2021年中考数学考点专题训练16相似

合集下载

2021年九年级数学中考一轮复习与相似三角形有关的综合性解答题专项训练(含答案)

2021年九年级数学中考一轮复习与相似三角形有关的综合性解答题专项训练(含答案)

2021年九年级数学中考一轮复习与相似三角形有关的综合性解答题专项训练(含答案)1.如图,△ABC和△BEC均为等腰直角三角形,且∠ACB=∠BEC=90°,AC=4,点P为线段BE延长线上一点,连接CP以CP为直角边向下作等腰直角△CPD,线段BE 与CD相交于点F(1)求证:;(2)连接BD,请你判断AC与BD有什么位置关系?并说明理由;(3)设PE=x,△PBD的面积为S,求S与x之间的函数关系式.2.如图,△ADE由△ABC绕点A按逆时针方向旋转90°得到,且点B的对应点D恰好落在BC的延长线上,AD,EC相交于点P.(1)求∠BDE的度数;(2)F是EC延长线上的点,且∠CDF=∠DAC.①判断DF和PF的数量关系,并证明;②求证:=.3.如图,在矩形ABCD中,AB=20,点E是BC边上的一点,将△ABE沿着AE折叠,点B刚好落在CD边上点G处;点F在DG上,将△ADF沿着AF折叠,点D刚好落在AG 上点H处,此时S△GFH:S△AFH=2:3,(1)求证:△EGC∽△GFH;(2)求AD的长;(3)求tan∠GFH的值.4.如图1,矩形ABCD中,点E为AB边上的动点(不与A,B重合),把△ADE沿DE翻折,点A的对应点为A1,延长EA1交直线DC于点F,再把∠BEF折叠,使点B的对应点B1落在EF上,折痕EH交直线BC于点H.(1)求证:△A1DE∽△B1EH;(2)如图2,直线MN是矩形ABCD的对称轴,若点A1恰好落在直线MN上,试判断△DEF的形状,并说明理由;(3)如图3,在(2)的条件下,点G为△DEF内一点,且∠DGF=150°,试探究DG,EG,FG的数量关系.5.如图1所示,在四边形ABCD中,点O,E,F,G分别是AB,BC,CD,AD的中点,连接OE,EF,FG,GO,GE.(1)证明:四边形OEFG是平行四边形;(2)将△OGE绕点O顺时针旋转得到△OMN,如图2所示,连接GM,EN.①若OE=,OG=1,求的值;②试在四边形ABCD中添加一个条件,使GM,EN的长在旋转过程中始终相等.(不要求证明)6.在四边形ABCD中,点E为AB边上的一点,点F为对角线BD上的一点,且EF⊥AB.(1)若四边形ABCD为正方形.①如图1,请直接写出AE与DF的数量关系;②将△EBF绕点B逆时针旋转到图2所示的位置,连接AE,DF,猜想AE与DF的数量关系并说明理由;(2)如图3,若四边形ABCD为矩形,BC=mAB,其它条件都不变,将△EBF绕点B 顺时针旋转α(0°<α<90°)得到△E'BF',连接AE',DF',请在图3中画出草图,并直接写出AE'与DF'的数量关系.7.如图,在Rt△ABC中,∠ACB=90°,AC=5cm,∠BAC=60°,动点M从点B出发,在BA边上以每秒2cm的速度向点A匀速运动,同时动点N从点C出发,在CB边上以每秒cm的速度向点B匀速运动,设运动时间为t秒(0≤t≤5),连接MN.(1)若BM=BN,求t的值;(2)若△MBN与△ABC相似,求t的值;(3)当t为何值时,四边形ACNM的面积最小?并求出最小值.8.在△ABC中,P为边AB上一点.(1)如图1,若∠ACP=∠B,求证:AC2=AP•AB;(2)若M为CP的中点,AC=2.①如图2,若∠PBM=∠ACP,AB=3,求BP的长;②如图3,若∠ABC=45°,∠A=∠BMP=60°,直接写出BP的长.9.阅读理解:我们知道,四边形具有不稳定性,容易变形,如图1,一个矩形发生变形后成为一个平行四边形,设这个平行四边形相邻两个内角中较小的一个内角为α,我们把的值叫做这个平行四边形的变形度.(1)若矩形发生变形后的平行四边形有一个内角是120度,则这个平行四边形的变形度是.猜想证明:(2)设矩形的面积为S1,其变形后的平行四边形面积为S2,试猜想S1,S2,之间的数量关系,并说明理由;拓展探究:(3)如图2,在矩形ABCD中,E是AD边上的一点,且AB2=AE•AD,这个矩形发生变形后为平行四边形A1B1C1D1,E1为E的对应点,连接B1E1,B1D1,若矩形ABCD的面积为4(m>0),平行四边形A1B1C1D1的面积为2(m>0),试求∠A1E1B1+∠A1D1B1的度数.10.如图,在△ABC中,AB=AC=10cm,BD⊥AC于点D,BD=8cm.点M从点A出发,沿AC的方向匀速运动,速度为2cm/s;同时直线PQ由点B出发,沿BA的方向匀速运动,速度为1cm/s,运动过程中始终保持PQ∥AC,直线PQ交AB于点P、交BC于点Q、交BD于点F.连接PM,设运动时间为t秒(0<t<5).(1)当t为何值时,四边形PQCM是平行四边形?(2)设四边形PQCM的面积为ycm2,求y与t之间的函数关系式;(3)是否存在某一时刻t,使S四边形PQCM=S△ABC?若存在,求出t的值;若不存在,说明理由;(4)连接PC,是否存在某一时刻t,使点M在线段PC的垂直平分线上?若存在,求出此时t的值;若不存在,说明理由.11.(1)模型探究:如图1,D、E、F分别为△ABC三边BC、AB、AC上的点,且∠B=∠C=∠EDF=a.△BDE与△CFD相似吗?请说明理由;(2)模型应用:△ABC为等边三角形,其边长为8,E为AB边上一点,F为射线AC上一点,将△AEF沿EF翻折,使A点落在射线CB上的点D处,且BD=2.①如图2,当点D在线段BC上时,求的值;②如图3,当点D落在线段CB的延长线上时,求△BDE与△CFD的周长之比.12.如图,在矩形ABCD中,点P是BC边上任意一点(点P不与B、C重合),连接AP,作PQ⊥AP,交CD于点Q,若AB=6,BC=8.(1)试证明:△ABP∽△PCQ;(2)当BP为多少时,CQ最长,最长是多少?(3)试探究,是否存在一点P,使△APQ是等腰直角三角形?13.如图,在平面直角坐标系中,点O为坐标原点,A点的坐标为(3,0),以OA为边作等边三角形OAB,点B在第一象限,过点B作AB的垂线交x轴于点C.动点P从O点出发沿着OC向点C运动,动点Q从B点出发沿着BA向点A运动,P,Q两点同时出发,速度均为1个单位/秒.当其中一个点到达终点时,另一个点也随之停止.设运动时间为t秒.(1)求线段BC的长;(2)过点Q作x轴垂线,垂足为H,问t为何值时,以P、Q、H为顶点的三角形与△ABC相似;(3)连接PQ交线段OB于点E,过点E作x轴的平行线交线段BC于点F.设线段EF 的长为m,求m与t之间的函数关系式,并直接写出自变量t的取值范围.14.课外兴趣小组活动时,老师提出了如下问题.如图1,△ABC中,若AB=12,AC=8,求BC边上的中线AD的取值范围.小颖在组内经过合作交流,得到了如下的解决方法:如图2,延长AD到点E,使DE=AD,连结BE.请根据小颖的方法思考:(1)由已知和作图能得到△ADC≌△EDB,依据是;A.SSS B.SAS C.AAS D.HL(2)由“三角形的三边关系”可求得AD的取值范围是.解后反思:题目中出现“中点”“中线”等条件,可考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.完成上题之后,小颖善于探究,她又提出了如下的问题,请你解答.(3)在△ABC中,D是BC上一点,连结AD,E是AD上一点,连结BE并延长交边AC 于点F.①如图3,若AD是△ABC的中线,且AF=EF,求证:AC=BE.②如图4,若E是BF的中点,求证:AF•CD=AC•BD15.如图,平面直角坐标系中,菱形OABC的边OA在x轴正半轴上,OA=10,cos∠COA =.一个动点P从点O出发,以每秒1个单位长度的速度沿线段OA方向运动,过点P作PQ⊥OA,交折线段OC﹣CB于点Q,以PQ为边向右作正方形PQMN,点N在射线OA上,当P点到达A点时,运动结束.设点P的运动时间为t秒(t>0).(1)C点的坐标为,当t=时N点与A点重合;(2)在整个运动过程中,设正方形PQMN与菱形OABC的重合部分面积为S,直接写出S与t之间的函数关系式和相应的自变量t的取值范围;(3)如图2,在运动过程中,过点O和点B的直线将正方形PQMN分成了两部分,请问是否存在某一时刻,使得被分成的两部分中有一部分的面积是菱形面积的?若存在,请求出对应的t的值;若不存在,请说明理由.16.如图,四边形ABCD是矩形.(1)如图1,E、F分别是AD、CD上的点,BF⊥CE,垂足为G,连接AG.①求证:;②若G为CE的中点,求证:sin∠AGB=;(2)如图2,将矩形ABCD沿MN折叠,点A落在点R处,点B落在CD边的点S处,连接BS交MN于点P,Q是RS的中点.若AB=2,BC=3,直接写出PS+PQ的最小值为.17.如图,四边形ABCD是正方形,点E、F分别是BC、CD上的点,且BE=CF,连接AE、BF交于点P.(1)如图①,判断AE和BF之间的数量关系和位置关系,并证明;(2)如图②,连接AF,点M是AF中点,若BE=2,CE=3,求线段PM的长度;(3)如图③,作CQ⊥BF于点Q,若△QAB∽△QEC,求证:点E是BC中点.参考答案:1.(1)证明:∵△BCE和△CDP均为等腰直角三角形,∴∠ECB=∠PCD=45°,∠CEB=∠CPD=90°,∴△BCE∽△DCP,∴;(2)解:AC∥BD,理由:∵∠PCE+∠ECD=∠BCD+∠ECD=45°,∴∠PCE=∠BCD,又∵=,∴△PCE∽△DCB,∴∠CBD=∠CEP=90°,∵∠ACB=90°,∴∠ACB=∠CBD,∴AC∥BD;(3)解:如图所示:作PM⊥BD于M,∵AC=4,△ABC和△BEC均为等腰直角三角形,∴BE=CE=4,∵△PCE∽△DCB,∴=,即=,∴BD=x,∵∠PBM=∠CBD﹣∠CBP=45°,BP=BE+PE=4+x,∴PM=sin45°•(4+x)=,∴△PBD的面积S=BD•PM=×x×=x2+2x.2.解:(1)∵△ADE由△ABC绕点A按逆时针方向旋转90°得到,∴AB=AD,∠BAD=90°,△ABC≌△ADE,在Rt△ABD中,∠B=∠ADB=45°,∴∠ADE=∠B=45°,∴∠BDE=∠ADB+∠ADE=90°.(2)①DF=PF.证明:由旋转的性质可知,AC=AE,∠CAE=90°,在Rt△ACE中,∠ACE=∠AEC=45°,∵∠CDF=∠CAD,∠ACE=∠ADB=45°,∴∠ADB+∠CDF=∠ACE+∠CAD,即∠FPD=∠FDP,∴DF=PF.②证明:过点P作PH∥ED交DF于点H,∴∠HPF=∠DEP,,∵∠DPF=∠ADE+∠DEP=45°+∠DEP,∠DPF=∠ACE+∠DAC=45°+∠DAC,∴∠DEP=∠DAC,又∵∠CDF=∠DAC,∴∠DEP=∠CDF,∴∠HPF=∠CDF,又∵FD=FP,∠F=∠F,∴△HPF≌△CDF(ASA),∴HF=CF,∴DH=PC,又∵,∴.3.(1)证明:∵四边形ABCD是矩形,由折叠对称知:∠AGE=∠B=90°,∠AHF=∠D=90°,∴∠GHF=∠C=90°,∠EGC+∠HGF=90°,∠GFH+∠HGF=90°,∴∠EGC=∠GFH,∴△EGC∽△GFH.(2)解:∵S△GFH:S△AFH=2:3,且△GFH和△AFH等高,∴GH:AH=2:3,∵将△ABE沿着AE折叠,点B刚好落在CD边上点G处,∴AG=AB=GH+AH=20,∴GH=8,AH=12,∴AD=AH=12.(3)解:在Rt△ADG中,DG===16,由折叠的对称性可设DF=FH=x,则GF=16﹣x,∵GH2+HF2=GF2,∴82+x2=(16﹣x)2,解得:x=6,∴HF=6,在Rt△GFH中,tan∠GFH=.4.解:(1)证明:由折叠的性质可知:∠DAE=∠DA1E=90°,∠EBH=∠EB1H=90°,∠AED=∠A1ED,∠BEH=∠B1EH,∴∠DEA1+∠HEB1=90°.∴∠DEA1=∠EHB1,∴△A1DE∽△B1EH;(2)结论:△DEF是等边三角形;理由如下:∵直线MN是矩形ABCD的对称轴,∴点A1是EF的中点,即A1E=A1F,在△A1DE和△A1DF中,∴△A1DE≌△A1DF(SAS),∴DE=DF,∠FDA1=∠EDA1,又∵△ADE≌△A1DE,∠ADF=90°.∴∠ADE=∠EDA1=∠FDA1=30°,∴∠EDF=60°,∴△DEF是等边三角形;(3)DG,EG,FG的数量关系是DG2+GF2=GE2,理由如下:由(2)可知△DEF是等边三角形;将△DGE顺时针旋转60°到△DG'F位置,如解图(1),∴G'F=GE,DG'=DG,∠GDG'=60°,∴△DGG'是等边三角形,∴GG'=DG,∠DGG'=60°,∵∠DGF=150°,∴∠G'GF=90°,∴G'G2+GF2=G'F2,∴DG2+GF2=GE2.5.解:(1)如图1,连接AC,∵点O、E、F、G分别是AB、BC、CD、AD的中点,∴OE∥AC、OE=AC,GF∥AC、GF=AC,∴OE∥GF,OE=GF,∴四边形OEFG是平行四边形;(2)①∵△OGE绕点O顺时针旋转得到△OMN,∴OG=OM、OE=ON,∠GOM=∠EON,∴=,∴△OGM∽△OEN,∴==.②添加AC=BD,如图2,连接AC、BD,∵点O、E、F、G分别是AB、BC、CD、AD的中点,∴OG=EF=BD、OE=GF=AC,∵AC=BD,∴OG=OE,∵△OGE绕点O顺时针旋转得到△OMN,∴OG=OM、OE=ON,∠GOM=∠EON,∴OG=OE、OM=ON,在△OGM和△OEN中,∵,∴△OGM≌△OEN(SAS),∴GM=EN.6.解:(1)①∵四边形ABCD为正方形,∴△ABD为等腰直角三角形,∴BD=AB,∵EF⊥AB,∴△BEF为等腰直角三角形,BF=BE,∴BD﹣BF=AB﹣BE,即DF=AE;故答案为DF=AE;②DF=AE.理由如下:∵△EBF绕点B逆时针旋转到图2所示的位置,∴∠ABE=∠DBF,∵=,=,∴=,∴△ABE∽△DBF,∴==,即DF=AE;(2)如图3,∵四边形ABCD为矩形,∴AD=BC=mAB,∴BD==AB,∵EF⊥AB,∴EF∥AD,∴△BEF∽△BAD,∴=,∴==,∵△EBF绕点B顺时针旋转α(0°<α<90°)得到△E'BF',∴∠ABE′=∠DBF′,BE′=BE,BF′=BF,∴==,∴△ABE′∽△DBF′,∴==,即DF′=AE′.7.解:(1)∵在Rt△ABC中,∠ACB=90°,AC=5,∠BAC=60°,∴∠B=30°,∴AB=2AC=10,.由题意知:BM=2t,,∴,∵BM=BN,∴,解得:.(2)分两种情况:①当△MBN∽△ABC时,则,即,解得:.②当△NBM∽△ABC时,则,即,解得:.综上所述:当或时,△MBN与△ABC相似.(3)过M作MD⊥BC于点D,则MD∥AC,∴△BMD∽△BAC,∴,即,解得:MD=t.设四边形ACNM的面积为y,∴y===.∴根据二次函数的性质可知,当时,y的值最小.此时,.8.解:(1)∵∠ACP=∠B,∠A=∠A,∴△ACP∽△ABC,∴,∴AC2=AP•AB;(2)①取AP的中点G,连接MG,设AG=x,则PG=x,BG=3﹣x,∵M是PC的中点,∴MG∥AC,∴∠BGM=∠A,∵∠ACP=∠PBM,∴△APC∽△GMB,∴,即,∴x=,∵AB=3,∴AP=3﹣,∴PB=;②过C作CH⊥AB于H,延长AB到E,使BE=BP,设BP=x.∵∠ABC=45°,∠A=60°,∴CH=,HE=+x,∵CE2=()2+(+x)2,∵PB=BE,PM=CM,∴BM∥CE,∴∠PMB=∠PCE=60°=∠A,∵∠E=∠E,∴△ECP∽△EAC,∴,∴CE2=EP•EA,∴3+3+x2+2x=2x(x++1),∴x=﹣1,∴PB=﹣1.9.解:(1)∵平行四边形有一个内角是120度,∴α=60°,∴==;故答案为:;(2)=,理由:如图1,设矩形的长和宽分别为a,b,变形后的平行四边形的高为h,∴S1=ab,S2=ah,sinα=,∴==,∵=,∴=;(3)∵AB2=AE•AD,∴A1B12=A1E1•A1D1,即=,∵∠B1A1E1=∠D1A1B1,∴△B1A1E1∽△D1A1B1,∴∠A1B1E1=∠A1D1B1,∵A1D1∥B1C1,∴∠A1E1B1=∠C1B1E1,∴∠A1E1B1+∠A1D1B1=∠C1B1E1+∠A1B1E1=∠A1B1C1,由(2)知=可知==2,∴sin∠A1B1C1=,∴∠A1B1C1=30°,∴∠A1E1B1+∠A1D1B1=30°.10.解:(1)假设四边形PQCM是平行四边形,则PM∥QC,∴AP:AB=AM:AC,∵AB=AC,∴AP=AM,即10﹣t=2t,解得:t=,∴当t=时,四边形PQCM是平行四边形;(2)∵PQ∥AC,∴△PBQ∽△ABC,∴△PBQ为等腰三角形,PQ=PB=t,∴,即,解得:BF=t,∴FD=BD﹣BF=8﹣t,又∵MC=AC﹣AM=10﹣2t,∴y=(PQ+MC)•FD=(t+10﹣2t)(8﹣t)=t2﹣8t+40;(3)不存在;∵S△ABC==×10×8=40,当S四边形PQCM=S△ABC时,y=t2﹣8t+40=40,解得:t=0,或t=20,都不合题意,因此不存在;(4)假设存在某一时刻t,使得M在线段PC的垂直平分线上,则MP=MC,过M作MH⊥AB,交AB于H,如图所示:∵∠A=∠A,∠AHM=∠ADB=90°,∴△AHM∽△ADB,∴,又∵AD==6,∴,∴HM t,AH=t,∴HP=10﹣t﹣t=10﹣t,在Rt△HMP中,MP2=+=t2﹣44t+100,又∵MC2=(10﹣2t)2=100﹣40t+4t2,∵MP2=MC2,∴t2﹣44t+100=100﹣40t+4t2,解得,t2=0(舍去),∴t=s时,点M在线段PC的垂直平分线上.11.解:(1)△BDE∽△CFD,理由:∠B=∠C=∠EDF=a,在△BDE中,∠B+∠BDE+∠BED=180°,∴∠BDE+∠BED=180°﹣∠B=180°﹣α,∵∠BDE+∠EDF+∠CDF=180°,∴∠BDE+∠CDF=180°﹣∠EDF=180°﹣α,∴∠BED=∠CDF,∵∠B=∠C,∴△BDE∽△CFD;(2)①设AE=x,AF=y,∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,AB=BC=AC=8,由折叠知,DE=AE=x,DF=AF=y,∠EDF=∠A=60°,在△BDE中,∠B+∠BDE+∠BED=180°,∴∠BDE+∠BED=180°﹣∠B=120°,∵∠BDE+∠EDF+∠CDF=180°,∴∠BDE+∠CDF=180°﹣∠EDF=120°,∴∠BED=∠CDF,∵∠B=∠C=60°,∴△BDE∽△CFD,∴∵BE=AB﹣AE=8﹣x,CF=AC﹣AF=8﹣y,CD=BC﹣BD=6,∴,∴,∴,∴;②设AE=x,AF=y,∵△ABC是等边三角形,∴∠A=∠ABC=∠ACB=60°,AB=BC=AC=8,由折叠知,DE=AE=x,DF=AF=y,∠EDF=∠A=60°,在△BDE中,∠ABC+∠BDE+∠BED=180°,∴∠BDE+∠BED=180°﹣∠ABC=120°,∵∠BDE+∠EDF+∠CDF=180°,∴∠BDE+∠CDF=180°﹣∠EDF=120°,∴∠BED=∠CDF,∵∠ABC=∠ACB=60°,∴∠DBE=∠DCF=120°,∴△BDE∽△CFD,∴∵BE=AB﹣AE=8﹣x,CF=AF﹣AC=y﹣8,CD=BC+BD=10,∴,∴,∴=.∵△BDE∽△CFD,∴△BDE与△CFD的周长之比为==.12.解:(1)∵PQ⊥AP,∴∠APB+∠QPC=90°,而∠QPC+∠PQC=90°,∴∠APB=∠PQC,∵∠ABP=∠PCQ=90°,∴△ABP∽△PCQ;(2)∵△ABP∽△PCQ,∴,即,则CQ=﹣x2+x=﹣(x﹣4)2+≥,故当x=4时,CQ的最大值为,即BP为4时,CQ最长,最长是;(3)∵△APQ是等腰直角三角形,则P A=PQ,而△ABP∽△PCQ,则△ABP≌△PCQ(AAS),∴AB=PC=6,则BP=8﹣6=2,即BP=2时,△APQ是等腰直角三角形.13.(1)解:如图1,∵△AOB为等边三角形,∴∠BAC=∠AOB=60°.∵BC⊥AB,∴∠ABC=90°,∴∠ACB=30°,∠OBC=30°∴∠ACB=∠OBC,∴CO=OB=AB=OA=3,∴AC=6,∴BC=AC=;(2)如图2,过点Q作x轴垂线,垂足为H,则QH=AQ•sin60°=.需要分类讨论:当△PHQ∽△ABC时,=,即==,解得,t=0.同理,当△QHP∽△ABC时,t=1.综上所述,t=0或t=1;(3)解:如图1,过点Q作QN∥OB交x轴于点N.∴∠QNA=∠BOA=60°=∠QAN,∴QN=QA∴△AQN为等边三角形,∴NQ=NA=AQ=3﹣t,∴ON=3﹣(3﹣t)=t,∴PN=t+t=2t,∴OE∥QN.∴△POE∽△PNQ∴,∴,∴∵EF∥x轴,∴∠BFE=∠BCO=∠FBE=30°∴EF=BE,∴m=BE=OB﹣OE=(0<t<3).14.(1)解:在△ADC和△EDB中,,∴△ADC≌△EDB(SAS),故选:B;(2)解:∵△ADC≌△EDB,∴BE=AC,在△ABE中,AB﹣BE<AE<AB+BE,∴4<2AD<20,∴2<AD<10,故答案为:2<AD<10;(3)①证明:如图③,延长AD到点G,使DG=AD,连接BG.∵AD=DG,∠ADC=∠GDB,CD=DB,∴△ADC≌△GDB(SAS),∴AC=BG,∠DAC=∠G,∴BG∥AC,∴∠F AE=∠G,∵AF=EF,∴∠F AE=∠AEF,∴∠BEG=∠G,∴BE=BG,∴AC=BE.②证明:延长AD到H,使得EH=AE,连接BH.∵AE=EH,∠AEF=∠BEH,EF=EB,∴△AEF≌△HEB(SAS),∴BH=AF,∠H=∠EAF,∴BH∥AC,∴△BDH∽△CDA,∴=,∴=,∴AF•CD=AC•BD.15.解:(1)∵菱形OABC中,OA=10,∴OC=10,∵cos∠COA=,∴点C的坐标为:(6,8),∵动点P从点O出发,以每秒1个单位长度的速度沿线段OA方向运动,∵cos∠COA==,OP=t,∴OQ=t,∴QP=t,∵OA=10,N点与A点重合,∴t+t=10,∴t=∴t=时,N点与A点重合;(2)①,②,③,④8<t≤10,S=104﹣8t;(3)S菱形=80,直线OB过原点(0,0),B点(16,8),故直线OB解析式为,直线OB与PQ、MN分别交于E、F点,如图:①当0<t≤6,,,,,若,则,,若,则,,②当6<t≤8,,,,,若则,t=0(舍),若,则,t3=8;③8<t≤10,不存在符合条件的t值.16.(1)①证明:如图1中,∵四边形ABCD是矩形,∴∠CDE=∥BCF=90°,∵BF⊥CE,∴∠BGC=90°,∴∠BCG+∠FBC=∠BCG+∠ECD=90°,∴∠FBC=∠ECD,∴△FBC∽△ECD,∴=.②证明:如图1中,连接BE,GD.∵BF⊥CE,EG=CG,∴BF垂直平分线段EC,∴BE=CB,∠EBG=∠CBG,∵DG=CG,∴∠CDG=∠GCD,∵∠ADG+∠CDG=90°,∠BCG+∠ECD=90°,∴∠ADG=∠BCG,∵AD=BC,∴△ADG≌△BCG(SAS),∴∠DAG=∠CBG,∴∠DAG=∠EBG,∴∠AEB=∠AGB,∴sin∠AGB=sin∠AEB====.(2)如图2中,取AB的中点T,连接PT,CP.∵四边形MNSR与四边形MNBA关于MN对称,T是AB中点,Q是SR中点,∴PT=PQ,MN垂直平分线段BS,∴BP=PS,∵∠BCS=90°,∴PC=PS=PB,∴PQ+PS=PT+PC,当T,P,C共线时,PQ+PS的值最小,最小值===,∴PQ+PS的最小值为.故答案为.17.解:(1)AE=BF,AE⊥BF,证明:∵四边形ABCD是正方形,∴AB=BC,∠ABC=∠BCD=90°,∵BE=CF,∴△ABE≌△BCF(SAS),∴AE=BF,∠BAE=∠CBF,∵∠ABP+∠CBF=90°∴∠BAE+∠ABP=90°∴∠APB=90°,∴AE⊥BF;(2)∵四边形ABCD是正方形,∴BC=DC=AD,由(1)知,AE=BF,∵BE=2,CE=3,BE=CF,∴DF=DC﹣CF=BC﹣BE=CE=3,AD=BC=BE+CE=2+3=5,在Rt△ADF中,由勾股定理得,AF===,在Rt△APF中,∠APF=90°,点M是AF中点,∴;(3)∵CQ⊥BF,∴∠BQC=∠BCF=90°,又∠CBQ=∠FBC,∴△CBQ~△FBC,∴,∵AB=BC,BE=CF,∴,∵△QAB~△QEC,∴,∴,∴,∴BE=CE,∴点E是BC中点。

专题16 全等三角形的核心知识点精讲(讲义)-备战2024年中考数学一轮复习考点帮

专题16 全等三角形的核心知识点精讲(讲义)-备战2024年中考数学一轮复习考点帮

专题16 全等三角形的核心知识点精讲1.熟悉全等三角形常考5种模型2.掌握全等三角形性质,并运用全等三角形性质解答。

考点1:全等三角形的概念及性质考点2:全等三角形的判定模型一:平移型模型分析:此模型特征是有一组边共线或部分重合,另两组边分别平行,常要在移动的方向上加(减)公共线段,构造线段相等,或利用平行线性质找到对应角相等.模型示例概念两个能完全重合的三角形叫做全等三角形.性质1.两全等三角形的对应边相等,对应角相等.2.全等三角形的对应边上的高相等,对应边上的中线相等,对应角的平分线相等.3.全等三角形的周长、面积相等.模型二:轴对称模型模型分析:所给图形可沿某一直线折叠,直线两旁的部分能完全重合,重合的顶点就是全等三角形的对应顶点,解题时要注意隐含条件,即公共边或公共角相等.模型三:旋转型模型解读:将三角形绕着公共顶点旋转一定角度后,两个三角形能够完全重合,则称这两个三角形为旋转型三角形.旋转后的图形与原图形存在两种情况:①无重叠:两个三角形有公共顶点,无重叠部分,一般有一对隐含的等角②有重叠:两个三角形含有一部分公共角,运用角的和差可得到等角.模型四:一线三垂直型模型解读:一线:经过直角顶点的直线;三垂直:直角两边互相垂直,过直角的两边向直线作垂直,利用“同角的余角相等”转化找等角【题型1:平移型】【典例1】(2023•广州)如图,B是AD的中点,BC∥DE,BC=DE.求证:∠C=∠E.1.(2022•淮安)已知:如图,点A、D、C、F在一条直线上,且AD=CF,AB=DE,∠BAC=∠EDF.求证:∠B=∠E.2.(2022•柳州)如图,点A,D,C,F在同一条直线上,AB=DE,BC=EF.有下列三个条件:①AC=D F,②∠ABC=∠DEF,③∠ACB=∠DFE.(1)请在上述三个条件中选取一个条件,使得△ABC≌△DEF.你选取的条件为(填写序号)(只需选一个条件,多选不得分),你判定△ABC≌△DEF的依据是(填“SSS”或“SAS”或“ASA”或“AAS”);(2)利用(1)的结论△ABC≌△DEF.求证:AB∥DE.【题型2:对称型】【典例2】(2023•福建)如图,OA=OC,OB=OD,∠AOD=∠COB.求证:AB=CD.1.(2023•长沙)如图,AB=AC,CD⊥AB,BE⊥AC,垂足分别为D,E.(1)求证:△ABE≌△ACD;(2)若AE=6,CD=8,求BD的长.2.(2022•西藏)如图,已知AD平分∠BAC,AB=AC.求证:△ABD≌△ACD.【题型3:旋转型】【典例3】(2023•大连)如图,AC=AE,BC=DE,BC的延长线与DE相交于点F,∠ACF+∠AED=180°.求证:AB=AD.1.(2023•乐山)如图,已知AB与CD相交于点O,AC∥BD,AO=BO,求证:AC=BD.2.(2023•泸州)如图,点B在线段AC上,BD∥CE,AB=EC,DB=BC.求证:AD=EB.3.(2023•西藏)如图,已知AB=DE,AC=DC,CE=CB.求证:∠1=∠2.【题型4:一线三等角】【典例4】(2023•陕西)如图,在△ABC中,∠B=90°,作CD⊥AC,且使CD=AC,作DE⊥BC,交BC 的延长线于点E.求证:CE=AB.1.(2021•南充)如图,∠BAC=90°,AD是∠BAC内部一条射线,若AB=AC,BE⊥AD于点E,CF⊥A D于点F.求证:AF=BE.一.选择题(共8小题)1.下列各组图案中,不是全等形的是()A.B.C.D.2.已知图中的两个三角形全等,则∠1等于()A.50°B.58°C.60°D.72°3.如图,△ABC≌△DEC,点E在AB边上,∠B=70°,则∠ACD的度数为()A.30°B.40°C.45°D.50°4.如图,△ABD≌△ACE,若AB=6,AE=4,则CD的长度为()A.10B.6C.4D.25.如图,点B、F、C、E在一条直线上,∠A=∠D=90°,AB=DE,添加下列选项中的条件,能用HL 判定△ABC≌△DEF的是()A.AC=DF B.∠B=∠E C.∠ACB=∠DFE D.BC=EF6.如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD()A.∠B=∠C B.BE=CD C.BD=CE D.AD=AE7.如图,BE⊥AC于点E,CF⊥AB于点F,若BE=CF,则Rt△BCF≌Rt△CBE的理由是()A.AAS B.HL C.SAS D.ASA8.如图所示,已知在△ABC中,∠C=90°,AD=AC,DE⊥AB交BC于点E,若∠B=28°,则∠AEC =()A.28°B.59°C.60°D.62°二.填空题(共4小题)9.如图是两个全等三角形,图中的字母表示三角形的边长,那么∠1的度数为.10.已知:如图,△ABC和△BAD中,∠C=∠D=90°,再添加一个条件就可以判断△ABC ≌△BAD.11.请仔细观察用直尺和圆规作一个角∠A'O'B'等于已知角∠AOB的示意图.请你根据所学的三角形全等的有关知识,说明画出∠A'O'B'=∠AOB的依据是.12.如图,若AC平分∠BCD,∠B+∠D=180°,AE⊥BC于点E,BC=13cm,CD=7cm,则BE=.三.解答题(共4小题)13.如图,点B、E、C、F在一条直线上,AB=DE,AC=DF,BE=CF.(1)求证:△ABC≌△DEF;(2)若∠D=45°,求∠EGC的大小.14.如图,∠ACB=90°,∠BAC=45°,AD⊥CE,BE⊥CE,垂足分别是D,E,BE=0.8,DE=1.7,求AD的长.15.如图,点A,B,C在一条直线上,△ABD、△BCE均为等边三角形,连接AE和CD,AE分别交CD,BD于点M,P,CD交BE于点Q.(1)求证:△ABE≌△DBC;(2)求∠DMA的度数.16.如图,AC=DC,E为AB上一点,EC=BC,并且∠1=∠2.(1)求证:△ABC≌△DEC;(2)若∠B=75°,求∠3的度数.一.选择题(共7小题)1.如图,任意画一个∠A=60°的△ABC,再分别作△ABC的两条角平分线BE和CD,BE和CD相交于点P,连接AP,有以下结论:①∠BPC=120°;②AP平分∠BAC;③AP=PC;④BD+CE=BC;⑤S△PBA:S△PCA=AB:AC,其中正确的个数是()个.A.5B.4C.3D.22.如图,在△ABC中,∠BAC=60°,BE、CD为△ABC的角平分线.BE与CD相交于点F,FG平分∠BFC,有下列四个结论:①∠BFC=120°;②BD=CE;③BC=BD+CE;④若BE⊥AC,△BDF≌△CE F.其中正确的是()A.①③B.②③④C.①③④D.①②③④3.如图,已知△ABC和△ADE都是等腰直角三角形,∠BAC=∠EAD=90°,BD,CE交于点F,连接A F,下列结论:①BD=CE②∠AEF=∠ADF③BD⊥CE④AF平分∠CAD⑤∠AFE=45°其中结论正确的序号是()A.①②③④B.①②④⑤C.①③④⑤D.①②③⑤4.如图,在Rt△AEB和Rt△AFC中,∠E=∠F=90°,BE=CF,BE与AC相交于点M,与CF相交于点D,AB与CF相交于点N,∠EAC=∠F AB.有下列结论:①∠B=∠C;②ED=FD;③AC=BE;④△ACN≌△ABM.其中正确结论的个数是()A.1个B.2个C.3个D.4个5.在直线l上依次摆放着七个正方形,已知斜放置的三个正方形的面积分别为1,2,3,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S1+2S2+2S3+S4=()A.6B.8C.10D.126.如图,△ABC和△CDE都是等边三角形,B,C,D三点在一条直线上,AD与BE相交于点P,AC、B E相交于点M,AD、CE相交于点N,则下列四个结论:①AD=BE;②∠BMC=∠ANC;③∠APM=60°;④CP平分∠MCN.其中,一定正确的结论的个数是()A.1B.2C.3D.47.如图,△ABC中,∠BAC=60°,∠BAC的平分线AD与边BC的垂直平分线MD相交于D,DE⊥AB 交AB的延长线于点E,DF⊥AC于点F,现有下列结论:①DE=DF;②DE+DF=AD;③MD平分∠E DF;④若AE=3,则AB+AC=6.其中正确的个数为()A.1个B.2个C.3个D.4个二.填空题(共5小题)8.如图,以△ABC的每一条边为边,在边AB的同侧作三个正三角形△ABD、△BCE和△ACF.已知这三个正三角形构成的图形中,甲、乙阴影部分的面积和等于丙、丁阴影部分的面积和.则∠FCE=°.9.如图,在△ACB中,∠ACB=90°,AC=BC,点C的坐标为(﹣2,0),点A的坐标为(﹣8,3),点B的坐标是.10.如图,点E是BC的中点,AB⊥BC,DC⊥BC,AE平分∠BAD,则下列结论中,正确的是(填序号).①∠AED=90°;②∠ADE=∠CDE;③DE=BE;④AD=AB+CD.11.如图,已知等腰△ABC中,AB=AC,∠BAC=120°,AD⊥BC于点D,点P是BA延长线上一点,点O是线段AD上一点,OP=OC,下面的结论:①∠APO+∠DCO=30°;②△OPC是等边三角形;③A C=AO+AP;④S△ABC=S四边形AOCP,其中正确的是.(填序号)12.如图,在等腰直角三角形ABC中,∠ACB=90°,AC=BC=4,点D是AB的中点,E、F在射线AC 与射线CB上运动,且满足AE=CF,则在运动过程中△DEF面积的最小值为.三.解答题(共4小题)13.如图,△ACB和△DCE均为等腰三角形,点A,D,E在同一直线上,连接BE.(1)如图1,若∠CAB=∠CBA=∠CDE=∠CED=50°,求证:AD=BE;(2)如图2,若∠ACB=∠DCE=90°,CF为△DCE中DE边上的高,试猜想AE,CF,BE之间的关系,并证明你的结论.14.如图所示,等边△ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP=CQ.(1)求证:AP=AQ;(2)试判断△APQ是什么形状的三角形?并说明你的理由.15.(1)【模型启迪】如图1,在△ABC中,D为BC边的中点,连接AD并延长至点H,使DH=AD,连接BH,则AC与BH的数量关系为,位置关系为.(2)【模型探索】如图2,在△ABC中,D为BC边的中点,连接AD,E为AC边上一点,连接BE交A D于点F,且BF=AC.求证:AE=EF.16.如图1,AC=BC,CD=CE,∠ACB=∠DCE=α,AD、BE相交于点M,连接CM.(1)求证:BE=AD;(2)用含α的式子表示∠AMB的度数(直接写出结果);(3)当α=90°时,取AD,BE的中点分别为点P、Q,连接CP,CQ,PQ,如图2,判断△CPQ的形状,并加以证明.1.(2023•甘孜州)如图,AB与CD相交于点O,AC∥BD,只添加一个条件,能判定△AOC≌△BOD的是()A.∠A=∠D B.AO=BO C.AC=BO D.AB=CD2.(2023•北京)如图,点A,B,C在同一条直线上,点B在点A,C之间,点D,E在直线AC同侧,AB <BC,∠A=∠C=90°,△EAB≌△BCD,连接DE.设AB=a,BC=b,DE=c,给出下面三个结论:①a+b<c;②a+b>;③(a+b)>c.上述结论中,所有正确结论的序号是()A.①②B.①③C.②③D.①②③3.(2022•黑龙江)如图,在四边形ABCD中,对角线AC,BD相交于点O,OA=OC,请你添加一个条件,使△AOB≌△COD.4.(2023•成都)如图,已知△ABC≌△DEF,点B,E,C,F依次在同一条直线上.若BC=8,CE=5,则CF的长为.5.(2023•重庆)如图,在Rt△ABC中,∠BAC=90°,AB=AC,点D为BC上一点,连接AD.过点B 作BE⊥AD于点E,过点C作CF⊥AD交AD的延长线于点F.若BE=4,CF=1,则EF的长度为3.6.(2023•南通)如图,四边形ABCD的两条对角线AC,BD互相垂直,AC=4,BD=6,则AD+BC的最小值是.7.(2023•淮安)已知:如图,点D为线段BC上一点,BD=AC,∠E=∠ABC,DE∥AC.求证:DE=B C.8.(2023•吉林)如图,点C在线段BD上,△ABC和△DEC中,∠A=∠D,AB=DE,∠B=∠E.求证:AC=DC.9.(2022•兰州)如图1是小军制作的燕子风筝,燕子风筝的骨架图如图2所示,AB=AE,AC=AD,∠B AD=∠EAC,∠C=50°,求∠D的大小.10.(2022•安顺)如图,在Rt△ABC中,∠BAC=90°,AB=AC=1,D是BC边上的一点,以AD为直角边作等腰Rt△ADE,其中∠DAE=90°,连接CE.(1)求证:△ABD≌△ACE;(2)若∠BAD=22.5°时,求BD的长.。

