··312·2-19 24kN m M =⋅,1155kN A B F F .== 第3章3-1 2400N Ax F =,1200N Ay F =,8485N BC F .= 3-2 R 0F'=,260N m O M =⋅ 3-3 (a) R F'qa =,221qa M O = (b) R12F'ql =,21ql q M O = 3-4(a) Ax F =,40kN Ay F =,120kN m A M =⋅,N C F = (b) 0=AxF ,25kN Ay F .=-,15kN By F =,D 25kN y F .=3-5 当60α=︒时,min 4AB PrF L= 3-6 0=Ax F ,qa F Ay2=,2qa M A =3-7 (a)2400N Ax F =,1000N Ay F =-,2400N Dx F =-,2000N Dy F = (b)2400N Ax F =-,1000N Ay F =-,2400N Dx F =,2000N Dy F =3-8 Ax F =,Ay F =,Bx F =,By F =3-9 rPLF Ax 2-=,P F Ay =,r PL F Bx 2=,P F By =,r PL F D 2=,P F C 2=3-10 R 32E F qa =-,qa F BD 22= 3-11 23kN Ax Cx F F .=-=-,1kN Ay Cy F F == 3-12 3PF AC -=,0=EF F ,32P F BD -= 3-13 2F F BC=,2F F DE = 第4章4-1 T 20kN F =,104kN OA F .=-,139kN OB F .=- 4-2 254kN m x M .=⋅,146kN m y M .=⋅,0=z M 4-3 0)(=P z M4-4 θαsin sin )(Pa M AB =P 4-5 3C A B WT T T ===4-6 1kN T =,0=Ax F ,750N Ay F =-,500N Az F =-,433N Bx F =,500N BZ F = 4-7 F F F -==61,F F =3,0542===F F F·313··313·4-8 321M a cM a b M +=,a M F Ay 3=,a M F Az 2=,0=Dx F ,a M F Dy 3-=,aM F Dz 2-= 4-9 4kN Ax F =,146kN Az F .=-,79kN Bx F .=,29kN Bz F .=-4-10 5kN Ox F =-,4kN Oy F =-,8kN Oz F =,32kN m Ox M =⋅,30kN m Oy M =-⋅,20kN m Oz M =⋅4-11 (a ) 10412kN N F .=,20213kN N F .=,30375kN N F .= 4-12 )(22221221r r r r x C --=,0=C y4-13 (a ) 589mm C x .=-,0=C y (b ) 797mm C x .=,349mm C y .= 4-14 )(22221221r r r r x C --=,0=C y4-15 0Ax F =,121(P )2Ay F P =-+,21P 2Az P F =+,0Cx F =,0Cy F =,22Cz P F =第5章5-1 min F =,s arctan f α= 5-2 )()m m sin +cos -P F αϕθϕ=,m θϕ=5-3 (1) A 先滑动,(2) A 、B 一起滑动 5-4 能保持平衡,S 201N F = 5-5 223.0=f5-6 3πarcsin 43πff α=+5-7 1s sin cos P F f αα=-,2s sin cos PF f αα=+,故21F F >5-8 min 845kN Q .= 5-9 435N P .=5-10 θ≤9926.︒5-11 120cm x >5-12 s 2(sin cos )Q R f L αα⋅+≤P ≤s 2(sin cos )Q Rf L αα⋅-5-13 min 1475N P .=5-14 4961N m .⋅≤C M ≤7039N m .⋅ 5-15 11cm b <5-16s s sin cos cos sin f Q f αααα-+≤P ≤s s sin cos cos sin f Q f αααα+- 5-17 arc ϕ=·314··314·5-18 500N P = 5-19 s f ≥15.0 5-20 75mm b .< 第6章6-1 (cos sin )x v lk kt kt =-,(cos sin )y v lk kt kt =-+; )sin (cos 2kt kt lk a x +-=,)sin (cos 2kt kt lk a y --= 6-2 (1) 0=s ;v R ω=;0a τ=,2n a R ω=(2) R s 23=;12v R ω=;2a ωτ=,2n 14a R ω= (3) R s =;0v =;2a R ωτ=-,n 0a =6-3 直角坐标法:t R x ω2cos =,t R y ω2sin =;2sin2x v R t ωω=-,2cos2y v R t ωω=; t R a x ωω2cos 42-=,t R a y ωω2sin 42-=自然坐标法:t R s ω2=;2v R ω=;0a τ=,2n 4a R ω= 6-4 ()sin