2020届高考数学压轴题讲义(选填题):数列与函数、不等式相结合问题
2020高考冲刺数学总复习压轴解答:函数、不等式与导数的综合问题(附答案及解析)
专题三 压轴解答题第六关 函数、不等式与导数的综合问题【名师综述】1.本专题在高考中的地位导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点, 所以在历届高考中,对导数的应用的考查都非常突出 2.本专题在高考中的命题方向及命题角度从高考来看,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义,往往与解析几何、微积分相联系. (2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数. (3)利用导数求函数的最值(极值),解决生活中的优化问题. (4)考查数形结合思想的应用【考点方向标】方向一 用导数研究函数的性质典例1.(2020·山东高三期末)已知函数21()2ln (2)2f x x a x a x =+-+. (1)当1a =时,求函数()f x 的单调区间; (2)是否存在实数a ,使函数34()()9g x f x ax x =++在(0,)+∞上单调递增?若存在,求出a 的取值范围;若不存在,请说明理由.【举一反三】(2020·云南昆明一中高三期末(理))已知函数2()(1)xx f x e ax e =-+⋅,且()0f x …. (1)求a ;(2)证明:()f x 存在唯一极大值点0x ,且()0316f x <.方向二 导数、函数与不等式典例2.(2020·四川省泸县第二中学高三月考)已知函数()sin f x x ax =-.(1)对于(0,1)x ∈,()0f x >恒成立,求实数a 的取值范围; (2)当1a =时,令()()sin ln 1h x f x x x =-++,求()h x 的最大值; (3) 求证:1111ln(1)1231n n n+<+++⋅⋅⋅++-*()n N ∈.【举一反三】(2020·黑龙江哈尔滨三中高三月考)已知111123S n =++⋅⋅⋅+,211121S n =++⋅⋅⋅+-,直线1x =,x n =,0y =与曲线1y x=所围成的曲边梯形的面积为S .其中n N ∈,且2n ≥.(1)当0x >时,()ln 11axx ax x <+<+恒成立,求实数a 的值; (2)请指出1S ,S ,2S 的大小,并且证明;(3)求证:131112lnln 3132313n i n n i i i =+⎛⎫<+-< ⎪+--⎝⎭∑.方向三 恒成立及求参数范围问题典例3.(2020·天津高三期末)已知函数()2ln h x ax x =-+. (1)当1a =时,求()h x 在()()2,2h 处的切线方程; (2)令()()22a f x x h x =+,已知函数()f x 有两个极值点12,x x ,且1212x x >,求实数a 的取值范围;(3)在(2)的条件下,若存在012x ⎡⎤∈⎢⎥⎣⎦,使不等式()()()()20ln 1112ln 2f x a m a a ++>--++对任意a (取值范围内的值)恒成立,求实数m 的取值范围.【举一反三】(2020·江苏高三专题练习)已知函数()(32)xf x e x =-,()(2)g x a x =-,其中,a x R ∈. (1)求过点(2,0)和函数()y f x =的图像相切的直线方程; (2)若对任意x ∈R ,有()()f x g x ≥恒成立,求a 的取值范围; (3)若存在唯一的整数0x ,使得00()()f x g x <,求a 的取值范围.【压轴选编】1.(2020·山西高三开学考试)已知函数()()()222ln ,2ln f x x ax a x a R g x x x x =--+∈=-.(1)讨论()f x 的单调性;(2)求证:当1a =时,对于任意()0,x ∈+∞,都有()()f x g x <.2.(2020·河南鹤壁高中高三月考)已知函数2()ln (0,)a xf x x a a R x a=++≠∈ (1)讨论函数()f x 的单调性; (2)设1()2a x g x x a a=+-+,当0a >时,证明:()()f x g x ≥.3.(2020·四川石室中学高三月考)已知函数()22ln f x x x =-+.(1)求函数()f x 的最大值; (2)若函数()f x 与()ag x x x=+有相同极值点. ①求实数a 的值;①若对于121,,3x x e ⎡⎤∀∈⎢⎥⎣⎦(e 为自然对数的底数),不等式()()1211f xg x k -≤-恒成立,求实数k 的取值范围.4.(2020·江西高三)已知函数()()ln f x x x a b =++,曲线()y f x =在点()()1,1f 处的切线为210x y --=.(1)求a ,b 的值;(2)若对任意的()1,x ∈+∞,()()1f x m x ≥-恒成立,求正整数m 的最大值.5.(2020·江西高三)已知函数()e 2xf x m x m =--.(1)当1m =时,求曲线()y f x =在点(0,(0))f 处的切线方程;(2)若()0f x >在(0,)+∞上恒成立,求m 的取值范围.6.(2020·江西高三)已知函数()()2xf x x e =-.(1)求()f x 的单调区间;(2)证明:对任意的()0,x ∈+∞,不等式()2ln 6xf x x x >-恒成立.7.(2020·四川高三月考)已知函数21()(32)()2xf x m e x m R =--∈. (1)若0x =是函数()f x 的一个极值点,试讨论()ln ()()h x b x f x b R =+∈的单调性; (2)若()f x 在R 上有且仅有一个零点,求m 的取值范围.8.(2020·山西高三)已知函数()2ln 21f x a x x =-+(其中a R ∈). (1)讨论函数()f x 的极值;(2)对任意0x >,2()2f x a ≤-恒成立,求a 的取值范围.9.(2020·北京高三期末)已知函数()2xf x x e =(1)求()f x 的单调区间;(2)过点()1,0P 存在几条直线与曲线()y f x =相切,并说明理由; (3)若()()1f x k x ≥-对任意x ∈R 恒成立,求实数k 的取值范围.10.(2020·全国高三专题练习)已知函数()()33114ln 10f f x ax x x '=--的图象在点()()1,1f 处的切线方程为100++=x y b . (1)求a ,b 的值; (2)若()13f x m >对()0,x ∈+∞恒成立,求m 的取值范围.11.(2020·天津静海一中高三月考)已知函数()ln 1()f x ax x a R =--∈. (1)讨论()f x 的单调性并指出相应单调区间; (2)若21())1(2g x x x x f ---=,设()1212,x x x x <是函数()g x 的两个极值点,若32a ≥,且()()12g x g x k -≥恒成立,求实数k 的取值范围.12.(2020·山东高三期末)已知函数()()2sin ln 12x f x x x =+-+.(1)证明:()0f x ≥; (2)数列{}n a 满足:1102a <<,()1n n a f a +=(n *∈N ). (①)证明:1102a <<(n *∈N ); (①)证明:n *∀∈N ,1n n a a +<.13.(2020·四川三台中学实验学校高三开学考试)已知函数()ln f x x x a =+,()ln ,g x x ax a =-∈R . (1)求函数()f x 的极值; (2)若10a e<<,其中e 为自然对数的底数,求证:函数()g x 有2个不同的零点; (3)若对任意的1x >,()()0f x g x +>恒成立,求实数a 的最大值.14.(2020·河北高三期末)已知函数()f x 满足:①定义为R ;①2()2()9xx f x f x e e+-=+-. (1)求()f x 的解析式;(2)若12,[1,1]x x ∀∈-;均有()()21122(2)61x a x x f x -+-+-…成立,求a 的取值范围;(3)设2(),(0)()21,(0)f x x g x x x x >⎧=⎨--+≤⎩,试求方程[()]10g g x -=的解.15.(2020·湖南高三月考)已知函数2()()af x x ax a R x=+-∈. (1)当1a =且1x >-时,求函数()f x 的单调区间;(2)当21e a e ≥+时,若函数2()()ln g x f x x x =--的两个极值点分别为1x 、2x ,证明12240()()1g x g x e <-<+.16.(2020·江西高三期末)已知函数2()x f x e ax x =--(e 为自然对数的底数)在点(1,(1))f 的切线方程为(3)y e x b =-+. (1)求实数,a b 的值;(2)若关于x 的不等式4()5f x m >+对于任意(0,)x ∈+∞恒成立,求整数m 的最大值.17.(2020·江西高三期末)已知函数()()()2,xf x x m e nxm n R =--∈在1x =处的切线方程为y ex e =-.(1)求,m n 的值;(2)当0x >时,()3f x ax -…恒成立,求整数a 的最大值.18.(2020·河南高三期末)已知函数()()ln 1mxf x x x m=+-+,()1,0x ∈-. (1)若1m =,判断函数()f x 的单调性并说明理由; (2)若2m ≤-,求证:关于x 的不等式()()()21xx m f x e x-+⋅<-在()1,0-上恒成立.19.(2020·江西高三月考)已知函数32()32f x x x x =-+,()g x tx t R =∈,,()xe x xφ=. (1)求函数()()y f x x φ=⋅的单调增区间;(2)令()()()h x f x g x =-,且函数()h x 有三个彼此不相等的零点0m n ,,,其中m n <. ①若12m n =,求函数()h x 在x m =处的切线方程; ①若对[]x m n ∀∈,,()16h x t ≤-恒成立,求实数M 的取值范围.专题三 压轴解答题第六关 函数、不等式与导数的综合问题【名师综述】1.本专题在高考中的地位导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点, 所以在历届高考中,对导数的应用的考查都非常突出 2.本专题在高考中的命题方向及命题角度从高考来看,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义,往往与解析几何、微积分相联系. (2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数. (3)利用导数求函数的最值(极值),解决生活中的优化问题. (4)考查数形结合思想的应用【考点方向标】方向一 用导数研究函数的性质典例1.(2020·山东高三期末)已知函数21()2ln (2)2f x x a x a x =+-+. (1)当1a =时,求函数()f x 的单调区间; (2)是否存在实数a ,使函数34()()9g x f x ax x =++在(0,)+∞上单调递增?若存在,求出a 的取值范围;若不存在,请说明理由.【答案】(1)()f x 的单调递增区间为(]0,1和[)2,+∞,单调递减区间为()1,2(2)存在,724a ≥ 【解析】(1)当1a =时,21()2ln 3(0)2f x x x x x =+->. 所以2()3f x x x '=+-=232(2)(1)x x x x x x-+--=令()0f x '≥,则01x <≤或2x ≥,令()0f x '<,则12x <<, 所以()f x 的单调递增区间为(]0,1和[)2,+∞,单调递减区间为()1,2 (2)存在724a ≥,满足题设,因为函数34()()9g x f x ax x =++=23142ln 229x a x x x +-+所以224()23a g x x x x '=+-+,要使函数()g x 在0,∞(+)上单调递增,224()20,(0,)3a g x x x x x '=+-≥+∈+∞,即3243660x x x a +-+≥,(0,)x ∈+∞⇔324366x x xa +-≥-,(0,)x ∈+∞ 令32436()6x x x h x +-=,(0,)x ∈+∞,则2()21(21)(1)h x x x x x '=+-=-+,所以当10,2x ⎛⎫∈ ⎪⎝⎭时,()0h x '<,()h x 在10,2⎛⎫⎪⎝⎭上单调递减,当1,2x ⎛⎫∈+∞⎪⎝⎭时,()0h x '>,()h x 在1,2⎛⎫+∞ ⎪⎝⎭上单调递增, 所以12x =是()h x 的极小值点,也是最小值点,且17224h ⎛⎫=- ⎪⎝⎭,∴324366x x x+--在(0,)+∞上的最大值为724.所以存在724a ≥,满足题设.【举一反三】(2020·云南昆明一中高三期末(理))已知函数2()(1)xx f x e ax e =-+⋅,且()0f x …. (1)求a ;(2)证明:()f x 存在唯一极大值点0x ,且()0316f x <. 【答案】(1)1a =;(2)证明见解析. 【解析】(1)因为()()ee 10xxf x ax =--≥,且e0x>,所以e 10x ax --≥,构造函数()e 1xu x ax =--,则()'e xu x a =-,又()00u =,若0a ≤,则()'0u x >,则()u x 在R 上单调递增,则当0x <时,()0u x <矛盾,舍去;若01a <<,则ln 0a <,则当ln 0a x <<时,'()0u x >,则()u x 在(ln ,0)a 上单调递增,则()()ln 00u a u <=矛盾,舍去;若1a >,则ln 0a >,则当0ln x a <<时,'()0u x <,则()u x 在(0,ln )a 上单调递减,则()()ln 00u a u <=矛盾,舍去;若1a =,则当0x <时,'()0u x <,当0x >时,'()0u x >, 则()u x 在(,0)-∞上单调递减,在(0,)+∞上单调递增, 故()()00u x u ≥=,则()()e 0xf x u x =⋅≥,满足题意;综上所述,1a =.(2)证明:由(1)可知()()2e 1e xxf x x =-+⋅,则()()'e2e 2xxf x x =--,构造函数()2e 2xg x x =--,则()'2e 1xg x =-,又()'g x 在R 上单调递增,且()'ln20g -=,故当ln2x <-时,)'(0g x <,当ln 2x >-时,'()0g x >, 则()g x 在(,ln 2)-∞-上单调递减,在(ln 2,)-+∞上单调递增,又()00g =,()2220e g -=>,又33233332223214e 16e 022e 2e 8e 2e g --⎛⎫-=-==< ⎪⎝⎭+, 结合零点存在性定理知,在区间3(2,)2--存在唯一实数0x ,使得()00g x =, 当0x x <时,()'0f x >,当00x x <<时,()'0f x <,当0x >时,()'0f x >, 故()f x 在()0,x -∞单调递增,在()0,0x 单调递减,在()0,∞+单调递增,故()f x 存在唯一极大值点0x ,因为()0002e 20xg x x =--=,所以00e 12xx =+, 故()()()()022200000011e1e 11112244x x x x f x x x x ⎛⎫⎛⎫=-+=+-++=-+ ⎪ ⎪⎝⎭⎝⎭,因为0322x -<<-,所以()201133144216f x ⎛⎫<--+<⎪⎝⎭. 方向二 导数、函数与不等式典例2.(2020·四川省泸县第二中学高三月考)已知函数()sin f x x ax =-. (1)对于(0,1)x ∈,()0f x >恒成立,求实数a 的取值范围; (2)当1a =时,令()()sin ln 1h x f x x x =-++,求()h x 的最大值;(3) 求证:1111ln(1)1231n n n+<+++⋅⋅⋅++-*()n N ∈. 【答案】(1)sin1a ≤.(2)max ()(1)0h x h ==.(3)见解析.【解析】(1)由()0f x >,得:sin 0x ax ->,因为01x <<,所以sin xa x<, 令sin ()x g x x=,()2cos sin 'x x xg x x -=, 再令()cos sin m x x x x =-,()'cos sin cos sin 0m x x x x x x x =--=-<, 所以()m x 在()0,1上单调递减, 所以()()0m x m <,所以()'0g x <,则()g x 在()0,1上单调递减, 所以()(1)sin1g x g >=,所以sin1a ≤. (2)当1a =时,()sin f x x x =-, ①()ln 1h x x x =-+,()11'1x h x x x-=-=, 由()'0h x =,得:1x =,当()0,1x ∈时,()'0h x >,()h x 在()0,1上单调递增; 当()1,x ∈+∞时,()'0h x <,()h x 在()1,+∞上单调递减; ①()max (1)0h x h ==.(3)由(2)可知,当()1,x ∈+∞时,()0h x <, 即ln 1x x <-, 令1n x n +=,则11ln1n n n n ++<-,即()1ln 1ln n n n+-<, 分别令1,2,3,,n n =L 得,()11ln 2ln11,ln 3ln 2,,ln 1ln 2n n n-<-<+-<L ,将上述n 个式子相加得:()()*111ln 1121n n N n n+<++++∈-L . 【举一反三】(2020·黑龙江哈尔滨三中高三月考)已知111123S n =++⋅⋅⋅+,211121S n =++⋅⋅⋅+-,直线1x =,x n =,0y =与曲线1y x=所围成的曲边梯形的面积为S .其中n N ∈,且2n ≥.(1)当0x >时,()ln 11axx ax x <+<+恒成立,求实数a 的值; (2)请指出1S ,S ,2S 的大小,并且证明;(3)求证:131112lnln 3132313n i n n i i i =+⎛⎫<+-< ⎪+--⎝⎭∑. 【答案】(1)1;(2)12S S S <<,证明见解析;(3)见解析 【解析】(1)由已知得0a ≤时,不合题意,所以0a >.()ln 11axx x <++恒成立,即()()()1ln 10ax x x x <++>恒成立. 令()()()1ln 1m x x x ax =++-,()()'ln 11m x x a =++-. 当1a ≤时,()m x 在()0,∞+上为增函数,此时()0m x >成立.当1a >时,()m x 在()10,1a e --上为减函数,不合题意,所以1a ≤.令()()ln 1n x ax x x =-+,()1'1n x a x =-+,当1a ≥时,()n x 在()0,∞+上为增函数,此时()0n x >,()ln 1x ax +<恒成立.当01a <<时,()n x 在10,1a ⎛⎫- ⎪⎝⎭上为减函数,不合题意,所以1a ≥.综上得1a =. (2)由(1)知()()ln 101x x x x x <+<>+.令1x i =,得111ln 11i i i⎛⎫<+< ⎪+⎝⎭, 从而11111111ln 112321n i n i n -=⎛⎫+++<+<+++ ⎪-⎝⎭∑L L ,又因为11ln nS dx n x==⎰,则12S S S <<. (3)由已知111232313ni i i i =⎛⎫+- ⎪--⎝⎭∑1111111123323n n ⎛⎫⎛⎫+++⋅⋅⋅+-++++ ⎪ ⎪⎝⎭⎝=⎭L 111123n n n =++⋅⋅⋅+++,因为111ln 11i i i⎛⎫<+< ⎪+⎝⎭,所以 111111ln 1ln 1ln 1123123n n n n n n ⎛⎫⎛⎫⎛⎫+++>++++++ ⎪ ⎪ ⎪++++⎝⎭⎝⎭⎝⎭L L 31ln1n n +=+, 111123ln ln ln 123131n n n n n n n n n ++⎛⎫⎛⎫⎛⎫+++<+++ ⎪ ⎪ ⎪+++-⎝⎭⎝⎭⎝⎭L L ln 3=.从而131112lnln 3132313n i n n i i i =+⎛⎫<+-< ⎪+--⎝⎭∑. 方向三 恒成立及求参数范围问题典例3.(2020·天津高三期末)已知函数()2ln h x ax x =-+. (1)当1a =时,求()h x 在()()2,2h 处的切线方程; (2)令()()22a f x x h x =+,已知函数()f x 有两个极值点12,x x ,且1212x x >,求实数a 的取值范围;(3)在(2)的条件下,若存在0122x ⎡⎤∈+⎢⎥⎣⎦,使不等式()()()()20ln 1112ln 2f x a m a a ++>--++对任意a (取值范围内的值)恒成立,求实数m 的取值范围. 【答案】(1)322ln 220x y +-+=(2)()1,2(3)1,4⎛⎤-∞- ⎥⎝⎦【解析】()1当1a =时,()()12ln ,'2h x x x h x x=-+=-+2x =时,()()3'2,24ln 22h h =-=-+()h x ∴在()()2,2h 处的切线方程为()34ln 222y x +-=--,化简得:322ln 220x y +-+= ()2对函数求导可得,()()221'0ax ax f x x x-+=>,令()'0f x =,可得2210ax ax -+=20440112a a a a ⎧⎪≠⎪∴->⎨⎪⎪>⎩,解得a 的取值范围为()1,2 ()3由2210ax ax -+=,解得1211x x ==+而()f x 在()10,x 上递增,在()12,x x 上递减,在()2,x +∞上递增12a <<Q211x ∴=+<()f x ∴在122⎡⎤+⎢⎥⎣⎦单调递增 ∴在1,22⎡⎤+⎢⎥⎣⎦上,()()max 22ln 2f x f a ==-+012x ⎡⎤∴∃∈⎢⎥⎣⎦,使不等式()()()()20ln 1112ln 2f x a m a a ++>--++对a M ∀∈恒成立等价于不等式2(2ln 2ln 1112))()n (l 2a a m a a -+++>--++恒成立 即不等式2()ln 1ln 210a ma a m +--+-+>对任意的()12a a <<恒成立令()()2ln 1ln 21g a a ma a m =+--+-+,则()()121210,'1ma a m g g a a ⎛⎫-++ ⎪⎝⎭==+ ①当0m ≥时,()()'0,g a g a <在()1,2上递减()()10g a g <=不合题意①当0m <时,()1212'1ma a m g a a ⎛⎫-++ ⎪⎝⎭=+ 12a <<Q若1112m ⎛⎫-+> ⎪⎝⎭,即104m -<<时,则()g a 在()1,2上先递减 ()10g =Q12a ∴<<时,()0g a >不能恒成立若111,2m ⎛⎫-+≤ ⎪⎝⎭即14m ≤-,则()g a 在()1,2上单调递增 ()()10g a g ∴>=恒成立m ∴的取值范围为1,4⎛⎤-∞- ⎥⎝⎦【举一反三】(2020·江苏高三专题练习)已知函数()(32)xf x e x =-,()(2)g x a x =-,其中,a x R ∈. (1)求过点(2,0)和函数()y f x =的图像相切的直线方程; (2)若对任意x ∈R ,有()()f x g x ≥恒成立,求a 的取值范围; (3)若存在唯一的整数0x ,使得00()()f x g x <,求a 的取值范围. 【答案】(1)2y x =-,8833918y e x e =-.(2)8319a e ≤≤.(3)345[,1)(7,5]3a e e e∈⋃. 【解析】(1)设切点为()00,x y ,()()'31xf x e x =+,则切线斜率为()0031x e x +,所以切线方程为()()000031x y y e x x x -=+-,因为切线过()2,0,所以()()()000032312x x ex e x x --=+-,化简得200380x x -=,解得080,3x =. 当00x =时,切线方程为2y x =-, 当083x =时,切线方程为8833918y e x e =-. (2)由题意,对任意x R ∈有()()322xe x a x -≥-恒成立,①当(),2x ∈-∞时,()()323222x x maxe x e x a a x x ⎡⎤--≥⇒≥⎢⎥--⎣⎦,令()()322x e x F x x -=-,则()()()2238'2x e x xF x x -=-,令()'0F x =得0x =,()()max 01F x F ==,故此时1a ≥.①当2x =时,恒成立,故此时a R ∈. ①当()2,x ∈+∞时,()()min323222x x e x e x a a x x ⎡⎤--≤⇒≤⎢⎥--⎣⎦,令()8'03F x x =⇒=,()83min 893F x F e ⎛⎫== ⎪⎝⎭,故此时839a e ≤.综上:8319a e ≤≤.(3)因为()()f x g x <,即()()322xex a x -<-,由(2)知()83,19,a e ⎛⎫∈-∞⋃+∞ ⎪⎝⎭,令()()322x e x F x x -=-,则当(),2x ∈-∞,存在唯一的整数0x 使得()()00f x g x <, 等价于()322x e x a x -<-存在唯一的整数0x 成立,因为()01F =最大,()513F e -=,()11F e =-,所以当53a e<时,至少有两个整数成立, 所以5,13a e ⎡⎫∈⎪⎢⎣⎭. 当()2,x ∈+∞,存在唯一的整数0x 使得()()00f x g x <, 等价于()322x e x a x ->-存在唯一的整数0x 成立,因为83893F e ⎛⎫= ⎪⎝⎭最小,且()337F e =,()445F e =,所以当45a e >时,至少有两个整数成立,所以当37a e ≤时,没有整数成立,所有(347,5a e e ⎤∈⎦.综上:(345,17,53a e e e ⎡⎫⎤∈⋃⎪⎦⎢⎣⎭. 【压轴选编】1.(2020·山西高三开学考试)已知函数()()()222ln ,2ln f x x ax a x a R g x x x x =--+∈=-.(1)讨论()f x 的单调性;(2)求证:当1a =时,对于任意()0,x ∈+∞,都有()()f x g x <. 【答案】(1)见解析(2)见解析【解析】(1)由题意()f x 的定义域为()0,∞+,且()()()222222x a x a a x ax a f x x a x x x--+--+'=--+==, 当0a =时,()20f x x '=-<; 当0a >时,2a x >时,()0f x '<;02ax <<时,()0f x '>; 当0a <时,x a >-时,()0f x '<;0x a <<-时,()0f x '>;综上所述,当0a =时,()f x 在()0,∞+上为减函数; 当0a >时,()f x 在0,2a ⎛⎫ ⎪⎝⎭上为增函数,在,2a ⎛⎫+∞ ⎪⎝⎭上为减函数; 当0a <时,()f x 在()0,a -上为增函数,在(),a -+∞上为减函数. (2)要证()()f x g x <,即证()21ln 0x x x -+>,当12x =时,不等式显然成立; 当12x >时,即证ln 021x x x +>-;当102x <<时,即证ln 021xx x +<-; 令()ln 21x F x x x =+-,则()()()()()22411112121x x F x x x x x ---'=+=--, 当12x >时,在1,12⎛⎫⎪⎝⎭上()0F x '<,()F x 为减函数;在()1,+∞上()0F x '>,()F x 为增函数,①()()min 110F x F ==>,①ln 021xx x +>-.当102x <<时,在10,4⎛⎫ ⎪⎝⎭上()0F x '>,()F x 为增函数;在11,42⎛⎫⎪⎝⎭上()0F x '<,()F x 为减函数, ①()max 111ln 0442F x F ⎛⎫==-<⎪⎝⎭,①ln 021x x x +<-, 综上所述,当0x >时,()()f x g x <成立.2.(2020·河南鹤壁高中高三月考)已知函数2()ln (0,)a xf x x a a R x a=++≠∈ (1)讨论函数()f x 的单调性; (2)设1()2a x g x x a a=+-+,当0a >时,证明:()()f x g x ≥. 【答案】(1)见解析;(2)证明见解析【解析】(1)22121(2)()()a x a x a f x x x a ax+-'=-+= 当0a >时,()0f x x a '>⇒>,()00f x x a '<⇒<<当0a <时,()002f x x a '>⇒<<-,()02f x x a '<⇒>- ①0a >时,()f x 在(0,)a 上递减,在(,)a +∞递增 0a <时,()f x 在(0,2)a -上递增,在(2,)a -+∞递减(2)设1()()()ln 2a F x f x g x x x a=-=++- 则221()(0)a x aF x x x x x-'=-=> Q 0a >,(0,)x a ∴∈时,()0F x '<,()F x 递减(,)x a ∈+∞,()0,F x '>()F x 递增,1()()ln 1F x F a a a∴≥=+-设1()ln 1h x x x =+-,(0)x >,则22111()(0)x h x x x x x-'=-=>1x >时,()0,h x '>时,()h x 递增, 01x <<时,()0h x '<,∴()h x 递减()(1)0h x h ∴≥=,()()0F a h a ∴=≥()0F x ∴≥,即()()f x g x ≥3.(2020·四川石室中学高三月考)已知函数()22ln f x x x =-+.(1)求函数()f x 的最大值; (2)若函数()f x 与()ag x x x=+有相同极值点. ①求实数a 的值;①若对于121,,3x x e ⎡⎤∀∈⎢⎥⎣⎦(e 为自然对数的底数),不等式()()1211f xg x k -≤-恒成立,求实数k 的取值范围.【答案】(①)()11f =-;(①)(①)1; (①)()34 ,2ln31,3⎛⎤-∞-+⋃+∞ ⎥⎝⎦. 【解析】(1)22(1)(1)()2(0)x x f x x x x x+-'=-+=->, 由()0{0f x x >>'得01x <<,由()0{0f x x <>'得1x >,①()f x 在(0,1)上为增函数,在(1,)+∞上为减函数, ①函数()f x 的最大值为(1)1f =-; (2)①()a g x x x=+,①2()1a g x x =-',(①)由(1)知,1x =是函数()f x 的极值点,又①函数()f x 与()ag x x x=+有相同极值点, ①1x =是函数()g x 的极值点,①(1)10g a =-=',解得1a =, 经检验,当1a =时,函数()g x 取到极小值,符合题意;(①)①211()2f e e =--,(1)1f =-,(3)92ln 3f =-+, ①2192ln 321e -+<--<-, 即1(3)()(1)f f f e <<,①1[,3]x e∀∈,min max ()(3)92ln 3,()(1)1f x f f x f ==-+==-,由(①)知1()g x x x =+,①21()1g x x =-',当1[,1)x e∈时,()0g x '<,当(1,3]x ∈时,()0g x '>,故()g x 在1[,1)e 为减函数,在(1,3]上为增函数,①11110(),(1)2,(3)333g e g g e e =+==+=,而11023e e <+<,①1(1)()(3)g g g e <<,①1[,3]x e ∀∈,min max 10()(1)2,()(3)3g x g g x g ====,①当10k ->,即1k >时,对于121,[,3]x x e ∀∈,不等式12()()11f xg x k -≤-恒成立12max 1[()()]k f x g x ⇔-≥-12max [()()]1k f x g x ⇔≥-+,①12()()(1)(1)123f x g x f g -≤-=--=-,①312k ≥-+=-,又①1k >,①1k >, ①当10k -<,即1k <时,对于121,[,]x x e e ∀∈,不等式12()()11f xg x k -≤-,12min 1[()()]k f x g x ⇔-≤-12min [()()]1k f x g x ⇔≤-+,①121037()()(3)(3)92ln 32ln 333f x g x f g -≥-=-+-=-+,①342ln 33k ≤-+,又①1k <, ①342ln 33k ≤-+.综上,所求的实数k 的取值范围为34(,2ln 3](1,)3-∞-+⋃+∞. 4.(2020·江西高三)已知函数()()ln f x x x a b =++,曲线()y f x =在点()()1,1f 处的切线为210x y --=.(1)求a ,b 的值;(2)若对任意的()1,x ∈+∞,()()1f x m x ≥-恒成立,求正整数m 的最大值. 【答案】(1)1a =,0b =;(2)3【解析】(1)由()()ln f x x x a b =++得:()ln 1f x x a '=++ 由切线方程可知:()1211f =-=()112f a '∴=+=,()11f a b =+=,解得:1a =,0b =(2)由(1)知()()ln 1f x x x =+则()1,x ∈+∞时,()()1f x m x ≥-恒成立等价于()1,x ∈+∞时,()ln 11x x m x +≤-恒成立令()()ln 11x x g x x +=-,1x >,则()()2ln 21x x g x x --'=-. 令()ln 2hx x x =--,则()111x h x x x-'=-=∴当()1,x ∈+∞时,()0h x '>,则()h x 单调递增()31ln30h =-<Q ,()422ln20h =-> ()03,4x ∴∃∈,使得()00h x =当()01,x x ∈时,()0g x '<;()0,x x ∈+∞时,()0g x '>()()()000min0ln 11x x g x g x x +∴==-()000ln 20h x x x =--=Q 00ln 2x x ∴=- ()()()()0000min 0213,41x x g x g x x x -+∴===∈-()03,4m x ∴≤∈,即正整数m 的最大值为35.(2020·江西高三)已知函数()e 2xf x m x m =--.(1)当1m =时,求曲线()y f x =在点(0,(0))f 处的切线方程; (2)若()0f x >在(0,)+∞上恒成立,求m 的取值范围. 【答案】(1)y x =-;(2)[2,)+∞【解析】(1)因为1m =,所以()e 21xf x x =--,所以()e 2xf x '=-,则(0)0,(0)1f f '==-,故曲线()y f x =在点(0,(0))f 处的切线方程为y x =-.(2)因为()e 2x f x m x m =--,所以()e 2xf x m '=-,①当2m ≥时,()0f x '>在(0,)+∞上恒成立,则()f x 在(0,)+∞上单调递增,从而()(0)0f x f >=成立,故2m ≥符合题意; ①当02m <<时,令()0f x '<,解得20lnx m <<,即()f x 在20,ln m ⎛⎫ ⎪⎝⎭上单调递减,则2ln(0)0f f m ⎛⎫<= ⎪⎝⎭,故02m <<不符合题意; ①当0m ≤时,0()e 2x f x m '-<=在(0,)+∞上恒成立,即()f x 在(0,)+∞上单调递减,则()(0)0f x f <=,故0m ≤不符合题意.综上,m 的取值范围为[2,)+∞. 6.(2020·江西高三)已知函数()()2x f x x e =-.(1)求()f x 的单调区间;(2)证明:对任意的()0,x ∈+∞,不等式()2ln 6xf x x x >-恒成立.【答案】(1)单调递增区间为()1,+?,单调递减区间为(),1-∞(2)证明见解析【解析】(1)因为()()2x f x x e =-,所以()()1x f x x e '=-,令()0f x ¢>,解得1x >;令()0f x ¢<,解得1x <.故()f x 的单调递增区间为()1,+?,单调递减区间为(),1-∞.(2)要证()2ln 6xf x x x >-,只需证()ln 32x f x x>-.由(1)可知()()min 1f x f e ==-.令()ln 3(0)2x h x x x =->,则()21ln 2xh x x -'=, 令()21ln 0ln 102xh x x x e x-'=>⇒<⇒<<, 所以当()0,x e ∈时,()0h x '>,()h x 单调递增;当(),x e ∈+∞时,()0h x '<,()h x 单调递减, 则()()max 132h x h e e==-. 因为 2.71828e =⋅⋅⋅,所以 2.75e ->-,所以1133 2.7524e -<-=-, 从而132e e->-,则当0x >时,()()min max f x h x >.故当0x >时,()()f x h x >恒成立,即对任意的()0,x ∈+∞,()2ln 6xf x x x >-.7.(2020·四川高三月考)已知函数21()(32)()2xf x m e x m R =--∈. (1)若0x =是函数()f x 的一个极值点,试讨论()ln ()()h x b x f x b R =+∈的单调性; (2)若()f x 在R 上有且仅有一个零点,求m 的取值范围.