专题16三角形及全等三角形(共40题)-2021年中考数学真题分项汇编(解析版)【全国通用】

专题16三角形及全等三角形(共40题)-2021年中考数学真题分项汇编(解析版)【全国通用】

2021年中考数学真题分项汇编【全国通用】(第01期)专题16三角形及全等三角形(共40题)姓名:__________________ 班级:______________ 得分:_________________一、单选题1.(2021·湖南岳阳市·中考真题)下列命题是真命题的是( )A .五边形的内角和是720︒B .三角形的任意两边之和大于第三边C .内错角相等D .三角形的重心是这个三角形的三条角平分线的交点【答案】B【分析】根据相关概念逐项分析即可.【详解】A 、五边形的内角和是540︒,故原命题为假命题,不符合题意;B 、三角形的任意两边之和大于第三边,原命题是真命题,符合题意;C 、两直线平行,内错角相等,故原命题为假命题,不符合题意;D 、三角形的重心是这个三角形的三条中线的交点,故原命题为假命题,不符合题意;故选:B .【点睛】本题考查命题判断,涉及多边形的内角和,三角形的三边关系,平行线的性质,以及三角形的重心等,熟记基本性质和定理是解题关键.2.(2021·山东临沂市·中考真题)如图,在//AB CD 中,40AEC ∠=︒,CB 平分DCE ∠,则ABC ∠的度数为( )A .10︒B .20︒C .30D .40︒【答案】B【分析】 根据平行线的性质得到∠ABC =∠BCD ,再根据角平分线的定义得到∠ABC =∠BCD ,再利用三角形外角的性质计算即可.【详解】解:∠AB ∠CD ,∠∠ABC =∠BCD ,∠CB 平分∠DCE ,∠∠BCE =∠BCD ,∠∠BCE =∠ABC ,∠∠AEC =∠BCE +∠ABC =40°,∠∠ABC =20°,故选B .【点睛】本题考查了平行线的性质,角平分线的定义和外角的性质,掌握平行线的性质:两直线平行,内错角相等是解题的关键.3.(2021·陕西中考真题)如图,点D 、E 分别在线段BC 、AC 上,连接AD 、BE .若35A ∠=︒,25B ∠=︒,50C ∠=︒,则1∠的大小为( )A .60°B .70°C .75°D .85°【答案】B【分析】 由题意易得105BEC ∠=︒,然后根据三角形外角的性质可进行求解.【详解】解:∠25B ∠=︒,50C ∠=︒,∠在Rt ∠BEC 中,由三角形内角和可得105BEC ∠=︒,∠35A ∠=︒,∠170BEC A ∠=∠-∠=︒;故选B .【点睛】本题主要考查三角形内角和及外角的性质,熟练掌握三角形内角和及外角的性质是解题的关键. 4.(2021·四川乐山市·中考真题)如图,已知直线1l 、2l 、3l 两两相交,且13l l ⊥.若50α=︒,则β的度数为( )A .120︒B .130︒C .140︒D .150︒【答案】C【分析】 由垂直的定义可得∠2=90°;根据对顶角相等可得510α∠=∠=︒,再根据三角形外角的性质即可求得140β∠=︒.【详解】∠13l l ⊥,∠∠2=90°;∠510α∠=∠=︒,∠125090140β∠=∠+∠=︒+︒=︒.故选C .【点睛】本题考查了垂直的定义、对顶角的性质、三角形外角的性质,熟练运用三角形外角的性质是解决问题的关键.5.(2021·安徽中考真题)两个直角三角板如图摆放,其中90BAC EDF ∠=∠=︒,45E ∠=︒,30C ∠=︒,AB 与DF 交于点M .若//BC EF ,则BMD ∠的大小为( )A .60︒B .67.5︒C .75︒D .82.5︒【答案】C【分析】根据//BC EF ,可得45FDB F ∠=∠=︒,再根据三角形内角和即可得出答案.【详解】由图可得6045B F ∠=︒∠=︒,,∠//BC EF ,∠45FDB F ∠=∠=︒,∠180180456075BMD FDB B ∠=︒-∠-∠=︒-︒-︒=︒,故选:C .【点睛】本题考查了平行线的性质和三角形的内角和,掌握平行线的性质和三角形的内角和是解题的关键. 6.(2021·江苏扬州市·中考真题)如图,点A 、B 、C 、D 、E 在同一平面内,连接AB 、BC 、CD 、DE 、EA ,若100BCD ∠=︒,则A B D E ∠+∠+∠+∠=( )A .220︒B .240︒C .260︒D .280︒【答案】D【分析】 连接BD ,根据三角形内角和求出∠CBD +∠CDB ,再利用四边形内角和减去∠CBD 和∠CDB 的和,即可得到结果.【详解】解:连接BD ,∠∠BCD =100°,∠∠CBD +∠CDB =180°-100°=80°,∠∠A +∠ABC +∠E +∠CDE =360°-∠CBD -∠CDB =360°-80°=280°,故选D .【点睛】本题考查了三角形内角和,四边形内角和,解题的关键是添加辅助线,构造三角形和四边形. 7.(2021·河北中考真题)定理:三角形的一个外角等于与它不相邻的两个内角的和.已知:如图,ACD ∠是ABC 的外角.求证:ACD A B ∠=∠+∠.下列说法正确的是()A.证法1还需证明其他形状的三角形,该定理的证明才完整B.证法1用严谨的推理证明了该定理C.证法2用特殊到一般法证明了该定理D.证法2只要测量够一百个三角形进行验证,就能证明该定理【答案】B【分析】根据三角形的内角和定理与平角的定义可判断A与B,利用理论与实践相结合可判断C与D.【详解】解:A. 证法1给出的证明过程是完整正确的,不需要分情况讨论,故A不符合题意;B. 证法1给出的证明过程是完整正确的,不需要分情况讨论,故选项B符合题意;C. 证法2用量角器度量两个内角和外角,只能验证该定理的正确性,用特殊到一般法证明了该定理缺少理论证明过程,故选项C不符合题意;D. 证法2只要测量够一百个三角形进行验证,验证的正确性更高,就能证明该定理还需用理论证明,故选项D不符合题意.故选择:.B【点睛】本题考查三角形外角的证明问题,命题的正确性需要严密推理证明,三角形外角分三种情形,锐角、直角、和钝角,证明中应分类才严谨.8.(2021·四川泸州市·中考真题)在锐角ABC中,∠A,∠B,∠C所对的边分别为a,b,c,有以下结论:2sinA sinB sinCa cb R ===(其中R 为ABC 的外接圆半径)成立.在ABC 中,若∠A =75°,∠B =45°,c =4,则ABC 的外接圆面积为( )A .163πB .643πC .16πD .64π【答案】A【分析】方法一:先求出∠C ,根据题目所给的定理,2sin c R C = , 利用圆的面积公式S 圆=163π. 方法二:设∠ABC 的外心为O ,连结OA ,OB ,过O 作OD ∠AB 于D ,由三角形内角和可求∠C =60°,由圆周角定理可求∠AOB =2∠C =120°,由等腰三角形性质,∠OAB =∠OBA =30,由垂径定理可求AD =BD =2,利用三角函数可求OA=3,利用圆的面积公式S 圆=163π. 【详解】解:方法一:∠∠A =75°,∠B =45°,∠∠C =180°-∠A -∠B =180°-75°-45°=60°,有题意可知42=sin sin 603c R C ===︒,∠3R = ∠S 圆=2221633R OA ππππ⎛=== ⎝⎭.方法二:设∠ABC 的外心为O ,连结OA ,OB ,过O 作OD ∠AB 于D ,∠∠A =75°,∠B =45°,∠∠C =180°-∠A -∠B =180°-75°-45°=60°,∠∠AOB =2∠C =2×60°=120°,∠OA =OB ,∠∠OAB =∠OBA =()1180120302︒-︒=︒, ∠OD ∠AB ,AB 为弦,∠AD =BD =122AB =,∠AD =OA cos30°,∠OA =343cos30223AD ÷︒=÷=, ∠S 圆=222431633R OA ππππ⎛⎫=== ⎪ ⎪⎝⎭.故答案为A .【点睛】本题考查三角形的外接圆,三角形内角和,圆周角定理,等腰三角形性质,垂径定理,锐角三角函数,圆的面积公式,掌握三角形的外接圆,三角形内角和,圆周角定理,等腰三角形性质,垂径定理,锐角三角函数,圆的面积公式是解题关键.9.(2021·重庆中考真题)如图,在ABC 和DCB 中,ACB DBC ∠=∠ ,添加一个条件,不能..证明ABC 和DCB 全等的是( )A .ABC DCB ∠=∠B .AB DC = C .AC DB =D .A D ∠=∠【答案】B【分析】 根据已知条件和添加条件,结合全等三角形的判断方法即可解答.【详解】选项A ,添加ABC DCB ∠=∠,在ABC 和DCB 中,ABC DCB BC CBACB DBC ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∠ABC ∠DCB (ASA ),选项B ,添加AB DC =, 在ABC 和DCB 中,AB DC =,BC CB =,ACB DBC ∠=∠,无法证明ABC ∠DCB ; 选项C ,添加AC DB =,在ABC 和DCB 中,BC CB ACB DBC AC DB =⎧⎪∠=∠⎨⎪=⎩,∠ABC ∠DCB (SAS );选项D ,添加A D ∠=∠,在ABC 和DCB 中,A D ACB DBC BC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∠ABC ∠DCB (AAS );综上,只有选项B 符合题意.故选B .【点睛】本题考查了全等三角形的判定方法,熟知全等三角形的判定方法是解决问题的关键.10.(2021·重庆中考真题)如图,点B ,F ,C ,E 共线,∠B =∠E ,BF =EC ,添加一个条件,不等判断∠ABC ∠∠DEF的是( )A .AB =DE B .∠A =∠DC .AC =DFD .AC ∠FD【答案】C【分析】根据全等三角形的判定与性质逐一分析即可解题.【详解】 解:BF =EC ,BC EF ∴=A. 添加一个条件AB =DE ,又,BC EF B E =∠=∠()ABC DEF SAS ∴△≌△故A 不符合题意;B. 添加一个条件∠A =∠D又,BC EF B E =∠=∠()ABC DEF AAS ∴≌故B 不符合题意;C. 添加一个条件AC =DF ,不能判断∠ABC ∠∠DEF ,故C 符合题意;D. 添加一个条件AC ∠FDACB EFD ∴∠=∠又,BC EF B E =∠=∠()ABC DEF ASA ∴≌故D 不符合题意,故选:C .【点睛】本题考查添加条件使得三角形全等即全等三角形的判定,是重要考点,难度较易,掌握相关知识是解题关键.11.(2021·浙江嘉兴市·中考真题)将一张三角形纸片按如图步骤∠至∠折叠两次得图∠,然后剪出图∠中的阴影部分,则阴影部分展开铺平后的图形是( )A .等腰三角形B .直角三角形C .矩形D .菱形【答案】D【分析】 此题是有关剪纸的问题,此类问题应亲自动手折一折,剪一剪.【详解】解:由题可知,AD 平分BAC ∠,折叠后AEO △与AFO 重合,故全等,所以EO =OF ;又作了AD 的垂直平分线,即EO 垂直平分AD ,所以AO =DO ,且EO ∠AD ;由平行四边形的判定:对角线互相平分的四边形为平行四边形,所以AEDF 为平行四边形;又AD ∠EF ,所以平行四边形AEDF 为菱形.故选:.D【点睛】本题主要考察学生对于立体图形与平面展开图形之间的转换能力,与课程标准中“能以实物的形状想象出几何图形,有几何图形想象出实物的图形”的要求相一致,充分体现了实践操作性原则.12.(2021·四川遂宁市·中考真题)下列说法正确的是( )A .角平分线上的点到角两边的距离相等B .平行四边形既是轴对称图形,又是中心对称图形C .在代数式1a ,2x ,x π,985,42b a +,13y +中,1a ,x π,42b a+是分式 D .若一组数据2、3、x 、1、5的平均数是3,则这组数据的中位数是4【答案】A【分析】根据角平分线的性质,平行四边形的对称性,分式的定义,平均数,中位数的性质分别进行判断即可.【详解】解:A.角平分线上的点到角两边的距离相等,故选项正确;B.平行四边形不是轴对称图形,是中心对称图形,故选项错误;C.在代数式1a ,2x ,x π,985,42b a +,13y +中,1a ,42b a +是分式,故选项错误; D.若一组数据2、3、x 、1、5的平均数是3,则这组数据的中位数是3,故选项错误;故选:A .【点睛】本题综合考查了角平分线的性质,平行四边形的对称性,分式的定义,平均数,中位数等知识点,熟悉相关性质是解题的关键.13.(2021·湖南娄底市·中考真题)2,5,m ) A .210m -B .102m -C .10D .4 【答案】D【分析】先根据三角形三边的关系求出m 的取值范围,再把二次根式进行化解,得出结论.【详解】解:2,3,m 是三角形的三边,5252m ∴-<<+,解得:37x ,374m m =-+-=,故选:D .【点睛】本题考查了二次根式的性质及化简,解题的关键是:先根据题意求出m 的范围,再对二次根式化简. 14.(2021·山东泰安市·中考真题)如图,直线//m n ,三角尺的直角顶点在直线m 上,且三角尺的直角被直线m 平分,若160∠=︒,则下列结论错误的是( )A .275∠=︒B .345∠=︒C .4105∠=︒D .5130∠=︒【答案】D【分析】 根据角平分线的定义求出∠6和∠7的度数,再利用平行线的性质以及三角形内角和求出∠3,∠8,∠2的度数,最后利用邻补角互补求出∠4和∠5的度数.【详解】首先根据三角尺的直角被直线m 平分,∠∠6=∠7=45°;A 、∠∠1=60°,∠6=45°,∠∠8=180°-∠1-∠6=180-60°-45°=75°,m∥n ,∠∠2=∠8=75°结论正确,选项不合题意;B 、∠∠7=45°,m ∠n ,∠∠3=∠7=45°,结论正确,选项不合题意;C 、∠∠8=75°,∠∠4=180-∠8=180-75°=105°,结论正确,选项不合题意;D 、∠∠7=45°,∠∠5=180-∠7=180-45°=135°,结论错误,选项符合题意.故选:D .【点睛】本题考查了角平分线的定义,平行线的性质,三角形内角和,邻补角互补,解答本题的关键是掌握平行线的性质:两直线平行,同位角相等,内错角相等,同旁内角互补.15.(2021·四川资阳市·中考真题)如图,已知直线//,140,230m n ∠=︒∠=︒,则3∠的度数为()A .80︒B .70︒C .60︒D .50︒【答案】B【分析】如图,由题意易得∠4=∠1=40°,然后根据三角形外角的性质可进行求解.【详解】解:如图,∠//,140m n ∠=︒,∠∠4=∠1=40°,∠230∠=︒,∠34270∠=∠+∠=︒;故选B .【点睛】本题主要考查平行线的性质及三角形外角的性质,熟练掌握平行线的性质及三角形外角的性质是解题的关键.16.(2021·海南中考真题)如图,已知//a b ,直线l 与直线a b 、分别交于点AB 、,分别以点A B 、为圆心,大于12AB 的长为半径画弧,两弧相交于点M N 、,作直线MN ,交直线b 于点C ,连接AC ,若140∠=︒,则ACB ∠的度数是( )A .90︒B .95︒C .100︒D .105︒【答案】C【分析】 根据题意可得直线MN 是线段AB 的垂直平分线,进而可得CB AC =,利用平行线的性质及等腰三角形中等边对等角,可得40CAB CBA ∠=∠=︒,所以可求得100ACB ∠=︒.【详解】∠已知分别以点A B 、为圆心,大于12AB 的长为半径画弧,两弧相交于点M N 、,作直线MN ,交直线b 于点C ,连接AC ,∠直线MN 垂直平分线段AB ,∠CB AC =,∠//a b ,140∠=︒,∠140CBA ∠=∠=︒,∠40CAB CBA ∠=∠=︒,∠180100ACB CBA CAB ∠=︒-∠-∠=︒.故选:C.【点睛】题目主要考查线段垂直平分线的作法及性质、平行线的性质等,根据题意得出直线MN垂直平分线段AB 是解题关键.17.(2021·四川广元市·中考真题)观察下列作图痕迹,所作线段CD为ABC的角平分线的是()A.B.C.D.【答案】C【分析】根据角平分线画法逐一进行判断即可.【详解】A:所作线段为AB边上的高,选项错误;B:做图痕迹为AB边上的中垂线,CD为AB边上的中线,选项错误;C:CD为ACB的角平分线,满足题意。

2021年中考数学 专题汇编:相似三角形及其应用(含答案)

2021年中考数学 专题汇编:相似三角形及其应用(含答案)

2021中考数学 专题汇编:相似三角形及其应用一、选择题(本大题共10道小题)1. 如图,在△ABC 中,D ,E 分别是AB ,AC 边上的点,DE ∥BC ,若AD=2,AB=3,DE=4,则BC 等于 ( )A .5B .6C .7D .82. (2020·永州)如图,在ABC 中,2//,3AE EF BC EB =,四边形BCFE 的面积为21,则ABC 的面积是( )A. 913B. 25C. 35D. 633. (2020·嘉兴) 如图,在直角坐标系中,△OAB 的顶点为O (0,0),A (4,3),B (3,0).以点O 为位似中心,在第三象限内作与△OAB 的位似比为13的位似图形△OCD ,则点C 坐标为( )A .(﹣1,﹣1)B .(4,13--) C .(41,3--) D .(﹣2,﹣1)4. (2019•巴中)如图ABCD ,F 为BC 中点,延长AD 至E ,使13DE AD =∶∶,连接EF 交DC 于点G ,则:DEG CFG S S △△=A .2∶3B .3∶2C .9∶4D .4∶95. (2020·河南)如图,在△ABC 中,∠ACB=90°,边BC 在x 轴上,顶点A ,B的坐标分别为(-2,6)和(7,0).将正方形OCDE 沿x 轴向右平移,当点E 落在AB 边上时,点D 的坐标为( )A. (32,2)B. (2,2)C. (114,2) D. (4,2)6. (2020·河北) 在图5所示的网格中,以点O 为位似中心,四边形ABCD 的位似图形是A.四边形NPMQB.四边形NPMRC.四边形NHMQD.四边形NHMR7. (2019•贺州)如图,在ABC △中,D E ,分别是AB AC ,边上的点,DE BC ∥,若23AD AB ==,,4DE =,则BC 等于A .5B .6C.7 D.88. 如图,在Rt△ABC中,∠C=90°,∠CAB的平分线交BC于D,DE是AB 的垂直平分线,垂足为E.若BC=3,则DE的长为()A. 1B. 2C. 3D. 49. (2020•丽水)如图,四个全等的直角三角形拼成“赵爽弦图”,得到正方形ABCD与正方形EFGH.连结EG,BD相交于点O、BD与HC相交于点P.若GO=GP,则ABCDEFGHSS正方形正方形的值是()A.12+B.22+C.52-D.15410. (2020·新疆)如图,在△ABC中,∠A=90°,D是AB的中点,过点D作BC的平行线交AC于点E,作BC的垂线交BC于点F,若AB=CE,且△DFE 的面积为1,则BC的长为·······················································()A.25B.5 C.45D.10二、填空题(本大题共8道小题)11. 如图,在△ABC中,∠ACD=∠B,若AD=2,BD=3,则AC长为.12. 在某一时刻,测得一根高为1.8 m的竹竿的影长为3 m,同时同地测得一栋楼的影长为90 m,则这栋楼的高度为m.13. (2020·郴州)在平面直角坐标系中,将AOB∆以点O为位似中心,32为位似比作位似变换,得到11OBA∆.已知)3,2(A,则点1A的坐标是.14. 如图,在R t△ABC中,∠ACB=90°,AC=3,BC=4,CD⊥AB,垂足为D,E为BC的中点,AE与CD交于点F,则DF的长为_________.FE DBC A15. (2019•泸州)如图,在等腰Rt ABC△中,90C=︒∠,15AC=,点E在边CB上,2CE EB=,点D在边AB上,CD AE⊥,垂足为F,则AD长为__________.16. (2020·杭州)如图是一张矩形纸片,点E在AB边上,把BCE△沿直线CE对折,使点B落在对角线AC上的点F处,连接DF.若点E,F,D在同一条直线上,2AE=,则DF=______,BE=______.FDBEAC17. 如图,在Rt△ABC中,∠BAC=90°,AB=15,AC=20,点D在边AC上,AD=5,DE⊥BC于点E,连接AE,则△ABE的面积等于________.18. (2020·长沙)如图,点P 在以MN 为直径的半圆上运动,(点P 与M ,N 不重合)PQ ⊥MN ,NE 平分∠MNP ,交PM 于点E ,交PQ 于点F . (1)PMPEPQPF +=____________. (2)若MN PM PN •=2,则NQMQ=____________. F E NMP三、解答题(本大题共4道小题) 19. (2020·凉山州)(7分)如图,一块材料的形状是锐角三角形ABC ,边BC =120 mm ,高AD =80mm ,把它加工成正方形零件,使正方形的一边在BC 上,其余两个顶点分别在AB 、AC 上,这个正方形零件的边长是多少?20. 如图,在Rt △ABC 中,∠ACB=90°,AB=10,BC=6,CD ∥AB ,∠ABC 的平分线BD 交AC 于点E ,求DE 的长.HKFEBA21. 已知:在等边△ABC中,D 、E 分别是AC 、BC 上的点,且∠BAE =∠CBD<60°,DH ⊥AB ,垂足为点H .(1)如图①,当点D 、E 分别在边AC 、BC 上时,求证:△ABE ≌△BCD ;(2)如图②,当点D 、E 分别在AC 、CB 延长线上时,探究线段AC 、AH 、BE 的数量关系;(3)在(2)的条件下,如图③,作EK ∥BD 交射线AC 于点K ,连接HK ,交BC 于点G ,交BD 于点P ,当AC =6,BE =2时,求线段BP 的长.22. 已知在△ABC中,AB 边上的动点D 由A 向B 运动(与A ,B 不重合),同时,点E 由点C 沿BC 的延长线方向运动(E 不与C 重合),连接DE 交AC 于点F ,点H 是线段AF 上一点.(1)如图①,若△ABC 是等边三角形,DH ⊥AC ,且D ,E 的运动速度相等,求HFAC的值.(2)如图②,若在△ABC 中,∠ABC=90°,∠ADH=∠BAC=30°,且点D ,E的运动速度之比是:1,求HFAC的值;(3)如图③,若在△ABC 中,AB=AC ,∠ADH=∠BAC=36°,记ACBC=m ,且点D ,E 的运动速度相等,试用含m 的代数式表示HFAC的值.图① 图② 图③2021中考数学 专题汇编:相似三角形及其应用-答案一、选择题(本大题共10道小题) 1. 【答案】B [解析]∵DE ∥BC ,∴△ADE ∽△ABC , ∴=,即=,解得BC=6,故选B .2. 【答案】B【详解】解:∵//EF BC ∴AEF B AFE C ∠=∠∠=∠, ∴AEF ABC ∽ ∵23AE EB = ∴25AE AB = ∴255242AEB ABCS S ⎛⎫==⎪⎝⎭ ∴421AEBBCFESS =四边形 ∵21BCFE S =四边形 ∴AEBS =4∴=25ABCS故选:B .3. 【答案】B【解析】本题考查了在坐标系中,位似图形点的坐标.在平面直角坐标系中,如果以原点为位似中心,画出一个与原图形位似的图形,使它与原图形的相似比为k ,那么与原图形上的点(x ,y )对应的位似图形上的点的坐标为(kx ,ky )或(–kx ,–ky ).由A (4,3),位似比k =13,可得C (413,--)因此本题选B .4. 【答案】D【解析】设DE x =,∵13DE AD =∶∶,∴3AD x =, ∵四边形ABCD 是平行四边形,∴AD BC ∥,3BC AD x ==, ∵点F 是BC 的中点,∴1322CF BC x ==, ∵AD BC ∥,∴DEG CFG △∽△,∴224()()392DEG CFG S DE x S CF x ===△△,故选D .5. 【答案】B【解析】∵点A ,B 的坐标分别为(-2,6)和(7,0),∴OC=2,AC=6,OB=7, ∴BC=9,正方形的边长为2.将正方形OCDE 沿x 轴向右平移,当点E 落在AB 边上时,设正方形与x 轴的两个交点分别为G 、F ,∵EF ⊥x 轴,EF=GF=DG=2,∴EF ∥AC ,D ,E 两点的纵坐标均为2, ∴EF BF AC BC ,即269BF ,解得BF=3.∴OG=OB-BF-GF=7-3-2=2,∴ D 点的横坐标为2,∴点D 的坐标为 (2,2).6. 【答案】A【解析】解析:连接AO 并延长AO 至点N ,连接BO 并延长PO 至点P, 连接CO 并延长CO 至点M, 连接DO 并延长DO 至Q ,可知12AO BO CO DO NO PO MO QO ====,所以以点O 为位似中心,四边形ABCD 的位似图形是四边形NPMQ ,故答案为A.7. 【答案】B【解析】∵DE BC ∥,∴ADE ABC △∽△, ∴AD DE AB BC=,即243BC =,解得:6BC =,故选B .8. 【答案】A【解析】∵AD 是∠BAC 的平分线,AC ⊥BC ,AE ⊥DE, ∴DC =DE ,AE =AC .又∵DE 是AB 的垂直平分线,∴BE =AE ,即AB =2AE =2AC, ∴∠B =30°.设DE =x ,则BD =3-x .在Rt △BDE 中,x 3-x=12,解得x =1,∴DE的长为1.9. 【答案】C【解析】∵四边形EFGH 为正方形,∴∠EGH =45°,∠FGH =90°,∵OG =GP ,∴∠GOP =∠OPG =67.5°,∴∠PBG =22.5°,又∵∠DBC =45°,∴∠GBC =22.5°,∴∠PBG =∠GBC ,∵∠BGP =∠BG =90°,BG =BG ,∴△BPG ≌△BCG ,∴PG =CG .设OG =PG =CG =x ,∵O为EG,BD的交点,∴EG=2x,FG2=x.∵四个全等的直角三角形拼成“赵爽弦图”,∴BF=CG=x,∴BG=x2+x,∴BC2=BG2+CG2()2222(21)422x x x=++=+,∴()22422222ABCDEFGHxSS x+==+正方形正方形,因此本题选D.10. 【答案】A【解析】本题考查了相似三角形的判定与性质,三角形的中位线定理.如答图,过点E作EG⊥BC于G,过点A作AH⊥BC于H.又因为DF⊥BC,所以DF∥AH∥EG,四边形DEGF是矩形.所以△BDF∽△BAH,DF=EG,所以DFAH=BDBA,因为D为AB中点,所以BDBA=12,所以DFAH =12.设DF=EG=x,则AH=2x.因为∠BAC=90°,所以∠B+∠C=90°,因为EG⊥BC,所以∠C+∠CEG=90°,所以∠B=∠CEG,又因为∠BHA=∠CGE=90°,AB=CE,所以△ABH≌△CEG,所以CG=AH=2x.同理可证△BDF∽△ECG,所以BFEG=BDEC,因为BD=12AB=12CE,所以BF=12EG=12x.在R t△BDF中,由勾股定理得BD=22DF BF+=221()2x x+=5x,所以AD=5x,所以CE=AB=2AD=5x.因为DE∥BC,所以AEAC=ADAB=12,所以AE=12AC=CE=5x.在R t△ADE中,由勾股定理得DE=22AD AE+=225()(5)2x x+=52x.因△DEF的面积为1,所以12DE·DF=1,即12×52x·x=1,解得x=255,所以DE=52×255=5,因为AD=BD,AE=CE,所以BC=2DE=25,因此本题选D.二、填空题(本大题共8道小题)11. 【答案】[解析]∵∠ACD=∠B,∠CAD=∠BAC,∴△ACD∽△ABC,∴=,即=,∴AC=或AC=-(舍去).12. 【答案】5413. 【答案】(,2)【解析】∵将△AOB 以点O 为位似中心,为位似比作位似变换,得到△A 1OB 1,A (2,3),∴点A 1的坐标是:(×2,×3),即A 1(,2).故答案为:(,2).14. 【答案】5485【解析】本题考查平行线分线段成比例定理,相似三角形的判定与性质.已知∠ACB =90°,AC =3, BC =4,由勾股定理,得AB =5.CD ⊥AB ,由三角形的面积,得CD =AC BC AB ⋅=125.易得△ABC ∽△ACD ∽△CBD ,由相似三角形对应边成比例,得AD =AC AC AB ⋅=95,BD =BC BC AB ⋅=165.过点E 作EG ∥AB 交CD于点G ,由平行线分线段成比例,得DG =12CD =65,EG =85,所以DF ADGF EG=,即956855DF DF =-,所以DF =,故答案为5485. GF E DB CA15. 【答案】92【解析】如图,过D 作DH AC ⊥于H ,则∠AHD =90°,∵在等腰Rt ABC △中,90C =︒∠,15AC =, ∴15AC BC ==,45CAD ∠=︒, ∴∠ADH =90°–∠CAD =45°=∠CAD , ∴AH DH =,∴CH =AC –AH =15–DH ,∵CF AE ⊥,∴90DHA DFA ∠=∠=︒,又∵∠ANH =∠DNF ,∴HAF HDF ∠=∠,∴ACE DHC △∽△,∴DH CH AC CE =, ∵2CE EB =,CE +BE =BC =15,∴10CE =, ∴151510DH DH -=, ∴9DH =,∴2292AD AH DH =+=,故答案为:92.16. 【答案】2 5-1【解析】设BE =x ,则AB =AE +BE =2+x .∵四边形ABCD 是矩形,∴CD =AB =2+x ,AB ∥CD ,∴∠DCE =∠BEC .由折叠得∠BEC =∠DEC ,EF =BE =x ,∴∠DCE =∠DEC .∴DE =CD =2+x .∵点D ,F ,E 在同一条直线上,∴DF =DE -EF =2+x -x =2.∵AB ∥CD ,∴△DCF ∽△EAF ,∴DC EA =DF EF .∴22x +=2x ,解得x 1=5-1,x 2=-5-1.经检验,x 1=5-1,x 2=-5-1都是分式方程的根.∵x >0,∴x =5-1,即BE =5-1.17. 【答案】78 【解析】如解图,过A 作AH ⊥BC ,∵AB =15,AC =20,∠BAC =90°,∴由勾股定理得,BC =152+202=25,∵AD =5,∴DC =20-5=15,∵DE ⊥BC ,∠BAC =90°,∴△CDE ∽△CBA ,∴CE CA =CD CB ,∴CE =1525×20=12.法一:BC·AH =AB·AC ,AH =AB·AC BC =15×2025=12,S △ABE =12×12×13=78.法二:DE =152-122=9,由△CDE ∽△CAH 可得,CD CA =ED HA ,∴AH =9×2015=12,S △ABE =12×12×13=78.18. 【答案】1;215- 【解析】本题考查了圆的基本性质,角平分线性质,平行相似,相似判定与性质,(1)作EH ⊥MN ,又∵MN 是直径,NE 平分∠MNP ,PQ ⊥MN ,∴易证出PE =EH =HF =PF ,EH ∥PQ ,∴△EMH ∽△PMQ ,∴PQ PF PQ EH PM ME ==,∴1=+=+PM PE PM ME PM PE PQ PF ; (2)由相似基本图射影型得:解得MN QN PN •=2又∵MN PM PN •=2,∴QN =PM ,设QN =PM =a ,MQ =b ,由相似基本图射影型得:解得MN MQ PM •=2,∴()b a b a +=2解得()251a b +-=或()251a b --=(舍去)∴215-==a b NQ MQ ; 因此本题答案为1;215-. F EQ N M P三、解答题(本大题共4道小题)19. 【答案】解:设这个正方形零件的边长为x mm ,则△AEF 的边EF 上的高AK =(80-x)mm .∵四边形EFHG 是正方形,∴EF ∥GH ,即EF ∥BC .∴△AEF ∽△ABC . ∴EF AK BC AD =,即8012080x x -=.∴x =48.∴这个正方形零件的边长是48 mm .20. 【答案】解:∵BD 平分∠ABC ,∴∠ABD=∠CBD.∵AB ∥CD ,∴∠D=∠ABD ,∴∠CBD=∠D ,∴CD=BC=6.在Rt △ABC 中,AC===8.∵AB ∥CD ,∴△ABE ∽△CDE ,∴====,∴CE=AE ,DE=BE ,即CE=AC=×8=3.在Rt △BCE 中,BE===3, ∴DE=BE=×3=.21. 【答案】(1)证明:∵△ABC 为等边三角形,∴∠ABC =∠C =∠CAB =60°,AB =BC ,在△ABE 和△BCD 中,⎩⎨⎧∠BAE =∠CBDAB =BC∠ABE =∠BCD, ∴△ABE ≌△BCD (ASA);(2)解:∵△ABC 为等边三角形,∴∠ABC =∠CAB =60°,AB =BC ,∴∠ABE =∠BCD =180°-60°=120°.∴在△ABE 和△BCD 中,⎩⎨⎧∠BAE =∠CBDAB =BC∠ABE =∠BCD, ∴△ABE ≌△BCD (ASA),∴BE =CD .∵DH ⊥AB ,∴∠DHA =90°,∵∠CAB =60°,∴∠ADH =30°,∴AD =2AH ,∴AC =AD -CD =2AH -BE ;(3)解:如解图,作DS ⊥BC 延长线于点S ,作HM ∥AC 交BC 于点M ,解图∵AC =6,BE =2,∴由(2)得AH =4,BH =2,与(1)同理可得BE =CD =2,CE =8,∵∠SCD =∠ACB =60°,∴∠CDS =30°,∴CS =1,SD =3,BS =7,∵BD 2=BS 2+SD 2=72+(3)2,∴BD =213,∵EK ∥BD ,∴△CBD ∽△CEK ,∴CB CE =CD CK =BD EK ,∴CK =CD ·CE CB =2×86=83,EK =CE ·BD CB =8×2136=8133. ∵HM ∥AC ,∴∠HMB =∠ACB =60°,∴△HMB 为等边三角形,BM =BH =HM =2, CM =CB -BM =4,又∵HM ∥AC ,∴△HMG ∽△KCG ,∴HM KC =MG CG ,即382=MG 4-MG,∴MG =127,BG =267,EG =407, ∵EK ∥BD ,∴△GBP ∽△GEK ,∴BP EK =GB GE , ∴BP =261315.22. 【答案】(1)过点D 作DG ∥BC 交AC 于点G ,解图①∵△ABC 是等边三角形,∴△AGD 是等边三角形,∴AD =GD ,由题意知CE =AD ,∴CE =GD∵DG ∥BC ,∴∠GDF =∠CEF ,在△GDF 与△CEF 中,GDF CEF GFD EFC CE GD ⎧⎪⎨⎪=∠=∠∠∠⎩=, ∴△GDF ≌△CEF (AAS ),∴CF =GF , ∵DH ⊥AG ,∴AH =GH ,∴AC =AG +CG =2GH +2GF =2(GH +GF )=2HF , ∴AC HF=2; (2)如解图②,过点D 作DG ∥BC 交AC 于点G ,解图②由题意知,点D ,E 3:1, ∴3,AD CE = ∵∠ABC =90°,∠BAC =30°,∴3,AD GD = ∴,AD AD CE GD = ∴GD =CE ,∵DG ∥BC ,∴∠GDF=∠CEF ,在△GDF 和△CEF 中,,GDF CEF GFD EFC GD CE ∠=∠∠=∠⎧⎪⎨⎪⎩=∴△GDF ≌△CEF (AAS ),∴CF =GF ,∵∠ADH =∠BAC =30°,∴AH =HD ,∵∠AGD =∠HDG =60°,∴GH =HD ,∴AH =HG ,∴AC =AG +CG =2GH +2GF =2(GH +GF )=2HF , ∴AC HF=2; (3)如解图③,过点D 作DG ∥BC 交AC 于点G ,解图③∵DG ∥BC ,∴△AGD ∽△ACB ,∴=,GD BC m AG AC = ∵∠ADH =∠BAC =36°,AC=AB ,∴∠GHD =∠HGD =72°,∴GD =HD =AH , ∴=,AH GD m AG AG= ∵AD =CE , ∴==,GD GD GD m AD AG CE = ∵DG ∥BC ,∴△GDF ∽△ECF ,∴=,GD GF m CE CF= ∴GH +FG =m (AH +FC )=m (AC-HF ), 即HF =m (AC-HF ),∴1.=AC m HF m +。

备战2021年九年级中考数学考点提升训练——专题:《三角形综合:全等与相似》(一)

备战2021年九年级中考数学考点提升训练——专题:《三角形综合:全等与相似》(一)

备战2021年九年级中考数学考点提升训练——专题:《三角形综合:全等与相似》(一)1.已知:等边△ABC中.(1)如图1,点M是BC的中点,点N在AB边上,满足∠AMN=60°,求的值;(2)如图2,点M在AB边上(M为非中点,不与A、B重合),点N在CB的延长线上且∠MNB=∠MCB,求证:AM=BN.(3)如图3,点P为AC边的中点,点E在AB的延长线上,点F在BC的延长线上,满足∠AEP=∠PFC,求的值.2.(1)发现如图1,△ABC和△ADE均为等边三角形,点D在BC边上,连接CE.填空:①∠DCE的度数是;②线段CA、CE、CD之间的数量关系是.(2)探究如图2,△ABC和△ADE均为等腰直角三角形,∠BAC=∠DAE=90°,点D在BC 边上,连接CE.请判断∠DCE的度数及线段CA、CE、CD之间的数量关系,并说明理由.(3)应用如图3,在Rt△ABC中,∠A=90°,AC=4,AB=6.若点D满足DB=DC,且∠BDC=90°,请直接写出DA的长.3.(1)问题发现:如图1,△ABC和△ADE均为等边三角形,点D在BC的延长线上,连接CE,求证:△ABD≌△ACE.(2)类比探究:如图2,△ABC和△ADE均为等腰直角三角形,∠BAC=∠DAE=90°,D点在边BC的延长线上,连接CE.请判断:①∠ACE的度数为.②线段BC,CD,CE之间的数量关系是.(3)问题解决:在(2)中,如果AB=AC=,CD=1,求线段DE的长.4.直角三角形ABC中,∠ACB=90°,直线l过点C.(1)当AC=BC时,如图①,分别过点A、B作AD⊥l于点D,BE⊥l于点E.求证:△ACD≌△CBE.(2)当AC=8,BC=6时,如图②,点B与点F关于直线l对称,连接BF,CF,动点M从点A出发,以每秒1个单位长度的速度沿AC边向终点C运动,同时动点N从点F出发,以每秒3个单位的速度沿F→C→B→C→F向终点F运动,点M、N到达相应的终点时停止运动,过点M作MD⊥l于点D,过点N作NE⊥l于点E,设运动时间为t秒.①CM=,当N在F→C路径上时,CN=.(用含t的代数式表示)②直接写出当△MDC与△CEN全等时t的值.5.已知在△ABC中,AB=AC,过点B引一条射线BM,D是BM上一点.(1)如图1,∠ABC=60°,射线BM在∠ABC内,∠ADB=60°,求证:∠BDC =60°.请根据以下思维框图,写出证明过程.(2)如图2,已知∠ABC=∠ADB=30°.①当射线BM在∠ABC内,求∠BDC的度数.②当射线BM在BC下方,请问∠BDC的度数会变吗?若不变,请说明理由;若改变,请直接写出∠BDC的度数.(3)在第(2)题的条件下,作AF⊥BD于点F,连结CF,已知BD=6,CD=2,求△CDF的面积.6.(1)问题发现如图1,在Rt△ABC和Rt△DBE中,∠ABC=∠DBE=90°,∠ACB=∠BED=45°,点E是线段AC上一动点,连接DE.填空:①则的值为;②∠EAD的度数为.(2)类比探究如图2,在Rt△ABC和Rt△DBE中,∠ABC=∠DBE=90°,∠ACB=∠BED=60°,点E是线段AC上一动点,连接DE.请求出的值及∠EAD的度数;(3)拓展延伸如图3,在(2)的条件下,取线段DE的中点M,连接AM、BM,若BC=4,则当△ABM是直角三角形时,求线段AD的长.7.如图,在△ABC中,AB=AC,点D在△ABC内,BD=BC,∠DBC=60°,点E 在△ABC外,∠CBE=150°,∠ACE=60°.(1)求∠ADC的度数.(2)判断△ACE的形状并加以证明.(3)连接DE,若DE⊥CD,AD=3,求DE的长.8.在等腰直角△ABC中,AB=AC,∠BAC=90°,以CA为边在∠ACB的另一侧作∠ACM=∠ACB,点D为射线BC上任意一点,在射线CM上截取CE=BD,连接AD、DE、AE.(1)如图1,当点D落在线段BC的延长线上时,直接写出∠ADE的度数;(2)如图2,当点D落在线段BC(不含边界)上时,AC与DE交于点F,请问(1)中的结论是否仍成立?如果成立,请给出证明;如果不成立,请说明理由;(3)如图2,作AH⊥BC,垂足为H,作AG⊥EC,垂足为G,连接HG,判断△GHC 的形状,并说明理由.9.如图,已知在ABC中,AB=AC=5,BC=6,点M在△ABC内,AM平分∠BAC.点E与点M在AC所在直线的两侧,AE⊥AB,AE=BC,点N在AC边上,CN=AM,连接ME、BN;(1)根据题意,补全图形;(2)ME与BN有何数量关系,判断并说明理由;(3)点M在何处时BM+BN取得最小值?请确定此时点M的位置,并求出此时BM+BN 的最小值.10.如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,以AB为一边向上作等边三角形ABD,点E在BC垂直平分线上,且EB⊥AB,连接CE,AE,CD.(1)判断△CBE的形状,并说明理由;(2)求证:AE=DC;(3)填空:①若AE,CD相交于点F,则∠AFD的度数为.②在射线AB上有一动点P,若△PBC为等腰三角形,则∠ACP的度数为.参考答案1.解:(1)∵△ABC为等边三角形,∴∠B=∠BAC=60°,AB=AC,∵点M是BC的中点,∴∠MAN=30°,∠AMB=90°,∵∠AMN=60°,∴∠BMN=30°,∴BM=2BN,AB=2BM,设BN=x,则BM=2x,AB=4x,∴AN=3x,∴;(2)证明:如图2,过点M作MG∥NC交AC于点G,∴∠A=∠AMG=∠AGM=60°,∴△AMG为等边三角形,∴AM=AG,∴BM=CG,∵∠AGM=∠ABC=60°,∴∠MGC=∠NBM=120°,∵MG∥BC,∴∠GMC=∠MCB,∵∠MNB=∠MCB,∴∠GMC=∠MNB,∴△MGC≌△NBM(AAS),∴MG=BN,∵△AMG为等边三角形,∴AM=MG,∴AM=BN;(3)如图3,过点P作PM∥BC交AB于点M,∴△AMP为等边三角形,∴AP=MP,∠AMP=60°,∵P为AC的中点,∴AP=PC,∴MP=PC,∵∠ACB=60°,∴∠EMP=∠PCF=120°,∵∠AEP=∠PFC,∴△PCF≌△PME(AAS),∴CF=ME,∴BF﹣BE=BC+CF﹣ME+MB,又∵P为AC的中点,MP∥BC,∴MB=,∴BF﹣BE=BC+BC=,∴.2.(1)发现解:①∵在△ABC中,AB=AC,∠BAC=60°,∴∠BAC=∠DAE=60°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴∠ACE=∠B=60°,∴∠DCE=∠ACE+∠ACB=60°+60°=120°;故答案为:120°,②∵△BAD≌△CAE,∴BD=CE,∴BC=BD+CD=EC+CD,∴CA=BC=CE+CD;故答案为:CA=CE+CD.(2)探究∠DCE=90°;CA=CD+CE.理由:∵△ABC和△ADE均为等腰直角三角形,∠BAC=∠DAE=90°,∴AB=AC,AD=AE,∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE.∴△BAD≌△CAE(SAS).∴BD=CE,∠B=∠ACE=45°.∴∠DCE=∠ACB+∠ACE=90°.在等腰直角三角形ABC中,CB=CA,∵CB=CD+DB=CD+CE,∴CA=CD+CE.(3)应用DA=5或.作DE⊥AB于E,连接AD,∵在Rt△ABC中,AB=6,AC=4,∠BAC=90°,∴BC===2,∵∠BDC=90°,DB=DC,∴DB=DC=,∠BCD=∠CBD=45°,∵∠BDC=∠BAC=90°,∴点B,C,A,D四点共圆,∴∠DAE=45°,∴△ADE是等腰直角三角形,∴AE=DE,∴BE=6﹣DE,∵BE2+DE2=BD2,∴DE2+(6﹣DE)2=26,∴DE=1,DE=5,∴AD=或AD=5.3.(1)问题发现:证明:∵△ABC和△ADE是等边三角形∴AB=AC,AD=AE,且∠BAC=∠DAE=60°∴∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,在△ABD和△ACE中AB=AC,∠BAD=∠CAE,AD=AE,∴△ABD≌△ACE(SAS);(2)类比探究:①∵△ABC和△ADE均为等腰直角三角形,∴AB=AC,∠BAD=∠CAE,AD=AE,在△ACE与△ABD中,,∴△ACE≌△ABD(SAS),∴∠ACE=∠B=45°,故答案为:45°;②∵△ACE≌△ABD,∴BD=CE,∴BC+CD=CE,故答案为:BC+CD=CE;(3)问题解决:解:在(2)中,同(1)的方法可证:△ABD≌△ACE,∴∠ACE=∠ABD=45°,又∵∠ACB=45°,∴∠BCE=∠ACB+∠ACE=90°,在Rt△BAC中,,∴,又∵CD=1,由(2)得CE=BC+CD=3,在Rt△BAC中,,则线段DE的长是.4.解:(1)△ACD与△CBE全等.理由如下:∵AD⊥直线l,∴∠DAC+∠ACD=90°,∵∠ACB=90°,∴∠BCE+∠ACD=90°,∴∠DAC=∠ECB,在△ACD和△CBE中,,∴△ACD≌△CBE(AAS);(2)①由题意得,AM=t,FN=3t,则CM=8﹣t,由折叠的性质可知,CF=CB=6,∴CN=6﹣3t.故答案为:8﹣t;6﹣3t.②由折叠的性质可知,∠BCE=∠FCE,∵∠MCD+∠CMD=90°,∠MCD+∠BCE=90°,∴∠NCE=∠CMD,∴当CM=CN时,△MDC与△CEN全等,当点N沿F→C路径运动时,8﹣t=6﹣3t,解得,t=﹣1(不合题意),当点N沿C→B路径运动时,8﹣t═3t﹣6,解得,t=3.5,当点N沿B→C路径运动时,由题意得,8﹣t=18﹣3t,解得,t=5,当点N沿C→F路径运动时,由题意得,8﹣t=3t﹣18,解得,t=6.5,综上所述,当t=3.5秒或5秒或6.5秒时,△MDC与△CEN全等.5.(1)证明:在BM上取一点E,使AE=AD.∵∠ADB=60°,∴△ADE是等边三角形.∵AB=AC,∠ABC=60°,∴△ABC是正三角形,∴∠BAE=60°﹣∠EAC=∠CAD,∴△BAE≌△CAD(SAS),∴∠ADC=∠AEB=120°,∴∠BDC=120°﹣60°=60°.(2)①在BD上取一点E,AE=AD,如图2,∵∠ABC=∠ADB=30°,且AB=AC,∴∠ABC=∠ACB=30°,∠AED=∠ADE=30°,∴∠BAC=∠EAD=120°,∴∠BAE=∠CAD,∴△BAE≌△CAD(SAS),∴∠ADC=∠AEB=180°﹣30°=150°,∴∠BDC=150°﹣30°=120°.②会变.如图3.在DB延长线上取一点E,使得AE=AD,同理可得:△BAE≌△CAD,∴∠ADC=∠E=30°,∴∠BDC=∠ADE+∠ADC=30°+30°=60°.(3)如图,∵△BAE≌△CAD,∴BE=CD,且AE=AD,AF⊥DE,∴,作CH⊥BM,如图4,∵∠BDC=120°,∴∠CDH=60°,∴∠DCH=30°,∴,∴,∴如图5,∵△BAE≌△CAD,∴BE=CD,且AE=AD,AF⊥DE,∴,,∴.6.解:(1)∵∠ABC=∠DBE=90°,∴∠ABC﹣∠ABE=∠DBE﹣∠ABE即∠CBE=∠ABD,∵∠ACB=∠BED=45°,∴∠ACB=∠CAB=45°,∠BED=∠BDE=45°,∴AB=BC,DB=BE,∴△ABD≌△CBE(SAS),∴AD=CE,∠DAB=∠ECB=45°,∴=1,∠EAD=45°+45°=90°.故答案为:1,90°.(2),∠EAD=90°.理由如下:∵∠ABC=∠DBE=90°,∠ACB=∠BED=60°,∴∠ABD=∠EBC,∠BAC=∠BDE=30°,∴在Rt△ABC中,tan∠ACB==tan60°=,在Rt△DBE中,tan∠BED==tan60°=,∴=,又∵∠ABD=∠EBC,∴△ABD∽△∠CBE,∴==,∠BAD=∠ACB=60°.∵∠BAC=30°,∴∠EAD=∠BAD+∠BAC=60°+30°=90°.(3)如图,由(2)知:==,∠EAD=90°,∴AD=CE,在Rt△ABC中,∠BAC=30°,BC=4,∴AC=8,AB=4,∵∠EAD=∠EBD=90°,且点M是DE的中点,∴AM=BM=DE,∵△ABM为直角三角形,∴AM2+BM2=AB2=(4)2=48,∴AM=BM=2,∴DE=4,设EC=x,则AD=x,AE=8﹣x,Rt△ADE中,AE2+AD2=DE2,∴(8﹣x)2+(x)2=(4)2,解之得:x=2+2(负值舍去).∴EC=2+2.∴AD=CE=2+6.∴线段AD的长为(2+6).7.(1)解:∵BD=BC,∠DBC=60°,∴△DBC是等边三角形.∴DB=DC,∠BDC=∠DBC=∠DCB=60°.在△ADB和△ADC中,∵,∴△ADC≌△ADB(SSS).∴∠ADC=∠ADB.∴∠ADC=(360°﹣60°)=150°.(2)解:△ACE是等边三角形.理由如下:∵∠ACE=∠DCB=60°,∴∠ACD=∠ECB.∵∠CBE=150°,∠ADC═150°,∴∠ADC=∠EBC.在△ACD和△ECB中,∵,∴△ACD≌△ECB(ASA).∴AC=CE.∵∠ACE=60°,∴△ACE是等边三角形.(3)解:连接DE.∵DE⊥CD,∴∠EDC=90°.∵∠BDC=60°,∴∠EDB=30°.∵∠CBE=150°,∠DBC=60°,∴∠DBE=90°.∴EB=DE.∵△ACD≌△ECB,AD=3,∴EB=AD=3.∴DE=2EB=6.8.(1)解:∠ADE=45°.∵AB=AC,∠BAC=90°,∴∠ABC=∠ACB=45°,∵∠ACM=∠ACB,∴∠ACM=∠ABC,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴AD=AE,∠CAE=∠BAD,∴∠DAE=∠BAC=90°,∴∠ADE=45°;(2)(1)中的结论成立证明:∵∠BAC=90°,AB=AC,∴∠B=∠ACB=45°.∵∠ACM=∠ACB,∴∠B=∠ACM=45°.在△ABD和△ACE中,,∴△ABD≌△ACE(SAS).∴AD=AE,∠BAD=∠CAE.∴∠CAE+∠DAC=∠BAD+∠DAC=∠BAC=90°.即∠DAE=90°.∵AD=AE,∴∠ADE=∠AED=45°.(3)△CGH为等腰直角三角形.理由如下:∵∠BCA=∠ACE=45°,∴∠GCH=90°,又∵AH⊥BC,AG⊥CE,∴AG=AH,∵∠ACG=∠AGC=45°,∴AG=CG,∵AB=AC,AH⊥BC,∴∠HCA=∠HAC=45°,∴AH=HC,∴CH=CG,∴△CGH为等腰直角三角形.9.解:(1)如图1所示:(2)ME=BN.证明:延长AM交BC于点F,如图.∵AM平分∠BAC,∴∠BAM=∠CAM.∵AE⊥AB,∴∠MAE+∠BAM=90°.∴∠MAE+∠CAM=90°∵AB=AC,AM平分∠BAC,∴AF⊥BC.∴∠C+∠CAM=90°.∴∠MAE=∠C.又∵AM=CN,AE=BC,∴△AME≌△CNB(SAS).∴ME=BN.(3)由(2)知ME=BN,则当B,M,E三点共线时,此时BM+BN取得最小值,点M的位置如图2,∵AB=5,BC=6,∴AE=BC=6,∴BE===.∴BM+BN的最小值是.10.解:(1)△CBE是等边三角形.理由如下:∵点E在BC垂直平分线上,∴EC=EB,∵EB⊥AB,∴∠ABE=90°,∵∠ABC=30°,∴∠CBE=60°,∴△CBE是等边三角形.(2)∵△ABD是等边三角形,∴AB=DB,∠ABD=60°,∵∠ABC=30°,∴∠DBC=90°,∵EB⊥AB,∴∠ABE=90°,∴∠ABE=∠DBC,由(1)可知:△CBE是等边三角形,∴EB=CB,∴△ABE≌△DBC(SAS).∴AE=DC;(3)①设AB与CD交于点G,∴∠EAB=∠CDB,又∵∠AGC=∠BGD,∴∠AFD=∠ABD=60°.故答案为:60°.②∵△BCP为等腰三角形,当BC=BP时,如图2,∠ABC=∠BCP+∠BPC=30°,∴∠BCP=15°,∴∠ACP=90°+15°=105°;当PC=PB时,如图3,∴∠PCB=30°,∵∠ACB=90°,∴∠ACP=60°;当BP=BC时,如图4,∵∠ABC=30°,∴∠PCB=∠CPB=(180°﹣30°)=75°,∴∠ACP=90°﹣75°=15°.综合上述可得∠ACP的度数为15°或60°或105°.故答案为:15°或60°或105°.。

2021年中考数学真题 图形的相似(共55题)-(解析版)

2021年中考数学真题 图形的相似(共55题)-(解析版)

