《圆周角和圆心角的关系》教学设计新部编版
《圆周角与圆心角的关系》教学设计详案
《圆周角与圆心角的关系》教学设计秭归县郭家坝中学颜昭英教学目标:(一)教学知识点(1)理解圆周角的概念,掌握圆周角的两个特征;(2)理解圆周角与圆心角的关系,并能熟练地运用它们进行论证和计算,,有机渗透的“由特殊到一般”思想、“分类”思想、“化归”思想。
(二)能力训练要求通过圆周角概念的形成,渗透数学建模的思想,使学生经历数学建模的过程,形成建模的方法;引导学生主动地通过:观察、实验、猜想、验证“圆周角与圆心角的关系”,培养学生的合情推理能力、实践能力与创新精神,从而提高数学素养;通过圆周角定理的证明,有机渗透的“由特殊到一般”思想、“分类”思想、“化归”思想、使学生了解分类、转化、归纳等数学思想方法。
(三)情感态度与价值观运用实例分析,使学生认识到数学与实际生活有着紧密的联系,学会用数学的眼光看待生活中的实际问题。
在证明圆周角定理的过程中,通过小组讨论、展示各自所画图形这一环节,在合作探究中培养学生的协作意识,体现交流的价值;通过“观察——测量——证明”这三个环节的活动,让学生意识到,观察测量发现的规律只是建立在统计的基础上,而定理的形成须严谨的数理论证。
教学重点:圆周角的概念和圆周角定理经历探索“圆周角与圆心角的关系”的过程,了解“圆周角与圆心角的关系”教学难点:了解圆周角的分类、用化归思想合情推理验证“圆周角与圆心角的关系”圆周角定理的证明中由“一般到特殊”的数学思想方法和完全归纳法的数学思想。
教学方法:以学生的活动为主线,以突出重点、突破难点、发展学生数学素养为目的,采用以“探究式教学法”为主,讲授法、发现法、分组交流合作法、启发式教学法、多媒体辅助教学等多种方法相结合。
学法在动手实践、自主探索、合作交流活动中发现新知和发展能力,使观察、实验、猜想、验证、归纳、推理贯穿整个学习过程。
教具圆规、直尺、投影仪、课件教学过程:一、视频分析,导入新课师:大家对足球比赛一定不陌生,现在我们就一起来看一段足球射门的片段。
圆周角和圆心角的关系教案
圆周角和圆心角的关系教案教案:圆周角和圆心角的关系教学目标:1.理解圆周角和圆心角的定义;2.掌握圆周角和圆心角的关系;3.运用所学知识解决实际问题。
教学准备:1.教材:《数学必修二》;2.教具:投影仪、计算器。
教学过程:Step 1:导入新知1.讲解圆周角和圆心角的概念。
圆周角:圆上的两条弧所对的角叫做圆周角。
圆心角:由圆心射出的两条弧所对的角叫做圆心角。
2.提问学生:“在圆上,两条弧所对的角是否相等?”3.引导学生发现,根据圆周角的定义,圆周角的度数等于弧所对的圆心角的一半。
Step 2:讲解圆周角和圆心角的关系1.通过投影仪展示有关圆周角和圆心角的图形,并示范解题方法。
2.教师讲解定理:“在同一个圆或等圆中,所对圆心角相等的圆周角也相等;所对圆周角相等的圆心角也相等。
”Step 3:练习1.完成教材《数学必修二》的相关习题。
2.制定小组练习题,提高学生之间的合作学习能力。
Step 4:运用1.学生进行一些实际问题的解答,如“一个园丁想在花园中心种一圈花,他决定每两株花之间的夹角是圆心角45°,他一共要种多少株花?”引导学生运用圆周角和圆心角的关系解题。
2.学生自主完成其他实际问题的解答。
Step 5:总结1.归纳总结圆周角和圆心角的关系,明确圆周角等于所对圆心角的一半。
2.提问巩固所学内容。
教学扩展:1.学生之间进行小组竞赛,比赛谁能最快解出题目中的圆周角和圆心角的关系。
2.学生利用计算器综合运用所学知识解决实际问题。
3.4第1课时圆周角和圆心角的关系(教案)
(2)运用圆周角和圆心角的关系解决问题:在实际问题中,学生可能不知道如何将所学的圆周角和圆心角关系应用到解题过程中。
举例:针对不同类型的题目,指导学生分析问题,找到运用圆周角和圆心角关系的关键步骤,并给出解题策略。
四、教学流程
3.加强实践活动的引导,让学生在讨论和操作过程中,能够更加深入地思考问题;
4.提高自己的课堂应变能力,针对学生的反馈,及时调整教学方法和策略。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“圆周角和圆心角在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
本节课将紧密围绕核心素养目标,关注学生能力培养,使学生在掌握知识的同时,提高数学学科综合素养。
三、教学难点与重点
1.教学重点
(1)圆周角和圆心角的概念及其关系:圆周角是圆上一段弧所对的角,圆心角是以圆心为顶点的角。圆周角是圆心角的一半,这是本节课的核心知识点。
举例:讲解圆周角和圆心角的定义,通过图示和实际操作,让学生直观感受两者的关系。
3.重点难点解析:在讲授过程中,我会特别强调圆周角和圆心角的关系,以及它们在解题中的应用这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与圆周角和圆心角相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。通过观察和测量圆周角和圆心角,验证圆周角是圆心角的一半这一性质。
圆周角和圆心角的关系优秀教案
圆周角和圆心角的关系【课时安排】2课时【第一课时】【教学目标】一、教学知识点。
(一)了解圆周角的概念。
(二)理解圆周角定理的证明。
二、能力训练要求。
经历探索圆周角和圆心角的关系的过程,学会以特殊情况为基础,通过转化来解决一般性问题的方法,渗透分类的数学思想。
三、情感与价值观要求。
通过观察、猜想、验证推理,培养学生探索数学问题的能力和方法。
【教学重点】圆周角概念及圆周角定理。
【教学难点】认识圆周角定理需分三种情况证明的必要性。
【教学方法】指导探索法。
【教学过程】一、创设问题情境,引入新课。
[师]前面我们学习了与圆有关的哪种角?它有什么特点?请同学们画一个圆心角。
[生]学习了圆心角,它的顶点在圆心。
[师]圆心是圆中一个特殊的点,当角的顶点在圆心时,就有圆心角。
这样角与圆两种不同的图形产生了联系,在圆中还有比较特殊的点吗?如果有,把这样的点作为角的顶点,会是怎样的图形?二、讲授新课。
(一)圆周角的概念。
[师]同学们请观察下面的图(1)。
这是一个射门游戏,球员射中球门的难易与他所处的位置B对球门AC的张角(∠ABC)有关。
[师]图中的∠ABC,顶点在什么位置?角的两边有什么特点?[生]∠ABC的顶点B在圆上,它的两边分别和圆有另一个交点。
(通过学生观察,类比得到定义。
)圆周角(angle in a circular segment)定义:顶点在圆上,并且角的两边和圆相交的角。
[师]请同学们考虑两个问题:1.顶点在圆上的角是圆周角吗?2.圆和角的两边都相交的角是圆周角吗?请同学们画图回答上述问题。
[师]通过画图,相互交流,讨论认清圆周角概念的本质特征,从而总结出圆周角的两个特征:(1)角的顶点在圆上;(2)两边在圆内的部分是圆的两条弦。
(二)补充练习1判断下列图示中,各图形中的角是不是圆周角,并说明理由。
答:由圆周角的两个特征知,只有C是圆周角,而A、B、D、E都不是。
(三)研究圆周角和圆心角的关系。
[师]在图(1)中,当球员在B、D、E处射门时,他所处的位置对球门AC分别形成三个张角∠ABC,∠ADC,∠AEC。
圆周角和圆心角的关系教案
圆周角和圆心角的关系教案教案目标:1. 理解和描述圆周角和圆心角的概念;2. 掌握圆周角和圆心角之间的关系;3. 能够解决与圆周角和圆心角相关的问题。
教学步骤:I. 引入(约5分钟)- 利用生活中的例子引起学生对圆周角和圆心角的注意,例如车轮、钟表等。
- 引导学生思考圆周角和圆心角的定义和特点。
II. 讲解圆周角和圆心角的概念(约10分钟)- 通过示意图解释圆周角和圆心角的定义,并介绍角度的度量单位。
- 强调圆周角是指相邻两条弧所对应的角,圆心角是指以圆心为顶点的角。
III. 圆周角和圆心角的关系(约15分钟)- 阐述圆周角和圆心角之间的关系,即圆周角的度数是圆心角的二倍。
- 使用具体案例和图形进行说明,让学生理解这一关系。
IV. 解决问题(约15分钟)- 给学生一些练习题,让他们应用所学的知识解决问题。
- 引导学生逐步解决问题,并给予必要的提示和指导。
- 鼓励学生主动思考和讨论,提高解决问题的能力。
V. 总结(约5分钟)- 和学生一起总结本节课所学的内容,检查是否达到了教学目标。
- 强调圆周角和圆心角之间的关系对圆的几何性质的重要性。
VI. 拓展活动(约10分钟)- 给学生一些拓展问题,让他们运用所学的知识进行探究和进一步思考。
- 鼓励学生在小组内互相讨论和合作,提出自己的观点和解决方法。
VII. 课堂作业(约5分钟)- 布置一些课后作业,包括练习题和思考题,巩固和拓展所学的内容。
- 强调作业的重要性,并鼓励学生按时完成和提交。
备注:以上教案的时间安排仅供参考,请根据实际情况做适当调整。
(教案完)。
圆周角与圆心角的关系教学设计
课题圆周角与圆心角的关系导学案教学目标知识能力1、了解圆周角的概念。
2、理解圆周角定理的证明。
过程与方法1、经历探索圆周角和圆心角的关系的过程,学会从特殊到一般的思想方法。
2、经历自主探索的过程,发展学生的观察、分析、类比、猜想的能力,体会分类证明的思想。
情感、态度与价值观1、通过圆周角定理的证明,培养学生对数学的逻辑严密性的体验,树立正确的数学学习观。
