排列组合知识点总结

合集下载

排列组合知识点总结+典型例题及答案解析

排列组合知识点总结+典型例题及答案解析

排列组合知识点总结+典型例题及答案解析一.基本原理1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。

2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。

注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。

二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一.m n mn A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从1.公式:1.()()()()!!121m n n m n n n n A m n -=+---=……2.规定:0!1=(1)!(1)!,(1)!(1)!n n n n n n =⨯-+⨯=+ (2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ⨯=+-⨯=+⨯-=+-; (3)111111(1)!(1)!(1)!(1)!!(1)!n n n n n n n n n +-+==-=-+++++ 三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。

1. 公式: ()()()C A A n n n m m n m n m nmn m mm ==--+=-11……!!!! 10=n C 规定:组合数性质:.2 n n n n n m n m n m n m n n m n C C C C C C C C 21011=+++=+=+--……,, ①;②;③;④11112111212211r r r r r r r rr r r rr r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-+++++=++++=+++=注:若12m m 1212m =m m +m n n n C C ==则或四.处理排列组合应用题 1.①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。

排列组合知识点总结

排列组合知识点总结

排列组合 二项式定理1,分类计数原理 完成一件事有几类方法,各类办法相互独立每类办法又有多种不同办法(每一种都可以独立完成这个事情) 分步计数原理 完成一件事,需要分几个步骤,每一步完成有多种不同方法 2,排列出元素各不相同),按照一定顺序排成一列,叫做从n 个不同元素中取出m 个元素一个排列。

排列数定义;从n 个不同元素中,任取m (m≤n)个元素所有排列个数m nA 公式 m n A = 规定0!=1 3,组合组合定义 从n 个不同元素中,任取m (m≤n)个元素并成一组,叫做从n 个不同元素中取出m 个元素一个组合组合数 从n 个不同元素中,任取m (m≤n)个元素所有组合个数 mn Cm nC=性质 mn C =n mn C - 11mmm n n n C C C -+=+排列组合题型总结 一. 直接法1 .特殊元素法例1用1,2,3,4,5,6这6个数字组成无重复四位数,试求满足下列条件四位数各有多少个 (1)数字1不排在个位和千位(2)数字1不在个位,数字6不在千位。

分析:(1)个位和千位有5个数字可供选择25A ,其余2位有四个可供选择24A ,由乘法原理:25A 24A =2402.特殊位置法(2)当1在千位时余下三位有35A =60,1不在千位时,千位有14A 种选法,个位有14A 种,余下有24A ,共有14A 14A 24A =192所以总共有192+60=252二 间接法当直接法求解类别比较大时,应采用间接法。

如上例中(2)可用间接法2435462A A A +-=252Eg 有五张卡片,它正反面分别写0及1,2及3,4及5,6及7,8及9,将它们任意三张并排放在一起组成三位数,共可组成多少个不同三位数?分析::任取三张卡片可以组成不同三位数333352A C ⨯⨯个,其中0在百位有2242⨯C ⨯22A 个,这是不合题意。

故共可组成不同三位数333352A C ⨯⨯-2242⨯C ⨯22A =432Eg 三个女生和五个男生排成一排(1) 女生必须全排在一起 有多少种排法( 捆绑法)(2) 女生必须全分开 (插空法 须排元素必须相邻) (3) 两端不能排女生 (4) 两端不能全排女生(5) 如果三个女生占前排,五个男生站后排,有多少种不同排法二. 插空法 当需排元素中有不能相邻元素时,宜用插空法。

高中数学排列组合知识点

高中数学排列组合知识点

排列组合复习巩固1.分类计数原理(加法原理)完成一件事,有类办法,在第1类办法中有种不同的方法,在第2类办法中有种不同的方法,…,在第类办法中有种不同的方法,那么完成这件事共有:种不同的方法.2.分步计数原理(乘法原理)完成一件事,需要分成个步骤,做第1步有种不同的方法,做第2步有种不同的方法,…,做第步有种不同的方法,那么完成这件事共有:种不同的方法.3.分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。

分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件.一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置.先排末位共有然后排首位共有最后排其它位置共有由分步计数原理得练习题:7种不同的花种在排成一列的xx,若两种葵花不种在中间,也不种在两端的xx,问有多少不同的种法?二.相邻元素捆绑策略例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。

由分步计数原理可得共有种不同的排法乙甲丁丙三.不相邻问题插空策略例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种?解:分两步进行第一步排2个相声和3个独唱共有种,第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种不同的方法,由分步计数原理,节目的不同顺序共有种四.定序问题倍缩空位插入策略例4. 7人排队,其中甲乙丙3人顺序一定共有多少不同的排法解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素之间的全排列数,则共有不同排法种数是:(空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有种方法,其余的三个位置甲乙丙共有 1种坐法,则共有种方法。

数学中的排列与组合知识点总结

数学中的排列与组合知识点总结

数学中的排列与组合知识点总结在数学中,排列和组合是两个重要的概念。

它们在各个领域都有广泛的应用,特别是在概率论、统计学和组合数学中。

本文将对排列和组合的概念、性质和应用进行总结。

一、排列的概念与性质排列是从一组元素中选取若干个元素按照一定的顺序进行排列。

设有n个元素,则从中选取m个元素进行排列的方式记为P(n, m)。

排列的计算公式为:P(n, m) = n!/(n-m)!其中,n!表示n的阶乘,即n! = n × (n-1) × (n-2) × ... × 2 × 1。

排列的性质如下:1. 排列数P(n, m)满足如下关系:P(n, m) = P(n-1, m) + P(n-1, m-1)2. 对于任意正整数n,有P(n, n) = n!,即n个元素的全排列数为n 的阶乘。

3. 当m>n时,P(n, m) = 0,即不能取出超过给定元素总数的元素进行排列。

4. 当m=0时,P(n, m) = 1,即不取任何元素进行排列时,排列数为1。

二、组合的概念与性质组合是从一组元素中选取若干个元素组成一个集合,而不考虑元素的顺序。

设有n个元素,则从中选取m个元素进行组合的方式记为C(n, m)。

组合的计算公式为:C(n, m) = n!/(m!(n-m)! )组合的性质如下:1. 组合数C(n, m)满足如下关系:C(n, m) = C(n-1, m) + C(n-1, m-1)2. 对于任意正整数n,有C(n, 0) = C(n, n) = 1,即不取任何元素或者取出全部元素的组合数为1。

3. 当m>n时,C(n, m) = 0,即不能取出超过给定元素总数的元素进行组合。

4. 组合数C(n, m)与排列数P(n, m)之间存在以下关系:C(n, m) = P(n, m)/m!三、排列与组合的应用1. 概率计算:排列和组合在概率计算中有广泛的应用。

(完整版)排列组合知识点总结

(完整版)排列组合知识点总结

排列组合 二项式定理1,分类计数原理 完成一件事有几类方法,各类办法相互独立每类办法又有多种不同的办法(每一种都可以独立的完成这个事情) 分步计数原理 完成一件事,需要分几个步骤,每一步的完成有多种不同的方法 2,排列出的元素各不相同),按照一定的顺序排成一列,叫做从n 个不同3,组合组合定义 从n 个不同元素中,任取m (m≤n)个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合组合数 从n 个不同元素中,任取m (m≤n)个元素的所有组合个数 mn Cmn C =!!()!n m n m -性质 mn C =n m n C - 11m m m n n n C C C -+=+排列组合题型总结 一. 直接法1 .特殊元素法例1用1,2,3,4,5,6这6个数字组成无重复的四位数,试求满足下列条件的四位数各有多少个 (1)数字1不排在个位和千位(2)数字1不在个位,数字6不在千位。

分析:(1)个位和千位有5个数字可供选择25A ,其余2位有四个可供选择24A ,由乘法原理:25A 24A =2402.特殊位置法(2)当1在千位时余下三位有35A =60,1不在千位时,千位有14A 种选法,个位有14A 种,余下的有24A ,共有14A 14A 24A =192所以总共有192+60=252二 间接法当直接法求解类别比较大时,应采用间接法。

如上例中(2)可用间接法2435462A A A +-=252Eg 有五张卡片,它的正反面分别写0与1,2与3,4与5,6与7,8与9,将它们任意三张并排放在一起组成三位数,共可组成多少个不同的三位数?分析::任取三张卡片可以组成不同的三位数333352A C ⨯⨯个,其中0在百位的有2242⨯C ⨯22A 个,这是不合题意的。

故共可组成不同的三位数333352A C ⨯⨯-2242⨯C ⨯22A =432Eg 三个女生和五个男生排成一排(1) 女生必须全排在一起 有多少种排法( 捆绑法) (2) 女生必须全分开 (插空法 须排的元素必须相邻) (3) 两端不能排女生 (4) 两端不能全排女生(5) 如果三个女生占前排,五个男生站后排,有多少种不同的排法二. 插空法 当需排元素中有不能相邻的元素时,宜用插空法。

组合和排列知识点总结

组合和排列知识点总结

组合和排列知识点总结1. 组合和排列的定义组合和排列是两种基本的组合数学概念,它们都与集合相关。

在数学中,集合是由一些互不相同的对象组成的整体,而排列和组合则是从一个给定的集合中选取一定数量的对象并按照一定的规则进行排列或组合。

排列是指从一个集合中取出一定数量的对象,并按照一定的顺序进行排列,即排列是有序的。

假设集合中有n个对象,要从中取出m个对象按照一定的顺序进行排列,符合条件的排列个数称为排列数。

通常用P(n, m)表示排列数。

组合是指从一个集合中取出一定数量的对象,但不考虑其排列顺序,即组合是无序的。

假设集合中有n个对象,要从中取出m个对象,符合条件的组合个数称为组合数。

通常用C(n, m)表示组合数。

2. 排列的性质排列具有一些基本的性质,这些性质在排列的计算中具有重要的意义。

(1)排列的计算公式在排列中,通过一个简单的计算公式可以求出排列数。

假设集合中有n个对象,要从中取出m个对象按照一定的顺序进行排列,则排列数可以用以下公式计算:P(n, m) = n! / (n-m)!其中,n!表示n的阶乘,即n! = n × (n-1) × (n-2) × … × 2 × 1。

