2018版高考数学大一轮复习第四章三角函数解三角形4.3三角函数的图象与性质课件文新人教版
高考数学大一轮复习第四章三角函数、解三角形4.3三角函数的图象与性质教师用书
(浙江专用)2018版高考数学大一轮复习 第四章 三角函数、解三角形 4.3三角函数的图象与性质教师用书1.用五点法作正弦函数和余弦函数的简图正弦函数y =sin x ,x ∈[0,2π]的图象中,五个关键点是:(0,0),(π2,1),(π,0),(3π2,-1),(2π,0).余弦函数y =cos x ,x ∈[0,2π]的图象中,五个关键点是:(0,1),(π2,0),(π,-1),(3π2,0),(2π,1). 2.正弦函数、余弦函数、正切函数的图象与性质【知识拓展】 1.对称与周期(1)正弦曲线、余弦曲线相邻两对称中心、相邻两对称轴之间的距离是半个周期,相邻的对称中心与对称轴之间的距离是14个周期.(2)正切曲线相邻两对称中心之间的距离是半个周期. 2.奇偶性若f (x )=A sin(ωx +φ)(A ,ω≠0),则(1)f (x )为偶函数的充要条件是φ=π2+k π(k ∈Z );(2)f (x )为奇函数的充要条件是φ=k π(k ∈Z ). 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”) (1)y =sin x 在第一、第四象限是增函数.( × )(2)常数函数f (x )=a 是周期函数,它没有最小正周期.( √ ) (3)正切函数y =tan x 在定义域内是增函数.( × ) (4)已知y =k sin x +1,x ∈R ,则y 的最大值为k +1.( × ) (5)y =sin |x |是偶函数.( √ ) (6)若sin x >22,则x >π4.( × )1.(教材改编)函数f (x )=3sin(2x -π6)在区间[0,π2]上的值域为( )A .[-32,32]B .[-32,3]C .[-332,332]D .[-332,3]答案 B解析 当x ∈[0,π2]时,2x -π6∈[-π6,5π6],sin(2x -π6)∈[-12,1],故3sin(2x -π6)∈[-32,3],即f (x )的值域为[-32,3].2.函数y =tan 2x 的定义域是( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x ≠k π+π4,k ∈ZB.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x ≠k π2+π8,k ∈ZC.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠k π+π8,k ∈Z D.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠k π2+π4,k ∈Z答案 D解析 由2x ≠k π+π2,k ∈Z ,得x ≠k π2+π4,k ∈Z ,∴y =tan 2x 的定义域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠k π2+π4,k ∈Z. 3.(2016·绍兴期末)函数f (x )=2cos(4x +π3)-1的最小正周期为________,f (π3)=________. 答案π20 解析 T =2π4=π2,f (π3)=2cos(43π+π3)-1=2×cos 53π-1=0.4.已知函数f (x )=2sin(ωx +φ),对于任意x 都有f ⎝ ⎛⎭⎪⎫π6+x =f ⎝ ⎛⎭⎪⎫π6-x ,则f ⎝ ⎛⎭⎪⎫π6的值为________. 答案 2或-2解析 ∵f ⎝ ⎛⎭⎪⎫π6+x =f ⎝ ⎛⎭⎪⎫π6-x ,∴x =π6是函数f (x )=2sin(ωx +φ)的一条对称轴.∴f ⎝ ⎛⎭⎪⎫π6=±2.题型一 三角函数的定义域和值域例1 (1)函数f (x )=-2tan(2x +π6)的定义域是____________.(2)(2016·台州模拟)已知函数f (x )=sin(x +π6),其中x ∈[-π3,a ],若f (x )的值域是[-12,1],则实数a 的取值范围是________. 答案 (1){x |x ≠k π2+π6,k ∈Z } (2)[π3,π] 解析 (1)由2x +π6≠π2+k π,k ∈Z ,得x ≠k π2+π6,k ∈Z ,所以f (x )的定义域为{x |x ≠k π2+π6,k ∈Z }. (2)∵x ∈[-π3,a ],∴x +π6∈[-π6,a +π6],∵x +π6∈[-π6,π2]时,f (x )的值域为[-12,1],∴由函数的图象知π2≤a +π6≤7π6,∴π3≤a ≤π.思维升华 (1)三角函数定义域的求法求三角函数定义域实际上是构造简单的三角不等式(组),常借助三角函数线或三角函数图象来求解.(2)三角函数值域的不同求法①利用sin x 和cos x 的值域直接求;②把所给的三角函数式变换成y =A sin(ωx +φ)的形式求值域; ③通过换元,转换成二次函数求值域.(1)函数y =lg sin x +cos x -12的定义域为 .(2)函数y =2sin(πx 6-π3) (0≤x ≤9)的最大值与最小值的和为__________.答案 (1)⎩⎨⎧⎭⎬⎫x |2k π<x ≤π3+2k π,k ∈Z(2)2- 3解析 (1)要使函数有意义必须有⎩⎪⎨⎪⎧sin x >0,cos x -12≥0,即⎩⎪⎨⎪⎧sin x >0,cos x ≥12,解得⎩⎪⎨⎪⎧2k π<x <π+2k πk ∈Z ,-π3+2k π≤x ≤π3+2k πk ∈Z ,∴2k π<x ≤π3+2k π(k ∈Z ),∴函数的定义域为⎩⎨⎧⎭⎬⎫x |2k π<x ≤π3+2k π,k ∈Z . (2)∵0≤x ≤9,∴-π3≤πx 6-π3≤7π6,∴-32≤sin(πx 6-π3)≤1, 故-3≤2sin(πx 6-π3)≤2.即函数y =2sin(πx 6-π3) (0≤x ≤9)的最大值为2,最小值为- 3.∴最大值与最小值的和为2- 3. 题型二 三角函数的单调性例2 (1)函数f (x )=tan ⎝ ⎛⎭⎪⎫2x -π3的单调递增区间是( )A.⎣⎢⎡⎦⎥⎤k π2-π12,k π2+5π12(k ∈Z )B.⎝⎛⎭⎪⎫k π2-π12,k π2+5π12(k ∈Z ) C.⎝⎛⎭⎪⎫k π+π6,k π+2π3(k ∈Z )D.⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12(k ∈Z ) (2)已知ω>0,函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π4在⎝ ⎛⎭⎪⎫π2,π上单调递减,则ω的取值范围是________.答案 (1)B (2)⎣⎢⎡⎦⎥⎤12,54解析 (1)由k π-π2<2x -π3<k π+π2(k ∈Z ),得k π2-π12<x <k π2+5π12(k ∈Z ), 所以函数f (x )=tan ⎝⎛⎭⎪⎫2x -π3的单调递增区间为⎝ ⎛⎭⎪⎫k π2-π12,k π2+5π12(k ∈Z ),故选B. (2)由π2<x <π,ω>0,得ωπ2+π4<ωx +π4<ωπ+π4, 又y =sin x 的单调递减区间为[2k π+π2,2k π+3π2],k ∈Z ,所以⎩⎪⎨⎪⎧ωπ2+π4≥π2+2k π,ωπ+π4≤3π2+2k π,k ∈Z ,解得4k +12≤ω≤2k +54,k ∈Z .又由4k +12-(2k +54)≤0,k ∈Z 且2k +54>0,k ∈Z ,得k =0,所以ω∈[12,54].引申探究本例(2)中,若已知ω>0,函数f (x )=cos(ωx +π4)在(π2,π)上单调递增,则ω的取值范围是____________. 答案 [32,74]解析 函数y =cos x 的单调递增区间为[-π+2k π,2k π],k ∈Z , 则⎩⎪⎨⎪⎧ωπ2+π4≥-π+2k π,ωπ+π4≤2k π,k ∈Z ,解得4k -52≤ω≤2k -14,k ∈Z ,又由4k -52-⎝ ⎛⎭⎪⎫2k -14≤0,k ∈Z 且2k -14>0,k ∈Z ,得k =1,所以ω∈⎣⎢⎡⎦⎥⎤32,74. 思维升华 (1)已知三角函数解析式求单调区间:①求函数的单调区间应遵循简单化原则,将解析式先化简,并注意复合函数单调性规律“同增异减”;②求形如y =A sin(ωx +φ)或y =A cos(ωx +φ)(其中ω>0)的单调区间时,要视“ωx +φ”为一个整体,通过解不等式求解.但如果ω<0,那么一定先借助诱导公式将ω化为正数,防止把单调性弄错. (2)已知三角函数的单调区间求参数.先求出函数的单调区间,然后利用集合间的关系求解.(1)函数f (x )=sin ⎝⎛⎭⎪⎫-2x +π3的单调减区间为________. (2)若函数f (x )=sin ωx (ω>0)在区间[0,π3]上单调递增,在区间[π3,π2]上单调递减,则ω等于( ) A.23 B.32 C .2D .3答案 (1)⎣⎢⎡⎦⎥⎤k π-π12,k π+512π,k ∈Z (2)B 解析 (1)已知函数可化为f (x )=-sin ⎝⎛⎭⎪⎫2x -π3,欲求函数的单调减区间,只需求y =sin ⎝ ⎛⎭⎪⎫2x -π3的单调增区间. 由2k π-π2≤2x -π3≤2k π+π2,k ∈Z ,得k π-π12≤x ≤k π+5π12,k ∈Z .故所给函数的单调减区间为⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12(k ∈Z ).(2)∵f (x )=sin ωx (ω>0)过原点, ∴当0≤ωx ≤π2,即0≤x ≤π2ω时,y =sin ωx 是增函数;当π2≤ωx ≤3π2,即π2ω≤x ≤3π2ω时, y =sin ωx 是减函数.由f (x )=sin ωx (ω>0)在⎣⎢⎡⎦⎥⎤0,π3上单调递增,在⎣⎢⎡⎦⎥⎤π3,π2上单调递减,知π2ω=π3, ∴ω=32.题型三 三角函数的周期性、对称性 命题点1 周期性例3 (1)在函数①y =cos|2x |,②y =|cos x |,③y =cos ⎝ ⎛⎭⎪⎫2x +π6,④y =tan ⎝ ⎛⎭⎪⎫2x -π4中,最小正周期为π的所有函数为( ) A .①②③ B .①③④ C .②④D .①③(2)若函数f (x )=2tan(kx +π3)的最小正周期T 满足1<T <2,则自然数k 的值为________. 答案 (1)A (2)2或3解析 (1)①y =cos|2x |=cos 2x ,最小正周期为π; ②由图象知y =|cos x |的最小正周期为π; ③y =cos ⎝ ⎛⎭⎪⎫2x +π6的最小正周期T =2π2=π; ④y =tan ⎝ ⎛⎭⎪⎫2x -π4的最小正周期T =π2,因此选A. (2)由题意得,1<πk<2,∴k <π<2k ,即π2<k <π,又k ∈Z ,∴k =2或3. 命题点2 对称性例4 (2016·宁波模拟)当x =π4时,函数f (x )=sin(x +φ)取得最小值,则函数y =f (3π4-x )( )A .是奇函数且图象关于点(π2,0)对称B .是偶函数且图象关于点(π,0)对称C .是奇函数且图象关于直线x =π2对称D .是偶函数且图象关于直线x =π对称 答案 C解析 ∵当x =π4时,函数f (x )取得最小值,∴sin(π4+φ)=-1,∴φ=2k π-3π4(k ∈Z ),∴f (x )=sin(x +2k π-3π4)=sin(x -3π4),∴y =f (3π4-x )=sin(-x )=-sin x,∴y =f (3π4-x )是奇函数,且图象关于直线x =π2对称.命题点3 对称性的应用例5 (1)已知函数y =2sin ⎝ ⎛⎭⎪⎫2x +π3的图象关于点P (x 0,0)对称,若x 0∈⎣⎢⎡⎦⎥⎤-π2,0,则x 0=________.(2)若函数y =cos(ωx +π6) (ω∈N *)图象的一个对称中心是(π6,0),则ω的最小值为( )A .1B .2C .4D .8答案 (1)-π6 (2)B解析 (1)由题意可知2x 0+π3=k π,k ∈Z , 故x 0=k π2-π6,k ∈Z , 又x 0∈⎣⎢⎡⎦⎥⎤-π2,0,∴-23≤k ≤13,k ∈Z ,∴k =0,则x 0=-π6.(2)由题意知ω6π+π6=k π+π2 (k ∈Z ),∴ω=6k +2(k ∈Z ),又ω∈N *,∴ωmin =2.思维升华 (1)对于函数y =A sin(ωx +φ),其对称轴一定经过图象的最高点或最低点,对称中心一定是函数的零点,因此在判断直线x =x 0或点(x 0,0)是不是函数的对称轴或对称中心时,可通过检验f (x 0)的值进行判断. (2)求三角函数周期的方法: ①利用周期函数的定义.②利用公式:y =A sin(ωx +φ)和y =A cos(ωx +φ)的最小正周期为2π|ω|,y =tan(ωx +φ)的最小正周期为π|ω|.(1)(2016·北京朝阳区模拟)已知函数f (x )=2sin(π2x +π5),若对任意的实数x ,总有f (x 1)≤f (x )≤f (x 2),则|x 1-x 2|的最小值是( )A .2B .4C .πD .2π(2)如果函数y =3cos(2x +φ)的图象关于点(4π3,0)中心对称,那么|φ|的最小值为( )A.π6B.π4C.π3D.π2答案 (1)A (2)A解析 (1)由题意可得|x 1-x 2|的最小值为半个周期,即T 2=πω=2. (2)由题意得3cos(2×4π3+φ)=3cos(2π3+φ+2π)=3cos(2π3+φ)=0,∴2π3+φ=k π+π2,k ∈Z , ∴φ=k π-π6,k ∈Z ,取k =0,得|φ|的最小值为π6.4.三角函数的性质考点分析 纵观近年高考中三角函数的试题,其有关性质几乎每年必考,题目较为简单,综合性的知识多数为三角函数本章内的知识,通过有效地复习完全可以对此类题型及解法有效攻破,并在高考中拿全分.典例 (1)(2015·课标全国Ⅰ)函数f (x )=cos(ωx +φ)的部分图象如图所示,则f (x )的单调递减区间为( )A.⎝⎛⎭⎪⎫k π-14,k π+34,k ∈Z B.⎝⎛⎭⎪⎫2k π-14,2k π+34,k ∈Z C.⎝ ⎛⎭⎪⎫k -14,k +34,k ∈ZD.⎝⎛⎭⎪⎫2k -14,2k +34,k ∈Z (2)已知函数f (x )=2cos(ωx +φ)+b 对任意实数x 都有f (x +π4)=f (-x )成立,且f (π8)=1,则实数b 的值为( ) A .-1 B .3 C .-1或3D .-3(3)已知函数f (x )=2sin ωx (ω>0)在区间⎣⎢⎡⎦⎥⎤-π3,π4上的最小值是-2,则ω的最小值等于________.解析 (1)由图象知,周期T =2×⎝ ⎛⎭⎪⎫54-14=2, ∴2πω=2,∴ω=π. 由π×14+φ=π2+2k π,k ∈Z ,不妨取φ=π4,∴f (x )=cos ⎝ ⎛⎭⎪⎫πx +π4.由2k π<πx +π4<2k π+π,k ∈Z ,得2k -14<x <2k +34,k ∈Z ,∴f (x )的单调递减区间为⎝⎛⎭⎪⎫2k -14,2k +34,k ∈Z .故选D.(2)由f (x +π4)=f (-x )可知函数f (x )=2cos(ωx +φ)+b 关于直线x =π8对称,又函数f (x )在对称轴处取得最值,故±2+b =1,∴b =-1或b =3. (3)∵ω>0,-π3≤x ≤π4,∴-ωπ3≤ωx ≤ωπ4.由已知条件知-ωπ3≤-π2,∴ω≥32.答案 (1)D (2)C (3)321.已知函数f (x )=sin(ωx +π4) (ω>0)的最小正周期为π,则f (π8)等于( )A .1 B.12 C .-1 D .-12答案 A解析 ∵T =π,∴ω=2,∴f (π8)=sin(2×π8+π4)=sin π2=1.2.若函数f (x )=-cos 2x ,则f (x )的一个递增区间为( ) A .(-π4,0)B .(0,π2)C .(π2,3π4)D .(3π4,π)答案 B解析 由f (x )=-cos 2x 知递增区间为[k π,k π+π2],k ∈Z ,故只有B 项满足.3.关于函数y =tan(2x -π3),下列说法正确的是( )A .是奇函数B .在区间(0,π3)上单调递减C .(π6,0)为其图象的一个对称中心D .