2021年中考数学真题分项汇编【全国通用】(第01期)22图形的相似(共55题)姓名:__________________ 班级:______________ 得分:_________________一、单选题1.(2021·浙江温州市·中考真题)如图,图形甲与图形乙是位似图形,O 是位似中心,位似比为2:3,点A ,B 的对应点分别为点A ',B '.若6AB =,则A B ''的长为( )A .8B .9C .10D .15【答案】B 【分析】直接利用位似图形的性质得出线段比进而得出答案. 【详解】解:∵图形甲与图形乙是位似图形,O 是位似中心,位似比为2:3,∵23AB A B ='', ∵6AB =,∵623A B ='', ∵9A B ''= 故答案为:B .【点睛】此题主要考查了位似变换,正确掌握位似图形的性质是解题关键.2.(2021·山东东营市·中考真题)如图,ABC 中,A 、B 两个顶点在x 轴的上方,点C 的坐标是(1,0),以点C 为位似中心,在x 轴的下方作ABC 的位似图形A B C '',并把ABC 的边长放大到原来的2倍,设点B 的横坐标是a ,则点B 的对应点B '的横坐标是( )A .23a -+B .21a -+C .22a -+D .22a --【答案】A 【分析】设点'B 的横坐标为x ,然后表示出BC 、'B C 的横坐标的距离,再根据位似比列式计算即可得解. 【详解】设点'B 的横坐标为x ,则B 、C 间的横坐标的差为1a -,'B 、C 间的横坐标的差为1x -+,ABC 放大到原来的2倍得到'''A B C ,∴()211a x -=-+,解得:23x a =-+. 故选:A. 【点睛】本题考查了位似变换,坐标与图形的性质,根据位似比的定义,利用两点间的横坐标的距离等于对应边的比列出方程是解题的关键.3.(2021·浙江绍兴市·中考真题)如图,树AB 在路灯O 的照射下形成投影AC ,已知路灯高5m PO =,树影3m AC =,树AB 与路灯O 的水平距离 4.5m AP =,则树的高度AB 长是( )A .2mB .3mC .3m 2D .10m 3【答案】A 【分析】利用相似三角形的性质得到对应边成比例,列出等式后求解即可. 【详解】解:由题可知,CAB CPO ∽,∵AB ACOP CP =, ∵353 4.5AB =+, ∵()2AB m =, 故选A .【点睛】本题考查了相似三角形的判定与应用,解决本题的关键是能读懂题意,建立相似关系,得到对应边成比例,完成求解即可,本题较基础,考查了学生对相似的理解与应用等.4.(2021·四川遂宁市·中考真题)如图,在△ABC 中,点D 、E 分别是AB 、AC 的中点,若△ADE 的面积是3cm 2,则四边形BDEC 的面积为( )A .12cm 2B .9cm 2C .6cm 2D .3cm 2【答案】B 【分析】由三角形的中位线定理可得DE =12BC ,DE ∵BC ,可证∵ADE ∵∵ABC ,利用相似三角形的性质,即可求解. 【详解】解:∵点D ,E 分别是边AB ,AC 的中点,∵DE =12BC ,DE ∵BC ,∵∵ADE ∵∵ABC , ∵21()4ADEABCS DE SBC ∆∆==, ∵S ∵ADE =3, ∵S ∵ABC =12,∵四边形BDEC的面积=12-3=9(cm2),故选:B.【点睛】本题考查了相似三角形的判定和性质,三角形中位线定理,掌握相似三角形的性质是解题的关键.5.(2021·重庆中考真题)如图,△ABC与△BEF位似,点O是它们的位似中心,其中OE=2OB,则△ABC与△DEF的周长之比是()A.1:2B.1:4C.1:3D.1:9【答案】A【分析】利用位似的性质得∵ABC∵∵DEF,OB:OE= 1:2,然后根据相似三角形的性质解决问题.【详解】解:∵∵ABC与∵DEF位似,点O为位似中心.∵∵ABC∵∵DEF,OB:OE= 1:2,∵∵ABC与∵DEF的周长比是:1:2.故选:A.【点睛】本题主要考查了位似变换,正确掌握位似图形的性质是解题关键.6.(2021·江苏扬州市·中考真题)如图,点P 是函数()110,0k y k x x=>>的图像上一点,过点P 分别作x 轴和y 轴的垂线,垂足分别为点A 、B ,交函数()220,0k y k x x=>>的图像于点C 、D ,连接OC 、OD 、CD 、AB ,其中12k k >,下列结论:△//CD AB ;△122OCDk kS -=;△()21212DCPk k Sk -=,其中正确的是( )A .△△B .△△C .△△D .△【答案】B 【分析】设P (m ,1k m),分别求出A ,B ,C ,D 的坐标,得到PD ,PC ,PB ,P A 的长,判断PD PB和PC PA 的关系,可判断∵;利用三角形面积公式计算,可得∵PDC 的面积,可判断∵;再利用OCD OAPB OBD OCA DPC S S S S S =---△△△△计算∵OCD 的面积,可判断∵.【详解】解:∵PB ∵y 轴,P A ∵x 轴,点P 在1k y x =上,点C ,D 在2k y x=上,设P (m ,1k m ), 则C (m ,2k m ),A (m ,0),B (0,1k m),令12k k m x =,则21k m x k =,即D (21k m k ,1k m ),∵PC =12k k m m -=12k k m -,PD =21k m m k -=()121m k k k -, ∵()121121m k k k k k PD PB m k --==,121211k k k k PC m kPA k m--==,即PD PCPB PA =,又∵DPC =∵BP A , ∵∵PDC ∵∵PBA , ∵∵PDC =∵PBC , ∵CD ∵AB ,故∵正确; ∵PDC的面积=12PD PC ⨯⨯=()1212112m k k k k km --⨯⨯=()21212k k k -,故∵正确;OCD OAPB OBD OCA DPC S S S S S =---△△△△=()112221222112k k k k k k ----=()2121122k k k k k ---=()()21121112222k k k k k k k --- =()22112211222k k k k k k --- =221212k k k -,故∵错误;故选B . 【点睛】此题主要考查了反比例函数的图象和性质,k 的几何意义,相似三角形的判定和性质,解题关键是表示出各点坐标,得到相应线段的长度.7.(2021·江苏连云港市·中考真题)如图,ABC 中,BD AB ⊥,BD 、AC 相交于点D ,47AD AC =,2AB =,150ABC ∠=︒,则DBC △的面积是( )A B C D 【答案】A 【分析】过点C 作CE AB ⊥的延长线于点E ,由等高三角形的面积性质得到:3:7DBCABCS S=,再证明ADB ACE ,解得47AB AE =,分别求得AE 、CE 长,最后根据ACE 的面积公式解题. 【详解】解:过点C 作CE AB ⊥的延长线于点E ,DBC 与ADB △是等高三角形,43:::4:377ADB DBCSSAD DC AC AC === :3:7DBCABCSS∴=BD AB ⊥∴ADB ACE22416749ADB ACEAC S AD SAC AC ⎛⎫ ⎪⎛⎫∴===⎪ ⎪⎝⎭ ⎪⎝⎭47AB AE ∴= 2AB =72AE ∴=73222BE ∴=-=150,ABC ∠=︒18015030CBE ∴∠=︒-︒=︒tan 30CE BE ∴=︒⋅=设4,3ADBDBCSx Sx ==494ACESx ∴=∴4917422x ∴=⨯14x ∴=3x ∴=, 故选:A . 【点睛】本题考查相似三角形的判定与性质、正切等知识,是重要考点,掌握相关知识是解题关键.8.(2021·浙江绍兴市·中考真题)如图,Rt ABC 中,90BAC ∠=︒,1cos 4B =,点D 是边BC 的中点,以AD 为底边在其右侧作等腰三角形ADE ,使ADE B ∠=∠,连结CE ,则CEAD的值为( )A .32BCD .2【答案】D 【分析】由直角三角形斜边中线等于斜边一半可得出12AD BD CD BC ===,在结合题意可得BAD B ADE ∠=∠=∠,即证明//AB DE ,从而得出BAD B ADE CDE ∠=∠=∠=∠,即易证()ADE CDE SAS ≅,得出AE CE =.再由等腰三角形的性质可知AE CE DE ==,BAD B ADE DAE ∠=∠=∠=∠,即证明ABD ADE ∼,从而可间接推出CE BDAD AB=.最后由1cos 4AB B BC ==,即可求出BD AB 的值,即CEAD的值. 【详解】∵在Rt ABC 中,点D 是边BC 的中点, ∵12AD BD CD BC ===, ∵BAD B ADE ∠=∠=∠, ∵//AB DE .∵BAD B ADE CDE ∠=∠=∠=∠,∵在ADE 和CDE △中,AD CD ADE CDE DE DE =⎧⎪∠=∠⎨⎪=⎩,∵()ADE CDE SAS ≅,∵AE CE =,∵ADE 为等腰三角形,∵AE CE DE ==,BAD B ADE DAE ∠=∠=∠=∠,∵ABD ADE ∼, ∵DE AD BD AB =,即CE BD AD AB=. ∵1cos 4AB B BC ==, ∵12AB BD =, ∵2CE BD AD AB ==. 故选D .【点睛】本题考查直角三角形的性质,等腰三角形的性质,平行线的判定和性质,全等三角形与相似三角形的判定和性质以及解直角三角形.熟练掌握各知识点并利用数形结合的思想是解答本题的关键.9.(2021·重庆中考真题)如图,在平面直角坐标系中,将OAB 以原点O 为位似中心放大后得到OCD ,若()0,1B ,()0,3D ,则OAB 与OCD 的相似比是( )A .2:1B .1:2C .3:1D .1:3 【答案】D【分析】直接利用对应边的比等于相似比求解即可.【详解】解:由B 、D 两点坐标可知:OB =1,OD =3;∵OAB 与∵OCD 的相似比等于13OB OD =; 故选D .【点睛】本题考查了在平面直角坐标系中求两个位似图形的相似比的概念,同时涉及到了位似图形的概念、平面直角坐标系中点的坐标、线段长度的确定等知识;解题关键是牢记相似比等于对应边的比,准确求出对应边的比即可完成求解,考查了学生对概念的理解与应用等能力.10.(2021·浙江丽水市·中考真题)如图,在Rt ABC △纸片中,90,4,3ACB AC BC ∠=︒==,点,D E 分别在,AB AC 上,连结DE ,将ADE 沿DE 翻折,使点A 的对应点F 落在BC 的延长线上,若FD 平分EFB ∠,则AD 的长为( )A .259B .258C .157D .207【答案】D【分析】先根据勾股定理求出AB ,再根据折叠性质得出∵DAE=∵DFE ,AD=DF ,然后根据角平分线的定义证得∵BFD=∵DFE =∵DAE ,进而证得∵BDF=90°,证明Rt∵ABC ∵Rt∵FBD ,可求得AD 的长.【详解】解:∵90,4,3ACB AC BC ∠=︒==,∵AB =,由折叠性质得:∵DAE=∵DFE ,AD=DF ,则BD =5﹣AD ,∵FD 平分EFB ∠,∵∵BFD =∵DFE=∵DAE ,∵∵DAE +∵B =90°,∵∵BDF +∵B =90°,即∵BDF =90°,∵Rt∵ABC ∵Rt∵FBD , ∵BD BC DF AC =即534AD AD -=, 解得:AD =205, 故选:D .【点睛】本题考查折叠性质、角平分线的定义、勾股定理、相似三角形的判定与性质、三角形的内角和定理,熟练掌握折叠性质和相似三角形的判定与性质是解答的关键.11.(2021·山东东营市·中考真题)如图,ABC 是边长为1的等边三角形,D 、E 为线段AC 上两动点,且30DBE ∠=︒,过点D 、E 分别作AB 、BC 的平行线相交于点F ,分别交BC 、AB 于点H 、G .现有以下结论:△ABC S =;△当点D 与点C 重合时,12FH =;△AE CD +=;△当AE CD =时,四边形BHFG 为菱形,其中正确结论为( )A.△△△B.△△△C.△△△△D.△△△【答案】B【分析】过A作AI∵BC垂足为I,然后计算∵ABC的面积即可判定∵;先画出图形,然后根据等边三角形的性质和相似三角形的性质即可判定∵;如图将∵BCD绕B点逆时针旋转60°得到∵ABN,求证NE=DE;再延长EA到P使AP=CD=AN,证得∵P=60°,NP=AP=CD,然后讨论即可判定∵;如图1,当AE=CD时,根据题意求得CH=CD、AG=CH,再证明四边形BHFG为平行四边形,最后再说明是否为菱形.【详解】解:如图1, 过A作AI∵BC垂足为I∵ABC是边长为1的等边三角形∵∵BAC=∵ABC=∵C=60°,CI=1212 BC=∵AI=∵S∵ABC=1112224AI BC=⨯⨯=,故∵正确;如图2,当D 与C 重合时∵∵DBE =30°,ABC 是等边三角形∵∵DBE =∵ABE =30°∵DE =AE =1122AD =∵GE //BD ∵1BGDEAG AE ==∵BG =1122AB =∵GF //BD ,BG //DF∵HF =BG =12,故∵正确;如图3,将∵BCD 绕B 点逆时针旋转60°得到∵ABN∵∵1=∵2,∵5=∵6=60°,AN =CD ,BD =BN∵∵2+∵4=∵1+∵4=30°∵∵NBE=∵3=30°又∵BD=BN,BE=BE∵∵NBE∵∵DBE(SAS)∵NE=DE延长EA到P使AP=CD=AN∵∵NAP=180°-60°-60°=60°∵∵ANP为等边三角形∵∵P=60°,NP=AP=CD成立,则PE,需∵NEP=90°,但∵NEP不一定为90°,如果AE+CD=故∵不成立;如图1,当AE=CD时,∵GE//BC∵∵AGE=∵ABC=60°,∵GEA=∵C=60°∵∵AGE=∵AEG=60°,同理:CH=CD∵AG=CH∵BG//FH,GF//BH∵四边形BHFG是平行四边形∵BG=BH∵四边形BHFG为菱形,故∵正确.故选B.【点睛】本题主要考查了等边三角形的性质、旋转变换、全等三角形的判定和性质以及菱形的判定等知识点,灵活运用相关知识成为解答本题的关键.12.(2021·四川眉山市·中考真题)如图,在以AB为直径的O中,点C为圆上的一点,3⊥于点E,弦AF交CE于点H,交BC于点G.若点H是=,弦CD ABBC AC∠的度数为()AG的中点,则CBFA.18°B.21°C.22.5°D.30°【答案】C【分析】根据直径所对的圆周角是90︒,可知90ACB AFB ∠=∠=︒,根据3BC AC =,可知ABC ∠、BAC ∠的度数,根据直角三角形斜边上的中线等于斜边的一半可知,AHC 为等腰三角形,再根据CAE BFG BCA ∽∽可求得CBF ∠的度数.【详解】解:∵AB 为O 的直径,∵90ACB AFB ∠=∠=︒,∵3BC AC =,∵=22.5ABC ∠︒,=67.5BAC ∠︒,∵点H 是AG 的中点,∵CE AH =,∵CAH ACH ∠=∠,∵CD AB ⊥,∵AEC GCA ∽,又∵,CAF CBF CGA FGB ∠=∠∠=∠,∵AEC GCA GFB ∽∽,∵90ACE ECB ABC ECB ∠+∠=∠+∠=︒,∵ABE ABC ∠=∠,∵AEC GCA GFB ACB ∽∽∽,∵22.5ABC ACE GAC GBF ∠=∠=∠=∠=︒,∵=22.5CBF ∠︒,故选:C .【点睛】本题主要考查圆周角定理,垂径定理,相似三角形,直角三角形斜边上中线等知识点,找出图形中几个相似三角形是解题关键.13.(2021·山东聊城市·中考真题)如图,四边形ABCD中,已知AB△CD,AB与CD之间的距离为4,AD=5,CD=3,△ABC=45°,点P,Q同时由A点出发,分别沿边AB,折线ADCB向终点B方向移动,在移动过程中始终保持PQ△AB,已知点P的移动速度为每秒1个单位长度,设点P的移动时间为x秒,△APQ的面积为y,则能反映y与x之间函数关系的图象是()A.B.C.D.【答案】B【分析】依次分析当03t≤≤、36t<≤、610t<≤三种情况下的三角形面积表达式,再根据其对应图像进行判断即可确定正确选项.【详解】解:如图所示,分别过点D、点C向AB作垂线,垂足分别为点E、点F,∵已知AB∥CD,AB与CD之间的距离为4,∵DE =CF =4,∵点P ,Q 同时由A 点出发,分别沿边AB ,折线ADCB 向终点B 方向移动,在移动过程中始终保持PQ ∵AB ,∵PQ∥DE∥CF ,∵AD =5, ∵3==AE ,∵当03t ≤≤时,P 点在AE 之间,此时,AP =t , ∵AP PQ AE DE=, ∵4=3PQ t , ∵2142=2233APQ t S AP PQ t t ⋅=⨯=, 因此,当03t ≤≤时,其对应的图像为()22033y t t =≤≤,故排除C 和D ; ∵CD =3,∵EF =CD =3,∵当36t <≤时,P 点位于EF 上,此时,Q 点位于DC 上,其位置如图中的P 1Q 1,则111422APQ S t t =⨯⨯=, 因此当36t <≤时,对应图像为()236y t t =<≤,即为一条线段;∵∵ABC =45°,∵BF =CF =4,∵AB =3+3+4=10,∵当610t <≤时,P 点位于FB 上,其位置如图中的P 2Q 2,此时,P 2B =10-t , 同理可得,Q 2P 2=P 2B =10-t ,()2221110522AP Q S t t t t =⨯-=-+,因此当610t <≤时,对应图像为()2156102y t t t =-+<≤,其为开口向下的抛物线的610t <≤的一段图像; 故选:B .【点睛】本题考查了平行线分线段成比例的推论、勾股定理、平行线的性质、三角形的面积公式、二次函数的图像等内容,解决本题的关键是牢记相关概念与公式,能分情况讨论等,本题蕴含了数形结合与分类讨论的思想方法等.14.(2021·四川广元市·中考真题)如图,在边长为2的正方形ABCD 中,AE 是以BC 为直径的半圆的切线,则图中阴影部分的面积为( )A .32π+B .2π-C .1D .52π- 【答案】D【分析】取BC的中点O,设AE与∵O的相切的切点为F,连接OF、OE、OA,由题意可得OB=OC=OA=1,∵OF A=∵OFE=90°,由切线长定理可得AB=AF=2,CE=CF,然后根据割补法进行求解阴影部分的面积即可.【详解】解:取BC的中点O,设AE与∵O的相切的切点为F,连接OF、OE、OA,如图所示:∵四边形ABCD是正方形,且边长为2,∵BC=AB=2,∥ABC=∥BCD=90°,∵AE是以BC为直径的半圆的切线,∵OB=OC=OF=1,∵OF A=∵OFE=90°,∵AB=AF=2,CE=CF,∵OA=OA,∵Rt∵ABO∵Rt∵AFO(HL),同理可证∵OCE∵∵OFE,∵,∠=∠∠=∠,AOB AOF COE FOE∵90∠+∠=︒=∠+∠,AOB COE AOB BAO∵COE BAO ∠=∠,∵ABO OCE ∽, ∵OC CE AB OB=, ∵12CE =, ∵15222222ABO OCE ABCE S S S SS S ππ-=-=+-=+-=阴影半圆半圆四边形; 故选D .【点睛】 本题主要考查切线的性质定理、切线长定理、正方形的性质及相似三角形的性质与判定,熟练掌握切线的性质定理、切线长定理、正方形的性质及相似三角形的性质与判定是解题的关键.15.(2021·四川自贡市·中考真题)如图,在正方形ABCD 中,6AB =,M 是AD 边上的一点,:1:2AM MD =.将BMA △沿BM 对折至BMN △,连接DN ,则DN 的长是( )A .52BC .3D 【答案】D【分析】延长MN 与CD 交于点E ,连接BE ,过点N 作NF CD ⊥,根据折叠的正方形的性质得到NE CE =,在Rt MDE 中应用勾股定理求出DE 的长度,通过证明MDE NFE ∽,利用相似三角形的性质求出NF 和DF 的长度,利用勾股定理即可求解.【详解】解:如图,延长MN 与CD 交于点E ,连接BE ,过点N 作NF CD ⊥,∵6AB =,M 是AD 边上的一点,:1:2AM MD =,∵2AM =,4DM =,∵将BMA △沿BM 对折至BMN △,四边形ABCD 是正方形,∵90BNE C ∠=∠=︒,AB AN BC ==,∵Rt BNE Rt BCE ≌(HL),∵NE CE =,∵2EM MN NE NE =+=+,在Rt MDE 中,设DE x =,则628ME x x =-+=-,根据勾股定理可得()22248x x +=-,解得3x =,∵3NE DE ==,5ME =,∵NF CD ⊥,90MDE ∠=︒,∵MDE NFE ∽, ∵25EF NFNE DE MD ME ===,∵125NF =,95EF =, ∵65DF =,∵DN =,故选:D .【点睛】本题考查折叠的性质、相似三角形的判定与性质、勾股定理的应用等内容,做出合适的辅助线是解题的关键.16.(2021·四川泸州市·中考真题)如图,△O 的直径AB =8,AM ,BN 是它的两条切线,DE 与△O 相切于点E ,并与AM ,BN 分别相交于D ,C 两点,BD ,OC 相交于点F ,若CD =10,则BF 的长是A B C D 【答案】A【分析】过点D 作DG ∵BC 于点G ,延长CO 交DA 的延长线于点H ,根据勾股定理求得6GC =,即可得AD=BG =2,BC = 8,再证明∵HAO ∵∵BCO ,根据全等三角形的性质可得AH=BC =8,即可求得HD= 10;在Rt∵ABD 中,根据勾股定理可得BD =∵DHF ∵∵BCF ,根据相似三角形的性质可得DH DF BC BF=,由此即可求得BF=9【详解】过点D作DG∵BC于点G,延长CO交DA的延长线于点H,∵AM,BN是它的两条切线,DE与∵O相切于点E,∵AD=DE,BC=CE,∵DAB=∵ABC=90°,∵DG∵BC,∵四边形ABGD为矩形,∵AD=BG,AB=DG=8,在Rt∵DGC中,CD=10,∵6GC===,∵AD=DE,BC=CE,CD=10,∵CD= DE+CE = AD+BC =10,∵AD+BG +GC=10,∵AD=BG=2,BC=CG+BG=8,∵∵DAB=∵ABC=90°,∵AD∵BC,∵∵AHO=∵BCO,∵HAO=∵CBO,∵OA=OB,∵∵HAO∵∵BCO,∵AH=BC=8,∵AD=2,∵HD=AH+AD=10;在Rt∵ABD中,AD=2,AB=8,∵BD==∵AD∵BC,∵∵DHF∵∵BCF,∵DH DF=,BC BF∵10=,8解得,BF=故选A.【点睛】本题是圆的综合题,考查了切线长定理、勾股定理、全等三角形的判定及性质、相似三角形的判定于性质,熟练运用相关知识是解决问题的关键.17.(2021·内蒙古通辽市·中考真题)如图,已知//⊥,3AD BC,AB BCAB=,点E 为射线BC上一个动点,连接AE,将ABE△沿AE折叠,点B落在点B'处,过点B'作AD的垂线,分别交AD,BC于M,N两点,当B'为线段MN的三等分点时,BE 的长为()A .32BC .32D 【答案】D【分析】因为点'B 为线段MN 的三等分点,没有指明线段'B M 的占比情况,所以需要分两种情况讨论:∵1'3B M MN =;∵ 2'3B M MN =.然后由一线三垂直模型可证 'AMB ∵'B NE ,再根据相似三角形的性质求得 EN 的值,最后由 BE BN EN =-即可求得 BE 的长.【详解】当点'B 为线段MN 的三等分点时,需要分两种情况讨论:∵如图1,当1'3B M MN =时,∵AD ∵BC ,AB BC ⊥, MN BC ⊥,∵四边形ABNM 为矩形, ∵11'133B M MN AB ===, 22'233B N MN AB ===, BN AM =.由折叠的性质可得'3A B AB ==,'90AB E ABC ∠=∠=︒.在'Rt AB M 中,AM ==.∵''90AB M MAB ∠+∠=︒, ''90AB M EB N ∠+∠=︒,∵''EB N MAB ∠=∠,∵'B NE ∵'AMB ,∵''ENB N B M AM =,即 1EN =,解得 EN =,∵BE BN EN =-==.∵如图2,当2'3B M MN =时,∵AD ∵BC ,AB BC ⊥, MN BC ⊥,∵四边形ABNM 为矩形, ∵22'233B M MN AB ===, 11'133B N MN AB ===, BN AM =.由折叠的性质可得'3AB AB ==,'90AB E ABC ∠=∠=︒.在'Rt AB M 中,AM ===∵''90AB M MAB ∠+∠=︒, ''90AB M EB N ∠+∠=︒,∵''EB N MAB ∠=∠,∵'B NE ∵'AMB ,∵''EN B N B M AM =,即 2EN =EN =,∵BE BN EN =-==.综上所述,BE 的长为2或 5. 故选:D .【点睛】 本题考查了矩形的判定,勾股定理,相似三角形的判定和性质,由'B 为线段MN 的三等分点,分两种情况讨论线段'B M 的占比情况,以及利用K 型相似进行相关计算是解决此题的关键.18.(2021·四川资阳市·中考真题)如图是中国古代数学家赵爽用来证明勾股定理的弦图的示意图,它是由四个全等的直角三角形和一个小正方形EFGH 组成,恰好拼成一个大正方形ABCD .连结EG 并延长交BC 于点M .若1AB EF ==,则GM 有长为( )A .5B .3CD .5【答案】D【分析】添加辅助线,过F 点作FI ∵HM ,通过证明两组三角形相似,得到FI 和GM 的两个关系式,从而求解GM .【详解】如图所示,过F 点作FI ∵HM ,交BC 于点I ,证明勾股定理的弦图的示意图是由四个全等的直角三角形和一个小正方形EFGH 组成∴=90AEB ∠︒,BF AE CG ==,CF BE =,1FG EF ==,EG =又1AB EF ==∴222AE BE AB +=,即 ()2221BF BF ++=解得2BF =或3BF =-(舍去)∴=2BF AE CG ==,=3CF BE =FI∵HM∴CGM CFI ∆,~BFI BEM ∆ ∴32FICFGM CG ==, 32EMBEFI BF == ∴32FI GM =,32EG GMGMFI FI +==∴322GM=解得:GM =经检验:GM =故选:D .【点睛】本题考查了相似三角形和勾股定理.本题的关键在于添加辅助线,建立所求线段与已知条件之间的联系.19.(2021·河北中考真题)图1是装了液体的高脚杯示意图(数据如图),用去一部分液体后如图2所示,此时液面AB ()A.1cm B.2cmC.3cm D.4cm【答案】C【分析】先求出两个高脚杯液体的高度,再通过三角形相似,建立其对应边的比与对应高的比相等的关系,即可求出AB.【详解】解:由题可知,第一个高脚杯盛液体的高度为:15-7=8(cm),第二个高脚杯盛液体的高度为:11-7=4(cm),因为液面都是水平的,图1和图2中的高脚杯是同一个高脚杯,所以图1和图2中的两个三角形相似,∵468AB , ∵=3AB (cm ),故选:C .【点睛】本题考查了相似三角形的判定与性质,解决本题的关键是读懂题意,与图形建立关联,能灵活运用相似三角形的判定得到相似三角形,并能运用其性质得到相应线段之间的关系等,本题对学生的观察分析的能力有一定的要求.20.(2021·四川宜宾市·中考真题)如图,在矩形纸片ABCD 中,点E 、F 分别在矩形的边AB 、AD 上,将矩形纸片沿CE 、CF 折叠,点B 落在H 处,点D 落在G 处,点C 、H 、G 恰好在同一直线上,若AB =6,AD =4,BE =2,则DF 的长是( )A .2B .74C .2D .3【答案】A【分析】 构造如图所示的正方形CMPD ,然后根据相似三角形的判定和性质解直角三角形FNP 即可.【详解】如图,延长CE ,FG 交于点N ,过点N 作//l AB ,延长,CB DA 交l 于,M P , ∵∵CMN =∵DPN =90°,∵四边形CMPD 是矩形,根据折叠,∵MCN =∵GCN ,CD =CG ,DF FG =,∵∵CMN =∵CGN =90°,CN =CN ,∵Rt MNC Rt GNC ∆≅∆,∵6CM CG CD ===,MN NG =∴四边形CMPD 为正方形,//BE MN∵CBE CMN , ∵4263BE CB MN CM ===, 2BE =,3MN ∴=,3NP ∴=,设DF x =,则4AF x =-, 在Rt PNF 中,由222FP NP NF +=可得222(42)3(3)x x -++=+解得2x =;故选A .【点睛】 本题考查了折叠问题,正方形的性质与判定,矩形的性质,平行线的性质,全等三角形的性质和判定,相似三角形,勾股定理等知识点的综合运用,难度较大.作出合适的辅助线是解题的关键.21.(2021·湖北恩施土家族苗族自治州·中考真题)如图,在44⨯的正方形网格中,每个小正方形的边长都为1,E 为BD 与正方形网格线的交点,下列结论正确的是( )A .12CE BD ≠B .ABC CBD ≌ C .AC CD = D .ABC CBD ∠=∠【答案】D【分析】 由题意易得CE ∵AB ,然后根据相似三角形的性质与判定、直角三角形斜边中线定理及全等三角形的判定可排除选项.【详解】解:∵每个小正方形的边长都为1,∵4,2,5AB AC BC CD BD ====,∵22225BC CD BD +==,AC CD ≠,故C 错误;∵∵BCD 是直角三角形,∵90BCD BAC ∠=∠=︒,∵5AB AC BC CD ==, ∵C ABC BD ∽△△,故B 错误;∵ABC CBD ∠=∠,故D 正确;∵E 为BD 与正方形网格线的交点,∵CE ∵AB ,∵ABC BCE CBD ∠=∠=∠,∵90DBC BDC BCE ECD ∠+∠=∠+∠=︒,∵BDC ECD ∠=∠, ∵12BE CE ED BD ===,故A 错误;故选D .【点睛】本题主要考查勾股定理的逆定理、相似三角形的性质与判定及直角三角形斜边中线定理,熟练掌握勾股定理的逆定理、相似三角形的性质与判定及直角三角形斜边中线定理是解题的关键.22.(2021·山东威海市·中考真题)如图,在ABC 和ADE 中,36CAB DAE ∠=∠=︒,AB AC =,AD AE =.连接CD ,连接BE 并延长交AC ,AD 于点F ,G .若BE 恰好平分ABC ∠,则下列结论错误的是( )A .ADC AEB ∠=∠B .//CD ABC .DE GE =D .2BF CF AC =⋅【答案】C【分析】 根据SAS 即可证明DAC EAB △≌△,再利用全等三角形的性质以及等腰三角形的性质,结合相似三角形的判定和性质,即可一一判断【详解】,,36AB AC AD AE CAB DAE ==∠=∠=︒DAC EAB ∴∠=∠∴DAC EAB △≌△ADC AEB ∴∠=∠,故选项A 正确;,36AB AC CAB =∠=︒72ABC ACB ∴∠=∠=︒ BE 平分ABC ∠1362ABE CBF ABC ∴∠=∠=∠=︒DAC EAB △≌△36ACD ABE ∴∠=∠=︒ACD CAB ∴∠=∠//CD AB ∴,故选项B 正确;,36AD AE DAE =∠=︒72ADE ∴∠=︒72DGE DAE EAB ABE EAB ∠=∠+∠+∠=︒+∠即ADE DGE ∠≠∠DE GE ∴≠,故选项C 错误;72,36ABC ACB CAB CBF ∠=∠=︒∠=∠=︒∴∠=︒CFB72∴=BC BF∴△∽△ABC BFCBF CF∴=AB BCAB AC=BF CF∴=AC BF2=⋅,故选项D正确;BF CF AC故答案选:C.【点睛】本题考查了全等三角形的判定和性质,等腰三角形的判定和性质,相似三角形的判定和性质,平行线的判定,能利用全等三角形的判定和性质以及等腰三角形的性质是解题关键.二、填空题23.(2021·江苏无锡市·中考真题)下列命题中,正确命题的个数为________.△所有的正方形都相似△所有的菱形都相似△边长相等的两个菱形都相似△对角线相等的两个矩形都相似【答案】∵【分析】根据多边形的判定方法对∵进行判断;利用菱形的定义对∵进行判断;根据菱形的性质对∵进行判断;根据矩形的性质和相似的定义可对∵进行判断.【详解】解:所有的正方形都相似,所以∵正确;所有的菱形不一定相似,所以∵错误;边长相等的两个菱形,形状不一定相同,即:边长相等的两个菱形不一定相似所以∵错误;对角线相等的两个矩形,对应边不一定成比例,即不一定相似,所以∵错误; 故答案是:∵.【点睛】本题考查了判断命题真假,熟练掌握图形相似的判定方法,菱形,正方形,矩形的性质,是解题的关键.24.(2021·内蒙古中考真题)如图,在Rt ABC 中,90ACB ∠=︒,过点B 作BD CB ⊥,垂足为B ,且3BD =,连接CD ,与AB 相交于点M ,过点M 作MN CB ⊥,垂足为N .若2AC =,则MN 的长为__________.【答案】65【分析】根据MN ∵BC ,AC ∵BC ,DB ∵BC ,得,BNM BCA CNM ABD ,可得,MN BN MN CN AC BC BD BC ,因为1BN CN BC BC ,列出关于MN 的方程,即可求出MN 的长.【详解】∵MN ∵BC ,DB ∵BC , 90ACB ∠=︒∵AC ∵MN ∵DB ,∵,BNM BCA CNM ABD , ∵,MN BN MN CN AC BC BD BC 即,23MN BN MN CN BC BC , 又∵1BN CN BCBC , ∵123MN MN , 解得65MN =, 故填:65. 【点睛】本题考查相似三角形的判定和性质,解题关键是根据题意得出两组相似三角形以及它们对应边之比的等量关系.25.(2021·山东东营市·中考真题)如图,正方形纸片ABCD 的边长为12,点F 是AD 上一点,将CDF 沿CF 折叠,点D 落在点G 处,连接DG 并延长交AB 于点E .若5AE =,则GE 的长为________.【答案】4913【分析】因为折叠,则有DG CF ⊥,从而可知AED HDC △∽△,利用线段比求出DG 的长,即可求出EG .【详解】如图, 四边形ABCD 是正方形12=90∴∠+∠︒因为折叠,DG CF ∴⊥,设垂足为HDH HG ∴=2390∴∠+∠=︒13∠∠∴=AED HDC ∴△∽△AE DHED DC =5AE =,12AD DC ==51312DH∴=6013DH ∴=EG ED GD ∴=-2ED GH =-6013213=-⨯4913=故答案为4913. 【点睛】本题考查了正方形的性质,轴对称的性质,三角形相似的判定与性质,勾股定理,找到AED HDC △∽△是解题的关键.26.(2021·四川南充市·中考真题)如图,在ABC 中,D 为BC 上一点,3BC BD ==,则:AD AC 的值为________.【分析】证明∵ABD ∵∵CBA ,根据相似三角形的性质即可解答.【详解】 ∵3BC BD ==,∵ABBC ==BDAB =,∵3ABBDBC AB ==,∵∵B =∵B ,∵∵ABD ∵∵CBA ,∵3ADBDAC AB ==.故答案为:3. 【点睛】 本题考查了相似三角形的判定及性质,证明∵ABD ∵∵CBA 是解决问题的关键. 27.(2021·湖北随州市·中考真题)如图,在Rt ABC 中,90ACB ∠=︒,O 为AB 的中点,OD 平分AOC ∠交AC 于点G ,OD OA =,BD 分别与AC ,OC 交于点E ,F ,连接AD ,CD ,则OG BC 的值为______;若CE CF =,则CF OF的值为______.【答案】12【分析】(1)根据条件,证明AOD COD ≅△△,从而推断90OGA ∠=,进一步通过角度等量,证明AOG ABC △△,代入推断即可.(2)通过OA OD OC OB ===,可知,,,A B C D 四点共圆,通过角度转化,证明ODF CBF △△,代入推断即可. 【详解】解:(1)∵90ACB ∠=︒,O 为AB 的中点∵OA OC =又∵OD 平分AOC ∠∵AOD COD ∠=∠又∵OD OD =∵AOD COD ≅△△∵AD CD =∵OD AC ⊥∵90OGA ∠=在AOG 与ABC 中GAO BAC ∠=∠,90OGA BCA ∠=∠=∵AOG ABC △△12OGAOBC AB ==(2∵OA OD OC OB ===∵,,,A B C D 四点共圆,如下图:∵CE CF =∵CEF CFE ∠=∠又∵CFE BFO ∠=∠∵CEF BFO ∠=∠∵AOD COD ≅△△∵AD CD =∵AD CD =∵OBF CBE ∠=∠∵90BFO OBF CEF CBE ∠+∠=∠+∠=即90BOC ∠=∵OB OC = ∵BC ===∵90OGA BCA ∠=∠= ∵ODB FBC ∠=∠∵OFD CFB ∠=∠∵ODF CBF △△∵CF BC OF OD==故答案为:12【点睛】本题考查三角形的相似,三角形的全等以及圆的相关知识点,根据图形找见相关的等量关系是解题的关键.28.(2021·四川广元市·中考真题)如图,在正方形ABCD 中,点O 是对角线BD 的中点,点P 在线段OD 上,连接AP 并延长交CD 于点E ,过点P 作PF AP ⊥交BC 于点F ,连接AF 、EF ,AF 交BD 于G ,现有以下结论:△AP PF =;△DE BF EF +=;△PB PD -=;△AEF S 为定值;△APG PEFG S S =四边形.以上结论正确的有________(填入正确的序号即可).【答案】∵∵∵∵【分析】由题意易得∵APF =∵ABC =∵ADE =∵C =90°,AD =AB ,∵ABD =45°,对于∵:易知点A 、B 、F 、P 四点共圆,然后可得∵AFP =∵ABD =45°,则问题可判定;对于∵:把∵AED 绕点A 顺时针旋转90°得到∵ABH ,则有DE =BH ,∵DAE =∵BAH ,然后易得∵AEF ∵∵AHF ,则有HF =EF ,则可判定;对于∵:连接AC ,在BP 上截取BM =DP ,连接AM ,易得OB =OD ,OP =OM ,然后易证∵AOP ∵∵ABF ,进而问题可求解;对于∵:过点A 作AN ∵EF 于点N ,则由题意可得AN =AB ,若∵AEF 的面积为定值,则EF 为定值,进而问题可求解;对于∵由∵可得2AP AF =得∵APG ∵∵AFE ,然后可得相似比为AP AF =相似比的关系可求解.【详解】解:∵四边形ABCD 是正方形,PF AP ⊥,∵∵APF =∵ABC =∵ADE =∵C =90°,AD =AB ,∵ABD =45°,∵∵180ABC APF ∠+∠=︒,∵由四边形内角和可得180BAP BFP ∠+∠=︒,∵点A、B、F、P四点共圆,∵∵AFP=∵ABD=45°,∵∵APF是等腰直角三角形,∵AP PF=,故∵正确;∵把∵AED绕点A顺时针旋转90°得到∵ABH,如图所示:∵DE=BH,∵DAE=∵BAH,∵HAE=90°,AH=AE,∵45∠=∠=︒,HAF EAF∵AF=AF,∵∵AEF∵∵AHF(SAS),∵HF=EF,∵HF BH BF=+,∵DE BF EF+=,故∵正确;∵连接AC,在BP上截取BM=DP,连接AM,如图所示:∵点O 是对角线BD 的中点,∵OB =OD ,BD AC ⊥,∵OP =OM ,∵AOB 是等腰直角三角形, ∵AB =,由∵可得点A 、B 、F 、P 四点共圆,∵APO AFB ∠=∠,∵90ABF AOP ∠=∠=︒,∵∵AOP ∵∵ABF ,∵2OPOAAPBF AB AF ===,∵OP =,∵2BP DP BP BM PM OP -=-==, ∵PB PD -=,故∵正确;∵过点A 作AN ∵EF 于点N ,如图所示:由∵可得∵AFB =∵AFN ,∵∵ABF =∵ANF =90°,AF =AF ,∵∵ABF ∵∵ANF (AAS ),∵AN =AB ,若∵AEF 的面积为定值,则EF 为定值,∵点P 在线段OD 上,∵EF 的长不可能为定值,故∵错误;∵由∵可得2APAF =∵∵AFB =∵AFN =∵APG ,∵F AE =∵P AG ,∵∵APG ∵∵AFE ,∵2GP AP EF AF ==,∵2122AGP AEF S S ⎛== ⎝⎭,∵12AGP AEF S S =,∵APGPEFG S S =四边形,故∵正确;综上所述:以上结论正确的有∵∵∵∵;故答案为∵∵∵∵.【点睛】本题主要考查正方形的性质、旋转的性质、圆的基本性质及相似三角形的性质与判定,熟练掌握正方形的性质、旋转的性质、圆的基本性质及相似三角形的性质与判定是解题的关键.29.(2021·江苏南京市·中考真题)如图,将ABCD 绕点A 逆时针旋转到AB C D '''的位置,使点B '落在BC 上,B C ''与CD 交于点E ,若3,4,1AB BC BB '===,则CE 的长为________.【答案】98【分析】 过点C 作CM //C D ''交B C ''于点M ,证明ABB ADD ''∆∆∽求得53C D '=,根据AAS 证明ABB B CM ''∆≅∆可求出CM =1,再由CM //C D ''证明∵CME DC E '∆∽,由相似三角形的性质查得结论.【详解】解:过点C 作CM //C D ''交B C ''于点M ,。

2021年上海中考数学相似三角形专项训练(含答案)

2021年上海中考数学相似三角形专项训练(含答案)