2、培养学生的合作交流意识和数学交流能力。
教学重点圆周角的概念和圆周角定理的证明教学难点理解圆周角定理的证明中的分类证明思想。
教学突破教师在教学过程中,可引导学生画图和归纳,从特殊到一般。
逐步转化,将问题变为学生容易接受的形式。
教学过程:一创设问题情景,引入新课1、复习圆心角定义。
2、那和圆有关的角除了圆心角之外,还有没有别的角呢?今天我们就来探讨这个话题。
二、讲述新课(一)圆周角的定义1、顶点在圆上,并且角的两边和圆相交的叫圆周角。
(板书)特征:1)角的定点在圆上2)角的两边和圆相交2、判别下列各图形中的角是不是圆周角?并说明理由。
(二)看一看有没有圆周角?∠BAC有没有圆心角?∠BOC它们有什么共同的特点?它们都对着同一条弧BC(三)猜想归纳:请画出弧BC 所对的圆周角. 若按圆心O 与这个圆周角的位置关系来分类,我们可以分成几类?圆周角的度数与什么有关系?动手量一量∠BOC 与∠BAC 有何数量关系?(四)证一证1、首先考虑一种特殊情况:当圆心(O)在圆周角(∠BAC)的一边(AB)上时,圆周角∠BAC 与圆心角∠BOC 的大小关系. A B C OAB C O∵∠B OC是△ACO的外角∴∠BOC=∠C+∠A.∵OA=OC,∴∠A=∠C∴∠BOC=2∠A即∠BAC = 1/2∠BOC2、如果圆心不在圆周角的一边上,结果会怎样?当圆心(O)在圆周角(∠ABC)的内部时,圆周角∠ABC与圆心角∠AOC的大小关系会怎样?教师提示:能否转化为1中的情况过点A作直径AD.由1可得:∵∠BAD = 1/2∠BOD,∠CAD = 1/2∠COD∴∠BAC = 1/2∠BOC.3、当圆心(O)在圆周角(∠ABC)的外部时,圆周角∠ABC与圆心角∠AOC的大小关系会怎样? 教师提示:能否转化为1中的情况过点B作直径AD.由1可得:∵∠BAD = 1/2∠BOD,∠CAD = 1/2∠COD∴∠BAC = 1/2∠BOC.综上所述,圆周角∠ABC与圆心角∠AOC的大小关系是:圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半即∠BAC = 1/2∠BOC(板书)老师提示:圆周角定理是承上启下的知识点,要予以重视.随堂练习:完成课本111页随堂练习1、2三、课时小结本节课我们主要学习了圆周角定义及圆周角定理,请大家好好体会圆周角定理的证明过程中从一般到特殊的思想以及分类证明的思想,这是我们研究数学问题的一般方法。
圆周角和圆心角的关系(一)教学设计
图1 (1) (2) (3) (4) (5) (7) (6) (8)§3.3、圆周角和圆心角的关系(一)教学目标:1、 理解圆周角的概念;掌握圆周角和圆心角之间的关系,并会运用它进行有关的证明和运算.2、经历探索圆周角和圆心角关系的过程,培养学生观察、分析、猜想、归纳和逻辑推理的能力;通过渗透分类讨论、归纳等数学思想方法,培养学生的探究意识和探索新知识的能力.3、在经历探索圆周角和圆心角关系的过程中,感受探索的艰辛与喜悦,体验数学活动充满着探索与创造,激发学生的学习欲望.教学重点与难点:重点是:理解圆周角的概念;掌握圆周角与圆心角之间的关系定理.难点是:圆周角和圆心角关系定理的证明.教学方法:引导发现法.在老师的启发引导下,学生经过观察、操作、猜测、推理论证、发现、归纳等方法,探究出新知.教学手段:多媒体PPT 课件使用教材的构思:本节课对教材内容进行了重新加工,以学生熟悉的圆心角引入圆周角,学习新概念,并比较它们的异同.在探究圆周角和圆心角关系定理时,以“问题串”形式,教师创设问题情境,层层推进教学,使学生经历观察、操作、猜想、讨论、推理、归纳等数学活动,最后得到新知,并获得一些学习数学学习的方法.同时,课堂练习的设计力求符合不同层次学生的心理特点,通过练习,让不同层次学生体会到本节课是学有所得的,真正体现“使不同的人在数学上得到不同的发展”的新课程理念.教学流程:一、 创设问题,引入新课:(说明:由学生熟悉的知识,以问题形式引出课题,回顾旧知的同时明确新知,激发学生的学习热情,引导学生充分体会新旧知识间的联系.)问题1:什么是圆心角?如图1:哪个是圆心角?圆心角有什么主要特征?学生回顾概念,根据概念分辨图形,进一步理解圆心角的主要特征.问题2:图1(2)的角有什么主要特征?他与圆心角有什么联系和区别?学生观察、比较、发现,并尝试归纳总结.师引导生观察角的顶点、角的两边与圆的位置关系,然后师生共同归纳总结(学生口述,教师板书内容).ABC O图3 图2问题3:按照“顶点在圆上,两边都和圆相交”的条件画图,能画出多少个这样的角? 学生画图、发现,并与同桌交流,得到结论:无数多个.师:这无数多个具有共同特征的角,就是圆周角.圆周角和我们前面所学的圆心角之间有什么关系呢?就让我们一起走进今天的课堂.(引入新课,板书课题)二、讲授新课,探究新知:(一)、圆周角定义:板书:顶点在圆上,两边都和圆相交的角叫做圆周角.师引导生强调圆周角的两个特征:1)顶点在圆上;2)两边在圆内的部分是圆的两条弦,即两边都和圆相交,两者缺一不可,并与圆心角区别.学生理解概念,并找出圆周角与圆心角的异同点.巩固练习:图1中还有圆周角吗?学生观察、分析.中下游生口答,并分析其他图为什么不是圆周角.当遇到问题时,其他学生补充.(通过此过程,让学生再次强化理解有关概念.)(二)、探究圆周角和圆心角之间的关系:问题4:小组交流:在你们所画的图中,圆周角和圆心有几种位置关系?学生在小组内交流、汇总,并在全班交流,补充.师投影展示学生所发现的几中位置关系,并让其他小组补充.师:通过画图,我们知道:以圆上任意一点为顶点的圆周角有无数多个,但它们与圆心的位置关系只有三种,如图2: (1) 圆心在圆周角的一边上,(2) 圆心在圆周角的内部, (3) 圆心在圆周角的外部.问题5:在同一个圆中,任意的圆周角和圆心角有什么大小关系?师引导生画图发现.学生画图、观察、测量、发现:它们之间不一定存在某种特殊的关系.如图3:问题6:如果圆周角和圆心角都对同一圆中的一条弧,如图4:在⊙O 中,∠A 、∠BOC 都对着弧BC ,那么这两个角存在着怎样的关系呢?学生画图、测量、比较、发现、猜想.再试一试,并在小组内交流,归纳总结,最后在全班交流. 师引导生完成,师生共同补充归纳得出结论:(师板书) 命题:一条弧所对的圆周角等于它所对圆心角的一半.师:对于从有限次试验中得出的命题,能当做定理吗?学生:不能.需要用学过的定义和定理对得出的结论的各种情况,进行严密的推理论证后才能做为定理来用。
34 圆周角和圆心角的关系(第2课时) 教学设计
第三章圆《圆心角和圆周角的关系(第2课时)》教学设计说明佛山市华英学校郭艳锋一.学生起点分析学生的知识技能基础:学生在本节的第一课时,通过探索,已经学习了圆心角和圆周角的关系,并对定理进行了严密的证明,通过一系列简单的练习对这个关系熟悉,具备了灵活应用本关系解决问题的基本能力.学生活动经验基础:在相关知识的学习过程中,学生已经经历了化归和分类讨论的数学方法,获得了得到数学结论的过程中,可以采用的数学方法解决的经验,同时在学习过程中也经历了合作学习的过程,具有了一定的合作学习的能力,具备了一定的合作和交流的能力.二.教学任务分析本节共分2个课时,这是第2课时,主要研究圆周角定理的2个推论,并利用这些解决一些简单问题.具体地说,本节课的教学目标为:知识与技能:1.掌握圆周角定理的2个推论的内容.2.会熟练运用推论解决问题.过程与方法1.培养学生观察、分析及理解问题的能力.2.在学生自主探索推论的过程中,经历猜想、推理、验证等环节,获得正确学习方式.情感态度与价值观:培养学生的探索精神和解决问题的能力.教学重点:圆周角定理的几个推论的应用.教学难点:理解几个推论的“题设”和“结论”三.教学设计分析本节课设计了七个教学环节:课前复习——新课学习(一)——推论的应用(一)——新课学习(二)——推论的应用(二)——方法小结——作业布置.第一环节课前复习活动内容:1.求图中角X的度数:x= x=2.求图中角X的度数:∠ABF=20°,∠FDE=30°x= x=活动目的:通过两个简单的练习,复习第一课时学习的圆周角和圆心角的关系.练习1是复习定理:圆周角的度数等于它所对弧上的圆心角的度数的一半;练习2是复习定理:同弧或等弧所对的圆周角相等.活动的注意事项:两个题目相对比较简单,关键在于引导学生学会看图,从图中看出圆心角和圆周角的一些关系.第2题的第2个图难度稍大,学生不易一眼看出个中关系,需要借助辅助线,连接CF,把x分解为2个角,使得问题简单解决,本题需要重点讲解,体现读图和应用的灵活性.第二环节 新课学习(一)活动内容:(1)观察图,BC 是⊙O 的直径,它所对的圆周角有什么特点?你能证明吗?首先,让学生明确,“它所对的圆周角”指的是哪个角?(∠BAC )然后,让学生猜想,这个角的特点,并拿量角器实际测量,看看猜测是否准确.(∠BAC 是一个直角)最后,让学生自行考虑进行证明的方法.引导应用圆周角和圆心角关系定理进行证明.解:直径BC 所对的圆周角∠BAC =90°证明:∵BC 为直径∴∠BOC =180° ∴BOC BAC ∠=∠21(圆周角的度数等于它所对弧上的圆心角的度数的一半) (2)观察图,圆周角∠BAC =90°,弦BC 是直径吗?为什么?首先,让学生猜想结果;然后,再让学生尝试进行证明.解:弦BC 是直径.