最小正周期为π 答案 C解析 函数y =tan(2x -π3)是非奇非偶函数,A 错误;在区间(0,π3)上单调递增,B 错误;最小正周期为π2,D 错误.∵当x =π6时,tan(2×π6-π3)=0,∴(π6,0)为其图象的一个对称中心,故选C.4.(2016·余姚模拟)已知函数f (x )=2sin(ωx -π6)+1(x ∈R )的图象的一条对称轴为x =π,其中ω为常数,且ω∈(1,2),则函数f (x )的最小正周期为( ) A.3π5 B.6π5 C.9π5 D.12π5答案 B解析 由函数f (x )=2sin(ωx -π6)+1 (x ∈R )的图象的一条对称轴为x =π,可得ωπ-π6=k π+π2,k ∈Z ,∴ω=k +23,∴ω=53,从而得函数f (x )的最小正周期为2π53=6π5.5.已知函数f (x )=-2sin(2x +φ)(|φ|<π),若f (π8)=-2,则f (x )的一个单调递减区间是( )A .[-π8,3π8]B .[π8,9π8]C .[-3π8,π8]D .[π8,5π8]答案 C解析 由f (π8)=-2,得f (π8)=-2sin(2×π8+φ)=-2sin(π4+φ)=-2,所以sin(π4+φ)=1.因为|φ|<π,所以φ=π4.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,解得k π-3π8≤x ≤k π+π8,k ∈Z .当k =0时,-3π8≤x ≤π8,故选C.6.若函数f (x )=sin(ωx +φ) (ω>0且|φ|<π2)在区间[π6,2π3]上是单调减函数,且函数值从1减少到-1,则f (π4)等于( ) A.12 B.22C.32D .1答案 C解析 由题意得函数f (x )的周期T =2(2π3-π6)=π,所以ω=2,此时f (x )=sin(2x +φ),将点(π6,1)代入上式得sin(π3+φ)=1 (|φ|<π2),所以φ=π6,所以f (x )=sin(2x +π6),于是f (π4)=sin(π2+π6)=cos π6=32.7.(2016·金丽衢十二校联考)函数f (x )=4sin x cos x +2cos 2x -1的最小正周期为________,最大值为________. 答案 π5解析 f (x )=2sin 2x +cos 2x =5sin(2x +φ),tan φ=12,所以最小正周期T =2π2=π,最大值为 5.8.函数y =cos 2x +sin x (|x |≤π4)的最小值为_______________________________________.答案1-22解析 令t =sin x ,∵|x |≤π4,∴t ∈⎣⎢⎡⎦⎥⎤-22,22. ∴y =-t 2+t +1=-⎝ ⎛⎭⎪⎫t -122+54,∴当t =-22时,y min =1-22. 9.(2016·金华模拟)若f (x )=2sin ωx +1 (ω>0)在区间[-π2,2π3]上是增函数,则ω的取值范围是__________. 答案 (0,34]解析 方法一 由2k π-π2≤ωx ≤2k π+π2,k ∈Z ,得f (x )的增区间是[2k πω-π2ω,2k πω+π2ω],k ∈Z .因为f (x )在[-π2,2π3]上是增函数,所以[-π2,2π3]⊆[-π2ω,π2ω].所以-π2≥-π2ω且2π3≤π2ω,所以ω∈(0,34].方法二 因为x ∈[-π2,2π3],ω>0.所以ωx ∈[-ωπ2,2πω3],又f (x )在区间[-π2,2π3]上是增函数,所以[-ωπ2,2πω3]⊆[-π2,π2],则⎩⎪⎨⎪⎧-ωπ2≥-π2,2πω3≤π2,又ω>0,得0<ω≤34.10.(2017·杭州质检)设函数f (x )=2sin(ωx +π6)(ω>0,x ∈R ),最小正周期T =π,则实数ω=________,函数f (x )的图象的对称中心为______________,单调递增区间是___________. 答案 2 (k π2-π12,0),k ∈Z (k π-π3,k π+π6),k ∈Z 解析 由题意知2πω=π,得ω=2,令2x +π6=k π,k ∈Z ,得x =k π2-π12,k ∈Z , 所以其对称中心为(k π2-π12,0),k ∈Z , 令2k π-π2≤2x +π6≤2k π+π2,k ∈Z ,得k π-π3≤x ≤k π+π6,k ∈Z ,所以其单调递增区间为[k π-π3,k π+π6],k ∈Z .11.(2015·北京)已知函数f (x )=sin x -23sin 2x2.(1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤0,2π3上的最小值.解 (1)因为f (x )=sin x +3cos x - 3=2sin ⎝⎛⎭⎪⎫x +π3-3,所以f (x )的最小正周期为2π.(2)因为0≤x ≤2π3,所以π3≤x +π3≤π.当x +π3=π,即x =2π3时,f (x )取得最小值.所以f (x )在区间⎣⎢⎡⎦⎥⎤0,2π3上的最小值为f ⎝ ⎛⎭⎪⎫2π3=- 3.12.已知函数f (x )=sin(ωx +φ)(0<φ<2π3)的最小正周期为π.(1)求当f (x )为偶函数时φ的值;(2)若f (x )的图象过点(π6,32),求f (x )的单调递增区间.解 ∵f (x )的最小正周期为π,则T =2πω=π,∴ω=2,∴f (x )=sin(2x +φ).(1)当f (x )为偶函数时,f (-x )=f (x ), ∴sin(2x +φ)=sin(-2x +φ), 将上式展开整理得sin 2x cos φ=0, 由已知上式对任意x ∈R 都成立, ∴cos φ=0,∵0<φ<2π3,∴φ=π2.(2)f (x )的图象过点(π6,32)时,sin(2×π6+φ)=32,即sin(π3+φ)=32.又∵0<φ<2π3,∴π3<π3+φ<π,∴π3+φ=2π3,φ=π3, ∴f (x )=sin(2x +π3).令2k π-π2≤2x +π3≤2k π+π2,k ∈Z ,得k π-5π12≤x ≤k π+π12,k ∈Z ,∴f (x )的单调递增区间为 [k π-5π12,k π+π12],k ∈Z .*13.已知a >0,函数f (x )=-2a sin ⎝ ⎛⎭⎪⎫2x +π6+2a +b ,当x ∈⎣⎢⎡⎦⎥⎤0,π2时,-5≤f (x )≤1.(1)求常数a ,b 的值;(2)设g (x )=f ⎝⎛⎭⎪⎫x +π2且lg g (x )>0,求g (x )的单调区间.解 (1)∵x ∈⎣⎢⎡⎦⎥⎤0,π2,∴2x +π6∈⎣⎢⎡⎦⎥⎤π6,7π6, ∴sin ⎝ ⎛⎭⎪⎫2x +π6∈⎣⎢⎡⎦⎥⎤-12,1,∴-2a sin ⎝ ⎛⎭⎪⎫2x +π6∈[-2a ,a ],∴f (x )∈[b,3a +b ],又∵-5≤f (x )≤1, ∴b =-5,3a +b =1,因此a =2,b =-5. (2)由(1)得f (x )=-4sin ⎝⎛⎭⎪⎫2x +π6-1,g (x )=f ⎝ ⎛⎭⎪⎫x +π2=-4sin ⎝⎛⎭⎪⎫2x +7π6-1=4sin ⎝ ⎛⎭⎪⎫2x +π6-1, 又由lg g (x )>0,得g (x )>1,∴4sin ⎝ ⎛⎭⎪⎫2x +π6-1>1,∴sin ⎝ ⎛⎭⎪⎫2x +π6>12, ∴2k π+π6<2x +π6<2k π+5π6,k ∈Z ,其中当2k π+π6<2x +π6≤2k π+π2,k ∈Z 时,g (x )单调递增,即k π<x ≤k π+π6,k ∈Z ,∴g (x )的单调增区间为⎝ ⎛⎦⎥⎤k π,k π+π6,k ∈Z .又∵当2k π+π2<2x +π6<2k π+5π6,k ∈Z 时,g (x )单调递减,即k π+π6<x <k π+π3,k ∈Z .∴g (x )的单调减区间为⎝⎛⎭⎪⎫k π+π6,k π+π3,k ∈Z .。
2018版高考数学浙江文理通用大一轮复习讲义教师版文档
1.用五点法作正弦函数和余弦函数的简图正弦函数y =sin x ,x ∈0,2π]的图象中,五个关键点是:(0,0),(π2,1),(π,0),(3π2,-1),(2π,0).余弦函数y =cos x ,x ∈0,2π]的图象中,五个关键点是:(0,1),(π2,0),(π,-1),(3π2,0),(2π,1).2.正弦函数、余弦函数、正切函数的图象与性质【知识拓展】 1.对称与周期(1)正弦曲线、余弦曲线相邻两对称中心、相邻两对称轴之间的距离是半个周期,相邻的对称中心与对称轴之间的距离是14个周期.(2)正切曲线相邻两对称中心之间的距离是半个周期. 2.奇偶性若f (x )=A sin(ωx +φ)(A ,ω≠0),则(1)f (x )为偶函数的充要条件是φ=π2+k π(k ∈Z );(2)f (x )为奇函数的充要条件是φ=k π(k ∈Z ). 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”) (1)y =sin x 在第一、第四象限是增函数.( × )(2)常数函数f (x )=a 是周期函数,它没有最小正周期.( √ ) (3)正切函数y =tan x 在定义域内是增函数.( × ) (4)已知y =k sin x +1,x ∈R ,则y 的最大值为k +1.( × ) (5)y =sin|x |是偶函数.( √ ) (6)若sin x >22,则x >π4.( × )1.(教材改编)函数f (x )=3sin(2x -π6)在区间0,π2]上的值域为( )A .-32,32]B .-32,3]C .-332,332]D .-332,3]答案 B解析 当x ∈0,π2]时,2x -π6∈-π6,5π6],sin(2x -π6)∈-12,1],故3sin(2x -π6)∈-32,3],即f (x )的值域为-32,3].2.函数y =tan2x 的定义域是( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪ x ≠k π+π4,k ∈Z B.⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠k π2+π8,k ∈Z C.⎩⎨⎧⎭⎬⎫x ⎪⎪ x ≠k π+π8,k ∈Z D.⎩⎨⎧⎭⎬⎫x ⎪⎪ x ≠k π2+π4,k ∈Z 答案 D解析 由2x ≠k π+π2,k ∈Z ,得x ≠k π2+π4,k ∈Z ,∴y =tan2x 的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠k π2+π4,k ∈Z . 3.(2016·绍兴期末)函数f (x )=2cos(4x +π3)-1的最小正周期为________,f (π3)=________.答案 π2 0解析 T =2π4=π2,f (π3)=2cos(43π+π3)-1=2×cos 53π-1=0. 4.已知函数f (x )=2sin(ωx +φ),对于任意x 都有f ⎝⎛⎭⎫π6+x =f ⎝⎛⎭⎫π6-x ,则f ⎝⎛⎭⎫π6的值为________. 答案 2或-2解析 ∵f ⎝⎛⎭⎫π6+x =f ⎝⎛⎭⎫π6-x ,∴x =π6是函数f (x )=2sin(ωx +φ)的一条对称轴.∴f ⎝⎛⎭⎫π6=±2.题型一 三角函数的定义域和值域例1 (1)函数f (x )=-2tan(2x +π6)的定义域是____________.(2)(2016·台州模拟)已知函数f (x )=sin(x +π6),其中x ∈-π3,a ],若f (x )的值域是-12,1],则实数a 的取值范围是________. 答案 (1){x |x ≠k π2+π6,k ∈Z } (2)π3,π]解析 (1)由2x +π6≠π2+k π,k ∈Z ,得x ≠k π2+π6,k ∈Z ,所以f (x )的定义域为{x |x ≠k π2+π6,k ∈Z }.(2)∵x ∈-π3,a ],∴x +π6∈-π6,a +π6],∵x +π6∈-π6,π2]时,f (x )的值域为-12,1],∴由函数的图象知π2≤a +π6≤7π6,∴π3≤a ≤π.思维升华 (1)三角函数定义域的求法求三角函数定义域实际上是构造简单的三角不等式(组),常借助三角函数线或三角函数图象来求解.(2)三角函数值域的不同求法 ①利用sin x 和cos x 的值域直接求;②把所给的三角函数式变换成y =A sin(ωx +φ)的形式求值域; ③通过换元,转换成二次函数求值域.(1)函数y =lgsin x +cos x -12的定义域为 .(2)函数y =2sin(πx 6-π3) (0≤x ≤9)的最大值与最小值的和为__________.答案 (1)⎩⎨⎧⎭⎬⎫x |2k π<x ≤π3+2k π,k ∈Z(2)2- 3解析 (1)要使函数有意义必须有⎩⎪⎨⎪⎧sin x >0,cos x -12≥0, 即⎩⎪⎨⎪⎧ sin x >0,cos x ≥12,解得⎩⎪⎨⎪⎧2k π<x <π+2k π(k ∈Z ),-π3+2k π≤x ≤π3+2k π(k ∈Z ),∴2k π<x ≤π3+2k π(k ∈Z ),∴函数的定义域为⎩⎨⎧⎭⎬⎫x |2k π<x ≤π3+2k π,k ∈Z .(2)∵0≤x ≤9,∴-π3≤πx 6-π3≤7π6,∴-32≤sin(πx 6-π3)≤1, 故-3≤2sin(πx 6-π3)≤2.即函数y =2sin(πx 6-π3) (0≤x ≤9)的最大值为2,最小值为- 3.∴最大值与最小值的和为2- 3. 题型二 三角函数的单调性例2 (1)函数f (x )=tan ⎝⎛⎭⎫2x -π3的单调递增区间是( ) A.⎣⎡⎦⎤k π2-π12,k π2+5π12(k ∈Z ) B.⎝⎛⎭⎫k π2-π12,k π2+5π12(k ∈Z ) C.⎝⎛⎭⎫k π+π6,k π+2π3(k ∈Z ) D.⎣⎡⎦⎤k π-π12,k π+5π12(k ∈Z ) (2)已知ω>0,函数f (x )=sin ⎝⎛⎭⎫ωx +π4在⎝⎛⎭⎫π2,π上单调递减,则ω的取值范围是________. 答案 (1)B (2)⎣⎡⎦⎤12,54解析 (1)由k π-π2<2x -π3<k π+π2(k ∈Z ),得k π2-π12<x <k π2+5π12(k ∈Z ), 所以函数f (x )=tan ⎝⎛⎫2x -π3的单调递增区间为 ⎝⎛⎭⎫k π2-π12,k π2+5π12(k ∈Z ),故选B.(2)由π2<x <π,ω>0,得ωπ2+π4<ωx +π4<ωπ+π4, 又y =sin x 的单调递减区间为2k π+π2,2k π+3π2],k ∈Z ,所以⎩⎨⎧ωπ2+π4≥π2+2k π,ωπ+π4≤3π2+2k π,k ∈Z ,解得4k +12≤ω≤2k +54,k ∈Z .又由4k +12-(2k +54)≤0,k ∈Z 且2k +54>0,k ∈Z ,得k =0,所以ω∈12,54].引申探究本例(2)中,若已知ω>0,函数f (x )=cos(ωx +π4)在(π2,π)上单调递增,则ω的取值范围是____________. 答案 32,74]解析 函数y =cos x 的单调递增区间为-π+2k π,2k π],k ∈Z ,则⎩⎨⎧ωπ2+π4≥-π+2k π,ωπ+π4≤2k π,k ∈Z ,解得4k -52≤ω≤2k -14,k ∈Z ,又由4k -52-⎝⎛⎭⎫2k -14≤0,k ∈Z 且2k -14>0,k ∈Z , 得k =1,所以ω∈⎣⎡⎦⎤32,74.思维升华 (1)已知三角函数解析式求单调区间:①求函数的单调区间应遵循简单化原则,将解析式先化简,并注意复合函数单调性规律“同增异减”;②求形如y =A sin(ωx +φ)或y =A cos(ωx +φ)(其中ω>0)的单调区间时,要视“ωx +φ”为一个整体,通过解不等式求解.但如果ω<0,那么一定先借助诱导公式将ω化为正数,防止把单调性弄错.(2)已知三角函数的单调区间求参数.先求出函数的单调区间,然后利用集合间的关系求解.(1)函数f (x )=sin ⎝⎛⎭⎫-2x +π3的单调减区间为________. (2)若函数f (x )=sin ωx (ω>0)在区间0,π3]上单调递增,在区间π3,π2]上单调递减,则ω等于( )A.23 B.32 C .2D .3答案 (1)⎣⎡⎦⎤k π-π12,k π+512π,k ∈Z (2)B解析 (1)已知函数可化为f (x )=-sin ⎝⎛⎭⎫2x -π3, 欲求函数的单调减区间,只需求y =sin ⎝⎛⎭⎫2x -π3的单调增区间. 