【答案】(1)当0b …时,()h x 在(0,)+∞上单调递减;当0b >时,()h x 在上单调递增,在)+∞上单调递减;(2)2222,333e ⎧⎫⎛⎫++∞⋃⎨⎬⎪⎩⎭⎝⎭. 【解析】(1)()(32)xf x m e x '=--,因为0x =是函数()f x 的一个极值点,则(0)320f m '=-=,所以23m =,则21()ln (0)2h x b x x x =->,当2()b b x h x x x x-'=-=,当0b …时,()0h x '…恒成立,()h x 在(0,)+∞上单调递减,当0b >时,2()000h x b x x '>⇒->⇒<<所以()h x 在上单调递增,在)+∞上单调递减. 综上所述:当0b …时,()h x 在(0,)+∞上单调递减;当0b >时,()h x 在上单调递增,在)+∞上单调递减. (2)()f x 在R 上有且仅有一个零点,即方程2322x x m e -=有唯一的解,令2()2xx g x e=, 可得(2)()0,()2xx x g x g x e -'>=, 由(2)()02xx x g x e -'==, 得0x =或2x =,(1)当0x …时,()0g x '…,所以()g x 在(,0]-∞上单调递减,所以()(0)0g x g =…,所以()g x 的取值范围为[0,)+∞. (2)当02x <<时,()0g x '>,所以()g x 在(0,2)上单调递增, 所以0()(2)g x g <<,即220()g x e<<, 故()g x 的取值范围为220,e ⎛⎫ ⎪⎝⎭. (3)当2x …时,()0g x '…,所以()g x 在[2,)+∞上单调递减, 所以(0)()(2)g g x g <…,即220()g x e <…, 即()g x 的取值范围为220,e ⎛⎤ ⎥⎝⎦. 所以,当320m -=或2232m e ->, 即23m =或22233m e >+时,()f x 在R 上有且只有一个零点,故m 的取值范围为2222,333e ⎧⎫⎛⎫++∞⋃⎨⎬⎪⎩⎭⎝⎭. 8.(2020·山西高三)已知函数()2ln 21f x a x x =-+(其中a R ∈). (1)讨论函数()f x 的极值;(2)对任意0x >,2()2f x a ≤-恒成立,求a 的取值范围.【答案】(1)答案不唯一,具体见解析(2)[1,)+∞ 【解析】(1)()f x 的定义域为(0,)+∞,2'()2af x x=-, ①当0a ≤时,'()0f x <,所以()f x 在(0,)+∞上是减函数,()f x 无极值. ①当0a >时,令'()0f x =,得x a =,在(0,)a 上,'()0f x >,()f x 是增函数;在(,)a +∞上,'()0f x <,()f x 是减函数. 所以()f x 有极大值()2ln 21f a a a a =-+,无极小值.(2)由(1)知,①当0a ≤时,()f x 是减函数,令2a x e =,则0(0,1]x ∈,222220()(2)21(2)320a a f x a a e a e --=-+--=->,不符合题意,①当0a >时,()f x 的最大值为()2ln 21f a a a a =-+, 要使得对任意0x >,2()(1)f x a ≤-恒成立, 即要使不等式22ln 212a a a a -+≤-成立, 则22ln 230a a a a --+≤有解.令2()2ln 23(0)g a a a a a a =--+>,所以'()2ln 2g a a a =-令()'()2ln 2h a g a a a ==-,由22'()0ah a a-==,得1a =. 在(0,1)上,'()0h a >,则()'()h a g a =在(0,1)上是增函数; 在(1,)+∞上,'()0h a <,则()'()h a g a =在(1,)+∞上是减函数. 所以max ()(1)20h a h ==-<,即'()0g a <, 故()g a 在(0,)+∞上是减函数,又(1)0g =,要使()0g a ≤成立,则1a ≥,即a 的取值范围为[1,)+∞. 9.(2020·北京高三期末)已知函数()2xf x x e =(1)求()f x 的单调区间;(2)过点()1,0P 存在几条直线与曲线()y f x =相切,并说明理由; (3)若()()1f x k x ≥-对任意x ∈R 恒成立,求实数k 的取值范围.【答案】(1)增区间为(),2-∞-,()0,∞+,单调减区间为()2,0-;(2)三条切线,理由见解析;(3)0,2⎡+⎣ 【解析】(1)()()()222xxf x x x e x x e '==++,()0f x '>得,2x <-或0x >;()0f x '<得,20x -<<;所以()f x 的单调增区间为(),2-∞-,()0,∞+;单调减区间为()2,0-; (2)过()1,0P 点可做()f x 的三条切线;理由如下:设切点坐标为()0200,x x x e,所以切线斜率()()00002xx x k x e f '=+= 所以过切点的切线方程为:()()002200002x x x e x x e x y x -=+-,切线过()1,0P 点,代入得()()0022*******x x x e x x e x -=+-,化简得(0000x x x x e=,方程有三个解,00x =,0x =0x 所以过()1,0P 点可做()f x 的三条切线. (3)设()()21xg x x e k x -=-,①0k =时,因为20x ≥,0x e >,所以显然20x x e ≥对任意x ∈R 恒成立; ①k 0<时,若0x =,则()()0001f k k =>-=-不成立, 所以k 0<不合题意.①0k >时,1x ≤时,()()210xg x x e k x -=->显然成立,只需考虑1x >时情况;转化为21xx e k x ≥-对任意()1,x ∈+∞恒成立令()21xx e h x x =-(1x >),则()min k h x ≤,()()()(()2222(2)111xx xx x x ex x e x x e h x x x +--'==--,当1x <<时,()0h x '<,()h x 单调减;当x >()0h x '>,()h x 单调增;所以()(min 2h x h==+=所以(2k ≤+综上所述,k 的取值范围(0,2+⎡⎣. 10.(2020·全国高三专题练习)已知函数()()33114ln 10f f x ax x x '=--的图象在点()()1,1f 处的切线方程为100++=x y b . (1)求a ,b 的值;(2)若()13f x m >对()0,x ∈+∞恒成立,求m 的取值范围. 【答案】(1)13a =,403=-b ;(2)2642ln 2<-m【解析】(1)()()23114310f f x ax x''=--, 因为()f x 在()()1,1f 处的切线方程为100++=x y b ,即10y x b =--,此时切线斜率10k =-,则()3(1)13141010f f a k ''=--==-,解得13a =,所以()()333101114ln 314ln 3103f x x x x x x x ⨯-=--=+-, 所以()31110113114ln13333f =⨯+⨯-=+=,则10103b =--,解得403=-b(2)由(1)知()31314ln 3f x x x x =+-, ()32143143x x f x x x x+-'=+-=, 设函数()()33140g x xx x =+->,则()2330g x x '=+>,所以()g x 在()0,∞+为增函数,因为()20g =,令()0g x <,得02x <<;令()0g x >,得2x >, 所以当02x <<时,()0f x '<;当2x >时,()0f x '>, 所以()()3min 126223214ln 214ln 233f x f ==⨯+⨯-=-, 从而12614ln 233<-m ,即2642ln 2<-m 11.(2020·天津静海一中高三月考)已知函数()ln 1()f x ax x a R =--∈.(1)讨论()f x 的单调性并指出相应单调区间; (2)若21())1(2g x x x x f ---=,设()1212,x x x x <是函数()g x 的两个极值点,若32a ≥,且()()12g x g x k -≥恒成立,求实数k 的取值范围.【答案】(1)答案见解析(2)15,2ln 28⎛⎤-∞- ⎥⎝⎦【解析】(1)由()ln 1f x ax x =--,(0,)x ∈+∞, 则11()ax f x a x x'-=-=, 当0a ≤时,则()0f x '≤,故()f x 在(0,)+∞上单调递减;当0a >时,令1()0f x x a'=⇒=, 所以()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递减,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递增.综上所述:当0a ≤时,()f x 在(0,)+∞上单调递减; 当0a >时,()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递减,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递增. (2)①21()ln (1)2g x x x a x =+-+, 21(1)1()(1)x a x g x x a x x-++'=+-+=, 由()0g x '=得2(1)10x a x -++=,①121x x a +=+,121=x x ,①211x x =①32a ≥①111115210x x x x ⎧+≥⎪⎪⎨⎪<<⎪⎩解得1102x <≤.①()()()()222112121211221111ln(1)2ln 22x g x g x x x a x x x x x x ⎛⎫-=+--+-=-- ⎪⎝⎭. 设22111()2ln 022h x x x x x ⎛⎫⎛⎫=--<≤ ⎪⎪⎝⎭⎝⎭,则()2233121()0x h x x x x x '--=--=<,①()h x 在10,2⎛⎤ ⎥⎝⎦上单调递减;当112x =时,min 115()2ln 228h x h ⎛⎫==- ⎪⎝⎭. ①152ln 28k ≤-,即所求k 的取值范围为15,2ln 28⎛⎤-∞- ⎥⎝⎦.12.(2020·山东高三期末)已知函数()()2sin ln 12x f x x x =+-+.(1)证明:()0f x ≥; (2)数列{}n a 满足:1102a <<,()1n n a f a +=(n *∈N ). (①)证明:1102a <<(n *∈N ); (①)证明:n *∀∈N ,1n n a a +<.【答案】(1)证明见解析(2)(i )证明见解析(ii )证明见解析 【解析】(1)由题意知,()1cos 1f x x x x'=+-+,()1,x ∈-+∞, 当()1,0x ∈-时,()1101f x x x x'<+-<<+,所以()f x 在区间()1,0-上单调递减, 当()0,x ∈+∞时,()()g x f x '=,因为()()()22111sin 011g x x x x '=+->>++所以()g x 在区间()0,∞+上单调递增,因此()()00g x g >=,故当()0,x ∈+∞时,()0f x '>,所以()f x 在区间()0,∞+上单调递增, 因此当()1,x ∈-+∞时,()()00f x f ≥=,所以()0f x ≥ (2)(①)()f x 在区间10,2⎛⎫ ⎪⎝⎭上单调递增,()()00f x f >=,因为881288311111C C 147122224e ⎛⎫⎛⎫=+=+++>++=> ⎪ ⎪⎝⎭⎝⎭L , 故83318ln ln ln 022e ⎛⎫-=-< ⎪⎝⎭,所以()1113131131sin ln sin ln 18ln 22826822822f x f π⎛⎫⎛⎫<=+-<+-=+-<⎪ ⎪⎝⎭⎝⎭因此当10,2x ⎛⎫∈ ⎪⎝⎭时,()01f x <<,又因为110,2a ⎛⎫∈ ⎪⎝⎭,所以()()()()()()12110,2n n n a f a ff a f f f a --⎛⎫====∈ ⎪⎝⎭LL L(①)函数()()h x f x x =-(102x <<),则()()11cos 11h x f x x x x''=-=+--+, 令()()x h x ϕ=',则()()0x g x ϕ''=>,所以()x ϕ在区间10,2⎛⎫ ⎪⎝⎭上单调递增;因此()()111217cos 1cos 0222326h x x ϕϕ⎛⎫'=≤=+--=-<⎪⎝⎭, 所以()h x 在区间10,2⎛⎫ ⎪⎝⎭上单调递减,所以()()00h x h <=, 因此()()10n n n n n a a f a a g a +-=-=<, 所以x *∀∈N ,1n n a a +<13.(2020·四川三台中学实验学校高三开学考试)已知函数()ln f x x x a =+,()ln ,g x x ax a =-∈R . (1)求函数()f x 的极值; (2)若10a e<<,其中e 为自然对数的底数,求证:函数()g x 有2个不同的零点; (3)若对任意的1x >,()()0f x g x +>恒成立,求实数a 的最大值. 【答案】(1)极小值为1a e-+;无极大值(2)证明过程见解析;(3)2. 【解析】(1)函数()f x 的定义域为0x >,因为()ln f x x x a =+,所以()ln 1f x x =+‘,当1x e >时,()0f x >‘,所以函数()f x 单调递增;当10x e<<时,()0f x <‘,所以函数()f x 单调递减,因此1e是函数()f x 的极小值,故函数()f x 的极值为极小值,值为11()f a e e =-+;无极大值(2)函数()g x 的定义域为0x >,因为()ln ,g x x ax =-所以'1()g x a x=-,因为10a e <<,所以当1x a >时,'()0g x <,因此函数()g x 是递减函数,当10x a<<时,'()0g x >,。
2020年北京市高考数学压轴试卷(含答案解析)
2020年北京市高考数学压轴试卷一、选择题(本大题共10小题,共40.0分)1 .设复数z 满足]—3也二三,则⑸=()A 「三B. —C. 1D.1CJ52 .设集合 /1-{一1.0, 1, 2, 3},月={讣W-^AO},则以0-渣)=()A. {-1,3}B. [0,1, 2}C. {L 2, 3}D. {(! 1, 2, 3} 3 .已知定义域为 R 的奇函数/")满足〃r+4一人二),且当时,〃打,则/(-3 -()直线l 有(:A. 1条B.2条C.3条D.4条订6.函数〃T )=内心「十万)的单调递增区间是(,1A.一 ...因二। 四二二:B. |小:. ..、,・ , 一 二、I "二:…C. - 酎7 -V 话三D.除二“工』.:七 :二勿 某三棱锥的三视图如图所示,则三棱锥的体积为A. 10B. 20C. 30D. 607. A. 27C.8D.4.5.已知坐标原点到直线l 的距离为2,且直线l 与圆"- 3产+如- 4)--49相切,则满足条件的13fl 3 MS8.已知点在抛物线C:/=2.的准线上,记C的焦点为F,则直线AF的斜率为()9.已知国=1 ,则“ N 小小)”是“ T.了——1 ” 的()A.充分非必要条件B.必要非充分条件C.充要条件D.非充分非必要条件10.已知随机变量《的分布列为:C x yP y xA.存在x, 均已>;B.对任意x, #£(仇1), E⑶C.对任意x, 口⑹w E⑶D.存在x, »W (仆/J,二、填空题(本大题共5小题,共25.0分)11.已知曲线/(./)=今/十r的一条切线的斜率是3,则该切点的横坐标为 .12.函数y二LN33一疝Ff的最小正周期等于 .13.在中,若F = ..山二为3,八已,一2,求aJH「的面积.14.已知{厮}是各项均为正数的等比数列,勺=1 ,小=100 ,则{询}的通项公式__设数列{M/J的前n项和为T u,则T* . .15.已知函数/(力=产- f T ,下列命题正确的有.(写出所有正确命题的编号)(1/(*)是奇函数;②/年)在R上是单调递增函数;③方程J⑺=M +a r有且仅有1个实数根;④如果对任意r€ (0.+x),都有f(r)> kr,那么k的最大值为2.三、解答题(本大题共6小题,共85.0分)16.已知函数/")一k8丁”,为常数,1>0且小沪1).(1」在下列条件中选择一个使数列{。
高考数学压轴专题2020-2021备战高考《数列》知识点总复习含答案解析
新数学《数列》高考复习知识点一、选择题1.已知单调递增的等比数列{}n a 中,2616a a ⋅=,3510a a +=,则数列{}n a 的前n 项和n S =( )A .2124n -- B .1122n -- C .21n - D .122n +-【答案】B 【解析】 【分析】由等比数列的性质,可得到35,a a 是方程210160x x -+=的实数根,求得1,a q ,再结合等比数列的求和公式,即可求解. 【详解】由题意,等比数列{}n a 中,2616a a ⋅=,3510a a +=, 根据等比数列的性质,可得3516a a ⋅=,3510a a +=,所以35,a a 是方程210160x x -+=的实数根,解得352,8a a ==或358,2a a ==, 又因为等比数列{}n a 为单调递增数列,所以352,8a a ==, 设等比数列{}n a 的首项为1a ,公比为(1)q q >可得214128a q a q ⎧=⎨=⎩,解得11,22a q ==,所以数列{}n a 的前n 项和11(12)122122nn n S --==--. 故选:B . 【点睛】本题主要考查了等比数列的通项公式的基本量的运算,以及等比数列的前n 项和公式的应用,着重考查了推理与运算能力.2.将正整数20分解成两个正整数的乘积有120⨯,210⨯,45⨯三种,其中45⨯是这三种分解中两数差的绝对值最小的,我们称45⨯为20的最佳分解.当p q ⨯(p q ≤且*,p q ∈N )是正整数n 的最佳分解时我们定义函数()f n q p =-,则数列(){}5nf ()*n N ∈的前2020项的和为( )A .101051+B .1010514-C .1010512-D .101051-【答案】D 【解析】首先利用信息的应用求出关系式的结果,进一步利用求和公式的应用求出结果. 【详解】解:依题意,当n 为偶数时,22(5)550nnn f =-=; 当n 为奇数时,111222(5)5545n n n n f +--=-=⨯,所以01100920204(555)S =++⋯+,101051451-=-g ,101051=-.故选:D 【点睛】本题考查的知识要点:信息题的应用,数列的求和的应用,主要考查学生的运算能力和转换能力及思维能力,属于中档题.3.已知等差数列{}n a 的前n 项和为n S ,若34322128,6a a S ⋅==,则数列{}(1)nn a -的前40项和为( ) A .0 B .20 C .40 D .80【答案】B 【解析】 【分析】先由题意求出34a +a =7,然后利用等差数列的前n 项和公式表示出134a a +=,前后两式作差,求出公差,进而代入求出首项,最后即得n a n =,代入题目中{}(1)nn a -,两两组合可求新数列前40项的和. 【详解】 依题意,()133362a a S +== ,∴134a a +=,①∵3422128a a ⋅=,即342128a a +=, ∴34a +a =7,② ②-①得33d =, ∴1d =, ∴11,n a a n ==, ∴(1)(1)n n n a n -=-,∴{}(1)nn a -的前40项和40(12)(34)(3940)20S -++-++⋅⋅⋅+-+==,故选:B .本题考查了指数运算:同底数幂相乘,底数不变,指数相加;主要考查等差数列的前n 和公式,等差中项的性质等等,以及常见的摆动数列的有限项求和,可以采用的方法为:分组求和法,两两合并的方法等等,对学生的运算能力稍有要求,为中等难度题4.若{}n a 为等差数列,n S 是其前n 项和,且11223S π=,则6tan()a 的值为( )A B .C D .3-【答案】B 【解析】 【分析】由11162a a a +=,即可求出6a 进而求出答案. 【详解】∵()11111611221123a a S a π+=== ,∴623a π=,()62tan tan 3a π⎛⎫==⎪⎝⎭故选B. 【点睛】本题主要考查等差数列的性质,熟记等差数列的性质以及等差数列前n 项和性质即可,属于基础题型.5.数列{a n },满足对任意的n ∈N +,均有a n +a n +1+a n +2为定值.若a 7=2,a 9=3,a 98=4,则数列{a n }的前100项的和S 100=( ) A .132 B .299C .68D .99【答案】B 【解析】 【分析】由12n n n a a a ++++为定值,可得3n n a a +=,则{}n a 是以3为周期的数列,求出123,,a a a ,即求100S . 【详解】对任意的n ∈+N ,均有12n n n a a a ++++为定值,()()123120n n n n n n a a a a a a +++++∴++-++=,故3n n a a +=,{}n a ∴是以3为周期的数列,故17298392,4,3a a a a a a ======,()()()100123979899100123133S a a a a a a a a a a a ∴=+++++++=+++L()332432299=+++=.故选:B . 【点睛】本题考查周期数列求和,属于中档题.6.如果等差数列128,,,a a a L 的各项都大于零,公差0d ≠,则正确的关系为( ) A .1845a a a a > B .1845a a a a < C .1845a a a a +>+ D .1845a a a a =【答案】B 【解析】 【分析】先根据等差中项的性质,可排除C ,再利用作差比较,即可得到答案. 【详解】根据等差数列的性质,可得1845a a a a +=+,所以C 不正确;又由218451111(7)(3)(4)120a a a a a a d a d a d d -=+-++=-<,所以1845a a a a <.故选B . 【点睛】本题主要考查了等差数列的性质,等差数列的通项公式,以及作差比较法的应用,着重考查了推理与运算能力.7.已知等差数列{}n a 中,若311,a a 是方程2210x x --=的两根,单调递减数列{}()*n b n N ∈通项公式为27n b n a n λ=+.则实数λ的取值范围是( )A .(),3-∞-B .1,3⎛⎫-∞- ⎪⎝⎭C .1,3⎛⎫-+∞ ⎪⎝⎭D .()3,-+∞【答案】B 【解析】 【分析】先求出71a =,再根据{}n b 是递减数列,得到121n λ<-+对*n N ∈恒成立,即得解. 【详解】∵311,a a 是方程220x x --=的两根,∴3112a a +=. ∵{}n a 是等差数列,∴311722a a a +==,∴71a =,∴2n b n n λ=+,又∵{}n b 是递减数列,∴10n n b b +-<对*n N ∈恒成立, 则()()()22110n n nn λλ+++-+<,∴()2110n λ++<,∴121n λ<-+对*n N ∈恒成立, ∴13λ<-.故选:B. 【点睛】本题主要考查等差中项的应用,考查数列的单调性和数列不等式的恒成立问题,意在考查学生对这些知识的理解掌握水平.8.定义“穿杨二元函数”如:(,)248n C a n a a a a =++++L 144424443个.例如:()3,436122445C =+++=.若a Z +∃∈,满足(),C a n n =,则整数n 的值为( )A .0B .1C .0或1D .不存在满足条件的n【答案】B 【解析】 【分析】由(,)248n C a n a a a a =++++L 144424443个,得()()12,2112nn C a n a a -=⨯=--,然后根据(),C a n n =结合条件分析得出答案.【详解】由(,)248n C a n a a a a =++++L 144424443个,得()()12,2112nn C a n a a -=⨯=-- 由(),C a n n =,可得()21na n -=.当0n =时,对任意a Z +∈都满足条件. 当0n ≠时, 21nna =-,由a Z +∈,当1n =时,1a =满足条件. 当2n ≥且n Z ∈时,设()21x f x x =--,则()2ln 21xf x '=-在2x ≥上单调递增.所以()()24ln 210f x f ''>=->,所以()f x 在2x ≥上单调递增. 所以()()24120f x f >=-->,即当2n ≥且n Z ∈时,恒有21n n ->.则()0,121nna =∈-这与a Z +∈不符合.所以此时不满足条件. 综上:满足条件的n 值为0或1.故选:B 【点睛】本题考查新定义,根据定义解决问题,关键是理解定义,属于中档题.9.已知数列{}n a 是等比数列,前n 项和为n S ,则“3152a a a >+”是“210n S -<”的( ) A .必要不充分条件 B .充分不必要条件 C .充要条件 D .既不充分也不必要条件【答案】B 【解析】 【分析】根据等比数列的通项公式与求和公式,即可判断命题间的关系. 【详解】因为数列{}n a 是等比数列,前n 项和为n S 若3152a a a >+,由等比数列的通项公式可得111242a a q a q >+,化简后可得()21210q a -<.因为()2210q -≥所以不等式的解集为10a < 若210n S -<当公比1q ≠±时, 210n S -<则10a <,可得3152a a a >+ 当公比1q =±时, 由210n S -<则10a <,可得3152a a a =+ 综上可知, “3152a a a >+”是“210n S -<”的充分不必要条件 故选:B 【点睛】本题考查了等比数列的通项公式与求和公式的应用,在应用等比数列求和公式时,需记得讨论公比是否为1的情况,属于中档题.10.等比数列{}n a 的前n 项和为n S ,若32S =,618S =,则106S S 等于( ) A .-3 B .5C .-31D .33【答案】D 【解析】 【分析】先由题设条件结合等比数列的前n 项和公式,求得公比q ,再利用等比数列的前n 项和公式,即可求解106S S 的值,得到答案.【详解】由题意,等比数列{}n a 中32S =,618S =,可得313366316(1)1121(1)11181a q S q q a q S q q q ---====--+-,解得2q =, 所以101105105516(1)11133(1)11a q S q q q a q S q q---===+=---. 故选:D . 【点睛】本题主要考查了等比数列的前n 项和公式的应用,其中解答中熟记等比数列的前n 项和公式,准确计算是解答的关键,着重考查了推理与计算能力.11.已知数列{}n a 的前n 项和()2*23n S n n n N=+∈,则{}na 的通项公式为( )A .21n a n =+B .21n a n =-C .41n a n =+D .41n a n =-【答案】C 【解析】 【分析】首先根据223n S n n =+求出首项1a 的值,然后利用1n n n a S S -=-求出2n ≥时n a 的表达式,然后验证1a 的值是否适合,最后写出n a 的式子即可. 【详解】因为223n S n n =+,所以,当2n ≥时,22123[2(1)3(1)]41n n n a S S n n n n n -=-=+--+-=+,当1n =时,11235==+=a S ,上式也成立, 所以41n a n =+, 故选C. 【点睛】该题考查的是有关数列的通项公式的求解问题涉及到的知识点有数列的项与和的关系,即11,1,2n n n S n a S S n -=⎧=⎨-≥⎩,算出之后再判断1n =时对应的式子是否成立,最后求得结果.12.已知数列{}n a 的奇数项依次成等差数列,偶数项依次成等比数列,且11a =,22a =,347a a +=,5613a a +=,则78a a +=( )A.4B .19 C .20 D .23【答案】D【解析】 【分析】本题首先可以设出奇数项的公差以及偶数项的公比,然后对347a a +=、5613a a +=进行化简,得出公差和公比的数值,然后对78a a +进行化简即可得出结果. 【详解】设奇数项的公差为d ,偶数项的公比为q ,由347a a +=,5613a a +=,得127d q ++=,212213d q ++=, 解得2d =,2q =,所以37813271623a a d q +=++=+=,故选D .【点睛】本题主要考查等差数列、等比数列的通项公式及性质等基础知识,考查运算求解能力,考查函数与方程思想、化归与转化思想等,体现基础性与综合性,提升学生的逻辑推理、数学运算等核心素养,是中档题.13.已知{}n a 是公差d 不为零的等差数列,其前n 项和为n S ,若348,,a a a 成等比数列,则A .140,0a d dS >>B .140,0a d dS <<C .140,0a d dS ><D .140,0a d dS <>【答案】B 【解析】 ∵等差数列,,,成等比数列,∴,∴,∴,,故选B.考点:1.等差数列的通项公式及其前项和;2.等比数列的概念14.设首项为1的数列{}n a 的前n 项和为n S ,已知121n n S S n +=+-, 现有下面四个结论①数列{}n S n +为等比数列; ②数列{}n a 的通项公式为121n n a -=-;③数列{}1n a +为等比数列;④数列{}2n S 的前n 项和为2224n n n +---. 其中结论正确的个数是( )A .1B .2C .3D .4【答案】B 【解析】 【分析】根据递推关系可得1+12()n n S n S n ++=+,可得①正确,利用等比数列求出2nn S n =-,根据前n 项和求n a ,可判断②③,计算2n S ,并分组求和可判断④. 【详解】因为121n n S S n +=+-,所以11222n n n n S n S nS n S n++++==++, 又112S +=.所以数列{}n S n +为首项是2,公比是2的等比数列,所以2nn S n +=, 则2nn S n =-.当2n ≥时,1121n n n n a S S --=-=-, 但11121a -≠-,所以①正确,②③错误,因为1222n n S n +=-,所以{}2n S 的前n 项和为2224n n n +---, 所以④正确. 故选:B 【点睛】本题主要考查了数列的递推关系式,等比数列的证明,由n S 求数列的通项公式,属于中档题.15.在等比数列{}n a 中,已知259,243a a ==,那么{}n a 的前4项和为( ). A .81 B .120C .121D .192【答案】B 【解析】 【分析】 根据352a q a =求出公比,利用等比数列的前n 项和公式即可求出. 【详解】Q35227a q a ==,∴ 3q =∴ 4414(1)3(13)120113a q S q --===--.故选:B【点睛】本题主要考查了等比数列的通项公式,等比数列的前n 项和,属于中档题.16.已知{}n a 是等差数列,1010a =,其前10项和1070S =,则其公差为( ) A .23B .32C .23-D .32-【答案】A 【解析】 【分析】根据等差数列的通项公式和前n 项和公式,列方程组求解即得. 【详解】设等差数列{}n a 的公差为d .101010,70a S ==Q ,1191010910702a d a d +=⎧⎪∴⎨⨯+=⎪⎩解得23d =. 故选:A . 【点睛】本题考查等差数列的通项公式和前n 项和公式,属于基础题.17.在等差数列{}n a 中,其前n 项和是n S ,若90S >,100S <,则在912129,,,S S S a a a ⋯中最大的是( ) A .11S a B .88S a C .55S a D .99S a 【答案】C 【解析】 【分析】由题意知5600a a >,< .由此可知569121256900...0,0,...0S S S S Sa a a a a ,,,>>><<,所以在912129...S S S a a a ,,,中最大的是55S a . 【详解】由于191109510569()10()9050222a a a a S a S a a ++====+>,()< , 所以可得5600a a >,<. 这样569121256900...0,0,...0S S S S S a a a a a ,,,>>><<, 而125125S S S a a a ⋯⋯<<<,>>>>0, , 所以在912129...S S S a a a ,,,中最大的是55S a . 故选C .【点睛】本题考查等数列的性质和应用,解题时要认真审题,仔细解答.属中档题.18.等差数列{}n a 中,1599a a a ++=,它的前21项的平均值是15,现从中抽走1项,余下的20项的平均值仍然是15,则抽走的项是( )A .11aB .12aC .13aD .14a 【答案】A【解析】【分析】由等差数列的性质可知5113,15a a ==,再根据前21项的均值和抽取一项后的均值可知抽取的一项的大小为15,故可确定抽走的是哪一项.【详解】因为1952a a a +=,所以539a =即53a =. 有211521S =得1115a =, 设抽去一项后余下的项的和为S ,则2015300S =⨯=,故抽取的一项的大小为11, 所以抽走的项为11a ,故选A.【点睛】一般地,如果{}n a 为等差数列,n S 为其前n 项和,则有性质:(1)若,,,*,m n p q N m n p q ∈+=+,则m n p q a a a a +=+;(2)()1,1,2,,2k n k n n a a S k n +-+==L 且()2121n n S n a -=- ; (3)2n S An Bn =+且n S n ⎧⎫⎨⎬⎩⎭为等差数列; (4)232,,,n n n n n S S S S S --L 为等差数列.19.等比数列{}n a 共有21n +项,其中11a =,偶数项和为170,奇数项和为341,则n =( )A .3B .4C .7D .9 【答案】B【解析】由题意知1321...341n a a a ++++= ,可得3211...341340n a a a +++=-=,又因为242...170,n a a a +++= 所以321242...3402 (170)n n a a q a a a +++===+++ ,21211234117051112n n S ++-==+=- ,解得4n = ,故选B.20.数列{}n a 满足11a =,对任意的*n N ∈都有11n n a a n +=++,则122016111a a a +++=L ( ) A .20152016B .40322017C .40342017D .20162017【答案】B【解析】【分析】 首先根据题设条件,由11n n a a n +=++,可得到递推关系为11n n a a n +-=+; 接下来利用累加法可求得()12n n n a +=,从而()1211211na n n n n ⎛⎫==- ⎪++⎝⎭,由此就可求得122016111a a a +++L 的值. 【详解】因为111n n n a a a n a n +=++=++,所以11n n a a n +-=+,用累加法求数列{}n a 的通项得:()()1211n n n a a a a a a -=+-+⋯+-()1122n n n +=++⋯+=, 所以()1211211n a n n n n ⎛⎫==- ⎪++⎝⎭, 于是1232016111111111212222320162017a a a a ⎛⎫⎛⎫⎛⎫ +++⋯+=-+-+⋯+-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1 2120174032 2017⎛⎫==-⎪⎝⎭.故选:B.【点睛】本题是一道考查数列的题目,掌握数列的递推关系以及求解前n项和的方法是解答本题的关键,属于常考题.。
2020年高考数学专题讲解:数列(一)