连接OC 、OB∵∠BAC =90°∴∠BOC=2∠BAC =180°(圆周角的度数等于它所对弧上的圆心角的度数的一半)∴B 、O 、C 三点在同一直线上∴BC 是⊙O 的一条直径(3)从上面的两个议一议,得出推论:直径所对的圆周角是直角;90°的圆周角所对的弦是直径.几何表达为:直径所对的圆周角是直角;∵BC 为直径 ∴∠BAC =90°90°的圆周角所对的弦是直径.∵∠BAC =90° ∴BC 为直径活动目的:本环节的设置,需要学生经历猜想——实验验证——严密证明,这三个基本的环节,从而推导出从圆心角和圆周角关系定理推导出的两个推论.活动的注意事项:在(2)证明弦BC 是直径的问题中,学生往往容易进入误区,直接连接BC ,认为BC 过点O ,则直接说BC 是直径,这样的说理是错误的,应该是连接OB 和OC ,再证明三点共线.在此需要特别指出注意:此处不能直接连接BC ,思路是先保证过点O ,再证三点共线.对于三点共线,学生也可能忘记,需要老师从旁提醒.第三环节 推论的应用(一)活动内容:(1)小明想用直角尺检查某些工件是否恰好为半圆形.下面所示的四种圆弧形,你能判断哪个是半圆形?为什么?(2)如图,⊙O 的直径AB =10cm ,C 为⊙O 上的一点,∠B =30°,求AC 的长.解∵AB 为直径∴∠BCA=90°在Rt △ABC 中,∠ABC =30°,AB =10 ∴521==AB AC 活动目的:在学习了推论“直径所对的圆周角是直角;90°的圆周角所对的弦是直径.”立刻安排两个简单练习让学生进行实际应用,目的的增加学生对这两个推论的熟练程度,并学习灵活应用这两个推论解决问题.第1题是实际问题,具有现实生活的实际意义,用利于提高学生应用数学解决实际问题的能力.活动的注意事项:第2题练习中,涉及“在直角三角形中30°所对的直角边等于斜边的一半”这个定理的使用,估计学生不容易想到应用这个定理,从而无法解决这个问题,让学生思考后,发现无法联系到本定理,则需要老师从旁适时提醒.第四环节 新课学习(二)活动内容:(一)如图,A ,B ,C ,D 是⊙O 上的四点,AC 为⊙O 的直径,请问∠BAD 与∠BCD 之间有什么关系?为什么?首先:引导学生进行猜想;然后:让学生进行证明.解:∠BAD 与∠BCD 互补∵AC 为直径∴∠ABC =90°,∠ABC =90°∵∠ABC +∠BCD +∠ABC +∠BAD =360°∴∠BAD +∠BCD =180°∴∠BAD 与∠BCD 互补(二)如图,C 点的位置发生了变化,∠BAD 与∠BCD 之间有的关系还成立吗?为什么?首先:让学生猜想结论;然后:让学生拿出量角器进行度量,实验验证猜想结果;最后:让学生利用所学知识进行严密证明.解:∠BAD 与∠BCD 的关系仍然成立连接OB ,OD ∵221∠=∠BAD ,121∠=∠BCD (圆周角的度数等于它所对弧上圆心角的一半) ∵∠1+∠2=360°∴∠BAD +∠BCD =180°∴∠BAD 与∠BCD 互补1 2(三)圆内接四边形概念与性质探索如图,两个四边形ABCD有什么共同的特点?得出定义:四边形ABCD的的四个顶点都在⊙O上,这样的四边形叫做圆内接四边形;这个圆叫做四边形的外接圆.通过议一议环节,我们我们发现∠BAD与∠BCD之间有什么关系?推论:圆内接四边形的对角互补.几何语言:∵四边形ABCD为圆内接四边形∴∠BAD+∠BCD=180°(圆内接四边形的对角互补)活动目的:本活动环节,目的是通过对特殊图形的研究,探索出一个特殊的关系,然后进行一般图形的变换,让学生再次经历猜想,实验,证明这三个探索问题的基本环节,得到一般的规律.规律探索后,再引入相关概念,得出相关推论.活动的注意事项:在(二)的探索中,学生会陷入∠BAD和∠BCD所对圆心角混淆的误区,以及不会对这两个圆心角的角度进行表达.其次,在两个图形中四边形ABCD的共同特征探索方面,学生可能会简单问题复杂化,想到其他比较复习的特征,该给予肯定,但要引导学生不要把问题向复杂方向思考.第五环节推论的应用(二)活动内容:如图,∠DCE是圆内接四边形ABCD的一个外角,∠A与∠DCE的大小有什么关系?让学生自主经历猜想,实验验证,严密证明三个环节解:∠A=∠CDE∵四边形ABCD是圆内接四边形∴∠A+∠BCD=180°(圆内角四边形的对角互补)∵∠BCD+∠DCE=180°∴∠A=∠DCE活动目的:通过一个练习,让学生自主经历解决问题的三个基本环节,从而巩固本节课学习方法的应用.活动的注意事项:个别学习能力低下的学生会不懂得思考问题的方式和方法,让学生做的时候,适当关注这部分学生,作出及时引导.第六环节 方法小结活动内容:议一议:在得出本节结论的过程中,你用到了哪些方法?请举例说明,并与同伴进行交流.让学生自主总结交流,最后老师再作方法归纳总结.方法1:解决问题应该经历“猜想——实验验证——严密证明”三个基本环节.方法2:从特殊到一般的研究方法,对特殊图形进行研究,从而改变特殊性,得出一般图形,总结一般规律.活动目的:通过小结,让学生回顾本节课的学习内容,尤其是知识内容和方法内容都应该进行总结,让学生懂得,我们学习不但是学习了知识,更重要的是要学会进行方法的总结.活动的注意事项:这里体现学生的总结和交流能力,只要学生是自己总结的,都应该给与鼓励和肯定,最后老师再作总结性的发言.第七环节 作业布置随堂练习3.在圆内接四边形ABCD 中,∠A 与∠C 的度数之比为4:5,求∠C 的度数.解:∵四边形ABCD 是圆内接四边形∴∠A+∠C=180°(圆内角四边形的对角互补)∵∠A:∠C =4:5 ∴︒=︒⨯=∠10018095C即∠C 的度数为100°.习题3.51.如图,在⊙O 中,∠BOD =80°,求∠A 和∠C 的度数.解:∵∠BOD =80° ∴︒=∠=∠4021BOD DAB(圆周角的度数等于它所对弧上的圆心角的度数的一半)∵四边形ABCD 是圆内接四边形∴∠DAB +∠BCD =180°∴∠BCD =180°-40°=140°(圆内接四边形的对角互补)2.如图,AB 是⊙O 的直径,∠C =15°,求∠BAD 的度数.(方法一)解:连接BC∵AB 为直径∴∠BCA =90°(直径所对的圆周角为直角)∴∠BCD +∠DCA =90°,∠ACD =15°∴∠BCD =90°-15°=75°∴∠BAD =∠BCD =75°(同弧所对的圆周角相等)(方法二)解:连接OD∵∠ACD =15°∴∠AOD =2∠ACD =30°(圆周角的度数等于它所对弧上的圆心角的度数的一半)∵OA =OD∴∠OAD =∠ODA又∵∠AOD +∠OAD +∠ODA =180°∴∠BAD =75°3.如图,分别延长圆内接四边形ABCD的两组对边相交于点E,F,若∠E=40°,∠F=60°,求∠A的度数.解:∵四边形ABCD是圆内接四边形∴∠ADC+∠CBA=180°(圆内接四边形的对角互补)∵∠EDC+∠ADC=180°,∠EBF+∠ABE=180°∴∠EDC+ ∠EBF=180°∵∠EDC=∠F+∠A,∠EBF=∠E+∠A∴∠F+∠A+∠E+∠A=180°∴∠A=40°4.如图,⊙O1与⊙O2都经过A,B两点,且点O2在⊙O1上,点C是弧AO2B 上的一点(点C不与A,B重合),AC的延长线交⊙O2于点P,连接AB,BC,BP.(1)根据题意将图形补充完整;(2)当点C在弧AO2B上运动时,图中大小不变的角有哪些?(将符合要求的角都写出来)解:大小不变的角有:∠ACB∠APB∠BCP四.教学设计反思1.根据学生特点灵活应用教案本教案的编写,学生的能力是相对较高的,因此课堂的容量会比较大,如果碰到学习能力不足的学生群体,则要根据实际情况进行调整,可以把第三环节的应用减少为一道题目,或者合并到第五环节两个应用一起进行.2.让学生有充分的探索机会,经历猜想,实验证明,严密证明的环节学生往往会直接进行证明,这对于简单问题可行,对于复杂问题就不好做了,因此要让学生经历猜想的过程,并且需要实际动手,拿出量角器进行实际度量,验证猜想,最后再进行严密的几何证明.。
九年级数学上册《圆心角和圆周角的关系》教案、教学设计
4.应用举例:通过具体例题,展示圆心角和圆周角关系在实际问题中的应用,使学生认识到数学知识在实际生活中的价值。
(三)学生小组讨论
1.分组:将学生分成若干小组,确保每个小组内成员的数学水平相对均衡。
2.讨论主题:以圆心角和圆周角的关系为主题,让学生在小组内分享自己的发现,互相交流,共同完善圆心角和圆周角的关系。
二、学情分析
九年级的学生已经具备了一定的数学基础和逻辑思维能力,他们在之前的课程中学习了角度、三角形等基本概念,为本章节的学习奠定了基础。但在圆的相关知识方面,学生们的认识可能还不够深入,对圆心角和圆周角的关系理解可能存在困难。因此,在教学过程中,要注意以下几点:
1.充分发挥学生已有的知识经验,引导他们主动发现圆心角和圆周角的关系。
五、作业布置
为了巩固学生对圆心角和圆周角知识的掌握,提高他们的实际应用能力,特布置以下作业:
1.基础巩固题:根据课堂所学,完成课本相关练习题,加深对圆心角和圆周角概念的理解。
(1)画出一个圆,并在圆内画出两个圆心角相等、圆周角相等的两组角,比较它们之间的关系。
(2)画出一个圆,并在圆内画出两个圆心角相等、圆周角不相等的两组角,分析原因。
2.提高拓展题:结合圆心角和圆周角的关系,解决以下实际问题。
(1)一块圆形的披萨,被切成八等份,每份的圆心角是多少度?如果切成十二等份呢?