(2)排列的性质排列具有如下的性质:- P(n, m) = n × (n-1) × … × (n-m+1)- P(n, n) = n!3. 组合的性质组合也具有一些基本的性质,这些性质在组合的计算中同样具有重要的意义。

(1)组合的计算公式在组合中,同样可以通过一个简单的计算公式求出组合数。

假设集合中有n个对象,要从中取出m个对象,组合数可以用以下公式计算:C(n, m) = n! / [m! × (n-m)!](2)组合的性质组合具有如下的性质:- C(n, m) = C(n, n-m)- C(n, 0) = 1- C(n, n) = 1- C(n, 1) = n- C(n, m) = C(n-1, m-1) + C(n-1, m)4. 组合和排列的应用组合和排列在实际中有着广泛的应用,它们在数学、计算机科学、统计学等领域都有着重要的作用。

排列组合知识点

排列组合知识点

排列与组合两大原理1.分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有:种不同的方法.2.分步计数原理(乘法原理)完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有:种不同的方法.3.分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。

分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件.排列组合1.排列(1)定义:从n 个不同的元素中,任取m 个(n m ≤)元素,按照一定的顺序排成一列,叫做从n 个不同的元素中,选取m 个元素的一个排列,排列数记为mn P ,或记为mn A 。

(2)使用排列的三条件 ①n 个不同元素; ②任取m 个; ③讲究顺序。

(3)计算公式)!(!)1)....(2)(1(m n n m n n n n A m n -=+---=尤其:!,,110n P n P P nn n n ===2.组合(1)定义:从n 个不同的元素中,任取m 个(n m ≤)元素并为一组,叫做从n 个不同的元素中,选取m 个元素的一个组合,组合数记为mn C 。

(2)使用三条件①n 个不同元素; ②任取m 个;③并为一组,不讲顺序。

(3)计算公式12)...1()1)...(1()!(!!⨯-+--=-==m m m n n n m n m n P P C m m m n m n尤其:mn n m n n n n n C C C n C C -====,1,,110解决排列组合综合性问题的一般过程如下:1.认真审题弄清要做什么事2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。

排列组合知识点

排列组合知识点

排列组合知识点一、两个原理.1. 乘法原理、加法原理.2. 可.以有..重复..元素..的排列. 从m 个不同元素中,每次取出n 个元素,元素可以重复出现,按照一定的顺序排成一排,那么第一、第二……第n 位上选取元素的方法都是m 个,所以从m 个不同元素中,每次取出n 个元素可重复排列数m·m·… m = m n .. 例:n 件物品放入m 个抽屉中,不限放法,共有多少种不同放法? (解:nm 种) 二、排列.1. 基本概念。

⑪对排列定义的理解.定义:从n 个不同的元素中任取m(m ≤n )个元素,按照一定顺序......排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.⑫相同排列.如果;两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序也必须完全相同. ⑬排列数.从n 个不同元素中取出m (m≤n )个元素排成一列,称为从n 个不同元素中取出m 个元素的一个排列. 从n 个不同元素中取出m 个元素的一个排列数,用符号mn A 表示.⑭排列数公式:),,()!(!)1()1(N m n n m m n n m n n n A m∈≤-=+--=注意:!)!1(!n n n n -+=⋅ 规定0! = 1111--++=⋅+=m n m n m n m m m n m n mA A C A A A11--=m n m n nA A 规定10==n n n C C2. 含有..可重..元素..的排列问题. 对含有相同元素求排列个数的方法是:设重集S 有k 个不同元素a 1,a 2,…...a n 其中限重复数为n 1、n 2……n k ,且n = n 1+n 2+……n k , 则S 的排列个数等于!!...!!21k n n n n n =.例如:已知数字3、2、2,求其排列个数3!2!1)!21(=+=n 又例如:数字5、5、5、求其排列个数?其排列个数1!3!3==n .三、组合.1. ⑪组合:从n 个不同的元素中任取m (m≤n )个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合. ⑫组合数公式:)!(!!!)1()1(m n m n C m m n n n A A C m nm mm nmn-=+--== ⑬两个公式:①;mn n mn C C -=②m n m n m n C C C11+-=+①从n 个不同元素中取出m 个元素后就剩下n-m 个元素,因此从n 个不同元素中取出 n-m 个元素的方法是一一对应的,因此是一样多的就是说从n 个不同元素中取出n-m 个元素的唯一的一个组合.(或者从n+1个编号不同的小球中,n 个白球一个红球,任取m 个不同小球其不同选法,分二类,一类是含红球选法有1m n 111m n C C C --=⋅一类是不含红球的选法有mn C )②根据组合定义与加法原理得;在确定n+1个不同元素中取m 个元素方法时,对于某一元素,只存在取与不取两种可能,如果取这一元素,则需从剩下的n 个元素中再取m-1个元素,所以有C 1-m n ,如果不取这一元素,则需从剩余n 个元素中取出m 个元素,所以共有C m n 种,依分类原理有m n m n m n C C C 11+-=+.⑭排列与组合的联系与区别.联系:都是从n 个不同元素中取出m 个元素.区别:前者是“排成一排”,后者是“并成一组”,前者有顺序关系,后者无顺序关系.⑮①几个常用组合数公式nn nn n n C C C 2210=+++11111121153142011112++--++++++-+=+==++=+++=+++k n k n k n k n m n m m n m m m m m m n n n n n n n n C n C k nC kC C C C C C C C C C C C②常用的证明组合等式方法例. i. 裂项求和法.如:)!1(11)!1(!43!32!21+-=++++n n n (利用!1)!1(1!1n n n n --=-) ii. 导数法. iii. 数学归纳法. iv. 倒序求和法.v. 递推法(即用mn m n m n C C C 11+-=+递推)如:413353433+=+++n n C C C C C .vi. 构造二项式.如:nn n n n n C C C C 222120)()()(=+++证明:这里构造二项式n n n x x x 2)1()1()1(+=++其中n x 的系数,左边为22120022110)()()(n n n n n n n n n n n n n n n n C C C C C C C C C C C +++=⋅++⋅+⋅+⋅-- ,而右边nn C 2= 四、排列、组合综合.1. 排列、组合问题几大解题方法及题型: ①直接法. ②排除法.③捆绑法:在特定要求的条件下,将几个相关元素当作一个元素来考虑,待整体排好之后再考虑它们“局部”的排列. 它主要用于解决“元素相邻问题”,例如,一般地,n 个不同元素排成一列,要求其中某)(n m m ≤个元素必相邻的排列有mm m n m n A A ⋅+-+-11个.其中11+-+-m n m n A 是一个“整体排列”,而m m A 则是“局部排列”.例如:①有n 个不同座位,A 、B 两个不能相邻,则有排列法种数为-2n A 2211A A n ⋅-.②有n 件不同商品,若其中A 、B 排在一起有2211A A n n ⋅--.③有n 件不同商品,若其中有二件要排在一起有112--⋅n n n A A . 注:①③区别在于①是确定的座位,有22A 种;而③的商品地位相同,是从n 件不同商品任取的2个, 有不确定性.④插空法:先把一般元素排列好,然后把待定元素插排在它们之间或两端的空档中,此法主要解决“元素不相邻问题”.例如:n 个元素全排列,其中m 个元素互不相邻,不同的排法种数为多少?mm n m n m n A A 1+---⋅(插空法), 当n – m+1≥m, 即m≤21+n 时有意义.⑤占位法:从元素的特殊性上讲,对问题中的特殊元素应优先排列,然后再排其他一般元素;从位置的特殊性上讲,对问题中的特殊位置应优先考虑,然后再排其他剩余位置.即采用“先特殊后一般”的解题原则.⑥调序法:当某些元素次序一定时,可用此法.解题方法是:先将n 个元素进行全排列有n n A 种,)(n m m 个元素的全排列有m m A 种,由于要求m 个元素次序一定,因此只能取其中的某一种排法,可以利用除法起到去调序的作用,即若n 个元素排成一列,其中m 个元素次序一定,共有m mn n A A 种排列方法.例如:n 个元素全排列,其中m 个元素顺序不变,共有多少种不同的排法?解法一:(逐步插空法)(m+1)(m+2)…n = n !/ m !;解法二:(比例分配法)mm n n A A /.⑦平均法:若把kn 个不同元素平均分成k 组,每组n 个,共有k knnn n k n kn A C C C )1(-⋅.例如:从1,2,3,4中任取2个元素将其平均分成2组有几种分法?答案:3!224=C (平均分组就用不着管组与组之间的顺序问题了)例如:将200名运动员平均分成两组,其中两名种子选手必在一组的概率是多少?答案:!2/102022818C C C P =注意:分组与插空综合.例如:n 个元素全排列,其中某m 个元素互不相邻且顺序不变,共有多少种排法?答案:mm mm n mn m n A A A /1+---⋅,当n – m+1 ≥m, 即m≤21+n 时有意义.⑧隔板法:常用于解正整数解组数的问题.例如:124321=+++x x x x 的正整数解的组数就可建立组合模型将12个完全相同的球排成一列,在它们之间形成11个空隙中任选三个插入3块摸板,把球分成4个组.每一种方法所得球的数目依次为4321,,,x x x x 显然124321=+++x x x x ,故(4321,,,x x x x )是方程的一组解.反之,方程的任何一组解),,,(4321y y y y ,对应着惟一的一种在12个球之间插入隔板的方式如下图所示故方程的解和插板的方法一一对应. 即方程的解的组数等于插隔板的方法数311C .注意:若为非负数解的x 个数,即用n a a a ,...,21中i a 等于1+i x ,有A a a a A x x x x n n =-+-+-⇒=+++1...11...21321,进而转化为求a 的正整数解的个数为1-+n n A C .1x 2x 34⑨定位问题:从n 个不同元素中每次取出k 个不同元素作排列规定某r 个元素都包含在内,并且都排在某r 个指定位置则有r k r n r r A A --.例如:从n 个不同元素中,每次取出m 个元素的排列,其中某个元素必须固定在(或不固定在)某一位置上,共有多少种排法?解:固定在某一位置上:11--m n A ;不在某一位置上:11---m n m n A A 或11111----⋅+m n m m n A A A(一类是不取出特殊元素a ,有mn A 1-,一类是取特殊元素a ,有从m-1个位置取一个位置,然后从n-1个元素中取m-1,这与用插空法解决是一样的)⑩指定元素排列组合问题.i. 从n 个不同元素中每次取出k 个不同的元素作排列(或组合),规定某r 个元素都包含在内 。