二、命题分析数列一直是高考的重点和热点,有时甚至是难点.历年来,数列在高考中的题型有如下特征:1.每年必出一道选择题或填空题,主要考查等差、等比数列的概念和性质,以及通项公式、前用,题目具有“小、巧、活”的特点.2.每年必出一道解答题,题目往往与函数、导数、三角不等式、方程、平面向量、解析几何等知识综合起来考查,难度中等或中等偏难,突出考查对数列知识的理解、分析能力,创新能力,运算能力以及化归转化能力.相对于理科的命题,文科更注重基本解法、基本能力的考查.3.从新考纲的要求来看,2012年高考仍将延续这些特征,并将更侧重于考查学生的创新能力与逻辑思维能力.其他 标准摆动数列从第2项起,有些项大于它的前一项,有些项小于它的前一项4.数列的表示法(1)数列的一般形式可以写成:(2)数列的表示法分别为 、 5.数列的通项公式如果数列{a n }的第n 项a n 与 之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式. 6.数列的递推公式若一个数列首项确定,其余各项用a n 与a n -1的关系式表示(如a n =2a n -1+1,n >1),则这个关系式就称为数列的递推公式.(三)基础自测1.(2010·安徽文)设数列{ɑn }的前n 项和S n =n2,则a 8的值为()A .15B .16C .49D .64 [答案] A[解析] a 8=S 8-S 7=64-49=15,a 8=15.2.数列12,-34,58,-716,…的一个通项公式是( )A .a n =(-1)n +12n -12n B .a n =(-1)n 2n -12n C .a n =(-1)n +12n -12n D .a n =(-1)n 2n -12n [答案] C3.若数列{a n }(n ∈N*)的首项为14,前n 项的和为S n ,点(a n ,a n +1)在直线x -y -2=0上,那么下列说法正确的是( ) A .当且仅当n =1时,S n 最小 B .当且仅当n =8时,S n 最大 C .当且仅当n =7或8时,S n 最大 D .Sn 有最小值,无最大值 [答案] C[解析] 由题意得:a n -a n +1-2=0,则a n +1-a n =-2,所以数列{a n }是以a 1=14,d =-2的等差数列,则S n =14n +n n -2×(-2)=-n 2+15n ,所以当且仅当n =7或8时,S n 最大.4.数列{a n }的前n 项和为S n ,若a n =1nn +,则S 5等于( )A .1 B.56 C.16 D.130[答案] B[解析] (1)注意到前四项中两项分子均为4,不妨把分子都统一为4,即45,48,411,414,…,因而有a n =43n +2.(2)注意到6=2×3,10=2×5,15=3×5,规律还不明显,再把各项同乘以2,即1×22,2×32,3×42,4×52,5×62,…,因而有a n =n n +2.(3)各项的分母分别为21,22,23,24,…易看出第2,3,4项的分子分别比分母少3,因此把第1项变为-2-32,至此原数列已化为-21-321,22-322,-23-323,24-324,…,∴a n =(-1)n·2n-32n .(4)将数列各项改写为:93,993,9993,9 9993,…,分母都是3,而分子分别是10-1,102-1,103-1,104-1,…,∴a n =13(10n-1).[点评] 根据数列的前几项写出数列的一个通项公式,解决这一问题的关键是通过观察、分析、比较去发现项与项之间的关系.如果关系不明显,可将项适当变形,让规律突显出来以便于找出通项公式. 跟踪练习1:根据下面各数列的前几项的值,写出数列的一个通项公式: (1)1,13,935,1763,3399,…(2)-37,25,-513,38,-719,411,…(3)12,34,78,1516,3132,…; (4)23,-1,107,-179,2611,-3713,…. (5)1,3,7,15,31,… [解析] (1)将数列写成:31×3,53×5,95×7,177×9,339×11,… 观察分子、分母与项数n 之间的联系,易知: 其通项公式为a n =2n+1n -n +.(2)这是一个与(-1)n 有关的数列,可将数列写成 -37,410,-513,616,-719,822,… 可知分母组成以3为公差的等差数列,分子为以3为首项,1为公差的等差数列,因此其通项公式为:a n =(-1)nn +23n +4. (3)每一项的分子比分母少1,而分母组成数列21,22,23,24,…,所以a n =2n-12n .(4)偶数项为负,奇数项为正,故通项公式必含因子(-1)n +1,观察各项绝对值组成的数列,从第3项到第6项可见,分母分别由奇数7,9,11,13组成,而分子则是32+1,42+1,52+1,62+1,按照这样的规律第1、2两项可改写为12+12+1,-22+12·2+1,所以a n =(-1)n +1·n 2+12n +1. (5)考虑数列的差分数列{an +1-an }. a 2-a 1=2 a 3-a 2=4, a 4-a 3=8, ……a n -1n a=2n -1.(n ≥2)将这n -1个式子累加,得a n -1a =2+22+23+…+2n -1=2n -2 (n ≥2)∴ a n =1a +2n -2=1+2n -2=2n -1. (n ≥2)当n =1时,此式仍成立,故所求通项公式为an =2n -1.[点评] 根据数列的前几项写通项时,所求的通项公式不是惟一的.其中常用方法是观察法.观察an 与n 之间的联系,用归纳法写出一个通项公式,体现了由特殊到一般的思维规律.联想与转换是有效的思维方法,它是由已知认识未知、将未知转化为已知的重要思维方法. 2.命题方向:由na与ns的关系求通项[例2] 已知数列{a n }的前n 项和为S n ,S n =13(a n -1)(n ∈N *).(1)求a 1,a 2,a 3的值; (2)求a n 的通项公式及S 10.[解析] (1)由a 1=S 1=13(a 1-1)得a 1=-12.又a 1+a 2=S 2=13(a 2-1),解得a 2=14.同理a 3=-18(2)n ≥2时,a n =S n -S n -1=13(a n -1)-13(a n -1-1),得a n a n -1=-12. ∴数列{a n }是首项为-12,公比为-12的等比数列.即a n =(-12)n ,∴S 10=a 1-q 101-q =-3411024. (2)n ≥2时,a n =S n -S n -1=13(a n -1)-13(a n -1-1),得a n a n -1=-12.∴数列{a n }是首项为-12,公比为-12的等比数列.即a n =(-12)n ,∴S 10=a 1-q101-q =-3411024. [点评] 数列的通项a n 与前n 项和S n 的关系是:a n =⎩⎪⎨⎪⎧S 1n =S n -S n -1 n.此公式经常使用,应引起重视.当n =1时,a 1若适合S n -S n -1,则n =1的情况可并入n ≥2时的通项a n ;当n =1时,a 1若不适合S n -S n -1,则用分段函数的形式表示. 跟踪练习2:已知数列{an }的前n 项和Sn ,求{an }的通项公式.(1)S n =2n 2-3n ;(2)Sn =3n +b .[解析] 利用数列的通项a n 与前n 项和S n 的关系a n =⎩⎨⎧S 1 =S n -S n -1.解 (1)当n =1时,a 1=S 1=-1, 当n ≥2时,a n =S n -S n -1=4n -5. 又∵a1=-1,适合,a n =4n -5, ∴a n =4n -5.(2)当n =1时,a 1=S 1=3+b.n ≥2时,a n =S n -S n -1=2·3n -1,因此,当b =-1时,a 1=2适合a n =2·3n -1, ∴an =2·3n -1.当b ≠-1时,a 1=3+b 不合适a n =2·3n -1,∴a n =⎩⎨⎧3+b =2·3n -1.综上可知,当b =-1时,a n =2·3n -1; 当b≠-1时,a n =⎩⎨⎧3+b n =2·3n -13.命题方向:根据递推公式求通项公式[例3] 根据下列条件,写出数列的通项公式. (1)a 1=2,a n +1=a n +n ;(2)a 1=1,2n -1a n =an -1. [分析] (1)将递推关系写成n -1个等式累加.(2)将递推关系写成n -1个等式累乘,或逐项迭代也可. [解析] (1)当n =1,2,3,…,n -1时,可得n -1个等式: an -an -1=n -1,an -1-an -2=n -2,…,a 2-a 1=1, 将其相加,得an -a 1=1+2+3+…+(n -1),∴a n =a 1+1+n -1n -12=2+n n -12=n 2-n +42.(2)方法一:∵a n =a n a n -1·a n -1a n -2·a n -2a n -3·…·a 3a 2·a 2a 1·a 1=⎝ ⎛⎭⎪⎫12n -1·⎝ ⎛⎭⎪⎫12n -2·…·⎝ ⎛⎭⎪⎫122·⎝ ⎛⎭⎪⎫121·a 1=⎝ ⎛⎭⎪⎫121+2+…+(n -1)=⎝ ⎛⎭⎪⎫12n -n2,∴a n =⎝ ⎛⎭⎪⎫12n -n2.方法二:由2n -1a n =a n -1得a n =⎝ ⎛⎭⎪⎫12n -1a n -1∴a n =⎝ ⎛⎭⎪⎫12n -1a n -1=⎝ ⎛⎭⎪⎫12n -1·⎝ ⎛⎭⎪⎫12n -2a n -2=…=⎝ ⎛⎭⎪⎫12n -1·⎝ ⎛⎭⎪⎫12n -2·…·⎝ ⎛⎭⎪⎫121a 1=⎝ ⎛⎭⎪⎫12(n -1)+(n -2)+…+2+1=⎝ ⎛⎭⎪⎫12n n -2.[点评] 1.已知a 1且an -an -1=f (n )(n ≥2),可以用“累加法”,即an -an -1=f (n ),an -1-an -2=f (n -1),…,a 3-a 2=f (3),a 2-a 1=f (2).所有等式左右两边分别相加,代入a 1得an .2.已知a 1且a na n -1=f (n )(n ≥2),可以用“累乘法”, 即a n a n -1=f (n ),a n -1a n -2=f (n -1),…,a 3a 2=f (3),a 2a 1=f (2),所有等式左右两边分别相乘,代入a 1得a n . 提醒:并不是每一个数列都有通项公式,如果一个数列有通项公式,那么它的通项公式在形式上也可以不止一个.跟踪练习3:根据下列各个数列{a n }的首项和基本关系式,求其通项公式. (1)a 1=1,a n =a n -1+3n -1(n ≥2);(2)a 1=1,a n =n -1na n -1(n ≥2). [解析] (1)∵an =an -1+3n -1, ∴an -an -1=3n -1, an -1-an -2=3n -2, an -2-an -3=3n -3, …a 2-a 1=31.以上n -1个等式两边分别相加得a n =a 1+31+32+…+3n -1=1+3+32+…+3n -1=3n-12.a 2=12a 1.以上n -1个式子等式两边分别相乘得a n =a 1·12·23·…·n -1n =a 1n =1n .4.命题方向:函数与方程思想在数列中的应用[例4] 已知数列{a n }的通项公式a n =(n +1)·(910)n,求n 为何值时,a n 取最大值.[分析] 已知数列{a n }的通项公式,要求n为何值时a n 取最大值,则需满足⎩⎪⎨⎪⎧a n ≥a n +1,a n ≥a n -1.因为涉及a n -1,所以∴a n +1a n=n +2+1-n +n 2+1-n=n 2+1+n n +2+1+n +<1.∴a n +1<a n .即{a n }为递减数列.(五)思想方法点拨:1.数列中数的有序性是数列定义的灵魂,要注意辨析数列的项和数集中元素的异同.数列可以看作是一个定义域为正整数集或它的子集的函数,因此在研究数列问题时,既要注意函数方法的普遍性,又要注意数列方法的特殊性. 2.观察法是求数列通项公式的最基础的一个方法,它一般适用于给出了数列的前几项,根据这些项来写出该数列的通项公式,一般来说,所给的数列的前几项规律性特别强并且规律也比较明显,要么能直接看出,要么需略作变形即可.3.通项an 与前n 项和Sn 的关系是一个十分重要的考点.运用时,不要忘记对an =Sn -Sn -1(n ≥2)的条件的验证. 4.数列的通项公式与递推公式是表达数列特征与构造的两种方法.观察法和猜想法一般适合于选择题和填空题;如果在解答题中用猜想法,则一定要用数学归纳法加以证明.而特定系数法一般是适合已知数列的类型的题目.(六)课后强化作业一、选择题1.已知数列{a n }对任意的p 、q ∈N *满足a p +q =a p +a q ,且a 2=-6,那么a 10等于( ) A .-165 B .-33 C .-30 D .-21 [答案] C[解析] ∵对任意p 、q ∈N *都有a p +q =a p +a q . ∴a 10=a 8+a 2=a 4+a 4+a 2=5a 2=-30.2.已知函数f (n )=⎩⎪⎨⎪⎧n 2 (当n 为奇数时)-n 2 (当n 为偶数时),且a n =f (n )+f (n +1),则a 1+a 2+a 3+…+a 100等于( )A .0B .100C .-100D .10200 [答案] B[解析] 当n 为奇数时, a n =n 2-(n +1)2=-(2n +1) 当n 为偶数时,a n =-n 2+(n +1)2=2n +1, 则a n =(-1)n (2n +1),a 1+a 2+…+a 100=-3+5-7+9…-199+201=2×50=100.3.(2011·沈阳一模)将数列{3n -1}按“第n 组有n 个数”的规则分组如下:(1),(3,9),(27,81,243),…,则第100组中的第一个数是( )A .34950B .35000C .35010D .35050。
高考数学压轴专题2020-2021备战高考《数列》分类汇编附答案解析
高中数学《数列》知识点归纳一、选择题1.设函数()mf x x ax =+的导数为()21f x x '=+,则数列()()2N n f n *⎧⎫⎪⎪∈⎨⎬⎪⎪⎩⎭的前n 项和是( ) A .1nn + B .21nn + C .21nn - D .()21n n+ 【答案】B 【解析】 【分析】函数()mf x x ax =+的导函数()21f x x '=+,先求原函数的导数,两个导数进行比较即可求出m ,a ,利用裂项相消法求出()()2N n f n *⎧⎫⎪⎪∈⎨⎬⎪⎪⎩⎭的前n 项和即可.【详解】Q 1()21m f x mx a x -'=+=+,1a \=,2m =,()(1)f x x x ∴=+,112()()(1)221f n n n n n ==-++, ∴111111122[()()()]2(1)1223111n n S n n n n =-+-++-=-=+++L ,故选:B . 【点睛】本题考查数列的求和运算,导数的运算法则,数列求和时注意裂项相消法的应用.2.设首项为1的数列{}n a 的前n 项和为n S ,已知121n n S S n +=+-, 现有下面四个结论①数列{}n S n +为等比数列; ②数列{}n a 的通项公式为121n n a -=-;③数列{}1n a +为等比数列;④数列{}2n S 的前n 项和为2224n n n +---. 其中结论正确的个数是( ) A .1 B .2C .3D .4【答案】B 【解析】 【分析】根据递推关系可得1+12()n n S n S n ++=+,可得①正确,利用等比数列求出2nn S n =-,根据前n 项和求n a ,可判断②③,计算2n S ,并分组求和可判断④. 【详解】因为121n n S S n +=+-, 所以11222n n n n S n S nS n S n++++==++,又112S +=.所以数列{}n S n +为首项是2,公比是2的等比数列,所以2nn S n +=, 则2nn S n =-.当2n ≥时,1121n n n n a S S --=-=-, 但11121a -≠-,所以①正确,②③错误,因为1222n n S n +=-,所以{}2n S 的前n 项和为2224n n n +---, 所以④正确. 故选:B 【点睛】本题主要考查了数列的递推关系式,等比数列的证明,由n S 求数列的通项公式,属于中档题.3.设数列{}n a 是等差数列,1356a a a ++=,76a =.则这个数列的前7项和等于( ) A .12 B .21C .24D .36【答案】B 【解析】 【分析】根据等差数列的性质可得3a ,由等差数列求和公式可得结果. 【详解】因为数列{}n a 是等差数列,1356a a a ++=, 所以336a =,即32a =, 又76a =, 所以73173a a d -==-,1320a a d =-=,故1777()212a a S +== 故选:B 【点睛】本题主要考查了等差数列的通项公式,性质,等差数列的和,属于中档题.4.对于实数,[]x x 表示不超过x 的最大整数.已知正项数列{}n a 满足112n n n S a a ⎛⎫=+ ⎪⎝⎭,*n N ∈,其中n S 为数列{}n a 的前n 项和,则[][][]1240S S S +++=L ( )A .135B .141C .149D .155【答案】D 【解析】 【分析】利用已知数列的前n 项和求其n S 得通项,再求[]n S 【详解】解:由于正项数列{}n a 满足112n n n S a a ⎛⎫=+ ⎪⎝⎭,*n N ∈, 所以当1n =时,得11a =, 当2n ≥时,111111[()]22n n n n n n n S a S S a S S --⎛⎫=+=-+ ⎪-⎝⎭ 所以111n n n n S S S S ---=-,所以2=n S n ,因为各项为正项,所以=n S因为[][][]1234851,1,[]1,[][]2S S S S S S =======L ,[]05911[][]3S S S ====L ,[]161724[][]4S S S ====L ,[]252635[][]5S S S ====L , []363740[][]6S S S ====L .所以[][][]1240S S S +++=L 13+25+37+49+511+65=155⨯⨯⨯⨯⨯⨯, 故选:D 【点睛】此题考查了数列的已知前n 项和求通项,考查了分析问题解决问题的能力,属于中档题.5.已知等差数列{}n a 的前n 项和为n S ,若23109a a a ++=,则9S =( ) A .3 B .9C .18D .27【答案】D设等差数列{}n a 的首项为1a ,公差为d . ∵23109a a a ++=∴13129a d +=,即143a d += ∴53a = ∴1999()272a a S ⨯+== 故选D.6.已知函数()2f x x mx =+图象在点()()1,1A f 处的切线l 与直线320x y ++=垂直,若数列()1f n ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭的前n 项和为n S ,则2018S 的值为( )A .20152016 B .20162017C .20172018D .20182019【答案】D 【解析】 【分析】求出原函数的导函数,得到()y f x =在1x =时的导数值,进一步求得m ,可得函数解析式,然后利用裂项相消法可计算出2018S 的值. 【详解】由()2f x x mx =+,得()2f x x m '=+,()12f m '∴=+,因为函数()2f x x mx =+图象在点()()1,1A f 处的切线l 与直线320x y ++=垂直,()123f m '∴=+=,解得1m =,()2f x x x ∴=+,则()()21111111f n n n n n n n ===-+++. 因此,20181111112018112232018201920192019S =-+-++-=-=L . 故选:D. 【点睛】本题考查利用导数研究过曲线上某点处的切线方程,训练了利用裂项相消法求数列的前n 项和,是中档题.7.等差数列{}n a 中,n S 为它的前n 项和,若10a >,200S >,210S <,则当n =( )时,n S 最大. A .8B .9C .10D .11【解析】 【分析】根据等差数列的前n 项和公式与项的性质,得出100a >且110a <,由此求出数列{}n a 的前n 项和n S 最大时n 的值. 【详解】等差数列{}n a 中,前n 项和为n S ,且200S >,210S <, 即()()120201*********a a S a a +==+>,10110a a ∴+>,()1212111212102a a S a +==<,所以,110a <,则100a >,因此,当10n =时,n S 最大. 故选:C. 【点睛】本题考查了等差数列的性质和前n 项和最值问题,考查等差数列基本性质的应用,是中等题.8.已知数列{a n }的前n 项和为S n ,且a n +1=a n +a (n ∈N *,a 为常数),若平面内的三个不共线的非零向量OAOB OC u u u r u u u r u u u r,,满足10051006OC a OA a OB =+u u u r u u u r u u u r ,A ,B ,C 三点共线且该直线不过O点,则S 2010等于( ) A .1005 B .1006C .2010D .2012【答案】A 【解析】 【分析】根据a n +1=a n +a ,可判断数列{a n }为等差数列,而根据10051006OC a OA a OB =+u u u r u u u r u u u r,及三点A ,B ,C 共线即可得出a 1+a 2010=1,从而根据等差数列的前n 项和公式即可求出S 2010的值. 【详解】由a n +1=a n +a ,得,a n +1﹣a n =a ; ∴{a n }为等差数列;由10051006OC a OA a OB =+u u u r u u u r u u u r ,所以A ,B ,C 三点共线; ∴a 1005+a 1006=a 1+a 2010=1, ∴S 2010()12010201020101100522a a +⨯===. 故选:A. 【点睛】本题主要考查等差数列的定义,其前n 项和公式以及共线向量定理,还考查运算求解的能力,属于中档题.9.已知等差数列{}n a 中,若311,a a 是方程2210x x --=的两根,单调递减数列{}()*n b n N ∈通项公式为27n b n a n λ=+.则实数λ的取值范围是( )A .(),3-∞-B .1,3⎛⎫-∞- ⎪⎝⎭C .1,3⎛⎫-+∞ ⎪⎝⎭D .()3,-+∞【答案】B 【解析】 【分析】先求出71a =,再根据{}n b 是递减数列,得到121n λ<-+对*n N ∈恒成立,即得解. 【详解】∵311,a a 是方程220x x --=的两根,∴3112a a +=. ∵{}n a 是等差数列,∴311722a a a +==,∴71a =,∴2n b n n λ=+,又∵{}n b 是递减数列,∴10n n b b +-<对*n N ∈恒成立, 则()()()22110n n nn λλ+++-+<,∴()2110n λ++<,∴121n λ<-+对*n N ∈恒成立, ∴13λ<-.故选:B. 【点睛】本题主要考查等差中项的应用,考查数列的单调性和数列不等式的恒成立问题,意在考查学生对这些知识的理解掌握水平.10.在古希腊,毕达哥拉斯学派把1,3,6,10,15,21,28,36,45,…这些数叫做三角形数.设第n 个三角形数为n a ,则下面结论错误的是( ) A .1(1)n n a a n n --=> B .20210a = C .1024是三角形数 D .123111121n n a a a a n +++⋯+=+ 【答案】C 【解析】 【分析】对每一个选项逐一分析得解. 【详解】∵212a a -=,323a a -=,434a a -=,…,由此可归纳得1(1)n n a a n n --=>,故A 正确;将前面的所有项累加可得1(1)(2)(1)22n n n n n a a -++=+=,∴20210a =,故B 正确; 令(1)10242n n +=,此方程没有正整数解,故C 错误; 1211111111212231n a a a n n ⎡⎤⎛⎫⎛⎫⎛⎫+++=-+-++- ⎪ ⎪ ⎪⎢⎥+⎝⎭⎝⎭⎝⎭⎣⎦L L 122111n n n ⎛⎫=-= ⎪++⎝⎭,故D 正确. 故选C 【点睛】本题主要考查累加法求通项,考查裂项相消法求和,意在考查学生对这些知识的理解掌握水平和分析推理能力.11.已知数列{}n a 为等比数列,前n 项和为n S ,且12a =,1n n b a =+,若数列{}n b 也是等比数列,则n S =( ) A .2n B .31n - C .2n D .31n -【答案】C 【解析】 【分析】设等比数列{}n a 的公比为q ,写出,n n a b .由数列{}n b 是等比数列,得2213b b b =,求出q ,即求n S . 【详解】设等比数列{}n a 的公比为q ,112,2n n a a q -=∴=Q ,121n n b q -∴=+,13b ∴=,221b q =+,2321b q =+,{}n b Q 也是等比数列, 2213b b b ∴=,即()()2221321q q +=+解得1q =,2,2n n a S n ∴=∴=. 故选:C . 【点睛】本题考查等比数列的性质,属于基础题.12.已知等比数列{}n a 满足13a =,13521a a a ++=,则357a a a ++=( ) A .21 B .42C .63D .84【答案】B由a 1+a 3+a 5=21得242421(1)21172a q q q q q ++=∴++=∴=∴ a 3+a 5+a 7=2135()22142q a a a ++=⨯=,选B.13.已知数列22333311313571351,,,,,,,...,,,, (2222222222)nn n ,则该数列第2019项是( ) A .1019892 B .1020192 C .1119892 D .1120192 【答案】C 【解析】 【分析】 由观察可得()22333311313571351,,,,,,,...,,,,...2222222222n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭项数为21,1,2,4,8,...,2,...k -,注意到101110242201922048=<<=,第2019项是第12个括号里的第995项. 【详解】 由数列()22333311313571351,,,,,,,...,,,,...2222222222n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,可发现其项数为 21,1,2,4,8,...,2,...k -,则前11个括号里共有1024项,前12个括号里共有2048项,故原数列第2019项是第12个括号里的第995项,第12个括号里的数列通项为11212m -, 所以第12个括号里的第995项是1119892. 故选:C. 【点睛】本题考查数列的定义,考查学生观察找出已知数列的特征归纳出其项数、通项,是一道中档题.14.已知公比为q 的等比数列{}n a 的首项10a >,则“1q >”是“53a a >”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A 【解析】 【分析】根据等比数列的性质可得530,0a a >>,若53a a >,可得21q >,然后再根据充分条件和必要条件的判断方法即可得到结果.由于公比为q 的等比数列{}n a 的首项10a >, 所以530,0a a >>,若53a a >,则233a q a >,所以21q >,即1q >或1q <-,所以公比为q 的等比数列{}n a 的首项10a >, 则“1q >”是“53a a >”的充分不必要条件, 故选:A. 【点睛】本题主要考查了等比数列的相关性质和充分必要条件的判断方法,熟练掌握等比数列的性质是解题的关键.15.已知各项均为正数的等比数列{}n a 的前n 项和为n S ,且满足6a ,43a ,5a -成等差数列,则42S S ( ) A .3 B .9 C .10 D .13【答案】C 【解析】 【分析】设{}n a 的公比为0q >,由645,3,a a a -成等差数列,可得260,0q q q --=>,解得q ,再利用求和公式即可得结果. 【详解】设各项均为正数的等比数列{}n a 的公比为0q >,Q 满足645,3,a a a -成等差数列,()2465446,6,0a a a a a q q q ∴=-∴=->, 260,0q q q ∴--=>,解得3q =,则()()4124221313131103131a S S a --==+=--,故选C. 【点睛】本题主要考查等比数列的通项公式与求和公式,属于中档题. 等比数列基本量的运算是等比数列的一类基本题型,数列中的五个基本量1,,,,,n n a q n a S ,一般可以“知二求三”,通过列方程组所求问题可以迎刃而解,解决此类问题的关键是熟练掌握等比数列的有关性质和公式,并灵活应用,在运算过程中,还应善于运用整体代换思想简化运算过程.16.已知等差数列{}n a 的前n 项和为n S ,若816S =,61a =,则数列{}n a 的公差为( ) A .32B .32-C .23D .23-【答案】D 【解析】 【分析】根据等差数列公式直接计算得到答案. 【详解】 依题意,()()183********a a a a S ++===,故364a a +=,故33a =,故63233a a d -==-,故选:D . 【点睛】 本题考查了等差数列的计算,意在考查学生的计算能力.17.已知数列{}n a的首项112,9n n a a a +==+,则27a =( ) A .7268 B .5068C .6398D .4028【答案】C 【解析】 【分析】由19n n a a +=+得2123)n a ++=,所以构造数列为等差数列,算出22(31)n a n +=-,求出27a . 【详解】易知0n a >,因为19n n a a +=+,所以2123)n a ++=,3,是以3为公差,以2为首项的等差数列.231,2(31)n n a n =-+=-,即2278026398a =-=. 故选 :C 【点睛】本题主要考查由递推公式求解通项公式,等差数列的通项公式,考查了学生的运算求解能力.18.数列{}n a 满足11a =,对任意的*n N ∈都有11n n a a n +=++,则122016111a a a +++=L ( )A .20152016B .40322017C .40342017D .20162017【答案】B【解析】【分析】 首先根据题设条件,由11n n a a n +=++,可得到递推关系为11n n a a n +-=+;接下来利用累加法可求得()12n n n a +=,从而()1211211na n n n n ⎛⎫==- ⎪++⎝⎭,由此就可求得122016111a a a +++L 的值. 【详解】因为111n n n a a a n a n +=++=++,所以11n n a a n +-=+,用累加法求数列{}n a 的通项得:()()1211n n n a a a a a a -=+-+⋯+-()1122n n n +=++⋯+=, 所以()1211211n a n n n n ⎛⎫==- ⎪++⎝⎭, 于是1232016111111111212222320162017a a a a ⎛⎫⎛⎫⎛⎫ +++⋯+=-+-+⋯+-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 121201*********⎛⎫==- ⎪⎝⎭. 故选:B.【点睛】本题是一道考查数列的题目,掌握数列的递推关系以及求解前n 项和的方法是解答本题的关键,属于常考题.19.设数列{}n a 的前n 项和为n S 已知()*123n n a a n n N ++=+∈且1300n S =,若23a <,则n 的最大值为( )A .49B .50C .51D .52【答案】A【解析】【分析】对n 分奇偶性分别讨论,当n 为偶数时,可得2+32n n n S =,发现不存在这样的偶数能满足此式,当n 为奇数时,可得21+342n n n S a -=+,再结合23a <可讨论出n 的最大值. 【详解】当n 为偶数时,12341()()()n n n S a a a a a a -=++++⋅⋅⋅++(213)(233)[2(1)3]n =⨯++⨯++⋅⋅⋅+-+2[13(1)]32n n =⨯++⋅⋅⋅+-+⨯2+32n n =, 因为22485048+348503501224,132522S S ⨯+⨯====, 所以n 不可能为偶数;当n 为奇数时,123451()()()n n n S a a a a a a a -=+++++⋅⋅⋅++1(223)(243)[2(1)3]a n =+⨯++⨯++⋅⋅⋅+-+21342n n a +-=+ 因为2491149349412722S a a +⨯-=+=+, 2511151351413752S a a +⨯-=+=+, 又因为23a <,125a a +=,所以 12a >所以当1300n S =时,n 的最大值为49故选:A【点睛】此题考查的是数列求和问题,利用了并项求和的方法,考查了分类讨论思想,属于较难题.20.已知数列11n a ⎧⎫-⎨⎬⎩⎭是公比为13的等比数列,且10a >,若数列{}n a 是递增数列,则1a 的取值范围为( ) A .(1,2)B .(0,3)C .(0,2)D .(0,1) 【答案】D【解析】【分析】先根据已知条件求解出{}n a 的通项公式,然后根据{}n a 的单调性以及10a >得到1a 满足的不等关系,由此求解出1a 的取值范围.【详解】由已知得11111113n n a a -⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,则11111113n n a a -=⎛⎫⎛⎫-+ ⎪⎪⎝⎭⎝⎭.因为10a >,数列{}n a 是单调递增数列,所以10n n a a +>>,则111111*********n n a a ->⎛⎫⎛⎫⎛⎫⎛⎫-+-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 化简得111110113a a ⎛⎫<-<-⎪⎝⎭,所以101a <<. 故选:D.【点睛】本题考查数列通项公式求解以及根据数列单调性求解参数范围,难度一般.已知数列单调性,可根据1,n n a a +之间的大小关系分析问题.。
2020届全国卷1理科数学高考“压轴题题型解法”大纲(李老师编)
3.线性回归和类线性回归(大数据整体计算型)
难
4.极坐标与参数方程的几何意义法(求长度、长度之积/和)
难
5.新定义、新材料阅读理解题
难
6.类比推理和演绎推理
难
难
3.不规则锥体的外接球(万能公式,见于杂志)
难
4.1向量的四心问题(性质秒杀)
难
4.2角平分线定理
难
5.向量的奔驰定理(公式秒杀)
难
6.解三角形(共边型、共角型、整体法型)
难
7.解三角形求动态参数(数形结合法、基本不等式法、三角函数法)
难
8.三角函数高难度化简与变换(函数求参数题(构建法+分类讨论法)
难
3.2构建函数的恒成立、存在性问题(单边构建、双边构建)
难
4.极值点偏移题(左偏移、右偏移、拉格朗日中值定理)
难
5.零点、交点、根的存在性问题(判断、个数、分布)
难
6.恒成立、存在性问题(特殊点型、隐零点型、虚假点型)
难
7.函数模型与缩放题(指数、对数:直接,裂项,并项,加强)
难
模块
2020全国卷1卷压轴考点和题型明细
难度
数列
1.数学归纳法
难
2.数列放缩类型和数列不等式的证明
难
3.数列递推
难
4.探索数列中的存在性(最大最小整数型、数列函数交汇型)
难
模块
2020全国卷1卷压轴考点和题型明细
难度
其他
1.可行域问题(生活应用综合型、动态型)
难
2.排列组合题(综合型、至少至多型)
2020全国卷1卷压轴考点和题型明细
难度
圆锥曲线
1.对称性问题
2020高考数学三轮压轴题 专题1.4 以数列与函数、不等式以及其他知识相结合为背景的选择题(解析版)