(2)一个圆形的花坛,要将其分割成若干个扇形区域,每个区域圆心角相等,且总面积为花坛面积的一半。请问需要分割成几个区域?
3.创新研究题:以小组为单位,选择以下课题进行研究,并将研究结果以报告形式提交。
c.组织小组讨论,让学生分享自己的发现,互相交流,共同完善圆心角和圆周角的关系。
《圆周角和圆心角的关系》教学设计
圆周角和圆心角的关系(第1课时)教学目标:(一)知识与技能 1.理解圆周角定义,掌握圆周角定理.2.会熟练运用定理解决问题.(二)过程与方法经历探索圆周角和圆心角的关系的过程,学会以特殊情况为基础,通过转化来解决一般性问题的方法,渗透分类的数学思想。
(三)情感态度价值观通过观察、猜想、验证推理,培养学生探索问题的能力和方法教学重点:理解圆周角定义,掌握圆周角定理并会熟练运用定理解决问题. 教学难点:认识圆周角定理需分三种情况证明的必要性教学设计第一环节知识回顾活动内容:Array1.圆心角的定义?——顶点在圆心的角叫圆心角2.圆心角的度数和它所对的弧的度数有何关系?如图:∠AOB弧AB的度数3.在同圆或等圆中,如果两个圆心角、两条、两条中有一组量相等,那么它们所对应的其余各组量都分别相等.活动目的:通过三个简单的练习,复习本章第二节课学习的同圆或等圆中弧和圆心角的关系.第二环节探究新知1活动内容:(1)问题:我们已经知道,顶点在圆心的角叫圆心角,那当角顶点发生变化时,我们得到几种情况?类比圆心角定义,得出圆周角定义:顶点在圆上,并且两边分别与圆还有一个交点的角叫做圆周角.活动目的:本环节的设置,需要学生类比圆心角的定义,采用分类讨论和类比的思想方法得出圆周角的定义.第三环节 定义的应用 活动内容:(1)练习、如图,指出图中的圆心角和圆周角 解:圆心角有∠AOB 、∠AOC 、∠BOC 圆周角有∠BAC 、∠ABC 、∠ACB活动目的:在学习了圆周角的定义后,为了下面学习圆周角的定理做铺垫,有必要先让学生熟练判断圆中哪些是同一条弧所对的圆周角,并掌握如何在比较复杂的图形中按照一定的规律寻找所有的圆周角和圆心角,这一能力对于学习后续的圆的相关证明题是很必要的.点A 在圆内点A 在圆外点A 在圆上.BOC A.B OC AO BC顶点在圆心.C .A OB圆心角圆周角第四环节 探究新知2 活动内容:(一)问题提出:当球员在B,D,E 处射门时,他所处的位置对球门AC 分别形成三个张角∠ABC ,∠ADC ,∠AEC .这三个角的大小有什么关系?教师提示:类比圆心角探知圆周角在同圆或等圆中,相等的弧所对的圆心角相等.在同圆或等圆中,相等的弧所对的圆周角有什么关系?为了解决这个问题,我们先探究一条弧所对的圆周角和圆心角之间有什么关系.(二)做一做:如图,∠AOB =80°,(1)请你画出几个 所对的圆周角,这教师提示:思考圆周角和圆心角有几种不同的位置关系?三种:圆心在圆周角一边上,圆心在圆周角内,圆心在圆周角外.(2)这些圆周角与圆心角∠AOB 的大小有什么关系? ∠AOB =2∠ACB(三)议一议:改变圆心角∠A0B 的度数,上述结论还成立吗?成立AB ⌒CC(四)猜想出圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半. 符号语言: (五)证明定理:已知:如图,∠ACB 是 所对的圆周角,∠AOB 是 所对的圆心角,求证:分析:1.首先考虑一种特殊情况:当圆心(O )在圆周角(∠ACB )的一边(BC )上时,圆周角∠ACB 与圆心角∠AOB 的大小关系.∵∠AOB 是△ACO 的外角∴∠AOB =∠C +∠A∵OA=OC ∴∠A =∠C∴∠AOB =2∠C2.当圆心(O)在圆周角(∠ACB )的内部时,圆周角∠ACB与圆心角∠AOB 的大小关系会怎样? 老师提示:能否转化为1的情况? 过点C 作直径CD .由1可得:3.当圆心(O)在圆周角(∠ACB)的外部时,圆周角∠ACB 与圆心角∠AOB 的大小关系会怎样?12ACB AOB∠=∠AB ⌒AB ⌒12ACB AOB∠=∠12ACB AOB∠=∠即11,22ACD AOD BCD BOD∠=∠∠=∠()12ACD BCD AOD BOD ∴∠+∠=∠+∠12ACB AOB∠=∠即C●OACB老师提示:能否也转化为1的情况?过点C 作直径CD.由1可得:活动目的:本活动环节,让学生经历猜想,实验,证明这三个探究问题的基本环节,得到一般的规律.规律探索后,得出圆周角定理,并对探究过程中的三种情况逐一加以演绎推理,证明定理.第五环节 方法小结 活动内容:化归化归DD思想方法:分类讨论,“特殊到一般”的转化活动目的:通过回顾圆周角定理的证明过程,体会探究过程中的数学思想方法的运用.第六环节定理的应用 活动内容:问题回顾:当球员在B,D,E 处射门时,他所处的位置对球门AC 分别形成三个张角∠ABC ,∠ADC ,∠AEC .这三个角的大小有什么关系?11,22ACD AOD BCD BOD∠=∠∠=∠()12ACD BCD AOD BOD ∴∠-∠=∠-∠12ACB AOB∠=∠即连接AO 、CO ,由此得出定理:同弧或等弧所对的圆周角相等.活动目的:通过回顾之前提出的问题,直接应用圆周角定理解决问题,然后推导出另一条圆周角与弧的定理. 第七环节 课堂小结活动内容:(一) 这节课主要学习了两个知识点: 1.圆周角定义.2.圆周角定理及其定理应用.(二)方法上主要学习了圆周角定理的证明,渗透了类比,“特殊到一般”的思想方法和分类讨论的思想方法.(三)圆周角及圆周角定理的应用极其广泛,也是中考的一个重要考点,望同学们灵活运用.活动目的:通过小结,让学生回顾本节课的学习内容,尤其是知识内容和方法内容都应该进行总结,让学生懂得,我们学习不但是学习了知识,更重要的是要学会进行方法的总结. 五、教学设计反思111,,222ABC AOC ADC AOC AEC AOC ∠=∠∠=∠∠=∠ABC ADC AEC∴∠=∠=∠。
2024年《圆周角和圆心角的关系》说课稿
2024年《圆周角和圆心角的关系》说课稿《圆周角和圆心角的关系》说课稿1“圆周角和圆心角的关系”是义务教育课程标准实验教科书北师大版九年级数学下册第三章第三节的内容,共两个课时,下面我从第一个课时的设计进行说明.一、教材分析本课是在学习了圆的各种概念和圆心角后进而要学习的圆的又一个重要的性质,它在推理、论证和计算中应用比较广泛,是本章重点内容之一。
1、本节知识点(1)圆周角的概念(2)圆周角的定理2、教学目标(1)理解并掌握圆周角的概念;(2)掌握圆周角定理,并能熟练地运用它们进行论证和计算;(3)通过圆周角定理的证明,使学生了解分情况证明数学命题的思想和方法。
教学重点:圆周角定理。
教学难点:认识圆周角定理需要分三种情况逐一证明的必要性。
(重点与难点的突破将在教学过程中详细说明)二、本节教材安排本节共分两个课时,第一课时主要研究圆周角和圆心角的关系,第二课时研究圆周角定理的几个推论,并解决一些简单问题。
今天我向大家汇报的是第一课时的设计。
三、教学方法数学教学是师生之间、学生之间交往互动与共同发展的过程,因此,我认为教法与学法是密不可分的。
本节主要采取探究合作、启发引导的教学方法,多媒体的运用,激发了学生探究合作的积极性,为教师的启发引导提供了生动的素材,使学生获得知识,形成技能。
四、教学步骤(一)、旧知回放,探索新知(圆周角的概念的突破)1、出示课件,演示将圆心角的顶点由圆心拖至圆上,请同学们仿照圆心角的概念给形成的新角起名字,学生很容易的就会命名为圆周角。
2、引导学生进行讨论,规范圆周角的概念。
(设计意:让学生学好基础知识、基本概念,识别其内容反映出来的数学思想和方法,培养学生的基本技能、分析问题和解决问题的能力,使学生通过自己的观察与探索,发现、理解并掌握圆周角的定义。
)特别说明:本节的引入我采用了动态演示的方法,从学生已知的圆心角出发,引申到这节课要学的圆周角,便于学生在已有的知识基础上掌握所学,符合学生的认知规律.本节教材中给出的引例是一个生动而实际的例子,但我并没有采用它,是因为这个例子映射的是"同弧所对的圆周角相等"的知识点,它要引出的是第二课时的内容.本着活用教材原则,在深入挖掘教材之后,我觉得这个例子放在第一课时并不太合适.3、巩固练习,看谁最棒(请同学们判断各形的角是否是圆周角,并说明理由。
4《圆周角和圆心角的关系》教学设计
第三章圆《圆周角和圆心角的关系(第1课时)》一、目标确定的依据1、课程标准的相关要求理解圆周角的概念,认识圆周角,探索圆周角及其所对弧的关系,了解并证明圆周角定理及其推论2、教材分析《圆周角与圆心角的关系》是北师大版九年级下册第三章第3小节的内容,本课是在学生学习了圆的圆心,半径,直径,弦,弧,圆心角等概念以及圆的对称性的基础上,用推理论证的方法研究圆周角与圆心角关系。
它在与圆有关推理、论证和计算中应用广泛,是本章重点内容之一3、学情分析学生在本章的第二节课中,通过探索,已经学习了同圆或等圆中弧、弦和圆心角的关系,并对定理进行了严密的证明,通过一系列简单的练习对这个关系熟悉,具备了灵活应用本关系解决问题的基本能力.在之前的学习过程中,学生已经经历了“猜想-验证”、分类讨论的数学方法,获得了在得到数学结论的过程中采用数学方法解决的经验,同时在学习过程中也经历了合作学习的过程,具有了一定的合作学习的能力,具备了一定的合作和交流的能力.二、目标1、理解圆周角的概念及其相关性质2、经历探索圆周角和圆心角的关系的过程3、体会由特殊到一般、分类、化归思想、并能熟练地应用“圆周角与圆心角的关系”进行论证和计算。