由2k π-π2≤2x -π3≤2k π+π2,k ∈Z ,得k π-π12≤x ≤k π+5π12,k ∈Z .故所给函数的单调减区间为⎣⎡⎦⎤k π-π12,k π+5π12(k ∈Z ). (2)∵f (x )=sin ωx (ω>0)过原点, ∴当0≤ωx ≤π2,即0≤x ≤π2ω时,y =sin ωx 是增函数;当π2≤ωx ≤3π2,即π2ω≤x ≤3π2ω时, y =sin ωx 是减函数.由f (x )=sin ωx (ω>0)在⎣⎡⎦⎤0,π3上单调递增, 在⎣⎡⎦⎤π3,π2上单调递减,知π2ω=π3, ∴ω=32.题型三 三角函数的周期性、对称性 命题点1 周期性例3 (1)在函数①y =cos|2x |,②y =|cos x |,③y =cos ⎝⎛⎭⎫2x +π6,④y =tan ⎝⎛⎭⎫2x -π4中,最小正周期为π的所有函数为( ) A .①②③ B .①③④ C .②④D .①③(2)若函数f (x )=2tan(kx +π3)的最小正周期T 满足1<T <2,则自然数k 的值为________.答案 (1)A (2)2或3解析 (1)①y =cos|2x |=cos2x ,最小正周期为π; ②由图象知y =|cos x |的最小正周期为π; ③y =cos ⎝⎛⎭⎫2x +π6的最小正周期T =2π2=π; ④y =tan ⎝⎛⎭⎫2x -π4的最小正周期T =π2,因此选A.(2)由题意得,1<πk <2,∴k <π<2k ,即π2<k <π,又k ∈Z ,∴k =2或3. 命题点2 对称性例4 (2016·宁波模拟)当x =π4时,函数f (x )=sin(x +φ)取得最小值,则函数y =f (3π4-x )( )A .是奇函数且图象关于点(π2,0)对称B .是偶函数且图象关于点(π,0)对称C .是奇函数且图象关于直线x =π2对称D .是偶函数且图象关于直线x =π对称 答案 C解析 ∵当x =π4时,函数f (x )取得最小值,∴sin(π4+φ)=-1,∴φ=2k π-3π4(k ∈Z ),∴f (x )=sin(x +2k π-3π4)=sin(x -3π4),∴y =f (3π4-x )=sin(-x )=-sin x,∴y =f (3π4-x )是奇函数,且图象关于直线x =π2对称.命题点3 对称性的应用例5 (1)已知函数y =2sin ⎝⎛⎭⎫2x +π3的图象关于点P (x 0,0)对称,若x 0∈⎣⎡⎦⎤-π2,0,则x 0=________.(2)若函数y =cos(ωx +π6) (ω∈N *)图象的一个对称中心是(π6,0),则ω的最小值为( )A .1B .2C .4D .8答案 (1)-π6(2)B解析 (1)由题意可知2x 0+π3=k π,k ∈Z ,故x 0=k π2-π6,k ∈Z ,又x 0∈⎣⎡⎦⎤-π2,0,∴-23≤k ≤13,k ∈Z , ∴k =0,则x 0=-π6.(2)由题意知ω6π+π6=k π+π2 (k ∈Z ),∴ω=6k +2(k ∈Z ),又ω∈N *,∴ωmin =2.思维升华 (1)对于函数y =A sin(ωx +φ),其对称轴一定经过图象的最高点或最低点,对称中心一定是函数的零点,因此在判断直线x =x 0或点(x 0,0)是不是函数的对称轴或对称中心时,可通过检验f (x 0)的值进行判断. (2)求三角函数周期的方法: ①利用周期函数的定义.②利用公式:y =A sin(ωx +φ)和y =A cos(ωx +φ)的最小正周期为2π|ω|,y =tan(ωx +φ)的最小正周期为π|ω|.(1)(2016·北京朝阳区模拟)已知函数f (x )=2sin(π2x +π5),若对任意的实数x ,总有f (x 1)≤f (x )≤f (x 2),则|x 1-x 2|的最小值是( ) A .2 B .4 C .πD .2π(2)如果函数y =3cos(2x +φ)的图象关于点(4π3,0)中心对称,那么|φ|的最小值为( )A.π6B.π4 C.π3D.π2答案 (1)A (2)A解析 (1)由题意可得|x 1-x 2|的最小值为半个周期, 即T 2=πω=2. (2)由题意得3cos(2×4π3+φ)=3cos(2π3+φ+2π)=3cos(2π3+φ)=0,∴2π3+φ=k π+π2,k ∈Z , ∴φ=k π-π6,k ∈Z ,取k =0,得|φ|的最小值为π6.4.三角函数的性质考点分析 纵观近年高考中三角函数的试题,其有关性质几乎每年必考,题目较为简单,综合性的知识多数为三角函数本章内的知识,通过有效地复习完全可以对此类题型及解法有效攻破,并在高考中拿全分.典例 (1)(2015·课标全国Ⅰ)函数f (x )=cos(ωx +φ)的部分图象如图所示,则f (x )的单调递减区间为( )A.⎝⎛⎭⎫k π-14,k π+34,k ∈Z B.⎝⎛⎭⎫2k π-14,2k π+34,k ∈Z C.⎝⎛⎭⎫k -14,k +34,k ∈Z D.⎝⎛⎭⎫2k -14,2k +34,k ∈Z (2)已知函数f (x )=2cos(ωx +φ)+b 对任意实数x 都有f (x +π4)=f (-x )成立,且f (π8)=1,则实数b 的值为( ) A .-1 B .3 C .-1或3D .-3(3)已知函数f (x )=2sin ωx (ω>0)在区间⎣⎡⎦⎤-π3,π4上的最小值是-2,则ω的最小值等于________.解析 (1)由图象知,周期T =2×⎝⎛⎭⎫54-14=2, ∴2πω=2,∴ω=π. 由π×14+φ=π2+2k π,k ∈Z ,不妨取φ=π4,∴f (x )=cos ⎝⎛⎭⎫πx +π4.由2k π<πx +π4<2k π+π,k ∈Z ,得2k -14<x <2k +34,k ∈Z ,∴f (x )的单调递减区间为⎝⎛⎭⎫2k -14,2k +34,k ∈Z .故选D.(2)由f (x +π4)=f (-x )可知函数f (x )=2cos(ωx +φ)+b 关于直线x =π8对称,又函数f (x )在对称轴处取得最值,故±2+b =1,∴b =-1或b =3. (3)∵ω>0,-π3≤x ≤π4,∴-ωπ3≤ωx ≤ωπ4.由已知条件知-ωπ3≤-π2,∴ω≥32.答案 (1)D (2)C (3)321.已知函数f (x )=sin(ωx +π4) (ω>0)的最小正周期为π,则f (π8)等于( )A .1 B.12 C .-1 D .-12答案 A解析 ∵T =π,∴ω=2, ∴f (π8)=sin(2×π8+π4)=sin π2=1.2.若函数f (x )=-cos2x ,则f (x )的一个递增区间为( ) A .(-π4,0)B .(0,π2)C .(π2,3π4)D .(3π4,π)答案 B解析 由f (x )=-cos2x 知递增区间为k π,k π+π2],k ∈Z ,故只有B 项满足.3.关于函数y =tan(2x -π3),下列说法正确的是( )A .是奇函数B .在区间(0,π3)上单调递减C .(π6,0)为其图象的一个对称中心D .最小正周期为π 答案 C解析 函数y =tan(2x -π3)是非奇非偶函数,A 错误;在区间(0,π3)上单调递增,B 错误;最小正周期为π2,D 错误.∵当x =π6时,tan(2×π6-π3)=0,∴(π6,0)为其图象的一个对称中心,故选C. 4.(2016·余姚模拟)已知函数f (x )=2sin(ωx -π6)+1(x ∈R )的图象的一条对称轴为x =π,其中ω为常数,且ω∈(1,2),则函数f (x )的最小正周期为( ) A.3π5B.6π5 C.9π5D.12π5 答案 B解析 由函数f (x )=2sin(ωx -π6)+1 (x ∈R )的图象的一条对称轴为x =π,可得ωπ-π6=k π+π2,k ∈Z ,∴ω=k +23,∴ω=53,从而得函数f (x )的最小正周期为2π53=6π5.5.已知函数f (x )=-2sin(2x +φ)(|φ|<π),若f (π8)=-2,则f (x )的一个单调递减区间是( )A .-π8,3π8]B .π8,9π8]C .-3π8,π8]D .π8,5π8]答案 C解析 由f (π8)=-2,得f (π8)=-2sin(2×π8+φ)=-2sin(π4+φ)=-2, 所以sin(π4+φ)=1.因为|φ|<π,所以φ=π4.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,解得k π-3π8≤x ≤k π+π8,k ∈Z .当k =0时,-3π8≤x ≤π8,故选C.6.若函数f (x )=sin(ωx +φ) (ω>0且|φ|<π2)在区间π6,2π3]上是单调减函数,且函数值从1减少到-1,则f (π4)等于( )A.12B.22C.32D .1答案 C解析 由题意得函数f (x )的周期T =2(2π3-π6)=π,所以ω=2,此时f (x )=sin(2x +φ),将点(π6,1)代入上式得sin(π3+φ)=1 (|φ|<π2),所以φ=π6,所以f (x )=sin(2x +π6),于是f (π4)=sin(π2+π6)=cos π6=32.7.(2016·金丽衢十二校联考)函数f (x )=4sin x cos x +2cos 2x -1的最小正周期为________,最大值为________. 答案 π5解析 f (x )=2sin2x +cos2x =5sin(2x +φ), tan φ=12,所以最小正周期T =2π2=π,最大值为 5.8.函数y =cos 2x +sin x (|x |≤π4)的最小值为_______________________________________.答案1-22解析 令t =sin x ,∵|x |≤π4,∴t ∈⎣⎡⎦⎤-22,22. ∴y =-t 2+t +1=-⎝⎛⎭⎫t -122+54,∴当t =-22时,y min =1-22. 9.(2016·金华模拟)若f (x )=2sin ωx +1 (ω>0)在区间-π2,2π3]上是增函数,则ω的取值范围是__________. 答案 (0,34]解析 方法一 由2k π-π2≤ωx ≤2k π+π2,k ∈Z ,得f (x )的增区间是2k πω-π2ω,2k πω+π2ω],k ∈Z .因为f (x )在-π2,2π3]上是增函数,所以-π2,2π3]⊆-π2ω,π2ω].所以-π2≥-π2ω且2π3≤π2ω,所以ω∈(0,34].方法二 因为x ∈-π2,2π3],ω>0.所以ωx ∈-ωπ2,2πω3],又f (x )在区间-π2,2π3]上是增函数,所以-ωπ2,2πω3]⊆-π2,π2],则⎩⎨⎧-ωπ2≥-π2,2πω3≤π2,又ω>0,得0<ω≤34.10.(2017·杭州质检)设函数f (x )=2sin(ωx +π6)(ω>0,x ∈R ),最小正周期T =π,则实数ω=________,函数f (x )的图象的对称中心为______________,单调递增区间是___________. 答案 2 (k π2-π12,0),k ∈Z (k π-π3,k π+π6),k ∈Z解析 由题意知2πω=π,得ω=2,令2x +π6=k π,k ∈Z ,得x =k π2-π12,k ∈Z ,所以其对称中心为(k π2-π12,0),k ∈Z ,令2k π-π2≤2x +π6≤2k π+π2,k ∈Z ,得k π-π3≤x ≤k π+π6,k ∈Z ,所以其单调递增区间为k π-π3,k π+π6],k ∈Z .11.(2015·北京)已知函数f (x )=sin x -23sin 2x2.(1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎡⎦⎤0,2π3上的最小值. 解 (1)因为f (x )=sin x +3cos x - 3 =2sin ⎝⎛⎭⎫x +π3-3, 所以f (x )的最小正周期为2π. (2)因为0≤x ≤2π3,所以π3≤x +π3≤π.当x +π3=π,即x =2π3时,f (x )取得最小值.所以f (x )在区间⎣⎡⎦⎤0,2π3上的最小值为f ⎝⎛⎭⎫2π3=- 3. 12.已知函数f (x )=sin(ωx +φ)(0<φ<2π3)的最小正周期为π.(1)求当f (x )为偶函数时φ的值;(2)若f (x )的图象过点(π6,32),求f (x )的单调递增区间.解 ∵f (x )的最小正周期为π,则T =2πω=π,∴ω=2,∴f (x )=sin(2x +φ). (1)当f (x )为偶函数时,f (-x )=f (x ), ∴sin(2x +φ)=sin(-2x +φ), 将上式展开整理得sin2x cos φ=0, 由已知上式对任意x ∈R 都成立, ∴cos φ=0,∵0<φ<2π3,∴φ=π2.(2)f (x )的图象过点(π6,32)时,sin(2×π6+φ)=32,即sin(π3+φ)=32.又∵0<φ<2π3,∴π3<π3+φ<π,∴π3+φ=2π3,φ=π3, ∴f (x )=sin(2x +π3).令2k π-π2≤2x +π3≤2k π+π2,k ∈Z ,得k π-5π12≤x ≤k π+π12,k ∈Z ,∴f (x )的单调递增区间为 k π-5π12,k π+π12],k ∈Z .*13.已知a >0,函数f (x )=-2a sin ⎝⎛⎭⎫2x +π6+2a +b ,当x ∈⎣⎡⎦⎤0,π2时,-5≤f (x )≤1. (1)求常数a ,b 的值;(2)设g (x )=f ⎝⎛⎭⎫x +π2且lg g (x )>0,求g (x )的单调区间. 解 (1)∵x ∈⎣⎡⎦⎤0,π2,∴2x +π6∈⎣⎡⎦⎤π6,7π6, ∴sin ⎝⎛⎭⎫2x +π6∈⎣⎡⎦⎤-12,1, ∴-2a sin ⎝⎛⎭⎫2x +π6∈-2a ,a ], ∴f (x )∈b,3a +b ],又∵-5≤f (x )≤1, ∴b =-5,3a +b =1,因此a =2,b =-5. (2)由(1)得f (x )=-4sin ⎝⎛⎭⎫2x +π6-1, g (x )=f ⎝⎛⎭⎫x +π2=-4sin ⎝⎛⎭⎫2x +7π6-1 =4sin ⎝⎛⎭⎫2x +π6-1, 又由lg g (x )>0,得g (x )>1,∴4sin ⎝⎛⎭⎫2x +π6-1>1,∴sin ⎝⎛⎭⎫2x +π6>12, ∴2k π+π6<2x +π6<2k π+5π6,k ∈Z ,其中当2k π+π6<2x +π6≤2k π+π2,k ∈Z 时,g (x )单调递增,即k π<x ≤k π+π6,k ∈Z ,∴g (x )的单调增区间为⎝⎛⎦⎤k π,k π+π6,k ∈Z .又∵当2k π+π2<2x +π6<2k π+5π6,k ∈Z 时,g (x )单调递减,即k π+π6<x <k π+π3,k ∈Z .∴g (x )的单调减区间为⎝⎛⎭⎫k π+π6,k π+π3,k ∈Z .。
2018届通用课标高考数学第1轮复习第四章三角函数、解三角形第4节三角函数的图象和性质课件
故当 t=- 22,即 x=-π4时,ymax=-- 22+12+2
=2
2+1 2.
[答案] (1)D
(2)x2kπ+π4≤x≤54π+2kπ,k∈Z
(3)-12,12
2 2+1 (4) 2
(1)求三角函数的定义域实际上是解简单的三角不等式, 常借助三角函数线或三角函数图象来求解.
(2)函数 y= sinx-cosx的定义域为________.
(3)函数 y=cosx+π3,x∈0,π3的值域是______. (4) 函 数 y = cos2x - 2sinx 在 -π4,π4 上 的 最 大 值 为 ________. [解析] (1)由 2x+π6≠π2+kπ(k∈Z), 得 x≠π6+k2π(k∈Z), 故函数 f(x)的定义域为x|x≠π6+k2π,k∈Z.
(1)y=sinx 在第一、四象限是增函数.(
)
(2)所有的周期函数都有最小正周期.(
)
(3)y=ksinx+1(x∈R)的最大值为 k+1.(
)
(4)y=sin|x|为偶函数.(
)
(5)y=tanx 在整个定义域上是增函数.(
)
[答案] (1)× (2)× (3)× (4)√ (5)×
2.函数 y=
(2)求解三角函数的值域(最值)常见到以下几种类型: ①形如 y=asinx+bcosx+c 的三角函数化为 y=Asin(ωx +φ)+c 的形式,再求值域(最值); ②形如 y=asin2x+bsinx+c 的三角函数,可先设 sinx=t, 化为关于 t 的二次函数求值域(最值); ③形如 y=asinxcosx+b(sinx±cosx)+c 的三角函数,可先 设 t=sinx±cosx,化为关于 t 的二次函数求值域(最值).