专题一 压轴选择题第四关 以数列与函数、不等式以及其他知识相结合为背景的选择题【名师综述】数列与函数的交汇问题一般是利用函数作为背景,给出数列所满足的条件,通常利用点在曲线上给出S n 的表达式,还有以曲线上的切点为背景的问题,解决这类问题的关键在于利用数列与函数的对应关系,将条件进行准确的转化.数列与不等式的交汇问题一般以数列为载体,考查最值问题,不等关系或恒成立问题.类型一 数列与函数的结合典例1 (多选题)已知()f x 是定义在R 上的不恒为零的函数,且对于任意实数,a b ∈R 满足**(2)(2)()()(),(2)2,(),()2n n n n nf f f a b af b bf a f a n N b n N n ⋅=+==∈=∈考察下列结论,其中正确的结论是 ( )A.(0)(1)f f =;B.()f x 为偶函数;C.数列{}n a 为等比数列;D.数列{}n b 为等差数列. A .①②③B .②③④C .①②④D .①③④典例 2.已知(),()f x g x 都是定义在R 上的函数,()0g x ≠,''()()()()f x g x f x g x >,且()()xf x ag x =(0,a >且1a ≠),(1)(1)5(1)(1)2f f g g -+=-,若数列(){}()f ng n 的前n 项和大于62,则n 的最小值为( ) A .6 B .7 C .8 D .9 【名师指点】由已知条件构造函数()()f x g x ,则'()()0()f x g x >,故函数()()f xg x 递增,即函数xy a =递增,从而确定1a >,结合已知条件可确定a 的值,数列(){}()f ng n 的前n 项和即等比数列{}n a 的前n 项和,通过计算可得关于n 的不等式,进而确定n 的最小值.【举一反三】【湖北省七校考试联盟”2018届高三2月联考】对*n N ∈,设n x 是关于x 的方程320nx x n +-=的实数根, ()1n n a n x ⎡⎤=+⎣⎦, ()2,3n =L (符号[]x 表示不超过x 的最大整数).则2320182017a a a +++=L ( )A. 1010B. 1012C. 2018D. 2020类型二 数列与不等式的结合典例3 .(多选题)【2019·山东高三期中】下列结论正确的是( ) A .若0,0a b c d >><<,则一定有b ac d> B .若0x y >>,且1xy=,则()21log 2xyx x y y +>>+ C .设{}n a 是等差数列,若210a a >>,则213a a a >D .若[)0,x ∈+∞,则()21ln 18x x x +≥-定理4.【2019山西怀仁模拟】在等差数列中,,公差,为的前项和.若向量,,且,则的最小值为( )A .B .C .D .【名师指点】解决数列的单调性问题可用以下三种方法①用作差比较法,根据+1n n a a -的符号判断数列{}n a 是递增数列、递减数列或是常数列.②用作商比较法,根据+1n na a 与1的大小关系及n a 符号进行判断.③结合相应函数的图像直观判断,注意自变量取值为正整数这一特殊条件求解数列与不等式相结合恒成立条件下的参数问题主要两种策略:(1)参变分离法,将已知不等式变形为()f n M ≥恒成立()min f n M ⇔≥;()f n M ≤恒成立()max f n M ⇔≤;(2)利用等差数列与等比数列等数列知识化简不等式,再通过解不等式解得.求解数列中的某些最值问题,有时须结合不等式来解决,其具体解法有:(1)建立目标函数,通过不等式确定变量范围,进而求得最值;(2)首先利用不等式判断数列的单调性,然后确定最值;(3)利用条件中的不等式关系确定最值.学#¥科网【举一反三】1.(多选题)(2020·山东高三期末)设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并满足条件1201920201,1a a a >>,20192020101a a -<-,下列结论正确的是( )A .S 2019<S 2020B .2019202110a a -<C .T 2020是数列{}n T 中的最大值D .数列{}n T 无最大值2.【广东省2019届高三六校第一次联考】已知数列满足.设,为数列的前项和.若(常数),,则的最小值是( )A .B .C .D .类型三 数列与其他知识的结合典例5 (多选题)(2019·山东高三月考)在ABC V 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若1tan A,1tan B ,1tan C依次成等差数列,则下列结论中不一定成立.....的是( ) A .a ,b ,c 依次成等差数列 B .a ,b ,c 依次成等差数列 C .2a ,2b ,2c 依次成等差数列 D .3a ,3b ,3c 依次成等差数列典例6.已知等差数列{}n a 与等比数列{}n b 满足11221a b a b ==+=,直线l 上三个不同的点A , B ,C 与直线l 外的点P 满足33PA a PB b PC =+u u u v u u u v u u u v ,则数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为( )A.12n n - B. 23n n - C. 21n - D. 12n- 【名师指点】本题考查数列与平面向量的结合,又向量知识得其系数满足的关系120101a a +=,进而利用等差数列求和公式求解,本题要求学生熟悉向量三点共线公式(1)OA OB OC λλ=+-u u u r u u u r u u u r⇔ A B C 、、三点共线,【举一反三】【陕西省汉中市2019届高三上学期教学质量第一次检测】在中,角的对边分别是,若角成等差数列,且直线平分圆的周长,则面积的最大值为( ) A .B .C .2D .【精选名校模拟】1. (多选题)(2019·山东莱州一中高三月考)已知数列{a n }是公差不为0的等差数列,前n 项和为S n ,满足a 1+5a 3=S 8,下列选项正确的有( )A .100a =B .712S S =C .10S 最小D .200S =2.(多选题)(2020·山东高三期末)已知等比数列{}n a 的公比23q =-,等差数列{}n b 的首项112b =,若99a b >且1010a b >,则以下结论正确的有( )A .9100a a ⋅<B .910a a >C .100b >D .910b b >3.(多选题)(2017·上海市建平中学高三)数列{}n a 满足:112n n n a a a -++>()*1,n n N >∈,下述命题错误的是:( )A .若数列{}n a 满足:21a a >,则1n n a a ->()*1,n n N >∈;B .存在常数c ,使得()*n a c n N>∈成立;C .若p q m n +>+(其中*,,,p q m n N ∈),则p q m n a a a a +>+;D .存在常数d ,使得()11n a a n d >+-()*n N∈都成立4.(多选题)(2019·湖南高三月考(理))下列结论中,错误的是( ). A.在ABC V 中,若sin 2sin 2A B =,则ABC V 是等腰三角形; B.在ABC V 中,若 sin sin A B >,则A B >C .两个向量a r ,b r 共线的充要条件是存在实数λ,使b a λ=r rD .等差数列的前n 项和公式是常数项为0的二次函数.5. (多选题)(2019·北京人大附中高三月考改编)已知a ,b 是不相等的两个正数,在a ,b 之间插入两组实数:x 1,x 2,…,x n 和y 1,y 2,…,y n ,(n ∈N *,且n ≥2),使得a ,x 1,x 2,…,x n ,b 成等差数列,a ,y 1,y 2,…,y n ,b 成等比数列,给出下列四个式子, 其中一定成立的是( ) A.()122n n a b x x x ++++=L ; B .()2121n x x x n +++>L ;=2a b+<. 6.(2020·江苏高三专题练习)已知数列{}n a 满足1212a a ++…2*1()n a n n n N n+=+∈,设数列{}n b 满足:121n n n n b a a ++=,数列{}n b 的前n 项和为n T ,若*()1n nT n N n λ<∈+恒成立,则λ的取值范围是( ) A .1(,) 4+∞B .1[,) 4+∞C .3[,) 8+∞D .3(,)8+∞7. (2018·山东省胶州市第一中学高三月考(理))已知数列{}n a 的前n 项和为n S ,且满足2111,0,441n n n a a a S n +=>=++,若不等式2483(5)2n n n n m a -+<-⋅对任意的正整数n 恒成立,则整数m 的最大值为( ) A .3B .4C .5D .68. (2020·辽宁实验中学高三期末(理))已知各项都为正数的等比数列{}n a 的前n 项和为n S ,且满足131,7a S ==.若2323()(2)n n n f x S x a x a x a x n =++++≥L ,()f x '为函数()f x 的导函数,则(1)(0)f f ''-=( )A .(1)2n n -⋅B .(2)2n n -⋅C .2 n(n-1)D .2 n(n+1)9.【河南省南阳市2019届高三上学期期中考试】已知正项等比数列{a n }的公比为2,若a m a n =4a 22,则的最小值等于( )A .B .C .D . 10. 【江西省南康中学2019届高三上学期第五次月考】已知不等式对一切正整数恒成立,则实数的取值范围为( )A .B .C .D .11. 【福建省闽侯县第八中学2018届高三上学期期末考试】正项等比数列{}n a 中的1a , 4031a 是函数()3214633f x x x x =-+-的极值点,则20166log a =( )A. 1B. 2C. 1-D.212.【江西省名校学术联盟2019届高三年级教学质量检测】若不等式对任意恒成立,则实数的取值范围为 A .B .C .D .13.【2019九校联考】已知首项为2的正项数列的前项和为,且当时,.若恒成立,则实数的取值范围为A .B .C .D .14. 【湖北省部分重点中学2018届高三上学期第二次联考】已知数列{}n a 的首项13a =,对任意*,m n N ∈,都有m n m n a a a +⋅=,则当1n ≥时, 3133321log log log n a a a -+++=L ( ) A. ()21n n - B. ()21n + C. 2n D. ()21n -15.【四川省成都经济技术开发区实验中学校2019届高三上学期模拟】已知数列满足,,记,且存在正整数,使得对一切,恒成立,则的最大值为A .3B .4C .5D .616.【河北省衡水中学2018届高三上学期八模考试】已知函数()(0,1)xf x a b a a =+>≠的图象经过点()1,3P , ()2,5Q .当*n N ∈时, ()()()11n f n a f n f n -=⋅+,记数列{}n a 的前n 项和为n S ,当1033n S =时, n 的值为( )A. 7B. 6C. 5D. 417.【江西名校学术联盟2019届高三年级教学质量检测】已知等比数列的前项和为,若,,且,则实数的取值范围是A .B .C .D .18.已知函数()()22812f x x a x a a =++++-,且()()2428f a f a -=-,设等差数列{}n a 的前n 项和为n S ,()*n N ∈若()n S f n =,则41n n S aa --的最小值为( ) A .276 B .358 C .143 D .37819.【湖南师大附中2018届高三上学期月考】已知函数()y f x =对任意自变量x 都有()()2f x f x =-,且函数()f x 在[)1,+∞上单调.若数列{}n a 是公差不为0的等差数列,且()62012(}f a f a =,则{}n a 的前2017项之和为( )A. 0B. 2017C. 2016D. 403420.【山西省太原市实验中学2018届高三上学期学业质量监测】已知数列{}n a 满足()2*1232n n a a a a n N =∈L ,且对任意*n N ∈都有12111nt a a a +++<L ,则实数t 的取值范围为( )A. 1+3⎛⎫∞ ⎪⎝⎭,B. 1,3⎡⎫+∞⎪⎢⎣⎭C. 2+3⎛⎫∞ ⎪⎝⎭, D. 2,3⎡⎫+∞⎪⎢⎣⎭专题一 压轴选择题第四关 以数列与函数、不等式以及其他知识相结合为背景的选择题【名师综述】数列与函数的交汇问题一般是利用函数作为背景,给出数列所满足的条件,通常利用点在曲线上给出S n 的表达式,还有以曲线上的切点为背景的问题,解决这类问题的关键在于利用数列与函数的对应关系,将条件进行准确的转化.数列与不等式的交汇问题一般以数列为载体,考查最值问题,不等关系或恒成立问题.类型一 数列与函数的结合典例1 (多选题)已知()f x 是定义在R 上的不恒为零的函数,且对于任意实数,a b ∈R 满足**(2)(2)()()(),(2)2,(),()2n n n n nf f f a b af b bf a f a n N b n N n ⋅=+==∈=∈考察下列结论,其中正确的结论是 ( )A.(0)(1)f f =;B.()f x 为偶函数;C.数列{}n a 为等比数列;D.数列{}n b 为等差数列. A .①②③ B .②③④C .①②④D .①③④【答案】ACD【解析】∵取a=b=0,可得f (0)=0,取a=b=1,可得f (1)=0, ∴f (0)=f (1),即A 正确, ∵f (ab )=af (b )+bf (a ),b n =n 即CD 正确,对于B ,取a=-1,b=2,可得f (-2)=-f (2)+2f (-1),从而有f (-2)=-f (2),所以()f x 不可能为偶函数; 故选ACD定理 2.已知(),()f x g x 都是定义在R 上的函数,()0g x ≠,''()()()()f x g x f x g x >,且()()xf x ag x =(0,a >且1a ≠),(1)(1)5(1)(1)2f f g g -+=-,若数列(){}()f ng n 的前n 项和大于62,则n 的最小值为( ) A .6 B .7 C .8 D .9 【答案】A 【解析】()()()()f x g x f x g x ''>∵,∴()()()()0f x g x f x g x ''->,∴2()()()()()0()()f x f x g x f x g x g x g x '''⎛⎫-=> ⎪⎝⎭, 从而可得()()x f x a g x =单调递增,从而可得1a >, ∵1(1)(1)52(1)(1)2f f a a ag g --+=+==-,∴, 故2(1)(2)()(1)(2)()n f f f n a a a g g g n +++=+++L L 2222n =+++L 12(12)226212n n +-==->-,∴1264n +>,即165n n +>>,,n *∈N ,6n =∴, 故选A .【名师指点】由已知条件构造函数()()f x g x ,则'()()0()f x g x >,故函数()()f xg x 递增,即函数xy a =递增,从而确定1a >,结合已知条件可确定a 的值,数列(){}()f ng n 的前n 项和即等比数列{}n a 的前n 项和,通过计算可得关于n 的不等式,进而确定n 的最小值.【举一反三】【湖北省七校考试联盟”2018届高三2月联考】对*n N ∈,设n x 是关于x 的方程320nx x n +-=的实数根, ()1n n a n x ⎡⎤=+⎣⎦, ()2,3n =L (符号[]x 表示不超过x 的最大整数).则2320182017a a a +++=L ( )A. 1010B. 1012C. 2018D. 2020 【答案】A类型二 数列与不等式的结合典例3 .(多选题)【2019·山东高三期中】下列结论正确的是( ) A .若0,0a b c d >><<,则一定有b ac d> B .若0x y >>,且1xy=,则()21log 2xyx x y y +>>+ C .设{}n a 是等差数列,若210a a >>,则213a a a >D .若[)0,x ∈+∞,则()21ln 18x x x +≥- 【答案】AC【解析】选项A ,由0c d <<,可得0c d ->->,则110d c->->, 又0a b >>,所以a b d c ->-,则b ac d>,故A 正确. 选项B ,取12,2x y ==,则221154,,log ()log 1282x y x x y y +==+=>,不等式不成立,故B 不正确.选项C ,由题意得1322a a a +=且13a a ≠, 所以213131311=()222a a a a a a a +>⨯=,故C 正确. 选项D ,设21()ln(1)8h x x x x =+-+,则1(3)()1144(1)x x x h x x x -'=-+=++, 当03x <<时,()0h x '<,则()h x 单调递减,()(0)0h x h <=,故D 不正确. 故选:AC.定理4.【2019山西怀仁模拟】在等差数列中,,公差,为的前项和.若向量,,且,则的最小值为( )A .B .C .D .【答案】A 【解析】由且得即又,所以.从而则,当且仅当即时,上式等号成立,所以的最小值为4,故选A 。
浙江2020版高考数学第二章不等式专题突破一高考中的不等式问题讲义(含解析)
高考专题突破一 高考中的不等式问题题型一 含参数不等式的解法例1解关于x 的不等式x 2+ax +1>0(a∈R ). 解 对于方程x 2+ax +1=0,Δ=a 2-4.(1)当Δ>0,即a >2或a <-2时,方程x 2+ax +1=0有两个不等实根x 1=-a -a 2-42,x 2=-a +a 2-42,且x 1<x 2,所以原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <-a -a 2-42或x >-a +a 2-42; (2)当Δ=0,即a =±2时,①若a =2,则原不等式的解集为{x |x ≠-1}; ②若a =-2,则原不等式的解集为{x |x ≠1};(3)当Δ<0,即-2<a <2时,方程x 2+ax +1=0没有实根,结合二次函数y =x 2+ax +1的图象,知此时原不等式的解集为R .思维升华解含参数的一元二次不等式的步骤(1)若二次项含有参数应讨论是否等于0,小于0,和大于0,然后将不等式转化为二次项系数为正的形式.(2)判断方程的根的个数,讨论判别式Δ与0的关系.(3)当方程有两个根时,要讨论两根的大小关系,从而确定解集形式.跟踪训练1 (1)若不等式ax 2+8ax +21<0的解集是{x |-7<x <-1},那么a 的值是________. 答案 3解析 由题意可知-7和-1为方程ax 2+8ax +21=0的两个根. ∴-7×(-1)=21a,故a =3.(2)若关于x 的不等式|x -1|+|x +m |>3的解集为R ,则实数m 的取值范围是__________. 答案 (-∞,-4)∪(2,+∞)解析 依题意得,|x -1|+|x +m |≥|(x -1)-(x +m )|=|m +1|,即函数y =|x -1|+|x +m |的最小值是|m +1|,于是有|m +1|>3,m +1<-3或m +1>3,由此解得m <-4或m >2.因此实数m 的取值范围是(-∞,-4)∪(2,+∞).题型二 线性规划问题例2(2018·浙江五校联考)已知实数x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y ≥2,x -y ≥-1,2x -y ≤4,且z =ax +y 的最大值为16,则实数a =________,z 的最小值为________. 答案 2 1解析 如图,作出不等式组所表示的可行域(△ABC 及其内部区域).目标函数z =ax +y 对应直线ax +y -z =0的斜率k =-a .(1)当k ∈(-∞,1],即-a ≤1,a ≥-1时,目标函数在点A 处取得最大值,由⎩⎪⎨⎪⎧ 2x -y =4,x -y =-1,解得A (5,6),故z 的最大值为5a +6,即5a +6=16,解得a =2.(2)当k ∈(1,+∞),即-a >1,a <-1时,目标函数在点C 处取得最大值,由⎩⎪⎨⎪⎧x +2y =2,x -y =-1,解得C (0,1),故z 的最大值为0×a +1=1,不符合题意. 综上,a =2.数形结合知,当直线z =2x +y 经过点C 时,z 取得最小值,z min =2×0+1=1. 思维升华1.利用线性规划求目标函数的基本步骤为一画二移三求,其关键是准确作出可行域,理解目标函数的意义. 2.常见的目标函数有(1)截距型:如z =-2x +y ,z =2y4x ,z =OP →·OM →(其中M (x ,y )为区域内动点,P (-2,1)),等等.(2)距离型:如z =(x -2)2+y 2,z =|2x -y |,等等.(3)斜率型:如z =y +1x ,z =x +y +1x ,z =x y +1,z =y +1x +x y +1=x 2+(y +1)2xy +x ,等等.(4)二次曲线型:如z =xy ,z =y 2x ,z =x 22+y 2,等等.3.解题时要注意可行解是区域的所有点还是区域内的整点.跟踪训练2 (1)(2018·湖州五校模拟)设实数x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +1>0,x +y -3<0,y >0,则z =2x-y 的取值范围为( ) A .(-6,-1) B .(-8,-2) C .(-1,8) D .(-2,6)答案 D解析 方法一 作出约束条件所表示的可行域如图中阴影部分所示.作出直线y =2x ,平移直线,直线z =2x -y 在点B (-1,0)处的取最小值为-2,在点C (3,0)处的取最大值为6,所以z =2x -y 的取值范围为(-2,6).方法二 三条直线两两联立求出的交点坐标分别是(1,2),(-1,0),(3,0),分别代入z =2x -y 求值,得0,-2,6,所以z =2x -y 的取值范围为(-2,6). (2)若x ,y 满足⎩⎪⎨⎪⎧2x +5y ≥0,2x -y ≥0,x ≤5,则不等式组表示的平面区域的面积为________,z =(x +1)2+(y -1)2的最小值为________. 答案 30 95解析 作出⎩⎪⎨⎪⎧2x +5y ≥0,2x -y ≥0,x ≤5表示的平面区域如图中阴影部分(含边界)所示,则不等式组表示的平面区域的面积为12×5×2+12×10×5=30.z =(x +1)2+(y -1)2表示可行域内的点(x ,y )与点M (-1,1)之间的距离的平方,数形结合易知,z =(x +1)2+(y -1)2的最小值为点M (-1,1)到直线2x -y =0的距离的平方,即z min =|2×(-1)-1|2[22+(-1)2]2=95. 题型三 基本不等式的应用例3 (1)已知x 2+4xy -3=0,其中x >0,y ∈R ,则x +y 的最小值是( ) A.32B .3C .1D .2 答案 A解析 由x 2+4xy -3=0,得y =3-x24x,即有x +y =x +3-x 24x =34⎝ ⎛⎭⎪⎫x +1x .∵x >0,∴x +1x ≥2,即x +y ≥32,当且仅当x =1x ,即x =1,y =12时,x +y 取得最小值32.(2)已知a >0,b >0,c >1,且a +b =1,则⎝ ⎛⎭⎪⎫a 2+1ab -2·c +2c -1的最小值为______.答案 4+2 2解析 ∵a 2+1ab =a 2+(a +b )2ab =2a 2+2ab +b 2ab=2a b +ba+2≥22a b ·ba+2=22+2,当且仅当⎩⎪⎨⎪⎧2a b =b a,a +b =1,即⎩⎨⎧a =2-1,b =2-2时等号成立,∴⎝ ⎛⎭⎪⎫a 2+1ab -2·c +2c -1≥22c +2c -1=22(c -1)+2c -1+2 2≥222(c -1)·2c -1+22=4+22, 当且仅当22(c -1)=2c -1,即c =1+22时,等号成立. 综上,所求最小值为4+2 2. 思维升华利用基本不等式求最值的方法(1)利用基本不等式求最值的关键是构造和为定值或积为定值,主要思路有两种:①对条件使用基本不等式,建立所求目标函数的不等式求解.②条件变形,进行“1”的代换求目标函数最值.(2)有些题目虽然不具备直接应用基本不等式求最值的条件,但可以通过添项、分离常数、平方等手段使之能运用基本不等式.常用的方法还有:拆项法、变系数法、凑因子法、分离常数法、换元法、整体代换法.跟踪训练3 (1)已知xy =1,且0<y <22,则x 2+4y2x -2y 的最小值为( )A .4B.92C .22D .4 2答案 A解析 由xy =1且0<y <22,可知x >2, 所以x -2y >0.x 2+4y 2x -2y =(x -2y )2+4xy x -2y =x -2y +4x -2y≥4, 当且仅当x =3+1,y =3-12时等号成立. (2)若实数x ,y 满足x 2+y 2+xy =1,则x +y 的最大值是________. 答案233解析 由x 2+y 2+xy =1,得1=(x +y )2-xy , ∴(x +y )2=1+xy ≤1+(x +y )24,解得-233≤x +y ≤233(当且仅当x =y =33时取得最大值),∴x +y 的最大值为233.题型四 绝对值不等式的应用例4 (1)(2018·浙江五校联考)已知a ∈R ,则“a ≤9”是“2|x -2|+|5+2x |<a 无解”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 C解析 2|x -2|+|5+2x |=|2x -4|+|5+2x | ≥|2x -4-5-2x |=9,若2|x -2|+|5+2x |<a 无解,则a ≤9,同样若a ≤9,则2|x -2|+|5+2x |<a 无解, 所以“a ≤9”是“2|x -2|+|5+2x |<a 无解”的充要条件.(2)(2019·温州模拟)已知a ,b ,c ∈R ,若|a cos 2x +b sin x +c |≤1对x ∈R 恒成立,则|a sin x +b |的最大值为________. 答案 2解析 |a cos 2x +b sin x +c |≤1, 即|a sin 2x -b sin x -(a +c )|≤1,分别取sin x =1,-1,0,可知⎩⎪⎨⎪⎧|b +c |≤1,|b -c |≤1,|a +c |≤1,所以|a +b |=|(a +c )+(b -c )|≤|a +c |+|b -c |≤2, 且|a -b |=|(a +c )-(b +c )|≤|a +c |+|b +c |≤2.所以max{|a sin x +b |}=max{|a +b |,|a -b |}≤2,当a =2,b =0,c =-1时,取等号. 思维升华(1)解绝对值不等式可以利用绝对值的几何意义,零点分段法、平方法、构造函数法等.(2)利用绝对值三角不等式可以证明不等式或求最值.跟踪训练4 (1)已知函数f (x )=|x -5|+|x +3|+|x -3|+|x +5|-c ,若存在正实数m ,使f (m )=0,则不等式f (x )<f (m )的解集是________.答案 (-m ,m )解析 由|-x -5|+|-x +3|+|-x -3|+|-x +5|=|x -5|+|x +3|+|x -3|+|x +5|可知,函数f (x )为偶函数,当-3≤x ≤3时,f (x )取最小值16-c .结合题意可得c ≥16.由f (m )=0得f (x )<0,即|x -5|+|x +3|+|x -3|+|x +5|-c <0,结合图象(图略)可知,解集为(-m ,m ).(2)不等式|x -2|+|x +1|≥a 对于任意x ∈R 恒成立,则实数a 的取值范围为__________. 答案 (-∞,3]解析 当x ∈(-∞,-1]时,|x -2|+|x +1|=2-x -x -1=1-2x ≥3;当x ∈(-1,2)时,|x -2|+|x +1|=2-x +x +1=3; 当x ∈[2,+∞)时,|x -2|+|x +1|=x -2+x +1=2x -1≥3,综上可得|x -2|+|x +1|≥3,∴a ≤3.1.(2018·宁波期末)若a ,b ∈R ,且a <b <0,则下列不等式成立的是( ) A .2a -b>1B.1a -1>1b -1C .a 3>b 3D .a +|b |>0答案 B解析 由a <b <0得a -1<b -1<0,则(a -1)(b -1)>0,所以(a -1)·1(a -1)(b -1)<(b -1)·1(a -1)(b -1),即1a -1>1b -1,故选B.2.(2018·浙江绍兴一中期末)若关于x 的不等式|x +2|+|x -a |<5有解,则实数a 的取值范围是( ) A .(-7,7) B .(-3,3) C .(-7,3) D .∅答案 C解析 不等式|x +2|+|x -a |<5有解,等价于(|x +2|+|x -a |)min <5,又因为|x +2|+|x -a |≥|(x +2)-(x -a )|=|2+a |,所以|2+a |<5,-5<2+a <5,解得-7<a <3,即实数a 的取值范围为(-7,3),故选C.3.设集合M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )⎪⎪⎪⎩⎪⎨⎪⎧ x -y -1≤0,3x -y +1≥0,3x +y -1≤0,x ,y ∈R,则M 表示的平面区域的面积是( )A.2B.32C.322D .2答案 B解析 由题意,M 表示的平面区域是以A (0,1),B (-1,-2),C ⎝ ⎛⎭⎪⎫12,-12为顶点的三角形及其内部,如图中阴影部分所示(含边界),所以其面积为12×2×⎝ ⎛⎭⎪⎫12+1=32.4.(2018·杭州质检)若正数x ,y 满足2x +y -3=0,则2x +1y的最小值为( )A .2B .3C .4D .5 答案 B解析 由2x +y -3=0,得2x +y =3, 所以2x +1y =13(2x +y )⎝ ⎛⎭⎪⎫2x +1y =13⎝ ⎛⎭⎪⎫5+2x y +2y x≥13⎝⎛⎭⎪⎫5+2 2x y·2y x =3,当且仅当2x y =2y x,即x =y =1时等号成立,故选B.5.(2018·金华十校调研)设x ,y ∈R ,下列不等式成立的是( ) A .1+|x +y |+|xy |≥|x |+|y | B .1+2|x +y |≥|x |+|y | C .1+2|xy |≥|x |+|y | D .|x +y |+2|xy |≥|x |+|y |答案 A解析 对于选项B ,令x =100,y =-100,不成立;对于选项C ,令x =100,y =1100,不成立;对于选项D ,令x =13,y =-12,不成立,故选A.6.(2018·杭州学军中学模拟)设关于x ,y 的不等式组⎩⎪⎨⎪⎧x -y +1≥0,x +m ≤0,y -m ≥0表示的平面区域内存在点P (x 0,y 0)满足x 0-2y 0>3,则实数m 的取值范围是( ) A .(-1,0) B .(0,1) C .(-1,+∞) D .(-∞,-1)答案 D解析 作出满足不等式组的平面区域,如图中阴影部分所示(包含边界),当目标函数z =x -2y 经过直线x +m =0与y -m =0的交点时取得最大值,即z max =-m -2m =-3m ,则根据题意有-3m >3,即m <-1,故选D.7.(2018·浙江舟山中学月考)已知x ,y 满足约束条件⎩⎪⎨⎪⎧x -y -1≤0,2x -y -3≥0,当目标函数z =ax+by (a >0,b >0)在该约束条件下取到最小值25时,a 2+b 2的最小值为( ) A .5B .4C.5D .2 答案 B解析 画出满足约束条件的可行域如图中阴影部分(包含边界)所示,可知当目标函数过直线x -y -1=0与2x -y -3=0的交点A (2,1)时取得最小值,所以有2a +b =2 5.因为a 2+b 2表示原点(0,0)到点(a ,b )的距离的平方,所以a 2+b 2的最小值为原点到直线2a +b -25=0的距离,即(a 2+b 2)min =|-25|22+12=2,所以a 2+b 2的最小值是4,故选B.8.(2018·嘉兴教学测试)若直线ax +by =1与不等式组⎩⎪⎨⎪⎧y ≤1,2x -y -1≤0,2x +y +1≥0表示的平面区域无公共点,则2a +3b 的取值范围是( ) A .(-7,1) B .(-3,5) C .(-7,3) D .R答案 C解析 不等式组⎩⎪⎨⎪⎧y ≤1,2x -y -1≤0,2x +y +1≥0表示的平面区域是以A (1,1),B (-1,1),C (0,-1)为顶点的三角形区域(包含边界);因为直线ax +by =1与不等式组⎩⎪⎨⎪⎧y ≤1,2x -y -1≤0,2x +y +1≥0表示的平面区域无公共点,所以a ,b满足⎩⎪⎨⎪⎧a +b -1>0,-a +b -1>0,-b -1>0或⎩⎪⎨⎪⎧a +b -1<0,-a +b -1<0,-b -1<0,故点(a ,b )在如图所示的三角形区域(除边界且除原点)内,所以2a+3b 的取值范围为(-7,3),故选C.9.(2019·诸暨期末)不等式-x 2+2x +3<0的解集为________;不等式|3-2x |<1的解集为________.答案 (-∞,-1)∪(3,+∞) (1,2)解析 依题意,不等式-x 2+2x +3<0,即x 2-2x -3>0,解得x <-1或x >3,因此不等式-x 2+2x +3<0的解集是(-∞,-1)∪(3,+∞);由|3-2x |<1得-1<3-2x <1,1<x <2,所以不等式|3-2x |<1的解集是(1,2).10.(2018·宁波期末)关于实数x 的不等式x 2-4x >1a+3在[0,5]上有解,则实数a 的取值范围为______________.答案 (-∞,0)∪⎝ ⎛⎭⎪⎫12,+∞ 解析 由x 2-4x >1a +3得x 2-4x -3>1a ,则问题等价于1a小于x 2-4x -3在[0,5]上的最大值,又因为x 2-4x -3=(x -2)2-7,所以当x =5时,x 2-4x -3取得最大值2,所以1a<2,解得a <0或a >12,所以a 的取值范围为(-∞,0)∪⎝ ⎛⎭⎪⎫12,+∞.11.(2018·嘉兴测试)已知f (x )=x -2,g (x )=2x -5,则不等式|f (x )|+|g (x )|≤2的解集为______________;|f (2x )|+|g (x )|的最小值为________.答案 ⎣⎢⎡⎦⎥⎤53,3 3 解析 由题意得|f (x )|+|g (x )|=|x -2|+|2x -5|=⎩⎪⎨⎪⎧7-3x ,x <2,-x +3,2≤x ≤52,3x -7,x >52,所以|f (x )|+|g (x )|≤2等价于⎩⎪⎨⎪⎧7-3x ≤2,x <2或⎩⎪⎨⎪⎧-x +3≤2,2≤x ≤52或⎩⎪⎨⎪⎧3x -7≤2,x >52,解得53≤x ≤3,|f (2x )|+|g (x )|=|2x -2|+|2x -5|=⎩⎪⎨⎪⎧7-4x ,x <1,3,1≤x ≤52,4x -7,x >52,|f (2x )|+|g (x )|的图象如图,则由图象易得|f (2x )|+|g (x )|的最小值为3.12.(2018·浙江镇海中学模拟)已知正数x ,y 满足1x +2y =1,则1x +1+2y +1的最大值是________. 答案 34解析 设u =1x ,v =1y ,则问题转化为“已知正数u ,v 满足u +2v =1,求u u +1+2vv +1的最大值”.uu +1+2v v +1=3-⎝ ⎛⎭⎪⎫1u +1+2v +1=3-⎝⎛⎭⎪⎫1u +1+2v +1·14[(u +1)+2(v +1)]=3-14⎣⎢⎡⎦⎥⎤5+2(v +1)u +1+2(u +1)v +1≤3-14(5+4)=34. 当且仅当2(v +1)u +1=2(u +1)v +1,即u =v =13时,取等号.13.(2018·浙江金华十校联考)已知实数x ,y ,z 满足⎩⎪⎨⎪⎧xy +2z =1,x 2+y 2+z 2=5,则xyz 的最小值为________. 答案 911-32 解析 将⎩⎪⎨⎪⎧xy +2z =1,x 2+y 2+z 2=5变形为⎩⎪⎨⎪⎧xy =1-2z ,x 2+y 2=5-z 2,由|xy |≤x 2+y 22知,|1-2z |≤5-z22,即-5-z 22≤1-2z ≤5-z 22,解得2-7≤z ≤11-2.所以xyz =(1-2z )z =-2z 2+z 在[2-7,11-2]上的最小值为911-32.14.(2018·宁波模拟)若6x 2+4y 2+6xy =1,x ,y ∈R ,则x 2-y 2的最大值为________. 答案 15解析 方法一 设m =x +y ,n =x -y ,则问题转化为“已知4m 2+mn +n 2=1,求mn 的最大值”.由基本不等式,知1=mn +4m 2+n 2≥mn +4|mn |,所以-13≤mn ≤15,当且仅当n =2m ,即x =-3y 时,取得最大值15.方法二 (齐次化处理)显然要使得目标函数取到最大值,x ≠0.令z =x 2-y 2=x 2-y 26x 2+4y 2+6xy=1-⎝ ⎛⎭⎪⎫y x26+4·⎝ ⎛⎭⎪⎫y x 2+6·y x ,设t =y x ,则z =1-t 26+4t 2+6t,则(4z +1)t 2+6zt +6z -1=0对t ∈R 有解.当z=-14时,t =-53.当z ≠-14时,Δ=36z 2-4(4z +1)(6z -1)≥0,解得-13≤z ≤15.当t =-3z 4z +1=-13时取最大值.方法三 1=6x 2+4y 2+6×x3×3y ≥6x 2+4y 2-6×x 23+3y 22=5x 2-5y 2,所以x 2-y 2≤15,当且仅当x =-3y 时取等号.15.(2019·浙江嘉兴一中模拟)已知点P 是平面区域M :⎩⎨⎧x≥0,y ≥0,3x +y -3≤0内的任意一点,则P 到平面区域M 的边界的距离之和的取值范围为________. 答案 ⎣⎢⎡⎦⎥⎤32,3 解析 设平面区域M :⎩⎨⎧x ≥0,y≥0,3x +y -3≤0为△ABO 区域(包含边界),由题意,|AO |=1,|BO |=3,|AB |=2,P 到平面区域M 的边界的距离之和d 就是P 到△ABO 三边的距离之和,设P 到边界AO ,BO ,AB 的距离分别为a ,b ,c ,则P (b ,a ),由题意0≤a ≤3,0≤b ≤1,0≤c =12(3-a -3b )≤32,所以d =a +b +c =12[a +(2-3)b +3],从而d ≥32,当a =b =0时取等号.如图,P 为可行域内任意一点,过P 作PE ⊥x 轴,PF ⊥y 轴,PP ′⊥AB ,过P ′作P ′E ′⊥x 轴,P ′F ′⊥y 轴,则有PE +PF +PP ′≤P ′F ′+P ′E ′,由P (b ,a ), 可得P ′⎝⎛⎭⎪⎫3+b -3a4,3+3a -3b 4,所以d =a +b +c ≤3+b -3a 4+3+3a -3b 4=3+3+(3-1)(3a -b )4,又0≤a ≤3,0≤b ≤1,则d ≤3,当a =3,b =0时取等号,因此d 的取值范围为⎣⎢⎡⎦⎥⎤32,3. 16.(2018·浙江“七彩阳光”新高考研究联盟联考)若正数a ,b ,c 满足b +c a +a +c b =a +bc+1,则a +bc的最小值是________. 答案1+172解析 由a ,b ,c 为正数,且b +c a +a +c b =a +b c +1得b c +1a c +a c +1b c =a c +b c +1,设m =a c ,n =bc,则有m >0,n >0,上式转化为n +1m +m +1n =m +n +1,即m 2+n 2+m +nmn=m +n +1,又由基本不等式得m 2+n 2≥(m +n )22,mn ≤(m +n )24,所以m +n +1=m 2+n 2+m +n mn ≥(m +n )22+m +n (m +n )24,令t =m +n ,则t >0,上式转化为t +1≥t 22+tt 24,即t 2-t -4≥0,解得t ≥1+172,所以t =m +n =a c +bc =a +b c 的最小值为1+172.。
2020年高考数学压轴题专题复习: 函数、导数与数列、不等式的综合应用【解析版】
设 f(x)= ln x (x 1) ,则 f '(x) 1 ln x .