三、评价任务本节共分2个课时,这是第1课时,主要内容是圆周角的定义以及探究圆周角定理,并利用定理解决一些简单问题.具体地说,本节课的教学目标为:1.理解圆周角定义,掌握圆周角定理.2.会熟练运用定理解决问题.四、教学设计分析本节课设计了七个教学环节:知识回顾——探究新知1——定义的应用——探究新知2——方法小结——定理的应用——课堂小结(作业布置).第一环节知识回顾活动内容:1.圆心角的定义?——顶点在圆心的角叫圆心角2.圆心角的度数和它所对的弧的度数有何关系?如图:∠AOB弧AB的度数3.在同圆或等圆中,如果两个圆心角、两条、两条中有一组量相等,那么它们所对应的其余各组量都分别相等.活动目的:通过三个简单的练习,复习本章第二节课学习的同圆或等圆中弧和圆心角的关系.练习1是复习圆心角定义:顶点在圆心的角叫圆心角;练习2和练习3是复习定理:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.活动的注意事项:题目以复习概念和定理为主,特别是定理当中的前提条件“同圆或等圆”,需要再特别向学生强调一遍,同时要学生明白何为三组量中其中一组量相等,那么其余各组量也分别相等.第二环节探究新知1活动内容:(1)问题:我们已经知道,顶点在圆心的角叫圆心角,那当角顶点发生变化时,我们得到几种情况?圆心角圆周角类比圆心角定义,得出圆周角定义:顶点在圆上,并且两边分别与圆还有一个交点的角叫做圆周角.活动目的:本环节的设置,需要学生类比圆心角的定义,采用分类讨论和类比的思想方法得出圆周角的定义.活动的注意事项:问题当中的角的顶点位置发生变化可得到几种情况,其实是点和圆的位置关系知识点的应用,老师在此应注意知识之间的联系,达到触类旁通的目的.第三环节定义的应用活动内容:(1)练习、如图,指出图中的圆心角和圆周角解:圆心角有∠AOB、∠AOC、∠BOC圆周角有∠BAC、∠ABC、∠ACB活动目的:在学习了圆周角的定义后,为了下面学习圆周角的定理做铺垫,有必要先让学生熟练判断圆中哪些是同一条弧所对的圆周角,并掌握如何在比较复杂的图形中按照一定的规律寻找所有的圆周角和圆心角,这一能力对于学习后续的圆的相关证明题是很必要的.活动的注意事项:图中圆里有3条半径和3条弦,当学生讲出正确答案后,则需要老师从旁总结寻找圆心角和圆周角的方法.寻找圆心角关注的是半径,任意两条半径所夹的角就是一个圆心角,个数由半径的条数决定.寻找圆周角则应关注弦和弦与圆的交点,任意两弦和两弦的交点组成一个圆周角,数圆周角关键是看弦与圆的交点,看以这个交点为顶点能引出多少条弦,每两条弦所夹的即是一个圆周角,数完一个交点后,再数另一个交点.这里要注意,因为半径AO没有延长,所以∠OAB严格来说还不算是一个圆周角,这里有必要向学生说明一下,但以后在解题中,我们又往往会忽略这些角,因为只要把半径AO延长与圆相交后,就会形成圆周角了,所以这里要特别注意.第四环节探究新知2活动内容:(一)问题提出:当球员在B,D,E处射门时,他所处的位置对球门AC分别形成三个张角∠ABC,∠ADC,∠AEC.这三个角的大小有什么关系?教师提示:类比圆心角探知圆周角在同圆或等圆中,相等的弧所对的圆心角相等.在同圆或等圆中,相等的弧所对的圆周角有什么关系?为了解决这个问题,我们先探究一条弧所对的圆周角和圆心角之间有什么关系.(二)做一做:如图,∠AOB =80°,(1)请你画出几个 所对的圆周角,这几个圆周角的大小有什么关系?教师提示:思考圆周角和圆心角有几种不同的位置关系?三种:圆心在圆周角一边上,圆心在圆周角内,圆心在圆周角外.(2)这些圆周角与圆心角∠AOB 的大小有什么关系? ∠AOB =2∠ACB(三)议一议:改变圆心角∠A0B 的度数,上述结论还成立吗?成立(四)猜想出圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半.符号语言: (五)证明定理:已知:如图,∠ACB 是 所对的圆周角,∠AOB 是 所对的圆心角, 求证: 分析:1.首先考虑一种特殊情况:当圆心(O )在圆周角(∠ACB )的一边(BC )上时,圆周角∠ACB 与圆心角∠AOB 的大小关系.∵∠AOB 是△ACO 的外角 ∴∠AOB =∠C +∠A ∵OA=OCAB⌒12ACB AOB∠=∠AB ⌒ AB ⌒12ACB AOB∠=∠∴∠A =∠C∴∠AOB =2∠C2.当圆心(O)在圆周角(∠ACB )的内部时,圆周角∠ACB 与圆心角∠AOB 的大小关系会怎样?老师提示:能否转化为1的情况? 过点C 作直径CD .由1可得:3.当圆心(O)在圆周角(∠ACB)的外部时,圆周角∠ACB 与圆心角∠AOB 的大小关系会怎样?老师提示:能否也转化为1的情况? 过点C 作直径CD.由1可得:活动目的:本活动环节,首先有一个情景引出探究的问题,然后通过类比得出探究圆周角定理的方法,再通过对特殊图形的研究,探索出一个特殊的关系,然后进行一般图形的变换,让学生经历猜想,实验,证明这三个探究问题的基本环节,得到一般的规律.规律探索后,得出圆周角定理,并对探究过程中的三种情况逐一加以演绎推理,证明定理.活动的注意事项:本环节有不少的数学思想方法,教师在教学中要注意逐一渗透.在(一)中注意渗透类比思想,在(二)中注意渗透“分类讨论”思想,在(三)中注意渗透“特殊到一般”思想,在(四)(五)中注意渗透“猜想,试验,证明”的探究问题一般步骤.12ACB AOB ∠=∠即11,22ACD AOD BCD BOD∠=∠∠=∠()12ACD BCD AOD BOD ∴∠+∠=∠+∠12ACB AOB∠=∠即11,22ACD AOD BCD BOD∠=∠∠=∠()12ACD BCD AOD BOD ∴∠-∠=∠-∠12ACB AOB∠=∠即活动内容:思想方法:分类讨论,“特殊到一般”的转化活动目的:通过回顾圆周角定理的证明过程,体会探究过程中的数学思想方法的运用.活动的注意事项:多让学生用自己的语言表述当中用到的方法,然后教师再进行深加工.第六环节 定理的应用活动内容:问题回顾:当球员在B,D,E 处射门时,他所处的位置对球门AC 分别形成三个张角∠ABC ,∠ADC ,∠AEC .这三个角的大小有什么关系?连接AO 、CO ,由此得出定理:同弧或等弧所对的圆周角相等.活动目的:通过回顾之前提出的问题,直接应用圆周角定理解决问题,然后推导出另一条圆周角与弧的定理.活动的注意事项:这里要注意引导学生学以致用,通过作辅助线添加圆心角,把问题转化到定理的直接应用上.还要注意引导学生对得出的结论加以总结,从而得出新的定理.111,,,222ABC AOC ADC AOC AEC AOC ∠=∠∠=∠∠=∠Q ABC ADC AEC ∴∠=∠=∠活动内容:(一) 这节课主要学习了两个知识点: 1.圆周角定义.2.圆周角定理及其定理应用.(二)方法上主要学习了圆周角定理的证明,渗透了类比,“特殊到一般”的思想方法和分类讨论的思想方法.(三)圆周角及圆周角定理的应用极其广泛,也是中考的一个重要考点,望同学们灵活运用.活动目的:通过小结,让学生回顾本节课的学习内容,尤其是知识内容和方法内容都应该进行总结,让学生懂得,我们学习不但是学习了知识,更重要的是要学会进行方法的总结.活动的注意事项:这里体现学生的总结和交流能力,只要学生是自己总结的,都应该给与鼓励和肯定,最后老师再作总结性的发言.第八环节:附课后练习答案随堂练习1.如图,在⊙O 中,∠BOC =50°,求∠BAC 的大小 解:在⊙O 中,∠BOC =50°2.如图,哪个角与∠BAC 相等,你还能找到那些相等的角? 解:∠BAC =∠BDC ∠ADB =∠ACB ∠CAD =∠CBD ∠ABD =∠ACD0011502522BAC BOC ∴∠=∠=⨯=习题1.如图,OA 、OB 、OC 都是⊙O 的直径,∠AOB =2 ∠BOC ,∠ACB 与∠BAC 的大小有什么关系,为什么? 解:∠BAC = 2 ∠ACB ,理由:又∵∠AOB =2 ∠BOC即∠BAC= 2∠ACB2.如图,A 、B 、C 、D 是⊙O 上的四点,且∠BCD =100°,求∠BOD 与∠BAD 的大小 解:∵∠BCD =100°∴优弧所对的圆心角∠BOD =2∠BCD =200° ∴劣弧所对的圆心角∠BOD =36O °-200°=160°3.为什么电影院的作为排列呈弧形,说一说这设计的合理性.答:有些电影院的坐位排列呈圆弧形,这样设计的理由是尽量保证同排的观众视角相等.4.船在航行过程中,船长通过测定角数来确定是否遇到暗礁, 如图,A 、B 表示灯塔,暗礁分布在经过A 、B 两点的一个圆形 区域内,优弧AB 上任一点C 都是有触礁危险的临界点,∠ACB 就是“危险角”,当船位于安全区域时,∠α与“危险角” 有怎样的大小关系?解:当船位于安全区域时,即船位于暗礁区域外(即⊙O 外) ,与两个灯塔的夹角∠α小于“危险角” .五、教学设计反思112AOB∠=∠Q 122BOC∠=∠11122222AOB BOC BOC ∴∠=∠=⨯∠=∠=∠o1802BAD BOD ∴∠=∠=1.根据学生特点灵活应用教案针对编者学校学生的特点,大部分学生能力相对较高,因此课堂的容量会比较大,而且在教学过程中渗透的思想方法也较多,如果碰到学习能力不足的学生群体,则要根据实际情况进行调整,注意突出渗透分类讨论的思想方法和体会探索问题的一般步骤即可.2.让学生有充分的探索机会,经历猜想,试验,证明的环节学生往往会直接进行证明,这对于简单问题可行,对于复杂问题就不好做了,因此要让学生经历猜想的过程,并且需要实际动手,拿出量角器进行实际度量,验证猜想,最后再进行严密的几何证明.。