2018版高考数学理一轮复习文档:第四章 三角函数、解
1.用五点法作正弦函数和余弦函数的简图正弦函数y =sin x ,x ∈[0,2π]的图象中,五个关键点是:(0,0),(π2,1),(π,0),(3π2,-1),(2π,0).余弦函数y =cos x ,x ∈[0,2π]的图象中,五个关键点是:(0,1),(π2,0),(π,-1),(3π2,0),(2π,1).2.正弦函数、余弦函数、正切函数的图象与性质【知识拓展】 1.对称与周期(1)正弦曲线、余弦曲线相邻两对称中心、相邻两对称轴之间的距离是半个周期,相邻的对称中心与对称轴之间的距离是14个周期.(2)正切曲线相邻两对称中心之间的距离是半个周期. 2.奇偶性若f (x )=A sin(ωx +φ)(A ,ω≠0),则(1)f (x )为偶函数的充要条件是φ=π2+k π(k ∈Z );(2)f (x )为奇函数的充要条件是φ=k π(k ∈Z ).【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”) (1)y =sin x 在第一、第四象限是增函数.( × )(2)常数函数f (x )=a 是周期函数,它没有最小正周期.( √ ) (3)正切函数y =tan x 在定义域内是增函数.( × ) (4)已知y =k sin x +1,x ∈R ,则y 的最大值为k +1.( × ) (5)y =sin |x |是偶函数.( √ ) (6)若sin x >22,则x >π4.( × )1.函数f (x )=cos(2x -π6)的最小正周期是( )A.π2B .πC .2πD .4π答案 B解析 最小正周期为T =2πω=2π2=π.故选B.2.(教材改编)函数f (x )=3sin(2x -π6)在区间[0,π2]上的值域为( )A .[-32,32]B .[-32,3]C .[-332,332]D .[-332,3]答案 B解析 当x ∈[0,π2]时,2x -π6∈[-π6,5π6],sin(2x -π6)∈[-12,1],故3sin(2x -π6)∈[-32,3],即f (x )的值域为[-32,3].3.函数y =tan 2x 的定义域是( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪ x ≠k π+π4,k ∈Z B.⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠k π2+π8,k ∈Z C.⎩⎨⎧⎭⎬⎫x ⎪⎪ x ≠k π+π8,k ∈Z D.⎩⎨⎧⎭⎬⎫x ⎪⎪ x ≠k π2+π4,k ∈Z 答案 D解析 由2x ≠k π+π2,k ∈Z ,得x ≠k π2+π4,k ∈Z ,∴y =tan 2x 的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠k π2+π4,k ∈Z . 4.(2016·开封模拟)已知函数f (x )=4sin(π3-2x ),x ∈[-π,0],则f (x )的单调递减区间是( )A .[-712π,-π12]B .[-π,-π2]C .[-π,-712π],[-π12,0]D .[-π,-512π],[-π12,0]答案 C解析 f (x )=4sin(π3-2x )=-4sin(2x -π3).由-π2+2k π≤2x -π3≤π2+2k π(k ∈Z ),得-π12+k π≤x ≤512π+k π(k ∈Z ). 所以函数f (x )的递减区间是[-π12+k π,512π+k π](k ∈Z ). 因为x ∈[-π,0],所以函数f (x )的递减区间是[-π,-712π],[-π12,0].5.已知函数f (x )=2sin(ωx +φ),对于任意x 都有f ⎝⎛⎭⎫π6+x =f ⎝⎛⎭⎫π6-x ,则f ⎝⎛⎭⎫π6的值为________. 答案 2或-2解析 ∵f ⎝⎛⎭⎫π6+x =f ⎝⎛⎭⎫π6-x ,∴x =π6是函数f (x )=2sin(ωx +φ)的一条对称轴.∴f ⎝⎛⎭⎫π6=±2.题型一 三角函数的定义域和值域例1 (1)函数f (x )=-2tan(2x +π6)的定义域是____________.(2)(2017·郑州月考)已知函数f (x )=sin(x +π6),其中x ∈[-π3,a ],若f (x )的值域是[-12,1],则实数a 的取值范围是________. 答案 (1){x |x ≠k π2+π6,k ∈Z } (2)[π3,π]解析 (1)由2x +π6≠π2+k π,k ∈Z ,得x ≠k π2+π6,k ∈Z ,所以f (x )的定义域为{x |x ≠k π2+π6,k ∈Z }.(2)∵x ∈[-π3,a ],∴x +π6∈[-π6,a +π6],∵x +π6∈[-π6,π2]时,f (x )的值域为[-12,1],∴由函数的图象知π2≤a +π6≤7π6,∴π3≤a ≤π.思维升华 (1)三角函数定义域的求法求三角函数定义域实际上是构造简单的三角不等式(组),常借助三角函数线或三角函数图象来求解.(2)三角函数值域的不同求法 ①利用sin x 和cos x 的值域直接求;②把所给的三角函数式变换成y =A sin(ωx +φ)的形式求值域; ③通过换元,转换成二次函数求值域.(1)函数y =lg(sin x )+cos x -12的定义域为 .(2)函数y =2sin(πx 6-π3) (0≤x ≤9)的最大值与最小值的和为__________.答案 (1)⎩⎨⎧⎭⎬⎫x |2k π<x ≤π3+2k π,k ∈Z(2)2- 3解析 (1)要使函数有意义必须有⎩⎪⎨⎪⎧sin x >0,cos x -12≥0, 即⎩⎪⎨⎪⎧ sin x >0,cos x ≥12,解得⎩⎪⎨⎪⎧2k π<x <π+2k π(k ∈Z ),-π3+2k π≤x ≤π3+2k π(k ∈Z ), ∴2k π<x ≤π3+2k π(k ∈Z ),∴函数的定义域为⎩⎨⎧⎭⎬⎫x |2k π<x ≤π3+2k π,k ∈Z .(2)∵0≤x ≤9,∴-π3≤πx 6-π3≤7π6,∴-32≤sin(πx 6-π3)≤1, 故-3≤2sin(πx 6-π3)≤2.即函数y =2sin(πx 6-π3)(0≤x ≤9)的最大值为2,最小值为- 3.∴最大值与最小值的和为2- 3. 题型二 三角函数的单调性例2 (1)函数f (x )=tan ⎝⎛⎭⎫2x -π3的单调递增区间是( ) A.⎣⎡⎦⎤k π2-π12,k π2+5π12(k ∈Z ) B.⎝⎛⎭⎫k π2-π12,k π2+5π12(k ∈Z ) C.⎝⎛⎭⎫k π+π6,k π+2π3(k ∈Z ) D.⎣⎡⎦⎤k π-π12,k π+5π12(k ∈Z )(2)已知ω>0,函数f (x )=sin ⎝⎛⎭⎫ωx +π4在⎝⎛⎭⎫π2,π上单调递减,则ω的取值范围是________. 答案 (1)B (2)⎣⎡⎦⎤12,54解析 (1)由k π-π2<2x -π3<k π+π2(k ∈Z ),得k π2-π12<x <k π2+5π12(k ∈Z ), 所以函数f (x )=tan ⎝⎛⎭⎫2x -π3的单调递增区间为⎝⎛⎭⎫k π2-π12,k π2+5π12(k ∈Z ),故选B. (2)由π2<x <π,ω>0,得ωπ2+π4<ωx +π4<ωπ+π4,又y =sin x 的单调递减区间为[2k π+π2,2k π+3π2],k ∈Z ,所以⎩⎨⎧ωπ2+π4≥π2+2k π,ωπ+π4≤3π2+2k π,k ∈Z ,解得4k +12≤ω≤2k +54,k ∈Z .又由4k +12-(2k +54)≤0,k ∈Z 且2k +54>0,k ∈Z ,得k =0,所以ω∈[12,54].引申探究本例(2)中,若已知ω>0,函数f (x )=cos(ωx +π4)在(π2,π)上单调递增,则ω的取值范围是____________. 答案 [32,74]解析 函数y =cos x 的单调递增区间为[-π+2k π,2k π],k ∈Z ,则⎩⎨⎧ωπ2+π4≥-π+2k π,ωπ+π4≤2k π,k ∈Z ,解得4k -52≤ω≤2k -14,k ∈Z ,又由4k -52-⎝⎛⎭⎫2k -14≤0,k ∈Z 且2k -14>0,k ∈Z , 得k =1,所以ω∈⎣⎡⎦⎤32,74.思维升华 (1)已知三角函数解析式求单调区间:①求函数的单调区间应遵循简单化原则,将解析式先化简,并注意复合函数单调性规律“同增异减”;②求形如y =A sin(ωx +φ)或y=A cos(ωx +φ)(其中ω>0)的单调区间时,要视“ωx +φ”为一个整体,通过解不等式求解.但如果ω<0,那么一定先借助诱导公式将ω化为正数,防止把单调性弄错.(2)已知三角函数的单调区间求参数.先求出函数的单调区间,然后利用集合间的关系求解.(1)函数f (x )=sin ⎝⎛⎭⎫-2x +π3的单调减区间为________. (2)若函数f (x )=sin ωx (ω>0)在区间[0,π3]上单调递增,在区间[π3,π2]上单调递减,则ω等于( ) A.23 B.32 C .2D .3答案 (1)⎣⎡⎦⎤k π-π12,k π+512π,k ∈Z (2)B 解析 (1)已知函数可化为f (x )=-sin ⎝⎛⎭⎫2x -π3, 欲求函数的单调减区间,只需求f (x )=sin ⎝⎛⎭⎫2x -π3的单调增区间. 由2k π-π2≤2x -π3≤2k π+π2,k ∈Z ,得k π-π12≤x ≤k π+5π12,k ∈Z .故所给函数的单调减区间为⎣⎡⎦⎤k π-π12,k π+5π12(k ∈Z ). (2)∵f (x )=sin ωx (ω>0)过原点, ∴当0≤ωx ≤π2,即0≤x ≤π2ω时,y =sin ωx 是增函数;当π2≤ωx ≤3π2,即π2ω≤x ≤3π2ω时, y =sin ωx 是减函数.由f (x )=sin ωx (ω>0)在⎣⎡⎦⎤0,π3上单调递增, 在⎣⎡⎦⎤π3,π2上单调递减,知π2ω=π3, ∴ω=32.题型三 三角函数的周期性、对称性 命题点1 周期性例3 (1)在函数①y =cos|2x |,②y =|cos x |,③y =cos ⎝⎛⎭⎫2x +π6,④y =tan ⎝⎛⎭⎫2x -π4中,最小正周期为π的所有函数为( )A .①②③B .①③④C .②④D .①③(2)若函数f (x )=2tan(kx +π3)的最小正周期T 满足1<T <2,则自然数k 的值为________.答案 (1)A (2)2或3解析 (1)①y =cos|2x |=cos 2x ,最小正周期为π; ②由图象知y =|cos x |的最小正周期为π; ③y =cos ⎝⎛⎭⎫2x +π6的最小正周期T =2π2=π; ④y =tan ⎝⎛⎭⎫2x -π4的最小正周期T =π2,因此选A. (2)由题意得,1<πk <2,∴k <π<2k ,即π2<k <π,又k ∈Z ,∴k =2或3. 命题点2 对称性例4 (2016·西安模拟)当x =π4时,函数f (x )=sin(x +φ)取得最小值,则函数y =f (3π4-x )( )A .是奇函数且图象关于点(π2,0)对称B .是偶函数且图象关于点(π,0)对称C .是奇函数且图象关于直线x =π2对称D .是偶函数且图象关于直线x =π对称 答案 C解析 ∵当x =π4时,函数f (x )取得最小值,∴sin(π4+φ)=-1,∴φ=2k π-3π4(k ∈Z ),∴f (x )=sin(x +2k π-3π4)=sin(x -3π4),∴y =f (3π4-x )=sin(-x )=-sin x,∴y =f (3π4-x )是奇函数,且图象关于直线x =π2对称.命题点3 对称性的应用例5 (1)已知函数y =2sin ⎝⎛⎭⎫2x +π3的图象关于点P (x 0,0)对称,若x 0∈⎣⎡⎦⎤-π2,0,则x 0=________.(2)若函数y =cos(ωx +π6) (ω∈N *)图象的一个对称中心是(π6,0),则ω的最小值为( )A .1B .2C .4D .8答案 (1)-π6(2)B解析 (1)由题意可知2x 0+π3=k π,k ∈Z ,故x 0=k π2-π6,k ∈Z ,又x 0∈⎣⎡⎦⎤-π2,0,∴-23≤k ≤13,k ∈Z , ∴k =0,则x 0=-π6.(2)由题意知ω6π+π6=k π+π2 (k ∈Z ),∴ω=6k +2(k ∈Z ),又ω∈N *,∴ωmin =2.思维升华 (1)对于函数y =A sin(ωx +φ),其对称轴一定经过图象的最高点或最低点,对称中心一定是函数的零点,因此在判断直线x =x 0或点(x 0,0)是不是函数的对称轴或对称中心时,可通过检验f (x 0)的值进行判断. (2)求三角函数周期的方法: ①利用周期函数的定义.②利用公式:y =A sin(ωx +φ)和y =A cos(ωx +φ)的最小正周期为2π|ω|,y =tan(ωx +φ)的最小正周期为π|ω|.(1)(2016·朝阳模拟)已知函数f (x )=2sin(π2x +π5),若对任意的实数x ,总有f (x 1)≤f (x )≤f (x 2),则|x 1-x 2|的最小值是( ) A .2 B .4 C .πD .2π (2)如果函数y =3cos(2x +φ)的图象关于点(4π3,0)中心对称,那么|φ|的最小值为( )A.π6B.π4C.π3D.π2答案 (1)A (2)A解析 (1)由题意可得|x 1-x 2|的最小值为半个周期,即T 2=πω=2. (2)由题意得3cos(2×4π3+φ)=3cos(2π3+φ+2π)=3cos(2π3+φ)=0,∴2π3+φ=k π+π2,k ∈Z , ∴φ=k π-π6,k ∈Z ,取k =0,得|φ|的最小值为π6.5.三角函数的性质考点分析 纵观近年高考中三角函数的试题,其有关性质几乎每年必考,题目较为简单,综合性的知识多数为三角函数本章内的知识,通过有效地复习完全可以对此类题型及解法有效攻破,并在高考中拿全分.典例 (1)(2015·课标全国Ⅰ)函数f (x )=cos(ωx +φ)的部分图象如图所示,则f (x )的单调递减区间为( )A.⎝⎛⎭⎫k π-14,k π+34,k ∈Z B.⎝⎛⎭⎫2k π-14,2k π+34,k ∈Z C.⎝⎛⎭⎫k -14,k +34,k ∈Z D.⎝⎛⎭⎫2k -14,2k +34,k ∈Z (2)已知函数f (x )=2cos(ωx +φ)+b 对任意实数x 有f (x +π4)=f (-x )恒成立,且f (π8)=1,则实数b 的值为( ) A .-1 B .3 C .-1或3D .-3(3)已知函数f (x )=2sin ωx (ω>0)在区间⎣⎡⎦⎤-π3,π4上的最小值是-2,则ω的最小值等于________.解析 (1)由图象知,周期T =2×⎝⎛⎭⎫54-14=2, ∴2πω=2,∴ω=π. 由π×14+φ=π2+2k π,k ∈Z ,不妨取φ=π4,∴f (x )=cos ⎝⎛⎭⎫πx +π4. 由2k π<πx +π4<2k π+π,k ∈Z ,得2k -14<x <2k +34,k ∈Z ,∴f (x )的单调递减区间为⎝⎛⎭⎫2k -14,2k +34,k ∈Z .故选D.(2)由f (x +π4)=f (-x )可知函数f (x )=2cos(ωx +φ)+b 关于直线x =π8对称,又函数f (x )在对称轴处取得最值,故±2+b =1,∴b =-1或b =3. (3)∵ω>0,-π3≤x ≤π4,∴-ωπ3≤ωx ≤ωπ4.由已知条件知-ωπ3≤-π2,∴ω≥32.答案 (1)D (2)C (3)321.已知函数f (x )=sin(ωx +π4) (ω>0)的最小正周期为π,则f (π8)等于( )A .1 B.12 C .-1 D .-12答案 A解析 ∵T =π,∴ω=2, ∴f (π8)=sin(2×π8+π4)=sin π2=1.2.若函数f (x )=-cos 2x ,则f (x )的一个递增区间为( ) A .(-π4,0)B .(0,π2)C .(π2,3π4)D .(3π4,π)答案 B解析 由f (x )=-cos 2x 知递增区间为[k π,k π+π2],k ∈Z ,故只有B 项满足.3.关于函数y =tan(2x -π3),下列说法正确的是( )A .是奇函数B .在区间(0,π3)上单调递减C .(π6,0)为其图象的一个对称中心D .最小正周期为π 答案 C解析 函数y =tan(2x -π3)是非奇非偶函数,A 错误;在区间(0,π3)上单调递增,B 错误;最小正周期为π2,D 错误.∵当x =π6时,tan(2×π6-π3)=0,∴(π6,0)为其图象的一个对称中心,故选C. 4.(2016·潍坊模拟)已知函数f (x )=2sin(ωx -π6)+1(x ∈R )的图象的一条对称轴为x =π,其中ω为常数,且ω∈(1,2),则函数f (x )的最小正周期为( ) A.3π5 B.6π5 C.9π5 D.12π5答案 B解析 由函数f (x )=2sin(ωx -π6)+1 (x ∈R )的图象的一条对称轴为x =π,可得ωπ-π6=k π+π2,k ∈Z ,∴ω=k +23,∴ω=53,从而得函数f (x )的最小正周期为2π53=6π5.5.已知函数f (x )=-2sin(2x +φ)(|φ|<π),若f (π8)=-2,则f (x )的一个单调递减区间是( )A .[-π8,3π8]B .[π8,9π8]C .[-3π8,π8]D .[π8,5π8]答案 C解析 由f (π8)=-2,得f (π8)=-2sin(2×π8+φ)=-2sin(π4+φ)=-2, 所以sin(π4+φ)=1.因为|φ|<π,所以φ=π4.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,解得k π-3π8≤x ≤k π+π8,k ∈Z .当k =0时,-3π8≤x ≤π8,故选C.6.若函数f (x )=sin(ωx +φ)(ω>0且|φ|<π2)在区间[π6,2π3]上是单调减函数,且函数值从1减少到-1,则f (π4)等于( )A.12B.22C.32D .1答案 C解析 由题意得函数f (x )的周期T =2(2π3-π6)=π,所以ω=2,此时f (x )=sin(2x +φ),将点(π6,1)代入上式得sin(π3+φ)=1 (|φ|<π2),所以φ=π6,所以f (x )=sin(2x +π6),于是f (π4)=sin(π2+π6)=cos π6=32.7.函数y =2sin x -1的定义域为______________. 答案 [2k π+π6,2k π+56π],k ∈Z解析 由2sin x -1≥0,得sin x ≥12,∴2k π+π6≤x ≤2k π+56π,k ∈Z .8.函数y =cos 2x +sin x (|x |≤π4)的最小值为___________________.答案1-22解析 令t =sin x ,∵|x |≤π4,∴t ∈⎣⎡⎦⎤-22,22. ∴y =-t 2+t +1=-⎝⎛⎭⎫t -122+54, ∴当t =-22时,y min =1-22. 9.函数y =cos(π4-2x )的单调减区间为______________.答案 [k π+π8,k π+5π8](k ∈Z )解析 由y =cos(π4-2x )=cos(2x -π4),得2k π≤2x -π4≤2k π+π (k ∈Z ),解得k π+π8≤x ≤k π+5π8(k ∈Z ),所以函数的单调减区间为[k π+π8,k π+5π8](k ∈Z ).10.(2016·威海模拟)若f (x )=2sin ωx +1 (ω>0)在区间[-π2,2π3]上是增函数,则ω的取值范围是__________. 答案 (0,34]解析 方法一 由2k π-π2≤ωx ≤2k π+π2,k ∈Z ,得f (x )的增区间是[2k πω-π2ω,2k πω+π2ω],k ∈Z .因为f (x )在[-π2,2π3]上是增函数,所以[-π2,2π3]⊆[-π2ω,π2ω].所以-π2≥-π2ω且2π3≤π2ω,所以ω∈(0,34].方法二 因为x ∈[-π2,2π3],ω>0.所以ωx ∈[-ωπ2,2πω3],又f (x )在区间[-π2,2π3]上是增函数,所以[-ωπ2,2πω3]⊆[-π2,π2],则⎩⎨⎧-ωπ2≥-π2,2πω3≤π2,又ω>0,得0<ω≤34.11.已知函数f (x )=sin(ωx +φ)(0<φ<2π3)的最小正周期为π.(1)求当f (x )为偶函数时φ的值;(2)若f (x )的图象过点(π6,32),求f (x )的单调递增区间.解 (1)∵f (x )的最小正周期为π, 则T =2πω=π,∴ω=2,∴f (x )=sin(2x +φ). 当f (x )为偶函数时,f (-x )=f (x ), ∴sin(2x +φ)=sin(-2x +φ), 将上式展开整理得sin 2x cos φ=0, 由已知上式对∀x ∈R 都成立, ∴cos φ=0,∵0<φ<2π3,∴φ=π2.(2)f (x )的图象过点(π6,32)时,sin(2×π6+φ)=32,即sin(π3+φ)=32.又∵0<φ<2π3,∴π3<π3+φ<π,∴π3+φ=2π3,φ=π3, ∴f (x )=sin(2x +π3).令2k π-π2≤2x +π3≤2k π+π2,k ∈Z ,得k π-5π12≤x ≤k π+π12,k ∈Z ,∴f (x )的单调递增区间为[k π-5π12,k π+π12],k ∈Z . 12.(2015·北京)已知函数f (x )=sin x -23sin 2x2.(1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎡⎦⎤0,2π3上的最小值. 解 (1)因为f (x )=sin x +3cos x -3=2sin ⎝⎛⎭⎫x +π3-3, 所以f (x )的最小正周期为2π.(2)因为0≤x ≤2π3,所以π3≤x +π3≤π.当x +π3=π,即x =2π3时,f (x )取得最小值.所以f (x )在区间⎣⎡⎦⎤0,2π3上的最小值为f ⎝⎛⎭⎫2π3=- 3. *13.已知a >0,函数f (x )=-2a sin ⎝⎛⎭⎫2x +π6+2a +b ,当x ∈⎣⎡⎦⎤0,π2时,-5≤f (x )≤1. (1)求常数a ,b 的值;(2)设g (x )=f ⎝⎛⎭⎫x +π2且lg g (x )>0,求g (x )的单调区间. 解 (1)∵x ∈⎣⎡⎦⎤0,π2,∴2x +π6∈⎣⎡⎦⎤π6,7π6, ∴sin ⎝⎛⎭⎫2x +π6∈⎣⎡⎦⎤-12,1, ∴-2a sin ⎝⎛⎭⎫2x +π6∈[-2a ,a ], ∴f (x )∈[b,3a +b ],又∵-5≤f (x )≤1, ∴b =-5,3a +b =1,因此a =2,b =-5. (2)由(1)得f (x )=-4sin ⎝⎛⎭⎫2x +π6-1, g (x )=f ⎝⎛⎭⎫x +π2=-4sin ⎝⎛⎭⎫2x +7π6-1=4sin ⎝⎛⎭⎫2x +π6-1, 又由lg g (x )>0,得g (x )>1,∴4sin ⎝⎛⎭⎫2x +π6-1>1,∴sin ⎝⎛⎭⎫2x +π6>12, ∴2k π+π6<2x +π6<2k π+5π6,k ∈Z ,其中当2k π+π6<2x +π6≤2k π+π2,k ∈Z 时,g (x )单调递增,即k π<x ≤k π+π6,k ∈Z ,∴g (x )的单调增区间为⎝⎛⎦⎤k π,k π+π6,k ∈Z . 又∵当2k π+π2<2x +π6<2k π+5π6,k ∈Z 时,g (x )单调递减,即k π+π6<x <k π+π3,k ∈Z .∴g (x )的单调减区间为⎝⎛⎭⎫k π+π6,k π+π3,k ∈Z .。
2018届高考数学 第四章 三角函数、解三角形 4.3 三角函数的图象与性质教案 文 新人教A版
函数
y=sin x
y=cos x
y=tan x
单调递 增区间
2������π-
π 2
,
2������π
+
π 2
(k
∈Z)
[2kπ-π,2kπ](k∈Z)
������π-
π 2
,
������π
+
π 2
(k∈Z)
单调递 减区间
2������π
+
π 2
,
2������π
+
3π 2
(k∈Z)
[2kπ,2kπ+π](k∈Z) 无
4.3 三角函数的图象与性 质
-2-
考纲要求
五年考题统计 命题规律及趋势
1.能画出 y=sin x,y=cos
x,y=tan x 的图象,了解三
角函数的周期性.