排列组合知识点总结

排列组合知识点总结

排列组合 二项式定理1,分类计数原理 完成一件事有几类方法,各类办法相互独立每类办法又有多种不同的办法(每一种都可以独立的完成这个事情) 分步计数原理 完成一件事,需要分几个步骤,每一步的完成有多种不同的方法 2,排列3,组合组合定义 从n 个不同元素中,任取m (m≤n)个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合组合数 从n 个不同元素中,任取m (m≤n)个元素的所有组合个数 m n Cmn C =!!()!n m n m -性质 mn C =n mn C - 11mmm n n n C C C -+=+排列组合题型总结 一. 直接法1 .特殊元素法例1用1,2,3,4,5,6这6个数字组成无重复的四位数,试求满足下列条件的四位数各有多少个(1)数字1不排在个位和千位(2)数字1不在个位,数字6不在千位。

分析:(1)个位和千位有5个数字可供选择25A ,其余2位有四个可供选择24A ,由乘法原理:25A 24A =240 2.特殊位置法(2)当1在千位时余下三位有35A =60,1不在千位时,千位有14A 种选法,个位有14A 种,余下的有24A ,共有14A 14A 24A =192所以总共有192+60=252 二 间接法当直接法求解类别比较大时,应采用间接法。

如上例中(2)可用间接法2435462A A A +-=252 Eg 有五张卡片,它的正反面分别写0与1,2与3,4与5,6与7,8与9,将它们任意三张并排放在一起组成三位数,共可组成多少个不同的三位数?分析::任取三张卡片可以组成不同的三位数333352A C ⨯⨯个,其中0在百位的有2242⨯C ⨯22A 个,这是不合题意的。

故共可组成不同的三位数333352A C ⨯⨯-2242⨯C ⨯22A =432Eg 三个女生和五个男生排成一排(1) 女生必须全排在一起 有多少种排法( 捆绑法) (2) 女生必须全分开 (插空法 须排的元素必须相邻) (3) 两端不能排女生 (4) 两端不能全排女生(5) 如果三个女生占前排,五个男生站后排,有多少种不同的排法二. 插空法 当需排元素中有不能相邻的元素时,宜用插空法。

排列组合知识点

排列组合知识点

排列组合知识点排列组合的相关知识点什么是排列组合•排列组合是数学中的一个重要概念,用于描述从指定元素集合中选择和排列元素的方法和规律。

排列•排列是指从n个不同元素中,按照一定的顺序取出m个元素,且每个元素只能取一次,所能得到的不同的有序数列的个数。

•使用排列的公式可以计算出排列的数量:–全排列:P(n) = n!,表示将n个元素全部进行排列的情况。

–部分排列:P(n,m) = n! / (n-m)!,表示从n个元素中取出m个元素进行排列的情况。

组合•组合是指从n个不同元素中,选择出m个元素,且不考虑元素之间的顺序,所能得到的不同的无序数列的个数。

•使用组合的公式可以计算出组合的数量:–C(n,m) = n! / (m! * (n-m)!),表示从n个元素中取出m 个元素进行组合的情况。

排列与组合的区别•在排列中,元素的顺序是重要的,而在组合中,元素的顺序是不重要的。

•例如从字母A、B、C中取出两个字母进行排列,可以得到AB、AC、BA、BC、CA、CB等6种情况。

而从A、B、C中取出两个字母进行组合,则只有AB、AC、BC三种情况。

应用场景•排列组合在许多领域都具有广泛的应用,如数学、计算机科学、概率与统计等。

•在数学中,排列组合是组合数学的分支之一,常用于解决计数问题。

•在计算机科学中,排列组合常被用于算法设计、数据压缩和密码学等领域。

•在概率与统计中,排列组合用于计算事件的可能性和统计分析。

总结•排列组合是数学中的重要概念,用于描述选择和排列元素的方法和规律。

•排列是有序的选择和排列元素的方式,而组合是无序的选择和排列元素的方式。

•排列组合在许多领域都有广泛的应用,如数学、计算机科学、概率与统计等。

排列组合知识点归纳总结

排列组合知识点归纳总结

排列组合知识点归纳总结
排列组合
1. 定义:排列是指将n个不同元素的一组按某种规律排成一列的过程;组合是指从n个不同元素中取任意多个元素一组组合,不考虑顺序称
作组合。

2. 公式:排列公式A(n,m):n(n-1)...(n-m+1);组合公式C(n,m):
n!/(m!(n-m)!)
3. 例题:
(1)从学校里的20个男生和10个女生中任取5人参加一次活动,这
次活动一共有多少种选择?
用排列的方法来求的话,总的选择数为
A(30,5)=30*29*28*27*26=653,800;用组合方法来求的话,总的选择数
为C(30,5)=30!/(5!*25!)=653,800。

(2)如何从10名男生中组成一个不相同的三人小组?
用排列的方法来求的话,总的选择数为A(10,3)=10*9*8=720;用组合
方法来求的话,总的选择数为C(10,3)=10!/(3!*7!)=120。

4. 实际应用:排列组合在数学中极为重要,其应用贯穿于数学当中的
很多领域,如余弦定理、泰勒公式、抛物线等。

诸如加密或者信息安全,以及网络安全等,其中也应用了排列组合的原理,以增强安全性。

同时,它还广泛会被用在生产调度、选号、玩游戏、医学等各种领域下。

排列组合知识点

排列组合知识点

排列组合知识点排列组合是高中数学中的一个重要内容,它是指在一组元素中选取部分元素进行排列或组合的方式。

通过对元素的不同排列和组合,可以得到不同的结果,用于解决一些与选择、分配、摆放等问题有关的情景。

本文将以3000字详细介绍排列组合的基本概念、性质以及应用领域。

一、排列的基本概念和性质1. 排列的定义排列是指从一组元素中取出若干元素进行重新排列得到不同的序列。

这个序列的顺序是明确的,不同的排列方式得到的结果是不同的。

2. 排列的计算方法(1)全排列:从n个不同元素中取出m个元素进行排列,计算全排列的个数可以使用阶乘运算:P(n,m) = n!/(n-m)!(2)部分排列:从n个不同元素中取出m个元素进行排列,计算部分排列的个数可以使用阶乘运算:A(n,m)=n!/(n-m)!3. 排列的性质(1)排列具有顺序性:即不同的元素排列顺序不同时,得到的排列结果是不同的。

(2)排列的个数与元素个数有关:排列的个数与所选取的元素个数有关,当选取的元素个数与原集合中的元素个数相同时,排列的个数达到最大值。

(3)排列的个数与元素的重复性有关:当元素中存在重复元素时,排列的个数会减少。

二、组合的基本概念和性质1. 组合的定义组合是指从一组元素中取出若干元素进行组合,组合的结果不考虑元素的顺序。

2. 组合的计算方法从n个不同元素中取出m个元素进行组合,计算组合的个数可以使用组合数公式:C(n,m) = n!/[m!(n-m)!]3. 组合的性质(1)组合不考虑元素的顺序:组合的结果不受元素排列顺序的影响。

(2)组合的个数与元素的重复性有关:当元素中存在重复元素时,组合的个数会减少。

(3)组合的个数与元素个数有关:组合的个数受选取的元素个数和原集合的元素个数的影响。

三、排列组合的应用领域1. 概率统计排列组合在概率统计中具有重要的应用,用于计算事件的可能性。

例如,计算从一组数字中选取若干数字,得到某个特定数字的概率。

《排列组合》知识点总结+典型例题+练习(含答案)

《排列组合》知识点总结+典型例题+练习(含答案)