圆周角和圆心角的关系 教学设计
课 题 3.4圆周角和圆心角的关系 教学设计【学习目标】1、理解圆周角的概念,掌握圆周角的两个特征。
2、经历探索圆周角和圆心角的关系的过程。
3、理解并掌握圆周角的定理及推论,并能运用其进行简单的计算和证明。
4、在学习过程中体会分类、转化、归纳等数学思想方法。
【学习重难点】重点:理解圆周角的概念,掌握圆周角定理。
难点:圆周角定理的证明。
【学习方法】自主探究、合作交流 【学习课时】1课时【学习流程】 预 习 案【知识链接】点与圆的位置关系;圆心角、等弧的定义;圆心角、弧、弦之间的关系。
【教材助读】阅读课本P78—P80,自主完成下面问题,若不能解决与同伴交流。
【预习自测】1.圆周角的定义:顶点在 上,两边分别与圆 的角叫圆周角。
2. 圆周角定理:圆周角的度数等于它所对弧上的圆心角度数的 。
3. 同弧或等弧所对的圆周角 。
4. 下列图形中的角是不是圆周角?是的划“√”,不是的划“×”。
( ) ( ) ( ) ( ) ( ) 5.如图,点A 、B 、C 、D 在⊙O 上,若∠BAC=40°,则(1)∠BOC= °,理由是 ; (2)∠BDC= °,理由是 。
探 究 案【导学释疑】请同学们考虑两个问题:(1)顶点在圆上的角是圆周角吗?(2)圆和角的两边都相交的角是圆周角吗? 【自主探究】 动手操作: 画一画:请同学们在⊙O 中上确定 一条劣弧AC ,画出这条弧所对的圆心角∠AOC 与圆周角∠ABC . 量一量:测量出所对的圆周角∠ABC 和圆心角∠AOC 的度数。
记录下测量的数据。
猜一猜:所对的圆周角∠ABC 和圆心角∠AOC 之间有什么关系?ODCBA第5题能证明你的结论吗.【合作探究】学习小组互相讨论、交流,寻找解题途径.想一想:一条弧所对的圆周角和圆心可能有几种位置关系?动手画一画。
证一证:如图,已知:⊙O 中,所对的圆周角是∠ABC,圆心角是∠AOC.求证:∠ABC=12 AOC.证明:(1)圆心O在∠ABC的一边上。
最新圆心角和圆周角教案(实用5篇)
最新圆心角和圆周角教案(实用5篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如职场文书、公文写作、党团资料、总结报告、演讲致辞、合同协议、条据书信、心得体会、教学资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of classic sample essays for everyone, such as workplace documents, official document writing, party and youth information, summary reports, speeches, contract agreements, documentary letters, experiences, teaching materials, other sample essays, etc. If you want to learn about different sample formats and writing methods, please pay attention!最新圆心角和圆周角教案(实用5篇)作为一名默默奉献的教育工作者,通常需要用到教案来辅助教学,借助教案可以让教学工作更科学化。
34圆周角和圆心角的关系(教案)
课题 3.4 圆周角和圆心角的关系教学目标知识技能:1.理解圆周角概念和圆周角与圆心角的关系定理及推论;2.会用定理进行简单的说明或推理.过程方法:1.经历观察、猜想、推理论证等探索圆周角定理的过程,掌握从特殊情况入手,通过转化来解决一般性问题的方法;2.感悟分类讨论、转化的数学思想.德育目标:通过观察、实验、类比、猜想、论证、反思,使学生树立运动变化和对立统一的辩证唯物主义观点和严谨的科学态度.教学重、难点重点:对圆周角与圆心角关系的剖析与论证. 难点:定理证明中的分类化归思想.教法学法分析为了更好地突出重点、突破难点,圆满完成教学任务,采用探究式教学方法,着眼引导学生通过动手实践、自主探索、合作交流的学习方式,着重于探索、发现、归纳能力的培养.教学过程教学环节教学内容设计意图温故知新教师提出问题:问题1:点和圆有哪几种位置关系?问题2:什么叫圆心角?学生回答问题,并进行画图展示,从而得到圆周角.由点和圆的位置关系及圆心角概念,通过画图得到圆周角,实现了知识的整体性,又为学习新知做好铺垫.概念引领1.教师引导学生说出圆周角的定义.教师进行板书:顶点在圆上,两边分别与圆还有另一个交点的角叫做圆周角.教师引导学生分析圆周角所具备的两个条件:①顶点;②两边.2.辨一辨:判别下列各图形中的角是不是圆周角,并说明理由.此环节是为了让学生根据角的特征归纳圆周角的定义.同时进一步加强学生对圆周角定义中“角的顶点在圆上”“角的两边与圆还有一个交点”两个要素的理解.探究活动问题:1.在⊙O中,弧AB所对的圆心角有几个?所对的圆周角呢?一是为了让学生动手通过画图感受同弧所对的圆周角有无数多个,并用几何画板演示移动一个圆周角的顶点,让同学们从动态感受相同的结论;二是为引导学生观察圆心与圆周角的位置关系作铺垫.2.在上图中,你认为圆周角和圆心的位置关系有几种情况?为了让学生在合作学习和教师的演示中经历观察、发现、归纳总结的过程,并巧妙地化解“分类讨论”这个难点.3.如图所示,你知道∠C和∠AOB的数量关系吗?让学生运用多种方法得到同弧所对的圆周角与圆心角之间的数量关系,为根据图形写出已知、求证、证明打好基础.探究活动根据同弧所对的圆周角与圆心的三种位置关系,学生分三种情况进行证明.教师提出:问题1:三类图形中,应从哪一个着手证明,为什么?问题2:如何证明特殊情况?并总结其中用到的几何知识.问题3:另外两个图形是否能通过作适当的辅助线转化为特殊情况?学生自主思考,小组合作完成证明过程.教师巡视,深入小组内适时点拨.指导一名学生板演证明过程,集体评价.让学生体会推理的严谨性,感悟从特殊到一般的数学思想,并体会用此种数学方法去解决问题的妙处,同时领会辅助线的数学价值和分类化归的数学方法.。
九年级数学下册《圆周角和圆心角的关系》教案、教学设计
在本章节的教学过程中,学生将通过以下过程与方法提升自身能力:
1.通过观察、猜想、验证、总结等环节,培养学生的逻辑思维能力。
2.以小组合作的形式,进行讨论、交流、分享,提高学生的合作意识和沟通能力。
3.运用数形结合的思想,将抽象的数学问题具体化,培养学生的空间想象能力。
4.引导学生运用已学知识解决新问题,提高学生的知识迁移能力和问题解决能力。
2.定理推导:教师通过几何画板等工具,动态展示圆周角和圆心角之间的关系,引导学生发现圆周角定理。
3.例题解析:教师针对圆周角定理,给出典型例题,讲解解题思路和方法。
4.知识拓展:教师介绍圆周角和圆心角在其他学科领域的应用,如圆周率在物理学、天文学等方面的运用。
(三)学生小组讨论,500字
在学生小组讨论环节,教师组织学生进行以下活动:
1.基础题:针对圆周角和圆心角的基本概念,设计一些填空题、选择题,让学生巩固所学。
2.提高题:设计一些需要运用圆周角定理的题目,让学生在解决问题中提高自己的能力。
3.实践题:结合生活实际,设计一些应用题,让学生将所学知识运用到实际问题中。
(五)总结归纳,500字
在总结归纳环节,教师引导学生进行以下活动:
4.实践应用,巩固提高
(1)教师设计具有梯度的问题,让学生运用所学知识解决,巩固所学。
(2)学生进行课堂练习,教师巡回指导,及时发现问题,进行针对性辅导。
(3)课后作业布置,注重知识拓展和实际应用,提高学生的解决问题的能力。
5.总结反思,评价反馈
(1)教师引导学生总结本节课所学内容,强化重点知识。
(2)学生自我评价,反思学习过程中的优点和不足。
(一)教学重难点
1.重点:圆周角和圆心角的概念及其关系,圆周角定理及其推论。
《圆周角和圆心角的关系》教学设计