2013 全国Ⅰ,文 9
2.理解正弦函数、余弦 函数在[0,2π]上的性质
2014 全国Ⅰ,文 7 2015 全国Ⅰ,文 8
(如单调性、最大值和最 2016 全国Ⅱ,文 11
f(x)=令 (22s)i由n2kπ2π2<-���π2���x≤+<π2π6,x得+. π6π2≤ω+2π4k<π+ωπ2x(+k∈π4<Zπ)ω,得+π4k, π-π3≤x≤kπ+π6(k∈Z).
由题意,知
π 2
������
+
π 4
,����
+
π 4
⊆
2������π
+
π 2
,2������π
故函数 f(x)=sin
2018版高考数学理一轮复习文档:第四章 三角函数、解
1.y =A sin(ωx +φ)的有关概念2.用五点法画y =A sin(ωx +φ)一个周期内的简图时,要找五个特征点 如下表所示:3.函数y =sin x 的图象经变换得到y =A sin(ωx +φ) (A >0,ω>0)的图象的步骤如下:【知识拓展】1.由y =sin ωx 到y =sin(ωx +φ)(ω>0,φ>0)的变换:向左平移φω个单位长度而非φ个单位长度.2.函数y =A sin(ωx +φ)的对称轴由ωx +φ=k π+π2,k ∈Z 确定;对称中心由ωx +φ=k π,k ∈Z确定其横坐标.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)y =sin ⎝⎛⎭⎫x -π4的图象是由y =sin ⎝⎛⎭⎫x +π4的图象向右平移π2个单位得到的.( √ ) (2)将函数y =sin ωx 的图象向右平移φ(φ>0)个单位长度,得到函数y =sin(ωx -φ)的图象.( × )(3)利用图象变换作图时“先平移,后伸缩”与“先伸缩,后平移”中平移的长度一致.( × )(4)函数y =A sin(ωx +φ)的最小正周期为T =2πω.( × )(5)把y =sin x 的图象上各点纵坐标不变,横坐标缩短为原来的12,所得图象对应的函数解析式为y =sin 12x .( × )(6)若函数y =A cos(ωx +φ)的最小正周期为T ,则函数图象的两个相邻对称中心之间的距离为T2.( √ )1.(教材改编)y =2sin(12x -π3)的振幅,频率和初相分别为( )A .2,4π,π3B .2,14π,π3C .2,14π,-π3D .2,4π,-π3答案 C解析 由题意知A =2,f =1T =ω2π=14π,初相为-π3.2.(2015·山东)要得到函数y =sin ⎝⎛⎭⎫4x -π3的图象,只需将函数y =sin 4x 的图象( ) A .向左平移π12个单位B .向右平移π12个单位C .向左平移π3个单位D .向右平移π3个单位答案 B解析 ∵y =sin ⎝⎛⎭⎫4x -π3=sin ⎣⎡⎦⎤4⎝⎛⎭⎫x -π12, ∴要得到y =sin ⎝⎛⎭⎫4x -π3的图象,只需将函数y =sin 4x 的图象向右平移π12个单位. 3.(2016·青岛模拟)将函数y =sin x 的图象上所有的点向右平行移动π10个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是( ) A .y =sin(2x -π10)B .y =sin(2x -π5)C .y =sin(12x -π10)D .y =sin(12x -π20)答案 C解析 y =sin x π10−−−−−→右移个单位 y =sin(x -π10)―――――→横坐标伸长到原来的2倍y =sin(12x -π10).4.(2016·临沂模拟)已知函数f (x )=A cos(ωx +θ)的图象如图所示,f (π2)=-23,则f (-π6)=________.答案 -23解析 由题图知,函数f (x )的周期 T =2(11π12-7π12)=2π3,所以f (-π6)=f (-π6+2π3)=f (π2)=-23.5.若将函数f (x )=sin(2x +π4)的图象向右平移φ个单位,所得图象关于y 轴对称,则φ的最小正值是________. 答案3π8解析 ∵函数f (x )=sin(2x +π4)的图象向右平移φ个单位得到g (x )=sin[2(x -φ)+π4]=sin(2x+π4-2φ), 又∵g (x )是偶函数,∴π4-2φ=k π+π2(k ∈Z ),∴φ=-k π2-π8(k ∈Z ).当k =-1时,φ取得最小正值3π8.题型一 函数y =A sin(ωx +φ)的图象及变换例1 (2015·湖北)某同学用“五点法”画函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫ω>0,|φ|<π2在某一个周期内的图象时,列表并填入了部分数据,如下表:(1)请将上表数据补充完整,并直接写出函数f (x )的解析式;(2)将y =f (x )图象上所有点向左平行移动θ(θ>0)个单位长度,得到y =g (x )的图象.若y =g (x )图象的一个对称中心为⎝⎛⎭⎫5π12,0,求θ的最小值.解 (1)根据表中已知数据,解得A =5,ω=2,φ=-π6.数据补全如下表:且函数解析式为f (x )=5sin ⎝⎛⎭⎫2x -π6. (2)由(1)知f (x )=5sin ⎝⎛⎭⎫2x -π6, 得g (x )=5sin ⎝⎛⎭⎫2x +2θ-π6. 因为函数y =sin x 图象的对称中心为(k π,0),k ∈Z . 令2x +2θ-π6=k π,解得x =k π2+π12-θ,k ∈Z .由于函数y =g (x )的图象关于点⎝⎛⎭⎫5π12,0成中心对称,所以令k π2+π12-θ=5π12,解得θ=k π2-π3,k ∈Z .由θ>0可知,当k =1时,θ取得最小值π6.引申探究在本例(2)中,将f (x )图象上所有点向左平移π6个单位长度,得到g (x )的图象,求g (x )的解析式,并写出g (x )图象的对称中心. 解 由(1)知f (x )=5sin(2x -π6),因此g (x )=5sin[2(x +π6)-π6]=5sin(2x +π6).因为y =sin x 的对称中心为(k π,0),k ∈Z . 令2x +π6=k π,k ∈Z ,解得x =k π2-π12,k ∈Z .即y =g (x )图象的对称中心为(k π2-π12,0),k ∈Z .思维升华 (1)五点法作简图:用“五点法”作y =A sin(ωx +φ)的简图,主要是通过变量代换,设z =ωx +φ,由z 取0,π2,π,32π,2π来求出相应的x ,通过列表,计算得出五点坐标,描点后得出图象.(2)图象变换:由函数y =sin x 的图象通过变换得到y =A sin(ωx +φ)的图象,有两种主要途径:“先平移后伸缩”与“先伸缩后平移”.把函数y =sin x 的图象上所有点的横坐标缩小到原来的一半,纵坐标保持不变,再把所得函数图象向左平移π4个单位,得到的函数图象的解析式是( )A .y =cos 2xB .y =-sin 2xC .y =sin(2x -π4)D .y =sin(2x +π4)答案 A解析 由y =sin x 图象上所有点的横坐标缩小到原来的一半,纵坐标保持不变,所得图象的解析式为y =sin 2x ,再向左平移π4个单位得y =sin2(x +π4),即y =cos 2x .题型二 由图象确定y =A sin(ωx +φ)的解析式例2 已知函数f (x )=A sin(ωx +φ) (A >0,|φ|<π2,ω>0)的图象的一部分如图所示.(1)求f (x )的表达式; (2)试写出f (x )的对称轴方程.解 (1)观察图象可知A =2且点(0,1)在图象上, ∴1=2sin(ω·0+φ),即sin φ=12.∵|φ|<π2,∴φ=π6,又∵1112π是函数的一个零点且是图象递增穿过x 轴形成的零点,∴11π12ω+π6=2π,∴ω=2. ∴f (x )=2sin(2x +π6).(2)设2x +π6=B ,则函数y =2sin B 的对称轴方程为B =π2+k π,k ∈Z ,即2x +π6=π2+k π(k ∈Z ),解得x =k π2+π6(k ∈Z ),∴f (x )=2sin(2x +π6)的对称轴方程为x =k π2+π6(k ∈Z ).思维升华 求y =A sin(ωx +φ)+B (A >0,ω>0)解析式的步骤 (1)求A ,B ,确定函数的最大值M 和最小值m ,则A =M -m 2,B =M +m2. (2)求ω,确定函数的周期T ,则ω=2πT .(3)求φ,常用方法如下:①代入法:把图象上的一个已知点代入(此时要注意该点在上升区间上还是在下降区间上)或把图象的最高点或最低点代入.②五点法:确定φ值时,往往以寻找“五点法”中的特殊点作为突破口.具体如下:“第一点”(即图象上升时与x 轴的交点)为ωx +φ=0;“第二点”(即图象的“峰点”)为ωx +φ=π2;“第三点”(即图象下降时与x 轴的交点)为ωx +φ=π;“第四点”(即图象的“谷点”)为ωx +φ=3π2;“第五点”为ωx +φ=2π.(2016·太原模拟)已知函数f (x )=sin(ωx +φ) (ω>0,|φ|<π2)的部分图象如图所示,则y =f (x +π6)取得最小值时x 的集合为( )A .{x |x =k π-π6,k ∈Z }B .{x |x =k π-π3,k ∈Z }C .{x |x =2k π-π6,k ∈Z }D .{x |x =2k π-π3,k ∈Z }答案 B解析 根据所给图象,周期T =4×(7π12-π3)=π,故π=2πω,∴ω=2,因此f (x )=sin(2x +φ),另外图象经过点(7π12,0),代入有2×7π12+φ=k π(k ∈Z ),再由|φ|<π2,得φ=-π6,∴f (x +π6)=sin(2x +π6),当2x +π6=-π2+2k π (k ∈Z ),即x =-π3+k π(k ∈Z )时,y =f (x +π6)取得最小值.题型三 三角函数图象性质的应用 命题点1 三角函数模型的应用例3 (2015·陕西)如图,某港口一天6时到18时的水深变化曲线近似满足函数y =3sin ⎝⎛⎭⎫π6x +φ+k ,据此函数可知,这段时间水深(单位:m)的最大值为( )A .5B .6C .8D .10答案 C解析 由题干图易得y min =k -3=2,则k =5. ∴y max =k +3=8.命题点2 函数零点(方程根)问题例4 已知关于x 的方程2sin 2x -3sin 2x +m -1=0在⎝⎛⎭⎫π2,π上有两个不同的实数根,则m 的取值范围是________. 答案 (-2,-1)解析 方程2sin 2x -3sin 2x +m -1=0可转化为 m =1-2sin 2x +3sin 2x =cos 2x +3sin 2x =2sin ⎝⎛⎭⎫2x +π6,x ∈⎝⎛⎭⎫π2,π. 设2x +π6=t ,则t ∈⎝⎛⎭⎫76π,136π, ∴题目条件可转化为m2=sin t ,t ∈⎝⎛⎭⎫76π,136π有两个不同的实数根. ∴y =m2和y =sin t ,t ∈⎝⎛⎭⎫76π,136π的图象有两个不同交点,如图:由图象观察知,m 2的范围为(-1,-12),故m 的取值范围是(-2,-1). 引申探究例4中,若将“有两个不同的实数根”改成“有实根”,则m 的取值范围是__________. 答案 [-2,1)解析 由例4知,m2的范围是⎣⎡⎭⎫-1,12, ∴-2≤m <1,∴m 的取值范围是[-2,1). 命题点3 图象与性质的综合应用例5 已知函数f (x )=3sin(ωx +φ)(ω>0,-π2≤φ<π2)的图象关于直线x =π3对称,且图象上相邻两个最高点的距离为π. (1)求ω和φ的值;(2)当x ∈[0,π2]时,求函数y =f (x )的最大值和最小值.解 (1)因为f (x )的图象上相邻两个最高点的距离为π,所以f (x )的最小正周期T =π,从而ω=2πT=2.又因为f (x )的图象关于直线x =π3对称,所以2·π3+φ=k π+π2,k ∈Z ,由-π2≤φ<π2,得k =0,所以φ=π2-2π3=-π6.综上,ω=2,φ=-π6.(2)由(1)知f (x )=3sin(2x -π6),当x ∈[0,π2]时,-π6≤2x -π6≤5π6,∴当2x -π6=π2,即x =π3时,f (x )最大值=3;当2x -π6=-π6,即x =0时,f (x )最小值=-32.思维升华 (1)三角函数模型的应用体现在两方面:一是已知函数模型求解数学问题;二是把实际问题抽象转化成数学问题,建立数学模型,再利用三角函数的有关知识解决问题. (2)方程根的个数可转化为两个函数图象的交点个数.(3)研究y =A sin(ωx +φ)的性质时可将ωx +φ视为一个整体,利用换元法和数形结合思想进行解题.已知函数f (x )=cos(3x +π3),其中x ∈[π6,m ],若f (x )的值域是[-1,-32],则m 的取值范围是__________. 答案 [2π9,5π18]解析 画出函数的图象.由x ∈[π6,m ],可知5π6≤3x +π3≤3m +π3,因为f (π6)=cos 5π6=-32且f (2π9)=cos π=-1,要使f (x )的值域是[-1,-32],只要2π9≤m ≤5π18,即m ∈[2π9,5π18].4.三角函数图象与性质的综合问题典例 (12分)已知函数f (x )=23sin(x 2+π4)·cos(x 2+π4)-sin(x +π).(1)求f (x )的最小正周期;(2)若将f (x )的图象向右平移π6个单位长度,得到函数g (x )的图象,求函数g (x )在区间[0,π]上的最大值和最小值.思维点拨 (1)先将f (x )化成y =A sin(ωx +φ)的形式再求周期;(2)将f (x )解析式中的x 换成x -π6,得g (x ),然后利用整体思想求最值.规范解答解 (1)f (x )=23sin(x 2+π4)·cos(x 2+π4)-sin(x +π)=3cos x +sin x [3分]=2sin(x +π3),[5分]于是T =2π1=2π.[6分](2)由已知得g (x )=f (x -π6)=2sin(x +π6),[8分]∵x ∈[0,π],∴x +π6∈[π6,7π6],∴sin(x +π6)∈[-12,1],[10分]∴g (x )=2sin(x +π6)∈[-1,2].[11分]故函数g (x )在区间[0,π]上的最大值为2,最小值为-1.[12分]解决三角函数图象与性质的综合问题的一般步骤: 第一步:(化简)将f (x )化为a sin x +b cos x 的形式; 第二步:(用辅助角公式)构造f (x )=a 2+b 2·(sin x ·a a 2+b 2+cos x ·ba 2+b 2); 第三步:(求性质)利用f (x )=a 2+b 2sin(x +φ)研究三角函数的性质; 第四步:(反思)反思回顾,查看关键点、易错点和答题规范.1.为了得到函数y =cos(2x +π3)的图象,可将函数y =sin 2x 的图象( )A .向左平移5π6个单位长度B .向右平移5π6个单位长度C .向左平移5π12个单位长度D .向右平移5π12个单位长度答案 C解析 由题意,得y =cos(2x +π3)=sin(2x +π3+π2)=sin 2(x +5π12),则它是由y =sin 2x 向左平移5π12个单位得到的,故选C. 2.若f (x )=sin(2x +φ)+b ,对任意实数x 都有f ⎝⎛⎭⎫x +π3=f (-x ),f ⎝⎛⎭⎫2π3=-1,则实数b 的值为( ) A .-2或0 B .0或1 C .±1 D .±2答案 A解析 由f ⎝⎛⎭⎫x +π3=f (-x )可得f (x )的图象关于直线x =π6对称,∴2×π6+φ=π2+k π,k ∈Z .当直线x =π6经过最高点时,φ=π6;当直线x =π6经过最低点时,φ=-56π.若f (x )=sin ⎝⎛⎭⎫2x +π6+b ,由f ⎝⎛⎭⎫23π=-1,得b =0;若f (x )=sin ⎝⎛⎭⎫2x -56π+b ,由f ⎝⎛⎭⎫23π=-1,得b =-2.所以b =-2或b =0.3.已知函数f (x )=3sin ωx +cos ωx (ω>0),x ∈R .在曲线y =f (x )与直线y =1的交点中,若相邻交点距离的最小值为π3,则f (x )的最小正周期为( )A.π2B.2π3 C .π D .2π 答案 C解析 f (x )=3sin ωx +cos ωx =2sin(ωx +π6)(ω>0).由2sin(ωx +π6)=1,得sin(ωx +π6)=12,∴ωx +π6=2k π+π6或ωx +π6=2k π+56π(k ∈Z ).令k =0,得ωx 1+π6=π6,ωx 2+π6=56π,∴x 1=0,x 2=2π3ω.由|x 1-x 2|=π3,得2π3ω=π3,∴ω=2.故f (x )的最小正周期T =2π2=π.4.