排列组合考纲要求1.了解排列的意义,理解排列数公式,并能用它们解决一些简单的实际问题.2.了解组合的意义,理解组合数公式,并能用它们解决一些简单的实际问题.3. 了解组合数性质. 知识点一:排列1.排列的定义:从n 个不同元素中,任取m (m ≤n )个不同的元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.若m <n ,这样的排列叫选排列;若m =n ,这样的排列叫全排列.2.排列数公式:从n 个不同元素中取出m (m ≤n )个不同的元素的所有排列的个数,从n 个不同元素中取出m 元素的排列数,记作mn P .(1) P m n =n (n -1)(n -2) … (n -m +1); (2) ==!P n n n n (n -1)(n -2) … 3×2×1; (3) P m n =()!!n n m -; 规定:0!=1.知识点二:解决排列问题的基本方法.1. 优限法:即先排特殊的元素,或者特殊的位置.2.捆绑法:相邻问题,把相邻的元素看成一个整体,然后再参与其他元素的排列. 3.插空法:对元素互不相邻的排列问题,常常采用插空法,首先考虑不受限制的元素的排列,再将不相邻的元素插在前面元素排列的空位中.4. 排除法:即从正面难以考虑时可以考虑它的对立面,用全部结果数减去对立事件的方法数.5.枚举法:即将所有排列按照一定的规律,一一列举出来的方法. 知识点三:组合1.组合的定义:从n 个不同元素中,任取m (m ≤n )个不同的元素,组成一组,叫做从n 个不同元素中取出m 个元素的一个组合.2.组合数公式:从n 个不同元素中取出m (m ≤n )个不同的元素的所有组合的个数,从n个不同元素中取出m 元素的组合数,记作mn C .(1)()()()121P C P !mm nnmn n n n n m m ---+==;(2)()!C !!mn n m n m =-(n ,*N ∈m ,且m ≤n ).3. 组合数性质:(1) C =C m n mn n-; (2) 111C +C C m m m n n n +++=.知识点四:解组合问题的方法1.分类讨论:即分析题中的限定条件将所给元素按性质适当分类,并侧重其中一类,相应各类分类讨论,分类时要做到不重不漏.2.等价转化:即把所求问题转化为与之等价的组合问题去解决.3.排除法.4.枚举法.知识点五:计数需注意问题1.排列为有序问题,组合为无序问题,两者都是不重复问题.2.排列包括两个要素,一个是不同的元素,另一个是确定的顺序. 即排列可分成两步,第一步取出元素,第二步排列顺序.3.组合只有一个要素,就是取出元素即可,与元素的排列顺序无关.4.要注意区分分类和分步计数原理,排列和组合,元素允许重复是直接用计数原理,而元素不允许重复的是排列和组合问题. 题型一 排列定义例1 五个同学站一排照相,共多少种排法?分析:把5个元素放在5个位置上,相当于5的全排列,也共有120P 55=种排法. 解答:N =120P 55=种排法题型二 排列数公式例2 设x N *∈,10x <,(20)(21)(30)().x x x --⋅⋅⋅-=A. 1020P x -B. 1120P x -C. 1030P x -D. 1130P x -分析:排列数公式 P m n =n (n -1)(n -2)…(n -m +1)的特点: (1)等号右边最大的数是n ; (2)等号右边最小的数是n -m +1; (3)共有m 个连续自然数相乘. 解答:30n x =-,(30)(20)111m x x =---+=,∴ (20)(21)(30)x x x --⋅⋅⋅-=1130P x -题型三 解决排列应用题 例3 用1、2、3、4、5、6个数. (1)可以组成多少个五位数?(2)可以组成多少个没有重复数字的五位数? (3)可以组成多少个1和2相邻的六位数? (4)可以组成多少个1和2不相邻的六位数?分析:先考虑是用分类分步还是用排列组合,就是要观察一下数字是否允许重复,数字允许重复用分类分步计数原理,数字不允许重复用排列组合,数字相邻用捆绑法,数字不相邻用插空法.解答:(1)数字可以重复,所以用分步计数原理,每个数位上都有6个数字可选,因此共有5666666⨯⨯⨯⨯=个.(2)数字不可以重复,还有顺序,所以用排列,共720P 56==N 个.(3)1和2相邻,用捆绑法,先排1和2共22P 种,与余下的4个元素共有55P 种,则共有240P P 5522=个.(4)1和2不相邻,插空法,先排余下的4个元素44P 种,,再从5个空中挑选2个即25P 种,则共有480P P 2544=个.题型四 组合定义及组合数公式例4 从8名男生2名女生中任选5人, (1)共有多少种不同的选法? (2)恰好有一名女生的不同选法? 分析:选取元素干同一件事就组合问题.解答:(1)所有不同选法数就从10人中任选5人的组合数即252C 510=种.(2)从2名女生中任选1人的选法有12C 种,从8名男生中选出4人的选法有48C 种,由分步计数原理,恰有一名女生的选法有140C C 4812=种.题型五 组合数公式例5 (1)已知321818C C -=x x 则x =____. (2)=+97999899C C _____.分析:灵活运用组合数性质.解答:(1)根据题意得 23x x =-或(23)18x x +-=则3x =或7x =.(2)4950299100C C C C 21009810097999899=⨯===+. 题型六 解组合应用题例6 从8件不同的服装快递,2件不同的食品快递中任选5件. (1)至少有一件食品快递的不同选法总数? (2)最多有一件食品快递的不同选法总数?分析:解决带有限制条件的组合应用题要根据题意正确地分类或分步,巧妙运用直接法或间接法.解答:(1)法一(直接法)分两类情况求解,第一类恰有一件食品快递选法有4812C C 种,第二类恰有两件食品快递选法有3822C C 种,由分类计数原理得至少有一件食品快递的不同选法共有196C C C C 38224812=+种.法二(排除法)从10件快递中任选5件选法总数减去选出的5件全为服装快递的总数即至少有一件为食品快递的不同选法有55108196C C -=种.(2) 最多有一件食品快递可分为以下两类,第一类选出的五件快递中恰有一件食品快递有1428C C 种选法,第二类选出的五件快递中恰有0件食品快递,有0528C C 种选法,由分类计数原理知最多有一件食品快递的选法有14052828196C C C C +=种.一、选择题1.设*x N ∈,10x <,则(10)(11)(17)x x x --⋅⋅⋅-用排列数符号表示为( ).A.x x --1017PB.817P x -C. 717P x -D. 810P x -2.从4人中任选2人担任正副班长,结果共有( )种.A. 4B. 6C. 12D. 243.将5本不同的笔记本分配给4个三好学生(每个学生只能拥有一本笔记本),则所有的分法种数为( ).A. 5!B. 20C. 54D. 454.5名学生报考4所不同的学校(每名学生只能报考一所学校),则所有的报考方法有( )种.A. 5!B. 20C. 54D. 455.将6名优秀教师分配到4个班级,要求每个班有1名教师,则不同的分法种数有( )种.A. 46PB. 46C. 46CD. 646.为抗击郑州水患,某医院派3名医生和6名护士支援郑州,他们被分配到郑州的三所医院,每个医院分配1名医生和2名护士,共有( )种不同的分配方法.A. 24122613P P P P +B. 221124122613P P P P P P ++ C. 121212362412C C C C C C ⋅⋅⋅⋅⋅ D. 121212362412C C C C C C ⋅+⋅+⋅7.从4名男生和5名女生中任取3人,其中男生至多有一人,则不同的取法共有( )种 . A. 30 B. 50 C. 70 D. 808.某小组有男生7人,女生3人,选出3人中有1名男生,2名女生的不同选法有( )种.A. 310CB. 310PC. 1273C C ⋅D. 2173C C ⋅9.10件产品中有2件次品,任取3件至少有1件次品的不同抽法为( )种.A. 1229C C ⋅ B. 312828C C C +⋅ C. 33108C C - D. 12122928C C C C ⋅-⋅10.式子(1)(2)(15)16!x x x x ++⋅⋅⋅+(x N *∈,1x >)可表示为( ).A. 1615P +xB. 1615x C +C. 16x CD. 17x C妙记巧学,归纳感悟 二、判断题:1. 34567⨯⨯⨯⨯等于37P .( )2. 从甲、乙、丙、丁中任选两人做正、副班长,共有12种.( )3. 6个座位,3个人去坐,每人坐一个座位,则共36C 种.( ) 4. 6个点最多可确定26C 条直线.( ) 5. 6个点最多可确定26C 条有向线段.( ) 6. 某铁路有十个站点,共需准备210P 种车票.( )7. 某铁路有十个站点,有210P 种不同票价(同样的两个站点的票价相同).( ) 8. 某组学生约定,假期每两人互通一封信,共计12封,这个小组学生有5人.( ) 9. 把语文、数学、英语、美术、历史这五门课排在一天的五节课中,数学必须比美术先上的排法总数为44C 种.( )10.从3、5、7、9中任选两个,可以组成12个不同的分数值.( ) 妙记巧学,归纳感悟 三、填空题1.若57n n C C =,则n =_______..2.若56P 2=n ,则n =_______.3.从数字0、1、2、3、4、5中任选3个数,可组成______个无重复数字的三位偶数.4.将4本同样的书分给5名同学,每名同学至多分一本,而且书必须分完则不同的分法总数有______种.5.2名教师和5名学生中选3人去旅游,教师不能不去,也不能全去,则共有______种选法. 妙记巧学,归纳感悟 四、解答1.将5名学生排成一排照相,其中3名男生,2名女生,则以下情况各有多少种不同的排法?(1)甲乙必须相邻; (2)甲乙互不相邻; (3)甲乙必须站两端; (4)甲乙不在两端; (5)男女相间.2. 将6本不同的书,在下列情况下有多少种分法? (1)分成相等的三份; (2)平均分给甲乙丙三位同学;(3)分成三份,一份一本,一份两本,一份三本; (4)甲分一本,乙分两本,丙分三本;(5)如果一人分一本,一人分两本,一人分三本,分给甲乙丙. 高考链接1.(2018)某年级有四个班,每班组成一个篮球队,每队分别同其他三个队比赛一场,共需要比赛( )场.A. 4B. 6C. 5D. 7 2. 某段铁路共有9个车站,共需准备( )种不同的车票. A. 36 B. 42 C.64 D. 723. 甲袋中装有6个小球,乙袋中装有4个小球,所有小球颜色各不相同,现从甲袋中取两个小球,乙袋中取一个小球,则取出三个小球的不同取法共有( )种. A. 30 B. 60 C.120 D. 3604. 某学校举行元旦曲艺晚会,有5个小品节目,3个相声节目,要求相声节目不能相邻,则不同的出场顺序有______种. 积石成山10件产品中有2件次品任取3件,至多有一件次品的不同取法总数为( )种.A. 312828C C C +B. 1229C C C. 33108C C - D. 12122928C C C C -2. 从4名男生和5名女生中任取3人,其中至少有男生,女生各一名,则不同的取法有( )种.A. 140B. 84C. 70D. 353. 某医疗小队有护士7人,医生3人,任选3人的不同选法有( ).A. 310CB. 310PC. 1273C C ⋅D. 2173C C ⋅4. 将4名优秀教师分配到3个班级,每个班至少分到一名教师,则不同的分配方案有( )种.A. 72B. 36C. 18D. 125. 5个人站成一排照相,甲不站排头,乙不站排尾的排法总数有( )种. A. 36 B. 78 C. 60 D. 486. 5个人站成一排照相,甲站中间的排法总数有( )种. A .24 B. 36 C. 60 D. 487. 5个人站成2排照相,第一排2人,第二排3人则不同的排法总数有( )种. A. 48 B. 78 C. 60 D. 1208. 从1、2、3、4中任选2个,再从5、6、7、8、9中任选2个可组成无重复的四位数的个数是( )个.A .720 B. 2880 C. 1440 D .1449. 某工作小组有9名工人,3名优秀工人,各抽5人参加比赛,要求优秀工人都参加不同的选法共有( )种.A. 12B.15C. 30D. 36 10. 式子(1)(2)(15)1!x x x x x ++⋅⋅⋅+-()(x N *∈,1x >)可表示为( ).A. 1615P +xB. 1615x C +C.16x C D .17x C排列组合答案一、选择题二、判断题三、填空题1.12 解析:根据组合数性质1得5712n =+=2.8 解析:2(1)56n P n n =-= 8n ∴=3. 52 解析:分两类,第一类个位是零则有2520P =个;第二类,个位不是零,则有11124432P P P =个,所以共有20+32=52个.4.5 解析:只需在五人中选四人得到书即可,书相同无需排序,则有455C =种. 5.20 解析:老师不能不去,也不能全去,则只能去一人即122520C C =种.妙记巧学,归纳感悟:答案全,结果简. 四、解答题1.解:(1)把甲乙捆绑在一起有22P 种,与余下的3名学生共有44P 种,则甲乙必须相邻,有242448P P =种排法.(2)先把余下的3名学生排好有33P 种,再从形成的4个空中任选两个甲乙来排有24P 种,则甲乙不相邻有323472P P =种排法.(3)甲乙必须站两端,先排甲乙有22P 种,再把余下的3名学生排在余下的3个位置有33P 种,则甲乙必须站两端有323212P P =种排法.(4)先从3个位置中选2个甲乙来排有23P 种,再把余下的3名学生排在余下的3个位置有33P 种,则甲乙不在两端有233336P P =种. (5)男女相间则有323212P P =种排法.2. 解:(1)平均分堆问题.有2226423315C C C P =种方法. (2)平均分配问题,每人均分得2本.甲先取两本26C 种,乙再取两本24C 种,丙最后取两本22C 种,由分步计数原理得222642C C C =90种方法.(3)不平均分堆问题,第一份16C 种,第二份25C 种,第三份33C 种,则共有123653C C C =60种方法.(4)不平均分配问题,甲先选一本16C 种,乙再选两本25C 种,丙最后选三本33C 种,则共有123653C C C =60种方法.(5)不平均分配问题,且没有指定对象,先分三份123653C C C 种,再把这三份分给甲乙丙三人有33P 种,则共有种12336533360C C C P =方法.妙记巧学,归纳感悟: 排列组合来相遇,先组后排无争议. 高考链接1.B2.D3.B4.2400 解析:相声节目不相邻,则用插空法先排5个小品节目共有55P 种,五个小品节目共形成六个空选三个空插入相声节目有36P 种,则共有53562400P P =种.积石成山。