2021年上海中考数学相似三角形专项训练一、选择题1.(2021.1松江)如果两个相似三角形对应边的比为1:4,那么它们的周长比是( ) (A )1:2;(B )1:4;(C )1:8;(D )1:16.2.(2021.1崇明)已知点G 是△ABC 的重心,如果联结AG ,并延长AG 交边BC 于点D ,那么下列说法中错误..的是( ) (A)BD CD =; (B)AG GD =; (C)2AG GD =; (D)2BC BD =.3.(2021.1青浦)如图1,已知BD 与CE 相交于点A ,DE ∥BC ,如果AD =2,AB =3, AC =6,那么AE 等于( ) (A )125; (B )185; (C )4; (D )9.4. (2021.1奉贤)如图2,在梯形ABCD 中,AD //BC ,BC =3AD ,对角线AC 、BD 交于点O ,EF 是梯形ABCD 的中位线,EF 与BD 、AC 分别交于点G 、H ,如果△OGH 的面积为1,那么梯形ABCD 的面积为( )(A )12; (B )14; (C )16; (D )18.5. (2021.1杨浦)在梯形ABCD 中,AD //BC ,对角线AC 与BD 相交于点O ,下列说法中,错误的是( ) (A )DOC AOB S S ∆∆=; (B )AOB BOC S OD S OB ∆∆=; (C )AOD BOC S OA S OC ∆∆=; (D )ABD ABC S ADS BC∆∆=. 6. (2021.1宝山)如图,AB ∥DE ,BC ∥DF ,已知n m FB AF ::=,a BC =,那么CE 等于( )(A )nam; (B )m an ; (C )nm am +; (D )nm an+. (B )二、填空题7.(2021.1崇明)已知线段6AB =cm ,点C 是AB 的黄金分割点,且AC BC >,那么EDCBA (图1)ADHG F E BCO图2AB CDEF图3线段AC 的长为 cm .8.(2021.1黄浦)已知线段MN 的长为4,点P 是线段MN 的黄金分割点,则其较长 线段MP 的长是 .9.(2021.1奉贤)已知点P 是线段AB 上一点,且AB AP BP •=2,如果AB =2厘米, 那么BP = 厘米. 10.(2021.1崇明)如果两个相似三角形的一组对应边上的高之比为1:4,那么这两个三角形的面积比为 .11.(2021.1黄浦)在△ABC 中,AB =5,BC =8,∠B =60°,则△ABC 的面积是 . 12.(2021.1奉贤)如果两个相似三角形的周长之比为1:4,那么这两个三角形对应边上的高之比为 .13. (2021.1杨浦) 如图,已知在△ABC 中,∠ACB =90°,点G 是△ABC 的重心,CG =2,BC =4,那么cos GCB ∠= .14.(2021.1松江)如图4,正方形DEFG 的边EF 在△ABC 的边BC 上,顶点D 、G 分别在边AB 、AC 上.已知△ABC 的边BC =16cm ,高AH 为10cm ,则正方形DEFG 的边长为_________cm.15.(2021.1虹口)如图5,AB //CD ,AD 、BC 相交于点E ,过E 作EF //CD 交BD 于点F ,如果AB =3,CD=6,那么EF 的长是 .16.(2021.1黄浦)已知一个矩形的两邻边长之比为1∶2.5,一条平行于边的直线将该矩形分为两个小矩形,如果所得两小矩形相似,那么这两个小矩形的相似比为 . 17. (2021.1杨浦)如图6,已知在△ABC 中,∠B=45º,∠C=60º,将△ABC 绕点A 旋转,点B 、C 分别落在点B 1、C 1处,如果BB 1//AC ,联结C 1B 1交边AB 于点D ,那么1BDB D的值为 .18.(2021.1普陀)如图8,在□ABCD 中,点E 在边BC 上,将△ABE 沿着直线AE 翻折得到△AFE ,点B 的对应点F 恰好落在线段DE 上,线段AF 的延长线交边CD 于点G ,如果:3:2BE EC =,那么:AF FG 的值等于 .(图4) E H AB C D F GAD CFEB A 图5 图6CB A A DCB EF G三、解答题 19、(2020年5月徐汇二模)如图,已知直线22+=x y 与x 轴交于点A ,与y 轴交于点C ,矩形ACBE 的顶点B 在第一象限的反比例函数xmy =图像上,过点B 作OC BF ⊥.垂足为F ,设t OF =. (1)求ACO ∠的正切值;(2)求点B 的坐标(用含t 的式子表示); (3)已知直线22+=x y 与反比例函数xmy =图像都经过第一象限的点D ,联结DE ,如果x DE ⊥轴,求m 的值.20、(2020年5月杨浦二模)如图,已知在正方形ABCD 中,对角线AC 与BD 交于点O ,点M 在线段OD 上,联结AM 并延长交边DC 于点E ,点N 在线段OC 上,且ON=OM ,联结DN 与线段AE 交于点H ,联结EN 、MN .(1) 如果EN //BD ,求证:四边形DMNE 是菱形; (2) 如果EN ⊥DC ,求证:2AN NC AC =⋅.(第19题图)AD C BEOxy F第20题图ADCHMON E21、(2020年5月长宁二模)如图,已知四边形ABCD 是矩形,点E 在对角线AC 上,点F 在边CD 上(点F 与点C 、D 不重合),EF BE ⊥,且︒=∠+∠45CEF ABE .(1)求证:四边形ABCD 是正方形; (2)联结BD ,交EF 于点Q ,求证:DF CE BC DQ ⋅=⋅.22、(2020年5月长宁二模)如图,在平面直角坐标系xOy 中,已知抛物线n mx x y ++=2经过点)2-2(,A ,对称轴是直线1=x ,顶点为点B ,抛物线与y 轴交于点C . (1)求抛物线的表达式和点B 的坐标;(2)将上述抛物线向下平移1个单位, 平移后的抛物线与x 轴正半轴交于点D ,求BCD ∆的面积;(3)如果点P 在原抛物线上,且在对称轴的右侧,联结BP 交线段OA 于点Q ,51=PQ BQ , 求点P 的坐标.ADCBEF第21题图第22题图-1-2 -3 -412 3 4 -1 -2 -3 -4 1 2 3 4 Oxy第24题图EDCABGFH23、(2020年5月长宁二模)已知:如图,在平行四边形ABCD 中,对角线AC 与BD 交于点O ,点E 是DB 延长线上的一点,且EA EC =,分别延长AD 、EC 交于点F . (1)求证:四边形ABCD 为菱形;(2)如果2AEC BAC ∠=∠,求证:EC CF AF AD ⋅=⋅.24、(2020年5月静安二模)已知:如图8,四边形ABCD 是平行四边形,延长BA 至点E ,使得AE=AB ,联结DE 、AC .点F 在线段DE 上,联结BF ,分别交AC 、AD 于点G 、H .(1)求证:BG =GF ;(2)如果AC =2AB ,点F 是DE 的中点,求证:BH GH AH ⋅=2.第23题图ABCDEFO25、(2020年5月闵行二模)如图,已知在□ABCD 中,AE ⊥BC ,垂足为E ,CE=AB ,点F 为CE 的中点,点G 在线段CD 上,联结DF ,交AG 于点M ,交EG 于点N ,且∠DFC=∠EGC .(1)求证:CG=DG ; (2)求证:2CG GM AG =⋅.26、(2020年5月浦东二模)已知:如图,在菱形ABCD 中,AC =2,∠B =60°.点E 为BC 边上的一个动点(与点B 、C 不重合),∠EAF =60°,AF 与边CD 相交于点F ,联结EF 交对角线AC 于点G .设CE =x ,EG = y .(1)求证:△AEF 是等边三角形;(2)求y 关于x 的函数解析式,并写出x 的取值范围;(3)点O 是线段AC 的中点,联结EO ,当EG =EO 时,求x 的值.ABEGCFD(第25题图)M N(第26题图)GFEDCBA参考答案一、选择题 1.B 2.A 3.C 4.C 5.C 6.D二、填空题7. 3 8.2 9.15-10. 1﹕16 11.12. 1:4 13.2314.801315. 2 16. 1,2,12.17. 18.214三、解答题 19.解:(1)由题意,得,;∴,;在中,,)0,1(-A )2,0(C 1=AO 2=OC AOC Rt ∆︒=∠90AOC∴. (2)∵四边形是矩形,∴;∵,∴;又,; ∴;∴; 又, ∴; ∴.(3)设轴,垂足为,与轴的交点为.又轴,∴;∴,; ∵四边形是矩形,∴,;∴;∴;又, ∴≌;∴; ∴;∴;∴; ∵点、在反比例函数图像上, ∴; 解得或(不合题意,舍去); ∴. 20.证明:(1)如图1,∵四边形是正方形,∴……(1分)21tan ==∠OC OA ACO ACBE ︒=∠90ACB OC BF ⊥︒=∠90BFC ︒=∠+∠90BCF ACO ︒=∠+∠90BCF FBC ACO FBC ∠=∠21tan tan =∠==∠ACO BF CF FBC t OF CO CF -=-=2t CF BF 242-==),24(t t B -x DE ⊥H AE y G x CO ⊥CO DH //AEH AGC ∠=∠DHCOAH AO =ACBE BC AE =BC AE //BCF AGC ∠=∠BCF AEH ∠=∠︒=∠=∠90BFC AHE AEH ∆BCF ∆t BF AH 24-==DHt 2241=-t DH 48-=)48,23(t t D --B D xmy =m t t t t =-=--)24()48)(23(56=t 2=t 254856)5624(=⨯⨯-=m ABCD OA OB OC OD AC BD ===⊥,∵,∴,∴………………(1分) 又∵,∴…………(1分) ∵, ,∴≌…………………………(1分 ∴,∵,∴ ∴………………………………………(1分)∴,∴平行…………………………(1分)(2)如图2, ∵,∴……………………(1分) ∵四边形是正方形,∴,…(1分) ∴,又∵,∴,…………………(1分)∴………………………………(1分) ∵∴……………………………………………(1分) ∴, ∴………………(1分) 21.证明:(1)∵EF BE ⊥ ∴︒=∠90BEF 即︒=∠+∠90CEF BEC (1分)∵BAC ABE BEC ∠+∠=∠ ∴︒=∠+∠+∠90CEF BAC ABE 又∵︒=∠+∠45CEF ABE ∴ ︒=∠45BAC 又∵四边形ABCD 是矩形 ∴ ︒=∠90ABC ∴ ︒=∠+∠90BCA BAC ∴︒=∠=∠45BCA BAC ∴ BC AB = (4分)∴四边形ABCD 是正方形 (1分) (2)设BD AC 、相交于点O∵四边形ABCD 是正方形 ∴BD AC ⊥ ∴︒=∠90EOQ (1分) ∴︒=∠+∠90OEQ EQOON OM =ON OMOC OD=//MN CD //EN BD DMNE 四边形是平行四边形AOM DON ∆∆在和中90AOM DON ∠=∠=︒OA OD OM ON ==,AOM ∆DON ∆OMA OND ∠=∠90OAM OMA ∠+∠=90OAM OND ∠+∠=︒90AHN ∠=︒DN ME ⊥DMNE 四边形是菱形//MN CD AN AMNC ME=ABCD //AB DC AB DC =,90ADC ∠=AD DC ⊥EN DC ⊥//EN AD AC DCAN DE=//AB DC ,AM ABME DE=AN ACNC AN =2AN NC AC =⋅第23题图1ADCHMON E B第23题图2ADCH MON E又∵︒=∠+∠90OEQ CEB ∴CEB EQO ∠=∠ (1分)∵四边形ABCD 是正方形∴ ︒=∠=∠90ADC BCD ,AC 、BD 分别平分ADC BCD ∠∠、∴ ︒=∠=∠45ECB QDF (1分)又∵ EQO DQF ∠=∠ ∴CEB DQF ∠=∠ (1分)∴DQF ∆∽CEB ∆ (1分)∴ BC DF CE DQ =即 DF CE BC DQ ⋅=⋅22.(本题满分12分,每小题各4分)解:(1) 抛物线n mx x y ++=2经过点)2,2(-A ,对称轴是直线1=x∴42212m n m ++=-⎧⎪⎨-=⎪⎩,解得22m n =-⎧⎨=-⎩ (2分)∴抛物线的解析式为222y x x =--,顶点B 的坐标是(1,3)- (2分)(2)抛物线222y x x =--与y 轴交于点),(2-0C 平移后的抛物线表达式为: 223y x x =-- ,点D 的坐标是(3,0) (2分)过点B 做y BH ⊥轴,垂足为点H∴=S S S BCD BCH COD BHOD S ∆∆∆--梯形1111=(13)31123=22222⨯+⨯-⨯⨯-⨯⨯ (2分) (3)∵直线OA 经过点00O (,)、)2,2(-A ,∴直线OA 的表达式为:y x =- 设对称轴与直线OA 相交于点E ,则11E (,-) ∵ (1,3)B - ∴2BE = (1分) 过点P 作PF//BE ,交直线OA 于点F设点)(22,2--t t t P 1t >(),则)(t t F -, ∴22PF t t =-- (1分)∵ PF//BE ∴15BE BQ PF PQ == ∴22125t t =-- ∴2120t t --= ∴3t =- (舍去)或4t = (1分) ∴)6,4(P (1分)23. 证明:(1)∵四边形ABCD 是平行四边形.∴AO CO =. ··········································································· (2分) ∵EA EC =,∴EO AC ⊥. ························································· (2分) ∴四边形ABCD 是菱形. ····························································· (2分)(2)∵四边形ABCD 是菱形,∴2BAD BAC ∠=∠,AD CD =. ······················································· (2分) ∵2AEC BAC ∠=∠,∴BAD AEC ∠=∠. ∵AB //CD ,∴BAD CDF ∠=∠.∴AEC CDF ∠=∠. ········································································· (1分) 又∵F F ∠=∠, ∴△FCD ∽△FAE . ············································· (1分) ∴CF CDAF AE=. ················································································· (1分) ∴AE CF AF CD ⋅=⋅.∴EC CF AF AD ⋅=⋅. ······································································ (1分)24.证明:(1)∵四边形ABCD 是平行四边形,∴AB =CD ,AB //CD . ···································································· (1分) ∵AB =AE ,∴AE =CD . ··································································· (1分) ∴四边形ACDE 是平行四边形.························································· (1分) ∴AC//DE .···················································································· (1分)∴. ··········································································· (1分) 1==AEABGF BG∴BG =GF . ··················································································· (1分) (2)∵AB =AE ,∴BE =2AE . ∵AC =2AB ,∴BE =AC .∵四边形ACDE 是平行四边形,∴AC=DE . ∴DE=BE . ··················································································· (1分) ∵点F 是DE 的中点,∴ DE=2EF . ∴AE= EF . ··················································································· (1分) ∵∠E =∠E ,∴△BEF ≌△DEA . ······················································· (1分) ∴∠EBF =∠EDA . ·········································································· (1分) ∵AC //DE ,∴∠GAH =∠EDA . ∴∠EBF =∠GAH .∵∠AHG=∠BHA ,∴△AHG ∽△BHA . ·············································· (1分)∴. ∴. ······································································ (1分) 25. 证明:(1)∵□ABCD ,CE=AB ,∴AB=CD=EC ;…………………………(1分)又∵∠DFC=∠EGC ,∠BCD=∠BCD ,∴△ECG ≌△DCF ;……(1分) ∴CG=CF .…………………………………………………………(1分)∵点F 为CE 的中点,∴CF=12CE ;………………………………(1分)∴CG=12CD ,即:CG=DG .……………………………………(1分)(2)延长AG 、BC 交于点H .∵△ECG ≌△DCF ,∴∠CEG=∠CDF .…………………………(1分) ∵□ABCD ,∴AD ∥BC ,∴∠DAH=∠H ,∠ADC=∠DCH .∴△ADG ≌△HCG ,∴AG=HG .…………………………………(1分) ∵AE ⊥BC ,∴∠AEC=90°,∴AG=HG=EG .………………(1分)∴∠CEG=∠H ,∴∠CDF=∠DAH .………………………………(1分) 又∵∠AGD=∠DGA ,∴△ADG ∽△DMG .…………………………(1分)∴MG DG DG AG=,∴2DG GM AG =⋅…………………………………(1分) 又∵CG=DG ,∴2CG GM AG =⋅.……………………………………(1分)26.解:(1)∵四边形ABCD 是菱形,∴AB =BC ,∠ACB =∠ACF . ……………(1分)∵∠B =60°,∴△ABC 是等边三角形.∴AB =AC ,∠B =∠BAC =∠ACB=∠ACF =60°. …………………………(1分) ∵∠BAC=∠EAC +∠BAE =60°,∠EAF=∠EAC +∠CAF =60°,∴∠BAE =∠CAF .………………………………………………………… (1分)∴△BAE ≌△CAF .…………………………………………………………(1分) ∴AE =AF .AHGHBH AH =BH GH AH ⋅=2∵∠EAF=60°,∴△AEF是等边三角形.………………………………(1分)(2)过点A作AH⊥BC,垂足为点H.在Rt△ABH中,∠AHB=90°,∠B=60°,AB=2,∴AH BH=1.在Rt△AEH中,∠AHE=90°,AH,EH=1x-,∴AE.………………………………………………………(1分)∵∠AEG+∠CEG=∠B+∠BAE,∠B=∠AEG=60°,∴∠CEG=∠BAE.∵∠B=∠GCE=60°,∴△BAE∽△CEG.………………………………(1分)∴BA AE CE=.∴2x=.………………………………………………………(1分)∴y=…………………………………………………(1分)(0 < x < 2).…………………………………………………………(1分)(3)过点E作EM⊥AC,垂足为点M.在Rt△CEM中,∠CME=90°,∠ECM=60°,CE=x,∴CM=12x.∵点O是线段AC的中点,∴CO=1.∴OM=112x -.∵EO=EG,EM⊥AC,∴GM=OM=112x -.………………………………(1分)∴CG=1x-.…………………………………………………………………(1分)∵△BAE∽△CEG.∴BA BE CE CG=.∴22xx-=.………………………………………………………………(1分)∴x=(负值舍去)…………………………………………………(1分)。

2021年中考数学一轮复习课时训练:第16课时 三角形与全等三角形

2021年中考数学一轮复习课时训练:第16课时  三角形与全等三角形

第16课时三角形与全等三角形【例题分析】【例1】已知三角形两边的长分别是3和7,则此三角形第三边的长可能是()A.1 B.2 C.8 D.11【例2】如图,∠ACD是△ABC的外角,CE平分∠ACD,若∠A=60°,∠B=40°,则∠ECD等于()A.40°B.45°C.50°D.55°【针对训练】1.(2020·宿迁中考)在△ABC中,AB=1,BC=5,下列选项中,可以作为AC长度的是()A.2 B.4 C.5 D.62.(2020·包头中考)如图,∠ACD是△ABC的外角,CE∥AB.若∠ACB=75°,∠ECD=50°,则∠A的度数为()A.50°B.55°C.70°D.75°3.△ABC的两条高的长度分别为4和12,若第三条高也为整数,则第三条高的长度是()A.4 B.4或5C.5或6 D.6【例3】如图,点A,D,C,F在同一条直线上,AD=CF,AB=DE,BC=EF.(1)求证:△ABC≌△DEF;(2)若∠A=55°,∠B=88°,求∠F的度数.【针对训练】4.(2020·黄石中考)如图,AB=AE,AB∥DE,∠DAB=70°,∠E=40°.(1)求∠DAE的度数;(2)若∠B=30°,求证:AD=BC.【考点训练】1.下列图形具有稳定性的是()2.下列长度的三条线段不能组成三角形的是()A.5,5,10 B.4,5,6C.4,4,4 D.3,4,53.(源于沪科八上P73)如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A B C D4.(2020·丹东中考)如图,CO是△ABC的角平分线,过点B作BD∥AC交CO延长线于点D,若∠A=45°,∠AOD=80°,则∠CBD的度数为()A.100°B.110°C.125°D.135°5.如图,已知∠ABC=∠DCB,添加以下条件,不能判定△ABC≌△DCB的是()A.∠A=∠D B.∠ACB=∠DBCC.AC=DB D.AB=DC6.(源于沪科八上P109)如图,在△ABC中,AD⊥BC于点D,BE⊥AC于点E,AD与BE相交于点F,若BF =AC,∠CAD=25°,则∠ABE的度数为()A.30°B.15°C.25°D.20°7.(2020·龙东中考)如图,Rt△ABC和Rt△EDF中,BC∥DF,在不添加任何辅助线的情况下,请你添加一个条件,使Rt△ABC和Rt△EDF全等.8.(2019·梧州中考)如图,已知在△ABC中,点D,E分别是AB,AC的中点,点F,G分别是AD,AE的中点,且FG=2 cm,则BC的长度是cm.9.(2020·江西中考)如图,AC平分∠DCB,CB=CD,DA的延长线交BC于点E,若∠EAC=49°,则∠BAE 的度数为.10.(2019·桂林中考)如图,AB=AD,BC=DC,点E在AC上.(1)求证:AC平分∠BAD;(2)求证:BE=DE.11.已知平行四边形ABCD中,CE平分∠BCD且交AD于点E,AF∥CE,且交BC于点F.(1)求证:△ABF≌△CDE;(2)如图,若∠1=65°,求∠B的大小.答案第16课时 三角形与全等三角形【例题分析】【例1】已知三角形两边的长分别是3和7,则此三角形第三边的长可能是( C ) A .1 B .2 C .8 D .11【解析】根据三角形的三边关系求解即可.设三角形第三边的长为x ,由题意得7-3<x <7+3,即4<x <10,由此可选出满足条件的正确选项.【例2】如图,∠ACD 是△ABC 的外角,CE 平分∠ACD ,若∠A =60°,∠B =40°,则∠ECD 等于( C ) A .40° B .45° C .50° D .55°【解析】根据三角形外角性质求出∠ACD 的度数,根据角的平分线定义即可求出∠ECD 的度数. ∵∠A =60°,∠B =40°,∴∠ACD =∠A +∠B =100°.∵CE 平分∠ACD ,∴∠ECD =12∠ACD =50°.【针对训练】1.(2020·宿迁中考)在△ABC 中,AB =1,BC =5 ,下列选项中,可以作为AC 长度的是( A ) A .2 B .4 C .5 D .62.(2020·包头中考)如图,∠ACD 是△ABC 的外角,CE ∥AB .若∠ACB =75°,∠ECD =50°,则∠A 的度数为( B )A .50°B .55°C .70°D .75° 3.(2015·百色中考)△ABC 的两条高的长度分别为4和12,若第三条高也为整数,则第三条高的长度是( B ) A .4 B .4或5 C .5或6 D .6【例3】如图,点A ,D ,C ,F 在同一条直线上,AD =CF ,AB =DE ,BC =EF . (1)求证:△ABC ≌△DEF ;(2)若∠A =55°,∠B =88°,求∠F 的度数. 【解析】(1)证出AC =DF ,结合已知条件根据“SSS ”就可以推出△ABC ≌△DEF ; (2)由(1)中结论利用全等三角形的性质得到∠F =∠ACB ,进而得出结果.【解答】(1)证明:∵AC = AD +DC ,DF =DC +CF , 且AD =CF ,∴AC =DF . 在△ABC 和△DEF 中, ∵⎩⎪⎨⎪⎧AB =DE ,BC =EF ,AC =DF ,∴△ABC ≌△DEF (SSS );(2)解:由(1)可知,∠F =∠ACB .∵∠A =55°,∠B =88°,∴∠ACB =180°-(∠A +∠B )=180°-(55°+88°)=37°. ∴∠F =∠ACB =37°.【针对训练】4.(2020·黄石中考)如图,AB =AE ,AB ∥DE ,∠DAB =70°,∠E =40°. (1)求∠DAE 的度数;(2)若∠B =30°,求证:AD =BC .(1)解∵AB ∥DE ,∠E =40°, ∴∠EAB =∠E =40°. ∵∠DAB =70°, ∴∠DAE =30°;(2)证明:在△ADE 和△BCA 中, ∵⎩⎪⎨⎪⎧∠DAE =∠B =30°,AE =BA ,∠E =∠BAC ,∴△ADE ≌△BCA (ASA ). ∴AD =BC . 【考点训练】1.下列图形具有稳定性的是( A )2.下列长度的三条线段不能组成三角形的是( A )A .5,5,10B .4,5,6C .4,4,4D .3,4,53.(源于沪科八上P 73)如图,过△ABC 的顶点A ,作BC 边上的高,以下作法正确的是( A )A B C D 4.(2020·丹东中考)如图,CO 是△ABC 的角平分线,过点B 作BD ∥AC 交CO 延长线于点D ,若∠A =45°,∠AOD =80°,则∠CBD 的度数为( B )A.100° B .110° C .125° D .135°5.(源于沪科八上P 102)如图,已知∠ABC =∠DCB ,添加以下条件,不能判定△ABC ≌△DCB 的是( C ) A .∠A =∠D B .∠ACB =∠DBC C .AC =DB D .AB =DC6.(源于沪科八上P 109)如图,在△ABC 中,AD ⊥BC 于点D ,BE ⊥AC 于点E ,AD 与BE 相交于点F ,若BF =AC ,∠CAD =25°,则∠ABE 的度数为( D )A .30°B .15°C .25°D .20°7.(2020·龙东中考)如图,Rt △ABC 和Rt △EDF 中,BC ∥DF ,在不添加任何辅助线的情况下,请你添加一个条件 AB =ED (BC =DF 或AC =EF 或AE =CF 等) ,使Rt △ABC 和Rt △EDF 全等.8.(2019·梧州中考)如图,已知在△ABC 中,点D ,E 分别是AB ,AC 的中点,点F ,G 分别是AD ,AE 的中点,且FG =2 cm ,则BC 的长度是 8 cm.9.(2020·江西中考)如图,AC 平分∠DCB ,CB =CD ,DA 的延长线交BC 于点E ,若∠EAC =49°,则∠BAE 的度数为 82° .10.(2019·桂林中考)如图,AB =AD ,BC =DC ,点E 在AC 上. (1)求证:AC 平分∠BAD ; (2)求证:BE =DE .证明:(1)在△ABC 和△ADC 中, ∵⎩⎪⎨⎪⎧AB =AD ,AC =AC ,BC =DC ,∴△ABC ≌△ADC (SSS ). ∴∠BAC =∠DAC , 即AC 平分∠BAD ;(2)由(1)知,∠BAE =∠DAE . 在△BAE 和△DAE 中, ∵⎩⎪⎨⎪⎧AB =AD ,∠BAE =∠DAE ,AE =AE ,∴△BAE ≌△DAE (SAS ). ∴BE =DE .11.已知平行四边形ABCD 中,CE 平分∠BCD 且交AD 于点E ,AF ∥CE ,且交BC 于点F . (1)求证:△ABF ≌△CDE ;(2)如图,若∠1=65°,求∠B 的大小.(1)证明:∵四边形ABCD 是平行四边形, ∴AB =CD ,AD ∥BC ,∠B =∠D .∴∠1=∠ECB .∵AF ∥CE ,∴∠AFB =∠ECB . ∴∠AFB =∠1.在△ABF 和△CDE 中, ∵⎩⎪⎨⎪⎧∠B =∠D ,∠AFB =∠1,AB =CD ,∴△ABF ≌△CDE (AAS );(2)解:由(1)知,∠1=∠ECB . ∵CE 平分∠BCD ,∴∠DCE =∠ECB . ∴∠1=∠DCE =65°.∴∠B =∠D =180°-2×65°=50°.。

中考数学专题16 函数与其他实际运用问题【考点精讲】(解析版)

中考数学专题16  函数与其他实际运用问题【考点精讲】(解析版)

题型一:拱桥类问题【例1】(2021·贵州)甲秀楼是贵阳市一张靓丽的名片.如图①,甲秀楼的桥拱截面OBA 可视为抛物线的一部分,在某一时刻,桥拱内的水面宽8m OA =,桥拱顶点B 到水面的距离是4m .(1)按如图②所示建立平面直角坐标系,求桥拱部分抛物线的函数表达式;(2)一只宽为1.2m 的打捞船径直向桥驶来,当船驶到桥拱下方且距O 点0.4m 时,桥下水位刚好在OA 处.有一名身高1.68m 的工人站立在打捞船正中间清理垃圾,他的头顶是否会触碰到桥拱,请说明理由(假设船底与水面齐平);(3)如图③,桥拱所在的函数图象是抛物线()20y ax bx c a =++≠,该抛物线在x 轴下方部分与桥拱OBA 在平静水面中的倒影组成一个新函数图象.将新函数图象向右平移()0m m >个单位长度,平移后的函数图象在89x ≤≤时,y 的值随x 值的增大而减小,结合函数图象,求m 的取值范围.【答案】(1)y =14-x 2+2x (0≤x ≤8);(2)他的头顶不会触碰到桥拱,理由见详解;(3)5≤m ≤8 【分析】(1)设二次函数的解析式为:y =a (x -8)x ,根据待定系数法,即可求解;专题16 函数与其他实际运用问题(2)把:x =1,代入y =14-x 2+2x ,得到对应的y 值,进而即可得到结论;(3)根据题意得到新函数解析式,并画出函数图像,进而即可得到m 的范围. 【详解】(1)根据题意得:A (8,0),B (4,4), 设二次函数的解析式为:y =a (x -8)x ,把(4,4)代入上式,得:4=a ×(4-8)×4,解得:14a =-,∴二次函数的解析式为:y =14-(x -8)x =14-x 2+2x (0≤x ≤8); (2)由题意得:x =0.4+1.2÷2=1,代入y =14-x 2+2x ,得y =14-×12+2×1=74>1.68, 答:他的头顶不会触碰到桥拱;(3)由题意得:当0≤x ≤8时,新函数表达式为:y =14x 2-2x , 当x <0或x >8时,新函数表达式为:y =-14x 2+2x , ∴新函数表达式为:2212(08)412(08)4x x x y x x x x ⎧-≤≤⎪⎪=⎨⎪-+⎪⎩或,∵将新函数图象向右平移()0m m >个单位长度,∴O '(m ,0),A '(m +8,0),m +4,-4),如图所示,根据图像可知:当m +4≥9且m ≤8时,即:5≤m ≤8时,平移后的函数图象在89x ≤≤时,y 的值随x 值的增大而减小.题型二:实际运用类问题【例2】(2021·湖北)如今我国的大棚(如图1)种植技术已十分成熟.小明家的菜地上有一个长为16米的蔬菜大棚,其横截面顶部为抛物线型,大棚的一端固定在离地面高1米的墙体A 处,另一端固定在离地面高2米的墙体B 处,现对其横截面建立如图2所示的平面直角坐标系.已知大棚上某处离地面的高度y (米)与其离墙体A 的水平距离x (米)之间的关系满足216y x bx c =-++,现测得A ,B 两墙体之间的水平距离为6米.图2(1)直接写出b ,c 的值;(2)求大棚的最高处到地面的距离;(3)小明的爸爸欲在大棚内种植黄瓜,需搭建高为3724米的竹竿支架若干,已知大棚内可以搭建支架的土地平均每平方米需要4根竹竿,则共需要准备多少根竹竿? 【答案】(1)76b =,1c =;(2)7324米;(3)352【分析】(1)根据题意,可直接写出点A 点B 坐标,代入216y x bx c =-++,求出b 、c 即可;(2)根据(1)中函数解析式直接求顶点坐标即可;(3根据2173716624y x x =-++=,先求得大棚内可以搭建支架的土地的宽,再求得需搭建支架的面积,最后根据每平方米需要4根竹竿计算即可. 【详解】解:(1)由题意知点A 坐标为(0)1,,点B 坐标为(6)2,, 将A 、B 坐标代入216y x bx c =-++得:21=12666c b c ⎧⎪⎨=-⨯++⎪⎩解得:761b c ⎧=⎪⎨⎪=⎩, 故76b =,1c =;(2)由221717731666224y x x x ⎛⎫=-++=--+ ⎪⎝⎭,可得当72x =时,y 有最大值7324, 即大棚最高处到地面的距离为7324米; (3)由2173716624y x x =-++=,解得112x =,2132x =,又因为06x ≤≤,可知大棚内可以搭建支架的土地的宽为111622-=(米), 又大棚的长为16米,故需要搭建支架部分的土地面积为1116882⨯=(平方米) 共需要884352⨯=(根)竹竿. 题型三:体育活动类问题【例3】(2021·广西)2022年北京冬奥会即将召开,激起了人们对冰雪运动的极大热情.如图是某跳台滑雪训练场的横截面示意图,取某一位置的水平线为轴,过跳台终点作水平线的垂线为轴,建立平面直角坐标系.图中的抛物线近似表示滑雪场地上的一座小山坡,某运动员从点正上方米处的点滑出,滑出后沿一段抛物线运动.(1)当运动员运动到离处的水平距离为米时,离水平线的高度为米,求抛物线的函数解析式(不要求写出自变量的取值范围);(2)在(1)的条件下,当运动员运动水平线的水平距离为多少米时,运动员与小山坡的竖直距离为米?x A y 2117C :1126y x x =-++O 4A 221:8C y x bx c =-++A 482C x 1(3)当运动员运动到坡顶正上方,且与坡顶距离超过米时,求的取值范围. 【答案】(1);(2)12米;(3).【分析】(1)根据题意可知:点A (0,4)点B (4,8),利用待定系数法代入抛物线即可求解;(2)高度差为1米可得可得方程,由此即可求解; (3)由抛物线可知坡顶坐标为 ,此时即当时,运动员运动到坡顶正上方,若与坡顶距离超过米,即,由此即可求出b的取值范围. 【详解】解:(1)根据题意可知:点A (0,4),点B (4,8)代入抛物线得,, 解得:,∴抛物线的函数解析式;(2)∵运动员与小山坡的竖直距离为米, ∴,解得:(不合题意,舍去), ,故当运动员运动水平线的水平距离为12米时,运动员与小山坡的竖直距离为米; (3)∵点A (0,4), ∴抛物线,∵抛物线, ∴坡顶坐标为 , ∵当运动员运动到坡顶正上方,且与坡顶距离超过米时,3b 213482y x x =-++3524b ≥221:8C y x bx c =-++21=1C C -2117C :1126y x x =-++61(7,)127x =32161773812y b c =-⨯++≥+221:8C y x bx c =-++2=4144=88c b c ⎧⎪⎨-⨯++⎪⎩=43=2c b ⎧⎪⎨⎪⎩2C 213482y x x =-++1221317(4)(1)182126x x x x -++--++=14x =-212x =1221:48C y x bx =-++22117161C :1=(7)1261212y x x x =-++--+61(7,)123∴,解得:.1.(2021·浙江)如图1是一座抛物线型拱桥侧面示意图.水面宽AB与桥长CD均为24m,在距离D点6米的E处,测得桥面到桥拱的距离EF为1.5m,以桥拱顶点O为原点,桥面为x轴建立平面直角坐标系.(1)求桥拱项部O离水面的距离.(2)如图2,桥面上方有3根高度均为4m的支柱CG,OH,DI,过相邻两根支柱顶端的钢缆呈形状相同的抛物线,其最低点到桥面距离为1m.①求出其中一条钢缆抛物线的函数表达式.②为庆祝节日,在钢缆和桥拱之间竖直装饰若干条彩带,求彩带长度的最小值.【答案】(1)6m;(2)①;②2m【分析】(1)设,由题意得,求出抛物线图像解析式,求当x=12或x=-12时y1的值即可;(2)①由题意得右边的抛物线顶点为,设,将点H代入求值即可;21617743812y b=-⨯++≥+3524b≥21'(6)112y x=++211y a x=(6, 1.5)F-(6,1)222(6)1y a x=-+提分训练②设彩带长度为h ,则,代入求值即可. 【详解】解(1)设,由题意得,, , , 当时,, 桥拱顶部离水面高度为6m .(2)①由题意得右边的抛物线顶点为,设,,,, , (左边抛物线表达式:) ②设彩带长度为h , 则, 当时,,答:彩带长度的最小值是2m .2.(2021·河北)下图是某同学正在设计的一动画示意图,轴上依次有,,三个点,且,在上方有五个台阶(各拐角均为),每个台阶的高、宽分别是1和1.5,台阶到轴距离.从点处向右上方沿抛物线:发出一个带光的点.12h y y =-211y a x =(6, 1.5)F -11.536a ∴-=1124a ∴=-21124y x ∴=-∴12x =21112624y =-⨯=-∴(6,1)∴222(6)1y a x =-+(0,4)H 224(06)1a ∴=-+2112a ∴=221(6)112y x ∴=-+21'(6)112y x =++22221111(6)1()412248h y y x x x x =-=-+--=-+∴4x =2min h =x A O N 2AO =ON 15~T T 90︒1T x 10OK =A L 2412y x x =-++P(1)求点的横坐标,且在图中补画出轴,并直接指出点会落在哪个台阶上; (2)当点落到台阶上后立即弹起,又形成了另一条与形状相同的抛物线,且最大高度为11,求的解析式,并说明其对称轴是否与台阶有交点;(3)在轴上从左到右有两点,,且,从点向上作轴,且.在沿轴左右平移时,必须保证(2)中沿抛物线下落的点能落在边(包括端点)上,则点横坐标的最大值比最小值大多少? (注:(2)中不必写的取值范围)【答案】(1),见解析,点会落在的台阶上;(2),其对称轴与台阶有交点;(3. 【分析】(1)二次函数与坐标轴的交点坐标可以直接算出,根据点的坐标可以确定轴,利用函数的性质可以判断落在那个台阶上;(2)利用二次函数图象的平移来求解抛物线,再根据函数的对称轴的值来判断是否与台阶有交点;(3)抓住二次函数图象不变,是在左右平移,要求点横坐标的最大值比最小值大多少,利用临界点法,可以确定什么时候横坐标最大,什么时候横坐标最小,从而得解. 【详解】解:(1)当,, 解得:, 在左侧,,关于对称, A y P P L C C 5T x D E 1DE =E EB x ⊥2BE =BDE x C P BD B x (2,0)A -P 4T 2(7)11y x =--+5T 2-A y C 5T BDE B 0y =24120x x -++=2,6x x =-=A (2,0)A ∴-2412y x x =-++ 22bx a=-=轴与重合,如下图:由题意在坐标轴上标出相关信息, 当时,, 解得:, ,∴点会落在的台阶上,坐标为,(2)设将抛物线,向下平移5个单位,向右平移的单位后与抛物线重合,则抛物线的解析式为:,由(1)知,抛物线过,将代入,,解得:(舍去,因为是对称轴左边的部分过), 抛物线:,关于,且, 其对称轴与台阶有交点.(3)由题意知,当沿轴左右平移,恰使抛物线下落的点过点时,此时点的横坐标值最大;当,,解得:(取舍), 故点的横坐标最大值为:y ∴OK 7y =24127x x -++=1,5x x =-=4.556<< P 4T (5,7)P L a C C 2(2)11y x a =---+C (5,7)P (5,7)P 2(2)11y x a =---+27(3)11a =--+5,1a a ==(5,7)P C 2(7)11y x =--+2(7)11y x =--+ 72bx a=-=677.5<<∴5T BDE x C P D B 0y =2(7)110x --+=1277x x ==B 8当沿轴左右平移,恰使抛物线下落的点过点时,此时点的横坐标值最小; 当,, 解得:(舍去), 故点的横坐标最小值为:,则点横坐标的最大值比最小值大:,.3.(2021·黑龙江大庆市·中考真题)如图①是甲,乙两个圆柱形水槽的轴截面示意图,乙槽中有一圆柱形实心铁块立放其中(圆柱形实心铁块的下底面完全落在乙槽底面上),现将甲槽中的水匀速注入乙槽,甲,乙两个水槽中水的深度()cm y 与注水时间()min x 之间的关系如图②所示,根据图象解答下列问题:(1)图②中折线EDC 表示_____________槽中水的深度与注入时间之间的关系;线段AB 表示_____________槽中水的深度与注入时间之间的关系;铁块的高度为_____________cm . (2)注入多长时间,甲、乙两个水槽中水的深度相同?(请写出必要的计算过程) 【答案】(1)乙,甲,16;(2)2分钟 【分析】(1)根据图象分析可知水深减少的图象为甲槽的,水深增加的为乙槽的,并水深16cm 之后增加的变慢,即可得到铁块的高度;(2)利用待定系数法求出两个水槽中水深与时间的解析式,即可求解. 【详解】解:(1)图②中折线EDC 表示乙槽中水的深度与注入时间之间的关系; 线段AB 表示甲槽中水的深度与放出时间之间的关系; 铁块的高度为16cm .BDE x C P B B 2y =2(7)112x --+=1210,4x x ==B 10B 81022(2)设甲槽中水的深度为111y k x b =+,把()0,14A ,()7,0B 代入,可得 1111470b k b =⎧⎨+=⎩,解得11214k b =-⎧⎨=⎩, ∴甲槽中水的深度为1214y x =-+,根据图象可知乙槽和甲槽水深相同时,在DE 段,设乙槽DE 段水的深度为222y k x b =+,把()0,4E ,()4,16D 代入,可得 2224416b k b =⎧⎨+=⎩,解得2234k b =⎧⎨=⎩, ∴甲槽中水的深度为234y x =+,∴甲、乙两个水槽中水的深度相同时,21434x x -+=+,解得2x =, 故注入2分钟时,甲、乙两个水槽中水的深度相同。

中考一轮复习 数学专题16 相似三角形(学生版)

中考一轮复习 数学专题16 相似三角形(学生版)