x
x2
令 f '(x) 0 ,得 x=e.列表如下:
x
(1, e)
e
f '(x)
+
0
f(x)
极大值
(e,+∞) –
因为 ln 2 2
ln 8 6
ln 9 6
ln 3 ,所以 3
f
(k )max
f
(3)
ln 3 . 3
由此猜测:当 时,
.
下Hale Waihona Puke 先用数学归纳法证明:当 时,.
事实上,当 时,由前面的讨论知结论成立.
假设当
时,
成立,则由(2)知,
,从而
,
所以
.
故当 时,
成立.
于是由(2)知,当 时,
,而
,因此
.
综上所述,当 时,
,
,
.
(Ⅱ)存在 ,使数列 是等比数列.
事实上,由(2)知,若对任意的 ,都有
,则
.即数列 是首项为 ,公比为 3 的等比
1) (2)
2n
10
,
所以等差数列an的通项公式为 an 2n 10 ;
(2)由条件 S9 a5 ,得 9a5 a5 ,即 a5 0 ,
因为 a1 0 ,所以 d 0 ,并且有 a5 a1 4d 0 ,所以有 a1 4d ,
由
Sn
an
得 na1
n(n 1) 2
d
a1
(n 1)d
函数、导数与数列、不等式的综合应用
纵观近几年的高考命题,应用导数研究函数的单调性、极(最)值问题,证明不等式、研究函数的零点等, 是高考考查的“高频点”问题,常常出现在“压轴题”的位置.其中,函数、导数与数列、不等式的综合应 用问题的主要命题角度有:函数与不等式的交汇、函数与数列的交汇、导数与数列不等式的交汇等.本专题 就函数、导数与数列、不等式的综合应用问题,进行专题探讨,通过例题说明此类问题解答规律与方法.
2020高考数学最后十天压轴题 专题3.5 以数列与不等式相结合的综合问题为解答题(解析版)
来高考命题的一个新的亮点,而命题的冷门则是数列与不等式综合的应用性解答题.
类型一 求数列中的最值问题
典例 1【湖南省长沙市 2019 届高三上学期统一检测】已知数列 的首项
, ,且对任意的
,
都有
,数列 满足
,
.
(Ⅰ)求数列 , 的通项公式;
(Ⅱ)求使
成立的最小正整数 的值.
【解析】(Ⅰ)令 得,
,解得
2 时, Sn
Sn1
Sn2 , Sn 1
Sn1 Sn
SnSn1,即
1 Sn
.
又由
知
,
故数列 是首项
,公差 的等差数列,
于是
,
.
(Ⅱ)由(Ⅰ)知,
.
于是
.
令
,易知 是关于 的单调递增函数,
又
,
,
故使
成立的最小正整数 的值是 10.
【名师指点】求解数列中的某些最值问题,有时须结合不等式来解决,其具体解法有:(1)建立目标函数,
通过不等式确定变量范围,进而求得最值;(2)首先利用不等式判断数列的单调性,然后确定最值;(3)利用
【解析】(I)设an 的公差为 d,由题意得 4a1 6d 16 .由 a1 7 得 d=2. 所以an 的通项公式为 an 2n 9 . (II)由(I)得 Sn n2 8n n 42 16 . 所以当 n=4 时, Sn 取得最小值,最小值为−16.
类型二 求有数列参与的不等式恒成立条件下参数问题
【名师指点】求解数列与不等式相结合恒成立条件下的参数问题主要两种策略:(1) 若函数 f x 在定义域
为 D ,则当 x D 时,有
f
x
M
2020年高考数学选择、填空压轴题综合考法深度揭秘 - 专题8 数列与不等式
2020年高考数学选择、填空压轴题考法深度揭秘专题八、数列与不等式数列的性质及不等式的应用,在近几年全国及各省市高考的选择、填空题的压轴题中多次出现,数列的性质主要考查递推数列的应用和数列与函数、不等式的综合,而不等式主要考查多元条件下利用基本不等式求最值(范围)问题.考法16 递推数列的应用(2016·山西太原二模,10)已知函数f (n )=n 2cos(n π),且a n =f (n )+f (n +1),则a 1+a 2+a 3+…+a 100= ( )A .0B .-100C .100D .10 200【知识揭秘】 揭秘:通项公式中cos(n π)=⎩⎨⎧1,n =2k ,-1,n =2k +1(k ∈Z ).(-1)n 的一类数列在求和时,要注意n 是奇数还是偶数.【思维揭秘】 先求出分段函数f (n )的解析式,找出规律,直接求和. 【解析揭秘】 因为f (n )=n 2cos(n π)=⎩⎨⎧n 2,n =2k ,-n 2,n =2k +1(k ∈Z ),所以a 1+a 2+a 3+…+a 100=[f (1)+f (2)+…+f (100)]+[f (2)+…+f (101)]. 因为f (1)+f (2)+…+f (100)=-12+22-32+42-…-992+1002=(22-12)+(42-32)+…+(1002-992)=3+7+…+199=50(3+199)2=5 050,f (2)+…+f (101)=22-32+42-…-992+1002-1012=(22-32)+(42-52)+…+(1002-1012)=-5-9-…-201=50(-5-201)2=-5 150,所以a 1+a 2+a 3+…+a 100=[f (1)+f (2)+…+f (100)]+[f (2)+…+f (101)]=-5 150+5 050=-100.【答案】 B1.(2016·吉林长春二模,12)已知数列{a n }中,a n >0,a 1=1,a n +2=1a n +1,a 100=a 96,则a 2 016+a 3=( ) A.52 B.1+52 C.52 D.-1+521.C 因为a 1=1,故a 3=1a 1+1=12,a 100=1a 98+1=11a 96+1+1=a 96.因为a n >0,故a 96=5-12,则a 98=1a 96+1=5-12,a 100=5-12,故当n 为偶数时,a n =5-12,则a 2 016+a 3=52,故选C.2.(2016·广西南宁模拟,16)数列{a n }的通项a n =n 2·⎝ ⎛⎭⎪⎫cos 2n π3-sin 2n π3,其前n项的和为S n ,则S 30=________.2.【解析】 由题意可知,a n =n 2·cos 2n π3,若n =3k -2,则a n =(3k -2)2·⎝ ⎛⎭⎪⎫-12=-9k 2+12k -42(k ∈N *);若n =3k -1,则a n=(3k -1)2·⎝ ⎛⎭⎪⎫-12=-9k 2+6k -12(k ∈N *);若n =3k ,则a n =(3k )2·1=9k 2(k ∈N *),∴a 3k -2+a 3k -1+a 3k =9k -52,k ∈N *,∴S 30=∑10k =1 ⎝ ⎛⎭⎪⎫9k -52=9-52+90-522×10=470.【答案】 4703.(2016·河南洛阳一模,16)已知数列{a n }中,对任意的n ∈N *若满足a n +a n+1+a n +2=s (s 为常数),则称该数列为3阶等和数列,其中s 为3阶公和;若满足a n ·a n +1=t (t 为常数),则称该数列为2阶等积数列,其中t 为2阶公积.已知数列{p n }是首项为1的3阶等和数列,且满足p 3p 2=p 2p 1=2;数列{q n }是首项为-1,公积为2的2阶等积数列.设S n 为数列{p n ·q n }的前n 项和,则S 2 016=__________.3.【解析】 由题意可知,p 1=1,p 2=2,p 3=4,p 4=1,p 5=2,p 6=4,p 7=1,…,又{p n }是3阶等和数列,又因该数列将会照此规律循环下去,同理,q 1=-1,q 2=-2,q 3=-1,q 4=-2,q 5=-1,q 6=-2,q 7=-1,…,又{q n }是2阶等积数列,因此该数列将会照此规律循环下去,由此可知对于数列{p n ·q n },每6项循环一次,易求出p 1·q 1+p 2·q 2+…+p 6·q 6=-21,又因为S 2 016中有336组循环,故S 2 016=-21×336=-7 056.【答案】 -7 056考法17 数列与函数、不等式的综合问题(2011·浙江文,17)若数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫n (n +4)⎝ ⎛⎭⎪⎫23n 中的最大项是第k 项,则k =________.【知识揭秘】 揭秘:由不等式组⎩⎨⎧a k ≥a k +1,a k ≥a k -1可说明a k 为最大项.【思维揭秘】 若对a n =n (n +4)⎝ ⎛⎭⎪⎫23n 构造函数模型f (x )=x (x +4)⎝ ⎛⎭⎪⎫23x,显然比较烦琐,所以对于摆动数列,可考虑用数列的单调性来求解,即列出不等式组求解.【解析揭秘】 设最大项为第k 项,则由不等式组⎩⎨⎧a k ≥a k +1,a k ≥a k -1得⎩⎪⎨⎪⎧k (k +4)⎝ ⎛⎭⎪⎫23k ≥(k +1)(k +5)⎝ ⎛⎭⎪⎫23k +1,k (k +4)⎝ ⎛⎭⎪⎫23k ≥(k -1)(k +3)⎝ ⎛⎭⎪⎫23k -1, 即⎩⎪⎨⎪⎧k (k +4)≥(k +1)(k +5)·23,k (k +4)·23≥(k -1)(k +3),解得10≤k ≤10+1,故k =4.【答案】 41.(2016·黑龙江哈尔滨二模,12)已知定义在R 上的函数f (x )满足:f (x +1)=f (x )-f 2(x )+12,数列{a n }满足a n =f 2(n )-f (n ),n ∈N *.若其前n 项和为-3516,则n 的值为( )A .16B .17C .18D .191.B 由题意得⎣⎢⎡⎦⎥⎤f (x +1)-122=f (x )-f 2(x ),则f 2(x +1)-f (x +1)+14=f (x )-f 2(x ).又-14≤f 2(n )-f (n )=a n ≤0,所以a n +1+14=-a n ,即a n +1+a n =-14.若n 为偶数,则其前n 项和为-14×n 2=-3516,n =352∉N *,所以n 不可能是偶数,排除A 和C ;若n =17,则a 17=S 17-S 16=-3516+14×8=-316∈⎣⎢⎡⎦⎥⎤-14,0,符合题意;若n =19,则a 19=S 19-S 18=-3516+14×9=116>0,不符合题意,故选B.2.(2016·湖南长沙二模,15)已知数列{a n }中,a 1=3,a n +1+a n =3b n (b >0,n ∈N *).给出以下命题:①b =1时,S 7=12;②存在l ∈R ,数列{a n -lb n }成等比数列; ③当b ∈(1,+∞)时,数列{a 2n }是递增数列; ④当b ∈(0,1)时,数列{a n }是递增数列.以上命题为真命题的是________(写出所有真命题对应的序号).2.【解析】 ①当b =1时,数列{a n }的前7项依次为3,0,3,0,3,0,3,所以S 7=12成立;②若数列{a n -lb n }成等比数列,设a n +1-lb n +1=-(a n -lb n ),即a n +1+a n =3b n =l (b +1)b n (b >0),n ∈N *,则l =3b +1,所以存在l ∈R ,数列{a n -lb n }成等比数列,此时公比为-1,故②正确;③因为a n +1+a n =3b n (b >0),则a n+2+a n +1=3b n +1(b >0),两式相减得a n +2-a n =3b n +1-3b n ,则a 2n +2-a 2n =3b 2n +1-3b 2n =3b 2n ·(b -1),当b ∈(1,+∞)时,3b 2n (b -1)>0,即a 2n +2>a 2n ,则数列{a 2n }为递增数列,故③正确;④当b ∈(0,1)时,不妨设b =12,则由a n +1+a n =3b n (b >0),得a 2+a 1=3×12=32,则a 2=-a 1+32=-32<a 1,,则此时数列{a n }不是递增数列,故④错误.综上所述,①②③是真命题.【答案】 ①②③3.(2016·上海静安区一模,13)已知各项皆为正数的等比数列{a n }(n ∈N *),满足a 7=a 6+2a 5,若存在两项a m ,a n 使得a m a n =4a 1,则1m +4n的最小值为________.3.【解析】 设各项皆为正数的等比数列{a n }的公比为q >0(n ∈N *),∵a 7=a 6+2a 5,∴a 5q 2=a 5q +2a 5,即q 2-q -2=0,解得q =2.∵存在两项a m ,a n 使得a m a n =4a 1,∴a 212m +n -2=4a 1, ∴2m +n -2=24,∴m +n =6. 则1m +4n =16(m +n )⎝ ⎛⎭⎪⎫1m +4n=16⎝ ⎛⎭⎪⎫5+n m +4m n ≥16⎝⎛⎭⎪⎫5+2n m ·4m n =32, 当且仅当n =2m =4时取等号. ∴1m +4n 的最小值为32. 【答案】 32考法18 利用基本不等式求多元代数式的最值(范围)(2014·辽宁理,16)对于c >0,当非零实数a ,b 满足4a 2-2ab +4b 2-c =0且使|2a +b |最大时,3a -4b +5c 的最小值为________.【知识揭秘】 揭秘1:由柯西不等式得,⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫a -b 42+1516b 2⎣⎢⎡⎦⎥⎤22+⎝ ⎛⎭⎪⎫6152≥⎣⎢⎡2⎝ ⎛⎭⎪⎫a -b 4+⎦⎥⎤154b ·6152=|2a +b |2或令2a +b =t ,将4a 2-2ab +4b 2-c =0化为关于a 的方程,方程有根,则判别式不小于0;揭秘2:把3a -4b +5c转化为二次函数,配方法求最值.【思维揭秘】 方法一:令2a +b =t ,把4a 2-2ab +4b 2-c =0化为关于a 的方程,利用判别式找到t 的最大值,从而a ,b 均用c 表示,代入3a -4b +5c 转化成关于c 的二次函数求最值.方法二:首先把4a 2-2ab +4b 2-c =0,转化为c 4=⎝ ⎛⎭⎪⎫a -b 42+1516b 2,再由柯西不等式得到|2a +b |2,分别用b 表示a ,c ,再代入到3a -4b +5c 得到关于b 的二次函数,求出最小值即可.【解析揭秘】 方法一(判别式法):令2a +b =t ,则b =t -2a ,代入到4a 2-2ab +4b 2-c =0中,得4a 2-2a (t -2a )+4(t -2a )2-c =0,即24a 2-18ta +4t 2-c =0.因为关于a 的二次方程有实根,所以Δ=182t 2-4×24(4t 2-c )≥0,可得t 2≤8c5.当|2a +b |取最大值时,有(2a +b )2=85c , ∴4a 2+4ab +b 2=85c . 又∵4a 2-2ab +4b 2=c ,① ∴b a =23,∴b =23a ,代入①得4a 2-2a ×23a +49a 2×4=c , ∴⎩⎪⎨⎪⎧a =32c10,b =c 10或⎩⎪⎨⎪⎧a =-32c10,b =-c 10.当⎩⎪⎨⎪⎧a =32c 10,b =c 10时,3a -4b +5c =210c -410c+5c =-210c +⎝⎛⎭⎪⎫5c 2=⎝⎛⎭⎪⎫5c -22-2≥-2; 当5c =2,即c =52时等号成立.此时a =34,b =12.当⎩⎪⎨⎪⎧a =-32c10,b =-c 10时,3a -4b +5c =-210c +410c +5c =210c+5c >0.综上可知,当c =52,a =34,b =12时,⎝ ⎛⎭⎪⎫3a -4b +5c min =-2.方法二:∵4a 2-2ab +4b 2-c =0, ∴c 4=a 2-12ab +b 2=⎝ ⎛⎭⎪⎫a -b 42+1516b 2.由柯西不等式得,⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫a -b 42+1516b 2⎣⎢⎡⎦⎥⎤22+⎝ ⎛⎭⎪⎫6152≥⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫a -b 4+154b ·6152=|2a +b |2, 故当|2a +b |最大时,有a -b42=154b615,∴a =32b ,c =10b 2, ∴3a -4b +5c =332b -4b +510b 2=12⎝ ⎛⎭⎪⎫1b 2-2b =12⎝ ⎛⎭⎪⎫1b -22-2,当b =12时,取得最小值为-2. 【答案】 -21.(2016·山东烟台二模,15)若正数x ,y ,z 满足x +2y +3z =1,则1x +z +8(x +z )y +z的最小值为________. 1.【解析】 由x +2y +3z =1得(x +z )+2(y +z )=1,所以1x +z +8(x +z )y +z =(x +z )+2(y +z )x +z +8(x +z )y +z =1+2⎣⎢⎡⎦⎥⎤y +z x +z +4(x +z )y +z ≥9,当且仅当y +z =2(x+z)=25时取等号.【答案】92.(2016·广东汕头一模,16)已知函数f(x)=x+sin x(x∈R),且f(y2-8x+11)+f(x2-6y+10)≤0,则当y≥3时,函数F(x,y)=x2+y2的最小值与最大值的和为________.2.【解析】易知f(x)=x+sin x(x∈R),f(-x)=-x+sin(-x)=-(x+sin x)=-f(x),则f(x)是奇函数.又f′(x)=1+cos x≥0,所以f(x)在R上为增函数,所以f(y2-8x+11)+f(x2-6y+10)≤0,为f(y2-8x+11)≤-f(x2-6y+10)=f(-x2+6y-10),则y2-8x+11≤-x2+6y-10,即x2+y2-8x-6y+21≤0,即(x-4)2+(y-3)2≤4.又y≥3,则(x,y)对应的可行域是以(4,3)为圆心,2为半径的上半圆面,函数F(x,y)=x2+y2的几何意义是(x,y)与原点的距离的平方.连接点(2,3)和(0,0)的距离为13,连接原点和圆心(4,3)延长交半圆于P,则PO的距离为42+32+2=7,即有F(x,y)min=13,F(x,y)max=49,其和为62.【答案】62。
2020年高考数学压轴题专题复习: 数列与不等式的综合问题【解析版】
第二章 数列与不等式专题 数列与不等式的综合问题纵观近几年的高考命题,考查常以数列的相关项以及关系式,或数列的前n 项和与第n 项的关系入手,结合数列的递推关系式与等差数列或等比数列的定义展开,求解数列的通项、前n 项和,有时与参数的求解、数列不等式的证明等加以综合.数列与不等式的结合,一般有两类题:一是利用基本不等式求解数列中的最值;二是与数列中的求和问题相联系,证明不等式或求解参数的取值范围,此类问题通常是抓住数列通项公式的特征,多采用先求和后利用放缩法或数列的单调性证明不等式,求解参数的取值范围. 本专题通过例题说明此类问题解答规律与方法.①函数方法:即构造函数,通过函数的单调性、极值等得出关于正实数的不等式,通过对关于正实数的不等式特殊赋值得出数列中的不等式;②放缩方法:数列中不等式可以通过对中间过程或者最后的结果放缩得到; ③比较方法:作差或者作商比较.【压轴典例】例1.(2013·全国高考真题(理))设△A n B n C n 的三边长分别为a n ,b n ,c n ,△A n B n C n 的面积为S n ,n=1,2,3,… 若b 1>c 1,b 1+c 1=2a 1,a n +1=a n ,b n +1=2n n c a +,c n +1=2n nb a +,则( ) A .{S n }为递减数列 B .{S n }为递增数列C .{S 2n -1}为递增数列,{S 2n }为递减数列D .{S 2n -1}为递减数列,{S 2n }为递增数列 【答案】B 【解析】因为11b c >,不妨设111142,33a a b c ==,13()22p a b c a =++=;故211S ==; 21a a =,112125326a ab a +==,112147326a a c a +==,2216S a ==; 显然21S S >;同理,31a a =,112159428a a b a +==,113137428a a c a +==,231S ==,显然32S S >.例2. (2018·江苏高考真题)已知集合*{|21,}A x x n n N ==-∈,*{|2,}n B x x n N ==∈.将AB 的所有元素从小到大依次排列构成一个数列{}n a .记n S 为数列{}n a 的前n 项和,则使得112n n S a +>成立的n 的最小值为________. 【答案】27 【解析】设=2kn a ,则12[(211)+(221)+(221)][222]k k n S -=⨯-⨯-+⋅-++++()11221212212(12)222212k k kk k ---++⨯--=+=+--由112n n S a +>得2211211522212(21),(2)20(2)140,22,6k k k k k k k -+---+->+-->≥≥ 所以只需研究5622n a <<是否有满足条件的解,此时25[(211)+(221)+(21)][222]n S m =⨯-⨯-+-++++25122m +=+-,+121n a m =+,m 为等差数列项数,且16m >. 由25122212(21),2450022,527m m m m m n m ++->+-+>∴≥=+≥,得满足条件的n 最小值为27. 例3.(2018·浙江高考模拟)设数列的前项和分别为,其中,使成立的最大正整数__________,__________.【答案】 6. 114. 【解析】根据题意,数列{a n }中,a n =-3n+20,则数列{a n }为首项为17,公差为-3的等差数列,且当n≤6时,a n >0,当n >7时,a n <0,又由b n =|a n |,当n≤6时,b n =a n ,当n >7时,b n =-a n , 则使T n =S n 成立的最大正整数为6,T 2018+S 2018=(a 1+a 2+……+a 6+a 7+a 8+……+a 2018)+(b 1+b 2+……+b 6+b 7+b 8+……+b 2018)=(a 1+a 2+……+a 6+a 7+a 8+……+a 2018)+(a 1+a 2+……+a 6-a 7-a 8-……-a 2018) =2(a 1+a 2+……+a 6)=,故答案为:6,114 例4.(2019·江西师大附中高考模拟(文))数列{}n a 中的项按顺序可以排成如图的形式,第一行1项,排1a ;第二行2项,从左到右分别排2a ,3a ;第三行3项,……依此类推,设数列{}n a 的前n 项和为n S ,则满足2019n S >的最小正整数n 的值为( )A .20B .21C .26D .27【答案】B 【解析】第一行为4,其和为4,可以变形为:1232T =⨯-;第二行为首项为4,公比为3的等比数列,共2项,其和为:()22241323213T -==⨯--;第三行为首项为4,公比为3的等比数列,共3项,其和为()33341323213T -==⨯--;依此类推:第n 行的和:232nn T =⨯-;则前6行共:12345621+++++=个数 前6行和为:()()()()26267212322322322333123152172S =⨯-+⨯-+⋅⋅⋅+⨯-=⨯++⋅⋅⋅+-=-=满足2019n S >而第六行的第6个数为:543972⨯=,则202197212002019S S =-=<∴满足2019n S >的最小正整数n 的值为:21本题正确选项:B例5.(2019·内蒙古高考模拟(理))数列()11n a n n =+的前n 项和为n S ,若1S ,m S ,n S 成等比数列()1m >,则正整数n 值为______. 【答案】8 【解析】∵()11111n a n n n n ==-++,∴11111122311n nS n n n =-+-++-=++, 又1S ,m S ,n S 成等比数列()1m >,∴()21m n S S S =⋅, 即()221211m n n m =⋅++,()22211m n n m =++, ∴()2221m m <+,即2210m m --<,解得1212m -<<+,结合1m 可得2m =, ∴8n =,故答案为8.例6.(2016·天津高考真题(理))已知{}是各项均为正数的等差数列,公差为d ,对任意的,是和的等比中项.(Ⅰ)设求证:数列{}是等差数列;(Ⅱ)设求证:【答案】(Ⅰ)详见解析(Ⅱ)详见解析 【解析】(Ⅰ)证明:由题意得,有,因此,所以是等差数列.(Ⅱ)证明:所以.例7.(2016·四川高考真题(理))已知数列{}的首项为1,为数列{}的前n 项和,,其中q>0,.(Ⅰ)若成等差数列,求数列{a n }的通项公式;(Ⅱ)设双曲线的离心率为,且,证明:.【答案】(Ⅰ);(Ⅱ)详见解析.【解析】(Ⅰ)由已知,两式相减得到.又由得到,故对所有都成立.所以,数列是首项为1,公比为q的等比数列.从而.由成等差数列,可得,即,则,由已知,,故.所以.(Ⅱ)由(Ⅰ)可知,.所以双曲线的离心率.由解得.因为,所以.于是,故.例8.(2016·浙江高考真题(理))设数列满足,.(Ⅰ)证明:,;(Ⅱ)若,,证明:,.【答案】(Ⅰ)证明见解析;(Ⅱ)证明见解析.【解析】(Ⅰ)由得,故,,所以,因此.(Ⅱ)任取,由(Ⅰ)知,对于任意,,故.从而对于任意,均有.由的任意性得.①否则,存在,有,取正整数且,则,与①式矛盾.综上,对于任意,均有.【压轴训练】1.(2019·安徽高考模拟(理))设是等差数列,下列结论一定正确的是()A.若,则B.若,则C.若,则D.若,则【答案】C【解析】若a1+a2>0,则2a1+d>0,a2+a3=2a1+3d>2d,d>0时,结论成立,即A不正确;对于B选项,当,分别为-4,-1,2时,满足a1+a3<0,但a2+a3=1>0,故B不正确;又{a n }是等差数列,0<a 1<a 2,2a 2=a 1+a 3>2,∴a 2,即C 正确;若a 1<0,则(a 2﹣a 1)(a 2﹣a 3)=﹣d 2≤0,即D 不正确. 故选:C .2.(2018·浙江高考模拟)已知等差数列的前项和是,公差不等于零,若成等比数列,则A .B .C .D .【答案】C 【解析】 由成等比数列.可得,可得(,即,∵公差不等于零,故选:C .3.(2019·山东高考模拟(文))已知正项等比数列{}n a 满足5432a a a +=,若存在两项m a ,n a ,使得18m n a a a =,则91m n+的最小值为__________. 【答案】2 【解析】正项等比数列{}n a 满足5432a a a +=, 432111=+2a q a q a q ∴,整理,得210+2q q -=,又0q >,解得,12q =, 存在两项m a ,n a 使得18m n a a a =, 2221164m n a q a +-∴=,整理,得8m n +=,∴9119119()()(10)88m n m n m n m n n m +=++=++ 19(102)28m n n m+=, 则91m n+的最小值为2. 当且仅当9m n n m=取等号,又m ,*n N ∈.8m n +=, 所以只有当6m =,2n =时,取得最小值是2. 故答案为:24.(2019·湖南师大附中高考模拟(理))已知等比数列{a n }的前n 项积为T n ,若124a =-,489a =-,则当T n 取最大值时,n 的值为_____. 【答案】4 【解析】设等比数列{a n }的公比为q ,因为124a =-,489a =-,可得341127a q a ==,解得13q =,则()()()1112312(2131)(32424)n n nnn n n T a a a a q-+++⋅⋅⋅+-=⋅⋅⋅=-=-, 当T n 取最大值时,可得n 为偶数,函数13xy =()在R 上递减, 又由2192T =,4489T =,66983T =,可得246T T T <>,当6n >,且n 为偶数时,6n T T <, 故当4n =时,T n 取最大值.5.(2019·安徽高考模拟(理))已知数列的各项均为正数,记为的前项和,若,,则使不等式成立的的最小值是________.【答案】11 【解析】由可得,则()()=0,又数列的各项均为正数,∴,即,可得数列{a n }是首项为公比为q =2的等比数列,∴,则n>10,又,∴n 的最小值是11,故答案为11.6.(2019·甘肃天水一中高考模拟(文))已知数列{}n a 满足11a =,0n a >,11n n a a +=,那么32n a <成立的n 的最大值为______ 【答案】5 【解析】11n n a a +=, 所有{}na 11a =,公差d 1=n n a =,2n a n = 解232n a n =<,得n 42<所以32n a <成立的n 的最大值为5 故答案为:57.(2019·河北高考模拟(理))已知数列{}n a 的前n 项和为n S ,且()2119*2n n n nS S n N +-+=∈,若24a <-,则n S 取最小值时n =__________.【答案】10 【解析】由21192n n n nS S +-+=,()21(1)1912n n n n S S ----+=,两式作差可得:1110(2)n n S S n n +--=-≥,即110(2)n n a a n n ++=-≥,由110n na a n ++=-,219n n a a n +++=-,两式作差可得:21(2)n n a a n +-=≥,则328a a +=-,24a <-,故234a a <-<,进一步可得:4567891011,,,a a a a a a a a <<<<,又10110a a +=,则10110a a <<,且111212130a a a a <+<+<,则n S 取最小值时10n =.8.(2019·河南高考模拟(理))记首项为11(0)a a >,公差为d 的等差数列{}n a 的前n 项和为n S ,若1212a d =-,且1n n n S a S λ+≤+,则实数λ的取值范围为__________. 【答案】19,121⎡⎤⎢⎥⎣⎦【解析】由1n n n S a S λ+≤+,得11n n n n S S a a λ++-=≤. 因为10a >,所以0d <,()12312n a a n d n d ⎛⎫=+-=-⎪⎝⎭. 所以当111n ≤≤时,0n a >,当12n ≥时,0n a <. (1)当111n ≤≤时,由1n n a a λ+≥得1211223n n n n n a a d d a a a n λ++≥==+=+-. 因为221911223212321n +≤+=-⨯-,所以1921λ≥.(2)当12n ≥时,由1n n a a λ+≥得121223n n a a n λ+≤=+-. 因为211223n +>-,所以1λ≤.综上所述,λ的取值范围是19,121⎡⎤⎢⎥⎣⎦. 9.(2019·四川重庆南开中学高考模拟(理))在正项递增等比数列{}n a 中,51a =,记12...n n S a a a =+++,12111...n nT a a a =+++,则使得n n S T ≤成立的最大正整数n 为__________. 【答案】9【解析】由题得11111(1)(1)(1)11(1)1n nn nq q a q a q q q a q q--⋅-≤=---,因为数列是正项递增等比数,所以10,1a q >>,所以2111n a q -≤.因为51a =,所以44281111,,a q a q a q --=∴=∴=,所以81901,,9n n q qq q n ---⋅≤∴≤∴≤.所以使得n n S T ≤成立的最大正整数n 为9. 故答案为:910.(2017·吉林高考模拟(理))已知数列{}n a 满足()113,31.2n n a a a n N *+==-∈ (1)若数列{}n b 满足12n n b a =-,求证:{}n b 是等比数列; (2)若数列{}n c 满足312log ,n n n n c a T c c c ==+++,求证:()1.2n n n T ->【答案】(1) 见解析;(2)见解析. 【解析】(1) 由题可知()*n N∈,从而有13n n b b +=,11112b a =-=,所以{}n b 是以1为首项,3为公比的等比数列.(2) 由(1)知13n n b -=,从而1132n n a -=+,11331log 3log 312n n n c n --⎛⎫=+>=- ⎪⎝⎭,有()12101212n n n n T c c c n -=+++>+++-=,所以()12n n n T ->.11.