《圆周角与圆心角的关系》教学设计教学目标:1.掌握圆周角的概念和圆周角定理的证明.2.经历探索圆周角和圆心角的关系的过程,学会以特殊情况为基础,通过转化来解决一般性问题的方法,渗透分类的数学思想.3.学生自主探索定理的过程中,经历猜想、推理、验证等环节,获得正确学习方式.培养学生的探索精神和解决问题的能力.教学重点与难点:重点:圆周角定理的证明及应用.难点:圆周角定理的证明和分类讨论问题的应用.课前准备:多媒体课件、圆规、三角板.教学过程:一、创设情境,引入新课活动内容1:视频欣赏(多媒体播放足球射门视频)活动内容2:设疑导入如图,在足球射门的游戏中,球员射中球门的难易程度与他所处的位置B对球门AC的张角(∠BAC)有关.当球员在B、D、E三点射门时,他所处的位置对球门AC分别形成三个张角∠BAC,∠BAC,∠BAC.这三个角的大小有什么关系?在这三点射门的效果一样吗?今天就让我们一起来共同学习圆周角和圆心角的关系.【板书课题:3.4圆周角和圆心角的关系(1)】处理方式:学生观看视频后思考、分析并进行交流.设计意图:通过视频欣赏,充分调动学生的课堂热情和积极性,同时也让学生感受到生活或娱乐中处处体现着数学的艺术.通过设疑,激发学生的求知欲,培养学习兴趣.二、探究学习,感悟新知活动内容1:圆周角的概念问题1:观察右图中的∠BAC,∠BAC,∠BAC,你有什么发现?与同伴交流.问题2:∠BAC,∠BAC,∠BAC是圆心角吗?它们与圆心角的区别是什么?与同伴交流.处理方式:学生先自主思考,然后与同伴交流自己的想法.教师组织学生说出自己发现,引导学生与圆心角进行对比,重点引导学生说出∠BAC、∠BAC、∠BAC的共同特特征,把握两点特征:角的顶点在圆上;两边在圆内的部分是圆的两条弦.接着给出圆周角定义:顶点在圆上,并且两边分别与圆还有另一个交点.像这样的角,叫做圆周角.巩固练习:火眼金睛1.判断下列各图形中的角是不是圆周角.(第1题图)(第2题图)2.指出图中的圆周角.处理方式:教师先引导学生回顾圆周角定义中的两个条件:①顶点在圆上;②两边分别与圆还有另一个交点.对于第2题,因为半径AO没有延长,所以∠OAB严格来说还不算是一个圆周角,这里有必要向学生说明一下,但以后在解题中,我们又往往会忽略这些角,因为只要把半径AO延长与圆相交后,就会形成圆周角了,所以这里要特别注意.两题可采用抢答的形式来完成.设计意图:通过让学生经历“观察--发现—对比--交流---总结”这一数学活动过程,一方面积累数学活动的经验,另一方面也加深了学生对圆周角的理解.类比圆心角来学习圆周角,学生会感觉自然,易于接受;通过两个练习,让学生加深了对圆周角定义的理解和直观感受. 让学生熟练判断圆中哪些是同一条弧所对的圆周角,并掌握如何在比较复杂的图形中按照一定的规律寻找所有的圆周角和圆心角,这一能力对于学习后续的圆的相关证明题是很必要的.活动内容2:圆周角与圆心角的关系1.直观感受:做一做如图,∠AOB=80°.(1)请你画几个AB所对的圆周角?这几个圆周角有什么关系?与同伴进行交流.(2)这些圆周角和圆心角∠AOB的大小有什么关系?你是怎么发现的?与同伴进行交流.处理方式:对于问题(1)应先让学生明确问题的要求,找到特定的弧,然后再画圆周角.学生所画的圆周角的位置会有不同,教师可以从中找出典型的图形进行展示,同时引导学生观察所画的圆周角与圆心角∠AOB有几种位置关系,然后通过对比猜测这几个圆周角的关系,与同伴交流自己的想法.学生所画圆周角展示:对于问题(2),教师可引导学生通过度量来进行猜测验证这些圆周角和圆心角∠AOB 的大小有什么关系.并启发学生思考:为什么不同位置的圆周角度数相同?从而初步得出结论:圆周角的度数等于它所对弧上的圆心角的一半.设计意图:通过画图加深对圆周角的理解,同时在画图的过程中让学生感受所画的圆周角与圆心角∠AOB所对的弧是同一段弧.为下面的对比或度量猜测结论做好铺垫.2.猜想:议一议在上图中,改变∠AOB的度数,你得到的结论还成立吗?说说你的想法,并与同伴交流.处理方式:学生猜想结论是否成立,并尝试进行说理.3.证明已知:如图,∠C 是AB 所对的圆周角,∠AOB 是AB 所对的圆心角. 求证:12C AOB ∠=∠.分析:根据圆周角和圆心角的位置关系,分三种情况讨论:(1)圆心O 在圆周角∠C 的一边上,如图(1);(2)圆心O 在圆周角∠C 的内部,如图(2);(3)圆心O 在圆周角∠C 的外部,如图(3).处理方式:先引导学生明确题意,再根据圆周角和圆心角的位置关系,进行分析--讨论--证明.证明时先让学生证明圆心O 在圆周角∠C 的一边上的情况,对于另外两种情况教师应适时进行引导,分析如何添加辅助线,将其转化为(1)的情况进行证明.情况(1)可让学生到黑板板演,适时点拨强调,规范学生的解题步骤.情况(2)(3)如果时间充足可让学生板演证明过程,也可借助实物投影展示学生的证明过程.注意要及时给予肯定的评价,帮助学生树立信心.证明:(1)当圆心O 在圆周角∠C 的一边上时,如图(1).∵∠AOB 是△ACO 的外角,∴∠AOB =∠C +∠A .∵OA=OC ,∴∠A =∠C .∴∠AOB =2∠C ,12C AOB ∠=∠即. (2)当过点C 作直径CD .证明过程略.(3)当过点C 作直径CD . 证明过程略.(2)(3)4.总结归纳通过以上证明过程你能得出什么结论?圆周角定理: 圆周角的度数等于它所对弧上的圆心角度数的一半.5.应用(1)如图,在直径为AB的半圆中,O为圆心,C,D为半圆上的两点,∠COD=50°,则∠CAD=_______.第(1)题第(2)题(2)如图,A、B、C为⊙O上三点,∠ABO=65°,求∠BCA的度数.处理方式:学生在说出答案的同时,请学生说出理由.教师总结:求圆周角时,要想到它所对的弧对的圆心角.设计意图:通过学生画圆周角,并测量出来,就能直观地感受它们之间的关系,然后就会很努力的去验证这个目标.两个巩固练习,是为了让学生活学活用.三、拓展延伸,提高认识想一想:(1)在足球射门的游戏中,球员在B、D、E三点射门时,所形成的三个张角∠BAC,∠BAC,∠BAC大小有什么关系?你能用圆周角定理证明你的结论吗?(2)如图,在⊙O中AB=EF,那么∠C和∠G的大小有什么关系?为什么?处理方式:(1)引导学生观察∠BAC,∠BAC,∠BAC是同弧(AC )所对的圆周角,根据圆心角定理,它们都等于AC 所对圆心角的一半,所以这几个圆周角相等.(2)引导学生结合圆心角定理和圆周角定理得出∠C 和∠G .根据以上学生的回答教师及时提出问题:由以上两题你能得出什么结论?学生思考总结后给出圆周角定理的推论:同弧或等弧所对的圆周角相等巩固训练:1.判断题:(1)在同圆或等圆中等弧所对的圆周角相等. ( )(2)相等的圆周角所对的弧也相等. ( )(3)同弦所对的圆周角相等. ( )2.在如图所示的8个角中,哪些是相等的角?你能从图中找出几对相似三角形吗?处理方式:训练习题由学生独立思考,然后采用抢答的形式完成.对于第1题中的第(3)题,要留给学生更多的思考空间.第(2)个问题由学生来处理,最后总结:由同一条弧去找圆周角,相似三角形也是去找相等的角.设计意图:学生掌握圆周角定理的基础上,应用圆周角定理得出推论,让学生更能深刻的体会到圆心角和圆周角的关系和联系.即时训练就是加深对知识的理解和应用.四、回顾反思,提炼升华通过这节课的学习,你有哪些收获?有何感想?学会了哪些方法?先想一想,再与大家一起分享.学生畅谈自己的收获!设计意图:通过学生对本节课所学进行梳理,理清本节课的主要内容,并且养成反思与总结的习惯,培养学生自主发展的意识.五、达标检测,反馈提高1.如图,点B ,C 在⊙O 上,且BO =BC ,则圆周角∠BAC 等于 .OABC(第1题)(第2题)(第3题)2.如图,已知BD是⊙O的直径,⊙O的弦AC⊥BD于点E,若∠AOD=60°,则∠DBC 的度数为.3.(选做)如图,弦AB与CD相交于点P,求证:P A•PB=PC•PD处理方式:学生做完后,教师出示答案,指导学生校对,并统计学生答题情况.学生根据答案进行纠错.设计意图:学以致用,当堂检测及时获知学生对所学知识掌握情况,尽可能地调动学生学习数学的积极性,使每个学生都能有所提高,明确哪些学生需要加强辅导,达到全面提高的目的.六、布置作业,课堂延伸必做题:课本80页,习题3.4第1、2题.选做题:课本81页,习题3.4第4题.板书设计:学生活动区域。
九上数学《圆周角(教学设计新部编版)》