专题16 相似三角形一、单选题1.(2022·甘肃兰州)已知ABC DEF∽△△,12ABDE=,若2BC=,则EF=()A.4B.6C.8D.162.(2022·广西梧州)如图,以点O为位似中心,作四边形ABCD的位似图形''''A B C D﹐已知'1 3OAOA,若四边形ABCD的面积是2,则四边形''''A B C D的面积是()A.4B.6C.16D.183.(2022·浙江丽水)如图,五线谱是由等距离、等长度的五条平行横线组成的,同一条直线上的三个点A,B,C都在横线上.若线段3AB=,则线段BC的长是()A.23B.1C.32D.24.(2021·浙江温州)如图,图形甲与图形乙是位似图形,O是位似中心,位似比为2:3,点A,B的对应点分别为点A',B'.若6AB=,则A B''的长为()A.8B.9C.10D.155.(2020·河北)在如图所示的网格中,以点O 为位似中心,四边形ABCD 的位似图形是( )A .四边形NPMQB .四边形NPMRC .四边形NHMQD .四边形NHMR6.(2020·甘肃金昌)生活中到处可见黄金分割的美,如图,在设计人体雕像时,使雕像的腰部以下a 与全身b 的高度比值接近0.618,可以增加视觉美感,若图中b 为2米,则a 约为( )A .1.24米B .1.38米C .1.42米D .1.62米7.(2020·广西贵港)如图,在ABC 中,点D 在AB 边上,若3BC =,2BD =,且BCD A ∠=∠,则线段AD 的长为( )A .2B .52C .3D .928.(2020·湖南永州)如图,在ABC 中,2//,3AE EF BC EB =,四边形BCFE 的面积为21,则ABC 的面积是( )A .913B .25C .35D .639.(2020·四川成都)如图,直线123////l l l ,直线AC 和DF 被1l ,2l ,3l 所截,5AB =,6BC =,4EF =,则DE 的长为( )A .2B .3C .4D .10310.(2020·重庆)如图,在平面直角坐标系中,ABC 的顶点坐标分别是(1,2)A ,(1,1)B ,(3,1)C ,以原点为位似中心,在原点的同侧画DEF ,使DEF 与ABC 成位似图形,且相似比为2:1,则线段DF 的长度为( )A B .2 C .4 D .11.(2020·重庆)如图,△ABC 与△DEF 位似,点O 为位似中心.已知OA △OD =1△2,则△ABC 与△DEF 的面积比为( )A .1△2B .1△3C .1△4D .1△512.(2020·浙江嘉兴)如图,在直角坐标系中,△OAB 的顶点为O (0,0),A (4,3),B (3,0).以点O 为位似中心,在第三象限内作与△OAB 的位似比为13的位似图形△OCD ,则点C 坐标( )A .(﹣1,﹣1)B .(﹣43,﹣1)C .(﹣1,﹣43)D .(﹣2,﹣1)13.(2020·贵州遵义)如图,△ABO 的顶点A 在函数y =kx(x >0)的图象上,△ABO =90°,过AO 边的三等分点M 、N 分别作x 轴的平行线交AB 于点P 、Q .若四边形MNQP 的面积为3,则k 的值为( )A .9B .12C .15D .1814.(2021·辽宁沈阳)如图,ABC 与111A B C △位似,位似中心是点O ,若1:1:2OA OA ,则ABC 与111A B C △的周长比是( )A .1:2B .1:3C .1:4D .15.(2021·四川巴中)如图,AB C 中,点D 、E 分别在AB 、AC 上,且12AD AE DBEC,下列结论正确的是( )A .DE :BC =1:2B .ADE 与ABC 的面积比为1:3 C .ADE 与ABC 的周长比为1:2D .DE //BC16.(2021·湖南湘西)如图,在ECD ∆中,90C ∠=︒,AB EC ⊥于点B , 1.2AB =, 1.6EB =,12.4BC =,则CD 的长是( )A .14B .12.4C .10.5D .9.317.(2021·山东济宁)如图,已知ABC .(1)以点A 为圆心,以适当长为半径画弧,交AC 于点M ,交AB 于点N .(2)分别以M ,N 为圆心,以大于12MN 的长为半径画弧,两弧在BAC ∠的内部相交于点P .(3)作射线AP 交BC 于点D . (4)分别以A ,D 为圆心,以大于12AD 的长为半径画弧,两弧相交于G ,H 两点. (5)作直线GH ,交AC ,AB 分别于点E ,F . 依据以上作图,若2AF =,3CE =,32BD =,则CD 的长是( )A .510B .1C .94D .418.(2022·广西)已知△ABC 与△A 1B 1C 1是位似图形,位似比是1:3,则△ABC 与△A 1B 1C 1的面积比( ) A .1 :3B .1:6C .1:9D .3:119.(2022·黑龙江哈尔滨)如图,,,AB CD AC BD ∥相交于点E ,1,2,3AE EC DE ===,则BD 的长为( )A .32B .4C .92D .620.(2022·山东临沂)如图,在ABC 中,∥DE BC ,23AD DB =,若6AC =,则EC =( )A .65B .125C .185D .24521.(2022·四川雅安)如图,在△AB C 中,D ,E 分别是AB 和AC 上的点,DE △BC ,若AD BD=21,那么DEBC =( )A .49B .12C .13D .2322.(2022·江苏盐城)“跳眼法”是指用手指和眼睛估测距离的方法 步骤:第一步:水平举起右臂,大拇指紧直向上,大臂与身体垂直;第二步:闭上左眼,调整位置,使得右眼、大拇指、被测物体在一条直线上;第三步:闭上右眼,睁开左眼,此时看到被测物体出现在大拇指左侧,与大拇指指向的位置有一段横向距离,参照被测物体的大小,估算横向距离的长度;第四步:将横向距离乘以10(人的手臂长度与眼距的比值一般为10),得到的值约为被测物体离观测,点的距离值.如图是用“跳眼法”估测前方一辆汽车到观测点距离的示意图,该汽车的长度大约为4米,则汽车到观测点的距离约为( )A .40米B .60米C .80米D .100米23.(2022·贵州贵阳)如图,在ABC 中,D 是AB 边上的点,B ACD ∠=∠,:1:2AC AB =,则ADC 与ACB△的周长比是( )A.B .1:2C .1:3D .1:424.(2022·江苏连云港)如图,将矩形ABCD 沿着GE 、EC 、GF 翻折,使得点A 、B 、D 恰好都落在点O 处,且点G 、O 、C 在同一条直线上,同时点E 、O 、F 在另一条直线上.小炜同学得出以下结论:△GF △EC ;△AB =AD ;△GE ;△OC ;△△COF △△CEG .其中正确的是( )A .△△△B .△△△C .△△△D .△△△25.(2022·重庆)如图,ABC 与DEF 位似,点O 为位似中心,相似比为2:3.若ABC 的周长为4,则DEF 的周长是( )A .4B .6C .9D .16 本号*资料皆来源于微信:数学26.(2021·山东淄博)如图,在Rt ABC 中,90ACB CE ∠=︒,是斜边AB 上的中线,过点E 作EF AB ⊥交AC 于点F .若4,BC AEF =△的面积为5,则sin CEF ∠的值为( )A .35B C .45D 27.(2021·吉林长春)如图,在平面直角坐标系中,点A 、B 在函数(0,0)k y k x x=>>的图象上,x 过点A 作x 轴的垂线,与函数(0)ky x x=->的图象交于点C ,连结BC 交x 轴于点D .若点A 的横坐标为1,3BC BD =,则点B 的横坐标为( )A .32B .2C .52D .328.(2021·黑龙江黑龙江)如图,平行四边形ABFC 的对角线AF BC 、相交于点E ,点O 为AC 的中点,连接BO 并延长,交FC 的延长线于点D ,交AF 于点G ,连接AD 、OE ,若平行四边形ABFC 的面积为48,则EOG S ∆的面积为( )A .4B .5C .2D .329.(2021·黑龙江)如图,在正方形ABCD 中,对角线AC 与BD 相交于点O ,点E 在BC 的延长线上,连接DE ,点F 是DE 的中点,连接OF 交CD 于点G ,连接CF ,若4CE =,6OF =.则下列结论:△2GF =;△OD =;△1tan 2CDE ∠=;△90ODF OCF ∠=∠=︒;△点D 到CF .其中正确的结论是( )A .△△△△B .△△△△C .△△△△D .△△△△30.(2021·海南)如图,在菱形ABCD 中,点E F 、分别是边BC CD 、的中点,连接AE AF EF 、、.若菱形ABCD 的面积为8,则AEF 的面积为( ) 本号资料*皆来源于微信:数学A .2B .3C .4D .531.(2021·广西来宾)如图,矩形纸片ABCD ,:AD AB =,点E ,F 分别在AD ,BC 上,把纸片如图沿EF 折叠,点A ,B 的对应点分别为A ',B ',连接AA '并延长交线段CD 于点G ,则EFAG的值为( )A B .23C .12D 32.(2021·江苏连云港)如图,ABC 中,BD AB ⊥,BD 、AC 相交于点D ,47AD AC =,2AB =,150ABC ∠=︒,则DBC △的面积是( )A B C D 33.(2021·浙江绍兴)如图,Rt ABC 中,90BAC ∠=︒,1cos 4B =,点D 是边BC 的中点,以AD 为底边在其右侧作等腰三角形ADE ,使ADE B ∠=∠,连结CE ,则CE AD的值为( )A .32 B C D .2二、填空题34.(2022·湖南邵阳)如图,在ABC 中,点D 在AB 边上,点E 在AC 边上,请添加一个条件_________,使ADE ABC △△∽.35.(2021·贵州黔西)如图,A B C '''与ABC 是位似图形,点O 为位似中心,若OA A A '=',则A B C '''与ABC 的面积比为__.36.(2020·辽宁盘锦)AOB 三个顶点的坐标分别为()5,0A ,()0,0O ,()3,6B ,以原点O 为位似中心,相似比为23,将AOB 缩小,则点B 的对应点'B 的坐标是__________.37.(2020·辽宁锦州)如图,在ABC 中,D 是AB 中点,//DE BC ,若ADE 的周长为6,则ABC 的周长为______.38.(2020·湖南娄底)若1()2b d a c a c ==≠,则b d a c-=-________. 39.(2020·湖南湘潭)若37y x =,则x y x -=________.40.(2020·贵州黔东南)如图,矩形ABC D 中,AB =2,BC ,E 为CD 的中点,连接AE 、BD 交于点P ,过点P 作PQ △BC 于点Q ,则PQ =_____.41.(2021·的矩形叫做黄金矩形.黄金矩形给我们以协调、匀称的美感,世界各国许多著名的建筑,为取得最佳的视觉效果,都采用了黄金矩形的设计.已知四边形ABCD 是黄金矩形,边AB 1,则该矩形的周长为 __________________.42.(2021·贵州黔东南)已知在平面直角坐标系中,△AOB 的顶点分别为点A (2,1)、点B (2,0)、点O (0,0),若以原点O 为位似中心,相似比为2,将△AOB 放大,则点A 的对应点的坐标为________. 43.(2021·吉林)如图,为了测量山坡的护坡石坝高,把一根长为4.5m 的竹竿AC 斜靠在石坝旁,量出竿上AD 长为1m 时,它离地面的高度DE 为0.6m ,则坝高CF 为__________m .44.(2021·内蒙古)如图,在Rt ABC 中,90ACB ∠=︒,过点B 作BD CB ⊥,垂足为B ,且3BD =,连接CD,与AB相交于点M,过点M作MN CB⊥,垂足为N.若2AC=,则MN的长为__________.45.(2022·广西)古希腊数学家泰勒斯曾利用立杆测影的方法,在金字塔影子的顶部直立一根木杆,借助太阳光测金字塔的高度.如图,木杆EF长2米,它的影长FD是4米,同一时刻测得OA是268米,则金字塔的高度BO是________米.46.(2022·浙江杭州)某项目学习小组为了测量直立在水平地面上的旗杆AB的高度,把标杆DE直立在同一水平地面上(如图).同一时刻测得旗杆和标杆在太阳光下的影长分别是BC=8.72m,EF=2.18m.已知B,C,E,F在同一直线上,AB△BC,DE△EF,DE=2.47m,则AB=_________m.47.(2022·北京)如图,在矩形ABCD中,若13,5,4AFAB ACFC===,则AE的长为_______.48.(2022·上海)如图,在△AB C中,△A=30°,△B=90°,D为A B中点,E在线段AC上,AD DEAB BC=,则AEAC=_____.49.(2022·广西)数学兴趣小组通过测量旗杆的影长来求旗杆的高度,他们在某一时刻测得高为2米的标杆影长为1.2米,此时旗杆影长为7.2米,则旗杆的高度为______米.50.(2022·黑龙江)如图,在平面直角坐标系中,点1A ,2A ,3A ,4A ……在x 轴上且11OA =,212OA OA =,322OA OA =,432OA OA =……按此规律,过点1A ,2A ,3A ,4A ……作x 轴的垂线分别与直线y =交于点1B ,2B ,3B ,4B ……记11OA B ,22OA B △,33OA B ,44OA B ……的面积分别为1S ,2S ,3S ,4S ……,则2022S =______.51.(2022·湖北鄂州)如图,在边长为6的等边△AB C 中,D 、E 分别为边BC 、AC 上的点,AD 与BE 相交于点P ,若BD =CE =2,则△ABP 的周长为 _____.52.(2022·辽宁沈阳)如图,将矩形纸片ABCD 折叠,折痕为MN ,点M ,N 分别在边AD ,BC 上,点C ,D 的对应点分别在E ,F 且点F 在矩形内部,MF 的延长线交BC 与点G ,EF 交边BC 于点H .2EN =,4AB =,当点H 为GN 三等分点时,MD 的长为______.53.(2022·湖南常德)如图,已知F 是ABC 内的一点,FD BC ∥,FE AB ∥,若BDFE 的面积为2,13BD BA =,14BE BC =,则ABC 的面积是________.54.(2021·四川内江)如图,矩形ABCD 中,6AB =,8BC =,对角线BD 的垂直平分线EF 交AD 于点E 、交BC 于点F ,则线段EF 的长为 __.55.(2021·甘肃兰州)如图,在矩形ABCD 中,1AB =,3AD =.△以点A 为圆心,以不大于AB 长为半径作弧,分别交边AD ,AB 于点E ,F ,再分别以点E ,F 为圆心,以大于12EF 长为半径作弧,两弧交于点P ,作射线AP 分别交BD ,BC 于点O ,Q ;△分别以点C ,Q 为圆心,以大于12CQ 长为半径作弧,两弧交于点M ,N ,作直线MN 交AP 于点G ,则OG 长为______.56.(2021·辽宁营口)如图,矩形ABCD 中,5AB =,4BC =,点E 是AB 边上一点,3AE =,连接DE ,点F 是BC 延长线上一点,连接AF ,且12F EDC ∠=∠,则CF =_________.57.(2021·江苏无锡)如图,在Rt ABC △中,90BAC ∠=︒,AB =6AC =,点E 在线段AC 上,且1AE =,D 是线段BC 上的一点,连接DE ,将四边形ABDE 沿直线DE 翻折,得到四边形FGDE ,当点G 恰好落在线段AC 上时,AF =________.58.(2020·四川眉山)如图,等腰ABC 中,10AB AC ==,边AC 的垂直平分线交BC 于点D ,交AC 于点E .若ABD △的周长为26,则DE 的长为________.59.(2020·四川宜宾)在直角三角形AB C 中,90,ACB D ︒∠=是AB 的中点,BE 平分ABC ∠交AC 于点E 连接CD 交BE 于点O ,若8,6AC BC ==,则OE 的长是________.60.(2020·山东潍坊)如图,矩形ABCD 中,点G ,E 分别在边,BC DC 上,连接,,AG EG AE ,将ABG 和ECG分别沿,AG EG 折叠,使点B ,C 恰好落在AE 上的同一点,记为点F .若3,4CE CG ==,则sin DAE ∠=_______.三、解答题61.(2021·江苏南通)如图,利用标杆DE 测量楼高,点A ,D ,B 在同一直线上,DE AC ⊥,BC AC ⊥,垂足分别为E ,C .若测得1m AE =, 1.5m DE =,5m CE =,楼高BC 是多少?62.(2021·广西贵港)尺规作图(只保留作图痕迹,不要求写出作法),如图,已知ABC ,且AB >A C . 本号资料皆来源于微信公众#号:数学(1)在AB 边上求作点D ,使DB =DC ;(2)在AC 边上求作点E ,使ADE △AC B .63.(2021·广西玉林)如图,在ABC 中,D 在AC 上,//DE BC ,//DF AB .(1)求证:DFC △△AED ;(2)若13CD AC =,求DFC AED S S △△的值.64.(2021·湖北黄冈)如图,在ABC 和DEC 中,A D ∠=∠,BCE ACD ∠=∠.(1)求证:ABC DEC △△;(2)若:4:9ABC DEC S S =,6BC =,求EC 的长.65.(2020·湖北省直辖县级单位)在平行四边形ABCD中,E为AD的中点,请仅用无刻度的直尺完成下列画图,不写画法,保留画图痕迹.(1)如图1,在BC上找出一点M,使点M是BC的中点;(2)如图2,在BD上找出一点N,使点N是BD的一个三等分点.66.(2022·上海)如图所示,在等腰三角形AB C中,AB=AC,点E,F在线段BC上,点Q在线段AB上,且CF=BE,AE²=AQ·AB求证:(1)△CAE=△BAF;(2)CF·FQ=AF·BQ67.(2022·吉林长春)如图△、图△、图△均是55⨯的正方形网格,每个小正方形的边长均为1,其顶点称为格点,ABC 的顶点均在格点上.只用无刻度的直尺,在给定的网格中,按下列要求作图,保留作图痕迹.(1)网格中ABC 的形状是________;(2)在图△中确定一点D ,连结DB 、DC ,使DBC △与ABC 全等:(3)在图△中ABC 的边BC 上确定一点E ,连结AE ,使ABE CBA △∽△:(4)在图△中ABC 的边AB 上确定一点P ,在边BC 上确定一点Q ,连结PQ ,使PBQ ABC △∽△,且相似比为1:2.68.(2022·湖南常德)在四边形ABCD 中,BAD ∠的平分线AF 交BC 于F ,延长AB 到E 使BE FC =,G 是AF 的中点,GE 交BC 于O ,连接GD .(1)当四边形ABCD 是矩形时,如图,求证:△GE GD =;△BO GD GO FC ⋅=⋅.(2)当四边形ABCD 是平行四边形时,如图,(1)中的结论都成立,请给出结论△的证明.69.(2022·湖北黄冈)问题背景:一次数学综合实践活动课上,小慧发现并证明了关于三角形角平分线的一个结论.如图1,已知AD 是△ABC 的角平分线,可证AB AC =BD CD.小慧的证明思路是:如图2,过点C 作CE △AB ,交AD 的延长线于点E ,构造相似三角形来证明AB AC =BD CD .(1)尝试证明:请参照小慧提供的思路,利用图2证明AB AC =BD CD; (2)应用拓展:如图3,在Rt △AB C 中,△BAC =90°,D 是边BC 上一点.连接AD ,将△ACD 沿AD 所在直线折叠,点C 恰好落在边AB 上的E 点处.△若AC =1,AB =2,求DE 的长;△若BC =m ,△AED =α,求DE 的长(用含m ,α的式子表示).70.(2022·山东泰安)如图,矩形ABCD 中,点E 在DC 上,DE BE =,AC 与BD 相交于点O .BE 与AC 相交于点F .(1)若BE 平分CBD ∠,求证:BF AC ⊥;(2)找出图中与OBF 相似的三角形,并说明理由;(3)若3OF =,2EF =,求DE 的长度.71.(2022·四川自贡)如图,用四根木条钉成矩形框ABCD ,把边BC 固定在地面上,向右推动矩形框,矩形框的形状会发生改变(四边形具有不稳定性).(1)通过观察分析,我们发现图中线段存在等量关系,如线段EB 由AB 旋转得到,所以EB AB =.我们还可以得到FC = , EF = ;(2)进一步观察,我们还会发现EF △AD ,请证明这一结论;(3)已知BC 30,DC 80==cm cm ,若BE 恰好经过原矩形DC 边的中点H ,求EF 与BC 之间的距离.72.(2021·四川雅安)如图,OAD △为等腰直角三角形,延长OA 至点B 使OB OD =,其对角线AC ,BD 交于点E .(1)求证:OAF DAB △≌△;(2)求DF AF的值.73.(2021·广西贺州)如图,在Rt ABC 中,90C ∠=︒,D 是AB 上的一点,以AD 为直径的O 与BC 相切于点E ,连接AE ,DE .(1)求证:AE 平分BAC ∠;(2)若30B ∠=︒,求CE DE的值.74.(2021·湖南永州)如图1,AB 是O 的直径,点E 是O 上一动点,且不与A ,B 两点重合,EAB ∠的平分线交O 于点C ,过点C 作CD AE ⊥,交AE 的延长线于点D .(1)求证:CD 是O 的切线;(2)求证:22AC AD AO =⋅;(3)如图2,原有条件不变,连接,BE BC ,延长AB 至点M ,EBM ∠的平分线交AC 的延长线于点P ,CAB ∠的平分线交CBM ∠的平分线于点Q .求证:无论点E 如何运动,总有P Q ∠=∠.75.(2021·湖南益阳)如图,在等腰锐角三角形ABC 中,AB AC =,过点B 作BD AC ⊥于D ,延长BD 交ABC 的外接圆于点E ,过点A 作AF CE ⊥于F ,,AE BC 的延长线交于点G .(1)判断EA 是否平分DEF ∠,并说明理由;(2)求证:△BD CF =;△22BD DE AE EG =+⋅.76.(2021·黑龙江绥化)如图所示,四边形ABCD 为正方形,在ECH 中,90,,ECH CE CH HE ∠=︒=的延长线与CD 的延长线交于点F ,点D B H 、、在同一条直线上.(1)求证:CDE CBH ≌;(2)当15HB HD =时,求FD FC 的值; (3)当3,4HB HG ==时,求sin CFE ∠的值.77.(2021·山西)阅读与思考,请阅读下列科普材料,并完成相应的任务. 图算法 图算法也叫诺模图,是根据几何原理,将某一已知函数关系式中的各变量,分别编成有刻度的直线(或曲线),并把它们按一定的规律排列在一起的一种图形,可以用来解函数式中的未知量.比如想知道10摄氏度相当于多少华氏度,我们可根据摄氏温度与华氏温度之间的关系:9325F C =+得出,当10C =时,50F .但是如果你的温度计上有华氏温标刻度,就可以从温度计上直接读出答案,这种利用特制的线条进行计算的方法就是图算法.再看一个例子:设有两只电阻,分别为5千欧和7.5千欧,问并联后的电阻值是多少?我们可以利用公式12111R R R =+求得R 的值,也可以设计一种图算法直接得出结果:我们先来画出一个120︒的角,再画一条角平分线,在角的两边及角平分线上用同样的单位长度进行刻度,这样就制好了一张算图.我们只要把角的两边刻着7.5和5的两点连成一条直线,这条直线与角平分线的交点的刻度值就是并联后的电阻值.任务:(1)请根据以上材料简要说明图算法的优越性;(2)请用以下两种方法验证第二个例子中图算法的正确性:△用公式12111R R R =+计算:当17.5R =,25R =时,R 的值为多少; △如图,在AOB 中,120AOB ∠=︒,OC 是AOB 的角平分线,7.5OA =,5OB =,用你所学的几何知识求线段OC 的长.78.(2022·辽宁大连)综合与实践问题情境:数学活动课上,王老师出示了一个问题:如图1,在ABC 中,D 是AB 上一点,ADC ACB ∠=∠.求证ACD ABC ∠=∠.独立思考:(1)请解答王老师提出的问题.实践探究:(2)在原有问题条件不变的情况下,王老师增加下面的条件,并提出新问题,请你解答.“如图2,延长CA至点E ,使CE BD =,BE 与CD 的延长线相交于点F ,点G ,H 分别在,BF BC 上,BG CD =,BGH BCF ∠=∠.在图中找出与BH 相等的线段,并证明.” 本号资料皆来源@于微信:数学问题解决:(3)数学活动小组河学时上述问题进行特殊化研究之后发现,当90BAC ∠=︒时,若给出ABC 中任意两边长,则图3中所有已经用字母标记的线段长均可求,该小组提出下面的问题,请你解答.“如图3,在(2)的条件下,若90BAC ∠=︒,4AB =,2AC =,求BH 的长.”79.(2022·广东深圳)(1)【探究发现】如图△所示,在正方形ABCD 中,E 为AD 边上一点,将AEB △沿BE 翻折到BEF 处,延长EF 交CD 边于G 点.求证:BFG BCG △≌△(2)【类比迁移】如图△,在矩形ABCD 中,E 为AD 边上一点,且8,6,AD AB ==将AEB △沿BE 翻折到BEF 处,延长EF 交BC 边于点,G 延长BF 交CD 边于点,H 且,FH CH =求AE 的长.(3)【拓展应用】如图△,在菱形ABCD 中,E 为CD 边上的三等分点,60,D ∠=︒将ADE 沿AE 翻折得到AFE △,直线EF 交BC 于点,P 求CP 的长.80.(2022·山东烟台)(1)【问题呈现】如图1,△ABC 和△ADE 都是等边三角形,连接BD ,CE .求证:BD =CE .(2)【类比探究】如图2,△ABC 和△ADE 都是等腰直角三角形,△ABC =△ADE =90°.连接BD ,CE .请直接写出BD CE的值.(3)【拓展提升】如图3,△ABC和△ADE都是直角三角形,△ABC=△ADE=90°,且ABBC=ADDE=34.连接BD,CE.△求BDCE的值;△延长CE交BD于点F,交AB于点G.求sin△BFC的值.。

专题16 截长补短问题(解析版)-2021年中考数学二轮复习经典问题专题训练

专题16  截长补短问题(解析版)-2021年中考数学二轮复习经典问题专题训练

专题16 截长补短问题【规律总结】“截长补短”是几何证明题中十分重要的方法,通常用来证明几条线段的数量关系,即若题目条件或结论中含有“a +b =c ”的条件,需要添加辅助线时可以考虑“截长补短”的方法。

在较长的线段上截取一条线段等于较短线段,再设法证明较长线段的剩余线段等于另外的较短线段。

①延长较短线段中的一条,使延长出来的线段等于另外的较短线段,然后证明两线段之和等于较长线段。

即延长a ,得到b ,证:a +b =c 。

②延长较短线段中的一条,使延长后的线段等于较长线段,然后证明延长出来的部分等于另一条较短线段。

即延长a ,得到c ,证:b =c-a 。

【典例分析】例1.(2020·广州大学附属中学八年级月考)如图,在ABC 中,AD 平分BAC ∠,2B ADB ∠=∠,5AB =,6CD =,则AC 的长为( )A .3B .9C .11D .15【答案】C【分析】 在AC 上截取AE=AB ,连接DE ,证明△ABD△△AED ,得到△B=△AED ,AB=AE ,再证明CD=CE ,进而代入数值解答即可.【详解】在AC 上截取AE=AB ,连接DE ,△AD 平分△BAC ,△△BAD=△DAC ,在△ABD 和△AED 中,BAD DA AE AB AD AD C =⎧=∠=∠⎪⎨⎪⎩,△△ABD△△AED (SAS ),△△B=△AED ,△ADB =△ADE , AB=AE ,又△B=2△ADB△△AED=2△ADB ,△BDE=2△ADB ,△△AED=△C+△EDC=2△ADB ,△BDE=△C+△DEC=2△ADB ,△△DEC =△EDC ,△CD=CE ,△5AB =,6CD =,△AC =AE+CE=AB+CD = 5+6=11.故选:C .【点睛】本题考查全等三角形的判定和性质;利用了全等三角形中常用辅助线-截长补短法构造全等三角形,然后利用全等三角形解题,这是解决线段和差问题最常用的方法,注意掌握. 例2.(2021·上海九年级专题练习)如图,△ABC 中,E 在BC 上,D 在BA 上,过E 作EF△AB 于F ,△B =△1+△2,AB =CD ,BF =43,则AD 的长为________.【答案】8 3【分析】在FA上取一点T,使得FT=BF,连接ET,在CB上取一点K,使得CK=ET,连接DK.想办法证明AT=DK,DK=BD,推出BD=AT,推出BT=AD即可解决问题.【详解】在FA上取一点T,使得FT=BF,连接ET,在CB上取一点K,使得CK=ET,连接DK.△EB=ET,△△B=△ETB,△△ETB=△1+△AET,△B=△1+△2,△△AET=△2,△AE=CD,ET=CK,△△AET△△DCK(SAS),△DK=AT,△ATE=△DKC,△△ETB=△DKB,△△B=△DKB,△DB=DK,△BD=AT,△AD=BT,△BT=2BF=83,△AD=83,故答案为:83.【点睛】本题考查全等三角形的判定和性质,等腰三角形的判定和性质等知识点,解题关键在于学会添加常用辅助线,构造出全等三角形.例3.(2021·湖北武汉市·八年级期末)如图,△ABC为等边三角形,直线l经过点C,在l上位于C点右侧的点D满足△BDC=60°.(1)如图1,在l上位于C点左侧取一点E,使△AEC=60°,求证:△AEC△△CDB;(2)如图2,点F、G在直线l上,连AF,在l上方作△AFH =120°,且AF=HF,△HGF =120°,求证:HG+BD=CF;(3)在(2)的条件下,当A、B位于直线l两侧,其余条件不变时(如图3),线段HG、CF、BD的数量关系为.【答案】(1)证明见解析;(2)证明见解析;(3)HG=CF+BD.【分析】(1)先利用角的和差证明△BCD=△EAC,然后利用AAS即可证明△AEC△△CDB;(2)在l上C点左侧取一点E,使△AEC=60°,连接AE,依次证明△AEC△△CDB和△HGF△△FEA 即可得出结论;(3)在l上位于C点右侧取一点E,使△AED=60°,连接AE,在l上取一点M,使BM=BD,依次证明△ACE△△CBM和△HGF△△FEA即可得出结论.【详解】解:(1)证明:△△ABC是等边三角形,△AC=BC,△ACB=60°,△△BCD+△ACE=120°,△△AEC=60°,△△ACE+△EAC=120°,△△BCD=△EAC,在△AEC和△CDB中△60 AEC BDCBCD EACAC BC∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,△△AEC△△CDB(AAS);(2)证明:如图2,在l上C点左侧取一点E,使△AEC=60°,连接AE,由(1)知:△AEC△△CDB,△BD=CE,△△AEC=60°,△△AEF =120°,△△AFH =120°,△△AFE+△FAE=△AFE+△GFH=60°,△△FAE=△GFH,△△HGF=△AEF=120°,AF=FH,△△HGF△△FEA(AAS),△GH=EF,△CF=EF+CE=HG+BD;(3)解:HG=CF+BD,理由是:如图3,在l上位于C点右侧取一点E,使△AED=60°,连接AE,在l上取一点M,使BM=BD,△△BDC=60°,△△BDM是等边三角形,△△BMD=60°,△△AED=60°,△△AEC=△CMB=120°,△△ACB=60°,△△ACE+△BCE=△ACE+△CAE=60°,△△CAE=△BCE,△AC=BC,△△ACE△△CBM(AAS),△CE=BM=BD,由(2)可证△HGF△△FEA(AAS),△GH=FE,△EF=CF+CE△HG=CF+BD.故答案为:HG=CF+BD.【点睛】本题考查等边三角形的性质和判定,全等三角形的性质和判断,三角形外角的性质等.掌握一线三等角的模型,能借助一线三等角证明对应角相等是解题关键.【好题演练】一、单选题1.(2020·济南高新区第一实验学校八年级期中)如图,在Rt ABC 中,90ACB ∠=︒,3AC =,4BC =,AD 平分CAB ∠交BC 于D 点,E ,F 分别是AD ,AC 上的动点,则CE EF +的最小值为( )A .152B .152C .3D .125【答案】D【分析】利用角平分线构造全等,使两线段可以合二为一,则EC+EF 的最小值即为点C 到AB 的垂线段长度.【详解】在AB 上取一点G ,使AG =AF△在Rt△ABC 中,△ACB =90°,AC =3,BC =4△AB=5,△△CAD=△BAD,AE=AE,△△AEF△△AEG(SAS)△FE=GE,△要求CE+EF的最小值即为求CE+EG的最小值,故当C、E、G三点共线时,符合要求,此时,作CH△AB于H点,则CH的长即为CE+EG的最小值,此时,AC BC AB CH,△CH=·AC ABBC=125,即:CE+EF的最小值为125,故选:D.【点睛】本题考查了角平分线构造全等以及线段和差极值问题,灵活构造辅助线是解题关键.2.(2019·湖北黄冈市·八年级期中)如图,已知四边形ABCD中,AD△BC,若△DAB的平分线AE交CD于E,连接BE,且BE恰好平分△ABC,则AB的长与AD+BC的大小关系是()A .AB >AD+BCB .AB <AD+BC C .AB =AD+BCD .无法确定【答案】C【分析】 在AB 上截取AF =AD ,连接EF ,易得△AEB=90°和△ADE△△AFE ,再证明△BCE△△BFE ,利用全等三角形对应边相等即可得出三条线段之间的关系.【详解】解:如图所示,在AB 上截取AF =AD ,连接EF ,△AD△BC ,△△ABC+△DAB=180°,又△BE 平分△ABC ,AE 平分△DAB △△ABE+△EAB=()1ABC DAB 2∠+∠=90°, △△AEB=90°即△2+△4=90°,在△ADE 和△AFE 中,AD=AF DAE=FAE AE=AE ⎧⎪∠∠⎨⎪⎩△△ADE△△AFE (SAS ),所以△1=△2,又△2+△4=90°,△1+△3=90°,所以△3=△4,在△BCE 和△BFE 中,CBE=FBE BE=BE3=4∠∠⎧⎪⎨⎪∠∠⎩△△BCE△△BFE (ASA ),所以BC =BF ,所以AB =AF+BF =AD+BC ;故选:C .【点睛】本题考查全等三角形的判定和性质,截长补短是证明线段和差关系的常用方法.二、填空题3.(2020·山西九年级期中)如图,ABC 是等边三角形,180BAD BCD ∠+∠=︒,8BD =,2CD =,则AD =________.【答案】6【分析】在线段BD 上取一点E ,使得BE=CD ,连接AE ,由,,,A B C D 四点共圆得△ABE ACD =∠,再证明ABE ACD ≅∆,△ADE 是等边三角形,得AD DE AE ==,再由线段的和差关系可得结论.【详解】解:在线段BD 上取一点E ,使得BE=CD ,连接AE ,△180BAD BCD ∠+∠=︒△,,,A B C D 四点共圆,△△ABD ACD =∠△△ABE ACD =∠△△ABC 是等边三角形,△AB AC BC ==,60DAE ∠=︒,△△ABE ACD ≅∆,△60BAE CAF +∠=︒,△,BAE CAD BAF CAD ∠=∠∠=∠,△△60CAD CAE +∠=︒,即60DAE ∠=︒,△△ADE 是等边三角形,△AD DE AE ==,△=8BD ,2CD =,△6DE BD BE BD CD =-=-=,△6AD DE ==.【点睛】=∠是此题主要考查了全等三角形的判定与性质,以及四点共圆的判定,证明△ABE ACD解答此题的关键.4.(2020·无锡市羊尖中学八年级月考)如图,四边形ABCD中,△BAD=120°,△B=△D=90°,在BC、CD上分别找一点M、N,使△AMN周长最小时,则△AMN+△ANM的度数是________.【答案】120°【分析】延长AB,使得AB=BE,延长AD,使得AD=DF,连接EF,与BC,DC相较于M,N,要使得△AMN 的周长最小,则三角形的三边要共线,根据△BAD=120°和△AMN的内角和是180°即可列出方程求解.【详解】解:延长AB,使得AB=BE,延长AD,使得AD=DF,连接EF,与BC,DC相较于M,N如图所示,此时△AMN的周长最小△△ABM=90°△△EBM=90°在△AMB和△EMB中AB BE ABM EBM MB MB =⎧⎪∠=∠⎨⎪=⎩△△AMB△△EMB△△BEM=△BAM△△AMN=2△BAM同理可得:△AND△△FDN△△NAD=△NFD△△ANM=2△NAD设△BAM=x ,△MAN=z ,△NAD=y△△BAD=120°△12022180x y z x y z ++=︒⎧⎨++=︒⎩解得:60x y +=︒即△AMN+△ANM=2×60°=120°.故答案为:120°.【点睛】本题主要考查的是三角形周长最小的条件,涉及到的知识点为全等三角形的判定及性质、三角形内角和的应用,正确添加合适的辅助线是解题的关键.三、解答题5.(2021·安徽合肥市·八年级期末)如图,在ABC 中,AC BC =,AD 平分CAB ∠.(1)如图1,若90ACB =︒,求证:AB AC CD =+;(2)如图2,若AB AC BD =+,求ACB ∠的度数;(3)如图3,若100ACB ∠=︒,求证:AB AD CD =+.【答案】(1)见详解;(2)108°;(3)见详解【分析】(1)如图1,过D 作DM△AB 于M ,由 CA =CB ,90ACB =︒,得ABC 是等腰直角三角形,根据角平分线的性质得到CD =MD ,△ABC =45°,根据全等三角形的性质得到AC =AM ,于是得到结论;(2)如图2,设△ACB =α,则△CAB =△CBA =90°−12α,在AB 上截取AK =AC ,连结DK ,根据角平分线的定义得到△CAD =△KAD ,根据全等三角形的性质得到△ACD =△AKD =α,根据三角形的内角和即可得到结论;(3)如图3,在AB 上截取AH =AD ,连接DH ,根据等腰三角形的性质得到△CAB =△CBA =40°,根据角平分线的定义得到△HAD =△CAD =20°,求得△ADH =△AHD =80°,在AB 上截取AK =AC ,连接DK ,根据全等三角形的性质得到△ACB =△AKD =100°,CD =DK ,根据等腰三角形的性质得到DH =BH ,于是得到结论.【详解】(1)如图1,过D 作DM△AB 于M ,△在ABC 中,AC BC =,△△ABC =45°,△△ACB =90°,AD 是角平分线,△CD =MD ,△△BDM =△ABC =45°,△BM =DM ,△BM =CD ,在RT△ADC 和RT△ADM 中,CD MD AD AD ⎧⎨⎩==, △RT△ADC△RT△ADM (HL ),△AC =AM ,△AB =AM +BM =AC +CD ,即AB =AC +CD ;(2)设△ACB =α,则△CAB =△CBA =90°−12α, 在AB 上截取AK =AC ,连结DK ,如图2,△AB =AC +BD ,AB=AK+BK△BK =BD ,△AD 是角平分线,△△CAD =△KAD ,在△CAD 和△KAD 中,AC AK CAD KAD AD AD ⎧⎪∠∠⎨⎪⎩=== △△CAD△△KAD (SAS ),△△ACD =△AKD =α,△△BKD =180°−α,△BK =BD ,△△BDK =180°−α,△在△BDK 中,180°−α+180°−α+90°−12α=180°, △α=108°,△△ACB =108°;(3)如图3,在AB上截取AH=AD,连接DH,△△ACB=100°,AC=BC,△△CAB=△CBA=40°,△AD是角平分线,△△HAD=△CAD=20°,△△ADH=△AHD=80°,在AB上截取AK=AC,连接DK,由(1)得,△CAD△△KAD,△△ACB=△AKD=100°,CD=DK,△△DKH=80°=△DHK,△DK=DH=CD,△△CBA=40°,△△BDH=△DHK -△CBA =40°,△DH=BH,△BH=CD,△AB=AH+BH,△AB=AD+CD.【点睛】本题考查了全等三角形的判定和性质,等腰三角形的性质,角平分线的定义,三角形的内角和,正确的作出辅助线是解题的关键.6.(2020·全国九年级课时练习)如图,A、P、B、C是△O上四点,△APC=△CPB=60°.(1)判断△ABC的形状并证明你的结论;(2)当点P位于什么位置时,四边形PBOA是菱形?并说明理由.(3)求证:PA+PB=PC.【答案】(1)△ABC是等边三角形,证明见解析;(2)当点P位于AB中点时,四边形PBOA 是菱形,理由见解析;(3)证明见解析.【分析】(1)利用圆周角定理可得△BAC=△CPB,△ABC=△APC,而△APC=△CPB=60°,则可得△BAC=△ABC=60°,从而可判断△ABC的形状;(2)当点P位于AB中点时,四边形PBOA是菱形,通过证明△OAP和△OBP均为等边三角形,得到OA=AP=OB=BP即可得证;(3)在PC上截取PD=AP,则△APD是等边三角形,然后证明△APB△△ADC,证明BP=CD即可得证结论.【详解】(1)△ABC是等边三角形.证明如下:在△O中,△△BAC与△CPB是BC所对的圆周角,△ABC与△APC是AC所对的圆周角,△△BAC=△CPB,△ABC=△APC,又△△APC=△CPB=60°,△△ABC=△BAC=60°,△△ABC为等边三角形;(2)当点P位于AB中点时,四边形PBOA是菱形,如图1,连接OP.△△AOB=2△ACB=120°,P是AB的中点,△△AOP=△BOP=60°又△OA=OP=OB,△△OAP和△OBP均为等边三角形,△OA=AP=OB=PB,△四边形PBOA是菱形;(3)如图2,在PC上截取PD=AP,又△△APC=60°,△△APD是等边三角形,△AD =AP =PD ,△ADP =60°,即△ADC =120°.又△△APB =△APC +△BPC =120°,△△ADC =△APB .在△APB 和△ADC 中,APB ADC ABP ACD AP AD ∠=∠⎧⎪∠=∠⎨⎪=⎩△△APB △△ADC (AAS ),△BP =CD ,又△PD =AP ,△CP =BP +AP .【点睛】本题考查圆内接多边形的性质,菱形的性质,掌握圆内接四边形的性质,全等三角形的判定定理和性质定理是解题关键.。