(2019·江苏金陵中学高考模拟)已知各项均为正整数的数列{a n }的前n 项和为S n ,满足:S n ﹣1+ka n =ta n 2﹣1,n≥2,n∈N *(其中k ,t 为常数).(1)若k =12,t =14,数列{a n }是等差数列,求a 1的值; (2)若数列{a n }是等比数列,求证:k <t . 【答案】(1)a 1=(2)见解析 【解析】(1)∵k=12,t =14,∴2111124n n n S a a -+=-(n≥2),设等差数列{a n }的公差为d ,令n =2,则212211a a a 124+=-,令n =3,则2123311124a a a a ++=-,两式相减可得:()()()2332321124a a a a a a +=+-,∵a n >0,∴a 3﹣a 2=2=d .由212211124a a a +=-,且d =2,化为2112a a -﹣4=0,a 1>0.解得a 1=(2)∵S n ﹣1+ka n =ta n 2﹣1①,n≥2,n∈N *,所以S n +ka n+1=2n 1ta +﹣1②, ②-①得a n +ka n+1﹣ka n =2n 1ta +﹣2n ta ,∴a n =(a n+1﹣a n )[t (a n+1+a n )﹣k], 令公比为q >0,则a n+1=a n q ,∴(q ﹣1)k+1=ta n (q 2﹣1), ∴1=(q ﹣1)[ta n (q+1)﹣k];∵对任意n≥2,n∈N *, 1=(q ﹣1)[ta n (q+1)﹣k]成立;∴q≠1,∴a n 不是一个常数; ∴t=0,∴S n ﹣1+ka n =﹣1,且{a n }是各项均为正整数的数列,∴k<0, 故k <t .12.(2019·天津高考模拟(理))已知单调等比数列{}n a ,首项为12,其前n 项和是n S ,且3312a S +,5S ,44a S +成等差数列,数列{}n b 满足条件1231(2)n b na a a a =(1)求数列{}n a 、{}n b 的通项公式; (2)设1n n nc a b =-,记数列{}n c 的前n 项和是n T . ①求n T ;②求正整数k ,使得对任意*n N ∈,均有k n T T ≥.【答案】(1)12nn a ⎛⎫= ⎪⎝⎭,(1)n b n n =+;(2)①.1112n n T n =-+;②.4k =. 【解析】(1)设11n n a a q -=.由已知得53344122S a S a S =+++,即5341222S a S =+, 进而有()543122S S a -=.所以53122a a =,即214q =,则12q =±.由已知数列{}n a 是单调等比数列,且112a =,所以取12q =.数列{}n a 的通项公式为12nn a ⎛⎫= ⎪⎝⎭. 1231(2)n b na a a a =,(1)2322222222n b n nn+∴⨯⨯⨯⨯==,则(1)n b n n =+.即数列{}n b 的通项公式为(1)n b n n =+. (2)①.由(1)可得:1111112(1)21n n n n n c a b n n n n ⎛⎫=-=-=-- ⎪++⎝⎭, 分组求和可得:1111112112n n nT n n ⎛⎫=---=- ⎪++⎝⎭. ②由于11111111(1)(2)222122(1)(2)n n n n n n n n T T n n n n ++++++--=--+=++++, 由于12n +比()()12n n ++变化快,所以令10n n T T +->得4n <. 即1234,,,T T T T 递增,而456,,n T T T T 递减.所以,4T 最大.即当4k =时,k n T T ≥.13.(2019·安徽高考模拟(文))已知数列为等差数列,且公差,其前项和为,,且,,成等比数列. (1)求等差数列的通项公式;(2)设,记数列的前项和为,求证.【答案】(1);(2)证明见解析.【解析】 (1)由题意得: ,解得:,∴(2)由(1)得,∴ ∴14.(2019·广东高考模拟(理))已知数列{}n a 满足11*121(22)2()n n n a a a n N n-++++=∈.(1)求12,a a 和{}n a 的通项公式;(2)记数列{}n a kn -的前n 项和为n S ,若4n S S ≤对任意的正整数n 恒成立,求实数k 的取值范围. 【答案】(1) 1a 4= 26;a = 22n a n =+ (2) 125[,].52【解析】(1)由题意得111222?2n n n a a a n -++++=,所以23112124,222,a a a =⨯=+=⨯得26;a =由111222?2n n n a a a n -++++=,所以()2121221?2n n n a a a n --+++=-(2n ≥),相减得()1+12?21?2n n n n a n n -=--,得22,1n a n n =+=当也满足上式. 所以{}n a 的通项公式为22n a n =+.(2)数列{}n a kn -的通项公式为()2222,n a kn n kn k n -=+-=-+ 是以4k -为首项,公差为2k -的等差数列,若4n S S ≤对任意的正整数n 恒成立,等价于当4n =时,n S 取得最大值,所以()()4544220,55220.a k k a k k ⎧-=-+≥⎪⎨-=-+≤⎪⎩解得125.52k ≤≤ 所以实数k 的取值范围是125,.52⎡⎤⎢⎥⎣⎦ 15.(2017·浙江高考模拟)已知无穷数列{}n a 的首项112a =,*1111,2n n n a n N a a +⎛⎫=+∈ ⎪⎝⎭. (Ⅰ)证明: 01n a <<;(Ⅱ) 记()211n n nn n a a b a a ++-=, n T 为数列{}n b 的前n 项和,证明:对任意正整数n , 310n T <. 【答案】(Ⅰ)见解析;(Ⅱ)见解析. 【解析】(Ⅰ)证明:①当1n =时显然成立;②假设当n k = ()*k N ∈时不等式成立,即01k a <<, 那么当1n k =+时,11112k k k a a a +⎛⎫=+ ⎪⎝⎭ > 1·12=,所以101k a +<<, 即1n k =+时不等式也成立.综合①②可知, 01n a <<对任意*n N ∈成立. (Ⅱ)12211n n n a a a +=>+,即1n n a a +>,所以数列{}n a 为递增数列. 又1111112n n n n n a a a a a +⎛⎫-=-+ ⎪⎝⎭ 112n n a a ⎛⎫=- ⎪⎝⎭,易知1n n a a ⎧⎫-⎨⎬⎩⎭为递减数列, 所以111nn a a +⎧⎫-⎨⎬⎩⎭也为递减数列, 所以当2n ≥时,111n n a a +-22112a a ⎛⎫≤- ⎪⎝⎭154245⎛⎫=- ⎪⎝⎭ 940= 所以当2n ≥时, ()211n n nn n a a b a a ++-== ()()11111940n n n n n n a a a a a a +++⎛⎫--<- ⎪⎝⎭当1n =时, 11934010n T T b ===<,成立; 当2n ≥时, 12n n T b b b =+++ < ()()()32431994040n n a a a a a a +⎡⎤+-+-++-⎣⎦()12994040n a a +=+- ()2999942731140404040510010a ⎛⎫<+-=+-=< ⎪⎝⎭ 综上,对任意正整数n , 310n T <16.(2017·浙江高考模拟)已知数列{}n a 满足: 11p ap +=, 1p >, 11ln n n na a a +-=.(1)证明: 11n n a a +>>; (2)证明:12112n nn n a a a a ++<<+; (3)证明:()1211121121ln 122n n n n n a a a p p ----⨯<⋯<⨯+. 【答案】(1)证明见解析;(2)证明见解析;(3)证明见解析. 【解析】(1)先用数学归纳法证明1n a >. ①当1n =时,∵1p >,∴111p a p+=>; ②假设当n k =时, 1k a >,则当1n k =+时, 1111ln 1k k k k k a a a a a +--=>=-. 由①②可知1n a >. 再证1n n a a +>.111ln ln ln n nn nn n n n na a a a a a a a a +----=-=, 令()1ln f x x x x =--, 1x >,则()'ln 0f x x =-<, 所以()f x 在()1,+∞上单调递减,所以()()10f x f <=,所以1ln 0ln n n nna a a a --<,即1n n a a +>.(2)要证12112n nn n a a a a ++<<+,只需证2111ln 2n n n n n a a a a a -+<<+, 只需证()2210,{1220,n n n n n na lna a a lna a -+<+-+>其中1n a >, 先证22ln 10n n n a a a -+<,令()22ln 1f x x x x =-+, 1x >,只需证()0f x <. 因为()()'2ln 2221220f x x x x x =+-<-+-=, 所以()f x 在()1,+∞上单调递减,所以()()10f x f <=. 再证()1ln 220n n n a a a +-+>,令()()1ln 22g x x x x =+-+, 1x >,只需证()0g x >,()11'ln 2ln 1x g x x x x x +=+-=+-, 令()1ln 1h x x x =+-, 1x >,则()22111'0x h x x x x -=-=>,所以()h x 在()1,+∞上单调递增,所以()()10h x h >=,从而()'0g x >,所以()g x 在()1,+∞上单调递增,所以()()10g x g >=, 综上可得12112n nn n a a a a ++<<+. (3)由(2)知,一方面, 1112n n a a ---<,由迭代可得()1111111122n n n a a p --⎛⎫⎛⎫-<-= ⎪⎪⎝⎭⎝⎭,因为ln 1x x ≤-,所以111ln 12n n n a a p -⎛⎫≤-< ⎪⎝⎭,所以()1212ln ln ln ln n n a a a a a a ⋯=++⋯+ 0111111222n p -⎡⎤⎛⎫⎛⎫⎛⎫<++⋯+⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦ 111112121212nn n p p -⎛⎫- ⎪-⎝⎭=⨯=⨯-;另一方面,即11112n n n na a a a ++-->, 由迭代可得111111111212n n nn a a a a p ----⎛⎫⎛⎫>⨯= ⎪ ⎪+⎝⎭⎝⎭.因为1ln 1x x ≥-,所以1ln 1n n a a ≥- 11112n p -⎛⎫> ⎪+⎝⎭,所以()01112121111ln ln ln ln 1222n n n a a a a a a p -⎡⎤⎛⎫⎛⎫⎛⎫⋯=++⋯+>⨯++⋯+⎢⎥ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦112112n n p --=⨯+;综上,()1211121121ln 122n n n n n a a a p p ----⨯<⋯<⨯+.。
2020年高考数学专题三+第六关+以数列与不等式相结合的综合问题为解答题
2020年高考数学 专题三 压轴解答题第六关 以数列与不等式相结合的综合问题【名师综述】数列与不等式交汇主要以压轴题的形式出现,试题还可能涉及到与导数、函数等知识综合一起考查.主要考查知识重点和热点是数列的通项公式、前项和公式以及二者之间的关系、等差数列和等比数列、归纳与猜想、数学归纳法、比较大小、不等式证明、参数取值范围的探求,在不等式的证明中要注意放缩法的应用.此类题型主要考查学生对知识的灵活变通、融合与迁移,考查学生数学视野的广度和进一步学习数学的潜能.近年来加强了对递推数列考查的力度,这点应当引起我们高度的重视.预计在高考中,比较新颖的数列与不等式选择题或填空题一定会出现.数列解答题的命题热点是与不等式交汇,呈现递推关系的综合性试题.其中,以函数与数列、不等式为命题载体,有着高等数学背景的数列与不等式的交汇试题是未来高考命题的一个新的亮点,而命题的冷门则是数列与不等式综合的应用性解答题.类型一 求数列中的最值问题典例1【安徽省滁州市2018届高三上学期期末考试】已知数列{}n a 是递增的等差数列,23a =, 1a , 31a a -, 81a a +成等比数列.(1)求数列{}n a 的通项公式; (2)若13n n n b a a +=,数列{}n b 的前n 项和n S ,求满足3625n S >的最小的n 的值. 【解析】(1)设{}n a 的公差为d (0d >),由条件得()12113{27( 0a d a a d d +=+=>,∴11{2a d == ∴()12121n a n n =+-=-. (2)()()1332121n n nb a a n n +==-+ 31122121n n ⎛⎫=- ⎪-+⎝⎭∴311111312335212121n nS n n n ⎛⎫=-+-++-= ⎪-++⎝⎭. n由3362125n n >+得12n >. ∴满足3625n S >的最小值的n 的值为13【名师指点】求解数列中的某些最值问题,有时须结合不等式来解决,其具体解法有:(1)建立目标函数,通过不等式确定变量范围,进而求得最值;(2)首先利用不等式判断数列的单调性,然后确定最值;(3)利用等差数列或等差数列的特征来求.【举一反三】【吉林省实验中学2018届高三上学期第五次月考】已知数列{}n a 中,()*111,3nn n a a a n N a +==∈+.(Ⅰ)求{}n a 的通项公式n a ; (Ⅱ)数列{}n b 满足()312n n n n nb a =-⋅⋅,数列{}n b 的前n 项和为n T , 若不等式()112nn n n T λ--<+对一切*n N ∈恒成立,求λ的取值范围. 【解析】(Ⅰ)证明:由()1*3nn n a a n N a +=∈+, 得13131n n n na a a a ++==+, 11111322n n a a +⎛⎫∴+=+ ⎪⎝⎭所以数列112n a ⎧⎫+⎨⎬⎩⎭是以3为公比,以111322a ⎛⎫+= ⎪⎝⎭为首项的等比数列,从而1113232231n n n n a a -+=⨯⇒=-; (Ⅱ)12n n nb -=()0122111111123122222n n n T n n --=⨯+⨯+⨯++-⨯+⨯()121111112122222n n n T n n -=⨯+⨯++-⨯+⨯, 两式相减得 012111111222222222n n n n T n n -+=++++-⨯=-1242n n n T -+∴=-()12142nn λ-∴-<-若n 为偶数,则124,32n λλ-∴<-∴< 若n 为奇数,则124,2,22n λλλ-∴-<-∴-∴-23λ∴-<<类型二 求有数列参与的不等式恒成立条件下参数问题典例2 已知{}n a 为等差数列,且24a =,其前8项和为52, {}n b 是各项均为正数的等比数列,且满足124b b a +=, 36b a =. (1)求数列{}n a 和{}n b 的通项公式; (2)令22log log n nn n nb ac a b =+,数列{}n c 的前n 项和为n T ,若对任意正整数n ,都有2n T n λ-<成立,求实数λ的取值范围.【解析】(1)设等差数列{}n a 的公差为d , 由题意得114{82852a d a d +=+=,即1134{2713a d a d +=+=,解得13{1a d ==,所以()312n a n n =+-=+.设各项均为正数的等比数列{}n b 的公比为q , 则有124366{8b b a b a +====,解得12{2b q ==,所以2nn b =.(2)由(1)可知22224422n n n n n c n n n n +++=+=++ 1122.2n n ⎛⎫=+- ⎪+⎝⎭所以12n n T c c c =+++1111111221324112n n n n n ⎛⎫=+⨯-+-++-+- ⎪-++⎝⎭1123212n n n ⎛⎫=+-+ ⎪++⎝⎭.所以1123212n T n n n ⎛⎫-=-+⎪++⎝⎭, 因为对任意正整数n ,都有2n T n λ-<成立, 即113212n n λ⎛⎫>-+⎪++⎝⎭对任意正整数n 恒成立, 又1132312n n ⎛⎫-+<⎪++⎝⎭, 所以3λ≥.故实数λ的取值范围为[)3,+∞.【名师指点】求解数列与不等式相结合恒成立条件下的参数问题主要两种策略:(1)若函数()f x 在定义域为D ,则当x D ∈时,有()f x M ≥恒成立()min f x M ⇔≥;()f x M≤恒成立()max f x M ⇔≤;(2)利用等差数列与等比数列等数列知识化简不等式,再通过解不等式解得.【举一反三】【辽宁省实验中学2018届高三上学期期中考试】已知数列{a n }满足a 1=3,且a n+1﹣3a n =3n,(n∈N *),数列{b n }满足b n =3﹣na n .(1)求证:数列{b n }是等差数列; (2)设3123452n n a a a a S n =+++++,求满足不等式2111284n n S S <<的所有正整数n 的值. 【解析】(1)证明:由b n =3﹣na n 得a n =3nb n ,则a n+1=3n+1b n+1. 代入a n+1﹣3a n =3n中,得3n+1b n+1﹣3n+1b n =3n,即得113n n b b +-=。
高考数学压轴专题2020-2021备战高考《数列》技巧及练习题附答案
【高中数学】数学《数列》高考复习知识点一、选择题1.函数()f x 对任意正整数,a b 满足条件()()()f a b f a f b +=⋅,且()12f =,(2)(4)(6)(2018)(1)(3)(5)(2017)f f f f f f f f ++++L 的值是( )A .1008B .1009C .2016D .2018【答案】D 【解析】 【分析】由题意结合()()()f a b f a f b +=⋅求解()()()()()()()()24620181352017f f f f f f f f ++++L 的值即可.【详解】在等式()()()f a b f a f b +=⋅中,令1b =可得:()()()()112f a f a f f a +==, 则()()12f a f a +=,据此可知:()()()()()()()()24620181352017f f f f f f f f ++++L 2222210092018=++++=⨯=L .本题选择D 选项. 【点睛】本题主要考查抽象函数的性质,函数的求值方法等知识,意在考查学生的转化能力和计算求解能力.2.等差数列{}n a 中,1510a a +=,47a =,则数列{}n a 前6项和6S 为()A .18B .24C .36D .72【答案】C 【解析】 【分析】由等差数列的性质可得35a =,根据等差数列的前n 项和公式163466622a a a aS ++=⨯=⨯可得结果. 【详解】∵等差数列{}n a 中,1510a a +=,∴3210a =,即35a =,∴163465766636222a a a a S +++=⨯=⨯=⨯=, 故选C. 【点睛】本题主要考查了等差数列的性质以及等差数列的前n 项和公式的应用,属于基础题.3.数列{}n a :1,1,2,3,5,8,13,21,34,…,称为斐波那契数列,是由十三世纪意大利数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”.该数列从第三项开始,每项等于其前相邻两项之和.即:21n n n a a a ++=+.记该数列{}n a 的前n 项和为n S ,则下列结论正确的是( )A .201920202S a =+B .201920212S a =+C .201920201S a =-D .201920211S a =-【答案】D 【解析】 【分析】根据递推关系利用裂项相消法探求和项与通项关系,即得结果. 【详解】 因为1233243546521()()()()()n n n n S a a a a a a a a a a a a a a ++=++++=-+-+-+-+-L L 2221n n a a a ++=-=-,所以201920211S a =-,选D. 【点睛】本题考查裂项相消法,考查基本分析判断能力,属中档题.4.已知数列{}n a 为等比数列,前n 项和为n S ,且12a =,1n n b a =+,若数列{}n b 也是等比数列,则n S =( ) A .2n B .31n - C .2n D .31n -【答案】C 【解析】 【分析】设等比数列{}n a 的公比为q ,写出,n n a b .由数列{}n b 是等比数列,得2213b b b =,求出q ,即求n S . 【详解】设等比数列{}n a 的公比为q ,112,2n n a a q -=∴=Q ,121n n b q -∴=+,13b ∴=,221b q =+,2321b q =+,{}n b Q 也是等比数列, 2213b b b ∴=,即()()2221321q q +=+解得1q =,2,2n n a S n ∴=∴=.故选:C . 【点睛】本题考查等比数列的性质,属于基础题.5.已知数列{}n a 的前n 项和为n S ,若2n n S a n =-,则9S =( ) A .993 B .766 C .1013 D .885【答案】C 【解析】 【分析】计算11a =,()1121n n a a -+=+,得到21nn a =-,代入计算得到答案.【详解】当1n =时,11a =;当2n ≥时,1121n n n n a S S a --=-=+,∴()1121n n a a -+=+,所以{}1n a +是首项为2,公比为2的等比数列,即21nn a =-,∴1222n n n S a n n +=-=--,∴1092111013S =-=.故选:C . 【点睛】本题考查了构造法求通项公式,数列求和,意在考查学生对于数列公式方法的灵活运用.6.已知各项均为正数的等比数列{}n a 的前n 项和为n S ,且满足6a ,43a ,5a -成等差数列,则42S S ( ) A .3 B .9 C .10 D .13【答案】C 【解析】 【分析】设{}n a 的公比为0q >,由645,3,a a a -成等差数列,可得260,0q q q --=>,解得q ,再利用求和公式即可得结果. 【详解】设各项均为正数的等比数列{}n a 的公比为0q >,Q 满足645,3,a a a -成等差数列,()2465446,6,0a a a a a q q q ∴=-∴=->, 260,0q q q ∴--=>,解得3q =,则()()4124221313131103131a S S a --==+=--,故选C. 【点睛】本题主要考查等比数列的通项公式与求和公式,属于中档题. 等比数列基本量的运算是等比数列的一类基本题型,数列中的五个基本量1,,,,,n n a q n a S ,一般可以“知二求三”,通过列方程组所求问题可以迎刃而解,解决此类问题的关键是熟练掌握等比数列的有关性质和公式,并灵活应用,在运算过程中,还应善于运用整体代换思想简化运算过程.7.已知公比为q 的等比数列{}n a 的首项10a >,则“1q >”是“53a a >”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A 【解析】 【分析】根据等比数列的性质可得530,0a a >>,若53a a >,可得21q >,然后再根据充分条件和必要条件的判断方法即可得到结果. 【详解】由于公比为q 的等比数列{}n a 的首项10a >, 所以530,0a a >>,若53a a >,则233a q a >,所以21q >,即1q >或1q <-,所以公比为q 的等比数列{}n a 的首项10a >, 则“1q >”是“53a a >”的充分不必要条件, 故选:A. 【点睛】本题主要考查了等比数列的相关性质和充分必要条件的判断方法,熟练掌握等比数列的性质是解题的关键.8.数列{}n a 满足12a =,对于任意的*n N ∈,111n na a +=-,则2018a =( ) A .-1 B .12C .2D .3【答案】A 【解析】 【分析】先通过递推公式111n na a +=-,找出此周期数列的周期,再计算2018a 的值. 【详解】111n na a +=-Q ,2111111111n n n na a a a ++∴===----, 32111111n nn n a a a a ++∴===-⎛⎫-- ⎪⎝⎭,故有3n n a a +=,则20183672221111a a a a ⨯+====-- 故选:A 【点睛】本题考查根据数列递推公式求数列各项的值,属于中档题.9.已知数列{}n a 中,732,1a a ==,又数列11n a ⎧⎫⎨⎬+⎩⎭是等差数列,则11a 等于( ) A .0 B .12C .23D .1-【答案】B 【解析】 【分析】先根据条件得等差数列11n a ⎧⎫⎨⎬+⎩⎭公差以及通项公式,代入解得11a . 【详解】设等差数列11n a ⎧⎫⎨⎬+⎩⎭公差为d ,则731111144,112324d d d a a =-∴=-=++, 从而31115(3)11242424n n n a a =+-⋅=+++ 11111115211242432a a =+=∴=+,选B. 【点睛】本题考查等差数列通项公式,考查基本求解能力,属基本题.10.定义“穿杨二元函数”如:(,)248n C a n a a a a =++++L 144424443个.例如:()3,436122445C =+++=.若a Z +∃∈,满足(),C a n n =,则整数n 的值为( )A .0B .1C .0或1D .不存在满足条件的n【答案】B 【解析】 【分析】由(,)248n C a n a a a a =++++L 144424443个,得()()12,2112nn C a n a a -=⨯=--,然后根据(),C a n n =结合条件分析得出答案.【详解】由(,)248n C a n a a a a =++++L 144424443个,得()()12,2112nn C a n a a -=⨯=-- 由(),C a n n =,可得()21na n -=.当0n =时,对任意a Z +∈都满足条件. 当0n ≠时, 21nna =-,由a Z +∈,当1n =时,1a =满足条件. 当2n ≥且n Z ∈时,设()21xf x x =--,则()2ln 21xf x '=-在2x ≥上单调递增. 所以()()24ln 210f x f ''>=->,所以()f x 在2x ≥上单调递增. 所以()()24120f x f >=-->,即当2n ≥且n Z ∈时,恒有21n n ->.则()0,121nna =∈-这与a Z +∈不符合.所以此时不满足条件. 综上:满足条件的n 值为0或1.故选:B 【点睛】本题考查新定义,根据定义解决问题,关键是理解定义,属于中档题.11.设等差数列{}n a 的前n 项和为n S ,若150S >,160S <,则n S 取最大值时n 的值为( ) A .6 B .7C .8D .13【答案】C 【解析】 【分析】根据题意推导出数列{}n a 为单调递减数列,且当8n ≤时,0n a >,当9n ≥时,0n a <,由此可得出结果. 【详解】()115158151502a a S a +==>Q ,()()116168916802a a S a a +==+<,80a ∴>,90a <,所以,等差数列{}n a 的公差980d a a =-<,则数列{}n a 为单调递减数列. 当8n ≤时,0n a >,当9n ≥时,0n a <, 因此,当8n =时,n S 取最大值. 故选:C. 【点睛】本题考查利用等差数列前n 项和的最值求对应的n 的值,主要分析出数列的单调性,考查分析问题和解决问题的能力,属于中等题.12.已知{}n a 是单调递增的等比数列,满足352616,17a a a a ⋅=+=,则数列{}n a 的前n 项和n S = A .122n+ B .122n- C .1122n -+D .1122n -- 【答案】D 【解析】 【分析】由等比数列的性质和韦达定理可得26a a , 为方程217160x x -+= 的实根,解方程可得q和a 1,代入求和公式计算可得. 【详解】∵352616,17a a a a ⋅=+=,∴由等比数列的性质可得26261617a a a a ⋅=+=, ,26a a , 为方程217160x x -+= 的实根解方程可得2626116161a a a a ====,,或, , ∵等比数列{a n }单调递增,∴26116a a ==,,∴1122q a ,== ,∴()1112122122nn n S ----== 故选D . 【点睛】本题考查等比数列的求和公式,涉及等比数列的性质和一元二次方程的解法,属中档题.13.等差数列{}n a 中,n S 为它的前n 项和,若10a >,200S >,210S <,则当n =( )时,n S 最大. A .8 B .9C .10D .11【答案】C 【解析】 【分析】根据等差数列的前n 项和公式与项的性质,得出100a >且110a <,由此求出数列{}n a 的前n 项和n S 最大时n 的值. 【详解】等差数列{}n a 中,前n 项和为n S ,且200S >,210S <, 即()()120201*********a a S a a +==+>,10110a a ∴+>,()1212111212102a a S a +==<,所以,110a <,则100a >,因此,当10n =时,n S 最大. 故选:C. 【点睛】本题考查了等差数列的性质和前n 项和最值问题,考查等差数列基本性质的应用,是中等题.14.已知等差数列{}n a 的公差0d ≠,且1313,,a a a 成等比数列,若11a =,n S 为数列{}n a 的前n 项和,则263n n S a ++的最小值为( )A .4B .3C.2D .2【答案】D 【解析】 【分析】由题意得2(12)112d d +=+,求出公差d 的值,得到数列{}n a 的通项公式,前n 项和,从而可得263n n S a ++,换元,利用基本不等式,即可求出函数的最小值.【详解】解:11a =Q ,1a 、3a 、13a 成等比数列,2(12)112d d ∴+=+. 得2d =或0d =(舍去),21n a n ∴=-,2(121)2n n n S n +-∴==, ∴()()22211426263322112n n n n S n n a n n n ++++++===+-+++. 令1t n =+,则2642223n n S t a t +=+-≥=+ 当且仅当2t =,即1n =时,∴263n n S a ++的最小值为2.故选:D . 【点睛】本题主要考查等比数列的定义和性质,等比数列的通项公式,考查基本不等式,属于中档题.15.已知数列{}n a 满足12n n a a +-=,且134,,a a a 成等比数列.若{}n a 的前n 项和为n S ,则n S 的最小值为( ) A .–10 B .14-C .–18D .–20【答案】D 【解析】 【分析】利用等比中项性质可得等差数列的首项,进而求得n S ,再利用二次函数的性质,可得当4n =或5时,n S 取到最小值.【详解】根据题意,可知{}n a 为等差数列,公差2d =,由134,,a a a 成等比数列,可得2314a a a =,∴1112()4(6)a a a ++=,解得18a =-.∴22(1)981829()224n n n S n n n n -=-+⨯=-=--. 根据单调性,可知当4n =或5时,n S 取到最小值,最小值为20-. 故选:D. 【点睛】本题考查等差数列通项公式、等比中项性质、等差数列前n 项和的最值,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意当4n =或5时同时取到最值.16.