完整版)高考排列组合知识点归纳

完整版)高考排列组合知识点归纳

完整版)高考排列组合知识点归纳第四讲:排列组合一、分类计数原理与分步计数原理1.分类加法计数原理:对于一件事情,有两种不同的方案,第一类方案有m种不同的方法,第二类方案有n种不同的方法,那么完成这件事情共有m+n种不同的方法。

2.分步乘法计数原理:完成一件事情需要两个步骤,第一步有m种不同的方法,第二步有n种不同的方法,那么完成这件事情共有m×n种不同的方法。

二、排列数1.组合:从n个元素中取出m个元素,记作Cnmn!/m!(n-m)!2.排列:1)全排列:将n个元素全排列,记作Ann!2)从n个元素中取出m个元素,并将这m个元素全排列,记作Anmn!/ (n-m)!三、二项式定理a+b)nC n 0 a n b 0C n 1 a n-1 b 1 C n n abn1.二次项系数之和:Cnr2.展开式的第r项:Tr+1Cnr例题1:(x-1)4的展开式中的常数项是()A、6.B、4.C、-4.D、-6例题2:在二项式(x-2y) 5的展开式中,含x2y3的项的系数是()A、-20.B、-3.C、6.D、20 随堂训练:1、在二项式(x21)5的展开式中,含x4的项的系数是()A、-10.B、10.C、-5.D、52、(1/x-2x25的展开式中的常数项是()A、5.B、-5.C、10.D、-103、在二项式(x+3y)6的展开式中,含x2y4的项的系数是()A、45.B、90.C、135.D、2704、已知关于x的二项式(x+3an的展开式的二项式系数之和为32,常数项为80,则a的值为()A、1.B、±1.C、2.D、±25、(1-2x)(1-3x)4的展开式中,x2的系数等于?6、(ax21/2x-2)7的展开式中各项系数的和为243,则该展开式中常数项为?7、(x22)2x的展开式中常数项是70,则n=?若展开式(ax+)(2x+)5中常数项为-40,则a=?四、排列组合题型总结解决排列组合综合性问题的一般过程如下:1.认真审题,弄清要做什么事;2.确定采取分步还是分类,或分步与分类同时进行,确定分多少步及多少类;3.确定每一步或每一类是排列问题(有序)还是组合问题(无序),元素总数是多少及取出多少个元素;4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略。

排列组合基础的知识点

排列组合基础的知识点

排列组合基础知识一、两大原理1.加法原理(1)定义:做一件事,完成它有n 类方法,在第一类方法中有1m 中不同的方法,第二类方法中有2m 种不同的方法......第n 类方法中n m 种不同的方法,那么完成这件事共有n m m m N +++=...21种不同的方法。

(2)本质:每一类方法均能独立完成该任务。

(3)特点:分成几类,就有几项相加。

2.乘法原理(1)定义做一件事,完成它需要n 个步骤,做第一个步骤有1m 中不同的方法,做第二个步骤有2m 种不同的方法......做第n 个步骤有n m 种不同的方法,那么完成这件事共有n m m m N ...21=种不同的方法。

(2)本质:缺少任何一步均无法完成任务,每一步是不可缺少的环节。

(3)特点:分成几步,就有几项相乘。

二、排列组合1.排列(1)定义:从n 个不同的元素中,任取m 个(n m ≤)元素,按照一定的顺序排成一列,叫做从n 个不同的元素中,选取m 个元素的一个排列,排列数记为m n P ,或记为m n A 。

(2)使用排列的三条件①n 个不同元素;②任取m 个;③讲究顺序。

(3)计算公式)!(!)1)....(2)(1(m n n m n n n n A m n -=+---= 尤其:!,,110n P n P P n n n n ===2.组合(1)定义:从n 个不同的元素中,任取m 个(n m ≤)元素并为一组,叫做从n 个不同的元素中,选取m 个元素的一个组合,组合数记为m n C 。

(2)使用三条件①n 个不同元素;②任取m 个;③并为一组,不讲顺序。

(3)计算公式12)...1()1)...(1()!(!!⨯-+--=-==m m m n n n m n m n P P C m m m n m n尤其:m n n m n n n n n C C C n C C -====,1,,110例1.由0,1,2,3,4,5可以组成多少个没有重复数字的五位奇数?A.226B.246C.264D.288解析:由于首位和末位有特殊要求,应优先安排,以免不合要求的元素占了这两个位置,末位有13C 种选择,然后排首位,有14C 种选择,左后排剩下的三个位置,有34A 种选择,由分步计数原理得:13C 14C 34A =288例2.旅行社有豪华游5种和普通游4种,某单位欲从中选择4种,其中至少有豪华游和普通游各一种的选择有()种。

排列组合知识点总结

排列组合知识点总结

排列组合知识点总结一、排列组合的基本概念1.1 排列的概念排列是指从给定的元素中按照一定的顺序选取若干元素的方式。

例如,从元素集合{a, b, c}中选择2个元素,按照顺序选择的话可能得到的排列有ab, ac, ba, bc, ca, cb。

可以看出,排列与元素的顺序有关。

通常情况下,从n个元素中取出m个元素,按照顺序排列的方式有n*(n-1)*(n-2)* ... *(n-m+1)种。

1.2 组合的概念组合是指从给定的元素中按照一定的规则选取若干元素的方式,但是不考虑元素的顺序。

例如,从元素集合{a, b, c}中选择2个元素,组合的情况有ab, ac, bc,并且ba, ca, cb这三种情况都属于ab, ac, bc中的一种。

通常情况下,从n个元素中取出m个元素,不考虑顺序的组合方式有C(n,m) = n! / (m! * (n-m)!)种。

1.3 排列组合的关系排列和组合是紧密相关的,它们之间的关系可以通过以下公式表示:A(n,m) = n! / (n-m)!C(n,m) = A(n,m) / m!也就是说,排列是组合乘以选取的元素顺序的情况。

二、排列组合的性质2.1 基本性质(1)排列和组合的个数都是离散的,不能是负数,也不能是小数。

(2)从n个元素中取出m个元素的排列个数一定是比组合个数多的,即A(n,m) > C(n,m)。

2.2 乘法原理乘法原理是排列组合问题中的重要原理,它指出,如果一个问题可以分解为多个步骤,每个步骤有若干种选择,那么整个问题的解法个数就等于各个步骤选择方式的乘积。

例如,如果有4个选择项,分别为A、B、C、D,每个选择项都有3种情况,那么根据乘法原理,一共有3*3*3*3=81种选择方式。

2.3 加法原理加法原理是排列组合问题中的另一个重要原理,它指出,如果一个问题可以分解为多个独立的子问题,那么整个问题的解法个数就等于各个子问题解法个数之和。

例如,从n个元素中取出m个元素的排列个数等于从n个元素中取出m个元素放在前面或者放在后面的情况之和。

排列组合知识点总结及题型归纳

排列组合知识点总结及题型归纳

排列组合知识点总结及题型归纳嘿!今天咱们来好好聊聊排列组合这个让人又爱又恨的知识点呀!首先呢,咱们得搞清楚啥是排列,啥是组合。

哎呀呀,简单来说,排列就是从一堆东西里选出来,然后再排个顺序;组合呢,只要选出来就行,不管顺序啦!一、排列的知识点1. 排列的定义:从n 个不同元素中取出m(m≤n)个元素的排列数,记为A(n,m) 。

哇,这个公式可重要啦,A(n,m) = n! / (n - m)! ,记住没?2. 排列数的计算:咱们来算个例子,比如说从5 个不同的元素里选3 个进行排列,那就是A(5,3) = 5! / (5 - 3)! = 60 呀!二、组合的知识点1. 组合的定义:从n 个不同元素中取出m(m≤n)个元素的组合数,记为C(n,m) 。

公式是C(n,m) = n! / [m!(n - m)!] 。

2. 组合数的计算:就像从6 个不同元素里选4 个的组合数,C(6,4) = 6! / [4!(6 - 4)!] = 15 呢!三、常见的排列组合题型1. 排队问题:比如说,几个人排队,有多少种排法?这就得考虑有没有特殊位置或者特殊的人啦!2. 分组问题:把一些东西分成不同的组,要注意平均分和不平均分的情况哟!3. 分配问题:把人或者物品分配到不同的地方,这里面可藏着不少小陷阱呢!四、解题技巧1. 优先考虑特殊元素或特殊位置:哎呀呀,这可是解题的关键呀!2. 捆绑法:有些元素必须在一起,那就把它们捆起来当成一个整体来处理。