精选教课教课方案设计| Excellent teaching plan教师学科教课方案[ 20–20学年度第__学期]任教课科: _____________任教年级: _____________任教老师: _____________xx市实验学校24.1.4 圆周角【知识与技术】理解圆周角的观点 .研究圆周角与同弧所对的圆心角之间的关系,并会用圆周角定理及推论进行相关计算和证明 .【过程与方法】经历研究圆周角定理的过程,初步领会分类议论的数学思想,浸透解决不确立的研究型问题的思想和方法,提升学生的发散思想能力 .【感情态度】经过踊跃指引,帮助学生存心识地累积活动经验,获取成功的体验.【教课要点】圆周角定理及其推论的研究与应用.【教课难点】圆周角定理的证明中由一般到特别的数学思想方法以及圆周角定理及推论的应用 .一、情境导入,初步认识如图是一个圆柱形的大海馆的横截面表示图,人们能够经过此中的圆弧形玻璃窗 AB 观看窗内的大海动物,同学甲站在圆心 O 的地点 .同学乙站在正对着玻璃窗的靠墙的地点 C,他们的视角(∠ AOB 和∠ ACB)有什么关系?假如同学丙、丁分别站在其余靠墙的地点 D 和 E,他们的视角(∠ ADB 和∠ AEB )和同学乙的视角同样吗?[同样, 2∠ACB=2 ∠ AEB=2 ∠ADB= ∠ AOB ]【教课说明】教师出示大海馆图片,指引学生思虑,引出课题,学生察看图形、剖析,初步感知角的特点.二、思虑研究,获取新知1.圆周角的定义研究 1 察看以下各图,图( 1)中∠ APB 的极点 P 在圆心 O 的地点,此时∠APB 叫做圆心角,这是我们上节所学的内容 .图(2)中∠ APB 的极点 P 在⊙ O 上,角的两边都与⊙ O 订交,这样的角叫圆周角 .请同学们剖析( 3)、(4)、( 5)、( 6)是圆心角仍是圆周角 .【教课说明】设计这样的一个判断角的问题,是再次重申圆周角的定义,让学生深刻领会定义中的两个条件缺一不行 .【概括结论】圆周角一定具备两个条件:①极点在圆上;②角的两边都与圆订交 .两者缺一不行 .2.圆周角定理研究 2 如图,(1)指出⊙ O 中全部的圆心角与圆周角,并指出这些角所对的是哪一条弧?(2)量一量∠ D、∠ C、∠ AOB 的度数,看看它们之间有什么样的关系?(3)改改动点 C 在圆周上的地点,看看圆周角的度数有没有变化?你发现此中有规律吗?如有规律,请用语言表达.解:(1)圆心角有:∠ AOB 圆周角有:∠ C、∠ D,它们所对的都是?AB (2)∠ C=∠D=1/2∠AOB.(3)改改动点 C 在圆周上的地点,这些圆周角的度数没有变化,并且圆周角的度数恰巧等于同弧所对圆心角度数的一半 .【教课说明】教师利用几何画板丈量角的大小,挪动点 C,让学生察看当 C 点地点发生改变过程中,图中有哪些不变,从而沟通总结,找出规律,同时指引学生察看圆心与圆周角的地点关系,为定理分状况证明作铺垫.为了进一步研究上边发现的结论,如图,在⊙ O 上任取一个圆周角∠ ACB ,将圆对折,使折痕经过圆心O 和∠ACB 的极点C.因为点C 的地点的取法可能不一样,这时折痕可能会:(1)在圆周角的一条边上;(2)在圆周角的内部;(3)在圆周角的外面 .已知:在⊙ O 中,?所对的圆周角是∠ ACB,圆心角是∠ AOB,求证:∠ABACB=1/2 ∠ AOB.[提示剖析:我们可按上边三种图形、三种状况进行证明.]如图( 1),圆心 O 在∠ ACB 的边上,∵ OB=OC,∴∠ B=∠C,而∠ BOA=∠B+∠C,∴∠ B=∠C=1/2∠AOB.图( 2)(3)的证明方法与图( 1)不一样,但能够转变成(1)的基本图形进行证明,证明过程请学生们议论达成.得出圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对圆心角的一半 .注意:①定理应用的条件是“同圆或等圆中”,并且一定是“同弧或等弧” ,以以下图( 1) .②若将定理中的“同弧或等弧”改为“同弦或等弦”结论就不行立了.因为一条弦所对的圆周角有两种状况,它们一般不相等(而是互补).以以下图( 2) .【教课说明】在定理的证明过程中,要使学生明确,要不要分状况来证明 . 若要分状况证明,一定要理解按什么标准来分状况,而后针对各样不一样的状况逐一进行证明 .在证明过程中,第( 1)种状况是特别状况,是比较简单证明的,经过增添直径这条协助线将( 2)、(3)种状况转变为第( 1)种状况,表现由一般到特别的思想方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精品教学教案设计| Excellent teaching plan
教师学科教案
[20 -20学年度第—学期]
任教学科:________________ 任教年级:________________ 任教老师:________________
xx市实验学校
教学设计圆周角和圆心角的关系肥西上派初级中学陈宗芝
1、所在班级情况,学生特点分析学生已了解圆的对称性并已掌握圆中弧、弦、圆心角之间的关系.通过类比分类探索圆周角和圆心角之间的关系时,主要是归结为同弧上圆周角与圆心角的关系,让学生形成分类讨论的思想。
初三学生有一定的分析力,归纳力. 根据他们的特点,选取适合学生的学习材料, 注重激发学生的求知欲,使学生不断感受成功,有利于教学活动的顺利进行.
2、教学内容分析圆周角与圆心角之间的关系这一节,主要是让学生通过实例来归纳出定义,并通过实例找出圆周角与圆心角之间的关系。
并应用定义、性质来解决问题。
尤其要在探究方面加强对学生进行培养。
3、教学目标
1、经历探索圆周角和圆心角的关系的过程.
2、理解圆周角的概念及其相关性质.
3、体会分类、归纳等数学思想方法.
4、教学难点分析
教学重点: 圆周角概念及圆周角定理.
教学难点: 认识圆周角定理需分三种情况证明的必要性5、教学课时一课时
6、教学过程
一、复旧引新
前面我们学习了与圆有关的哪种角?它有什么特点?请同学们画一个圆心角•学习了圆心角,它的顶点在圆心•圆心是圆中一个特殊的点,当角的顶点在圆心
时,就有圆心角•这样角与圆两种不同的图形产生了联系,在圆中还有比较特殊的点吗?如果有,把这样的点作为角的顶点,会是怎样的图形?
二、讲授新课
1圆周角的概念
同学们请观察下面的图(1)•
这是一个射门游戏,球员射中球门的难易与他所处的位置B对球门AC的
张角(/ ABC)有关.
图中的/ ABC顶点在什么位置?角的两边有什么特点?
/ABC的顶点B在圆上,它的两边分别和圆有另一个交点.(通过学生观察,
类比得到定义)
圆周角定义:顶点在圆上,并且角的两边和圆相交的角.
请同学们考虑两个问题:
(1)顶点在圆上的角是圆周角吗?
⑵ 圆和角的两边都相交的角是圆周角吗?
请同学们画图回答上述问题.
通过画图,相互交流,讨论认清圆周角概念的本质特征,从而总结出圆周角的两个特征:
⑴ 角的顶点在圆上;
(2)两边在圆内的部分是圆的两条弦.
2.补充练习1
判断下列图示中,各图形中的角是不是圆周角,并说明理由.
* B C D E #
答:由圆周角的两个特征知,只有C是圆周角,而A、B、D、E都不是.
3•研究圆周角和圆心角的关系.
在图⑴ 中,当球员在B、D、E处射门时,他所处的位置对球门AC分别形成三个张角/ ABC / ADC / AEC这三个角的大小有什么关系?我们知道,在同圆或等圆中,相等的弧所对的圆心角相等•那么,在同圆或等圆中,相等的弧所对的圆周角有什么关系?
请同学们动手画出。
0中,弧AC所对的圆心角和圆周角. 观察弧AC所对的圆周角有几个?它们的大小有什么关系?你是通过什么方法得到的?弧AC所对的圆心角和所对的圆周角之间有什么关系?
弧AC 所对的圆周角有无数个.通过测量的方
法得知: 弧AC 所对的圆周角相等,所对的圆周
角都等于它所对的圆心角 的一半.
对于有限次的测量得到的结论,必须通过其论
证,怎么证明呢?说说你的
想法,并与同伴交流.互相讨论、交流,寻找解题途径.
讨论:能否考虑从特殊情况入手试一下.圆周角
一边经过圆心.
(学生口述,教师板书) 如上图,已知:。
0中, 所对的圆周角是/ ABC 圆心角是/ AOC 求证:
. / ABC= 1/2AOC. 证明:.
/ AOC >^ABO 的外角, •••/ AOC=Z ABObZ BAO
•••0A= OB
•••/ ABO=Z BAO
即/ ABG 1/2 / AOC
如果/ ABC 的两边都不经过圆心(如下图),那么结果怎样?特殊情况会给 我们什么启发吗?你能将下图中的两种情况分别转化成上图中的情况去
解决吗?(学生互相交流、讨论)
ABC= 1/2 / AOC 结论成立.
经过刚才我们一起探讨,得到了什么结论?
一条弧所对的圆周角等于它所对的圆心角的一半•这一结论称为圆周角定理.在上述经历探索圆周角和圆心角的关系的过程中,我们学到了什么方法?
由“特殊到一般”的思想方法,转化的方法,分类讨论的方法,……好, 同学们总结得很好.由此我们可以知道,当解决一问题有困难时,可以首先考虑其特殊情形,然后再设法解决一般问题,这是解决问题时常用的策略•今后我们在处理问题时,注意运用.
三、课时小结
到目前为止,我们学习到和圆有关系的角有几个?它们各有什么特点?相互之间有什么关系?
和圆有关系的角有圆心角和圆周角.圆心角顶点在圆心,圆周角顶点在圆上,角的两边和圆相交.一条弧所对的圆周角等于它所对的圆心角的一半.这节课我们学会了什么定理?是如何进行探索的?我们学会了圆周角定理.通过分类讨论的思想方法,渗透了由特殊到一般的转化方法.对定理进行了研究和证明.好,同学们今后在学习中,要注意探索问题方法的应用.
注意:(1) 定理的条件是同一条弧所对的圆周角和圆心角,结论是圆周角等于圆心角的一半.
(2) 不能丢掉“一条弧所对的”而简单说成“圆周角等于圆心角的一
半”.
8.课堂练习
课本P111,随堂练习1、2
9.作业安排
习题3.4
10 .自我问答
在本节课的教学中,学生对圆周角的概念和“同弧所对的圆周角相等” 这一性质较容易掌握,理解起来问题也不大.而对圆周角与圆心角的关系理解起来则相对困难,特别是圆心在圆周角内部、圆心在圆周角外部这两种情况,因此在教学过程中要着重引导学生对这一知识的探索与理解.
2016 年 3 月10 日。