在等差数列{}n a 中,其前n 项和是n S ,若90S >,100S <,则在912129,,,S S S a a a ⋯中最大的是( )A .11S aB .88S aC .55S aD .99S a【答案】C 【解析】 【分析】由题意知5600a a >,< .由此可知569121256900...0,0,...0S S S S S a a a a a ,,,>>><<,所以在912129...S S S a a a ,,,中最大的是55S a . 【详解】 由于191109510569()10()9050222a a a a S a S a a ++====+>,()< , 所以可得5600a a >,<.这样569121256900...0,0,...0S S S S S a a a a a ,,,>>><<, 而125125S S S a a a ⋯⋯<<<,>>>>0, ,所以在912129...S S S a a a ,,,中最大的是55S a . 故选C . 【点睛】本题考查等数列的性质和应用,解题时要认真审题,仔细解答.属中档题.17.正项等比数列{}n a 中的1a 、4039a 是函数()3214633f x x x x =-+-的极值点,则2020a =( )A .1-B .1CD .2【答案】B 【解析】 【分析】根据可导函数在极值点处的导数值为0,得出140396a a =,再由等比数列的性质可得. 【详解】解:依题意1a 、4039a 是函数()3214633f x x x x =-+-的极值点,也就是()2860f x x x '=-+=的两个根∴140396a a =又{}n a是正项等比数列,所以2020a =∴20201a ==.故选:B 【点睛】本题主要考查了等比数列下标和性质以应用,属于中档题.18.设函数()221xf x =+,利用课本(苏教版必修5)中推导等差数列前n 项和的方法,求得()()()()()54045f f f f f -+-+⋅⋅⋅++⋅⋅⋅++的值为( ) A .9 B .11C .92D .112【答案】B 【解析】 【分析】先计算出()()f x f x +-的值,然后利用倒序相加法即可计算出所求代数式的值. 【详解】()221x f x =+Q ,()()()22222212121221xx x x x xf x f x --⋅∴+-=+=+++++()2122222211221xx x x x +⋅=+==+++, 设()()()()()54045S f f f f f =-+-+⋅⋅⋅++⋅⋅⋅++, 则()()()()()54045S f f f f f =+++++-+-L L ,两式相加得()()2115511222S f f ⎡⎤=⨯+-=⨯=⎣⎦,因此,11S =. 故选:B. 【点睛】本题考查函数值的和的求法,注意运用倒序相加法,求得()()2f x f x +-=是解题的关键,考查化简运算能力,属于中档题.19.设数列{}n a 的前n 项和为n S 已知()*123n n a a n n N++=+∈且1300nS=,若23a <,则n 的最大值为( )A .49B .50C .51D .52【答案】A 【解析】【分析】对n 分奇偶性分别讨论,当n 为偶数时,可得2+32n n nS =,发现不存在这样的偶数能满足此式,当n 为奇数时,可得21+342n n n S a -=+,再结合23a <可讨论出n 的最大值.【详解】当n 为偶数时,12341()()()n n n S a a a a a a -=++++⋅⋅⋅++(213)(233)[2(1)3]n =⨯++⨯++⋅⋅⋅+-+ 2[13(1)]32n n =⨯++⋅⋅⋅+-+⨯2+32n n=,因为22485048+348503501224,132522S S ⨯+⨯====,所以n 不可能为偶数;当n 为奇数时,123451()()()n n n S a a a a a a a -=+++++⋅⋅⋅++1(223)(243)[2(1)3]a n =+⨯++⨯++⋅⋅⋅+-+21342n n a +-=+因为2491149349412722S a a +⨯-=+=+,2511151351413752S a a +⨯-=+=+,又因为23a <,125a a +=,所以 12a > 所以当1300n S =时,n 的最大值为49 故选:A 【点睛】此题考查的是数列求和问题,利用了并项求和的方法,考查了分类讨论思想,属于较难题.20.执行如图所示的程序框图,若输入,则输出的S 的值是A.B.C.D.【答案】B【解析】【分析】本题首先可以通过程序框图明确输入的数值以及程序框图中所包含的关系式,然后按照程序框图所包含的关系式进行循环运算,即可得出结果.【详解】由程序框图可知,输入,,,第一次运算:,;第二次运算:,;第三次运算:,;第四次运算:,;第五次运算:,;第六次运算:,;第七次运算:,;第八次运算:,;第九次运算:,;第十次运算:,,综上所述,输出的结果为,故选B.【点睛】本题考查程序框图的相关性质,主要考查程序框图的循环结构以及裂项相消法的使用,考查推理能力,提高了学生从题目中获取信息的能力,体现了综合性,提升了学生的逻辑推理、数学运算等核心素养,是中档题.。
2020年高考数学压轴题不等式专项(解析版)
2020年高考数学压轴必刷题专题07不等式(文理合卷)1.【2019年北京理科08】数学中有许多形状优美、寓意美好的曲线,曲线C :x 2+y 2=1+|x |y 就是其中之一(如图).给出下列三个结论:①曲线C 恰好经过6个整点(即横、纵坐标均为整数的点); ②曲线C 上任意一点到原点的距离都不超过√2; ③曲线C 所围成的“心形”区域的面积小于3. 其中,所有正确结论的序号是( )A .①B .②C .①②D .①②③【解答】解:将x 换成﹣x 方程不变,所以图形关于y 轴对称, 当x =0时,代入得y 2=1,∴y =±1,即曲线经过(0,1),(0,﹣1);当x >0时,方程变为y 2﹣xy +x 2﹣1=0,所以△=x 2﹣4(x 2﹣1)≥0,解得x ∈(0,2√33],所以x 只能取整数1,当x =1时,y 2﹣y =0,解得y =0或y =1,即曲线经过(1,0),(1,1), 根据对称性可得曲线还经过(﹣1,0),(﹣1,1), 故曲线一共经过6个整点,故①正确.当x >0时,由x 2+y 2=1+xy 得x 2+y 2﹣1=xy ≤x 2+y 22,(当x =y 时取等),∴x 2+y 2≤2,∴√x 2+y 2≤√2,即曲线C 上y 轴右边的点到原点的距离不超过√2,根据对称性可得:曲线C 上任意一点到原点的距离都不超过√2;故②正确.在x 轴上图形面积大于矩形面积=1×2=2,x 轴下方的面积大于等腰直角三角形的面积=12×2×1=1,因此曲线C 所围成的“心形”区域的面积大于2+1=3,故③错误. 故选:C .2.【2016年浙江理科08】已知实数a ,b ,c .( ) A .若|a 2+b +c |+|a +b 2+c |≤1,则a 2+b 2+c 2<100 B .若|a 2+b +c |+|a 2+b ﹣c |≤1,则a 2+b 2+c 2<100 C .若|a +b +c 2|+|a +b ﹣c 2|≤1,则a 2+b 2+c 2<100 D .若|a 2+b +c |+|a +b 2﹣c |≤1,则a 2+b 2+c 2<100【解答】解:A .设a =b =10,c =﹣110,则|a 2+b +c |+|a +b 2+c |=0≤1,a 2+b 2+c 2>100; B .设a =10,b =﹣100,c =0,则|a 2+b +c |+|a 2+b ﹣c |=0≤1,a 2+b 2+c 2>100; C .设a =100,b =﹣100,c =0,则|a +b +c 2|+|a +b ﹣c 2|=0≤1,a 2+b 2+c 2>100; 故选:D .3.【2014年浙江理科10】设函数f 1(x )=x 2,f 2(x )=2(x ﹣x 2),f 3(x)=13|sin2πx|,a i =i99,i =0,1,2,…,99.记I k =|f k (a 1)﹣f k (a 0)|+|f k (a 2)﹣f k (a 1)丨+…+|f k (a 99)﹣f k (a 98)|,k =1,2,3,则( ) A .I 1<I 2<I 3B .I 2<I 1<I 3C .I 1<I 3<I 2D .I 3<I 2<I 1【解答】解:由|(i 99)2−(i−199)2|=199×2i−199,故I 1=199(199+399+599+⋯+2×99−199)=199×99299=1,由2|i 99−i−199−(i 99)2+(i−199)2|=2×199|99−(2i−1)99|,故I 2=2×199×58(98+0)2×99=9899×10099<1, I 3=13[||sin2π⋅199|−|sin2π⋅099||+||sin2π⋅299|−|sin2π⋅199||+⋯+||sin2π⋅9999|−|sin2π⋅9899||] =13(2sin2π⋅2599−2sin2π⋅7499)>1, 故I 2<I 1<I 3, 故选:B .4.【2013年北京理科08】设关于x ,y 的不等式组{2x −y +1>0,x +m <0,y −m >0表示的平面区域内存在点P (x 0,y 0),满足x 0﹣2y 0=2,求得m 的取值范围是( )A .(−∞,43) B .(−∞,13)C .(−∞,−23)D .(−∞,−53)【解答】解:先根据约束条件{2x −y +1>0,x +m <0,y −m >0画出可行域,要使可行域存在,必有m <﹣2m +1,要求可行域包含直线y =12x ﹣1上的点,只要边界点(﹣m ,1﹣2m ) 在直线y =12x ﹣1的上方,且(﹣m ,m )在直线y =12x ﹣1的下方, 故得不等式组{m <−2m +11−2m >−12m −1m <−12m −1,解之得:m <−23. 故选:C .5.【2012年浙江理科09】设a >0,b >0,下列命题中正确的是( ) A .若2a +2a =2b +3b ,则a >b B .若2a +2a =2b +3b ,则a <bC .若2a ﹣2a =2b ﹣3b ,则a >bD .若2a ﹣2a =2b ﹣3b ,则a <b【解答】解:∵a ≤b 时,2a +2a ≤2b +2b <2b +3b , ∴若2a +2a =2b +3b ,则a >b ,故A 正确,B 错误;对于2a ﹣2a =2b ﹣3b ,若a ≥b 成立,则必有2a ≥2b ,故必有2a ≥3b ,即有a ≥32b ,而不是a >b 排除C ,也不是a <b ,排除D . 故选:A .6.【2010年北京理科07】设不等式组{x +y −11≥03x −y +3≥05x −3y +9≤0表示的平面区域为D ,若指数函数y =a x 的图象上存在区域D 上的点,则a 的取值范围是( ) A .(1,3]B .[2,3]C .(1,2]D .[3,+∞]【解答】解:作出区域D 的图象,联系指数函数y =a x 的图象, 由{x +y −11=03x −y +3=0得到点C (2,9), 当图象经过区域的边界点C (2,9)时,a 可以取到最大值3, 而显然只要a 大于1,图象必然经过区域内的点. 故选:A .7.【2019年天津理科13】设x >0,y >0,x +2y =5,则(x+1)(2y+1)√xy的最小值为 .【解答】解:x >0,y >0,x +2y =5, 则√xy=√xy=√xy=2√xy √xy; 由基本不等式有:2√xy +6√xy ≥2√2√xy ⋅6√xy =4√3;当且仅当2√xy =6√xy 时,即:xy =3,x +2y =5时,即:{x =3y =1或{x =2y =32时;等号成立, 故√xy的最小值为4√3;故答案为:4√38.【2019年北京理科14】李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x 元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.①当x =10时,顾客一次购买草莓和西瓜各1盒,需要支付 元;②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x 的最大值为 . 【解答】解:①当x =10时,顾客一次购买草莓和西瓜各1盒,可得60+80=140(元), 即有顾客需要支付140﹣10=130(元); ②在促销活动中,设订单总金额为m 元, 可得(m ﹣x )×80%≥m ×70%, 即有x ≤m8, 由题意可得m ≥120, 可得x ≤1208=15, 则x 的最大值为15元. 故答案为:130,159.【2018年江苏13】在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,∠ABC =120°,∠ABC 的平分线交AC 于点D ,且BD =1,则4a +c 的最小值为 . 【解答】解:由题意得12ac sin120°=12a sin60°+12c sin60°,即ac =a +c , 得1a +1c=1,得4a +c =(4a +c )(1a +1c )=ca +4ac +5≥2√c a ⋅4ac +5=4+5=9,当且仅当ca =4a c,即c =2a 时,取等号,故答案为:9.10.【2018年天津理科13】已知a ,b ∈R ,且a ﹣3b +6=0,则2a +18b 的最小值为.【解答】解:a ,b ∈R ,且a ﹣3b +6=0, 可得:3b =a +6, 则2a +18b=2a +12a+6=2a +126⋅2a ≥2√2a⋅1262a =14,当且仅当2a =12a+6.即a =﹣3时取等号.函数的最小值为:14.故答案为:14.11.【2017年上海11】设a 1、a 2∈R ,且12+sina 1+12+sin(2a 2)=2,则|10π﹣a 1﹣a 2|的最小值等于 .【解答】解:根据三角函数的性质,可知sin α1,sin2α2的范围在[﹣1,1], 要使12+sinα1+12+sin2α2=2,∴sin α1=﹣1,sin2α2=﹣1. 则:α1=−π2+2k 1π,k 1∈Z .2α2=−π2+2k 2π,即α2=−π4+k 2π,k 2∈Z . 那么:α1+α2=(2k 1+k 2)π−3π4,k 1、k 2∈Z .∴|10π﹣α1﹣α2|=|10π+3π4−(2k 1+k 2)π|的最小值为π4.故答案为:π4.12.【2016年新课标1理科16】某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5kg ,乙材料1kg ,用5个工时;生产一件产品B 需要甲材料0.5kg ,乙材料0.3kg ,用3个工时,生产一件产品A 的利润为2100元,生产一件产品B 的利润为900元.该企业现有甲材料150kg ,乙材料90kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为 216000 元.【解答】解:(1)设A 、B 两种产品分别是x 件和y 件,获利为z 元. 由题意,得{ x ∈N ,y ∈N1.5x +0.5y ≤150x +0.3y ≤905x +3y ≤600,z =2100x +900y .不等式组表示的可行域如图:由题意可得{x +0.3y =905x +3y =600,解得:{x =60y =100,A (60,100),目标函数z =2100x +900y .经过A 时,直线的截距最大,目标函数取得最大值:2100×60+900×100=216000元.故答案为:216000.13.【2015年浙江理科14】若实数x ,y 满足x 2+y 2≤1,则|2x +y ﹣2|+|6﹣x ﹣3y |的最小值是 . 【解答】解:由x 2+y 2≤1,可得6﹣x ﹣3y >0,即|6﹣x ﹣3y |=6﹣x ﹣3y , 如图直线2x +y ﹣2=0将圆x 2+y 2=1分成两部分,在直线的上方(含直线),即有2x +y ﹣2≥0,即|2x +y ﹣2|=2x +y ﹣2, 此时|2x +y ﹣2|+|6﹣x ﹣3y |=(2x +y ﹣2)+(6﹣x ﹣3y )=x ﹣2y +4, 利用平移可得在A (35,45)处取得最小值3;在直线的下方(含直线),即有2x +y ﹣2≤0, 即|2x +y ﹣2|=﹣(2x +y ﹣2),此时|2x +y ﹣2|+|6﹣x ﹣3y |=﹣(2x +y ﹣2)+(6﹣x ﹣3y )=8﹣3x ﹣4y , 利用平移可得在A (35,45)处取得最小值3.综上可得,当x =35,y =45时,|2x +y ﹣2|+|6﹣x ﹣3y |的最小值为3. 故答案为:3.14.【2013年江苏13】在平面直角坐标系xOy中,设定点A(a,a),P是函数y=1x(x>0)图象上一动点,若点P,A之间的最短距离为2√2,则满足条件的实数a的所有值为.【解答】解:设点P(x,1x)(x>0),则|P A|=√(x−a)2+(1x−a)2=√x2+1x2−2a(x+1x)+2a2=√(x+1x)2−2a(x+1x)+2a2−2,令t=x+1x,∵x>0,∴t≥2,令g(t)=t2﹣2at+2a2﹣2=(t﹣a)2+a2﹣2,①当a≤2时,t=2时g(t)取得最小值g(2)=2﹣4a+2a2=(2√2)2,解得a=﹣1;②当a>2时,g(t)在区间[2,a)上单调递减,在(a,+∞)单调递增,∴t=a,g(t)取得最小值g(a)=a2﹣2,∴a2﹣2=(2√2)2,解得a=√10.综上可知:a=﹣1或√10.故答案为﹣1或√10.15.【2013年天津理科14】设a+b=2,b>0,则当a=时,12|a|+|a|b取得最小值.【解答】解:∵a+b=2,b>0,∴12|a|+|a|b=12|a|+|a|2−a,(a<2)设f(a)=12|a|+|a|2−a,(a<2),画出此函数的图象,如图所示.利用导数研究其单调性得,当a<0时,f(a)=−12a+a a−2,f′(a)=12a2−2(a−2)2=−(3a−2)(a+2)2a2(a−2)2,当a<﹣2时,f′(a)<0,当﹣2<a<0时,f′(a)>0,故函数在(﹣∞,﹣2)上是减函数,在(﹣2,0)上是增函数,∴当a=﹣2时,12|a|+|a|b取得最小值34.同样地,当0<a<2时,得到当a=23时,12|a|+|a|b取得最小值54.综合,则当a=﹣2时,12|a|+|a|b取得最小值.故答案为:﹣2.16.【2012年浙江理科17】设a ∈R ,若x >0时均有[(a ﹣1)x ﹣1](x 2﹣ax ﹣1)≥0,则a = . 【解答】解:(1)a =1时,代入题中不等式明显不成立.(2)a ≠1,构造函数y 1=(a ﹣1)x ﹣1,y 2=x 2﹣ax ﹣1,它们都过定点P (0,﹣1). 考查函数y 1=(a ﹣1)x ﹣1:令y =0,得M (1a−1,0),∴a >1;考查函数y 2=x 2﹣ax ﹣1,∵x >0时均有[(a ﹣1)x ﹣1](x 2﹣ax ﹣1)≥0, ∴y 2=x 2﹣ax ﹣1过点M (1a−1,0),代入得:(1a−1)2−aa−1−1=0,解之得:a =32,或a =0(舍去). 故答案为:32.17.【2011年浙江理科16】设x ,y 为实数,若4x 2+y 2+xy =1,则2x +y 的最大值是 . 【解答】解:∵4x 2+y 2+xy =1 ∴(2x +y )2﹣3xy =1令t =2x +y 则y =t ﹣2x ∴t 2﹣3(t ﹣2x )x =1 即6x 2﹣3tx +t 2﹣1=0∴△=9t 2﹣24(t 2﹣1)=﹣15t 2+24≥0 解得−2√105≤t ≤2√105∴2x +y 的最大值是 2√105故答案为2√10518.【2010年江苏12】设实数x ,y 满足3≤xy 2≤8,4≤x 2y ≤9,则x 3y4的最大值是 .【解答】解:因为实数x ,y 满足3≤xy 2≤8,4≤x 2y≤9, 则有:(x 2y )2∈[16,81],1xy 2∈[18,13],再根据 x 3y 4=(x 2y)2⋅1xy 2∈[2,27],即当且仅当x =3,y =1取得等号,即有x 3y 4的最大值是27.故答案为:27.1.【2019年新课标3文科11】记不等式组{x +y ≥6,2x −y ≥0表示的平面区域为D .命题p :∃(x ,y )∈D ,2x +y ≥9;命题q :∀(x ,y )∈D ,2x +y ≤12.下面给出了四个命题 ①p ∨q ②¬p ∨q ③p ∧¬q ④¬p ∧¬q这四个命题中,所有真命题的编号是( ) A .①③B .①②C .②③D .③④【解答】解:作出等式组{x +y ≥6,2x −y ≥0的平面区域为D .在图形可行域范围内可知: 命题p :∃(x ,y )∈D ,2x +y ≥9;是真命题,则¬p 假命题; 命题q :∀(x ,y )∈D ,2x +y ≤12.是假命题,则¬q 真命题;所以:由或且非逻辑连词连接的命题判断真假有: ①p ∨q 真;②¬p ∨q 假;③p ∧¬q 真;④¬p ∧¬q 假; 故答案①③真,正确. 故选:A .2.【2016年北京文科07】已知A (2,5),B (4,1).若点P (x ,y )在线段AB 上,则2x ﹣y 的最大值为( ) A .﹣1B .3C .7D .8【解答】解:如图A (2,5),B (4,1).若点P (x ,y )在线段AB 上, 令z =2x ﹣y ,则平行y =2x ﹣z 当直线经过B 时截距最小,Z 取得最大值, 可得2x ﹣y 的最大值为:2×4﹣1=7. 故选:C .3.【2013年新课标2文科12】若存在正数x 使2x (x ﹣a )<1成立,则a 的取值范围是( ) A .(﹣∞,+∞)B .(﹣2,+∞)C .(0,+∞)D .(﹣1,+∞)【解答】解:因为2x (x ﹣a )<1,所以a >x −12x , 函数y =x −12x 是增函数,x >0,所以y >﹣1,即a >﹣1, 所以a 的取值范围是(﹣1,+∞). 故选:D .4.【2011年北京文科07】某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产x 件,则平均仓储时间为x8天,且每件产品每天的仓储费用为1元.为使平均每件产品的生产准备费用与仓储费用之和最小,每批应生产产品( ) A .60件B .80件C .100件D .120件【解答】解:根据题意,该生产x 件产品的生产准备费用与仓储费用之和是800+x ⋅x 8=800+18x 2 这样平均每件的生产准备费用与仓储费用之和为f(x)=800+18x 2x =800x+18x (x 为正整数) 由基本不等式,得f(x)≥2√800x ⋅18x =20 当且仅当800x=18x =10时,f (x )取得最小值、可得x =80时,每件产品的生产准备费用与仓储费用之和最小 故选:B .5.【2010年新课标1文科11】已知▱ABCD 的三个顶点为A (﹣1,2),B (3,4),C (4,﹣2),点(x ,y )在▱ABCD 的内部,则z =2x ﹣5y 的取值范围是( ) A .(﹣14,16)B .(﹣14,20)C .(﹣12,18)D .(﹣12,20)【解答】解:由已知条件得AB →=DC →⇒D (0,﹣4),由z =2x ﹣5y 得y =25x −z 5,平移直线当直线经过点B (3,4)时,−z 5最大, 即z 取最小为﹣14;当直线经过点D (0,﹣4)时,−z5最小,即z 取最大为20, 又由于点(x ,y )在四边形的内部,故z ∈(﹣14,20). 如图:故选B .6.【2019年天津文科13】设x >0,y >0,x +2y =4,则(x+1)(2y+1)xy的最小值为 .【解答】解:x >0,y >0,x +2y =4, 则(x+1)(2y+1)xy=2xy+x+2y+1xy=2xy+5xy=2+5xy ;x >0,y >0,x +2y =4,由基本不等式有:4=x +2y ≥2√2xy ,∴0<xy ≤2,5xy≥52,故:2+5xy ≥2+52=92;(当且仅当x =2y =2时,即:x =2,y =1时,等号成立), 故(x+1)(2y+1)xy 的最小值为92;故答案为:92.7.【2019年北京文科14】李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x 元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.①当x =10时,顾客一次购买草莓和西瓜各1盒,需要支付 元;②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x 的最大值为 . 【解答】解:①当x =10时,顾客一次购买草莓和西瓜各1盒,可得60+80=140(元), 即有顾客需要支付140﹣10=130(元); ②在促销活动中,设订单总金额为m 元, 可得(m ﹣x )×80%≥m ×70%, 即有x ≤m8, 由题意可得m ≥120, 可得x ≤1208=15, 则x 的最大值为15元. 故答案为:130,158.【2018年天津文科13】已知a ,b ∈R ,且a ﹣3b +6=0,则2a +18b 的最小值为.【解答】解:a ,b ∈R ,且a ﹣3b +6=0, 可得:3b =a +6, 则2a +18b=2a +12a+6=2a +126⋅2a ≥2√2a⋅1262a =14, 当且仅当2a =12a+6.即a =﹣3时取等号.函数的最小值为:14.故答案为:14.9.【2017年北京文科14】某学习小组由学生和教师组成,人员构成同时满足以下三个条件: (i )男学生人数多于女学生人数; (ii )女学生人数多于教师人数; (iii )教师人数的两倍多于男学生人数.①若教师人数为4,则女学生人数的最大值为 . ②该小组人数的最小值为 .【解答】解:①设男学生女学生分别为x ,y 人, 若教师人数为4,则{x >y y >42×4>x,即4<y <x <8,即x 的最大值为7,y 的最大值为6, 即女学生人数的最大值为6.②设男学生女学生分别为x ,y 人,教师人数为z ,则{x >yy >z 2z >x,即z <y <x <2z即z 最小为3才能满足条件, 此时x 最小为5,y 最小为4, 即该小组人数的最小值为12, 故答案为:6,1210.【2017年天津文科13】若a ,b ∈R ,ab >0,则a 4+4b 4+1ab的最小值为 .【解答】解:【解法一】a ,b ∈R ,ab >0, ∴a 4+4b 4+1ab≥2√a 4⋅4b 4+1ab=4a 2b 2+1ab=4ab +1ab ≥2√4ab ⋅1ab =4,当且仅当{a 4=4b 44ab =1ab,即{a 2=2b 2a 2b 2=14,即a =√24,b =√84或a =√24,b =√84时取“=”; ∴上式的最小值为4. 【解法二】a ,b ∈R ,ab >0,∴a 4+4b 4+1ab=a 3b +4b 3a +12ab +12ab≥4√a 3b ⋅4b 3a ⋅12ab ⋅12ab 4=4,当且仅当{a 4=4b 44ab =1ab,即{a 2=2b 2a 2b 2=14,即a =√24,b =√84或a =√24,b =√84时取“=”; ∴上式的最小值为4. 故答案为:4.11.【2016年新课标1文科16】某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5kg ,乙材料1kg ,用5个工时;生产一件产品B 需要甲材料0.5kg ,乙材料0.3kg ,用3个工时,生产一件产品A 的利润为2100元,生产一件产品B 的利润为900元.该企业现有甲材料150kg ,乙材料90kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为 元.【解答】解:(1)设A 、B 两种产品分别是x 件和y 件,获利为z 元. 由题意,得{ x ∈N ,y ∈N1.5x +0.5y ≤150x +0.3y ≤905x +3y ≤600,z =2100x +900y .不等式组表示的可行域如图:由题意可得{x +0.3y =905x +3y =600,解得:{x =60y =100,A (60,100),目标函数z =2100x +900y .经过A 时,直线的截距最大,目标函数取得最大值:2100×60+900×100=216000元.故答案为:216000.12.【2013年天津文科14】设a +b =2,b >0,则12|a|+|a|b的最小值为 .【解答】解:∵a +b =2,∴a+b 2=1, ∴12|a|+|a|b=a 4|a|+b 4|a|+|a|b,∵b >0,|a |>0,∴b4|a|+|a|b≥1(当且仅当b 2=4a 2时取等号),∴12|a|+|a|b≥a 4|a|+1,故当a <0时,12|a|+|a|b的最小值为34.故答案为:34.。
高考数学压轴专题2020-2021备战高考《数列》分类汇编及解析