函数f (x )=sin(ωx +φ) (x ∈R ,ω>0,|φ|<π2)的部分图象如图所示,如果x 1,x 2∈(-π6,π3)且f (x 1)=f (x 2),则f (x 1+x 2)等于( )A.12 B.32C.22D .1答案 B解析 观察图象可知,A =1,T =π, ∴ω=2,f (x )=sin(2x +φ).将(-π6,0)代入上式得sin(-π3+φ)=0,由|φ|<π2,得φ=π3,则f (x )=sin(2x +π3).函数图象的对称轴为x =-π6+π32=π12.又x 1,x 2∈(-π6,π3),且f (x 1)=f (x 2),∴x 1+x 22=π12,∴x 1+x 2=π6,∴f (x 1+x 2)=sin(2×π6+π3)=32.故选B.5.函数f (x )=sin(2x +φ)⎝⎛⎭⎫|φ|<π2的图象向左平移π6个单位后所得函数图象的解析式是奇函数,则函数f (x )在⎣⎡⎦⎤0,π2上的最小值为( ) A .-32B .-12C.12 D.32答案 A解析 由函数f (x )的图象向左平移π6个单位得g (x )=sin ⎝⎛⎭⎫2x +φ+π3的图象, 因为是奇函数,所以φ+π3=k π,k ∈Z ,又因为|φ|<π2,所以φ=-π3,所以f (x )=sin ⎝⎛⎭⎫2x -π3. 又x ∈⎣⎡⎦⎤0,π2,所以2x -π3∈⎣⎡⎦⎤-π3,2π3, 所以当x =0时,f (x )取得最小值为-32. 6.(2016·太原模拟)已知函数f (x )=sin(ωx +φ)⎝⎛⎭⎫ω>0,|φ|<π2的最小正周期是π,若将f (x )的图象向右平移π3个单位后得到的图象关于原点对称,则函数f (x )的图象( )A .关于直线x =π12对称B .关于直线x =5π12对称C .关于点⎝⎛⎭⎫π12,0对称 D .关于点⎝⎛⎭⎫5π12,0对称答案 B解析 由题意知2πω=π,∴ω=2;又由f (x )的图象向右平移π3个单位后得到y =sin[2⎝⎛⎭⎫x -π3+φ]=sin ⎝⎛⎭⎫2x +φ-23π,此时关于原点对称,∴-2π3+φ=k π,k ∈Z ,∴φ=2π3+k π,k ∈Z ,又|φ|<π2,∴φ=-π3,∴f (x )=sin ⎝⎛⎭⎫2x -π3. 当x =π12时,2x -π3=-π6,∴A 、C 错误; 当x =5π12时,2x -π3=π2,∴B 正确,D 错误.7.(2016·全国丙卷)函数y =sin x -3cos x 的图象可由函数y =sin x +3cos x 的图象至少向右平移________个单位长度得到. 答案2π3解析 y =sin x -3cos x =2sin ⎝⎛⎭⎫x -π3,y =sin x +3cos x =2sin ⎝⎛⎭⎫x +π3,因此至少向右平移2π3个单位长度得到.8.(2017·长春质检)设偶函数f (x )=A sin(ωx +φ) (A >0,ω>0,0<φ<π)的部分图象如图所示,△KLM 为等腰直角三角形,∠KML =90°,KL =1,则f (16)的值为________.答案34解析 由题意知,点M 到x 轴的距离是12,根据题意可设f (x )=12cos ωx ,又由题图知12·2πω=1,所以ω=π,所以f (x )=12cos πx ,故f (16)=12cos π6=34.9.(2015·天津)已知函数f (x )=sin ωx +cos ωx (ω>0),x ∈R .若函数f (x )在区间(-ω,ω)内单调递增,且函数y =f (x )的图象关于直线x =ω对称,则ω的值为________.答案π2解析 f (x )=sin ωx +cos ωx =2sin ⎝⎛⎭⎫ωx +π4, 因为f (x )在区间(-ω,ω)内单调递增,且函数图象关于直线x =ω对称,所以f (ω)必为一个周期上的最大值,所以有ω·ω+π4=2k π+π2,k ∈Z ,所以ω2=π4+2k π,k ∈Z .又ω-(-ω)≤2πω2,即ω2≤π2,即ω2=π4,所以ω=π2.10.电流强度I (安)随时间t (秒)变化的函数I =A sin(ωt +φ)(A >0,ω>0,0<φ<π2)的图象如图所示,则当t =1100秒时,电流强度是________安.答案 -5解析 由图象知A =10,T 2=4300-1300=1100,∴ω=2πT =100π,∴I =10sin(100πt +φ).∵图象过点⎝⎛⎭⎫1300,10, ∴10sin(100π×1300+φ)=10,∴sin(π3+φ)=1,π3+φ=2k π+π2,k ∈Z ,∴φ=2k π+π6,k ∈Z ,又∵0<φ<π2,∴φ=π6.∴I =10sin ⎝⎛⎭⎫100πt +π6, 当t =1100秒时,I =-5安.11.已知函数y =A sin(ωx +φ) (A >0,ω>0)的图象过点P (π12,0),图象上与点P 最近的一个最高点是Q (π3,5).(1)求函数的解析式;(2)求函数f (x )的递增区间.解 (1)依题意得A =5,周期T =4(π3-π12)=π,∴ω=2ππ=2.故y =5sin(2x +φ),又图象过点P (π12,0),∴5sin(π6+φ)=0,由已知可得π6+φ=0,∴φ=-π6,∴y =5sin(2x -π6).(2)由-π2+2k π≤2x -π6≤π2+2k π,k ∈Z ,得-π6+k π≤x ≤π3+k π,k ∈Z ,故函数f (x )的递增区间为[k π-π6,k π+π3] (k ∈Z ).12.已知函数f (x )=3cos 2x +sin x ·cos x -32. (1)求函数f (x )的最小正周期T 和函数f (x )的单调递增区间; (2)若函数f (x )的对称中心为(x,0),求x ∈[0,2π)的所有x 的和. 解 (1)由题意得f (x )=sin(2x +π3),∴T =2π2=π,令-π2+2k π≤2x +π3≤π2+2k π,k ∈Z .可得函数f (x )的单调递增区间为[-5π12+k π,π12+k π],k ∈Z .(2)令2x +π3=k π,k ∈Z ,可得x =-π6+k π2,k ∈Z .∵x ∈[0,2π),∴k 可取1,2,3,4. ∴所有满足条件的x 的和为2π6+5π6+8π6+11π6=13π3. *13.(2016·潍坊模拟)函数f (x )=A sin(ωx +φ) (A >0,ω>0,0<φ<π2)的部分图象如图所示.(1)求f (x )的解析式;(2)设g (x )=[f (x -π12)]2,求函数g (x )在x ∈[-π6,π3]上的最大值,并确定此时x 的值.解 (1)由题图知A =2,T 4=π3,则2πω=4×π3,∴ω=32. 又f (-π6)=2sin[32×(-π6)+φ]=2sin(-π4+φ)=0,∴sin(φ-π4)=0,∵0<φ<π2,∴-π4<φ-π4<π4,∴φ-π4=0,即φ=π4,∴f (x )的解析式为f (x )=2sin(32x +π4).(2)由(1)可得f (x -π12)=2sin[32(x -π12)+π4]=2sin(32x +π8),∴g (x )=[f (x -π12)]2=4×1-cos (3x +π4)2=2-2cos(3x +π4),∵x ∈[-π6,π3],∴-π4≤3x +π4≤5π4,∴当3x +π4=π,即x =π4时,g (x )max =4.。
2018版高考数学文北师大版大一轮复习讲义教师版文档
1.y =A sin(ωx +φ)的有关概念2.用五点法画y =A sin(ωx +φ)一个周期内的简图时,要找五个特征点 如下表所示:3.函数y =sin x 的图像经变换得到y =A sin(ωx +φ) (A >0,ω>0)的图像的步骤如下:【知识拓展】1.由y =sin ωx 到y =sin(ωx +φ)(ω>0,φ>0)的变换:向左平移φω个单位长度而非φ个单位长度.2.函数y =A sin(ωx +φ)的对称轴由ωx +φ=k π+π2,k ∈Z 确定;对称中心由ωx +φ=k π,k ∈Z确定其横坐标. 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)y =sin ⎝⎛⎭⎫x -π4的图像是由y =sin ⎝⎛⎭⎫x +π4的图像向右平移π2个单位得到的.( √ ) (2)将函数y =sin ωx 的图像向右平移φ(φ>0)个单位长度,得到函数y =sin(ωx -φ)的图像.( × )(3)利用图像变换作图时“先平移,后伸缩”与“先伸缩,后平移”中平移的长度一致.( × ) (4)函数y =A sin(ωx +φ)的最小正周期为T =2πω.( × )(5)把y =sin x 的图像上各点纵坐标不变,横坐标缩短为原来的12,所得图像对应的函数解析式为y =sin 12x .( × )(6)若函数y =A cos(ωx +φ)的最小正周期为T ,则函数图像的两个相邻对称中心之间的距离为T2.( √ )1.(教材改编)y =2sin(12x -π3)的振幅,频率和初相分别为( )A .2,4π,π3B .2,14π,π3C .2,14π,-π3D .2,4π,-π3答案 C解析 由题意知A =2,f =1T =ω=1,初相为-π3.2.(2015·山东)要得到函数y =sin ⎝⎛⎭⎫4x -π3的图像,只需将函数y =sin 4x 的图像( ) A .向左平移π12个单位B .向右平移π12个单位C .向左平移π3个单位D .向右平移π3个单位答案 B解析 ∵y =sin ⎝⎛⎭⎫4x -π3=sin ⎣⎡⎦⎤4⎝⎛⎭⎫x -π12,∴要得到y =sin ⎝⎛⎭⎫4x -π3的图像,只需将函数y =sin 4x 的图像向右平移π12个单位. 3.(2016·青岛模拟)将函数y =sin x 的图像上所有的点向右平行移动π10个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图像的函数解析式是( ) A .y =sin(2x -π10)B .y =sin(2x -π5)C .y =sin(12x -π10)D .y =sin(12x -π20)答案 C解析 y =sin x π10−−−−−→右移个单位y =sin(x -π10)―――――→横坐标伸长到原来的2倍y =sin(12x -π10). 4.(2016·陕西千阳中学模拟)函数f (x )=2sin(ωx +φ)(ω>0,-π2<φ<π2)的部分图像如图所示,则ω,φ的值分别是( )A .2,-π3B .2,-π6C .4,-π6D .4,π3答案 A解析 由图像可知,34T =5π12-(-π3)=9π12,∴T =π,∴ω=2πT=2.∵(5π12,2)在图像上,∴2×5π12+φ=2k π+π2, φ=2k π-π3(k ∈Z ),∵-π2<φ<π2,∴φ=-π3.5.若将函数f (x )=sin(2x +π4)的图像向右平移φ个单位,所得图像关于y 轴对称,则φ的最小正值是________. 答案3π8解析 ∵函数f (x )=sin(2x +π4)的图像向右平移φ个单位得到g (x )=sin[2(x -φ)+π4]=sin(2x +π4-2φ),又∵g (x )是偶函数,∴π4-2φ=k π+π2(k ∈Z ),∴φ=-k π2-π8(k ∈Z ).当k =-1时,φ取得最小正值3π8.题型一 函数y =A sin(ωx +φ)的图像及变换例1 (2015·湖北)某同学用“五点法”画函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫ω>0,|φ|<π2在某一个周期内的图像时,列表并填入了部分数据,如下表:(1) 请将上表数据补充完整,并直接写出函数f (x )的解析式;(2) 将y =f (x )图像上所有点向左平移θ(θ>0)个单位长度,得到y =g (x )的图像.若y =g (x )图像的一个对称中心为⎝⎛⎭⎫5π12,0,求θ的最小值.解 (1)根据表中已知数据,解得A =5,ω=2,φ=-π6.数据补全如下表:且函数解析式为f (x )=5sin ⎝⎛⎭⎫2x -π6. (2)由(1)知f (x )=5sin ⎝⎛⎭⎫2x -π6, 得g (x )=5sin ⎝⎛⎭⎫2x +2θ-π6. 因为函数y =sin x 图像的对称中心为(k π,0),k ∈Z .令2x +2θ-π6=k π,解得x =k π2+π12-θ,k ∈Z .由于函数y =g (x )的图像关于点⎝⎛⎭⎫5π12,0成中心对称, 所以令k π2+π12-θ=5π12,解得θ=k π2-π3,k ∈Z .由θ>0可知,当k =1时,θ取得最小值π6.引申探究在本例(2)中,将f (x )图像上所有点向左平移π6个单位长度,得到g (x )的图像,求g (x )的解析式,并写出g (x )图像的对称中心. 解 由(1)知f (x )=5sin(2x -π6),因此g (x )=5sin[2(x +π6)-π6]=5sin(2x +π6).因为y =sin x 的对称中心为(k π,0),k ∈Z . 令2x +π6=k π,k ∈Z ,解得x =k π2-π12,k ∈Z .即y =g (x )图像的对称中心为(k π2-π12,0),k ∈Z .思维升华 (1)五点法作简图:用“五点法”作y =A sin(ωx +φ)的简图,主要是通过变量代换,设z =ωx +φ,由z 取0,π2,π,32π,2π来求出相应的x ,通过列表,计算得出五点坐标,描点后得出图像.(2)图像变换:由函数y =sin x 的图像通过变换得到y =A sin(ωx +φ)的图像,有两种主要途径:“先平移后伸缩”与“先伸缩后平移”.把函数y =sin x 的图像上所有点的横坐标缩小到原来的一半,纵坐标保持不变,再把所得函数图像向左平移π4个单位,得到的函数图像的解析式是( )A .y =cos 2xB .y =-sin 2xC .y =sin(2x -π4)D .y =sin(2x +π4)答案 A解析 由y =sin x 图像上所有点的横坐标缩小到原来的一半,纵坐标保持不变,所得图像的解析式为y =sin 2x ,再向左平移π4个单位得y =sin 2(x +π4),即y =cos 2x .题型二 由图像确定y =A sin(ωx +φ)的解析式例2 已知函数f (x )=A sin(ωx +φ) (A >0,|φ|<π2,ω>0)的图像的一部分如图所示.(1)求f (x )的表达式; (2)试写出f (x )的对称轴方程.解 (1)观察图像可知A =2且点(0,1)在图像上, ∴1=2sin(ω·0+φ),即sin φ=12.∵|φ|<π2,∴φ=π6,又∵1112π是函数的一个零点且是图像递增穿过x 轴形成的零点,∴11π12ω+π6=2π,∴ω=2. ∴f (x )=2sin(2x +π6).(2)设2x +π6=B ,则函数y =2sin B 的对称轴方程为B =π2+k π,k ∈Z ,即2x +π6=π2+k π(k ∈Z ),解得x =k π2+π6(k ∈Z ),∴f (x )=2sin(2x +π6)的对称轴方程为x =k π2+π6(k ∈Z ).思维升华 求y =A sin(ωx +φ)+B (A >0,ω>0)解析式的步骤 (1)求A ,B ,确定函数的最大值M 和最小值m ,则A =M -m 2,B =M +m2. (2)求ω,确定函数的周期T ,则ω=2πT .(3)求φ,常用方法如下:①代入法:把图像上的一个已知点代入(此时要注意该点在上升区间上还是在下降区间上)或把图像的最高点或最低点代入.②五点法:确定φ值时,往往以寻找“五点法”中的特殊点作为突破口.具体如下:“第一点”(即图像上升时与x 轴的交点)为ωx +φ=0;“第二点”(即图像的最高点)为ωx +φ=π2;“第三点”(即图像下降时与x 轴的交点)为ωx +φ=π;“第四点”(即图像的最低点)为ωx +φ=3π2;“第五点”为ωx +φ=2π.(2016·太原模拟)已知函数f (x )=sin(ωx +φ)(ω>0,|φ|<π2)的部分图像如图所示,则y =f (x +π6)取得最小值时x 的集合为( )A .{x |x =k π-π6,k ∈Z }B .{x |x =k π-π3,k ∈Z }C .{x |x =2k π-π6,k ∈Z }D .{x |x =2k π-π3,k ∈Z }答案 B解析 根据所给图像,周期T =4×(7π12-π3)=π,故π=2πω,∴ω=2,因此f (x )=sin(2x +φ),另外图像经过点(7π12,0),代入有2×7π12+φ=k π(k ∈Z ),再由|φ|<π2,得φ=-π6,∴f (x +π6)=sin(2x+π6),当2x +π6=-π2+2k π (k ∈Z ),即x =-π3+k π(k ∈Z )时,y =f (x +π6)取得最小值.