3. 插空法:有些元素不能相邻,那就先排好其他的,再把不能相邻的插进去。

总之呢,排列组合虽然有点复杂,但是只要咱们掌握了这些知识点和题型,多做几道题练习练习,就一定能搞定它!哇,加油呀!。

排列组合知识点总结材料+典型例题及问题详解解析汇报

排列组合知识点总结材料+典型例题及问题详解解析汇报

排列组合知识点总结+ 典型例题及答案解析1.加法原理:做一件事有n类方法,那么完成这件事的方法数等于各类方法数相加.2.乘法原理:做一件事分n步完成,那么完成这件事的方法数等于各步方法数相乘.注:做一件事时,元素或位置允许重复使用,求方法数时常用根本原理求解.二.排列:从n个不同元素中,任取m (mwn)个元素,根据一定的顺序排成一列,叫做从n个不同元素中取出m 个元素的一个排列,所有排列的个数记为A m.1.公式:1. Am =n(n-1'(n.2 )••…(n —m+1)=」^科之期〞21,那20m 那ENn - m !2.4=次=旃T)(阀-2卜21规定:0』1(1) n! =n x(n-1)!,( n+1)M n! =(n+1)!(2) n 父n! =[(n+1)-1]父n! = (n + 1)M n!—n! = (n+1)!—n!;n n 1 -1n 1111(n 1)! "(n 1)! "(n 1)! "(n 1)! "n! "(n 1)!三.组合:从n个不同元素中任取m (me n)个元素并组成一组,叫做从n个不同的m元素中任取m个元素的组合数,记作Cn小〞m:n-m〞右心眼…".规定:eg1.公式:c m春2.组合数性质:cm =cr, cm +cn m==c:+ c +c +……+cn =2n①g er;②O&+琛;③©"密;④4cyy:什c r/r .c r r .C r_c r1-c r .c rr .C r_c r1-c rr .C r_c r1注. c r C r1C r2C n1 C n- C r1C r1C r2C n3.口- C r2C r2C n 二.口- C n 1假设c nm1=C n m2那么m1二m2 或m〔+m2 =n四.处理排列组合应用题1.①明确要完成的是一件什么事(审题)②有序还是无序③分步还是分类.2.解排列、组合题的根本策略(1)两种思路:①直接法;②间接法:对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉.这是解决排列组合应用题时一种常用的解题方法.(2)分类处理:当问题总体不好解决时,常分成假设干类,再由分类计数原理得出结论.注意: 分类不重复不遗漏.即:每两类的交集为空集,所有各类的并集为全集.(3)分步处理:与分类处理类似,某些问题总体不好解决时,常常分成假设干步,再由分步计数原理解决.在处理排列组合问题时,常常既要分类,又要分步.其原那么是先分类, 后分步.(4)两种途径:①元素分析法;②位置分析法.3.排列应用题:(1)穷举法(列举法):将所有满足题设条件的排列与组合逐一列举出来;(2)、特殊元素优先考虑、特殊位置优先考虑;(3).相邻问题:捆邦法:对于某些元素要求相邻的排列问题,先将相邻接的元素“捆绑〞起来,看作一“大〞元素与其余元素排列,然后再对相邻元素内部进行排列.(4)、全不相邻问题,插空法:某些元素不能相邻或某些元素要在某特殊位置时可采用插空法.即先安排好没有限制条件的元素,然后再将不相邻接元素在已排好的元素之间及两文档大全端的空隙之间插入.(5)、顺序一定,除法处理.先排后除或先定后插解法一:对于某几个元素按一定的顺序排列问题,可先把这几个元素与其他元素一同进行全排列,然后用总的排列数除于这几个元素的全排列数.即先全排,再除以定序元素的全排列.解法二:在总位置中选出定序元素的位置不参加排列,先对其他元素进行排列,剩余的几个位置放定序的元素,假设定序元素要求从左到右或从右到左排列, 那么只有1种排法;假设不要求, 那么有2种排法;(6) “小团体〞排列问题一一采用先整体后局部策略对于某些排列问题中的某些元素要求组成“小团体〞时,可先将“小团体〞看作一个元素与其余元素排列,最后再进行“小团体〞内部的排列.(7)分排问题用“直排法〞把元素排成几排的问题,可归纳为一排考虑,再分段处理.(8).数字问题(组成无重复数字的整数)① 能被2整除的数的特征:末位数是偶数;不能被2整除的数的特征:末位数是奇数.②能被3整除的数的特征:各位数字之和是3的倍数;③能被9整除的数的特征:各位数字之和是9的倍数④能被4整除的数的特征:末两位是4的倍数.⑤能被5整除的数的特征:末位数是0或5.⑥能被25整除的数的特征:末两位数是25, 50, 75.⑦能被6整除的数的特征:各位数字之和是3的倍数的偶数.4.组合应用题:(1). “至少〞“至多〞问题用间接排除法或分类法:(2). “含〞与“不含〞用间接排除法或分类法:3.分组问题:均匀分组:分步取,得组合数相乘,再除以组数的阶乘.即除法处理.非均匀分组:分步取,得组合数相乘.即组合处理.混合分组:分步取,得组合数相乘,再除以均匀分组的组数的阶乘.4.分配问题:定额分配:〔指定到具体位置〕即固定位置固定人数,分步取,得组合数相乘.随机分配:〔不指定到具体位置〕即不固定位置但固定人数,先分组再排列,先组合分堆后排,注意平均分堆除以均匀分组组数的阶乘.5.隔板法:不可分辨的球即相同元素分组问题例1.电视台连续播放6个广告,其中含4个不同的商业广告和2个不同的公益广告, 要求首尾必须播放公益广告,那么共有种不同的播放方式〔结果用数值表示〕.解:分二步:首尾必须播放公益广告的有A2种;中间4个为不同的商业广告有A4种,从而应当填A22• A i4= 48.从而应填48.例3.6人排成一行,甲不排在最左端,乙不排在最右端,共有多少种排法解一:间接法:即A6 -A5 -A5 • A4 =720 -2 120 24 =504解二:〔1〕分类求解:按甲排与不排在最右端分类.〔1〕甲排在最右端时,有A5种排法;〔2〕甲不排在最右端〔甲不排在最左端〕时,那么甲有A4种排法,乙有A4种排法,其他人有A4种排法,共有A4A4A:种排法,分类相加得共有A5+A A4 A4 =504 种排法例.有4个男生,3个女生,高矮互不相等,现将他们排成一行,要求从左到右,女生从矮到高排列,有多少种排法分析一:先在7个位置上任取4个位置排男生,有A7种排法.剩余的3个位置排女生,因要求“从矮到高〞,只有1种排法,故共有A7 • 1=840种.1.从4台甲型和5台乙型电视机中任取3台,其中至少要甲型和乙型电视机各一台,那么不同的取法共有解析1:逆向思考,至少各一台的反面就是分别只取一种型号,不取另一种型号的电视机, 故不同的取法共有C;-C3 -C; = 70种,选.C解析2:至少要甲型和乙型电视机各一台可分两种情况:甲型1台乙型2台;甲型2台乙型1台;故不同的取法有C;C:+C5c2 =70台,选C.2.从5名男生和4名女生中选出4人去参加辩论比赛.31)如果4人中男生和女生各选2人,有种选法;42)如果男生中的甲与女生中的乙必须在内,有一种选法;53)如果男生中的甲与女生中的乙至少要有1人在内,有一种选法;(4)如果4人中必须既有男生又有女生,有种选法.分析:此题考查利用种数公式解答与组合相关的问题.由于选出的人没有地位的差异,所以是组合问题. 解:(1)先从男生中选2人,有C;种选法,再从女生中选2人,有C:种选法,所以共有C;C:=60 (种);(2)除去甲、乙之外,其余2人可以从剩下的7人中任意选择,所以共有C;C«21 (种);(3)在9人选4人的选法中,把甲和乙都不在内的去掉,得到符合条件的选法数:C:-C〞91〔种〕;直接法,那么可分为3类:只含甲;只含乙;同时含甲和乙,得到符合条件的方法数C1 c 3 c 1C 3c 2 c 2 c 3 c 3c 2 .C1 C7 C1C7 C2C7 -C7 C7 C7 -91.〔4〕在9人选4人的选法中,把只有男生和只有女生的情况排除掉,得到选法总数C4—C4 —C:=120 〔种〕.直接法:分别根据含男生1、2、3人分类,得到符合条件的选法为C;C H C;C2+C;C4=120〔种〕.1.6个人分乘两辆不同的汽车,每辆车最多坐4人,那么不同的乘车方法数为〔〕A. 40B. 50C. 60D. 70[解析]先分组再排列,一组2人一组4人有C6= 15种不同的分法;两组各3人共有又=10A种不同的分法,所以乘车方法数为25X 2 = 50,应选B.2.有6个座位连成一排,现有3人就坐,那么恰有两个空座位相邻的不同坐法有〔〕A 36 种B. 48 种C . 72 种D. 96 种[解析]恰有两个空座位相邻,相当于两个空位与第三个空位不相邻,先排三个人,然后插空,从而共66=72种排法,应选C.3.只用1,2,3三个数字组成一个四位数,规定这三个数必须同时使用,且同一数字不能相邻出现,这样的四位数有〔〕B. 9 个C . 18 个 D. 36 个[解析]注意题中条件的要求,一是三个数字必须全部使用,二是相同的数字不能相邻,选四个数字共有C3=3〔种〕选法,即1231,1232,1233,而每种选择有&xd = 6〔种〕排法,所以共有3X6= 18〔种〕情况,即这样的四位数有18个.4.男女学生共有8人,从男生中选取2人,从女生中选取1人,共有30种不同的选法,其中女生有〔〕A. 2人或3人B . 3人或4人C.3人D.4人[解析]设男生有n人,那么女生有〔8—n〕人,由题意可得CnC1 n = 30,解得n= 5或n = 6,代入验证,可知女生为2人或3人.5.某幢楼从二楼到三楼的楼梯共10级,上楼可以一步上一级,也可以一步上两级,假设规定从二楼到三楼用8步走完,那么方法有〔〕A 45 种B. 36 种C . 28 种D. 25 种[解析]由于10 + 8的余数为2,故可以肯定一步一个台阶的有6步,一步两个台阶的有2 步,那么共有C2=28种走法.6.某公司招聘来8名员工,平均分配给下属的甲、乙两个部门,其中两名英语译人员不能分在同一个部门,另外三名电脑编程人员也不能全分在同一个部门,那么不同的分配方案共有〔〕A 24 种B. 36 种C . 