2021年中考数学复习《图形相似》专题训练题含答案

2021年中考数学复习《图形相似》专题训练题含答案

《图形相似》提升训练.一.选择题(共14小题)1.如图,将矩形ABCD沿AE折叠,点D的对应点落在BC上点F处,过点F作FG∥CD,连接EF,DG,下列结论中正确的有()①∠ADG=∠AFG;②四边形DEFG是菱形;③DG2=AE•EG;④若AB=4,AD=5,则CE=1.A.①②③④B.①②③C.①③④D.①②2.如图,在△ABC中,D为AB边上一点,E为CD中点,AC=,∠ABC=30°,∠A=∠BED=45°,则BD的长为()A.B. +1﹣C.﹣D.﹣13.如图,在Rt△ABC中,∠ABC=90°,AB=6,AC=10,∠BAC和∠ACB的平分线相交于点E,过点E作EF∥BC交AC于点F,那么EF的长为()A.B.C.D.4.(易错题)已知:如图,∠ADE=∠ACD=∠ABC,图中相似三角形共有()A.1对 B.2对 C.3对 D.4对5.如图,平面直角坐标系中O是原点,平行四边形ABCO的顶点A、C的坐标分别(8,0)、(3,4),点D,E把线段OB三等分,延长CD、CE分别交OA、AB 于点F,G,连接FG.则下列结论:①F是OA的中点;②△OFD与△BEG相似;③四边形DEGF的面积是;④OD=.正确的个数是()A.4个 B.3个 C.2个 D.1个6.如图,点P是边长为的正方形ABCD的对角线BD上的动点,过点P分别作PE⊥BC于点E,PF⊥DC于点F,连接AP并延长,交射线BC于点H,交射线DC于点M,连接EF交AH于点G,当点P在BD上运动时(不包括B、D两点),以下结论中:①MF=MC;②AH⊥EF;③AP2=PM•PH;④EF的最小值是.其中正确结论是()A.①③B.②③C.②③④D.②④7.如图,在正方形ABCD中,O是对角线AC与BD的交点,M是BC边上的动点(点M不与B,C重合),CN⊥DM,CN与AB交于点N,连接OM,ON,MN.下列五个结论:①△CNB≌△DMC;②△CON≌△DOM;③△OMN∽△OAD;④AN2+CM2=MN2;⑤若AB=2,则S△OMN的最小值是,其中正确结论的个数是()A.2 B.3 C.4 D.58.如图,△ABC中,D、E是BC边上的点,BD:DE:EC=3:2:1,M在AC边上,CM:MA=1:2,BM交AD,AE于H,G,则BH:HG:GM等于()A.3:2:1 B.5:3:1 C.25:12:5 D.51:24:109.如图,矩形纸片ABCD中,G、F分别为AD、BC的中点,将纸片折叠,使D 点落在GF上,得到△HAE,再过H点折叠纸片,使B点落在直线AB上,折痕为PQ.连接AF、EF,已知HE=HF,下列结论:①△MEH为等边三角形;②AE⊥EF;③△PHE∽△HAE;④=,其中正确的结论是()A.①②③B.①②④C.①③④D.①②③④10.如图,在Rt△ABC中,∠C=90°,P是BC边上不同于B,C的一动点,过点P 作PQ⊥AB,垂足为Q,连接AP.若AC=3,BC=4,则△AQP的面积的最大值是()A.B.C.D.11.如图,在梯形ABCD中,AD∥BC,对角线AC与BD相交于点O,如果S△ACD:S△ABC=1:2,那么S△AOD:S△BOC是()A.1:3 B.1:4 C.1:5 D.1:612.在△ABC与△A′B′C′中,有下列条件:(1),(2);(3)∠A=∠A′;(4)∠C=∠C′,如果从中任取两个条件组成一组,那么能判断△ABC∽△A′B′C′的共有()A.1组 B.2组 C.3组 D.4组13.如图,在正方形ABCD中,AC为对角线,E为AB上一点,过点E作EF∥AD,与AC、DC分别交于点G,F,H为CG的中点,连接DE,EH,DH,FH.下列结论中结论正确的有()①EG=DF;②∠AEH+∠ADH=180°;③△EHF≌△DHC;④若=,则S△EDH =13S△CFH.A.1个 B.2个 C.3个 D.4个14.如图,在正方形ABCD中,AC为对角线,E为AB上一点,过点E作EF∥AD,与AC、DC 分别交于点G,F,H为CG的中点,连结DE、EH、DH、FH.下列结论:①EG=DF;②△EHF≌△DHC;③∠AEH+∠ADH=180°;④若=,则=.其中结论正确的有()A.1个 B.2个 C.3个 D.4个二.填空题(共5小题)15.大自然是美的设计师,即使是一片小小的树叶,也蕴含着“黄金分割”,如图,P为AB的黄金分割点(AP>PB),如果AB的长度为10cm,那么PB的长度为cm.16.如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连结BD、DP,BD与CF相交于点H,给出下列结论:①△DFP~△BPH;②==;③PD2=PH•CD;④=,其中正确的是(写出所有正确结论的序号).17.如图,在△ABC中,点D、E分别是边AB、AC的中点,DF过EC的中点G并与BC的延长线交于点F,BE与DF交于点O.若△ADE的面积为4,则四边形BOGC的面积=.18.如图,在菱形ABCD中,∠B=60°,BC=6,E为BC中点,F是AB上一点,G 为AD上一点,且BF=2,∠FEG=60°,EG交AC于点H,下列结论正确的是.(填序号即可)①△BEF∽△CHE②AG=1③EH==3S△AGH④S△BEF19.已知菱形A1B1C1D1的边长为2,∠A1B1C1=60°,对角线A1C1、B1D1相交于点O,以点O为坐标原点,分别以OB1,OA1所在直线为x轴、y轴建立如图所示的直角坐标系,以B1D1为对角线作菱形B1C2D1A2∽菱形A1B1C1D1,再以A2C2为对角线作菱形A2B2C2D2∽菱形B1C2D1A2,再以B2D2为对角线作菱形B2C3D2A3∽菱形A2B2C2D2,…,按此规律继续作下去,在y轴的正半轴上得到点A1,A2,A3,…,A n,则点A2022的坐标为三.解答题(共7小题)20.如图,在△ABC中,点D在边BC上,联结AD,∠ADB=∠CDE,DE交边AC 于点E,DE交BA延长线于点F,且AD2=DE•DF.(1)求证:△BFD∽△CAD;(2)求证:BF•DE=AB•AD.21.已知四边形ABCD中,AB=AD,对角线AC平分∠DAB,过点C作CE⊥AB于点E,点F为AB上一点,且EF=EB,连结DF.(1)求证:CD=CF;(2)连结DF,交AC于点G,求证:△DGC∽△ADC;(3)若点H为线段DG上一点,连结AH,若∠ADC=2∠HAG,AD=3,DC=2,求的值.22.如图①,OP为一墙面,它与地面OQ垂直,有一根木棒AB如图放置,点C是它的中点,现在将木棒的A点在OP上由A点向下滑动,点B由O点向OQ方向滑动,直到AB横放在地面为止.(1)在AB滑动过程中,点C经过的路径可以用下列哪个图象来描述()(2)若木棒长度为2m,如图②射线OM与地面夹角∠MOQ=60°,当AB滑动过程中,与OM并于点D,分别求出当AD=、AD=1、AD=时,OD的值.(3)如图③,是一个城市下水道,下水道入口宽40cm,下水道水平段高度为40cm,现在要想把整根木棒AB通入下水道水平段进行工作,那么这根木棒最长可以是(cm)(直接写出结果,结果四舍五入取整数).23.如图,△ABC和△BEC均为等腰直角三角形,且∠ACB=∠BEC=90°,点P为线段BE延长线上一点,连接CP,以CP为直角边向下作等腰直角△CPD,线段BE与CD相交于点F.(1)求证:=;(2)连接BD,请你判断AC与BD有什么位置关系?并说明理由.24.如图(1),P为△ABC所在平面上一点,且∠APB=∠BPC=∠CPA=120°,则点P叫做△ABC的费马点.(1)如果点P为锐角△ABC的费马点,且∠ABC=60°.①求证:△ABP∽△BCP;②若PA=3,PC=4,则PB=.(2)已知锐角△ABC,分别以AB、AC为边向外作正△ABE和正△ACD,CE和BD 相交于P点.如图(2)①求∠CPD的度数;②求证:P点为△ABC的费马点.25.如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别为A(﹣1,2),B(﹣3,4),C(﹣2,6).(1)画出△ABC绕点A顺时针旋转90°后得到的△A1B1C1;(2)以原点O为位似中心,在图中画出将△A1B1C1三条边放大为原来的2倍后的△A2B2C2,并写出A2、B2、C2的坐标.26.在四边形ABCD中,点E为AB边上的一点,点F为对角线BD上的一点,且EF⊥AB.(1)若四边形ABCD为正方形.①如图1,请直接写出AE与DF的数量关系;②将△EBF绕点B逆时针旋转到图2所示的位置,连接AE,DF,猜想AE与DF 的数量关系并说明理由.(2)若四边形ABCD为矩形,BC=mAB,其他条件都不变.①如图3,猜想AE与DF的数量关系并说明理由;②将△EBF绕点B顺时针旋转α(0°<α<90°)得到△E′BF′,连接AE′,DF′,请在图4中画出草图,并直接写出AE′和DF′的数量关系.参考答案与试题解析一.选择题(共14小题)1.如图,将矩形ABCD沿AE折叠,点D的对应点落在BC上点F处,过点F作FG∥CD,连接EF,DG,下列结论中正确的有()①∠ADG=∠AFG;②四边形DEFG是菱形;③DG2=AE•EG;④若AB=4,AD=5,则CE=1.A.①②③④B.①②③C.①③④D.①②【解答】解:①由折叠可得,AD=AF,DG=FG,在△ADG和△AFG中,,∴△ADG≌△AFG(SSS),∴∠ADG=∠AFG,故①正确;②∵GF∥DC,∴∠EGF=∠DEG,由翻折的性质可知:GD=GF,DE=EF,∠DGE=∠EGF,∴∠DGE=∠DEG,∴GD=DE,∴DG=GF=DE=EF,∴四边形DEFG为菱形,故②正确;③如图所示,连接DF交AE于O,∵四边形DEFG为菱形,∴GE⊥DF,OG=OE=GE,∵∠DOE=∠ADE=90°,∠OED=∠DEA,∴△DOE∽△ADE,∴=,即DE2=EO•AE,∵EO=GE,DE=DG,∴DG2=AE•EG,故③正确;④由折叠可得,AF=AD=5,∴Rt△ABF中,BF==3,∴CF=5﹣3=2,设CE=x,则DE=EF=4﹣x,∵Rt△CEF中,CE2+CF2=EF2,∴x2+22=(4﹣x)2,解得x=,∴CE=,故④错误;故选:B.2.如图,在△ABC中,D为AB边上一点,E为CD中点,AC=,∠ABC=30°,∠A=∠BED=45°,则BD的长为()A.B. +1﹣C.﹣D.﹣1【解答】解:如图,过C作CF⊥AB于F,过点B作BG⊥CD于G,在Rt△BEG 中,∠BED=45°,则GE=GB.在Rt△AFC中,∠A=45°,AC=,则AF=CF==1,在Rt△BFC中,∠ABC=30°,CF=1,则BC=2CF=2,BF=CF=,设DF=x,CE=DE=y,则BD=﹣x,∴△CDF∽△BDG,∴==,∴==,∴DG=,BG=,∵GE=GB,∴y+=,∴2y2+x(﹣x)=﹣x,在Rt△CDF中,∵CF2+DF2=CD2,∴1+x2=4y2,∴+x(﹣x)=﹣x,整理得:x2﹣(2+2)x+2﹣1=0,解得x=1+﹣或1+﹣(舍弃),∴BD=﹣x=﹣1.故选:D.3.如图,在Rt△ABC中,∠ABC=90°,AB=6,AC=10,∠BAC和∠ACB的平分线相交于点E,过点E作EF∥BC交AC于点F,那么EF的长为()A.B.C.D.【解答】解:如图,延长FE交AB于点D,作EG⊥BC于点G,作EH⊥AC于点H,∵EF∥BC、∠ABC=90°,∴FD⊥AB,∵EG⊥BC,∴四边形BDEG是矩形,∵AE平分∠BAC、CE平分∠ACB,∴ED=EH=EG,∠DAE=∠HAE,∴四边形BDEG是正方形,在△DAE和△HAE中,,∴△DAE≌△HAE(SAS),∴AD=AH,同理△CGE≌△CHE,∴CG=CH,∵BC===8,设BD=BG=x,则AD=AH=6﹣x、CG=CH=8﹣x,∴6﹣x+8﹣x=10,解得:x=2,∴BD=DE=2,AD=4,∵DF∥BC,∴△ADF∽△ABC,∴=,即=,解得:DF=,则EF=DF﹣DE=﹣2=.故选:C.4.(易错题)已知:如图,∠ADE=∠ACD=∠ABC,图中相似三角形共有()A.1对 B.2对 C.3对 D.4对【解答】解:∵∠ADE=∠ACD=∠ABC∴DE∥BC∴△ADE∽△ABC,∵DE∥BC∴∠EDC=∠DCB,∵∠ACD=∠ABC,∴△EDC∽△DCB,同理:∠ACD=∠ABC,∠A=∠A,∴△ABC∽△ACD,∵△ADE∽△ABC,△ABC∽△ACD,∴△ADE∽△ACD∴共4对故选:D.5.如图,平面直角坐标系中O是原点,平行四边形ABCO的顶点A、C的坐标分别(8,0)、(3,4),点D,E把线段OB三等分,延长CD、CE分别交OA、AB 于点F,G,连接FG.则下列结论:①F是OA的中点;②△OFD与△BEG相似;③四边形DEGF的面积是;④OD=.正确的个数是()A.4个 B.3个 C.2个 D.1个【解答】解:①∵四边形OABC是平行四边形,∴BC∥OA,BC=OA,∴△CDB∽△FDO,∴=,∵D、E为OB的三等分点,∴==2,∴=2,∴BC=2OF,∴OA=2OF,∴F是OA的中点;所以①结论正确;②如图2,延长BC交y轴于H,由C(3,4)知:OH=4,CH=3,∴OC=5,∴AB=OC=5,∵A(8,0),∴OA=8,∴OA≠AB,∴∠AOB≠∠EBG,∴△OFD∽△BEG不成立,所以②结论不正确;③由①知:F为OA的中点,同理得;G是AB的中点,∴FG是△OAB的中位线,∴FG=OB,FG∥OB,∵OB=3DE,∴FG=DE,∴=,过C作CQ⊥AB于Q,如图3.S▱OABC=OA•OH=AB•CQ,∴4×8=5CQ,∴CQ=,S△OCF=OF•OH=×4×4=8,S△CGB=BG•CQ=××=8,S△AFG=×4×2=4,∴S△CFG=S▱OABC﹣S△OFC﹣S△CBG﹣S△AFG=8×4﹣8﹣8﹣4=12,∵DE∥FG,∴△CDE∽△CFG,∴=()2=,∴=,∴S四边形DEGF =S△CFG=;所以③结论正确;④在Rt△OHB中,由勾股定理得:OB2=BH2+OH2,∴OB==,∴OD=,所以④结论不正确;本题结论正确的有:①③.故选:C.6.如图,点P是边长为的正方形ABCD的对角线BD上的动点,过点P分别作PE⊥BC于点E,PF⊥DC于点F,连接AP并延长,交射线BC于点H,交射线DC于点M,连接EF交AH于点G,当点P在BD上运动时(不包括B、D两点),以下结论中:①MF=MC;②AH⊥EF;③AP2=PM•PH;④EF的最小值是.其中正确结论是()A.①③B.②③C.②③④D.②④【解答】解:①错误.因为当点P与BD中点重合时,CM=0,显然FM≠CM;②正确.连接PC交EF于O.根据对称性可知∠DAP=∠DCP,∵四边形PECF是矩形,∴OF=OC,∴∠OCF=∠OFC,∴∠OFC=∠DAP,∵∠DAP+∠AMD=90°,∴∠GFM+∠AMD=90°,∴∠FGM=90°,∴AH⊥EF.③正确.∵AD∥BH,∴∠DAP=∠H,∵∠DAP=∠PCM,∴∠PCM=∠H,∵∠CPM=∠HPC,∴△CPM∽△HPC,∴=,∴PC2=PM•PH,根据对称性可知:PA=PC,∴PA2=PM•PH.④正错误.∵四边形PECF是矩形,∴EF=PC,∴当CP⊥BD时,PC的值最小,此时A、P、C共线,∵AC=2,∴PC的最小值为1,∴EF的最小值为1;故选:B.7.如图,在正方形ABCD中,O是对角线AC与BD的交点,M是BC边上的动点(点M不与B,C重合),CN⊥DM,CN与AB交于点N,连接OM,ON,MN.下列五个结论:①△CNB≌△DMC;②△CON≌△DOM;③△OMN∽△OAD;④AN2+CM2=MN2;⑤若AB=2,则S△OMN的最小值是,其中正确结论的个数是()A.2 B.3 C.4 D.5【解答】解:∵正方形ABCD中,CD=BC,∠BCD=90°,∴∠BCN+∠DCN=90°,又∵CN⊥DM,∴∠CDM+∠DCN=90°,∴∠BCN=∠CDM,又∵∠CBN=∠DCM=90°,∴△CNB≌△DMC(ASA),故①正确;根据△CNB≌△DMC,可得CM=BN,又∵∠OC M=∠OBN=45°,OC=OB,∴△OCM≌△OBN(SAS),∴OM=ON,∠COM=∠BON,∴∠DOC+∠COM=∠COB+∠BPN,即∠DOM=∠CON,又∵DO=CO,∴△CON≌△DOM(SAS),故②正确;∵∠BON+∠BOM=∠COM+∠BOM=90°,∴∠MON=90°,即△MON是等腰直角三角形,又∵△AOD是等腰直角三角形,∴△OMN∽△OAD,故③正确;∵AB=BC,CM=BN,∴BM=AN,又∵Rt△BMN中,BM2+BN2=MN2,∴AN2+CM2=MN2,故④正确;∵△OCM≌△OBN,∴四边形BMON的面积=△BOC的面积=1,即四边形BMON的面积是定值1,∴当△MNB的面积最大时,△MNO的面积最小,设BN=x=CM,则BM=2﹣x,∴△MNB的面积=x(2﹣x)=﹣x2+x,∴当x=1时,△MNB的面积有最大值,的最小值是1﹣=,故⑤正确;此时S△OMN综上所述,正确结论的个数是5个,故选:D.8.如图,△ABC中,D、E是BC边上的点,BD:DE:EC=3:2:1,M在AC边上,CM:MA=1:2,BM交AD,AE于H,G,则BH:HG:GM等于()A.3:2:1 B.5:3:1 C.25:12:5 D.51:24:10【解答】解:连接EM,CE:CD=CM:CA=1:3∴EM平行于AD∴△BHD∽△BME,△CEM∽△CDA∴HD:ME=BD:BE=3:5,ME:AD=CM:AC=1:3∴AH=(3﹣)ME,∴AH:ME=12:5∴HG:GM=AH:EM=12:5设GM=5k,GH=12k,∵BH:HM=3:2=BH:17k∴BH=K,∴BH:HG:GM=k:12k:5k=51:24:10故选:D.9.如图,矩形纸片ABCD中,G、F分别为AD、BC的中点,将纸片折叠,使D 点落在GF上,得到△HAE,再过H点折叠纸片,使B点落在直线AB上,折痕为PQ.连接AF、EF,已知HE=HF,下列结论:①△MEH为等边三角形;②AE⊥EF;③△PHE∽△HAE;④=,其中正确的结论是()A.①②③B.①②④C.①③④D.①②③④【解答】解:∵矩形纸片ABCD中,G、F分别为AD、BC的中点,∴GF⊥AD,由折叠可得,AH=AD=2AG,∠AHE=∠D=90°,∴∠AHG=30°,∠EHM=90°﹣30°=60°,∴∠HAG=60°=∠AED=∠MEH,∴△EHM中,∠EMH=60°=∠EHM=∠MEH,∴△MEH为等边三角形,故①正确;∵∠EHM=60°,HE=HF,∴∠HEF=30°,∴∠FEM=60°+30°=90°,即AE⊥EF,故②正确;∵∠PEH=∠MHE=60°=∠HEA,∠EPH=∠EHA=90°,∴△PHE∽△HAE,故③正确;设AD=2=AH,则AG=1,∴Rt△AGH中,GH=AG=,Rt△AEH中,EH===HF,∴GF==AB,∴==,故④正确,综上所述,正确的结论是①②③④,故选:D.10.如图,在Rt△ABC中,∠C=90°,P是BC边上不同于B,C的一动点,过点P 作PQ⊥AB,垂足为Q,连接AP.若AC=3,BC=4,则△AQP的面积的最大值是()A.B.C.D.【解答】解:设BP=x(0<x<4),由勾股定理得AB=5,∵∠PQB=∠C=90°,∠B=∠B,∴△PBQ∽△ABC,∴==,即==∴PQ=x,QB=xS △APQ =PQ ×AQ=+x= ∴当x=时,△APQ 的面积最大,最大值是.故选:C .11.如图,在梯形ABCD 中,AD ∥BC ,对角线AC 与BD 相交于点O ,如果S △ACD :S △ABC =1:2,那么S △AOD :S △BOC 是( )A .1:3B .1:4C .1:5D .1:6【解答】解:∵在梯形ABCD 中,AD ∥BC ,而且S △ACD :S △ABC =1:2,∴AD :BC=1:2;∵AD ∥BC ,∴△AOD ~△BOC ,∵AD :BC=1:2,∴S △AOD :S △BOC =1:4.故选:B .12.在△ABC 与△A′B′C′中,有下列条件:(1),(2);(3)∠A=∠A′;(4)∠C=∠C′,如果从中任取两个条件组成一组,那么能判断△ABC ∽△A′B′C′的共有( )A .1组B .2组C .3组D .4组【解答】解:共有3组,其组合分别是(1)和(2)三边对应成比例的两个三角形相似;(2)和(4)两边对应成比例且夹角相等的两个三角形相似;(3)和(4)两角对应相等的两个三角形相似.故选:C.13.如图,在正方形ABCD中,AC为对角线,E为AB上一点,过点E作EF∥AD,与AC、DC分别交于点G,F,H为CG的中点,连接DE,EH,DH,FH.下列结论中结论正确的有()①EG=DF;②∠AEH+∠ADH=180°;③△EHF≌△DHC;=13S△CFH.④若=,则S△EDHA.1个 B.2个 C.3个 D.4个【解答】解:①∵四边形ABCD为正方形,EF∥AD,∴EF=AD=CD,∠ACD=45°,∠GFC=90°,∴△CFG为等腰直角三角形,∴GF=FC,∵EG=EF﹣GF,DF=CD﹣FC,∴EG=DF,故①正确;②∵△CFG为等腰直角三角形,H为CG的中点,∴FH=CH,∠GFH=∠GFC=45°=∠HCD,在△EHF和△DHC中,,∴△EHF ≌△DHC (SAS ),∴∠HEF=∠HDC ,∴∠AEH +∠ADH=∠AEF +∠HEF +∠ADF ﹣∠HDC=∠AEF +∠ADF=180°,故②正确;③由②知:△EHF ≌△DHC ,故③正确; ④∵=,∴AE=2BE ,∵△CFG 为等腰直角三角形,H 为CG 的中点,∴FH=GH ,∠FHG=90°,∵∠EGH=∠FHG +∠HFG=90°+∠HFG=∠HFD ,在△EGH 和△DFH 中,,∴△EGH ≌△DFH (SAS ),∴∠EHG=∠DHF ,EH=DH ,∠DHE=∠EHG +∠DHG=∠DHF +∠DHG=∠FHG=90°, ∴△EHD 为等腰直角三角形,过H 点作HM 垂直于CD 于M 点,如图所示:设HM=x ,则CF=2x ,∴DF=2FC=4x ,∴DM=5x ,DH=x ,CD=6x ,则S △CFH =×HM ×CF=•x•2x=x 2,S △EDH =×DH 2=×=13x 2, ∴则S △EDH =13S △CFH ,故④正确;其中结论正确的有:①②③④,4个;故选:D .14.如图,在正方形ABCD中,AC为对角线,E为AB上一点,过点E作EF∥AD,与AC、DC 分别交于点G,F,H为CG的中点,连结DE、EH、DH、FH.下列结论:①EG=DF;②△EHF≌△DHC;③∠AEH+∠ADH=180°;④若=,则=.其中结论正确的有()A.1个 B.2个 C.3个 D.4个【解答】解:①∵四边形ABCD为正方形,EF∥AD,∴EF=AD=CD,∠ACD=45°,∠GFC=90°,∴△CFG为等腰直角三角形,∴GF=FC,∵EG=EF﹣GF,DF=CD﹣FC,∴EG=DF,故①正确;②∵△CFG为等腰直角三角形,H为CG的中点,∴FH=CH,∠GFH=∠GFC=45°=∠HCD,在△EHF和△DHC中,,∴△EHF≌△DHC(SAS),故②正确;③∵△EHF≌△DHC(已证),∴∠HEF=∠HDC,∴∠AEH+∠ADH=∠AEF+∠HEF+∠ADF﹣∠HDC=∠AEF+∠ADF=180°,故③正确;④∵=,∴AE=2BE,∵△CFG为等腰直角三角形,H为CG的中点,∴FH=GH,∠FHG=90°,∵∠EGH=∠FHG+∠HFG=90°+∠HFG=∠HFD,在△EGH和△DFH中,,∴△EGH≌△DFH(SAS),∴∠EHG=∠DHF,EH=DH,∠DHE=∠EHG+∠DHG=∠DHF+∠DHG=∠FHG=90°,∴△EHD为等腰直角三角形,如图,过H点作HM⊥CD于M,设HM=x,则DM=5x,DH=x,CD=6x,则S△DHC =×HM×CD=3x2,S△EDH=×DH2=13x2,∴3S△EDH =13S△DHC,故④正确;故选:D.二.填空题(共5小题)15.大自然是美的设计师,即使是一片小小的树叶,也蕴含着“黄金分割”,如图,P为AB的黄金分割点(AP>PB),如果AB的长度为10cm,那么PB的长度为(15﹣5)cm.【解答】解:∵P为AB的黄金分割点(AP>PB),∴AP=AB=×10=5﹣5,∴PB=AB﹣PA=10﹣(5﹣5)=(15﹣5)cm.故答案为(15﹣5).16.如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连结BD、DP,BD与CF相交于点H,给出下列结论:①△DFP~△BPH;②==;③PD2=PH•CD;④=,其中正确的是①②③(写出所有正确结论的序号).【解答】解:∵PC=CD,∠PCD=30°,∴∠PDC=75°,∴∠FDP=15°,∵∠DBA=45°,∴∠PBD=15°,∴∠FDP=∠PBD,∵∠DFP=∠BPC=60°,∴△DFP∽△BPH,故①正确;∵∠DCF=90°﹣60°=30°,∴tan∠DCF==,∵△DFP∽△BPH,∴==,∵BP=CP=CD,∴==,故②正确;∵PC=DC,∠DCP=30°,∴∠CDP=75°,又∵∠DHP=∠DCH+∠CDH=75°,∴∠DHP=∠CDP,而∠DPH=∠CPD,∴△DPH∽△CPD,∴,即PD2=PH•CP,又∵CP=CD,∴PD2=PH•CD,故③正确;如图,过P作PM⊥CD,PN⊥BC,设正方形ABCD的边长是4,△BPC为正三角形,则正方形ABCD的面积为16,∴∠PBC=∠PCB=60°,PB=PC=BC=CD=4,∴∠PCD=30°∴PN=PB•sin60°=4×=2,PM=PC•sin30°=2,=S四边形PBCD﹣S△BCD=S△PBC+S△PDC﹣S△BCD∵S△BPD=×4×2+×2×4﹣×4×4=4+4﹣8=4﹣4,∴=,故④错误;故答案为:①②③.17.如图,在△ABC中,点D、E分别是边AB、AC的中点,DF过EC的中点G 并与BC的延长线交于点F,BE与DF交于点O.若△ADE的面积为4,则四边形BOGC的面积=7.【解答】解:∵点D、E分别是边AB、AC的中点,∴DE∥BC,DE=BC,∴△ADE∽△ABC,∴==,∵△ADE的面积为4,=16,∴S△ABC∵DE∥BC,∴△ODE∽△OFB,∠EDG=∠F,∠DEG=∠GCF,∴=,又EG=CG,∴△DEG≌△FCG(AAS),∴DE=CF,∴BF=3DE,∵DE∥BC,∴△ODE∽△OFB,∴==,∵AD=BD,=S△ADE=4,∴S△BDE∵AE=CE=2EG,∴S △DEG =S △ADE =×4=2, ∵=,∴S △ODE =S △BDE =×4=1,∴S △OEG =S △DEG ﹣S △ODE =×4=1,∵S 四边形DBCE =S △ABC ﹣S △ADE =3×4=12,∴S 四边形OBCG =S 四边形DBCE ﹣S △BDE ﹣S △OEG =7.故答案为:7.18.如图,在菱形ABCD 中,∠B=60°,BC=6,E 为BC 中点,F 是AB 上一点,G 为AD 上一点,且BF=2,∠FEG=60°,EG 交AC 于点H ,下列结论正确的是①②③.(填序号即可)①△BEF ∽△CHE②AG=1③EH=④S △BEF =3S △AGH【解答】解:∵菱形ABCD 中,∠B=60°,∠FEG=60°,∴∠B=∠ECH=60°,∠BEF=CHE=120°﹣∠CEH ,∴△BEF ∽△CHE ,故①正确;∴=,又∵BC=6,E为BC中点,BF=2,∴,即CH=4.5,又∵AC=BC=6,∴AH=1.5,∵AG∥CE,∴△AGH∽△CEH,∴,∴AG=CE=1,故②正确;如图,过F作FP⊥BC于P,则∠BFP=30°∴BP=BF=1,PE=3﹣1=2,PF=,∴Rt△EFP中,EF==,又∵,∴EH=EF=,故③正确;∵AG=CE,BF=CE,△△BEF∽△CHE,△AGH∽△CEH,∴S△CEH=9S△AGH,S△CEH=S△BEF,∴9S△AGH =S△BEF,∴S△BEF =4S△AGH,故④错误;故答案为:①②③.19.已知菱形A1B1C1D1的边长为2,∠A1B1C1=60°,对角线A1C1、B1D1相交于点O,以点O为坐标原点,分别以OB1,OA1所在直线为x轴、y轴建立如图所示的直角坐标系,以B1D1为对角线作菱形B1C2D1A2∽菱形A1B1C1D1,再以A2C2为对角线作菱形A2B2C2D2∽菱形B1C2D1A2,再以B2D2为对角线作菱形B2C3D2A3∽菱形A2B2C2D2,…,按此规律继续作下去,在y轴的正半轴上得到点A1,A2,A3,…,A n,则点A2022的坐标为(0,32021)【解答】解:∵菱形A1B1C1D1的边长为2,∠A1B1C1=60°,∴OA1=A1B1•sin30°=2×=1,OB1=A1B1•cos30°=2×=,∴A1(0,1).∵1C2D1A2∽菱形A1B1C1D1,∴OA2===3,∴A2(0,3).同理可得A3(0,9)…∴A2022(0,32021).故答案为:(0,32021).三.解答题(共7小题)20.如图,在△ABC中,点D在边BC上,联结AD,∠ADB=∠CDE,DE交边AC 于点E,DE交BA延长线于点F,且AD2=DE•DF.(1)求证:△BFD∽△CAD;(2)求证:BF•DE=AB•AD.【解答】证明:(1)∵AD2=DE•DF,∴,∵∠ADF=∠EDA,∴△ADF∽△EDA,∴∠F=∠DAE,又∵∠ADB=∠CDE,∴∠ADB+∠ADF=∠CDE+∠ADF,即∠BDF=∠CDA,∴△BFD∽△CAD;(2)∵△BFD∽△CAD,∴,∵,∴,∵△BFD∽△CAD,∴∠B=∠C,∴AB=AC,∴,∴BF•DE=AB•AD.21.已知四边形ABCD中,AB=AD,对角线AC平分∠DAB,过点C作CE⊥AB于点E,点F为AB上一点,且EF=EB,连结DF.(1)求证:CD=CF;(2)连结DF,交AC于点G,求证:△DGC∽△ADC;(3)若点H为线段DG上一点,连结AH,若∠ADC=2∠HAG,AD=3,DC=2,求的值.【解答】(1)证明:∵AC平分∠DAB,∴∠DAC=∠BAC,在△ADC和△ABC中∴△ADC≌△ABC,∴CD=CB,∵CE⊥AB,EF=EB,∴CF=CB,∴CD=CF;(2)解:∵△ADC≌△ABC,∴∠ADC=∠B,∵CF=CB,∴∠CFB=∠B,∴∠ADC=∠CFB,∴∠ADC+∠AFC=180°,∵四边形AFCD的内角和等于360°,∴∠DCF+∠DAF=180°,∵CD=CF,∴∠CDG=∠CFD,∵∠DCF+∠CDF+∠CFD=180°,∴∠DAF=∠CDF+∠CFD=2∠CDG,∵∠DAB=2∠DAC,∴∠CDG=∠DAC,∵∠DCG=∠ACD,∴△DGC∽△ADC;(3)解:∵△DGC∽△ADC,∴∠DGC=∠ADC,=,∵∠ADC=2∠HAG,AD=3,DC=2,∴∠HAG=∠DGC,=,∴∠HAG=∠AHG,=,∴HG=AG,∵∠GDC=∠DAC=∠FAG,∠DGC=∠AGF,∴△DGC∞△AGF,∴==,∴=.22.如图①,OP为一墙面,它与地面OQ垂直,有一根木棒AB如图放置,点C 是它的中点,现在将木棒的A点在OP上由A点向下滑动,点B由O点向OQ方向滑动,直到AB横放在地面为止.(1)在AB滑动过程中,点C经过的路径可以用下列哪个图象来描述()(2)若木棒长度为2m,如图②射线OM与地面夹角∠MOQ=60°,当AB滑动过程中,与OM并于点D,分别求出当AD=、AD=1、AD=时,OD的值.(3)如图③,是一个城市下水道,下水道入口宽40cm,下水道水平段高度为40cm,现在要想把整根木棒AB通入下水道水平段进行工作,那么这根木棒最长可以是113(cm)(直接写出结果,结果四舍五入取整数).【解答】解:(1)∵点C是AB的中点,∴OC=AB,∴点C的运动轨迹是以O为圆心,AB长为半径的圆弧,经过的路程的圆周.故选甲.(2)过D作DH⊥OP于H,设DH=a,在Rt△OHD中,∵∠AOD=90°﹣600=300,∴OD=2a,OH=a,∵DH⊥OA,OQ⊥OA,∴DH∥QO,∴=,当AD=时,BD=,∴=,∴AH=a,在Rt△AHD中,∵AH2+DH2=AD2,∴a2+a2=,解得a=,OD=,当AD=1时,BD=1,∴=,∴AH=a,在Rt△AHD中,∵AH2+DH2=AD2,∴3a2+a2=1,解得a=,OD=1,当AD=时,BD=,∴=,∴AH=2a,在Rt△AHD中,∵AH2+DH2=AD2,∴12a2+a2=,解得a=,OD=.(3)由题意当等腰直角三角形的直角边为80cm时,斜边为≈113cm,所以这根木棒最长可以是113cm.故答案为113cm.23.如图,△ABC和△BEC均为等腰直角三角形,且∠ACB=∠BEC=90°,点P为线段BE延长线上一点,连接CP,以CP为直角边向下作等腰直角△CPD,线段BE与CD相交于点F.(1)求证:=;(2)连接BD,请你判断AC与BD有什么位置关系?并说明理由.【解答】(1)证明:∵,△ABC和△BEC均为等腰直角三角形,且∠ACB=∠BEC=90°,∴∠ECB=∠PCD=45°,∠CEB=∠CPD=90°,∴△BCE∽△DCP,∴=;(2)AC∥BD,理由:∵∠PCE+∠ECD=∠BCD+∠ECD=45°,∴∠PCE=∠BCD,∵=,∴△PCE∽△DCB,∴∠CBD=∠CEP=90°,∵∠ACB=90°,∴∠ACB=∠CBD,∴AC∥BD.24.如图(1),P为△ABC所在平面上一点,且∠APB=∠BPC=∠CPA=120°,则点P叫做△ABC的费马点.(1)如果点P为锐角△ABC的费马点,且∠ABC=60°.①求证:△ABP∽△BCP;②若PA=3,PC=4,则PB=2.(2)已知锐角△ABC,分别以AB、AC为边向外作正△ABE和正△ACD,CE和BD 相交于P点.如图(2)①求∠CPD的度数;②求证:P点为△ABC的费马点.【解答】(1)证明:①∵∠PAB+∠PBA=180°﹣∠APB=60°,∠PBC+∠PBA=∠ABC=60°,∴∠PAB=∠PBC,又∵∠APB=∠BPC=120°,∴△ABP∽△BCP,②解:∵△ABP∽△BCP,∴=,∴PB2=PA•PC=12,∴PB=2;故答案为:2;(2)解:①∵△ABE与△ACD都为等边三角形,∴∠BAE=∠CAD=60°,AE=AB,AC=AD,∴∠BAE+∠BAC=∠CAD+∠BAC,即∠EAC=∠BAD,在△ACE和△ABD中,,∴△ACE≌△ABD(SAS),∴∠1=∠2,∵∠3=∠4,∴∠CPD=∠6=∠5=60°;②证明:∵△ADF∽△CFP,∴AF•PF=DF•CF,∵∠AFP=∠CFD,∴△AFP∽△CDF.∴∠APF=∠ACD=60°,∴∠APC=∠CPD+∠APF=120°,∴∠BPC=120°,∴∠APB=360°﹣∠BPC﹣∠APC=120°,∴P点为△ABC的费马点.25.如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别为A(﹣1,2),B(﹣3,4),C(﹣2,6).(1)画出△ABC绕点A顺时针旋转90°后得到的△A1B1C1;(2)以原点O为位似中心,在图中画出将△A1B1C1三条边放大为原来的2倍后的△A2B2C2,并写出A2、B2、C2的坐标.【解答】解:(1)如图,△A1B1C1为所求;(2)如图,△A2B2C2为所作,点A2、B2、C2的坐标分别为(﹣2,4),B(2,8),C(6,6).26.在四边形ABCD中,点E为AB边上的一点,点F为对角线BD上的一点,且EF⊥AB.(1)若四边形ABCD为正方形.①如图1,请直接写出AE与DF的数量关系DF=AE;②将△EBF绕点B逆时针旋转到图2所示的位置,连接AE,DF,猜想AE与DF 的数量关系并说明理由.(2)若四边形ABCD为矩形,BC=mAB,其他条件都不变.①如图3,猜想AE与DF的数量关系并说明理由;②将△EBF绕点B顺时针旋转α(0°<α<90°)得到△E′BF′,连接AE′,DF′,请在图4中画出草图,并直接写出AE′和DF′的数量关系.【解答】解:(1)①∵四边形ABCD为正方形,∴△ABD为等腰直角三角形,∴BD=AB,∵EF⊥AB,∴△BEF为等腰直角三角形,BF=BE,∴BD﹣BF=AB﹣BE,即DF=AE,故答案为:DF=AE;②DF=AE.理由如下:∵△EBF绕点B逆时针旋转到图2所示的位置,∴∠ABE=∠DBF,∵=,=,∴=,∴△ABE∽△DBF,∴==,即AE与DF的数量关系是:DF=AE;(2)①AE与DF的数量关系是:DF=AE;理由:在图3中,作FM⊥AD,垂足为M.∵∠A=∠AEF=∠AMF=90°,∴四边形AEFM是矩形,∴FM=AE,∵AD=BC=mAB,∴Rt△ABD中,BD==AB,∵MF∥AB,∴△DMF∽△ABD,∴==,∴DF=MF=AE;②AE′和DF′的数量关系:DF'=AE'.如图3,∵四边形ABCD为矩形,∴AD=BC=mAB,∴B D==AB,∵EF⊥AB,∴EF∥AD,∴△BEF∽△BAD,∴=,∴==,如图4,∵△EBF绕点B顺时针旋转α(0°<α<90°)得到△E'BF',∴∠ABE′=∠DBF′,BE′=BE,BF′=BF,∴==,∴△ABE′∽△DBF′,∴==,即DF′=AE′.。

2021年河北省中考复习数学《相似三角形》专题复习(人教版)(Word版附答案)

2021年河北省中考复习数学《相似三角形》专题复习(人教版)(Word版附答案)

节相似三角形1.若△ABC的每条边长增加各自的10%得△A′B′C′,则∠B′的度数与其对应角∠B的度数相比()A.增加了10% B.减少了10%C.增加了(1+10%) D.没有改变2.在研究相似问题时,甲、乙同学的观点如下:甲:将边长为3,4,5的三角形按图①的方式向外扩张,得到新三角形,它们的对应边间距均为1,则新三角形与原三角形相似.图①乙:将邻边为3和5的矩形按图②的方式向外扩张,得到新矩形,它们的对应边间距均为1,则新矩形与原矩形不相似.图②A.两人都对 B.两人都不对C.甲对,乙不对 D.甲不对,乙对3.如图,△ABC中,∠A=78°,AB=4,AC=6.将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()4.(2020·河北中考)在如图所示的网格中,以点O 为位似中心,四边形 ABCD 的位似图形是( )A .四边形NPMQB .四边形NPMRC .四边形NHMQD .四边形NHMR5.在平面直角坐标系中,已知点A (-4,2),B (-6,-4),以原点O 为位似中心,相似比为12 ,把△ABO 缩小,则点B 的对应点B ′的坐标是( )A .(-3,-2)B .(-12,-8)C .(-3,-2)或(3,2)D .(-12,-8)或(12,8)6.如图,AD ∥BE ∥CF ,直线l 1,l 2与这三条平行线分别交于点A ,B ,C 和点D ,E ,F .已知AB =1,BC =3,DE =1.2,则DF 的长为( )A .3.6B .4.8C .5D .5.2 7.如图,在△ABC中,点D在BC边上,连接AD,点G在线段AD上,GE ∥BD,且交AB于点E,GF∥AC,且交CD于点F,则下列结论一定正确的是()A.ABAE=AGAD B.DFCF=DGADC.FGAC=EGBD D.AEBE=CFDF8.(2020·邯郸丛台区三模)如图,△ABC中,D,E分别是AB,AC上的点,且BD=2AD,CE=2AE.(1)求证:△ADE∽△ABC;(2)若DF=2,求FC的长度.9.(2020·温州中考)如图,在Rt△ABC中,∠ACB=90°,以其三边为边向外作正方形,过点C作CR⊥FG于点R,再过点C作PQ⊥CR分别交边DE,BH于点P,Q.若QH=2PE,PQ=15,则CR的长为()A.14B.15C.83D.6510.(2020·黔东南中考)如图,矩形ABCD中,AB=2,BC=2,E为CD 的中点,连接AE,BD交于点P,过点P作PQ⊥BC于点Q,则PQ=.11.如图,在边长为1的正方形网格中建立平面直角坐标系,已知△ABC三个顶点的坐标分别为A(-1,2),B(2,1),C(4,5).(1)画出△ABC关于x轴对称的△A1B1C1;(2)以原点O为位似中心,在x轴的上方画出△A2B2C2,使△A2B2C2与△ABC位似,且相似比为2,并求出△A2B2C2的面积.12.如图,以点O为位似中心,把△ABC放大为原图形的2倍得到△A′B′C′,以下说法中错误的是()A.△ABC∽△A′B′C′B.点C,O,C′三点在同一直线上C.AO∶AA′=1∶2D.AB∥A′B′13.如图,在由边长为1个单位长度的小正方形组成的10×10网格中,已知点O,A,B均为网格线的交点.(1)在给定的网格中,以点O为位似中心,将线段AB放大为原来的2倍,得到线段A1B1(点A,B的对应点分别为A1,B1),画出线段A1B1;(2)将线段A1B1绕点B1逆时针旋转90°得到线段A2B1,画出线段A2B1;(3)以A,A1,B1,A2为顶点的四边形AA1B1A2的面积是个平方单位.节相似三角形1.若△ABC的每条边长增加各自的10%得△A′B′C′,则∠B′的度数与其对应角∠B的度数相比(D)A.增加了10% B.减少了10%C.增加了(1+10%) D.没有改变2.在研究相似问题时,甲、乙同学的观点如下:甲:将边长为3,4,5的三角形按图①的方式向外扩张,得到新三角形,它们的对应边间距均为1,则新三角形与原三角形相似.图①乙:将邻边为3和5的矩形按图②的方式向外扩张,得到新矩形,它们的对应边间距均为1,则新矩形与原矩形不相似.图②A.两人都对 B.两人都不对C.甲对,乙不对 D.甲不对,乙对3.如图,△ABC中,∠A=78°,AB=4,AC=6.将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是(C)4.(2020·河北中考)在如图所示的网格中,以点O 为位似中心,四边形 ABCD 的位似图形是(A )A .四边形NPMQB .四边形NPMRC .四边形NHMQD .四边形NHMR5.在平面直角坐标系中,已知点A (-4,2),B (-6,-4),以原点O 为位似中心,相似比为12 ,把△ABO 缩小,则点B 的对应点B ′的坐标是(C )A .(-3,-2)B .(-12,-8)C .(-3,-2)或(3,2)D .(-12,-8)或(12,8)6.如图,AD ∥BE ∥CF ,直线l 1,l 2与这三条平行线分别交于点A ,B ,C 和点D ,E ,F .已知AB =1,BC =3,DE =1.2,则DF 的长为(B )A .3.6B .4.8C .5D .5.2 7.如图,在△ABC中,点D在BC边上,连接AD,点G在线段AD上,GE ∥BD,且交AB于点E,GF∥AC,且交CD于点F,则下列结论一定正确的是(D)A.ABAE=AGAD B.DFCF=DGADC.FGAC=EGBD D.AEBE=CFDF8.(2020·邯郸丛台区三模)如图,△ABC中,D,E分别是AB,AC上的点,且BD=2AD,CE=2AE.(1)求证:△ADE∽△ABC;(2)若DF=2,求FC的长度.【解答】(1)证明:∵BD=2AD,CE=2AE,∴ADAB=AEAC=13.又∵∠DAE=∠BAC,∴△ADE∽△ABC;(2)解:∵△ADE∽△ABC,∴DEBC=ADAB=13,∠ADE=∠ABC.∴DE∥BC.∴△DEF∽△CBF.∴DFCF=DECB,即2CF=13.∴FC=6.9.(2020·温州中考)如图,在Rt△ABC中,∠ACB=90°,以其三边为边向外作正方形,过点C作CR⊥FG于点R,再过点C作PQ⊥CR分别交边DE,BH于点P,Q.若QH=2PE,PQ=15,则CR的长为(A)A.14B.15C.83D.6510.(2020·黔东南中考)如图,矩形ABCD中,AB=2,BC=2,E为CD的中点,连接AE,BD交于点P,过点P作PQ⊥BC于点Q,则PQ=4 3.11.如图,在边长为1的正方形网格中建立平面直角坐标系,已知△ABC三个顶点的坐标分别为A(-1,2),B(2,1),C(4,5).(1)画出△ABC关于x轴对称的△A1B1C1;(2)以原点O为位似中心,在x轴的上方画出△A2B2C2,使△A2B2C2与△ABC位似,且相似比为2,并求出△A2B2C2的面积.解:(1)如图,△A1B1C1即为所求作的三角形;(2)如图,△A2B2C2即为所求作的三角形.分别过点A2,C2作y轴的平行线,过点B2作x轴的平行线.∵A(-1,2),B(2,1),C(4,5),△A2B2C2与△ABC位似,且相似比为2,∴A 2(-2,4),B 2(4,2),C 2(8,10).∴S △A 2B 2C 2=(2+8)×102-12 ×2×6-12 ×4×8=28., 12.如图,以点O 为位似中心,把△ABC 放大为原图形的2倍得到△A ′B ′C ′,以下说法中错误的是(C )A.△ABC ∽△A ′B ′C ′B .点C ,O ,C ′三点在同一直线上 C .AO ∶AA ′=1∶2D .AB ∥A ′B ′13.如图,在由边长为1个单位长度的小正方形组成的10×10网格中,已知点O ,A ,B 均为网格线的交点.(1)在给定的网格中,以点O 为位似中心,将线段AB 放大为原来的2倍,得到线段A 1B 1(点A ,B 的对应点分别为A 1,B 1),画出线段A 1B 1;(2)将线段A 1B 1绕点B 1逆时针旋转90°得到线段A 2B 1,画出线段A 2B 1; (3)以A ,A 1,B 1,A 2为顶点的四边形AA 1B 1A 2的面积是 个平方单位.解:(1)如图,线段A 1B 1即为所求; (2)如图,线段A 2B 1即为所求;(3)20.[由图可得,四边形AA 1B 1A 2为正方形, ∴四边形AA 1B 1A 2的面积是(22+42 )2=20.]。