题型三 三角函数图像性质的应用命题点1 三角函数模型的应用例3 (2015·陕西)如图,某港口一天6时到18时的水深变化曲线近似满足函数y =3sin ⎝⎛⎭⎫π6x +φ+k ,据此函数可知,这段时间水深(单位:m)的最大值为( )A .5B .6C .8D .10答案 C解析 由题干图易得y min =k -3=2,则k =5. ∴y max =k +3=8.命题点2 函数零点(方程根)问题例4 已知关于x 的方程2sin 2x -3sin 2x +m -1=0在⎝⎛⎭⎫π2,π上有两个不同的实数根,则m 的取值范围是________. 答案 (-2,-1)解析 方程2sin 2x -3sin 2x +m -1=0可转化为 m =1-2sin 2x +3sin 2x =cos 2x +3sin 2x =2sin ⎝⎛⎭⎫2x +π6,x ∈⎝⎛⎭⎫π2,π. 设2x +π6=t ,则t ∈⎝⎛⎭⎫76π,136π, ∴题目条件可转化为m2=sin t ,t ∈⎝⎛⎭⎫76π,136π有两个不同的实数根. ∴y =m2和y =sin t ,t ∈⎝⎛⎭⎫76π,136π的图像有两个不同交点,如图:由图像观察知,m 2的范围为(-1,-12),故m 的取值范围是(-2,-1). 引申探究例4中,若将“有两个不同的实数根”改成“有实根”,则m 的取值范围是__________. 答案 [-2,1)解析 由例4知,m2的范围是⎣⎡⎭⎫-1,12, ∴-2≤m <1,∴m 的取值范围是[-2,1). 命题点3 图像与性质的综合应用例5 已知函数f (x )=3sin(ωx +φ)(ω>0,-π2≤φ<π2)的图像关于直线x =π3对称,且图像上相邻两个最高点的距离为π. (1)求ω和φ的值;(2)当x ∈[0,π2]时,求函数y =f (x )的最大值和最小值.解 (1)因为f (x )的图像上相邻两个最高点的距离为π,所以f (x )的最小正周期T =π,从而ω=2πT =2.又因为f (x )的图像关于直线x =π3对称,所以2·π3+φ=k π+π2,k ∈Z ,由-π2≤φ<π2,得k =0,所以φ=π2-2π3=-π6.综上,ω=2,φ=-π6.(2)由(1)知f (x )=3sin(2x -π6),当x ∈[0,π2]时,-π6≤2x -π6≤5π6,∴当2x -π6=π2,即x =π3时,f (x )最大值=3;当2x -π6=-π6,即x =0时,f (x )最小值=-32.思维升华 (1)三角函数模型的应用体现在两方面:一是已知函数模型求解数学问题;二是把实际问题抽象转化成数学问题,建立数学模型,再利用三角函数的有关知识解决问题. (2)方程根的个数可转化为两个函数图像的交点个数.(3)研究y =A sin(ωx +φ)的性质时可将ωx +φ视为一个整体,利用换元法和数形结合思想进行解题.已知函数f (x )=cos(3x +π3),其中x ∈[π6,m ],若f (x )的值域是[-1,-32],则m的取值范围是__________. 答案 [2π9,5π18]解析 画出函数的图像.由x ∈[π6,m ],可知5π6≤3x +π3≤3m +π3,因为f (π6)=cos 5π6=-32且f (2π9)=cos π=-1,要使f (x )的值域是[-1,-32], 只要2π9≤m ≤5π18,即m ∈[2π9,5π18].4.三角函数图像与性质的综合问题典例 (12分)已知函数f (x )=23sin(x 2+π4)·cos(x 2+π4)-sin(x +π).(1)求f (x )的最小正周期;(2)若将f (x )的图像向右平移π6个单位长度,得到函数g (x )的图像,求函数g (x )在区间[0,π]上的最大值和最小值.思维点拨 (1)先将f (x )化成y =A sin(ωx +φ)的形式再求周期;(2)将f (x )解析式中的x 换成x -π6,得g (x ),然后利用整体思想求最值.规范解答解 (1)f (x )=23sin(x 2+π4)·cos(x 2+π4)-sin(x +π)=3cos x +sin x [3分]=2sin(x +π3),[5分]于是T =2π1=2π.[6分](2)由已知得g (x )=f (x -π6)=2sin(x +π6),[8分]∵x ∈[0,π],∴x +π6∈[π6,7π6],∴sin(x +π6)∈[-12,1],[10分]∴g (x )=2sin(x +π6)∈[-1,2].[11分]故函数g (x )在区间[0,π]上的最大值为2,最小值为-1.[12分]解决三角函数图像与性质的综合问题的一般步骤: 第一步:(化简)将f (x )化为a sin x +b cos x 的形式; 第二步:(用辅助角公式)构造f (x )=a 2+b 2· (sin x ·a a 2+b 2+cos x ·ba 2+b2); 第三步:(求性质)利用f (x )=a 2+b 2sin(x +φ)研究三角函数的性质; 第四步:(反思)反思回顾,查看关键点、易错点和答题规范.1.为了得到函数y =cos(2x +π3)的图像,可将函数y =sin 2x 的图像( )A .向左平移5π6个单位长度B .向右平移5π6个单位长度C .向左平移5π12个单位长度D .向右平移5π12个单位长度答案 C解析 由题意,得y =cos(2x +π3)=sin(2x +π3+π2)=sin 2(x +5π12),则它是由y =sin 2x 向左平移5π12个单位得到的,故选C.2.若f (x )=sin(2x +φ)+b ,对任意实数x 都有f ⎝⎛⎭⎫x +π3=f (-x ),f ⎝⎛⎭⎫2π3=-1,则实数b 的值为( ) A .-2或0 B .0或1 C .±1 D .±2答案 A解析 由f ⎝⎛⎭⎫x +π3=f (-x )可得f (x )的图像关于直线x =π6对称,∴2×π6+φ=π2+k π,k ∈Z .当直线x =π6经过最高点时,φ=π6;当直线x =π6经过最低点时,φ=-56π.若f (x )=sin ⎝⎛⎭⎫2x +π6+b ,由f ⎝⎛⎭⎫23π=-1,得b =0;若f (x )=sin ⎝⎛⎭⎫2x -56π+b ,由f ⎝⎛⎭⎫23π=-1,得b =-2.所以b =-2或b =0. 3.已知函数f (x )=3sin ωx +cos ωx (ω>0),x ∈R .在曲线y =f (x )与直线y =1的交点中,若相邻交点距离的最小值为π3,则f (x )的最小正周期为( )A.π2B.2π3 C .π D .2π 答案 C解析 f (x )=3sin ωx +cos ωx =2sin(ωx +π6)(ω>0).由2sin(ωx +π6)=1,得sin(ωx +π6)=12,∴ωx +π6=2k π+π6或ωx +π6=2k π+56π(k ∈Z ).令k =0,得ωx 1+π6=π6,ωx 2+π6=56π,∴x 1=0,x 2=2π3ω.由|x 1-x 2|=π3,得2π3ω=π3,∴ω=2.故f (x )的最小正周期T =2π2=π.4.函数f (x )=sin(ωx +φ) (x ∈R ,ω>0,|φ|<π2)的部分图像如图所示,如果x 1,x 2∈(-π6,π3)且f (x 1)=f (x 2),则f (x 1+x 2)等于( )A.12B.32C.22 D .1 答案 B解析 观察图像可知,A =1,T =π, ∴ω=2,f (x )=sin(2x +φ).将(-π6,0)代入上式得sin(-π3+φ)=0,由|φ|<π2,得φ=π3,则f (x )=sin(2x +π3).函数图像的对称轴为x =-π6+π32=π12.又x 1,x 2∈(-π6,π3),且f (x 1)=f (x 2),∴x 1+x 22=π12,∴x 1+x 2=π6,∴f (x 1+x 2)=sin(2×π6+π3)=32.故选B.5.函数f (x )=sin(2x +φ)⎝⎛⎭⎫|φ|<π2的图像向左平移π6个单位后所得函数图像的解析式是奇函数,则函数f (x )在⎣⎡⎦⎤0,π2上的最小值为( ) A .-32 B .-12 C.12 D.32答案 A解析 由函数f (x )的图像向左平移π6个单位得g (x )=sin ⎝⎛⎭⎫2x +φ+π3的图像, 因为是奇函数,所以φ+π3=k π,k ∈Z ,又因为|φ|<π2,所以φ=-π3,所以f (x )=sin ⎝⎛⎭⎫2x -π3. 又x ∈⎣⎡⎦⎤0,π2,所以2x -π3∈⎣⎡⎦⎤-π3,2π3, 所以当x =0时,f (x )取得最小值为-32. 6.(2016·太原模拟)已知函数f (x )=sin(ωx +φ)⎝⎛⎭⎫ω>0,|φ|<π2的最小正周期是π,若将f (x )的图像向右平移π3个单位后得到的图像关于原点对称,则函数f (x )的图像( )A .关于直线x =π12对称B .关于直线x =5π12对称C .关于点⎝⎛⎭⎫π12,0对称 D .关于点⎝⎛⎭⎫5π12,0对称答案 B解析 由题意知2πω=π,∴ω=2;又由f (x )的图像向右平移π3个单位后得到y =sin[2⎝⎛⎭⎫x -π3+φ]=sin ⎝⎛⎭⎫2x +φ-23π,此时关于原点对称,∴-2π3+φ=k π,k ∈Z ,∴φ=2π3+k π,k ∈Z ,又|φ|<π2,∴φ=-π3,∴f (x )=sin ⎝⎛⎭⎫2x -π3. 当x =π12时,2x -π3=-π6,∴A 、C 错误;当x =5π12时,2x -π3=π2,∴B 正确,D 错误.7.(2016·全国丙卷)函数y =sin x -3cos x 的图像可由函数y =sin x +3cos x 的图像至少向右平移________个单位长度得到. 答案2π3解析 y =sin x -3cos x =2sin ⎝⎛⎭⎫x -π3,y =sin x +3cos x =2sin ⎝⎛⎭⎫x +π3,因此至少向右平移2π3个单位长度得到.8.(2016·长春模拟)设偶函数f (x )=A sin(ωx +φ) (A >0,ω>0,0<φ<π)的部分图像如图所示,△KLM 为等腰直角三角形,∠KML =90°,KL =1,则f (16)的值为________.答案34解析 由题意知,点M 到x 轴的距离是12,根据题意可设f (x )=12cos ωx ,又由题图知12·2πω=1,所以ω=π,所以f (x )=12cos πx ,故f (16)=12cos π6=34.9.(2015·天津)已知函数f (x )=sin ωx +cos ωx (ω>0),x ∈R .若函数f (x )在区间(-ω,ω)内单调递增,且函数y =f (x )的图像关于直线x =ω对称,则ω的值为________. 答案π2解析 f (x )=sin ωx +cos ωx =2sin ⎝⎛⎭⎫ωx +π4, 因为f (x )在区间(-ω,ω)内单调递增,且函数图像关于直线x =ω对称,所以f (ω)必为一个周期上的最大值,所以有ω·ω+π4=2k π+π2,k ∈Z ,所以ω2=π4+2k π,k ∈Z .又ω-(-ω)≤2πω2,即ω2≤π2,即ω2=π4,所以ω=π2.10.(2016·邢台模拟)先把函数f (x )=sin(x -π6)的图像上各点的横坐标变为原来的12(纵坐标不变),再把新得到的图像向右平移π3个单位,得到y =g (x )的图像.当x ∈(π4,3π4)时,函数g (x )的值域为________. 答案 (-32,1] 解析 依题意得 g (x )=sin[2(x -π3)-π6]=sin(2x -5π6),当x ∈(π4,3π4)时,2x -5π6∈(-π3,2π3),此时sin(2x -5π6)∈(-32,1],故g (x )的值域是(-32,1]. 11.已知函数y =A sin(ωx +φ) (A >0,ω>0)的图像过点P (π12,0),图像上与点P 最近的一个最高点是Q (π3,5).(1)求函数的解析式; (2)求函数f (x )的递增区间.解 (1)依题意得A =5,周期T =4(π3-π12)=π,∴ω=2ππ=2.故y =5sin(2x +φ),又图像过点P (π12,0),∴5sin(π6+φ)=0,由已知可得π6+φ=0,∴φ=-π6,∴y =5sin(2x -π6).(2)由-π2+2k π≤2x -π6≤π2+2k π,k ∈Z ,得-π6+k π≤x ≤π3+k π,k ∈Z ,故函数f (x )的递增区间为[k π-π6,k π+π3] (k ∈Z ).12.已知函数f (x )=3cos 2x +sin x ·cos x -32. (1)求函数f (x )的最小正周期T 和函数f (x )的单调递增区间; (2)若函数f (x )的对称中心为(x,0),求x ∈[0,2π)的所有x 的和. 解 (1)由题意得f (x )=sin(2x +π3),∴T =2π2=π,令-π2+2k π≤2x +π3≤π2+2k π,k ∈Z .可得函数f (x )的单调递增区间为[-5π12+k π,π12+k π],k ∈Z .(2)令2x +π3=k π,k ∈Z ,可得x =-π6+k π2,k ∈Z .∵x ∈[0,2π),∴k 可取1,2,3,4. ∴所有满足条件的x 的和为2π6+5π6+8π6+11π6=13π3. 13.(2016·潍坊模拟)函数f (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<π2)的部分图像如图所示.(1)求f (x )的解析式;(2)设g (x )=[f (x -π12)]2,求函数g (x )在x ∈[-π6,π3]上的最大值,并确定此时x 的值.解 (1)由题图知A =2,T 4=π3,则2πω=4×π3,∴ω=32. 又f (-π6)=2sin[32×(-π6)+φ]=2sin(-π4+φ)=0,∴sin(φ-π4)=0,∵0<φ<π2,∴-π4<φ-π4<π4,∴φ-π4=0,即φ=π4,∴f (x )的解析式为f (x )=2sin(32x +π4).(2)由(1)可得f (x -π12)=2sin[32(x -π12)+π4]=2sin(32x +π8),∴g (x )=[f (x -π12)]2=4×1-cos (3x +π4)2=2-2cos(3x +π4),∵x ∈[-π6,π3],∴-π4≤3x +π4≤5π4,∴当3x +π4=π,即x =π4时,g (x )max =4.。
2018版高考数学大一轮复习第四章三角函数解三角形4.3三角函数的图象与性质教师用书理苏教版
第四章 三角函数、解三角形 4.3 三角函数的图象与性质教师用书理 苏教版1.用五点法作正弦函数和余弦函数的简图正弦函数y =sin x ,x ∈[0,2π]的图象中,五个关键点是:(0,0),(π2,1),(π,0),(3π2,-1),(2π,0). 余弦函数y =cos x ,x ∈[0,2π]的图象中,五个关键点是:(0,1),(π2,0),(π,-1),(3π2,0),(2π,1). 2.正弦函数、余弦函数、正切函数的图象与性质【知识拓展】 1.对称与周期(1)正弦曲线、余弦曲线相邻两对称中心、相邻两对称轴之间的距离是半个周期,相邻的对称中心与对称轴之间的距离是14个周期.(2)正切曲线相邻两对称中心之间的距离是半个周期. 2.奇偶性若f (x )=A sin(ωx +φ)(A ,ω≠0),则(1)f (x )为偶函数的充要条件是φ=π2+k π(k ∈Z );(2)f (x )为奇函数的充要条件是φ=k π(k ∈Z ). 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”) (1)y =sin x 在第一、第四象限是增函数.( × )(2)常数函数f (x )=a 是周期函数,它没有最小正周期.( √ ) (3)正切函数y =tan x 在定义域内是增函数.( × ) (4)已知y =k sin x +1,x ∈R ,则y 的最大值为k +1.( × ) (5)y =sin |x |是偶函数.( √ ) (6)若sin x >22,则x >π4.( × )1.函数f (x )=cos(2x -π6)的最小正周期是________.答案 π解析 最小正周期为T =2πω=2π2=π.2.(教材改编)函数y =-tan x 的单调递减区间是________________. 答案 (-π2+k π,π2+k π)(k ∈Z )解析 因为y =tan x 与y =-tan x 的单调性相反,所以y =-tan x 的单调递减区间为(-π2+k π,π2+k π) (k ∈Z ).3.(教材改编)sin 11°,cos 10°,sin 168°的大小关系为________________. 答案 sin 11°<sin 168°<cos 10°解析 sin 168°=sin(180°-12°)=sin 12°, cos 10°=sin(90°-10°)=sin 80°, 又y =sin x 在[0°,90°]上是增函数, ∴sin 11°<sin 12°<sin 80°, 即sin 11°<sin 168°<cos 10°.4.