M x l b t ω=+,()cos M y l b t ω=-;22221()()M M x y l b l b +=+-6.52222()1()x a y b l l-+=+6-6 22)sin (cos h t r l t r x B +-+=ωω,h y B -=6-7v =322xb u a -= 6-8 )cos sin arctan(00tr h tr ωωθ-=6-9 当0s t =时,157cm s M v ./=;0M a τ=,n2617cm s M a ./=当2s t =时,0M v =;2123cm s M a ./τ=-,n0M a =6-10 C x =C y =2C avv l=6-11 t e R t e y ωω222cos sin -+=;[cos v e t ωω=6-12 02cos4m x .t =;0566m s v ./=-;22263m s a ./=-6-13 0arctan rad v tbϕ=;02220rad s bv /b v t ω=+6-14 225t =ϕ;120m s v /=;236000m s n a /= 6-15 8rad s /ω=;2384rad s ./ε=-6-16 转轴O 的位置位于正方形的中心;1rad s /ω=,21rad s /ε=6-17 12C v r ω=;n 214C a r ω=,12C a r ετ=·315··315·6-18 12m s M v ./=;n 272m s M a ./=,206m s M a ./τ= 6-19 0377m s C v ./=6-20 2225000rad s /dεπ=;25922m s a ./= 6-21 32rad .ϕ=6-22 12mm h =6-23 02=ω,222r lb ωε-=6-24 02m s AB v ./=,2005m s AB a ./=;02m s C v ./=,n 20267m s C a ./=,2005m s C a ./τ=6-25 2012ωr a =,方向沿1AO ;2024ωr a =,指向轮心第7章7-1 x'vt =,cos()a kt y'ϕ=+,轨迹方程为cos()ky'a x'vϕ=+ 7-2 2cos M v R ωϕ=,方向水平向左 7-3 (a )2309rad s ./ω=; (b )2182rad s ./ω=7-4 (1)34OC v b ω=,34C lv v b=;(2)234K v a b = 7-5 当0ϕ︒=时,0v =;当30ϕ=︒时,100cm s v /=,向右;当90ϕ︒=时,200cm s v /=,向右7-6 126m s BC v ./=;2274m s BC a ./= 7-7 10cm s CD v /=;2346cm s CD a ./= 7-8 a a =7-9 3v ω=,方向向上7-10 1.732rad /s ω=,28.66rad /s ε=- 7-11 0.173m /s v =,20.05m /s a = 7-12 0.173m /s M v =,20.35m/s M a =7-13 πcos 15sin BC nr v αβ=7-14 23CD r v ω=;29310ωr a C D =7-15 a 3465mm s v ./=;21400mm s CD a /=第8章8-1 122v v r ω-=,122O v v v +=8-2 156cm s C v ./=,17cm s D v /=·316··316·8-3 877cm s C v ./=8-4 375rad s OB ./ω=,I 6rad s /ω=8-5 600mm s A v /=,200mm s B v /=,s C v /=;4rad s 3ABC /ω=,05rad s BD ./ω= 8-6 2rad s AB /ω=,2578rad s AB ./ε=-;667rad s BC ./ω=-,21926rad s BC ./ε=8-7 2()C A Rv a R r r=-,2Bx C a a τ=,2(2)()C By R r v a R r r -=- 8-8 2022ωr a B =,20211ωε=B O 8-9 032C v r ω=,20123ωr a C =8-10 01.15v l ω=8-11 16186rad s O C ./ω=,127817rad s O C ./ε=-8-12 s CD v /=,22m s 3CD a /= 8-13 n 2400cm s B a /=,21705cm s B a ./τ=-,21705cm s C a ./=-8-14 34e OC v v OB b ω==,OC ε=;12E v v =,E a = 8-15 21960mm s B a /=,298rad s AB ./ε=8-160C v ω,方向向左;rR B O 01ωω=,逆时针转向8-17 22()C Rv a R r =-,B a =8-18 n 202B a a ω=,2002)B a a ετ=-8-19 330ωω=B ;209)349(10ω+-=B a 8-20 2m s B v /=,2828m s C v ./=,28m s B a /=,21131m s C a ./= 第9章9-1 rgf=max ω 9-2 min 67r min n /=9-3 1v =9-4 0cos cos sin v x b kt kt k α=+,0sin sin vy kt kα=9-5 0cos x v t α=,201sin 2y v t gt α=+·317··317·9-6 0(1e )kt v s k-=- 9-7 202s t .