专题16 二次函数与实际问题:图形问题(解析版)2021年中考数学二轮复习之难点突破热点解题方法

专题16 二次函数与实际问题:图形问题(解析版)2021年中考数学二轮复习之难点突破热点解题方法

专题16 二次函数与实际问题:图形问题一、解答题1.如图,已知抛物线2()30y ax bx a =++≠与x 轴交于点(1,0)A 和点(3,0)B -,与y 轴交于点C . (1)求抛物线的解析式;(2)设抛物线的对称轴与x 轴交于点M ,问在对称轴上是否存在点P ,使CMP ∆为等腰三角形?若存在,请直接写出所有符合条件的点P 的坐标;若不存在,请说明理由;(3)作直线BC ,若点(,0)D d 是线段BM 上的一个动点(不与B 、M 重合),过点D 作x 轴的垂线交抛物线于点F ,交BC 于点E ,当BDE CEF S S ∆∆=时,求d 的值.【答案】(1)223y x x =--+;(2)存在,P (-或(1,-或(1,6)-或5(1,)3-;(3)32d =- 【分析】(1)利用待定系数法即可求解;(2)分CP PM =,CM PM =,CM CP =三种情况,根据等腰三角形的性质分别进行求解; (3)根据三角形面积公式可得1·2BDE S BD DE ∆=⨯,1·2CEF S EF OD ∆=,由BDE CEF S S ∆∆=代入数据即可求解【详解】解:(1)抛物线2()30y ax bx a =++≠与x 轴交于点(1,0)A 和点(3,0)B -,∴309330a b a b ++=⎧⎨-+=⎩,解得12a b =-⎧⎨=-⎩. ∴所求抛物线解析式为:223y x x =--+;(2)抛物线解析式为:223y x x =--+,∴其对称轴为212x -==-, ∴设P 点坐标为(1,)a -,当0x =时,3y =,(0,3)C ∴,(1,0)M -,∴当CP PM =时,222(1)(3)a a -+-=,解得53a =, P ∴点坐标为:15(1,)3P -;∴当CM PM =时,222(1)3a -+=,解得a =P ∴点坐标为:2(P -或3(1,P -; ∴当CM CP =时,由勾股定理得:2222(1)3(1)(3)a -+=-+-,解得6a =,P ∴点坐标为:4(1,6)P -.综上所述,存在符合条件的点P ,其坐标为(-或(1,-或(1,6)-或5(1,)3-;(3)由点B 、C 的坐标知,直线BC 的表达式为3y x ,则点E 、F 的坐标分别为(,3)d d +、2(,23)d d d --+,11·(3)?(3)22BDE S BD DE d d ∆=⨯=⨯++, 211·(233)?()22CEF S EF OD d d d d ∆==⨯--+---,BDE CEF S S ∆∆=,∴211(3)?(3)(233)?()22d d d d d d ⨯++=⨯--+---, 解得0d =(舍去)或3-(舍去)或32-, 故32d =-. 【点睛】本题考查二次函数的综合题,涉及到待定系数法求解析式、等腰三角形的性质、三角形面积计算,解题的关键是综合运用所学知识,注意题(2)要分情况考虑进行求解.2.如图用长为30m 的篱笆围成一个一边靠墙的矩形养鸡场ABCD ,已知墙长14m ,设边AB 的长为xm ,矩形ABCD 的面积为ym 2.(1)求y 与x 之间的函数关系式,并求出函数y 的最大值.(2)当y =108时,求x 的值.【答案】(1)y =﹣12(x ﹣15)2+112.5,y 的最大值为112m 2;(2)x 的值为12 【分析】(1)根据长方形的面积等于长乘以宽及墙体长度为14米,即可求出y 与x 的函数关系式,结合二次函数增减性得出二次函数最值;(2)把y=108代入(1)中的解析式,解方程得出答案.【详解】(1)根据题意可得:AD=12(30﹣x)m,y=12x(30﹣x)=﹣12x2+15x=﹣12(x﹣15)2+112.5,∵墙长为14m,∴0<x≤14,则x≤15时,y随x 的增大而增大,∴当x=14m,即AB=14m,BC=8m时,长方形的面积最大,最大面积为:14×8=112(m2);∴y的最大值为112m2;(2)当y=108时,108=12x(30﹣x),整理得:x2﹣30x+216=0,解得:x1=12,x2=18(不合题意舍去),答:x的值为12.【点睛】本题考查了二次函数在实际问题中的应用,根据题意正确得出函数关系式并明确二次函数的性质是解题的关键.3.如图,抛物线y=x2﹣2x+k+1与x轴相交于A,B两点(点A在点B的左侧),与y轴相交于点C(0,﹣3).P 为抛物线上一点且在y轴的右侧,横坐标为m.(1)求此抛物线的解析式;(2)当点P 在第四象限时,求△BAP 面积的最大值;(3)设此抛物线在点C 与点P 之间部分(含点C 和点P )最高点与最低点的纵坐标之差为h .求h 关于m 的函数解析式,并写出自变量m 的取值范围.【答案】(1)y =x 2﹣2x ﹣3;(2)8;(3)222(01)1(12)21(2)m m m h m m m m ⎧-+<≤⎪=<≤⎨⎪-+>⎩.【分析】(1)将点C 坐标代入表达式即可求出k 的值并得出解析式;(2)根据题目分析可知,当点P 位于抛物线顶点时,△BAP 的面积最大,根据解析式求出A 、B 的坐标,从而得到AB 的长,再利用三角形的面积公式计算面积即可;(3)分三种情况,0<m ≤1,1<m ≤2,m >2,分别进行计算即可.【详解】(1)∵点C (0,﹣3)在抛物线y =x 2﹣2x +k +1上,∴k +1=﹣3,解得:k =﹣4,∴此抛物线的解析式为y =x 2﹣2x ﹣3;(2)令y =0,则0=x 2﹣2x ﹣3,解得:x 1=﹣1,x 2=3,∴A (﹣1,0),B (3,0),∴AB =4.∵y =x 2﹣2x ﹣3=(x ﹣1)2﹣4,∴抛物线顶点为(1,﹣4),∴当P 位于抛物线顶点时,△ABP 的面积有最大值,此时S 12=⨯4×4=8, 即△BAP 面积的最大值是8;(3)∵P 为抛物线上一点且在y 轴的右侧,横坐标为m ,∴m >0,∴当0<m ≤1时,h =﹣3﹣(m 2﹣2m ﹣3)=﹣m 2+2m ;当1<m ≤2时,h =(22﹣2×2﹣3)﹣(﹣4)=1;当m >2时,h =m 2﹣2m ﹣3﹣(﹣4)=m 2﹣2m+1. 综上所述,222(01)1(12)21(2)m m m h m m m m ⎧-+<≤⎪=<≤⎨⎪-+>⎩.【点睛】本题为二次函数的综合题,熟练掌握二次函数表达式求法及二次函数的性质,对于动点问题正确分析出所存在的所有情况是解题的关键.4.如图,已知二次函数y =﹣x 2+(a +1)x ﹣a 与x 轴交于A ,B 两点(点A 位于点B 的左侧),点A 的坐标为(﹣3,0),与y 轴交于点C .(1)求a 的值与△ABC 的面积;(2)在抛物线上是否存在一点P ,使S △ABP =S △ABC .若存在,请求出P 坐标,若不存在,请说明理由.【答案】(1)a=﹣3,S△ABC=6;(2)存在,P点的坐标为(﹣2,3)或(﹣13)或(﹣1,﹣3).【分析】(1)令y=0代入函数解析式得到点A、B的坐标,进而可得a的值,然后可得点B、C的坐标,进而可求解△ABC的面积;(2)由(1)可得点C的坐标,然后由等积法可得△ABP与△ABC同底,进而可得点P的纵坐标为±3,然后分别代入二次函数解析式可求解.【详解】解:(1)∵y=﹣x2+(a+1)x﹣a,令x=0,则y=﹣a,∴C(0,﹣a),令y=0,即﹣x2+(a+1)x﹣a=0解得:x1=a,x2=1,由图象知:a<0,∴A(a,0),B(1,0).∵点A的坐标为(﹣3,0),∴a=﹣3,AB=4,∴OC=3,∴S△ABC12=AB•OC1432=⨯⨯=6;(2)∵a =﹣3,∴C (0,3),∵S △ABP =S △ABC ,∴P 点的纵坐标为±3,把y =3代入y =﹣x 2﹣2x +3得﹣x 2﹣2x +3=3,解得:x =﹣2或x =0(与点C 重合,舍去);把y =﹣3代入y =﹣x 2﹣2x +3得﹣x 2﹣2x +3=﹣3,解得:x =﹣1x =﹣1,∴P 点的坐标为(﹣2,3)或(﹣1,﹣3)或(﹣1,﹣3).【点睛】本题主要考查二次函数的应用,熟练掌握二次函数的性质是解题的关键.5.如图,抛物线26y ax bx =++经过()2,0A -、()4,0B 两点,与y 轴交于点C ,点D 是抛物线上一动点,设点D 的横坐标为()14m m <<,连结AC 、BC 、DB 、DC .(1)求抛物线的函数表达式.(2)当BCD △的面积等于AOC △的面积的34时,求m 的值. (3)当2m =时,若点M 是x 轴上一动点,点N 是抛物线上一动点,试判断是否存在这样的点M ,使得以点B 、D 、M 、N 为顶点的四边形是平行四边形?若存在,请直接写出点M 的的坐标;若不存在,请说明理由.【答案】(1)233642y x x =-++;(2)3m =;(3)点M 的坐标为()2,0或)1,0或()1,0或()6,0.【分析】(1)用待定系数法即可求解;(2)22133332662324224BDC S HD OB m m m m m ⎛⎫⎛⎫=⋅=-+++-=-+ ⎪ ⎪⎝⎭⎝⎭,则3319624422AOC S =⨯⨯⨯=,即可求解; (3)分BD 是边、BD 是对角线两种情况,利用图象平移的性质和中点坐标公式即可求解.【详解】解:(1)抛物线26y ax bx =++经过()2,0A -、()4,0B 两点, ∴042601646a b a b =-+⎧⎨=++⎩, 解得:3432a b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴抛物线的表达式为:233642y x x =-++; (2)由抛物线的表达式可知,点()0,6C ,()2,0A -, ∴1126622AOC S OA OC =⨯⨯=⨯⨯=, 设直线BC 的函数表达式为:()0y kx e k =+≠,由点B 、C 两点的坐标得:406k e n +=⎧⎨=⎩, 解得:326k e ⎧=-⎪⎨⎪=⎩,∴直线BC 的表达式为:362y x =-+, 如图所示,过点D 作y 轴的平行线交直线BC 于点H ,交x 轴于点F ,作CE BD ⊥交BD 于点E .点D 的横坐标为()14m m <<, ∴236,342m m D m ,点3,62H m m ⎛⎫-+ ⎪⎝⎭, ∴2233336634224DH m m m m m ⎛⎫=-++--+=-+ ⎪⎝⎭,()4,0B , ∴4OB =,()11112222BCD CDH BDH S S S DH CE DH BF DH CE BF DH OB =+=⋅+⋅=⋅+=⋅, ∴221133=3462242BCD SDH OB m m m m ⎛⎫=⋅-+⨯=-+ ⎪⎝⎭, BCD △的面积等于AOC △的面积的34,∴2336=624m m -+⨯, ∴11m =(舍去),23m =,∴3m =;(3)当2m =时,点()2,6D ,设点(),0M p ,点(),N t n , 则233642n t t =-++①, Ⅰ:当BD 是边时,点B 向左平移2个单位,向上平移6个单位得到点D ,同样点()M N 向左平移2个单位,向上平移6个单位得到点()N M ,∴206p t n -=⎧⎨+=⎩或206p t n +=⎧⎨-=⎩②, 联立①②并解得:426p t n =⎧⎪=⎨⎪=⎩(不符合题意,舍去)或206p t n =⎧⎪=⎨⎪=⎩或116p t n ⎧=⎪⎪=+⎨⎪=-⎪⎩或116p t n ⎧=⎪⎪=⎨⎪=-⎪⎩;∴点M 的坐标为()2,0或)1,0或()1,0-; Ⅱ:当BD 是对角线时, 由中点坐标公式得:()()()()1124221160022p t n ⎧+=+⎪⎪⎨⎪+=+⎪⎩③,联立①③并解得:606p t n =⎧⎪=⎨⎪=⎩或426p t n =⎧⎪=⎨⎪=⎩(不符合题意,舍去),∴点M 的坐标为()6,0;综上,点M 的坐标为()2,0或)1,0或()1,0或()6,0. 【点评】本题是二次函数综合题,主要考查了一次函数的性质、平行四边形的性质、图形的平移、面积的计算等,其中(3),要注意分类求解,避免遗漏.6.如图,已知抛物线23y ax bx =++()0a ≠与x 轴交于点1,0A 和点()3,0B -,与y 轴交于点 C . (1)求抛物线的解析式;(2)设抛物线的对称轴与x 轴交于点M ,问在对称轴上是否存在点P ,使CMP 为等腰三角形?若存在,请直接写出所有符合条件的点P 的坐标;若不存在,请说明理由;(3)作直线BC ,若点(),0D d 是线段BM 上的一个动点(不与B 、M 重合),过点D 作x 轴的垂线交抛物线于点F ,交BC 于点E ,当BDE CEF S S =△△时,求d 的值.【答案】(1)223y x x =--+;(2)存在;P 坐标为51,3⎛⎫- ⎪⎝⎭或(-或(1,-或()1,6-;(3)d =.【分析】(1)用待定系数法即可求解;(2)由抛物线解析式求出()0,3C ,对称轴是直线1x =-,进而得出()1,0M -,设P 点坐标为()1,c -,则用勾股定理可知CP =CM ==PM =CP PM =、CM PM =、CM CP =三种情况,根据等腰三角形腰相等,分别求解即可;(3)由点B 、C 的坐标可知直线BC 的表达式为:3y x ,因为点(),0D d ,所以可知点E 、F 的坐标分别为(),3d d +、()2,23d d d --+,则23EF d d =--,根据三角形面积公式可知 12BDE S BD DE =⋅,12CEF S EF OD =⋅,由BDE CEF S S =△△,即可求解. 【详解】解:(1)抛物线23y ax bx =++()0a ≠与x 轴交于点1,0A 和点()3,0B -, ∴309330a b a b ++=⎧⎨-+=⎩, 解得:12a b =-⎧⎨=-⎩, ∴所求抛物线解析式为:223y x x =--+;(2)抛物线解析式为:223y x x =--+,∴其对称轴为()21221b x a -=-=-=-⨯-, ∴点()1,0M -,点P 在对称轴上,∴设P 点坐标为()1,c -,当0x =时,3y =,∴()0,3C ,∴CP =CM ==PM①当CP PM =时,=即()2213c c +-=,解得:53c =,∴P 点坐标为51,3⎛⎫- ⎪⎝⎭,②当CM PM =时,=即210c =,解得:c =,∴P 点坐标为(-或(1,-,③当CM CP =时,=即()21310c +-=,解得:16c =,20c =(不符合题意,舍去),∴P 点坐标为()1,6-,综上所述,存在符合条件的点P ,其坐标为51,3⎛⎫- ⎪⎝⎭或(-或(1,-或()1,6-; (3)设直线BC 的表达式为:y kx e =+,由点B 、C 的坐标可知,033k e e =-+⎧⎨=⎩, 解得:13k e =⎧⎨=⎩, ∴直线BC 的表达式为:3y x ,点(),0D d ,∴点E 、F 的坐标分别为(),3d d +、()2,23d d d --+,∴()2222332333EF d d d d d d d d =--+-+=--+--=--, 12BDE SBD DE =⋅,12CEF S EF OD =⋅, ∴()()1332BDE S d d =++,()()21302CEF S d d d =--⨯-,BDE CEF S S =△△, ∴()()()()21133322d d d d d ++=---,∴112d +=,212d =,33d =-(不符合题意,舍去),∴d =. 【点评】本题为二次函数综合题,主要考查了二次函数的基本知识、等腰三角形的性质、三角形面积的计算,要注意的是(2)中,不确定等腰三角形哪条边是底边的情况下,要分类讨论,不要漏解.7.在平面直角坐标系中,直线y =x +4与x 、y 轴分别交于A 、B 两点,抛物线y =﹣x 2+bx +c 经过A 、B 两点,并与x 轴交于另一点C (点C 在点A 的右侧),点P 是抛物线上的一个动点.(1)求抛物线解析式及点C ;(2)若点P 在第二象限内,过点P 作PD ⊥x 轴于点D ,交AB 于点E ,当点P 运动到什么位置时,PE 最长是多少?【答案】(1)y =﹣x 2﹣3x +4,点C (1,0);(2)点P 运动到(﹣2,6)时,PE 最长为4【分析】(1)先求出点A 、B 的坐标,然后代入二次函数解析式,求出b 、c 的值,以及点C 的坐标;(2)如图,设P 点横坐标为m ,求出P 点纵坐标以及点E 的纵坐标,求出PE 的长度,利用二次函数求极值的方法求出PE 长度的最大值.【详解】解:(1)∵直线y =x +4与x 、y 轴分别交于A 、B 两点,∴A (﹣4,0),B (0,4),将点A 、B 坐标代入抛物线解析式2y x bx c =-++得:16404b c c --+⎧⎨⎩==, 解得:34b c -⎧⎨⎩==, 则二次函数的解析式为:y =﹣x 2﹣3x +4,令﹣x 2﹣3x +4=0,解得:x 1=-4,x 2=1,则点C 坐标为(1,0);(2)如图,设P 点横坐标为m ,则纵坐标为﹣m 2﹣3m +4,E 点纵坐标为m +4,则PE =﹣m 2﹣3m +4﹣(m +4)=﹣m 2﹣3m +4﹣m ﹣4=﹣m 2﹣4m =﹣(m +2)2+4,当m =﹣2时,PE 有最大值4,此时点P 纵坐标为6,故当点P 运动到(﹣2,6)时,PE 最长为4.【点睛】本题综合考查了二次函数的图象与性质、待定系数法、一次函数与二次函数结合的问题,涉及考点较多,难度较大,熟练掌握二次函数的性质是解题的关键.8.如图,抛物线y =x 2﹣mx ﹣3(m >0)交y 轴于点C ,CA ⊥y 轴,交抛物线于点A ,点B 在抛物线上,且在第一象限内,BE ⊥y 轴,交y 轴于点E ,交AO 的延长线于点D ,BE =2AC .(1)用含m 的代数式表示BE 的长.(2)当m =D 是否落在抛物线上,并说明理由.【答案】(1)BE =2m ;(2)点D 在抛物线上,理由见解析.【分析】(1)先确定(0,3)C -,再解方程233x mx --=-得 (,3)-A m ,所以AC m =,从而得到22BE AC m ==;(2)先利用待定系数法求出直线OA 的方程为y =,再计算出x =233y x =-=,从而得到B ,3),则确定D 点坐标(,3),然后根据二次函数图象上点的坐标特征可判断点D 在抛物线上.【详解】解:(1)当0x =时,233y x mx =--=-,则 (0,3)C -,当3y =-时,233x mx --=-,解得 10x =,2x m =,则(,3)-A m ,AC m ∴=, 22BE AC m ∴==;(2)点D 在抛物线上.理由如下:当m =时,点A 的坐标为3)-.设OA 的直线方程为y kx =,将A 3)-代入,得k =∴直线OA 的方程为y =,抛物线的解析式为23y x =-,而BE =B 点的横坐标为当x =2312633y x =-=--=,则 B ,3),//BD x 轴,D ∴点的纵坐标为3,当3y =时,3=,解得x = D 点坐标为(3),当x =233333y x =--=+-=,∴点D 在抛物线上.【点睛】本题考查了二次函数图象上点的坐标特征,熟悉相关性质是解题的关键.9.如图,已知90,30Rt OAB OAB ABO ∠=︒∠=︒,,斜边4OB =,将Rt OAB 绕点O 顺时针旋转60︒,得到ODC △,连接BC .(1)填空:OBC ∠=_________︒;(2)如图1,连接AC ,作OP AC ⊥,垂足为P ,求OP 的长度;(3)如图2,点M ,N 同时从点O 出发,在OCB 边上运动,M 沿O C B →→路径匀速运动,N 沿O B C →→路匀速运动,当两点相遇时运动停止,己知点M 的运动速度为1.5单位/秒,点N 的运动速度为1单位/秒,设运动时间为x 秒,OMN 的面积为y ,求y 与x 的函数关系式.【答案】(1)60;(2;(3)()222808384834 4.82x x x x x x ⎧⎛⎫<≤⎪ ⎪⎝⎭⎪⎪⎪⎛⎫-+<≤⎨ ⎪⎝⎭⎪⎪⎪<≤⎪⎩【分析】(1)由旋转性质可知:OB=OC ,∠BOC=60°,则△OBC 是等边三角形,即可求解;(2)证明△BOC 是等边三角形,BC=OB=4,而∠OBC=60°,∠ABC=∠ABO+∠OBC=90°,故AC ==S △AOC 11222OA AB =⋅⋅=⨯⨯= (3)分880, 4.4 4.833x x x <≤<≤<≤三种情况,利用面积公式求解即可. 【详解】解:(1)由旋转性质可知:OB=OC ,∠BOC=60°,∴△OBC 是等边三角形,∴∠OBC=60°.故答案为:60;(2)如图1,904,30BAP OB ABO ∠=︒=∠=︒,,122OA OB AB ∴====,由旋转得:BOC 是等边三角形,4BC OB ==∴6090OBC ABC ABO OBC ∠=︒∠=∠+∠=︒,,∴AC ==∴11222AOCS OA AB =⋅⋅=⨯⨯=∴27AOC S OP AC ===. (3)①当803x <≤时,M 在OC 上运动,N 在OB 上运动,如图2,过点N 作NE OC ⊥且交OC 于点E .则12OE x NE x ===,,11 1.5222OMN S OM NE x x ∴=⋅⋅=⨯⨯.∴2y x =; ②当843x <≤时,M 在BC 上运动,N 在OB 上运动,如图2,作MH OB ⊥于H ,则)8 1.5,8 1.5BM x MH x =-=-∴212y ON MH x =⨯⨯=+ ③当4 4.8x <≤时,M 、N 都在BC 上运动,作OG BC ⊥于G .12 2.5MN x =-,OG AB ==∴12y MN OG x =⋅⋅=综上所述,()222808384834 4.8x x x x x x ⎧⎛⎫<≤⎪ ⎪⎝⎭⎪⎪⎪⎛⎫-+<≤⎨ ⎪⎝⎭⎪⎪⎪<≤⎪⎩【点睛】本题考查几何变换综合题、30度的直角三角形的性质、等边三角形的判定和性质、三角形的面积等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.10.如图,已知△ABC 中,BC =10,BC 边上的高AH =8,四边形DEFG 为内接矩形.(1)当矩形DEFG 是正方形时,求正方形的边长.(2)设EF =x ,矩形DEFG 的面积为S ,求S 关于x 的函数关系式,当x 为何值时S 有最大值,并求出最大值.【答案】(1)409;(2)()254204S x=--+,当x=4时,S有最大值20【分析】(1)GF∥BC得△AGF∽△ABC,利用相似三角形对应边上高的比等于相似比,列方程求解;(2)根据相似三角形的性质求出GF=10−54x,求出矩形的面积,运用二次函数性质解决问题.【详解】(1)设HK=y,则AK=AH﹣KH=AH﹣EF=8﹣y,∵四边形DEFG为矩形,∴GF∥BC,∴△AGF∽△ABC,∴AK:AH=GF:BC,∵当矩形DEFG是正方形时,GF=KH=y,∴(8﹣y):8=y:10,解得:y=409;(2)设EF=x,则KH=x.∴AK=AH﹣EF=8﹣x,由(1)可知:8108GF x-=,解得:GF=10﹣54 x,∴s=GF•EF=(10﹣54x)x=﹣54(x﹣4)2+20,∴当x=4时S有最大值,并求出最大值20.【点睛】本题考查了相似三角形的性质,二次函数的最值,矩形的性质的应用,注意:矩形的对边相等且平行,相似三角形的对应高的比等于相似比,题目是一道中等题,难度适中.11.如图,在Rt ABC △中,90C ∠=︒,4cm AC =,3cm BC =.动点M ,N 从点C 同时出发,均以每秒1cm 的速度分别沿CA 、CB 向终点A ,B 移动,同时动点P 从点B 出发,以每秒2cm 的速度沿BA 向终点A 移动,连接PM ,PN ,设移动时间为t (单位:秒,0 2.5t <<).(1)当t 为何值时,以A ,P ,M 为顶点的三角形与ABC 相似?(2)是否存在某一时刻t ,使四边形APNC 的面积S 有最小值?若存在,求S 的最小值;若不存在,请说明理由.【答案】(1)t=32;(2)存在,t=32时,最小值为215. 【分析】(1)分两种情况讨论:①当△AMP ∽△ABC 时,②当△APM ∽△ABC 时,对应边成比例求解,即可求出结论;(2)过P 作PH 垂直BC ,通过△BPH ∽△BAC ,求出PH 长,再用△ABC 的面积减去△BPN 面积即可表示四边形APNC 的面积解析式,化成顶点式找到最小值,即可求出结果;【详解】解:(1)以A 、P 、M 为顶点的三角形与△ABC 相似,分两种情况:①当△AMP ∽△ABC 时,AP AM AC AB =,即52445t t --=,解:t=32,②当△APM∽△ABC时,AM APAC AB=,即45245t t--=,解得t=0(不符合题意,舍去)综上所述,当t=32秒时,以A、P、M为顶点的三角形与△ABC相似;(2)存在某一时刻t,使四边形APNC的面积S有最小值,理由如下:设存在某一时刻t,使四边形APNC的面积S有最小值,如图,∵在Rt△ABC中,∠C=90°,AC=4cm,BC=3cm,∴,过P作PH⊥BC于H,则∠PHB=∠C=90°,∵∠B=∠B,∴△BPH∽△BAC,∴PH BP AC AB=∴2 45 PH t=解得PH=85tcm∴S=S△ABC-S△BPN=12×3×4-12×(3-t)85t=45(t-32)2+215(0<t<2.5)∵45>0,∴S有最小值,当t=32时,S最小值=215,∴存在t值使四边形APNC的面积S最小,t=32时,最小值为215.【点睛】本题考查相似三角形的性质和判定,平行线分线段成比例,二次函数最值以及三角形面积问题等知识点,注意要分类讨论,以防漏解.12.如图,已知二次函数24y ax x c =-+的图像经过点A (-1,0)和点D (5,0).(1)求该二次函数的解析式;(2)直接写出该抛物线的对称轴及顶点C 的坐标;(3)点B 是该抛物线与y 轴的交点,求四边形ABCD 的面积.【答案】(1)245y x x =--;(2)对称轴为直线x=2,顶点C 的坐标为(2,-9);(3)30【分析】(1)利用待定系数法解答;(2)将函数解析式化为顶点式即可得到答案;(3)连接AB 、BC 、CD 、OC ,根据解析式求出点B 的坐标,再利用面积和的关系求出答案.【详解】(1)∵二次函数24y ax x c =-+的图像经过点A (-1,0)和点D (5,0),∴4025200a c a c ++=⎧⎨-+=⎩,解得15a c =⎧⎨=-⎩, ∴该二次函数的解析式为245y x x =--;(2)∵2245(2)9y x x x =--=--,∴该抛物线的对称轴为直线x=2,,顶点C 的坐标为(2,-9);(3)如图,连接AB 、BC 、CD 、OC ,令245y x x =--中x=0,解得y=-5,∴B (0,-5)∵A (-1,0)、B (0,-5)、C (2,-9)、D (5,0),∴OA=1,OB=5,OD=5,∴四边形ABCD 的面积=AOB BOC COD S S S ++=11151525930222=⨯⨯+⨯⨯+⨯⨯=.【点睛】此题考查待定系数法求二次函数的解析式,二次函数的性质,将二次函数的一般式化为顶点式,利用割补法求几何图形的面积,这是一道二次函数的基础题.13.如图,在矩形OABC 中,点O 为原点,点A 的坐标为(0,8),点C 的坐标为(6,0).抛物线y =49-x 2+bx +c 经过点A 、C ,与AB 交于点D .点P 为线段BC 上一个动点(不与点C 重合),点Q 为线段AC 上一个动点,AQ =CP ,连接PQ ,设CP =m ,△CPQ 的面积为S .(1)求抛物线的函数解析式.(2)求S 关于m 的函数表达式.(3)当S 最大时,△求点Q 的坐标.△若点F 在抛物线y =49-x 2+bx +c 的对称轴上,且△DFQ 的外心在DQ 上,求点F 的坐标.【答案】(1)244893y x x =-++;(2)23310S m m =-+;(3)△点Q 的坐标为(3,4);△点F 的坐标为32⎛ ⎝⎭,或362⎛- ⎝⎭,. 【分析】 (1)将A 、C 两点坐标代入抛物线y =49-x 2+bx +c ,即可求得抛物线的解析式; (2)先用m 表示出QE 的长度,进而求出三角形的面积S 关于m 的函数;(3)△根据二次函数的最值,求出S 最大时的m 值,得出AQ 的长,即可求得点Q 的坐标;△根据三角形的外心性质,可得△DFQ 为直角三角形,且DQ 为斜边,由勾股定理列出关于三边的方程,求解后即可得到点F 的坐标.【详解】解:(1)将A (0,8)、C (6,0)两点坐标代入抛物线y =49-x 2+bx +c ,得 8436609c b c =⎧⎪⎨-⨯++=⎪⎩, 解得438b c ⎧=⎪⎨⎪=⎩, ∴抛物线的解析式为:244893y x x =-++; (2)过点Q 作QE ⊥BC 与E 点,∵A (0,8)、C (6,0),则OA =8,OC =6,∴AC 10=.则sin ∠ACB =35QE AB QC AC ==. ∴3105QE m =-, ∴3(10)5QE m =-, ∴21133(10)322510S CP QE m m m m =⋅=⨯-=-+; (3)△∵()221133315(10)3522510102S CP QE m m m m m =⋅=⨯-=-+=--+, ∴当m =5时,S 取最大值,即AQ =5,∵A (0,8)、C (6,0),∴点Q 的坐标为(3,4);△∵抛物线244893y x x =-++的对称轴为x =32, ∵△DFQ 的外心在DQ 上,∴△DFQ 为直角三角形,且∠DFQ =90°当∠DFQ =90°时,设F (32,n ), ∵点D 是AB 与244893y x x =-++的交点, 令y =8,则x =0或x =3,∴点D 的坐标为(3,8),则FD2+FQ2=DQ2,即()()22991644n n+++=8--4解得62n=±.∴满足条件的点F共有两个,坐标分别为36+22⎛⎫⎪⎪⎝⎭,或3622⎛-⎝⎭,.【点睛】本题是二次函数的综合题,其中涉及到的知识点有抛物线的解析式的求法抛物线的最值等知识点,解题时注意数形结合数学思想的运用.14.如图,已知正三角形ABC的边长为4,矩形DEFG的DE两个点在正三角形BC边上,F、G点在AB、AC边上,求矩形DEFG的面积的最大值是多少?【答案】【分析】设EF=x,先求出三角形ABC的高AH的长,由矩形性质FG∥BC,推出△AFG∽△ABC利用性质得比例式FG AM=BC AH求出4x⋅,利用矩形面积公式S矩形DEFG=243x x-+利用函数的性质求出最值即可.【详解】过A 作AH ⊥BC 于H ,交FG 于M ,∵正三角形ABC 的边长为4,∴BH=CH=2,在Rt △ABH 中由勾股定理设EF=x ,则AM=x ,∵矩形DEFG 的DE 两个点在正三角形BC 边上,△FG ∥BC ,∴△AFG ∽△ABC , ⊥FG AM =BC AH, ⊥234AMBC FG==AH 2x⋅,△S 矩形DEFG 244x xx x ⋅=+,⊥a =0<, 则抛物线开口向下,有最大值,x ==⎝⎭S 最大=【点睛】本题考查等边三角形内接矩形问题,涉及等边三角形的性质,矩形的性质,相似三角形的判定与性质,二次函数的性质,掌握等边三角形的性质,矩形的性质,相似三角形的判定与性质,二次函数的性质是解题关键.15.某农场拟建三间矩形饲养室,饲养室一面靠墙(墙可用长≤20m),中间用两道墙隔开,已知计划中的建筑材料可建围墙的总长为60m,设饲养室宽为x(m),总占地面积为y(m2)(如图所示).(1)求y关于x的函数表达式,并直接写出自变量x的取值范围;(2)三间饲养室占地总面积有可能达到210m2吗?请说明理由.【答案】(1)y=﹣4x2+60x,10≤x<15;(2)不能,理由见解析.【分析】(1)设饲养室宽为x(m),则长为(60﹣4x)m,由矩形面积公式可以得到y关于x的函数表达式,再由y 的值大于0且小于或等于20可以得到自变量的取值范围;(2)令y=210,得到关于x的一元二次方程,解方程得到x的值后根据(1)中自变量的取值范围可以得到问题解答.【详解】(1)设饲养室宽为x(m),则长为(60﹣4x)m,∴y=x (60﹣4x )=﹣4x 2+60x ,∵0<60﹣4x≤20,∴10≤x <15;(2)不能,理由如下:当y=210时,﹣4x 2+60x=210,解得:或<10,且10, ∴三间饲养室占地总面积不可能达到210平方米.【点睛】本题考查二次函数的应用,由题意列出二次函数解析式后再结合二次函数图象或一元二次方程的解作答是解题关键.16.如图,在平面直角坐标系中,已知抛物线2y ax bx c =++与x 轴交于点A ,点B ,与y 轴交于点C ,其中()4,0A -,()2,0B ,()0,4C -.(1)求该抛物线的函数表达式:(2)若点D 是y 轴上的点,且以A ,C ,D 为顶点的三角形与ABC 相似,求点D 的坐标. (3)点P 是抛物线2y ax bx c =++的对称轴上的一点,点S 是坐标平面内一点,若以A ,C ,P ,S 为顶点的四边形是菱形,请直接写出所有符合条件的点P 的坐标.【答案】(1)2142y x x =+-;(2)1D (0,43),2D (0,2);(3)1P (-1,-1),2P (-1,3P (-1,,4P (-1,,5P (-1,-4【分析】(1)设出二次函数的交点式,将点C 带入求值即可求得解析式;(2)分两种情况讨论:①当ABC CAD ∽时,②当ABC CDA ∽时,求点D 的坐标即可;(3)根据菱形是四边都相等的平行四边形,分情况讨论即可;【详解】(1)∵A(-4,0),B(2,0),设抛物线解析式为()()42y a x x =+-,抛物线过C(0,-4)84a ∴-=-,12a ∴=,∴此抛物线解析式为2142y x x =+-; (2)∵A(-4,0),B(2,0),C(0,-4)4OA OC ∴==,2BO =,6AB ∴=ACO ∴为等腰直角三角形①当ABC CAD ∽时 则CD AC AC AB=6=,163CD ∴= 164433OD CD OC ∴=-=-= 1D ∴(0,43) ②当ABC CDA ∽时则CD AC AB AC=6CD ∴=6CD ∴= 642OD CD OC ∴=-=-=2D ∴(0,2)(3)∵抛物线对称轴为直线x=-1,设点P(-1,y),∵A(-4,0), C(0,-4),()2222149AP y y =-++=+ ,()()()222201441CP y y =+++=++()()222040432AC =+++=①若AP=CP ,则()22y 9=y+41++ ,解得y=-1, △ 1P (-1,-1),②若AP=AC ,则2y 9=32+,解得:1y ,2y =,∴ 2P (-1,3P (-1,③若CP=AC ,则()2y+41=32+,解得:1y ,2y =4-∴ 4P (-1,,5P (-1,-41P (-1,-1),2P (-1,,3P (-1,,4P (-1,,5P (-1,-4【点睛】本题考查了二次函数解析式、二次函数的性质、二次函数与直角三角形、二次函数与菱形的结合,解题的关键是注意分类讨论的情况;17.如图,在ABC 中,AB=AC=5,BC=8,点D 为BC 边上的动点(点D 不与点B 、C 重合),以D 为顶点作ADE B ∠=∠,射线DE 交AC 边于点E .(1)若CE=3,求BD 的长;(2)如图2,当//ED AB 时,求AE 的长;(3)设BD=x ,AE=y ,求y 关于x 的函数解析式,并写出x 的取值范围.【答案】(1)3或5;(2)12564;(3)218555y x x =-+,08x <<. 【分析】(1)先根据等腰三角形的性质可得B C ∠=∠,再根据三角形的外角性质可得BAD CDE ∠=∠,然后根据相似三角形的判定与性质求解即可得;(2)先根据平行线的性质、等量代换可得B C BAD CDE ∠=∠=∠=∠,再利用相似三角形的判定与性质可得AB BD BC AB=,从而可得2539,88BD CD ==,然后利用相似三角形的判定与性质可得CD CE BC AC =,由此即可得;(3)先根据线段的和差可得8,5CD x CE y =-=-,再利用(1)中相似三角形的性质可得y 关于x 的函数解析式,然后根据BC 的长即可得x 的取值范围.【详解】(1)设BD a =,则8CD BC BD a =-=-,5AB AC ==,B C ∴∠=∠,由三角形的外角性质得:B BAD ADC ADE CDE ∠+∠=∠=∠+∠,ADE B ∠=∠,BAD CDE ∴∠=∠,在ABD △和DCE 中,B C BAD CDE ∠=∠⎧⎨∠=∠⎩, ABD DCE ∴~,AB BD CD CE∴=,即583a a =-, 解得3a =或5a =,经检验,3a =或5a =都是所列分式方程的解,则BD 的长为3或5;(2)设AE b =,则5CE AC AE b =-=-,由(1)可知,B C ∠=∠,BAD CDE ∠=∠,//ED AB ,B CDE ∴∠=∠,B C BAD CDE ∴∠=∠=∠=∠,在ABD △和CBA △中,BAD C B B∠=∠⎧⎨∠=∠⎩, ∴ABDCBA , AB BD BC AB ∴=,即585BD =, 解得258BD , 2539888CD BC BD ∴=-=-=, 又//ED AB ,CDE CBA ∴~,CD CE BC AC ∴=,即395885b -=, 解得12564b =, 即AE 的长为12564; (3),,8,5BD x AE y BC AC ====,8,5CD BC BD x CE AC AE y ∴=-=-=-=-, 由(1)已证:AB BD CD CE =, 585x x y∴=--, 化简整理得:218555y x x =-+, 点D 为BC 边上的动点(点D 不与点B 、C 重合),且8BC =, 08x ∴<<,故y 关于x 的函数关系式为218555y x x =-+,x 的取值范围为08x <<. 【点睛】本题考查了等腰三角形的性质、可化为一元二次方程的分式方程的应用、相似三角形的判定与性质等知识点,熟练掌握相似三角形的判定与性质是解题关键.18.为了美化校园,某校综合实践小组准备利用校园内一面长15m 的墙和40m 的不锈钢管,把校园内的一片空地围成如图所示的由四个小矩形组成的矩形花圃,若设矩形花圃的宽为x m ,矩形花圃的面积为S 2m ,请解答下列问题:(1)求出S 2m 与()x m 函数关系式,并确定自变量x 的取值范围;(2)当矩形花圃的宽为多少米时,矩形花圃的面积最大,并求出此时矩形花圃的面积.【答案】(1)2540S x x =-+,()58x ≤<;(2)当矩形花圃的宽为5m 时,矩形花圃的面积最大,此时矩形花圃的面积为275m △【分析】(1)利用矩形面积公式结合图形求出S 2m 与()xm 函数关系式,进而利用040515x <-≤求出自变量x 的取值范围;(2)利用二次函数的增减性结合x 的取值范围得出答案.【详解】(1)由题意可知:矩形花圃的长为()405x m -, ()2405540S x x x x =-=-+,040515x <-≤,∴58x ≤<,∴自变量x 的取值范围为:58x ≤<;(2)2540S x x =-+()258x x =--()2225844x x =--+-()25480x =--+∴二次函数的对称轴为:直线4x =, 50a =-<,∴当4x >△,S 随x 的增大而减小,58x ≤<,∴当5x =△,S 有最大值,∴()()225548075S m =-⨯-+=.答:当矩形花圃的宽为5m 时,矩形花圃的面积最大,此时矩形花圃的面积为275m △【点睛】本题考查了二次函数的应用,二次函数的增减性以及不等式的应用,利用二次函数的增减性求出最值是解题的关键.19.如图,在平面直角坐标系中,直线210y x =-+与x 轴,y 轴相交于A ,B 两点.点C 的坐标是()8,4,连接AC ,BC .(1)求过O ,A ,C 三点的抛物线的解析式,并判断ABC 的形状;(2)抛物线上是否存在着一点P ,使PAB △的面积为25?若存在,求出P 的坐标,若不存在,请说明理由;(3)在抛物线上,是否存在着一点M ,使ABM 为以AB 为斜边的直角三角形?若存在,请直接写出M 的坐标;若不存在,请说明理由.【答案】(1)21566y x x =-,ABC 为以C 为直角顶点的直角三角形;(2)存在,P 的坐标为()15,50P -或()8,4P 或()0,0P 或()7,14P -;(3)()18,4M ,()20,0M ,()33,4M -.【分析】(1)先确定出点A ,B 坐标,再用待定系数法求出抛物线解析式;用勾股定理逆定理判断出△ABC 是直角三角形;(2)作PQ x ⊥轴交直线AB 于点Q ,由PAB △的面积为25求出PQ 的长,则可得217101066t t +-=,解得115t =-,28t =,30t =,47t =-,则可求得点P 的坐标; (3)根据二次函数的图象与性质可得抛物线的对称轴为直线522O A x x x +==,由圆周角性质的推论,直径所对的圆周角为直角,则M 必须在以AB 为直径的圆上,而M 又在抛物线上,M 在以AB 为直径的圆和抛物线的交点处均符合题意, 圆与抛物线共有四个交点为O ,A ,C ,3M ,由图象可得()184M ,,()200M ,,由3M 与()84C ,关于直线52x =对称可求解3M 的坐标. 【详解】解:(1)∵210y x =-+与x 轴,y 轴相交于A ,B 两点,当0y =时,即2100x -+=,解得5x =,△()50A ,, 当0x =时,10y =,△()010B ,. ∵抛物线过原点,∴设抛物线的解析式为2y ax bx =+.△2y ax bx c =++过()50A ,,()84C ,, 则25506484a b a b +=⎧⎨+=⎩, 解得1656a b ⎧=⎪⎪⎨⎪=-⎪⎩, △该抛物线的解析式为21566y x x =-. △()5,0A ,()0,10B ,()8,4C ,△()()22250010125AB =-+-=; ()()222580425AC =-+-=;()()22208104100BC =-+-=;△222AC BC AB +=.△ABC 为以C 为直角顶点的直角三角形(2)存在.理由如下:作PQ x ⊥轴交直线AB 于点Q ,设21566P t t t ⎛⎫- ⎪⎝⎭,,则()210Q t t -+,, △2171066P Q PQ y y t t =-=+-, △1·252PAB S OA PQ ==△,△15252PQ ⨯⋅= 即10PQ = 即217101066t t +-= 即217101066t t +-=或217101066t t +-=- 解得:115t =-,28t =,30t =,47t =-;当15t =-时,2155066P y t t =-=,此时()1550P -,; 当8t =时,215466P y t t =-=,此时()84P ,;当0t =时,215066P y t t =-=,此时()00P ,; 当7t =-时,2155066P y t t =-=,此时()714P -,; △综上所述:当P 的坐标为()1550P -,或()84P ,或()00P ,或()714P -,时,PAB △的面积为25. (3)由抛物线的轴对称性可知:抛物线的对称轴为直线522O A x x x +==, 若在抛物线找一点M 使ABM 为以AB 为斜边的直角三角形,即M 为直角顶点;由圆周角性质的推论,直径所对的圆周角为直角,则M 必须在以AB 为直径的圆上,而M 又在抛物线上,△M 在以AB 为直径的圆和抛物线的交点处均符合题意,如图所示:圆与抛物线共有四个交点,分别为O ,A ,C ,3M由(1)可知,当M 与O 或C 重合的时候均符合题意,与A 重合A ,B ,M 三点不能组成三角形,△()184M ,,()200M , 而AB 的中点即圆心在抛物线的对称轴上,所以抛物线与圆具备了公共的对称轴,直线52x =, △圆与抛物线的四个交点是关于直线52x =对称, △3M 与()84C ,关于直线52x =对称,△3522M Cx x += 解得33M x =-,△()334M -,综上可知:()184M ,,()200M ,,()334M -,. 【点睛】本题属于二次函数综合题,主要考查了待定系数法、勾股定理逆定理、圆周角定理等知识,解题的关键是能够熟练掌握待定系数法并准确灵活应用所学知识解决问题.20.如图,梯形ABCD 中,//AB DC ,90ABC ∠=︒,45A ∠=︒.30AB =,BC x =,其中530x ≤<.作DE AB ⊥于点E ,将ADE 沿直线DE 折叠,点A 落在F 处,DF 交BC 于点G .(1)用含有x 的代数式表示BF 的长;(2)设四边形DEBG 的面积为S ,求S 与x 的函数关系式;(3)当x 为何值时,S 有最大值,并求出这个最大值.【答案】(1)230BF x =-;(2)23604502S x x =-+-;(3)当20x 时,S 有最大值,最大值为150【分析】(1)由等腰直角三角形的性质解题; (2)由等腰直角三角形的性质及三角形面积公式解题;(3)将函数关系配方成顶点式,结合二次函数图象与性质解题.。

沪教版(上海)2021年中考复习 数学 相似三角形综合复习

沪教版(上海)2021年中考复习 数学 相似三角形综合复习

FGED CBA AB CDO① ②③④2021年中考复习 数学 相似三角形综合复习一、选择题1.如果两个相似三角形的面积比是1:2,那么它们的周长比是( )(A) 1:2(B) 1:4(C) 1:2(D) 2:12. 已知△ABC 和△DEF 相似,且△ABC 的三边长为3、4、5,如果△DEF 的周长为6,那么下列不可能是△DEF 一边长的是( )(A )1.5; (B )2; (C )2.5; (D )3. 3. 如图,在平行四边形ABCD 中,若E 为CD 中点,且AE 与BD 交于点F ,则△EDF 与△ABF 的周长比为( ) A . 1:2; B . 1:4; C . 1:3;D . 1:9.4. 在△ABC 中,D 、E 分别是边AB 、AC 上的点,下列条件中不能..判定△AED ∽△ABC 是( )A . ∠ADE=∠C ;B .∠AED=∠B ;C . AD AC AEAB=; D .AD ACBCDE=.5. 下列四个命题中,假命题是( )(A )有一个锐角相等的两个等腰三角形相似; (B )有一个锐角相等的两个直角三角形相似; (C )底边和腰对应成比例的两个等腰三角形相似; (D )斜边和直角边对应成比例的两个直角三角形相似. 6.如图,四边形ABCD 的对角线AC 、BD 相交于点O ,且将这个四边形分成①、②、③、④四个三角形,若OA ∶OC = OB ∶OD ,则下列结论中一定正确的是( )A .①和②相似;B .①和③相似;C .①和④相似 ;D .②和④相似; 7.如图,平行四边形ABCD 中,F 是CD 上一点,BF 交AD 的延长线于G ,则图中的相似三角形对数共有( )A .8对;B . 6对;C .4对;D .2对.二、填空题8.已知两个相似三角形的面积比是4:1,则这两个三角形的周长比是 .GDEFC BAFED CBA 9.如果两个相似三角形的对应边上的高之比是2:3,则它们的周长比是 . 10.如果两个相似三角形的周长之比是2︰3,其中小三角形一角的角平分线长是6cm ,那么大三角形对应角的角平分线长是 cm ;11.在Rt △ABC 和Rt △DEF 中,∠ C =∠ F =90°,当AC =3,AB =5,DE =10,EF =8时, Rt △ABC 和Rt △DEF 是 的.(填“相似”或者“不相似”) 12. 如图,在平行四边形ABCD 中,E 为CD 上一点,联结AE 、BD ,且AE 、BD 交于点F ,若DE :EC =2:3, 则S △DEF :S △ABF = .13.如图,在边长为1的正方形网格上有点P 、A 、B 、C ,则图中所形成的三角形中,相似的三角形是 .14.如图,在△ABC 中,若AB =AC =3,D 是边AC 上一点,且BD=BC=2,则线段AD 的长为 .15.如图,在△ABC 与△ADE 中,EDAEBC AB ,要使△ABC 与△ADE 相似,还需添加一个条件,这个条件可以是 .16.在Rt △ABC 中,∠C =90°,CD ⊥AB 于点D ,若AD =9,BD =4,则AC = . 17.如图,在平行四边形ABCD 中,AB =12,AD =18,∠BAD 的平分线交BC 于点E ,交DC 的延长线于点F ,BG ⊥AE ,垂足为G ,BG =82,则△CEF 的周长是 . 18. 新定义:平行于三角形一边的直线被其他两边所截得的线段叫做“三角形的弦”.已知等边三角形的一条弦的长度为2cm ,且这条弦将等边三角形分成面积相等的两个部分,那么这个等边三角形的边长为 cm .19.如图,△ABC 是面积为3的等边三角形,△ADE ∽△ABC ,AB =2AD ,∠BAD =45°,AC 与DE 相交于点F ,则△AEF 的AB CD EACBP DBDCBA面积是 .20.如图,在Rt △ABC 中,∠C =90°,AC =3D 、E 分别是边BC 、AC 上的点,且∠EDC=∠A ,将△ABC 沿DE 对折,若点C 恰好落在边AB 上,则DE 的长为 .21. 如图,矩形ABCD 中,AB =8,BC =9,点P 在BC 边上,CP =3,点Q 为线段AP 上的动点,射线BQ 与矩形ABCD 的一边交于点R ,且AP=BR = . 22.如图,Rt △ABC 中,∠C =90°,AB =5, AC=3,在边AB 上取一点D ,作DE ⊥AB 交BC 于点E .现将△BDE 沿DE 折叠,使点B 落在线段DA 上(不与点A 重合),对应点记为B 1;BD 的中点F 的对应点记为F 1.若△EFB ∽△A F 1E ,则B 1D = .23.的长为 .24.如图,已知等腰△ABC ,AD 是底边BC 上的高,AD :DC =1:3,将△ADC 绕着点D 旋转,得△DEF ,点A 、C 分别与点E 、F 对应,且EF 与直线AB 重合,设AC 与DF 相交于点O = .25.如果将一个三角形绕着它一个角的顶点旋转后使这个角的一边与另一边重叠,再将旋转后的三角形进行相似缩放,使重叠的两条边互相重合,我们称这样的图形变换为三角形转似,这个角的顶点称为转似中心,所得的三角形称为原三角形的转似三角形.如图,在△ABC 中,AB =6,BC =7,AC =5,△A 1B 1C 是△ABC 以点C 为转似中心的其中一个转似三角形,那么以点C 为转似中心的另一个转似三角形△A 2B 2C (点A 2、B 2分别与A 、B 对应)的边A (B 1)A 1EBAABF 1CD EFB 1A2B2的长为.三、解答题1.如图,在△ABC中,∠C=90°,AD是∠CAB的角平分线,E.2.如图,点D为△ABC内部一点,点E、F、G分别为线段AB、AC、AD上一点,且EG∥BD,GF∥DC.(1)求证: EF∥BC;(2.3.如图,在△ABC中,∠ACB=90°,AC=BC,点P是△ABC形内一点,且∠APB=∠APC=135°.(1)求证:△CP A∽△APB;(2)试求tan∠PCB的值.BAEC D BAB CP4.如图,已知在直角梯形ABCD 中,∠ADC =90°,AD //BC ,AD =8,DC =6,点E 在BC 上,点F 在AC 上,且DFC AEB ∠=∠,AF =4.(1)求线段CE 的长;(2)若43sin =B ,求线段BE 的长.5.已知:如图,△ABC 中,点D 、E 是边AB 上的点, CD 平分∠ECB ,且2BC BD BA =⋅.(1)求证: △CED ∽△ACD ;(2)求证: AB CEBC ED=.FAC BDF E DCB A6.已知:如图,在△ABC中,已知点D在BC上,联结ADDC=3﹦1﹕2.(1)求AC的值;(2)若将△ADC沿着直线AD翻折,使点C落点E处,AE交边BC于点F,且AB∥DE7.在△ABC中,∠BAC=90°, ∠EAF=90°,(1)求证:△AGC∽△DGB;(2)若点F为CG的中点,AB=3,AC=4求DF的长.AE FGDBC8D 、E 分别在BC 和AC 边上,点G 是BEAG . (1(29.如图,已知CD 是△ABC 中∠ACB 的角平分线,E 是ACAD =6,AE =4.(1) 求证:△BCD ∽△DCE ; (2) 求证:△ADE ∽△ACD ; (3) 求CE 的长.BDAGECABCDE10.如图,已知在等腰△ABC 中,AB =AC ,点E 、点D 是底边所在直线上的两点,联接AE 、AD ,若求证:(1)△ADC ∽△EDA ; (211.在△ABC 中,D 是BC 的中点,且AD=AC ,DE ⊥BC ,与AB 相交于点E , EC 与AD 相交于点F .(1)求证:△ABC ∽△FCD ;(2)若DE =3,BC =8,求△FCD 的面积.BAD。

湘教版2021年中考数学二轮复习专题16图形与坐标【含答案】

湘教版2021年中考数学二轮复习专题16图形与坐标【含答案】

湘教版备考2021年中考数学二轮复习专题16图形与坐标一、单选题A A→B→C→D→A···A1.如图,平面直角坐标系中,一蚂蚁从点出发,沿着循环爬行,其中点的(2,−2)B(−2,−2)C(−2,6)D(2,6)坐标为,点的坐标为,点的坐标为,点的坐标为,当蚂蚁2020爬了个单位时,蚂蚁所处位置的坐标为()(−2,−2)(2,−2)(−2,6)(0,−2)A. B. C. D.2.如图所示,动点P在平面直角坐标系中,按箭头所示方向呈台阶状移动,第一次从原点运动到点(0,1),第二次接着运动到点(1,1),第三次接着运动到点(1,2),……,按这样的运动规律,经过2020次运动后,动点P的坐标是( )A. (2020,2020)B. (505,505)C. (1010,1010)D. (2020,2021)3.在平面直角坐标系中,一个智能机器人接到的指令是:从原点O出发,按“向上→向右→向下→向右”的方向依次不断移动,每次移动1个单位长度,其移动路程如图所示,第一次移动到点A1,第二次移动到点A2,第n次移动到点A n,则点A2020的坐标是()A. (1010,0)B. (1010,1)C. (1009,0)D. (1009,1)4.在平面直角坐标系中,一只电子狗从原点O出发,按向上→向右→向下→向下→向右的方向依次不断移动,每次移动1个单位长度,其行走路线如图所示,则A3020的坐标为()A. (1007,1)B. (1007,﹣1)C. (504,1)D. (504,﹣1)5.如图,在平面直角坐标系 中,点 .点 第1次向上跳动1个单位至点 ,紧接xOy P(1,0)P P 1(1,1)着第2次向左跳动2个单位至点 ,第3次向上跳动1个单位至点 ,第4次向右跳动3个单P 2(−1,1)P 3位至点 ,第5次又向上跳动1个单位至点 ,第6次向左跳动4个单位至点 ,……,照此规律,P 4P 5P 6点 第2020次跳动至点 的坐标是( )P P 2020A. B. C. D. (−506,1010)(−505,1010)(506,1010)(505,1010)6.第一次:将点A 绕原点O 逆时针旋转90°得到A 1;第二次:作点A 1关于x 轴的对称点A 2;第三次:将点A 2绕点O 逆时针旋转90°得到A 3;第四次:作点A 3关于x 轴的对称点A 4…,按照这样的规律,点A 35的坐标是( )A. (﹣3,2)B. (﹣2,3)C. (﹣2.﹣3)D. (3.﹣2)7.如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序为(1,0)、(2,0)、(2,1)、(1,1)、(1,2)、(2,2)、……,根据这个规律,第2019个点的坐标为( )A. (45,10)B. (45,6)C. (45,22)D. (45,0)8.在平面直角坐标系 中,对于点 ,我们把点 叫做点P 的伴随点.已知xOy P(x,y)P ′(−y +1,x +1)点 的伴随点为 ,点 的伴随点为 ,点 的伴随点为 ,…,这样依次得到点 A 1A 2A 2A 3A 3A 4 .若点 的坐标为 ,则点 的坐标为( )A 1,A 2,A 3,⋯,A n ,⋯A 1(3,1)A 2019A. B. C. D. (0,−2)(0,4)(3,1)(−3,1)9.已知,平面直角坐标系中,A 1(1,1)、A 2(﹣1,1)、A 3(﹣1,﹣1)、A 4(2,﹣1)、A 5(2,2)、A 6(﹣2,2)、A 7(﹣2,﹣2)、A 8(3,﹣2)、A 9(3,3)、……、按此规律A 2020的坐标为( )A. (506,﹣505)B. (505,﹣504)C. (﹣504,﹣504)D. (﹣505,﹣505)10.如图,已致点 的坐标为 ,点 在 轴的正半轴上,且 .过点 作 A 1(0,1)A 2x ∠A 1A 20=30°A 2 ,交 轴于点 ;过点 作 ,交 轴于点 ;过点 作 A 2A 3⊥A 1A 2y A 3A 3A 3A 4⊥A 2A 3x A 4A 4 ,交 轴于点 ;……;按此规律进行下去,则点 的坐标为( )A 4A 5⊥A 3A 4y A 5A 2021A. B. C. D. (0,31011)(−31011,0)(0,31010)(−31010,0)二、填空题11.如图,已知A 1(0,1),A 2( ,),A 3( , ),A 4(0,2),A 5( ,-1),A 6( 32−12−32−123 ,-1),A 7(0,3),A 8( , ),A 9( , )……则点A 2010的坐标是________ −3332−32−332−3212.如图,在平面直角坐标系中,点 的坐标 ,将线段 绕点O 按顺时针方向旋转45°,再P 1(22,22)OP 1将其长度伸长为 的2倍,得到线段 ;又将线段 绕点O 按顺时针方向旋转45°,长度伸长为 OP 1OP 2OP 2 的2倍,得到线段 ;如此下去,得到线段 、 ,……, (n 为正整数),则点 OP 2OP 3OP 4OP 5OP n 的坐标是________. P 202013.规定:在平面直角坐标系xOy 中,任意不重合的两点 M(x 1 , y 1),N(x 2 , y 2)之间的折线距离为 .如图①点M(-2,3)与点 N(1,-1)之间的折线距离为 d(M,N)=|x 1−x 2|+|y 1−y 2|d(M,N)=________;如图②点 P(3,-4),若点 Q 的坐标为(t ,3),且 ,则t 的值为________. d(P,Q)=814.在平面直角坐标系中,已知 , , 三点,其中 , 满足关系式 A(0,a)B(b,0)C(b,6)a b .若在第二象限内有一点 ,使四边形 的面积与三角形 的面积相a =b 2−16+16−b 2b +4+3P(m,1)ABOP ABC 等,则 ________, ________,点 的坐标为________.a =b =P 15.如图所示,在平面直角坐标系中,有若干个点按如下规律排列:(1,1),(2,1),(2,2),(3,1),(3,2),(3,3),…, 则第 200 个点的横坐标为________.16.点P(x ,y)经过某种变换后到点 (-y+1,x+2),我们把点 (-y+1,x+2)叫做点P(x ,y)的终结点,P ′P ′已知点 的终结点为 ,点 的终结点为 ,点 的终结点为 ,这样依次得到 、 P 1P 2P 2P 3P 3P 4P 1P 2、 、 … 若点 的坐标为(2,0),则点 的坐标为________P 3P 4P n P 1P 202017.如图,在平面直角坐标系内,∠OA 0A 1=90°,∠A 1OA 0=60°,以OA 1为直角边向外作Rt △OA 1A 2 , 使∠A 2A 1O =90°,∠A 2OA 1=60°,按此方法进行下去,得到 Rt △OA 2A 3 , Rt △OA 3A 4…,若点A 0的坐标是(1,0),则点A 13的横坐标是________.18.如图,在平面直角坐标系中,一动点从原点O 出发,按向上.向右.向下.向右的方向依次平移,每次移动一个单位,得到点A 1(0,1),A 2(1,1),A 3(1,0),A 4(2,0),…那么点A 2016的坐标为________.19.如图,长方形ABCD 的各边分别平行于x 轴或y 轴,A , B , C , D 的坐标分别为(﹣2,1)(2,1)(2,﹣1)(﹣2,﹣1)物体甲和物体乙分别由E (﹣2,0)和F (2,0)同时出发,沿长方形的边按逆时针方向同向行进,甲的速度每秒4个单位长度,乙的速度每秒1个单位长度,则两个物体第2019次相遇地点的坐标为________.20.如图,在平面直角坐标系中,第一次将△OAB 变换成△OA 1B 1 , 第二次将△OA 1B 1变换成△OA 2B 2 , 第三次将△OA 2B 2变换成△OA 3B 3 , …,将△OAB 进行n 次变换,得到△OA n B n , 观察每次变换中三角形顶点坐标有何变化,找出规律,推测A 2020的坐标是________三、解答题21.如图,已知A (-2,0),B (4,0),C (2,4).D (0,2)(1)求三角形ABC 的面积;(2)设P 为坐标轴上一点,若 ,求P 点的坐标.S ΔAPC =12S ΔABC 22.对于平面直角坐标系xOy 中的点P (a ,b ),若点P′的坐标为(a+kb ,ka+b )(其中k 为常数,且k≠0),则称点P′为点P 的“k 属派生点”.例如:P (1,4)的“2属派生点”为P′(1+2×4,2×1+4),即P′(9,6).(1)点P (﹣2,3)的“3属派生点”P′的坐标为________;(2)若点P 的“5属派生点”P′的坐标为(3,﹣9),求点P 的坐标;(3)若点P在x轴的正半轴上,点P的“k属派生点”为P′点,且线段PP′的长度为线段OP长度的2倍,求k的值.23.如果△ABC关于x轴进行轴对称变换后,得到△A1B1C1,而△A1B1C1关于y轴进行轴对称变换后,得到△A2B2C2,若△ABC三个顶点坐标分别为A(-2,3)、B(-4,2)、C(-1,0),请你分别写出△A1B1C1与△A2B2C2各顶点坐标.四、作图题24.在平面直角坐标系中,顺次连结A(-3,1),B(-3,-1),C(3,-3),D(3,4)各点,你会得到一个什么图形?试求出该图形的面积.五、综合题25.五子连珠棋的棋盘是15行15列的正方形,规定黑子先下,双方交替进行,在任意一个方向上,先连成5个子的一方获胜,如图所示的是两人所下的棋局的一部分,A点的位置记作(8,3),执白子的一方若想再放一子便获胜,应该把子落在什么位置?A、B(−1,0)、(3,0)A、B26.如图,在平面直角坐标系中,点的坐标分别为,现同时先将点分别向上A、B C、D AC、BD、CD平移2个单位长度,再向右平移1个单位长度,得到的对应点,连接 .(1)直接写出点 的坐标;C、D (2)在 轴上是否存在一点 ,使得三角形 的面积是三角形 面积的2倍?若存在,请求出x F DFC DFB 点 的坐标;若不存在,请说明理由.F 27.对于平面直角坐标系 xOy 中的点 A ,给出如下定义:若存在点 B (不与点 A 重合,且直线 AB 不与 坐标轴平行或重合),过点 A 作直线 m ∥x 轴,过点 B 作直线 n ∥y 轴,直线 m ,n 相交于点 C .当线段 AC ,BC 的长度相等时,称点 B 为点 A 的等距点,称三角形 ABC 的面积为点 A 的等距面积. 例如:如 图,点 A (2,1),点 B (5,4),因为 AC= BC=3,所以 B 为点 A 的等距点,此时点 A 的等距面积为 .92(1)点 A 的坐标是(0,1),在点 B 1(2,3),B 2 (-1, -1) , B 3 (-3, -2) 中,点A 的等距点为________.(2)点 A 的坐标是 (-3,1) ,点 A 的等距点 B 在第三象限,①若点 B 的坐标是 (-5, -1) ,求此时点 A 的等距面积;②若点 A 的等距面积不小于 2,请直接写出点 B 的横坐标 t 的取值范围.28.如图 1,在平面直角坐标系中,已知点A(a,0),B(b,0),C(2,7),连接 AC ,交y 轴于 D ,且a =3−125, . (b)2=5(1)求点D的坐标.(2)如图2,y轴上是否存在一点P,使得△ACP的面积与△ABC的面积相等?若存在,求点P的坐标,若不存在,说明理由.△QBC(3)如图3,若Q(m,n)是x轴上方一点,且的面积为20,试说明:7m+3n是否为定值,若为定值,请求出其值,若不是,请说明理由.29.在直角坐标系中,已知A(1,5),B(﹣4,﹣2),C(1,0)三点.(1)点A关于x轴的对称的A′的坐标为________;点B关于y轴的对称点B′的坐标为________;点C关于y轴的对称点C′的坐标为________.(2)求(1)中的△A′B′C′的面积.答案解析部分一、单选题1. A解:∵A 点坐标为(2,﹣2),B 点坐标为(﹣2,﹣2),C 点坐标为(﹣2,6), ∴AB =2﹣(﹣2)=4,BC =6﹣(﹣2)=8,∴从A→B→C→D→A 一圈的长度为2(AB+BC )=24.∵2020=84×24+4,∴当蚂蚁爬了2020个单位时,它所处位置在点A 左边4个单位长度处,即(-2,﹣2).故A2. C解:由图可知,第一次从原点运动到点(0,1),第二次接着运动到点(1,1),第三次接着运动到点(1,2),第四次运动到点(2,2),第二次接着运动到点(2,3),第三次接着运动到点(3,3),……,不难发现,偶次运动到的点的横纵坐标都是次数的,12∴经过2020次运动后,动点P 的坐标是,即(1010,1010).(20202,20202)故C .3. A解:A 1(0,1),A 2(1,1),A 3(1,0),A 4(2,0),A 5(2,1),A 6(3,1),…, 2020÷4=505,所以A 2020的坐标为(505×2,0),则A 2020的坐标是(1010,0).故A .4. A解:观察点的坐标变化特征可知:A 1(0,1),A 2(1,1),A 3(1,0),A 4(1,﹣1),A 5(2,﹣1),A 6(2,0),A 7(2,1),A 8(3,1),A 9(3,0),…发现规律:横坐标每3个为一组循环,纵坐标第6个为一组循环,3020÷3=1006…2,3020÷6=503…2,所以第3020个点的坐标为(1007,1),故A .5. C解:经过观察可得: 和 的纵坐标均为1, 和 的纵坐标均为2, 和 的纵坐标均为P 1P 2P 3P 4P 5P 63,因此可以推知 点的纵坐标为 ;再观察图可知4的倍数的跳动都在y 轴的右P 20202020÷2=1010侧,那么第2020次的跳动得到的横坐标也在y 轴的右侧. 的横坐标为1, 的横坐标为2, 的P 1P 4P 8横坐标为3,依此类推可得到 的横坐标为 (n 是4的倍数).故点 的横坐标是 P n n ÷4+1P 2020 ;所以点 第2020次跳动至点 的坐标是 .2020÷4+1=506P P 2020(506,1010)故C .6. D解:由题意知A 1(﹣2,3)、A 2(﹣2,﹣3)、A 3(3,﹣2)、A 4(3,2)、A 5(﹣2,3)……∴每4个点的坐标为一周期循环,∵35÷4=8……3,∴点A 35的坐标与点A 3的坐标一致,为(3,﹣2),故D.7. B解:将其左侧相连,看作正方形边上的点,如图所示.边长为0的正方形,有1个点;边长为1的正方形,有3个点;边长为2的正方形,有5个点;…,∴边长为n 的正方形有2n+1个点,∴边长为n 的正方形边上与内部共有1+3+5+…+2n+1=(n+1)2个点.∵2019=45×45-6,结合图形即可得知第2019个点的坐标为(45,6).故B .8. D解:A 1的坐标为(3,1),则A 2(-1+1,3+1)=(0,4),A 3(-4+1,0+1)=(-3,1),A 4(0,-2),A 5(3,1),…,依此类推,每4个点为一个循环组依次循环,∵2019÷4=504…3,∴点A 2019的坐标与A 3的坐标相同,为(-3,1),故D.9. A解:∵A 1(1,1)、A 2(﹣1,1)、A 3(﹣1,﹣1)、A 4(2,﹣1)、A 5(2,2)、A 6(﹣2,2)、A 7(﹣2,﹣2)、A 8(3,﹣2)、A 9(3,3)、……、∴得出:每4个点一循环∴ ,刚好循环505次结束2020÷4=505又∵A 4(2,﹣1)、A 8(3,﹣2)、A 12(4,﹣3)即:A 4(1+1,﹣1)、A 8(1+2,﹣2)、A 12(1+3,﹣3)∴A 2020(1+505,-505)∴A 2020(506,-505)故答案选:A10. C解:∵∠A 1A 2O=30°,OA 1=1,∴OA 2= ,3∴点A 2的坐标为( ,0),3同理,A 3(0,-3,),A 4(-3 ,0),A 5(0,9),A 6(9 ,0),A 7(0,-27),…,33∴点A 4n+1的坐标为(0,32n )(n 为正整数).∵2021=505×4+1,∴点A 2021的坐标为(0,31010).故C.二、填空题11. ( ,-335)−3355解:根据所给出的这9个点的坐标,可以发现规律:A 1、A 4、A 7……横坐标为0,纵坐标大1;A 2、A 5、A 8……,横坐标依次扩大为原来的2倍、3倍……;A 3、A 6、A 9……横纵坐标依次扩大为原来的2倍、3倍……。