38 种D. 108 种[解析]此题考查排列组合的综合应用,据题意可先将两名译人员分到两个部门,共有2 种方法,第二步将3名电脑编程人员分成两组,一组1人另一组2人,共有C1种分法,然后再分到两部门去共有C36种方法,第三步只需将其他3人分成两组,一组1人另一组2人即可,由于是每个部门各4人,故分组后两人所去的部门就已确定,故第三步共有C3种方法,由分步乘法计数原理共有2〔1大点=36〔种〕.7.集合A= {5}, B= {1,2} , C= {1,3,4},从这三个集合中各取一个元素构成空间直角坐标系中点的坐标,那么确定的不同点的个数为〔〕A 33B. 34 C . 35D. 36[解析]①所得空间直角坐标系中的点的坐标中不含1的有6= 12个;②所得空间直角坐标系中的点的坐标中含有1个1的有C1 - A3 + A3=18个;③所得空间直角坐标系中的点的坐标中含有2个1的有0 = 3个.故共有符合条件的点的个数为12+18+3= 33个,应选A.8.由1、2、3、4、5、6组成没有重复数字且1、3都不与5相邻的六位偶数的个数是〔〕A. 72B. 96 C . 108D. 144[解析]分两类:假设1与3相邻,有A• CA2A2 = 72〔个〕,假设1与3不相邻有A3Y = 36〔个〕故共有72+36= 108个.9.如果在一周内〔周一至周日〕安排三所学校的学生参观某展览馆,每天最多只安排一所学校,要求甲学校连续参观两天,其余学校均只参观一天,那么不同的安排方法有〔〕A. 50 种B. 60 种C . 120 种D. 210 种[解析]先安排甲学校的参观时间,一周内两天连排的方法一共有6种:〔1,2〕、〔2,3〕、〔3,4〕、〔4,5〕、〔5,6〕、〔6,7〕,甲任选一种为C6,然后在剩下的5天中任选2天有序地安排其余两所学校参观,安排方法有戌种,根据分步乘法计数原理可知共有不同的安排方法CL A5=120种, 应选C.10.安排7位工作人员在5月1日到5月7日值班,每人值班一天,其中甲、乙二人都不能安排在5月1日和2日,不同的安排方法共有种.〔用数字作答〕[解析]先安排甲、乙两人在后5天值班,有A2=20〔种〕排法,其余5人再进行排列,有点=120〔种〕排法,所以共有20X 120= 2400〔种〕安排方法.11.今有2个红球、3个黄球、4个白球,同色球不加以区分,将这9个球排成一列有种不同的排法.〔用数字作答〕[解析]由题意可知,因同色球不加以区分,实际上是一个组合问题,共有C9 <5 <3= 1260〔种〕排法.12.将6位志愿者分成4组,其中两个组各2人,另两个组各1人,分赴世博会的四个不同场馆效劳,不同的分配方案有种〔用数字作答〕.……八,,—?a一,,工心,,口八।八[解析]先将6名志愿者分为4组,共有天■种分法,再将4组人员分到4个C2 C2不同场馆去,共有A4种分法,故所有分配方案有:一忌一, A4= 1 080种.13.要在如下图的花圃中的5个区域中种入4种颜色不同的花,要求相邻区域不同色,有种不同的种法〔用数字作答〕.[解析]5有4种种法,1有3种种法,4有2种种法.假设1、3同色,2有2种种法,假设1、3不同色,2有1种种法,.•.有4X 3X2X〔1 X2+1X1〕=72种.14.将标号为1,2, 3, 4, 5, 6的6张卡片放入3个不同的信封中.假设每个信封放2张,其中标号为1, 2的卡片放入同一信封,那么不同的方法共有〔Q 36种〔酚54种0;种方法;其他四封信放入两个信封,每个信封两应选B.15 .某单位安排7位员工在10月1日至7日值班,每天1人,每人值班1天,假设7位员工中的甲、乙排在相邻两天,丙不排在 10月1日,丁不排在10月7日,那么不同的安排方案 共有A. 504 种B. 960 种C. 1008 种D. 1108 种解析:分两类:甲乙排1、2号或6、7号 共有2MA 2A :A :种方法甲乙排中间,丙排7号或不排7号,共有4A ;〔A :+A 3A 3A ;〕种方法故共有1008种不同的排法排列组合二项式定理1,分类计数原理完成一件事有几类方法,各类方法相互独立每类方法又有多种不同的方法〔每一种都可以 独立的完成这个事情〕分步计数原理完成一件事,需要分几个步骤,每一步的完成有多种不同的方法2,排列排列定义:从 n 个不同元素中,任取 m 〔m< n 〕个元素〔被取出的元素各不相同〕,根据一定的 顺序排成一列,叫做从 n 个不同元素中取出 m 个元素的一个排列.排列数定义;从 n 个不同元素中,任取 m 〔me n 〕个元素的所有排列的个数 A :〔A 〕 12 种〔B 〕 18 种 【解析】标号1,2的卡片放入同一封信有 与纪0;= 13个有工〞种方法,共有「三1一,种排列组合题型总结一. 直接法1 .特殊元素法例1用1, 2, 3, 4, 5, 6这6个数字组成无重复的四位数,试求满足以下条件的四位数各有多少个(1)数字1不排在个位和千位(2)数字1不在个位,数字6不在千位.分析:(1)个位和千位有5个数字可供选择A ;,其余2位有四个可供选择AJ 由乘法原理:A ;A :=240 2 .特殊位置法(2)当1在千位时余下三位有A 3=60, 1不在千位时,千位有A 4种选法,个位有A 4种,余下的有 心 共有A 4 A 4A 42 =192所以总共有 192+60=252 二 间接法 当直接法求解类别比拟大时,应采用间接法.如上例中(2)可用间接法A4-2A3 + Af=252八一 m n!公式 A = 规定0! =13,组合组合定义 从n 个不同元素中,任取 m (m< n)个元素并成一组,叫做从n 个不同元素中取出m 个元素 的一个组合组合数 从n 个不同元素中,任取 m (m< n)个元素的所有组合个数m C m _ n!C n m!(n -m)!mn -m性质C =C mm m 1 C ni =C n C n例:有五张卡片,它的正反面分别写0与1, 2与3, 4与5, 6与7, 8与9,将它们任意三张并排放在一起组成三位数,共可组成多少个不同的三位数分析::任取三张卡片可以组成不同的三位数C;M23 MA;个,其中0在百位的有C:M22M A;个,这是不合题意的.故共可组成不同的三位数C3 23A;-C2 22 A;=432例:三个女生和五个男生排成一排(1)女生必须全排在一起有多少种排法(捆绑法)(2)女生必须全分开(插空法须排的元素必须相邻)(3)两端不能排女生(4)两端不能全排女生(5)如果三个女生占前排,五个男生站后排,有多少种不同的排法二. 插空法当需排元素中有不能相邻的元素时,宜用插空法.例3 在一个含有8个节目的节目单中,临时插入两个歌唱节目,且保持原节目顺序,有多少中插入方法分析:原有的8个节目中含有9个空档,插入一个节目后,空档变为10个,故有A;M A;0=100中插入方法.三. 捆绑法当需排元素中有必须相邻的元素时,宜用捆绑法.1.四个不同的小球全部放入三个不同的盒子中,假设使每个盒子不空,那么不同的放法有种(CjA;),2,某市植物园要在30天内接待20所学校的学生参观,但每天只能安排一所学校,其中有一所学校人数较多,要安排连续参观2天,其余只参观一天,那么植物园30天内不同的安排方法有(C29-A29)(注意连续参观2天,即需把30大种的连续两天捆绑看成一天作为一个整体来选有C;9其余的就是19所学校选28天进行排列)四. 阁板法名额分配或相同物品的分配问题,适宜采阁板用法例5某校准备组建一个由12人组成篮球队,这12个人由8个班的学生组成,每班至少一人,名额分配方案共种.分析:此例的实质是12个名额分配给8个班,每班至少一个名额,可在12个名额种的11个空当中插入实用标准7块闸板,一种插法对应一种名额的分配方式,故有C:i种五平均分推问题例:6本不同的书按一下方式处理,各有几种分发(1)平均分成三堆,(2)平均分给甲乙丙三人(3)一堆一本,一堆两本,一对三本(4)甲得一本,乙得两本,丙得三本(一种分组对应一种方案)(5)一人的一本,一人的两本,一人的三本分析:1,分出三堆书(a i,a2),(a 3,a,,(a5,a.由顺序不同可以有8=6种,而这6种分法只算一种分堆222方式,故6本不同的书平均分成三堆方式有C6c3c2 =15种A2,六本不同的书,平均分成三堆有x种,平均分给甲乙丙三人c2c4c2就有x A3种12331233,c6c5c 3 5, A3 c6c5c 3五.合并单元格解决染色问题Eg如图1, 一个地区分为5个行政区域,现给地图着色,要求相邻区域不得使用同一颜色,现有四种颜色可供选择,那么不同的着色方法共有一种(以数字作答).分析:颜色相同的区域可能是2、3、4、5. 下面分情况讨论:(i)当2、4颜色相同且3、5颜色不同时,将2、4合并成一个单元格,此时不同的着色方法相当于4个元2,4素①③⑤的全排列数A44〔ii〕当2、4颜色不同且3、5颜色相同时,与情形〔i 〕类似同理可得A种着色法.〔iii〕当2、4 G与3.g别同色时,将2、4; 3、5分别合并,这样仅有三个单元格①从4种颜色中选3种来着色这三个单元格,计有C4,A;种方法• 由加法原理知:不同着色方法共有2 A4+C3 A3=48+24=72 〔种〕练习1 〔天津卷〔文〕〕将3种作物种植在如图的5块试验田里,每快种植一种作物且相邻的试验田不能种植同一作物,不同的种植方法共种〔以数字作答〕〔72〕2.某城市中央广场建造一个花圃,花圃6分为个局部〔如图3〕,现要栽种4种颜色的花,每局部栽种一种且相邻局部不能栽种同一样颜色的话,不同的栽种方法有种〔以数字作答〕.〔120〕3.如图4,用不同的5种颜色分别为ABCD比局部着色,相邻局部不能用同一颜色,但同一种颜色可以反复使用也可以不用,那么符合这种要求的不同着色种数.〔 540〕4.如图5:四个区域坐定4个单位的人,有四种不同颜色的服装,每个单位的观众必须穿同种颜色的服装, 且相邻两区域的颜色不同,不相邻区域颜色相同,不相邻区域颜色相同与否不受限制,那么不同的着色方法5 .将一四棱锥〔图6〕的每个顶点染一种颜色,并使同一条棱的两端点异色,假设只有五种颜色可供使用,那么不同的染色方法共 种〔420〕 是 种〔84〕图5。