=,707m s .= 9-8 172N F .=9-9 )(22g a amL F AC +=ω,)(22g a a mL F BC -=ω9-10 max 584kN F .=,min 536kN F .=9-11 g f f a ααααsin cos cos sin -+=,N cos sin W F f αα=- 9-12 )cos 1(200t m F t x ωωυ-+=第10章10-1 (a ) 12p mL ω=,方向水平向右;(b ) p mR ω=,方向水平向右;(c ) p me ω=,方向垂直于OC 的连线;(d ) C p mv =,方向水平向右10-2 30N x F =10-3 11221022a gP P P P F -++= 10-4 11r 12m v v v m m =++10-5 0(sin cos )v t g f'αα=-10-6 12(54)2l p m m ω=+,方向与曲柄垂直且向上 10-7 t m m l m x m m kx ωωsin 1211+=++10-8 2R s =10-9 (1) 3123123(22)cos ,2()C P L P P P L tx P P P ω+++=++ (2) 12123(2)sin ;2()C P P L t y P P P ω+=++2321max 222ωL gP P P F Ox ++=10-10 椭圆 2224l y x =+10-11 (1) 2sin G Wx l t P W Gω+=++ (2) 2m a x 2x G W F l g ω+=10-12 向右移377cm . 10-13 33(sin )cos ox R F m g m a r θθ=+,1233()(sin )sin oy RF m g m g a m g m a rθθ=+-++ 10-14 21212)(m m gm m f b m a ++-=·318··318·10-15 17cm A s =,向左移动;9cm B s =,向右移动 10-16 2max12(2)2ox r F F G G gω=++10-17 24(cos sin )3Ox mR F ωϕεϕπ=-+,24(sin cos )3Oy mR F mg ωϕεϕπ=+- 第11章11-1 (a ) ω2031ml L =,(b ) ω2021mR L =,(a ) ω2023mR L =11-2 208m s a ./=,2862kN T F .=,4626kN Oy F .=11-3 (1) ωωω22231ml mR Ml L O ---=,(2) ωω2231ml Ml L O --=11-4 θω22sin )312(l M m L O +=11-5 480r min n /=11-6 022ωωmr J ma J z z ++=11-7 0N 0Pr F fgt ω= 11-8 211212122()()R M R M'm m R R ε-=+11-9 )()(2212J i J gPR R PR Mi a ++-=11-10 t P P gkl)3(3cos210+=δϕ11-11 gR RW g J R W M a 2101sin +-=α,1T 1sin W F W a g α=+ 11-12 g J r m r m r m r m O++-=2222111122ε11-13 g R m r R m r R m a )()()(2222121ρ++++=,)()()(22221212ρρ+++-=R m r R m g m m Rr F11-14 v =T 13F mg =11-15 θsin 74g a =,θsin 71mg F -= 11-16 g a C 355.0=11-17 3)(2121m m gm m f F a ++-=·319··319·11-18 gr M R m r m R fm r m a 2222121ρ++-=,T 11A F m g m a =-,2T 2B m RF fm g a r=+11-19 2N 22sin 12D QL F a Lα=+,αcos g a Cx =,22212sin 12L a g a a Cy +=α 11-20 N 3633N B F .=11-21 P F F x O x O 516.021==,P F y O 434.11=,P F y O 164.12=第12章12-1 )cos 1(0ϕ+=mgr W AB ,)sin (cos 0θϕ-=mgr W AC 12-2 129904J F W .=,10500J f W =- 12-3 12206J W .=-,23206J W .=,031=W 12-4 (a) 2216T ml ω=,(b) 2234T mR ω=,(c) 2214T mR ω=,(d) 234C T mv =,12-5 10J W =重,503J W .=重12-6 θω222sin 61ml T = 12-7 21s s hf += 12-8 2122)cos (sin 2m m f gr m M r++-=ααϕϕω12-9 v=12-10 A v =12-11 A v =12-12 v =11/sin M R W a g W Wα-=+12-13 C v =45C a g =12-14 98N F .