【最新】《数列》专题解析一、选择题1.设函数()mf x x ax =+的导数为()21f x x '=+,则数列()()2N n f n *⎧⎫⎪⎪∈⎨⎬⎪⎪⎩⎭的前n 项和是( ) A .1nn + B .21nn + C .21nn - D .()21n n+ 【答案】B 【解析】 【分析】函数()mf x x ax =+的导函数()21f x x '=+,先求原函数的导数,两个导数进行比较即可求出m ,a ,利用裂项相消法求出()()2N n f n *⎧⎫⎪⎪∈⎨⎬⎪⎪⎩⎭的前n 项和即可.【详解】Q 1()21m f x mx a x -'=+=+,1a \=,2m =,()(1)f x x x ∴=+,112()()(1)221f n n n n n ==-++, ∴111111122[()()()]2(1)1223111n n S n n n n =-+-++-=-=+++L ,故选:B . 【点睛】本题考查数列的求和运算,导数的运算法则,数列求和时注意裂项相消法的应用.2.将正整数20分解成两个正整数的乘积有120⨯,210⨯,45⨯三种,其中45⨯是这三种分解中两数差的绝对值最小的,我们称45⨯为20的最佳分解.当p q ⨯(p q ≤且*,p q ∈N )是正整数n 的最佳分解时我们定义函数()f n q p =-,则数列(){}5nf ()*n N ∈的前2020项的和为( )A .101051+B .1010514-C .1010512-D .101051-【答案】D 【解析】 【分析】首先利用信息的应用求出关系式的结果,进一步利用求和公式的应用求出结果. 【详解】解:依题意,当n 为偶数时,22(5)550n nn f =-=; 当n 为奇数时,111222(5)5545n n n n f +--=-=⨯,所以01100920204(555)S =++⋯+,101051451-=-g ,101051=-.故选:D 【点睛】本题考查的知识要点:信息题的应用,数列的求和的应用,主要考查学生的运算能力和转换能力及思维能力,属于中档题.3.等差数列{}n a 中,1510a a +=,47a =,则数列{}n a 前6项和6S 为()A .18B .24C .36D .72【答案】C 【解析】 【分析】由等差数列的性质可得35a =,根据等差数列的前n 项和公式163466622a a a aS ++=⨯=⨯可得结果. 【详解】∵等差数列{}n a 中,1510a a +=,∴3210a =,即35a =,∴163465766636222a a a a S +++=⨯=⨯=⨯=, 故选C. 【点睛】本题主要考查了等差数列的性质以及等差数列的前n 项和公式的应用,属于基础题.4.在数列{}n a 中,若10a =,12n n a a n +-=,则23111na a a +++L 的值 A .1n n- B .1n n+ C .11n n -+ D .1n n + 【答案】A 【解析】分析:由叠加法求得数列的通项公式(1)n a n n =-,进而即可求解23111na a a +++L 的和. 详解:由题意,数列{}n a 中,110,2n n a a a n +=-=,则112211()()()2[12(1)](1)n n n n n a a a a a a a a n n n ---=-+-++-+=+++-=-L L ,所以1111(1)1n a n n n n==--- 所以231111111111(1)()()12231n n a a a n n n n-+++=-+-++-=-=-L L ,故选A. 点睛:本题主要考查了数列的综合问题,其中解答中涉及到利用叠加法求解数列的通项公式和利用裂项法求解数列的和,正确选择方法和准确运算是解答的关键,着重考查了分析问题和解答问题的能力,以及推理与运算能力.5.已知椭圆221x y m n+=满足条件:,,m n m n +成等差数列,则椭圆离心率为( )AB.2C .12D【答案】B 【解析】 【分析】根据满足条件,,m n m n +成等差数列可得椭圆为2212x ym m+=,求出,a c .再求椭圆的离心率即可. 【详解】()22n m m n n m =++⇒=, ∴椭圆为2212x y m m +=,22c m m m =-=,得c =又a =2c e a ∴==.B. 【点睛】一般求离心率有以下几种情况:①直接求出,a c ,从而求出e ;②构造,a c 的齐次式,求出e ;③采用离心率的定义以及圆锥曲线的定义来求解;④根据圆锥曲线的统一定义求解.6.等差数列{}n a 的前n 项和为n S ,已知2611203a a a a --+=,则21S 的值为( ) A .63 B .21C .63-D .21【答案】C 【解析】【分析】根据等差数列性质,原式可变为()220616113()a a a a a +-+-=,即可求得21112163S a ==-.【详解】∵261116203a a a a a ---+=, ∴()220616113()a a a a a +-+-=, ∴113a =-,∴21112163S a ==-, 故选:C . 【点睛】此题考查等差数列性质和求和公式,需要熟练掌握等差数列基本性质,根据性质求和.7.已知等差数列{}n a 中,若311,a a 是方程2210x x --=的两根,单调递减数列{}()*n b n N ∈通项公式为27n b n a n λ=+.则实数λ的取值范围是( )A .(),3-∞-B .1,3⎛⎫-∞- ⎪⎝⎭C .1,3⎛⎫-+∞ ⎪⎝⎭D .()3,-+∞【答案】B 【解析】 【分析】先求出71a =,再根据{}n b 是递减数列,得到121n λ<-+对*n N ∈恒成立,即得解. 【详解】∵311,a a 是方程220x x --=的两根,∴3112a a +=. ∵{}n a 是等差数列,∴311722a a a +==,∴71a =,∴2n b n n λ=+,又∵{}n b 是递减数列,∴10n n b b +-<对*n N ∈恒成立, 则()()()22110n n nn λλ+++-+<,∴()2110n λ++<,∴121n λ<-+对*n N ∈恒成立, ∴13λ<-.故选:B. 【点睛】本题主要考查等差中项的应用,考查数列的单调性和数列不等式的恒成立问题,意在考查学生对这些知识的理解掌握水平.8.已知{}n a 是等差数列,1010a =,其前10项和1070S =,则其公差为( ) A .23B.32C .23-D .32-【答案】A 【解析】 【分析】根据等差数列的通项公式和前n 项和公式,列方程组求解即得. 【详解】设等差数列{}n a 的公差为d .101010,70a S ==Q ,1191010910702a d a d +=⎧⎪∴⎨⨯+=⎪⎩解得23d =. 故选:A . 【点睛】本题考查等差数列的通项公式和前n 项和公式,属于基础题.9.科赫曲线是一种外形像雪花的几何曲线,一段科赫曲线可以通过下列操作步骤构造得到,任画一条线段,然后把它均分成三等分,以中间一段为边向外作正三角形,并把中间一段去掉,这样,原来的一条线段就变成了4条小线段构成的折线,称为“一次构造”;用同样的方法把每条小线段重复上述步骤,得到16条更小的线段构成的折线,称为“二次构造”,…,如此进行“n 次构造”,就可以得到一条科赫曲线.若要在构造过程中使得到的折线的长度达到初始线段的1000倍,则至少需要通过构造的次数是( ).(取lg30.4771≈,lg 20.3010≈)A .16B .17C .24D .25【答案】D 【解析】 【分析】由折线长度变化规律可知“n 次构造”后的折线长度为43na ⎛⎫ ⎪⎝⎭,由此得到410003n⎛⎫≥ ⎪⎝⎭,利用运算法则可知32lg 2lg 3n ≥⨯-,由此计算得到结果.【详解】记初始线段长度为a ,则“一次构造”后的折线长度为43a ,“二次构造”后的折线长度为243a ⎛⎫ ⎪⎝⎭,以此类推,“n 次构造”后的折线长度为43na ⎛⎫ ⎪⎝⎭, 若得到的折线长度为初始线段长度的1000倍,则410003na a ⎛⎫≥ ⎪⎝⎭,即410003n⎛⎫≥ ⎪⎝⎭,()()44lg lg lg 4lg32lg 2lg3lg1000333nn n n ⎛⎫∴==-=-≥= ⎪⎝⎭,即324.0220.30100.4771n ≥≈⨯-,∴至少需要25次构造.故选:D . 【点睛】本题考查数列新定义运算的问题,涉及到对数运算法则的应用,关键是能够通过构造原则得到每次构造后所得折线长度成等比数列的特点.10.定义“穿杨二元函数”如:(,)248n C a n a a a a =++++L 144424443个.例如:()3,436122445C =+++=.若a Z +∃∈,满足(),C a n n =,则整数n 的值为( )A .0B .1C .0或1D .不存在满足条件的n【答案】B 【解析】 【分析】由(,)248n C a n a a a a =++++L 144424443个,得()()12,2112nn C a n a a -=⨯=--,然后根据(),C a n n =结合条件分析得出答案.【详解】由(,)248n C a n a a a a =++++L 144424443个,得()()12,2112nn C a n a a -=⨯=-- 由(),C a n n =,可得()21na n -=.当0n =时,对任意a Z +∈都满足条件. 当0n ≠时, 21nna =-,由a Z +∈,当1n =时,1a =满足条件. 当2n ≥且n Z ∈时,设()21xf x x =--,则()2ln 21xf x '=-在2x ≥上单调递增. 所以()()24ln 210f x f ''>=->,所以()f x 在2x ≥上单调递增. 所以()()24120f x f >=-->,即当2n ≥且n Z ∈时,恒有21n n ->.则()0,121nna =∈-这与a Z +∈不符合.所以此时不满足条件. 综上:满足条件的n 值为0或1.故选:B 【点睛】本题考查新定义,根据定义解决问题,关键是理解定义,属于中档题.11.设{a n }为等比数列,{b n }为等差数列,且S n 为数列{b n }的前n 项和.若a 2=1,a 10=16且a 6=b 6,则S 11=( ) A .20 B .30 C .44 D .88【答案】C 【解析】 【分析】设等比数列{a n }的公比为q ,由a 2=1,a 10=16列式求得q 2,进一步求出a 6,可得b 6,再由等差数列的前n 项和公式求解S 11. 【详解】设等比数列{a n }的公比为q ,由a 2=1,a 10=16, 得810216a q a ==,得q 2=2. ∴4624a a q ==,即a 6=b 6=4,又S n 为等差数列{b n }的前n 项和, ∴()1111161111442b b S b+⨯===.故选:C. 【点睛】本题考查等差数列与等比数列的通项公式及性质,训练了等差数列前n 项和的求法,是中档题.12.设数列是公差的等差数列,为前项和,若,则取得最大值时,的值为A .B .C .或D .【答案】C 【解析】,进而得到,即,数列是公差的等差数列,所以前五项都是正数,或时,取最大值,故选C.13.已知单调递增的等比数列{}n a 中,2616a a ⋅=,3510a a +=,则数列{}n a 的前n 项和n S =( )A .2124n -- B .1122n -- C .21n - D .122n +-【答案】B 【解析】 【分析】由等比数列的性质,可得到35,a a 是方程210160x x -+=的实数根,求得1,a q ,再结合等比数列的求和公式,即可求解. 【详解】由题意,等比数列{}n a 中,2616a a ⋅=,3510a a +=, 根据等比数列的性质,可得3516a a ⋅=,3510a a +=,所以35,a a 是方程210160x x -+=的实数根,解得352,8a a ==或358,2a a ==, 又因为等比数列{}n a 为单调递增数列,所以352,8a a ==, 设等比数列{}n a 的首项为1a ,公比为(1)q q >可得214128a q a q ⎧=⎨=⎩,解得11,22a q ==,所以数列{}n a 的前n 项和11(12)122122nn n S --==--. 故选:B . 【点睛】本题主要考查了等比数列的通项公式的基本量的运算,以及等比数列的前n 项和公式的应用,着重考查了推理与运算能力.14.设等比数列{}n a 的前n 项和为n S ,若105:1:2S S =,则155:S S 为( ) A .3∶4 B .4∶3 C .1∶2 D .2∶1【答案】A 【解析】 【分析】根据在等比数列中,每5项的和仍然成等比数列,设5S x =,则由条件可得1012S x =,1534S x =,从而得到155:S S 的值. 【详解】解:在等比数列中,每5项的和仍然成等比数列,设5S x =,则由条件可得1012S x =, 1051122S S x x x ∴-=-=-,151014S S x ∴-=,15113244S x x x ∴=+=,故155334:4xS S x ==, 故选:A . 【点睛】本题考查等比数列的性质,解题的关键是熟练掌握等比数列的性质k S ,2k k S S -,32k k S S -,成公比为k q 的等比数列,属于中档题.15.已知{}n a 是各项都为正数的等比数列,n S 是它的前n 项和,若47S =,821S =,则16S =( )A .48B .90C .105D .106【答案】C 【解析】 【分析】根据4841281612,,,S S S S S S S ---成等比数列即可求出16S . 【详解】由等比数列的性质得4841281612,,,S S S S S S S ---成等比数列, 所以1216127,14,21,S S S --成等比数列,所以121216162128,49,4956,105S S S S -=∴=∴-=∴=. 故选:C 【点睛】本题主要考查等比数列的性质,意在考查学生对这些知识的理解掌握水平.16.等差数列{}n a 中,1599a a a ++=,它的前21项的平均值是15,现从中抽走1项,余下的20项的平均值仍然是15,则抽走的项是( ) A .11a B .12aC .13aD .14a【答案】A 【解析】 【分析】由等差数列的性质可知5113,15a a ==,再根据前21项的均值和抽取一项后的均值可知抽取的一项的大小为15,故可确定抽走的是哪一项. 【详解】因为1952a a a +=,所以539a =即53a =. 有211521S =得1115a =, 设抽去一项后余下的项的和为S ,则2015300S =⨯=,故抽取的一项的大小为11,所以抽走的项为11a ,故选A. 【点睛】一般地,如果{}n a 为等差数列,n S 为其前n 项和,则有性质: (1)若,,,*,m n p q N m n p q ∈+=+,则m n p q a a a a +=+; (2)()1,1,2,,2k n k n n a a S k n +-+==L 且()2121n n S n a -=- ;(3)2n S An Bn =+且n S n ⎧⎫⎨⎬⎩⎭为等差数列; (4)232,,,n n n n n S S S S S --L 为等差数列.17.《算法统宗》是中国古代数学名著,由明代数学家程大位编著,它对我国民间普及珠算和数学知识起到了很大的作用,是东方古代数学的名著.在这部著作中,许多数学问题都是以歌诀形式呈现的,如“九儿问甲歌”就是其中一首:一个公公九个儿,若问生年总不知,自长排来差三岁,共年二百又零七,借问长儿多少岁,各儿岁数要详推.在这个问题中,这位公公的长儿的年龄为( ) A .23岁 B .32岁C .35岁D .38岁【答案】C 【解析】 【分析】根据题意,得到数列{}n a 是等差数列,由9207S =,求得数列的首项1a ,即可得到答案. 【详解】设这位公公的第n 个儿子的年龄为n a ,由题可知{}n a 是等差数列,设公差为d ,则3d =-,又由9207S =,即91989(3)2072S a ⨯=+⨯-=,解得135a =, 即这位公公的长儿的年龄为35岁. 故选C . 【点睛】本题主要考查了等差数列前n 项和公式的应用,其中解答中认真审题,熟练应用等差数列的前n 项和公式,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.18.已知n S 是等差数列{}n a 的前n 项和,且675S S S >>,给出下列五个命题: ①公差0d < ②110S < ③120S >④数列{}n S 中的最大项为11S ⑤67a a >其中正确命题的个数是( )A .2B .3C .4D .5【答案】B【解析】【分析】先由条件确定数列第六项和第七项的正负,进而确定公差的正负,最后11S ,12S 的符号由第六项和第七项的正负判定.【详解】 Q 等差数列{}n a 中,6S 最大,且675S S S >>,∴10a >,0d <,①正确;Q 675S S S >>,∴60a >,70a <,67 0a a +>,∴160a d +<,150a d +>,6S 最大,∴④不正确;1111115511(5)0S a d a d =+=+>,12111267 126612()12()0S a d a a a a =+=+=+>,∴③⑤正确,②错误.故选:B .【点睛】本题考查等差数列的前n 项和的应用,考查逻辑思维能力和运算能力,属于常考题.19.《九章算术·均输》中有如下问题:“今有五人分十钱,令上二人所得与下三人等,问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分10钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列,问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,甲所得为( )A .43钱B .73钱C .83钱D .103钱 【答案】C【解析】【分析】依题意设甲、乙、丙、丁、戊所得钱分别为a ﹣2d ,a ﹣d ,a ,a +d ,a +2d ,由题意求得a =﹣6d ,结合a ﹣2d +a ﹣d +a +a +d +a +2d =5a =10求得a =2,则答案可求.【详解】解:依题意设甲、乙、丙、丁、戊所得钱分别为a ﹣2d ,a ﹣d ,a ,a +d ,a +2d , 则由题意可知,a ﹣2d +a ﹣d =a +a +d +a +2d ,即a =﹣6d ,又a ﹣2d +a ﹣d +a +a +d +a +2d =5a =10,∴a =2,则a ﹣2d =a 48333a a +==. 故选:C .【点睛】 本题考查等差数列的通项公式,考查实际应用,正确设出等差数列是计算关键,是基础的计算题.20.设数列{}n a 的前n 项和为n S 已知()*123n n a a n n N ++=+∈且1300n S =,若23a <,则n 的最大值为( )A .49B .50C .51D .52【答案】A【解析】【分析】对n 分奇偶性分别讨论,当n 为偶数时,可得2+32n n n S =,发现不存在这样的偶数能满足此式,当n 为奇数时,可得21+342n n n S a -=+,再结合23a <可讨论出n 的最大值. 【详解】当n 为偶数时,12341()()()n n n S a a a a a a -=++++⋅⋅⋅++(213)(233)[2(1)3]n =⨯++⨯++⋅⋅⋅+-+2[13(1)]32n n =⨯++⋅⋅⋅+-+⨯2+32n n =, 因为22485048+348503501224,132522S S ⨯+⨯====, 所以n 不可能为偶数;当n 为奇数时,123451()()()n n n S a a a a a a a -=+++++⋅⋅⋅++1(223)(243)[2(1)3]a n =+⨯++⨯++⋅⋅⋅+-+21342n n a +-=+ 因为2491149349412722S a a +⨯-=+=+, 2511151351413752S a a +⨯-=+=+, 又因为23a <,125a a +=,所以 12a >所以当1300n S =时,n 的最大值为49故选:A【点睛】此题考查的是数列求和问题,利用了并项求和的方法,考查了分类讨论思想,属于较难题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列与函数、不等式相结合问题一.方法综述数列与函数、不等式相结合是数列高考中的热点问题,难度较大,求数列与函数、不等式相结合问题时会渗透多种数学思想.因此求解过程往往方法多、灵活性大、技巧性强,但万变不离其宗,只要熟练掌握各个类型的特点即可.在考试中时常会考查一些压轴小题,如数列中的恒成立问题、数列中的最值问题、数列性质的综合问题、数列与函数的综合问题、数列与其他知识综合问题中都有所涉及,本讲就这类问题进行分析.二.解题策略类型一数列中的恒成立问题【例1】【安徽省毛坦厂中学2019届高三校区4月联考】已知等差数列满足,,数列满足,记数列的前项和为,若对于任意的,,不等式恒成立,则实数的取值范围为()A.B.C.D.【答案】A【解析】由题意得,则,等差数列的公差,.由,得,则不等式恒成立等价于恒成立,而,问题等价于对任意的,恒成立.设,,则,即,解得或.故选:A.【指点迷津】对于数列中的恒成立问题,仍要转化为求最值的问题求解,解答本题的关键是由等差数列通项公式可得,进而由递推关系可得,借助裂项相消法得到,又,问题等价于对任意的,恒成立.【举一反三】已知数列{}n a 的首项1a a =,其前n 项和为n S ,且满足()2142,n n S S n n n N -++=≥∈,若对任意1,n n n N a a ++∈<恒成立,则a 的取值范围是( ) A .()3,5 B .()4,6 C .[)3,5 D .[)4,6 【答案】A类型二 数列中的最值问题【例2】【浙江省湖州三校2019年高考模拟】已知数列满足,,则使的正整数的最小值是( )A.2018 B.2019 C.2020 D.2021【答案】C【解析】令,则,所以,从而,因为,所以数列单调递增,设当时, 当时,所以当时,,,从而,因此,选C.【指点迷津】本题利用数列的递推公式,确定数列的单调性,令,利用裂项相消法得,再根据范围求正整数的最小值.在解题时需要一定的逻辑运算与推理的能力,其中确定数列单调性是解题的关键【举一反三】【河南省许昌市、洛阳市2019届高三三模】已知数列,的前项和分别为,,且,,,若恒成立,则的最小值为()A.B.C.49 D.【答案】B【解析】当时,,解得.当时,由,得,两式相减并化简得,由于,所以,故是首项为,公差为的等差数列,所以.则,故,由于是单调递增数列,,.故的最小值为,故选B. 类型三 数列性质的综合问题【例3】【江苏省扬州中学2019届高三下学期3月月考】已知等差数列的前n 项和为,若1≤≤3,3≤≤6,则的取值范围是_______.【答案】【解析】 在等差数列中,,∴,又, ∴.由得.∴,即,∴. 即的取值范围是.故答案为:.【指点迷津】1.本题先根据求出的取值范围,然后根据不等式的性质可得所求结果.2.由数列的递推公式求通项常用的方法有:(1)累加法(相邻两项的差成等差、等比数列);累乘法(相邻两项的积为特殊数列);(3)构造法,形如()10,1n n a qa p p q -=+≠≠的递推数列求通项往往用构造法,即将()10,1n n a qa p p q -=+≠≠利用待定系数法构造成()1n n a m q a m -+=+的形式,再根据等比数例求出{}n a m +的通项,进而得出{}n a 的通项公式. 【举一反三】【广东省汕尾市2019年3月高三检测】已知数列的首项为数列的前项和若恒成立,则的最小值为______.【答案】【解析】数列的首项,则:常数故数列是以为首项,3为公差的等差数列.则:首项符合通项.故:,,,由于数列的前n项和恒成立,故:,则:t的最小值为,故答案为:.类型四数列与函数的综合问题【例4】已知函数的定义域为,当时,,且对任意的实数,,恒成立,若数列满足()且,则下列结论成立的是()A.B.C.D.【答案】C【解析】对任意的实数x,y∈R,f(x)f(y)=f(x+y)恒成立,取x=y=0,则f(0)f(0)=f(0),解得f(0)=0或f(0)=1.当f(0)=0时,,得余题意不符,故舍去.所以f(0)=1.取y=﹣x<0,则f(x)f(﹣x)=1,∴f(x),设x1<x2,则f(x1﹣x2)=f(x1)•f(﹣x2)1,∴f(x1)>f(x2).∴函数f(x)在R上单调递减.∵数列{}满足f(a n+1)f()=1=f(0).∴0,∵a1=f(0)=1,∴,=﹣2,=1,,…….∴=.∴=,==1.=,==﹣2.∴f()1,f()=f(1)<1.∴f()>f().而f()=f(),f()<1<f(),f()=f()<f()=f(﹣2),因此只有:C正确.故选:C.【指点迷津】(1)运用函数性质解决问题时,先要正确理解和把握函数相关性质本身的含义及其应用方向.(2)在研究函数性质特别是奇偶性、周期、对称性、单调性、最值、零点时,要注意用好其与条件的相互关系,结合特征进行等价转化研究.如奇偶性可实现自变量正负转化,周期可实现自变量大小转化,单调性可实现去“f”,即将函数值的大小转化自变量大小关系, 对称性可得到两个对称的自变量所对应函数值关系. 【举一反三】【浙江省杭州第十四中学2019届高三9月月考】已知数列中,,若对于任意的,不等式恒成立,则实数的取值范围为()A.B.C.D.【答案】B【解析】由题,即由累加法可得: 即对于任意的,不等式恒成立即令可得且即可得或故选B类型五 数列与其他知识综合问题 【例5】将向量12,,,n a a a 组成的系列称为向量列{}n a ,并定义向量列{}n a 的前n 项和12n n S a a a =+++.若()*1,n n a a R n N λλ+=∈∈,则下列说法中一定正确的是( )A. ()111nn a S λλ-=- B. 不存在*n N∈,使得0n S =C. 对*m n N ∀∈、,且m n ≠,都有m n S SD. 以上说法都不对【答案】C【解析】 由()*1,n n a a R n N λλ+=∈∈,则1n na a λ+=,所以数列{}n a 构成首项为1a ,公比为λ的等比数列,所以()11,1{ 1,11nn na S a λλλλ==-≠-,又当1λ=-时,20n S =,所以当*m n N ∀∈、,且m n ≠时, m n S S 是成立的,故选C.【例6】斐波那契数列{}n a 满足: ()*12121,1,3,n n n a a a a a n n N --===+≥∈.若将数列的每一项按照下图方法放进格子里,每一小格子的边长为1,记前n 项所占的格子的面积之和为n S ,每段螺旋线与其所在的正方形所围成的扇形面积为n c ,则下列结论错误的是( )A. 2111·n n n n S a a a +++=+ B. 12321n n a a a a a +++++=-C. 1352121n n a a a a a -++++=-D. ()1214?n n n n c c a a π--+-=【答案】C12331131...1121n n a a a a a a a --⇔++++=-⇔⇔=-⇔=- ,所以B 正确;对于C, 1n = 时,121a a ≠- ;C 错误;对于D, ()()()22211112144?44n n n n n n n n n n a a c c a a a a a a ππππ-----+⎛⎫-=-=+-= ⎪⎝⎭,D 正确.故选C.【指点迷津】这类题型往往出现在在填空题最后两题,综合性较强,同学们往往因为某一点知识掌握不牢就导致本题“全盘皆输”,解答这类问题首先不能慌乱更不能因贪快而审题不清,其次先从最有把握的命题入手,最后集中力量攻坚最不好理解的命题.【举一反三】1.如图所示,矩形n n n n A B C D 的一边n n A B 在x 轴上,另外两个顶点,n n C D 在函数()1(0)f x x x x =+>的图象上.若点n B 的坐标为()(),02,n n n N +≥∈,记矩形n n n n A B C D 的周长为n a ,则2310a a a +++=( )A. 220B. 216C. 212D. 208 【答案】B2.将正整数12分解成两个正整数的乘积有112⨯, 26⨯, 34⨯三种,其中34⨯是这三种分解中两数差的绝对值最小的,我们称34⨯为12的最佳分解.当p q ⨯(p q ≤且*,N p q ∈)是正整数n 的最佳分解时,我们定义函数()f n q p =-,例如()12431f =-=.数列(){}3nf 的前100项和为__________.【答案】5031-【解析】当n 为偶数时, ()30n f =;当n 为奇数时, ()11122233323n n n nf +--=-=⨯,()5001495010031233 (3)23131S -∴=+++=⨯=--,故答案为5031-.类型六 数列与基本不等式结合的问题【例7】【山东省济宁市2019届高三一模】已知正项等比数列满足:,若存在两项使得,则的最小值为A .B .C .D . 【答案】A 【解析】 因为数列是正项等比数列,,,所以,,,所以,,,,,因为,所以,,,当且仅当时“=”成立,所以的最小值为,故选A.【指点迷津】本题考查了等比数列的相关性质以及基本不等式的相关性质,等比数列的通项公式是,等比中项,基本不等式有,考查公式的使用,考查化归与转化思想.【举一反三】【甘肃省白银市靖远县2019届高三第四次联考】已知函数,若,则的最小值为()A.B.C.D.【答案】A【解析】由题可知:令又于是有因此所以当且仅当时取等号本题正确选项:三.强化训练一、选择题1.【安徽省宣城市2019届高三第二次调研】已知正项等比数列满足,若存在两项,,使得,则的最小值为()A.B.C.3 D.【答案】C【解析】解:设等比数列的公比为q(q>0),∵a9=a8+2a7,∴a7q2=a7q+2a7,∴q2﹣q﹣2=0,∴q=2或q=-1(舍),∵存在两项a m,a n使得,∴,∴故选C.2.【2019年3月2019届高三第一次全国大联考】已知数列的前项和为,,且满足,若,,则的最小值为()A.B.C.D.0【答案】B【解析】由,得,且,所以数列是以为首项、2为公差的等差数列,则,即,令,得,又,,由,则的最小值为.故选:B.3.【四川省成都市外国语学校2019届高三一诊】在正项等比数列中,,.则满足的最大正整数的值为()A.10 B.11 C.12 D.13【答案】C【解析】解:∵正项等比数列中,,,∴.∵,解可得,或(舍),∴,∵,∴.整理可得,,∴,经检验满足题意,故选:C.4.若数列的通项公式分别为,且,对任意恒成立,则实数的取值范围是( )A.B.C.D.【答案】D【解析】,故当n为奇数,-a<2+,又2+单调递减,故2+,故- a2,解a当n为偶数,又2-单调递增,故2-,故,综上a故选:D5.已知各项均为正数的数列的前项和为,且,若对任意的,恒成立,则实数的取值范围为()A.B.C.D.【答案】C【解析】,时,,化为:,.,即,时,,解得.数列为等差数列,首项为1,公差为1...记,..所以为增数列,,即.对任意的,恒成立,,解得实数的取值范围为.故选:C.6.【吉林省吉林市实验中学2019届高三下学期第八次月考】已知等比数列的公比,其前n项的和为,则与的大小关系是A.B.C.D.【答案】A【解析】根据等比数列的前n项和公式和数列的通项公式得到:两式作差故选:A.7.已知,,并且,,成等差数列,则的最小值为A.16 B.9 C.5 D.4【答案】A【解析】解:根据题意,a>0,b>0,且,,成等差数列,则21;则a+9b=(a+9b)()=1010+216;当且仅当,即=时取到等号,∴a+9b的最小值为16;故选:A.8.【贵州省2019年普通高等学校招生适应性】设,点,,,,设对一切都有不等式成立,则正整数的最小值为()A.B.C.D.【答案】A【解析】由题意知sin,∴,∴,随n的增大而增大,∴,∴,即,又f(t)=在t上单增,f(2)= -1<0,f(3)=2>0,∴正整数的最小值为3.二、填空题9.【河北省衡水中学2019届高三下学期一调】20.已知数列的前项和.若是中的最大值,则实数的取值范围是_____.【答案】【解析】因为,所以当时,;当时,也满足上式;当时,,当时,,综上,;因为是中的最大值,所以有且,解得.故答案为10.【2019届高三第二次全国大联考】已知数列的前项和为,,当时,,若恒成立,则正数的取值范围为____________.【答案】【解析】由可知,数列是一个公差的等差数列,首项为,所以,所以.故当时,.显然当时,也满足上式.所以.所以,所以,由题意恒成立,所以,解得.又,所以的取值范围为.11.【云南省2019年高三第二次检测】已知数列的前项和为,若,则使成立的的最大值是_____.【答案】5【解析】因为可得:两式相减可得:化简可得:即所以数列是以为首项,公比为2的等比数列当n=1时,求得所以即所以即解得所以成立的的最大值是5故答案为512.【重庆市南开中学2019届高三第三次检测】在正项递增等比数列中,,记,,则使得成立的最大正整数为__________.【答案】9【解析】由题得,因为数列是正项递增等比数,所以,所以. 因为,所以,所以.所以使得成立的最大正整数为9.故答案为:913.已知数列{}n a 中, 12a =,点列()1,2,n P n =⋯在ABC ∆内部,且n P AB ∆与n P AC ∆的面积比为2:1,若对*N n ∈都存在数列{}n b 满足()113202nn n n n n b P A a P B a P C ++++=,则4a 的值为______. 【答案】80【解析】在BC 上取点D ,使得2BD CD =,则n P 在线段AD 上.()113202n n n n n n b P A a P B a P C ++++=1132322n n n n n n n n n n n a BP b AP a CP b BP BAa BP BC +∴-=++=-++-()()()() , 1133232)22n n n n n n ab a BP b BA a BD +⎛⎫∴----=--+ ⎪⎝⎭(n A P D ,, 三点共线,1133232)22n n n n n a b a b a +∴----=--+(,即132n n a a +=+.21324332832263280a a a a a a ∴=+==+==+=,,.故答案为:80.14.已知函数()12f x x =+,点O 为坐标原点,点()()()*,n A n f n n N ∈,向量()0,1i =,θn 是向量OAn 与i 的夹角,则使得1212cos cos cos sin sin sin nnt θθθθθθ++< 恒成立的实数t 的取值范围为 ___________.【答案】3,4⎡⎫+∞⎪⎢⎣⎭【解析】根据题意得,2n πθ- 是直线OA n 的倾斜角,则:()()sin cos 11112tan sin 2222cos 2n n n n n f n n n n n n πθθπθπθθ⎛⎫- ⎪⎛⎫⎛⎫⎝⎭==-===- ⎪ ⎪++⎛⎫⎝⎭⎝⎭- ⎪⎝⎭,据此可得:结合恒成立的结论可得实数t 的取值范围为3,4⎡⎫+∞⎪⎢⎣⎭.15.【新疆2019届高三一模】已知数列为等差数列,,,数列的前n 项和为,若对一切,恒有,则m 能取到的最大正整数是______.【答案】7 【解析】 解:设数列的公差为,由题意得,,解得,,且,,令, 则,即,则随着的增大而增大,即在处取最小值,,对一切,恒有成立,即可,解得,故能取到的最大正整数是7.16. 【北京师大附中2019届高三4月模拟】设数列的前n项和为,,且,若,则n的最大值为______.【答案】63【解析】由数列的前n项和为,,又,故,则的偶数项成等差数列,则,(n为偶数)又,,为等差数列,首项为3,公差为4,当n为偶数时,设数列的前n项和为,可得,,则+若,无解舍去当n为奇数时,-(=,又所以解<n又则n的最大值为63,故答案为:63.。