(完整版)排列组合知识点总结+典型例题及答案解析

(完整版)排列组合知识点总结+典型例题及答案解析

排列组合知识点总结+典型例题及答案解析一.基本原理1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。

2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。

注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。

二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一.m n mn A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从1.公式:1.()()()()!!121m n n m n n n n A m n -=+---=……2.规定:0!1=(1)!(1)!,(1)!(1)!n n n n n n =⨯-+⨯=+ (2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ⨯=+-⨯=+⨯-=+-; (3)111111(1)!(1)!(1)!(1)!!(1)!n n n n n n n n n +-+==-=-+++++ 三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。

1. 公式: ()()()C A A n n n m m n m n m nmn m mm ==--+=-11……!!!! 10=n C 规定:组合数性质:.2 n n n n n m n m n m n m n n m n C C C C C C C C 21011=+++=+=+--……,, ①;②;③;④11112111212211r r r r r r r r r r r r r r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-+++++=++++=+++=L L L 注:若12m m 1212m =m m +m n n n C C ==则或四.处理排列组合应用题 1.①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。

排列组合知识点总结

排列组合知识点总结

排列组合知识点总结排列组合是数学中一个重要的分支,它在解决许多实际问题中都有着广泛的应用,比如抽奖、选座位、安排比赛等等。

下面让我们一起来详细了解一下排列组合的相关知识点。

一、基本概念1、排列从 n 个不同元素中,任取 m(m≤n)个元素按照一定的顺序排成一列,叫做从 n 个不同元素中取出 m 个元素的一个排列。

根据排列的定义,两个排列相同,当且仅当两个排列的元素完全相同,且元素的排列顺序也相同。

排列数用 A(n, m) 表示。

2、组合从 n 个不同元素中,任取 m(m≤n)个元素并成一组,叫做从 n 个不同元素中取出 m 个元素的一个组合。

组合数用 C(n, m) 表示。

二、排列数与组合数的计算公式1、排列数公式A(n, m) = n(n 1)(n 2)…(n m + 1) = n! /(n m)!2、组合数公式C(n, m) = n! / m!(n m)!三、排列组合的基本性质1、排列的性质(1)A(n, n) = n!(2)A(n, m) = nA(n 1, m 1)2、组合的性质(1)C(n, 0) = C(n, n) = 1(2)C(n, m) = C(n, n m)四、解决排列组合问题的常用方法1、特殊元素优先法对于存在特殊元素的问题,优先考虑特殊元素的排列或组合。

2、捆绑法当要求某些元素必须相邻时,可以将这些元素看作一个整体,与其他元素一起进行排列,然后再考虑这些相邻元素的内部排列。

3、插空法当要求某些元素不能相邻时,先将其他元素排列好,然后在这些元素之间及两端的空位中插入不能相邻的元素。

4、间接法有些问题直接求解较为复杂,可以先求出总的排列或组合数,然后减去不符合要求的排列或组合数。

5、分类讨论法当问题包含多种情况时,需要对不同情况进行分类讨论,然后将各种情况的结果相加。

五、常见的排列组合问题类型1、排队问题例如,n 个人排成一排,共有多少种不同的排法;某些人必须相邻或不能相邻的排法等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

排列组合 二项式定理
1,分类计数原理 完成一件事有几类方法,各类办法相互独立每类办法又有多种不同的办法(每一种都可以独立的完成这个事情) 分步计数原理 完成一件事,需要分几个步骤,每一步的完成有多种不同的方法 2,排列
出的元素各不相同),按照一定的顺序排成一列,叫做从n 个不同
3,组合
组合定义 从n 个不同元素中,任取m (m ≤n )个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合
组合数 从n 个不同元素中,任取m (m ≤n )个元素的所有组合个数
m n
C
m
n C =
!
!()!
n m n m -
性质 m
n C =n m
n C -
1
1m m m n n n C C C -+=+
排列组合题型总结 一. 直接法
1 .特殊元素法
例1用1,2,3,4,5,6这6个数字组成无重复的四位数,试求满足下列条件的四位数各有多少个 (1)数字1不排在个位和千位
(2)数字1不在个位,数字6不在千位。

分析:(1)个位和千位有5个数字可供选择
25A ,其余
2位有四个可供选择
24A ,由乘法原理:
25A 24A =240
2.特殊位置法
(2)当1在千位时余下三位有35A =60,1不在千位时,千位有14A 种选法,个位有1
4A 种,余下的

24A ,共有14A 1
4A 24A =192所以总共有192+60=252
二 间接法当直接法求解类别比较大时,应采用间接法。

如上例中(2)可用间接法
2
435462A A A +-=252
Eg 有五张卡片,它的正反面分别写
0与1,2与3,4与5,6与7,8与9,
将它们任意三张并排放在一起组成三位数,共可组成多少个不同的三位数?
分析::任取三张卡片可以组成不同的三位数3
33352A C ⨯⨯个,其中0在百
位的有22
4
2⨯C ⨯22A 个,这是不合题意的。

故共可组成不同的三位数333352A C ⨯⨯-22
4
2⨯C ⨯22A =432
Eg 三个女生和五个男生排成一排
(1) 女生必须全排在一起 有多少种排法( 捆绑法) (2) 女生必须全分开 (插空法 须排的元素必须相邻) (3) 两端不能排女生 (4) 两端不能全排女生
(5) 如果三个女生占前排,五个男生站后排,有多少种不同的排法
二. 插空法 当需排元素中有不能相邻的元素时,宜用插空法。

例3 在一个含有8个节目的节目单中,临时插入两个歌唱节目,且保持原节目顺序,有多少中插
入方法?
分析:原有的8个节目中含有9个空档,插入一个节目后,空档变为10个,故有1
101
9A A ⨯=100中
插入方法。

三. 捆绑法 当需排元素中有必须相邻的元素时,宜用捆绑法。

1.四个不同的小球全部放入三个不同的盒子中,若使每个盒子不空,则不同的放法有 种(3324
A C )
,2,某市植物园要在30天内接待20所学校的学生参观,但每天只能安排一所学校,其中有一所学校人数较多,要安排连续参观2天,其余只参观一天,则植物园30天内不同的安排方法有(19281
29
A C ⋅)(注意
连续参观2天,即需把30天种的连续两天捆绑看成一天作为一个整体来选有1
29C 其余的就是19所学校选28天进行排列)
四. 阁板法 名额分配或相同物品的分配问题,适宜采阁板用法
例5 某校准备组建一个由12人组成篮球队,这12个人由8个班的学生组成,每班至少一人,名额分配方案共 种 。

分析:此例的实质是12个名额分配给8个班,每班至少一个名额,可在12个名额种的11个空当中插入7块闸板,一种插法对应一种名额的分配方式,故有7
11C 种
五 平均分推问题
eg 6本不同的书按一下方式处理,各有几种分发?
(1) 平均分成三堆, (2) 平均分给甲乙丙三人
(3) 一堆一本,一堆两本,一对三本
(4) 甲得一本,乙得两本,丙得三本(一种分组对应一种方案) (5) 一人的一本,一人的两本,一人的三本
3,5
2,4
分析:1,分出三堆书(a 1,a 2),(a 3,a 4),(a 5,a 6)由顺序不同可以有33A =6种,而这6种分法只算一种分堆方式,故6本不同的书平均分成三堆方式有
3
3
22
2426A C C C =15种 2,六本不同的书,平均分成三堆有x 种,平均分给甲乙丙三人 就有x 3
3A 种 2226
4
2C C C
3, 1
2
3
653C C C 5,3
3A 1
2
3
653C C C
五. 合并单元格解决染色问题
Eg 如图1,一个地区分为5个行政区域,现给地图着色,要求相邻区域不 得使用同一颜色,现有四种颜色可供选择,则不同的着色方法共有 种(以数字作答)。

分析:颜色相同的区域可能是2、3、4、5. 下面分情况讨论:
(ⅰ)当2、4颜色相同且3、5颜色不同时,将2、4合并成一个单元格,此时不同的着色方法相当于4个元素 ①③⑤的全排列数
A 4
4
(ⅱ)当2、4颜色不同且3、5颜色相同时,与情形(ⅰ)类似同理可得
A 4
4
种着色法.
(ⅲ)当2、4与3、5分别同色时,将2、4;3、5分别合并,这样仅有三个单元格 ①
从4种颜色中选3种来着色这三个单元格,计有A C 3
334⋅种方法.
由加法原理知:不同着色方法共有2
A C A 3
33
44
4+=48+24=72(种)
练习1(天津卷(文))将3种作物种植
在如图的5块试验田里,每快种植一种作物且相邻的试验田不能种植同一作物 , 不同的种植方法共 种(以数字作答) (72)
2.某城市中心广场建造一个花圃,花圃6分为个部分(如图3),现要栽种4种颜色的花,每部分栽种一种且相邻部分不能栽种 同一样颜色的话,不同的栽种方法有 种(以数字作答).(120)
2,4
54
6
13
2E
D C
B A
图3 图4
3.如图4,用不同的5种颜色分别为ABCDE 五部分着色,相邻部分不能用同一颜色,但同一种颜色可以反复使用也可以不用,则符合这种要求的不同着色种数.(540)
4.如图5:四个区域坐定4个单位的人,有四种不同颜色的服装,每个单位的观众必须穿同种颜色的服装,且相邻两区域的颜色不同,不相邻区域颜色相同,不相邻区域颜色相同与否不受限制,那么不同的着色方法是 种(84)
图5 图6
5.将一四棱锥(图6)的每个顶点染一种颜色,并使同一条棱的两端点异色,若只有五种颜色可供使用,则不同的染色方法共 种(420)
4
3
21。

相关文档
最新文档