= 12-15 θωsin 3632121l g m m m m ++=,θεcos 23632121lgm m m m ++=12-16 C v =321321843)43(m m m gm m m F +++=12-17 (1) 2211)3()sin (2Rm m gR m M +-=αε, (2) R m m gR m M m F Ox )3(2)2sin cos 6(2121++=αα; ααsin )3()sin 3(21212⋅+++=Rm m gR m M m g m F Oy·320··320·12-18 v =m khmg a 34-=,41s 36F kh mg =+ 第13章13-1 αsin 32g a =13-2 g a 32=,T 3WF =13-3 Q P Pg a 322+=,QP PQF 32+=13-4 g P T a 3cos 2α=,N sin F P T α=-,s 1cos 3F T α= 13-5 22233cos sin 3()sin 2b a g b a ϕϕωϕ-=-13-6 445N ADF .=,54N BE F =13-7 2222(sin )cos sin J mr mr M ϕϕϕϕϕ++= 13-8 2222143)2(43ωr m gr m m M -+=,2143ωr m F Ox -=,4)2()(22121ωr m m g m m F Oy +-+= 13-9 0β=︒时,2329N Ax F =-,1382N Bx F =,1962N Ay By F F .==180β=︒时,12238N Ax F .=,592N Bx F =-,1962N Ay By F F .==13-10 2023ωmr F Ax -=,mgr F Ay =,20221ωmr F Bx =,mgr F By =13-11 g a a C x C 1712==,mg F 175= 13-12 l g 791=ε,lg 732-=ε,0=Ox F ,mg F Oy 72=第14章14-1 ctg 2P /Q /ϕ= 14-2 (3ctg 2)Ax F /P θ=14-3 A F P /=14-4 ctg Q P θ= 14-5 450N Q P /==14-6 12F F l =/2(cos )a ϕ14-7 05kN 21kN m Ax Ay A F F m ===⋅,,14-8 1866kN P .=14-9 2()F lx a k b=+14-10 2(kN)Ax F =, 3.804(kN)Ay F =,24(kN m)A M =-⋅,18.588(kN)B F =。
理论力学第二版答案
1-1 图示曲线规尺的杆长200OA AB ==mm ,而50CD DE AC AE ====mm 。
如果OA 绕O 轴转动的规律是5/t πϕ=,初始时0t =,求尺上D 点的运动方程和轨迹。
解:A 点运动已知,欲求D 点运动,可从D 点相对A 点的几何出发求解。
以,,(,,,,)i i x y i A B C D E =分别表示各点的,x y 坐标。
由OA AB =,CD DE AC AE ===可知:运动过程中ACDE 始终为一个平行四边形,从而:D A x x =,2A D C y y y += OA 绕O 轴转动,转角5tπϕ=∴cos 200cos5A t x OA π=ϕ=,sin 200sin 5A t y OA π=ϕ= s i n ()s i n 150s i n 5C ty O CO A A C π=ϕ=-ϕ= ∴ 200cos 5D A t x x π==(mm), D C 2100sin 5A ty y y π=-=(m m)得到D 点的运动方程为:22221200100D Dx y +=1-2 图示AB 杆长为l ,绕B 点按t ϕω=的规律转动。
与杆连接的滑块按sin s a b t ω=+的规律沿水平线作简谐振动,其中a 、b 、ω为常数,求A 点的轨迹。
解: 点A 的运动为滑块B 与杆AB 二者运动的合成。
在oxy 坐标中,t 时刻x x l y l A B A =+=sin ,cos ϕϕ代入 x s a b B ==+sin ϕ,可得A 的轨迹为122=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+-l y l b a x A A1-3 半径为r 的半圆形凸轮以等速0v 在水平面上滑动,如图所示,求当︒=30θ瞬时顶杆上升的速度大小与加速度大小(杆与凸轮的接触点为M )。
解:由已知条件可得M 点的坐标为0=x ,22002022)(tv t rv t v r r y -=--=,则y 方向上的速度和加速度分别为:202y rv t =(1)22002200220022002022/)(2tv t rv tv t rv t v r v t v t rv v y------= (2)当30=θ时,r t v r 230=-,即r t v )231(0-=代入(1)式和(2)式,可以得到x0303|v y == θ,r r y 20308|-== θ1-4 半径为R 的圆弧与AB 墙相切,在圆心O 处有一光源,点M 从切点C 处开始以等速度0υ沿圆弧运动,如图所示,求M 点在墙上影子'M 的速度大小与加速度大小。