中考数学复习《相似》专题训练--附带参考答案

中考数学复习《相似》专题训练--附带参考答案

中考数学复习《相似》专题训练--附带参考答案一、选择题1.如图,在△ABC中,D,E分别是AB,AC上的点DE∥BC,若AD=6,BD=3,AE=8,则EC的长是()A.4 B.2 C.5 D.942.如图,点D是△ABC的边AB上的一点,过点D作BC的平行线交AC于点E,连接BE,过点D作BE的平行线交AC于点F,则下列结论不正确的是()A.ADBD =AEECB.AFAE=DFBEC.AEEC=AFFED.DEBC=AFFE3.如图,在△ABC中,∠ACB=2∠B,CD平分∠ACB,AD=2,BD=3,则AC的长为()A.3 B.√10C.4 D.2√34.如图,已知ΔABC和ΔEDC是以点C为位似中心的位似图形,且ΔABC和ΔEDC的位似比为1∶2,ΔABC面积为2,则ΔEDC的面积是()A.2 B.8 C.16 D.325.如图,在平行四边形ABCD中,E是CD延长线上一点,BE与AD交于点F,若CD=2DE,则S△DEFS△ABF=()A.12B.√22C.14D.186.如图,已知△ABC与△DEF位似,位似中心为O,且△ABC的面积与△DEF的面积之比是16:9,则AO:OD的值为()A.4:3 B.3:4 C.16:9 D.9:167.如图,在平行四边形ABCD中,点E是CD边上一点,DE:EC=2:3,连接AE、BE、BD,且AE、BD交于点F.若S△DEF=2,则S△ABE=()A.15.5 B.16.5 C.17.5 D.18.58.如图,AC是⊙O的直径,弦BD⊥AO于E,连接BC,过点O作OF⊥BC于F,若BD=8,AE=2则OF的长度是()A.6 B.√6C.5 D.√5二、填空题9.如图AB∥CD∥EF,它们依次交直线l1、l2于点A、C、E和点B、D、F,l1与l2相交于点O,如果AC=2,OC= 1,OF=3,BE=8那么DE的长为.10.如图,△ABC和△DEF是以点O为位似中心的位似图形,相似比为2:3则△ABC和△DEF的面积比是.11.如图,已知,在△ABC中∠C=90°,点D是AC上的一点∠A=∠DBC,BDAB =23那么ADCD的值为.12.如图,在梯形ABCD中AB∥CD,EF∥CD,AB=2,EF=5,AEED =32则DC=.13.如图,在平行四边形ABCD中,点E是AB的中点AF:DF=2:3,射线EF与AC交于点O,与CD的延长线交于点H,则AOOC的值为.三、解答题14.如图,点D,E在线段BC上,△ADE是等边三角形,且∠BAC=120°(1)求证:△ABD∽△CAE;(2)若BD=2,CE=8,求BC的长.15.如图,D为Rt△ABC的直角边BC上一点以CD为直径的半圆O与斜边AB相切于点E,BF∥AC,交CE 的延长线于点F.已知AC:BF=3:4.(1)求sin∠ABC的值.(2)若BE=6,求⊙O的半径的长.16.如图,在正方形ABCD中,E为对角线AC上一点,连结EB、ED,延长BE交AD于点F.(1)求证:∠BEC =∠DEC ;(2)当CE=CD时,求证:2=⋅ .DF EF BF17.如图1,已知点O在四边形ABCD的边AB上,且OA=OB=OC=OD=2,OC平分∠BOD,与BD交于点G,AC分别与BD、OD交于点E、F.(1)求证:OC∥AD;(2)如图2,若DE=DF,求AE的值;AF的值.(3)当四边形ABCD的周长取最大值时,求DEDF18.如图,AB 为⊙O 的直径,C 为⊙O 上一点,连接AC ,BC ,D 为AB 延长线上一点,连接CD ,且∠BCD =∠A .(1)求证:CD 是⊙O 的切线;(2)若⊙O,△ABC 的面积为5CD 的长;(3)在(2)的条件下,E 为⊙O 上一点,连接CE 交线段OA 于点F ,若12EF CF ,求BF 的长.5参考答案1.A2.D3.B4.B5.C6.A7.C8.D9.16310.4:911.5412.713.2714.(1)证明:∵∠BAC=120°∴∠BAD+∠EAC=60°∵△ADE是等边三角形∴∠ADE=∠AED=60°∴∠BAD+∠B=60°,∠ADB=∠AEC=120°∴∠B=∠EAC,又∠ADB=∠AEC∴ABD∽△CAE(2)解:∵△ABD∽△CAE∴BDAE=ADCE即AD2=BD•CE=16解得,AD=4,则DE=4 ∴BC=BD+DE+EC=14 15.(1)解:∵BF∥AC ∴△AEC∽△BEF∴AEBE =ACBF=34∵CD为⊙O的直径∠ACB=90°∴AC 是⊙O 的切线∵AB 是⊙O 的切线∴AC =AE∴sin ∠ABC = AC AB =37(2)解:如图,连接OE∵AE BE =34 BE =6∴AE = 92∴AB = 212 AC = 92∴BC = √AB 2−AC 2=3√10∵AB 是⊙O 的切线∴OE ⊥AB∴∠OEB =∠ACB∵∠OBE =∠ABC∴△OBE ∽△ABC∴OE AC =BE BC , 即OE 92=3√10 解得:OE = 9√1010 ,即⊙O 的半径的长为 9√1010 .16.(1)证明: 四边形 是正方形BC CD ∴= ,且 BCE DCE ∠=∠ .又 CE 是公共边BEC DEC ∴≌BEC DEC ∴∠=∠ ;(2)证明:如图所示:连结ABCD BDCE CD =DEC EDC ∴∠=∠ .BEC DEC ∠=∠ BEC AEF∠=∠ EDC AEF ∴∠=∠ .AEF FED EDC ECD ∠+∠=∠+∠FED ECD ∴∠=∠ .四边形 是正方形ECD ADB ∴∠=∠ .FED ADB ∴∠=∠ .又 BFD ∠ 是公共角FDE FBD ∴∽EF DF DF BF ∴= ,即 .17.(1)证明:∵AO =OD∴∠OAD =∠ADO∵OC 平分∠BOD∴∠DOC =∠COB又∵∠DOC+∠COB ∠=∠OAD+∠ADO∴∠ADO =∠DOC∴CO ∥AD ;(2)解: ∵OA=OB=OC∴∠ADB=90°∴△AOD 和△ABD 是等腰直角三角形∴AD= √2AO∴AD AO =√2∵DE=DF∴∠DFE=∠AEDABCD 2DF EF BF =⋅∵∠DFE=∠AFO∴∠AFO=∠AED∵∠AOF=∠ADE=90°∴△ADE ∽△AOF∴AE AF =AD AO = √2;(3)解:如图2∵OD =OB ,∠BOC =∠DOC ,∴△BOC ≌△DOC (SAS ),∴BC =CD设BC =CD =x ,CG =m ,则OG =2﹣m∵OB 2﹣OG 2=BC 2﹣CG2 ∴4﹣(2﹣m )2=x 2﹣m 2,解得:m =14x 2 ,∴OG =2 −14x 2 ∵OD =OB ,∠DOG =∠BOG ,∴G 为BD 的中点又∵O 为AB 的中点,∴AD =2OG =4 −12x 2∴四边形ABCD 的周长为2BC+AD+AB =2x+4 −12x 2+ 4 =−12x 2+ 2x+8 =−12(x −2)2+ 10 ∵−12< 0,∴x =2时,四边形ABCD 的周长有最大值为10.∴BC =2∴△BCO 为等边三角形,∴∠BOC =60°,∵OC ∥AD ,∴∠DAC =∠COB =60° ∴∠ADF =∠DOC =60°,∠DAE =30°,∴∠AFD =90°,∴DE DA =√33 DF =12 DA ∴DE DF =2√33 .18.(1)证明:如图,连接OC∵AB 为⊙O 的直径∴90ACB ∠=︒∴90ACO BCO ∠+∠=︒.∵OA=OC∴ACO A ∠=∠.∵∠BCD =∠A∴ACO BCD ∠=∠∴90BCD BCO ∠+∠=︒∴90OCD ∠=︒,即OC CD ⊥又∵OC 是半径∴CD 是⊙O 的切线;(2)解:如图,在(1)的基础上作CG AD ⊥于点G .∵⊙O,AB 为直径∴5OC =25AB = ∵1252ABC S AB CG =⋅=125252CG ⨯= ∴2CG =∴在Rt OCG 中2222(5)21OG OC CG =-=-=.∵90OCG DCG ∠+∠=︒ 90CDG DCG ∠+∠=︒∴OCG CDG ∠=∠.又∵90OGC CGD ∠=∠=︒∴OGC CGD ~∴OG OC CG CD =,即152= ∴5CD =(3)解:如图,在(2)的基础上,连接OE ,过点E 作EH AD ⊥于点H .5第 11 页 共 11 页 ∴5OA OE ==由(2)可知51BG OB OG =-=.∵∴EH CG∴EHF CGF ~ ∴12EH HF EF CG GF CF ===. ∴12EH CG = 2GF HF =. ∵CG=2∴1EH =∴在R t HEO 中2222(5)12OH OE EH =-=-= ∴52AH OA OH =-=.∵BG GF HF AH AB +++=∴2BG HF HF AH AB +++=5125225HF HF ++= 解得1HF =∴2GF = ∴51251BF BG GF =+=+=.EH AD ⊥CG AD ⊥。

中考数学复习《相似》专题训练-附带有答案

中考数学复习《相似》专题训练-附带有答案

中考数学复习《相似》专题训练-附带有答案一、单选题1.已知△ABC∽△A′B′C′,BCA′C′=23,ABA′B′=34则△ABC与△A′B′C′的面积之比为()A.49B.23C.916D.342.在△ABC中,点D、E分别在边AB、AC上,联结DE,那么下列条件中不能判断△ADE和△ABC相似的是()A.DE∥BC B.∠AED=∠BC.AE:AD=AB:AC D.AE:DE=AC:BC3.如图,已知△ABC和△ADE均为等边三角形,D在BC上,DE与AC相交于点F,AB=9,BD=3,则CF等于()A.1 B.2 C.3 D.44.如图,E是矩形ABCD的边CD上的点,BE交AC于O,已知△COE与△BOC的面积分别为2和8,则四边形AOED的面积为()A.16 B.32 C.38 D.405.如图,线段CD两个端点的坐标分别为C(1,2)、D(2,0),以原点为位似中心,将线段CD放大得到线段AB,若点B的坐标为(6,0),则点A的坐标为()A.(3,5)B.(3,6)C.(2,6)D.(3,8)6.如图,直线,直线AC分别交,和于点A,B,C,直线DF分别交,和于点D,E,F,AC与DF相交于点G,且AG=2,GB=1,BC=5,则的值为()A.B.2 C.D.7.如图,在直角坐标系中,矩形OABC的顶点O在坐标原点,边OA在x轴上,OC在y轴上,如果矩形OA′B′C′与矩形OABC关于点O位似,且矩形OA′B′C′的面积等于矩形OABC面积的14,那么点B′的坐标是()A.(-2,3)B.(2,-3)C.(3,-2)或(-2,3)D.(-2,3)或(2,-3)8.两千多年前,古希腊数学家欧多克索斯发现了黄金分割,即:如图,点P是线段AB上一点(AP>BP),若满足BPAP =APAB,则称点P是AB的黄金分割点,世界上最有名的建筑物中几乎都包含“黄金分割”,若图中AB=8,则BP的长度是()A.12−4√5B.4+4√5C.4√5−4D.2二、填空题9.如图,在Rt△ABC中,∠A=30°,D是斜边AB的中点,G是Rt△ABC的重心,GE⊥AC于点E.若BC=6 cm,则GE= cm.10.如图,△ABC中,AB=AC,点D、E分别是边AB、AC的中点,点G、F在BC边上,四边形DEFG是正方形.若DE=2cm,则AC的长为.的图象11.如图,一次函数y=x+b(b>0)的图象与x轴交于点A,与y轴交于点B,与反比例函数y=8x交于点C,若AB=BC,则b的值为.12.如图,线段CD两个端点的坐标分别为C(1,2)、D(2,0),以原点为位似中心,将线段CD放大得到线段AB,若点B坐标为(5,0),则点A的坐标为.13.如图,⊙O是△ABC的外接圆,已知AD平分∠BAC交⊙O于点D,交BC于点E,若BD=6,AE=5,AB =7,则AC=.三、解答题14.如图,F为平行四边形ABCD的边AD的延长线上的一点,BF分别交于CD、AC于G、E,若EF=32,GE=8,求BE.15.在△ABC中,点D、E、F分别在AC、AB、BC上,且DE=3,BF=4.5,ADAC =AEAB=25求证:EF∥AC.16.将三角形纸片(△ABC)按如图所示的方式折叠,使点B落在边AC上,记为点B′,折痕为EF.已知AB=AC=3,BC=4,若以点B′、F、C为顶点的三角形与△ABC相似,求BF的长度.17.如图,AB是⊙O的弦,点C是AB⌢的中点,连接BC,过点A作AD∥BC交⊙O于点D.连接CD,延长DA 至E,连接CE,使CD=CE.(1)求证:CE是⊙O的切线;(2)若AB=6,AE=4求AD的长.18.如图,在△ABC中,点D,E分别在边AB,AC上,∠AED=∠B,射线AG分别交线段DE,BC于点F,G,且ADAC =DFCG.(1)求证:△ADF∽△ACG;(2)若ADAC =12,求AFFG的值.答案1.C2.D3.B4.C5.B6.D7.D8.A9.210.2√5cm11.212.(2.5,5)13.45714.解答:设BE=x∵EF=32,GE=8∴ FG=32-8=24∵平行四边形ABCD∴AD∥BC∴△AFE∽△CBE∴EFEB =AFBC则32x =AD+DFBC=DFBC+1∵DG∥AB∴△DFG∽△CBG∴DFBC =FGBG则DFBC =248+x则32x =248+x+1解得:x=±16(负数舍去)故BE=16.15.证明:∵AD AC=AE AB =25∠DAE =∠CAB ∴△ADE ∽△ACB ∴DE BC =AD AC =25,∠AED =∠B ∴DE ∥BC ∵DE =3 ∴BC =7.5 ∵BF =4.5∴CF =BC −BF =7.5−4.5=3=DE又∵DE ∥CF∴四边形CDEF 是平行四边形 ∴EF ∥CD ,即EF ∥AC .16.解:设BF=x ,则CF=4﹣x ,由翻折的性质得B ′F=BF=x ,当△B ′FC ∽△ABC ,∴B′FAB =CFBC 即x3=4−x 4解得x=127,即BF=127.当△FB ′C ∽△ABC ,∴FB′AB =FCAC 即x3=4−x 4,解得:x=2.∴BF 的长度为:2或127.17.(1)证明:连接OC ,如图所示:∵AB ⌢=AB ⌢,OC 过圆心 ∴OC ⊥AB ∵CD =CE ∴∠E =∠D ∵AD ∥BC ∴∠DAB =∠B ∵∠B =∠D ∴∠B =∠DAB ∴AB ∥EC ∵OC ⊥AB∴OC ⊥EC ∵OC 为半径 ∴CE 是⊙O 的切线(2)解:连接AC ,如图所示:∵AE ∥BC ,AB ∥EC∴四边形AECB 是平行四边形∠ACE =∠CAB ∴EC =AB =6 ∵AC⌢=BC ⌢ ∴∠CAB =∠B ∴∠ACE =∠B ∵∠B =∠D ∴∠D =∠ACE ∵∠E =∠E ∴△CDE ∽△ACE ∴ECAE =ED EC∵EC =6,AE =4 ∴ED =9∴AD =ED −AE =9−4=518.(1)证明:∵∠AED=∠B ,∠DAE=∠DAE ∴∠ADF=∠C ∵AD AC =DFCG ∴△ADF ∽△ACG(2)解:∵△ADF ∽△ACG ∴AD AC = AFAG又∵AD AC =12 ∴AFAG = 12∴AF FG=1。

专题16 全等三角形判定和性质问题(解析版)2021年中考数学必考34个考点高分三部曲

专题16 全等三角形判定和性质问题(解析版)2021年中考数学必考34个考点高分三部曲

专题16 全等三角形判定和性质问题1.全等三角形:能够完全重合的两个图形叫做全等形。

能够完全重合的两个三角形叫做全等三角形。

2.全等三角形的表示全等用符号“≌”表示,读作“全等于”。

如△ABC≌△DEF,读作“三角形ABC全等于三角形DEF”。

注:记两个全等三角形时,通常把表示对应顶点的字母写在对应的位置上。

3.全等三角形的性质:全等三角形的对应角相等、对应边相等。

4.三角形全等的判定定理:(1)边角边定理:有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”)(2)角边角定理:有两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”)(3)边边边定理:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”)。

5.直角三角形全等的判定:HL定理:有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL”)【例题1】(2020•贵州省安顺市)如图,点B、F、C、E在一条直线上,AB∥ED,AC∥FD,那么添加下列一个条件后,仍无法判定△ABC≌△DEF的是()A.∠A=∠D B.AC=DF C.AB=ED D.BF=EC【解答】选项A、添加∠A=∠D不能判定△ABC≌△DEF,故本选项正确;选项B、添加AC=DF可用AAS进行判定,故本选项错误;选项C、添加AB=DE可用AAS进行判定,故本选项错误;专题知识回顾专题典型题考法及解析选项D、添加BF=EC可得出BC=EF,然后可用ASA进行判定,故本选项错误.故选:A.【例题2】(2020•黑龙江省齐齐哈尔市)如图,已知在△ABC和△DEF中,△B=△E,BF=CE,点B、F、C、E在同一条直线上,若使△ABC△△DEF,则还需添加的一个条件是_________(只填一个即可).【答案】AB=DE.【解析】添加AB=DE;△BF=CE,△BC=EF,在△ABC和△DEF中,,△△ABC△△DEF(SAS)【例题3】(2020•铜仁)如图,AB=AC,AB△AC,AD△AE,且△ABD=△ACE.求证:BD=CE.【答案】见解析。

备战2021年九年级中考复习数学考点训练——几何专题:《相似综合》(四)

备战2021年九年级中考复习数学考点训练——几何专题:《相似综合》(四)

备战2021年九年级中考复习数学考点训练——几何专题:《相似的综合》(四)1.在平行四边形ABCD中,∠B=60°,点E,F分别在边AB、AD上,且∠ECF=60°.(1)如图1,若AB=BC,求证:AE+AF=BC;(2)如图2,若AB=BC=4,且点E为AB的中点,连接BF交CE于点M,求FM;(3)如图3,若AB=kBC,探究线段BE、DF、BC三者之间的数量关系,说明理由.2.如图,过菱形AEDF的顶点D作直线,分别交AE的延长线于点B,交AF的延长线于点C.(1)求证:△BED∽△DFC;(2)若FC=AF,求的值.3.已知:如图,在等腰三角形ABC中,AB=AC,点D、H分别在AC、BC上,联结BD、AH,相交于点E,且AE=BE,AD2=BDDE.(1)求证:AH⊥BC;(2)如果点F在线段AE上,且∠ADF=∠BAC,求证:BDDE=AF AE.4.已知△ABC中,AC=,BC=3,D是边BC上一点,且CD:BD=1:2,联结AD.(1)求证:△CAD∽△CBA;(2)若sin∠ABC=,试画出符合条件的大致图形,并求AD的长度.5.已知:如图,△ABC与△ADE均为等腰三角形,BA=BC,DA=DE,如果点D在BC上,且∠EDC=∠BAD,点O为AC与DE的交点.求证:(1)△ABC∽△ADE;(2)DAOE=OACE.6.如图,等腰△ABC中,AC=BC=8,点D、E分别在边AB、BC上(不与顶点重合),且∠CDE=∠A=∠B,CE=5,设AD=x,BD=y.(1)求y关于x的函数关系式(不用写x的取值范围);(2)当AB=10时,求AD的值.7.如图1,在△ABC中,D是AB上一点,已知AC=10,AC2=ADAB.(1)证明△ACD∽△ABC;(2)如图2,过点C作CE∥AB,且CE=6,连结DE交BC于点F.①若四边形ADEC是平行四边形,的值;②设AD=x,=y,求y关于x的函数表达式.8.“创新实践”小组想利用镜子与皮尺测量大树AB的高度,因大树底部有障碍物,无法直接测量到大树底部的距离.聪明的小颖借鉴《海岛算经》的测量方法设计出如图所示的测量方案:测量者站在点F处,将镜子放在点M处时,刚好看到大树的顶端,沿大树方向向前走3米,到达点D处,将镜子放在点N处时,刚好看到大树的顶端(点F,M,D,N,B在同一条直线上),若测得FM=1.5米,DN=1米,测量者眼睛到地面的距离为1.6米,求大树AB的高度.9.如图,在等腰直角三角形ABC中,∠BAC=90°,已知A(1.0),B(0,3),M为边BC 的中点.(1)求点C的坐标;(2)设点M的坐标为(a,b),求的值;(3)探究:在x轴上是否存在点P,使以O、P、M为顶点的三角形与△OBM相似?若存在,请求出点P的坐标;若不存在,请简述理由.10.如图1,在△ABC中,∠A=90°,将△ABC折叠,使点A落在BC边上点D处,折痕为EF(点E在AB上,点F在AC上),且EF∥BC,连接EC交DF于O.(1)若AB=6,AC=4,求的值;(2)如图2,过D作DH⊥AC于H,交CE于G.求证:G是DH的中点;(3)若BD=nDC,求的值.(用含n的代数式表示)参考答案1.解:(1)如图1,连接AC,在▱ABCD中,AB=CD,AD=BC,又∵AB=BC,∠ABC=60°,∴四边形ABCD是菱形,△ABC和△ADC是等边三角形,∴∠ACB=∠ACD=∠CAD=∠ABC=60°,AC=BC,∵∠ECF=60°=∠ACB,∴∠ACF=∠BCE,∴△ACE≌△DCF(ASA),∴BE=AF,∴AE+AF=AE+BE=AB=BC;(2)如图2,过点M作MN⊥BC于N,由(1)可知△ABC,△ACD是等边三角形,AE+AF=BC,∵点E为AB的中点,△ABC是等边三角形,∴BE=AE=2,∠BCE=30°,∴∠BCF=90°,∵AD∥BC,∴∠AFC=90°,∴AF=FD=2,∠ACF=∠DCF=30°,∴CF=AF=2,∴BF===2,∵MN⊥BC,∠BCM=30°,∴NC=MN,∵tan∠EBC=,∴,∴BN=MN,∵BC=4=BN+CN=MN,∴MN=,∴BN=,∴BM===,∴MF=BF﹣BM=;(3)DF+kBE=kBC.理由如下:如图3,在AD上截取DH=DC,连接CH,∵四边形ABCD是平行四边形,∠B=60°,AB=kBC,∴∠D=60°,AB=CD=DH=kBC,∵DH=DC,∴△DHC是等边三角形,∴DH=DC=CH,∠DHC=60°,∵AD∥BC,∴∠DHC=∠HCB=60°=∠ECF,∴∠BCE=∠HCF,又∵∠B=∠FHC,∴△BEC∽△HFC,∴,∵AB=CD=DH=HC=kBC,∴,∴HF=kBE,∵DH=kBC,∴DF+FH=kBC,∴DF+kBE=kBC.2.证明:(1)∵四边形AEDF是菱形,∴AE∥DF,DE∥AC,∴∠B=∠FDC,∠C=∠BDE,∴△BED∽△DFC;(2)∵四边形AEDF是菱形,∴AE=AF=DE=DF,∵△BED∽△DFC,∴,∵FC=AF,∴,∴.3.证明:(1)∵AD2=BDDE,∴,又∵∠ADB=∠ADE,∴△ADB∽△EDA,∴∠DAE=∠ABD,∵AE=BE,∴∠ABD=∠BAE,∴∠BAE=∠DAE,又∵AB=AC,∴AH⊥BC;(2)如图,∵△ADB∽△EDA,∴∠AED=∠BAC,又∵∠ADF=∠BAC,∴∠ADF=∠AED,又∵∠EAD=∠DAF,∴△AFD∽△AED,∴,∴AD2=AF AE,又∵AD2=BDDE,∴BDDE=AF AE.4.证明:(1)∵CD:BD=1:2,BC=3,∴CD=1,BD=2,∵=,,∴,又∵∠C=∠C,∴△CAD∽△CBA;(2)如图,过点A作AH⊥BC于H,∵△CAD∽△CBA,∴,设AD=x,则AB=3x,∵sin∠ABC==,∴AH=x,∴BH===2x,HD===x,∵BD=2=BH+HD,∴2=2x+x,∴x=,∴AD=x=.5.证明:(1)∵BA=BC,DA=DE,∴,∵∠EDC=∠BAD,∠ADC=∠ABC+∠BAD=∠ADE+∠EDC,∴∠ABC=∠ADE,∴△ABC~△ADE;(2)∵△ABC~△ADE,∴∠BAC=∠DAE,∴∠BAD=∠CAE=∠CDE,∵∠COD=∠EOA,∴△COD~△EOA,∴又∵∠AOD=∠EOC,∴△AOD~△EOC,∴,即DAOE=OACE.6.解:(1)∵CB=8,CE=5,∴BE=CB﹣CE=3,∵∠ADB是△ADC的一个外角,∴∠BAE+∠CDE=∠A+∠ACD,∵∠CDE=∠A,∴∠ACD=∠BDE,∵∠A=∠B,∴△ACD∽△BDE,∴=,即=,整理得,y=;(2)当AB=10,即x+y=10时,10﹣x=,整理得,x2﹣10x+24=0,解得,x1=4,x2=6,则AD的值为4或6.7.证明:(1)∵AC2=ADAB,∴,且∠A=∠A,∴△ACD∽△ABC,(2)①∵四边形ADEC是平行四边形,∴AD=CE=6,DE∥AC,∵AC=10,AC2=ADAB,∴AB=,∵DE∥AC,∴△BDF∽△BAC,∴;②∵AC=10,AD=x,AC2=ADAB,∴AB=,∵AC2=ADAB,∴,且∠A=∠A,∴△ACD∽△ABC,∴,∴BC=,∵CE∥AB,∴,∴,∴,∴,∴y=.8.解:设NB的长为x米,则MB=x+1+3﹣1.5=(x+2.5)米.由题意,得∠CND=∠ANB,∠CDN=∠ABN=90°,∴△CND∽△ANB,∴=.同理,△EMF∽△AMB,∴=.∵EF=CD,∴=,即=.解得x=5,∵=,∴=.解得AB=8.答:大树AB的高度为8米.9.解:(1)过点C作CD⊥x轴,垂足为点D.∵三角形ABC是等腰直角三角形,∴AB=CA,∠BAC=90°,∴∠OAB+∠CAD=90,又∵∠OAB+∠ABO=90°,∴∠ABO=∠CAD,∴AO=CD=1,OB=AD=3,∴C(4,1);(2)过点M作MH⊥x轴,垂足为点H.∵BO∥MH∥CD,MB=MC,∴a=HO=HD=2;∴b=MH=2.∴;(3)存在点P,分两种情况:在Rt△OMH中,∵MH=OH=2,∴∠MOH=45°,当点P在x轴上时,∵∠MOP=∠BOM=45°,∴当△CBD∽△CAB时,有或,∴OP=3或OP=,∴P1(3,0),P2(,0).10.解:(1)如图1,连接AD,交EF于M,由折叠知,AM=DM,AD⊥EF于M,∵EF∥BC,∴,∴AE=BE,AF=CF,∴点E是AB中点,点F是AC的中点,∴EF=BC;在Rt△ABC中,AB=6,AC=4,根据勾股定理得,BC=,∴EF=,∵∠ABC+∠ACB=90°,且∠DAC+∠ACD=90°,∴∠DAC=∠ABC,∵∠ACB=∠DCA,∴△ADC∽△BAC,∴,即,∴,∵EF∥BC,∴△ODC∽△OFE,∴;(2)如图2,∵∠A=90°,∴AB⊥AC,∵DH⊥AC,∴DH∥AB,∴△DCG∽△BCE,∴,同理:,∴,由(1)知,AE=BE,∴DG=HG,∴G是DH的中点;(3)如图1,∠ADB=∠BAC=90°,∠B=∠B,∴△ADB∽△CAB,∴,即AB2=BDBC,同理得:△ADC∽△BAC,∴,即AC2=BCDC,∵AE=AB,∴,∵,∵BD=nDC,∴=n,∴,∴.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

热点16 相似【命题趋势】相似是初中数学中比较难的一块内容,是中考必考内容,也是压轴题常考内容,所以每年中考,不论是哪个城市的中考试卷,相似都是一个重头戏。

相似在中考数学试卷中所占比例较大,一般难度都是比较大的,综合性较强,对学生的综合运用知识的能力要求也更高,所以要熟练掌握这部分知识及其常见题型对在中考中取得优异的成绩至关重要。

它往往与图形的三种运动变换或者与二次函数,反比例函数相结合而形成压轴题。

【满分技巧】一、整体把握有关相似的知识结构1.相似三角形:对应角相等,对应边成比例的两个三角形叫做相似三角形。

2.相似三角形的判定方法:○1.平行于三角形一边的直线(或两边的延长线)和其他两边相交,所构成的三角形与原三角形相似;○2.如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似;3.如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似;○○4.如果两个三角形的三组对应边的比相等,那么这两个三角形相似;3.直角三角形相似判定定理:○1.斜边与一条直角边对应成比例的两直角三角形相似。

○2.直角三角形被斜边上的高分成的两个直角三角形与原直角三角形相似,并且分成的两个直角三角形也相似。

4.相似三角形的性质:○1.相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比。

○2.相似三角形周长的比等于相似比。

○3.相似三角形面积的比等于相似比的平方。

二.把握中考常考相似模型【限时检测】(建议用时:30分钟)一、选择题1. (2019 贵州省黔南州)如图,在一斜边长30cm的直角三角形木板(即Rt△ACB)中截取一个正方形CDEF,点D在边BC上,点E在斜边AB上,点F在边AC上,若AF:AC=1:3,则这块木板截取正方形CDEF后,剩余部分的面积为()A .200cm 2B .170cm 2C .150cm 2D .100cm2【答案】D【解析】设AF =x ,则AC =3x , ∵四边形CDEF 为正方形, ∴EF =CF =2x ,EF ∥BC , ∵EF ∥BC , ∴△AEF ∽△ABC , ∴==,∴BC =6x , 在Rt△ABC 中,AB ==3x ,∴3x =30,解得x =2,∴AC =6,BC =12,∴剩余部分的面积=×6×12﹣(4)2=100(cm 2).故选:D .2. (2019 四川省乐山市)把边长分别为1和2的两个正方形按图3的方式放置.则图中阴影部分的面积为 ()A 61()B 31()C 51()D 4112【答案】A【解析】如图,AB CDE FH12∵AD//CG故选A3. (2019 四川省凉山州市)如图,在△ABC中,D在AC边上,AD:DC=1:2,O是BD的中点,连接AO并延长交BC于E,则BE:EC=()A.1:2 B.1:3 C.1:4 D.2:3【答案】B【解析】如图,过O作OG∥BC,交AC于G,∵O是BD的中点,∴G是DC的中点.又AD:DC=1:2,∴AD=DG=GC,∴AG:GC=2:1,AO:OE=2:1,∴S△AOB:S△BOE=2,设S△BOE=S,S△AOB=2S,又BO=OD,∴S△AOD=2S,S△ABD=4S,∵AD:DC=1:2,∴S△BDC=2S△ABD=8S,S四边形CDOE=7S,∴S△AEC=9S,S△ABE=3S,∴故选:B.4. (2019 浙江省杭州市)如图,在△ABC中,点D,E分别在AB和AC上,DE∥BC,M为BC边上一点(不与点B,C重合),连接AM交DE于点N,则()A.=B.=C.=D.=【答案】C【解析】∵DN∥BM,∴△ADN∽△ABM,∴=,∵NE∥MC,∴△ANE∽△AMC,∴=,∴=.故选:C.5. (2019 浙江省绍兴市)正方形ABCD的边AB上有一动点E,以EC为边作矩形ECFG,且边FG过点D.在点E从点A移动到点B的过程中,矩形ECFG的面积()A.先变大后变小B.先变小后变大C.一直变大D.保持不变【答案】D【解析】∵正方形ABCD和矩形ECFG中,∠DCB=∠FCE=90°,∠F=∠B=90°,∴∠DCF=∠ECB,∴△BCE∽△FCD,∴,∴CF•CE=CB•CD,∴矩形ECFG与正方形ABCD的面积相等.故选:D.6. (2019 浙江省绍兴市)如图1,长、宽均为3,高为8的长方体容器,放置在水平桌面上,里面盛有水,水面高为6,绕底面一棱进行旋转倾斜后,水面恰好触到容器口边缘,图2是此时的示意图,则图2中水面高度为()A.B.C.D.【答案】A【解析】过点C作CF⊥BG于F,如图所示:设DE=x,则AD=8﹣x,根据题意得:(8﹣x+8)×3×3=3×3×6,解得:x=4,∴DE=4,∵∠E=90°,由勾股定理得:CD=,∵∠BCE=∠DCF=90°,∴∠DCE=∠BCF,∵∠DEC=∠BFC=90°,∴△CDE∽△BCF,∴,即,∴CF=.故选:A.7. (2019 重庆市綦江县)下列命题是真命题的是()A.如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为2:3B.如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9C.如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为2:3D.如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为4:9【答案】B【解析】A、如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9,是假命题;B、如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9,是真命题;C、如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为16:81,是假命题;D、如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为16:81,是假命题;故选:B.8. (2019 重庆市)如图,△ABO∽△CDO,若BO=6,DO=3,CD=2,则AB的长是()A.2 B.3 C.4 D.5【答案】C【解析】∵△ABO∽△CDO,∴=,∵BO=6,DO=3,CD=2,∴=,解得:AB=4.故选:C.9. (2019 广西玉林市)如图,////AD BC,EF与AC交于点G,则是相似三角形共有(AB EF DC,//)A.3对B.5对C.6对D.8对【答案】C【解析】图中三角形有:AEG∆,∆,ADC∆,CFG,CBA////AB EF DC ,//AD BCAEG ADC CFG CBA ∴∆∆∆∽∽∽共有6个组合分别为:AEG ADC ∴∆∆∽,AEG CFG ∆∽,AEG CBA ∆∆∽,ADC CFG ∆∽,ADC CBA ∆∆∽,CFG CBA ∆∽故选:C .10. (2019 内蒙古赤峰市)如图,D 、E 分别是△ABC 边AB ,AC 上的点,∠ADE =∠ACB ,若AD =2,AB =6,AC =4,则AE 的长是( )A .1B .2C .3D .4【答案】C【解析】∵∠ADE =∠ACB ,∠A =∠A , ∴△ADE ∽△ACB , ∴=,即=, 解得,AE =3, 故选:C . 二、填空题11. (2019 江苏省常州市)如图,在矩形ABCD 中,AD =3AB =3,点P 是AD 的中点,点E 在BC 上,CE=2BE ,点M 、N 在线段BD 上.若△PMN 是等腰三角形且底角与∠DEC 相等,则MN = .【答案】6【解析】作PF⊥MN于F,如图所示:则∠PFM=∠PFN=90°,∵四边形ABCD是矩形,∴AB=CD,BC=AD=3AB=3,∠A=∠C=90°,∴AB=CD=,BD==10,∵点P是AD的中点,∴PD=AD=,∵∠PDF=∠BDA,∴△PDF∽△BDA,∴=,即=,解得:PF=,∵CE=2BE,∴BC=AD=3BE,∴BE=CD,∴CE=2CD,∵△PMN是等腰三角形且底角与∠DEC相等,PF⊥MN,∴MF=NF,∠PNF=∠DEC,∵∠PFN=∠C=90°,∴△PNF∽△DEC,∴==2,∴NF=2PF=3,∴MN=2NF=6;故答案为:6.12. (2019 内蒙古通辽市)已知三个边长分别为2cm,3cm,5cm的正方形如图排列,则图中阴影部分的面积为.【答案】3.75cm2【解析】对角线所分得的三个三角形相似,根据相似的性质可知5105x=,解得 2.5x=,即阴影梯形的上底就是3 2.50.5()cm-=.再根据相似的性质可知25 2.5y =,解得:1y=,所以梯形的下底就是312()-=,cm所以阴影梯形的面积是2(20.5)32 3.75()+⨯÷=.cm故答案为:23.75cm.13. (2019 四川省凉山州市)如图,正方形ABCD中,AB=12,AE=AB,点P在BC上运动(不与B、C重合),过点P作PQ⊥EP,交CD于点Q,则CQ的最大值为.【答案】4【解析】∵∠BEP+∠BPE=90°,∠QPC+∠BPE=90°,∴∠BEP=∠CPQ.又∠B=∠C=90°,∴△BPE∽△CQP.∴.设CQ=y,BP=x,则CP=12﹣x.∴,化简得y=﹣(x2﹣12x),整理得y=﹣(x﹣6)2+4,所以当x=6时,y有最大值为4.故答案为4.14. (2019 浙江省杭州市)如图,把某矩形纸片ABCD沿EF,GH折叠(点E,H在AD边上,点F,G在BC边上),使点B和点C落在AD边上同一点P处,A点的对称点为A′点,D点的对称点为D′点,若∠FPG=90°,△A′EP的面积为4,△D′PH的面积为1,则矩形ABCD的面积等于.【答案】2(5+3)【解析】∵四边形ABC是矩形,∴AB=CD,AD=BC,设AB=CD=x,由翻折可知:PA′=AB=x,PD′=CD=x,∵△A′EP的面积为4,△D′PH的面积为1,∴A′E=4D′H,设D′H=a,则A′E=4a,∵△A′EP∽△D′PH,∴=,∴=,∴x2=4a2,∴x=2a或﹣2a(舍弃),∴PA ′=PD ′=2a , ∵•a •2a =1,∴a =1, ∴x =2, ∴AB =CD =2,PE ==2,PH ==,∴AD =4+2++1=5+3, ∴矩形ABCD 的面积=2(5+3).故答案为2(5+3)三、解答题:15. (2019 安徽省)如图,Rt ABC ∆中,90ACB ∠=︒,AC BC =,P 为ABC ∆内部一点,且135APB BPC ∠=∠=︒.(1)求证:PAB PBC ∆∆∽; (2)求证:2PA PC =;(3)若点P 到三角形的边AB ,BC ,CA 的距离分别为1h ,2h ,3h ,求证2123h h h =.【解析】(1)90ACB ∠=︒,AB BC =, 45ABC PBA PBC ∴∠=︒=∠+∠又135APB ∠=︒, 45PAB PBA ∴∠+∠=︒ PBC PAB ∴∠=∠又135APB BPC ∠=∠=︒, PAB PBC ∴∆∆∽(2)PAB PBC ∆∆∽ ∴PA PB ABPB PC BC==在Rt ABC ∆中,AB AC =,∴ABBC=∴,PB PA =2PA PC ∴=(3)如图,过点P 作PD BC ⊥,PE AC ⊥交BC 、AC 于点D ,E , 1PF h ∴=,2PD h =,3PE h =,135135270CPB APB ∠+∠=︒+︒=︒ 90APC ∴∠=︒, 90EAP ACP ∴∠+∠=︒,又90ACB ACP PCD ∠=∠+∠=︒ EAP PCD ∴∠=∠, Rt AEP Rt CDP ∴∆∆∽, ∴2PE APDP PC==,即322h h =,322h h ∴=PAB PBC ∆∆∽, ∴122h AB h BC==, ∴122h h =∴2212222322h h h h h h ===.即:2123h h h =.16. (2019 福建省龙岩市)已知△ABC 和点A ',如图.(1)以点A '为一个顶点作△A 'B 'C ',使△A 'B 'C '∽△ABC ,且△A 'B 'C '的面积等于△ABC 面积的4倍;(要求:尺规作图,不写作法,保留作图痕迹)(2)设D 、E 、F 分别是△ABC 三边AB 、BC 、AC 的中点,D '、E '、F '分别是你所作的△A 'B 'C '三边A 'B '、B 'C '、C 'A '的中点,求证:△DEF ∽△D 'E 'F '.【解析】(1)作线段A 'C '=2AC 、A 'B '=2AB 、B 'C '=2BC ,得△A 'B 'C '即可所求.证明:∵A'C'=2AC、A'B'=2AB、B'C'=2BC,∴△ABC∽△A′B′C′,∴(2)证明:∵D、E、F分别是△ABC三边AB、BC、AC的中点,∴DE=,,,∴△DEF∽△ABC同理:△D'E'F'∽△A'B'C',由(1)可知:△ABC∽△A′B′C′,∴△DEF∽△D'E'F'.17. (2019 宁夏回族自治区)如图,在ABCAB=,4AC=,点M,Q分别是边AB,BC∠=︒,3∆中,90A上的动点(点M不与A,B重合),且MQ BC⊥,过点M作BC的平行线MN,交AC于点N,连接NQ,设BQ为x.(1)试说明不论x为何值时,总有QBM ABC∆∆∽;(2)是否存在一点Q,使得四边形BMNQ为平行四边形,试说明理由;(3)当x为何值时,四边形BMNQ的面积最大,并求出最大值.【解析】(1)∵MQ⊥BC,90MQB∴∠=︒,MQB CAB∴∠=∠,又QBM ABC∠=∠,QBM ABC∴∆∆∽;(2)当BQ MN=时,四边形BMNQ为平行四边形,//MN BQ,BQ MN=,∴四边形BMNQ为平行四边形;(3)90A∠=︒,3AB=,4AC=,225BC AB AC∴=+=,QBM ABC∆∆∽,∴QB QM BMAB AC BC==,即345x QM BM==,解得,43QM x=,53BM x=,//MN BC,∴MN AM BC AB =,即53353x MN -=, 解得,2559MN x =-, 则四边形BMNQ 的面积21254324575(5)()2932782x x x x =⨯-+⨯=--+,∴当458x =时,四边形BMNQ 的面积最大,最大值为752.。

相关文档
最新文档