(教材改编)y =1+sin x ,x ∈[0,2π]的图象与直线y =32的交点个数为________.答案 2解析 在同一坐标系中作出函数y =1+sin x ,x ∈[0,2π]和y =32的图象(图略),由图象可得有两个交点.5.(教材改编)下列满足函数y =tan x2的条件是________.(填序号)①在(0,π2)上单调递增;②为奇函数;③以π为最小正周期;④定义域为{x |x ≠π4+k π2,k ∈Z }.答案 ①②解析 ①令0<x <π2,得0<x 2<π4,∴y =tan x 2在(0,π2)上单调递增;②tan(-x 2)=-tan x2,故为奇函数;③T =πω=2π,故③不正确;④令x 2≠π2+k π(k ∈Z ),得x ≠π+2k π(k ∈Z ),∴定义域为{x |x ≠π+2k π,k ∈Z }, ∴④不正确.题型一 三角函数的定义域和值域例1 (1)函数f (x )=-2tan(2x +π6)的定义域是____________.(2)(2016·苏州模拟)已知函数f (x )=sin(x +π6),其中x ∈[-π3,a ],若f (x )的值域是[-12,1],则实数a 的取值范围是________. 答案 (1){x |x ≠k π2+π6,k ∈Z } (2)[π3,π] 解析 (1)由2x +π6≠π2+k π,k ∈Z ,得x ≠k π2+π6,k ∈Z ,所以f (x )的定义域为{x |x ≠k π2+π6,k ∈Z }. (2)∵x ∈[-π3,a ],∴x +π6∈[-π6,a +π6],∵x +π6∈[-π6,π2]时,f (x )的值域为[-12,1],∴由函数的图象知π2≤a +π6≤7π6,∴π3≤a ≤π.思维升华 (1)三角函数定义域的求法求三角函数定义域实际上是构造简单的三角不等式(组),常借助三角函数线或三角函数图象来求解.(2)三角函数值域的不同求法①利用sin x 和cos x 的值域直接求;②把所给的三角函数式变换成y =A sin(ωx +φ)的形式求值域; ③通过换元,转换成二次函数求值域.(1)函数y =lg(sin x )+cos x -12的定义域为 .(2)函数y =2sin(πx 6-π3)(0≤x ≤9)的最大值与最小值的和为__________.答案 (1)⎩⎨⎧⎭⎬⎫x |2k π<x ≤π3+2k π,k ∈Z(2)2- 3解析 (1)要使函数有意义必须有⎩⎪⎨⎪⎧sin x >0,cos x -12≥0,即⎩⎪⎨⎪⎧sin x >0,cos x ≥12,解得⎩⎪⎨⎪⎧2k π<x <π+2k πk ∈Z ,-π3+2k π≤x ≤π3+2k πk ∈Z ,∴2k π<x ≤π3+2k π(k ∈Z ),∴函数的定义域为⎩⎨⎧⎭⎬⎫x |2k π<x ≤π3+2k π,k ∈Z .(2)∵0≤x ≤9,∴-π3≤πx 6-π3≤7π6,∴-32≤sin(πx 6-π3)≤1, 故-3≤2sin(πx 6-π3)≤2.即函数y =2sin(πx 6-π3)(0≤x ≤9)的最大值为2,最小值为- 3.∴最大值与最小值的和为2- 3. 题型二 三角函数的单调性例2 (1)函数f (x )=tan ⎝⎛⎭⎪⎫2x -π3的单调递增区间是________________.(2)已知ω>0,函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π4在⎝ ⎛⎭⎪⎫π2,π上单调递减,则ω的取值范围是________. 答案 (1)⎝⎛⎭⎪⎫k π2-π12,k π2+5π12(k ∈Z ) (2)⎣⎢⎡⎦⎥⎤12,54 解析 (1)由k π-π2<2x -π3<k π+π2(k ∈Z ),得k π2-π12<x <k π2+5π12(k ∈Z ),所以函数f (x )=tan ⎝⎛⎭⎪⎫2x -π3的单调递增区间为 ⎝⎛⎭⎪⎫k π2-π12,k π2+5π12(k ∈Z ).(2)由π2<x <π,ω>0,得ωπ2+π4<ωx +π4<ωπ+π4, 又y =sin x 的单调递减区间为[2k π+π2,2k π+3π2],k ∈Z ,所以⎩⎪⎨⎪⎧ωπ2+π4≥π2+2k π,k ∈Z ,ωπ+π4≤3π2+2k π,k ∈Z ,解得4k +12≤ω≤2k +54,k ∈Z .又由4k +12-(2k +54)≤0,k ∈Z 且2k +54>0,k ∈Z ,得k =0,所以ω∈[12,54].引申探究本例(2)中,若已知ω>0,函数f (x )=cos(ωx +π4)在(π2,π)上单调递增,则ω的取值范围是____________. 答案 [32,74]解析 函数y =cos x 的单调递增区间为[-π+2k π,2k π],k ∈Z , 则⎩⎪⎨⎪⎧ωπ2+π4≥-π+2k π,k ∈Z ,ωπ+π4≤2k π,k ∈Z ,解得4k -52≤ω≤2k -14,k ∈Z ,又由4k -52-⎝ ⎛⎭⎪⎫2k -14≤0,k ∈Z 且2k -14>0,k ∈Z ,得k =1,所以ω∈⎣⎢⎡⎦⎥⎤32,74. 思维升华 (1)已知三角函数解析式求单调区间:①求函数的单调区间应遵循简单化原则,将解析式先化简,并注意复合函数单调性规律“同增异减”;②求形如y =A sin(ωx +φ)或y =A cos(ωx +φ)(其中ω>0)的单调区间时,要视“ωx +φ”为一个整体,通过解不等式求解.但如果ω<0,那么一定先借助诱导公式将ω化为正数,防止把单调性弄错. (2)已知三角函数的单调区间求参数.先求出函数的单调区间,然后利用集合间的关系求解.(1)函数f (x )=sin ⎝⎛⎭⎪⎫-2x +π3的单调减区间为________. (2)若函数f (x )=sin ωx (ω>0)在区间[0,π3]上单调递增,在区间[π3,π2]上单调递减,则ω=________.答案 (1)⎣⎢⎡⎦⎥⎤k π-π12,k π+512π,k ∈Z (2)32解析 (1)由已知函数得y =-sin ⎝⎛⎭⎪⎫2x -π3,欲求函数的单调减区间,只需求y =sin ⎝ ⎛⎭⎪⎫2x -π3的单调增区间.由2k π-π2≤2x -π3≤2k π+π2,k ∈Z ,得k π-π12≤x ≤k π+5π12,k ∈Z .故所给函数的单调减区间为⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12(k ∈Z ).(2)∵f (x )=sin ωx (ω>0)过原点, ∴当0≤ωx ≤π2,即0≤x ≤π2ω时,y =sin ωx 是增函数;当π2≤ωx ≤3π2,即π2ω≤x ≤3π2ω时, y =sin ωx 是减函数.由f (x )=sin ωx (ω>0)在⎣⎢⎡⎦⎥⎤0,π3上单调递增,在⎣⎢⎡⎦⎥⎤π3,π2上单调递减,知π2ω=π3,∴ω=32.题型三 三角函数的周期性、对称性 命题点1 周期性例3 (1)在函数①y =cos|2x |,②y =|cos x |,③y =cos ⎝ ⎛⎭⎪⎫2x +π6,④y =tan ⎝ ⎛⎭⎪⎫2x -π4中,最小正周期为π的所有函数为________.(2)若函数f (x )=2tan(kx +π3)的最小正周期T 满足1<T <2,则自然数k 的值为________. 答案 (1)①②③ (2)2或3解析 (1)①y =cos|2x |=cos 2x ,最小正周期为π; ②由图象知y =|cos x |的最小正周期为π; ③y =cos ⎝ ⎛⎭⎪⎫2x +π6的最小正周期T =2π2=π; ④y =tan ⎝ ⎛⎭⎪⎫2x -π4的最小正周期T =π2. (2)由题意得,1<πk<2,∴k <π<2k ,即π2<k <π,又k ∈Z ,∴k =2或3. 命题点2 对称性例4 (2016·盐城模拟)当x =π4时,函数f (x )=sin(x +φ)取得最小值,则下列关于函数y=f (3π4-x )的说法正确的是________.①是奇函数且图象关于点(π2,0)对称;②是偶函数且图象关于点(π,0)对称; ③是奇函数且图象关于直线x =π2对称;④是偶函数且图象关于直线x =π对称. 答案 ③解析 ∵当x =π4时,函数f (x )取得最小值,∴sin(π4+φ)=-1,∴φ=2k π-3π4(k ∈Z ),∴f (x )=sin(x +2k π-3π4)=sin(x -3π4),∴y =f (3π4-x )=sin(-x )=-sin x ,∴y =f (3π4-x )是奇函数,且图象关于直线x =π2对称.命题点3 对称性的应用例5 (1)已知函数y =2sin ⎝ ⎛⎭⎪⎫2x +π3的图象关于点P (x 0,0)对称,若x 0∈⎣⎢⎡⎦⎥⎤-π2,0,则x 0=________.(2)若函数y =cos(ωx +π6)(ω∈N *)图象的一个对称中心是(π6,0),则ω的最小值为________.答案 (1)-π6 (2)2解析 (1)由题意可知2x 0+π3=k π,k ∈Z , 故x 0=k π2-π6,k ∈Z , 又x 0∈⎣⎢⎡⎦⎥⎤-π2,0,∴-23≤k ≤13,k ∈Z ,∴k =0,则x 0=-π6.(2)由题意知ω6π+π6=k π+π2(k ∈Z ),∴ω=6k +2(k ∈Z ),又ω∈N *,∴ωmin =2.思维升华 (1)对于函数y =A sin(ωx +φ),其对称轴一定经过图象的最高点或最低点,对称中心一定是函数的零点,因此在判断直线x =x 0或点(x 0,0)是不是函数的对称轴或对称中心时,可通过检验f (x 0)的值进行判断. (2)求三角函数周期的方法 ①利用周期函数的定义.②利用公式:y =A sin(ωx +φ)和y =A cos(ωx +φ)的最小正周期为2π|ω|,y =tan(ωx +φ)的最小正周期为π|ω|.(1)(2016·常州模拟)已知函数f (x )=2sin(π2x +π5),若对任意的实数x ,总有f (x 1)≤f (x )≤f (x 2),则|x 1-x 2|的最小值是________. (2)如果函数y =3cos(2x +φ)的图象关于点(4π3,0)中心对称,那么|φ|的最小值为________. 答案 (1)2 (2)π6解析 (1)由题意可得|x 1-x 2|的最小值为半个周期,即T 2=πω=2. (2)由题意得3cos(2×4π3+φ)=3cos(2π3+φ+2π)=3cos(2π3+φ)=0,∴2π3+φ=k π+π2,k ∈Z , ∴φ=k π-π6,k ∈Z ,取k =0,得|φ|的最小值为π6.5.三角函数的性质考点分析 纵观近年高考中三角函数的试题,其有关性质几乎每年必考,题目较为简单,综合性的知识多数为三角函数本章内的知识,通过有效地复习完全可以对此类题型及解法有效攻破,并在高考中拿全分.典例 (1)(2015·课标全国Ⅰ改编)函数f (x )=cos(ωx +φ)的部分图象如图所示,则f (x )的单调递减区间为________________.(2)已知函数f (x )=2cos(ωx +φ)+b 对任意实数x 有f (x +π4)=f (-x )成立,且f (π8)=1,则实数b 的值为________.(3)已知函数f (x )=2sin ωx (ω>0)在区间⎣⎢⎡⎦⎥⎤-π3,π4上的最小值是-2,则ω的最小值为________.解析 (1)由图象知,周期T =2×⎝ ⎛⎭⎪⎫54-14=2, ∴2πω=2,∴ω=π. 由π×14+φ=π2+2k π,k ∈Z ,不妨取φ=π4,∴f (x )=cos ⎝⎛⎭⎪⎫πx +π4.由2k π<πx +π4<2k π+π,k ∈Z ,得2k -14<x <2k +34,k ∈Z ,∴f (x )的单调递减区间为⎝⎛⎭⎪⎫2k -14,2k +34,k ∈Z .(2)由f (x +π4)=f (-x )可知函数f (x )=2cos(ωx +φ)+b 关于直线x =π8对称,又函数f (x )在对称轴处取得最值,故±2+b =1,∴b =-1或b =3. (3)∵ω>0,-π3≤x ≤π4,∴-ωπ3≤ωx ≤ωπ4.由已知条件知-ωπ3≤-π2,∴ω≥32.答案 (1)⎝⎛⎭⎪⎫2k -14,2k +34,k ∈Z (2)-1或3 (3)321.若函数f (x )=sin(ωx +φ)(ω>0且|φ|<π2)在区间[π6,2π3]上是单调减函数,且函数值从1减少到-1,则f (π4)=________.答案32解析 由题意得函数f (x )的周期T =2(2π3-π6)=π,所以ω=2,此时f (x )=sin(2x +φ),将点(π6,1)代入上式得sin(π3+φ)=1 (|φ|<π2),所以φ=π6,所以f (x )=sin(2x +π6),于是f (π4)=sin(π2+π6)=cos π6=32.2.函数y =2sin x -1的定义域为______________. 答案 [2k π+π6,2k π+56π],k ∈Z解析 由2sin x -1≥0,得sin x ≥12,∴2k π+π6≤x ≤2k π+56π,k ∈Z .3.关于函数y =tan(2x -π3),下列说法正确的是________.①是奇函数;②在区间(0,π3)上单调递减;③(π6,0)为其图象的一个对称中心;④最小正周期为π. 答案 ③解析 函数y =tan(2x -π3)是非奇非偶函数,①错误;在区间(0,π3)上单调递增,②错误;最小正周期为π2,④错误.∵当x =π6时,tan(2×π6-π3)=0,∴(π6,0)为其图象的一个对称中心.4.若函数f (x )=-cos 2x ,则f (x )的一个递增区间为________. ①(-π4,0)②(0,π2)③(π2,3π4)④(3π4,π)答案 ②解析 由f (x )=-cos 2x 知递增区间为[k π,k π+π2],k ∈Z ,故只有②满足.5.已知函数f (x )=-2sin(2x +φ)(|φ|<π),若f (π8)=-2,则f (x )的一个单调递减区间是________. ①[-π8,3π8]②[π8,9π8]③[-3π8,π8]④[π8,5π8]答案 ③解析 由f (π8)=-2,得f (π8)=-2sin(2×π8+φ)=-2sin(π4+φ)=-2,所以sin(π4+φ)=1.因为|φ|<π,所以φ=π4.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,得k π-3π8≤x ≤k π+π8,k ∈Z .当k =0时,-3π8≤x ≤π8.6.(2016·南京模拟)已知函数f (x )=2sin(ωx -π6)+1(x ∈R )的图象的一条对称轴为x =π,其中ω为常数,且ω∈(1,2),则函数f (x )的最小正周期为________. 答案6π5解析 由函数f (x )=2sin(ωx -π6)+1(x ∈R )的图象的一条对称轴为x =π,可得ωπ-π6=k π+π2,k ∈Z ,∴ω=k +23,∴ω=53,从而得函数f (x )的最小正周期为2π53=6π5.7.函数y =sin x 的图象和y =x2π的图象交点的个数是________.答案 3解析 在同一直角坐标系内作出两个函数的图象如图所示:由图可知交点个数是3. 8.函数y =cos 2x+sin x (|x |≤π4)的最小值为________________________________________. 答案1-22解析 令t =sin x ,∵|x |≤π4,∴t ∈⎣⎢⎡⎦⎥⎤-22,22.∴y =-t 2+t +1=-⎝ ⎛⎭⎪⎫t -122+54,∴当t =-22时,y min =1-22. 9.函数y =cos(π4-2x )的单调减区间为______________.答案 [k π+π8,k π+5π8](k ∈Z )解析 由y =cos(π4-2x )=cos(2x -π4),得2k π≤2x -π4≤2k π+π (k ∈Z ),解得k π+π8≤x ≤k π+5π8(k ∈Z ),所以函数的单调减区间为[k π+π8,k π+5π8](k ∈Z ).10.用“五点法”作出函数y =1-2sin x ,x ∈[-π,π]的简图,并回答下列问题: (1)观察函数图象,写出满足下列条件的x 的区间. ①y >1;②y <1.(2)若直线y =a 与y =1-2sin x ,x ∈[-π,π]有两个交点,求a 的取值范围. 解 列表如下:描点连线得:(1)由图象可知图象在y =1上方部分时y >1,在y =1下方部分时y <1, 所以①当x ∈(-π,0)时,y >1;②当x ∈(0,π)时,y <1.(2)如图所示,当直线y =a 与y =1-2sin x 有两个交点时,1<a <3或-1<a <1, 所以a 的取值范围是{a |1<a <3或-1<a <1}.11.已知函数f (x )=sin(ωx +φ)(0<φ<2π3)的最小正周期为π.(1)求当f (x )为偶函数时φ的值;(2)若f (x )的图象过点(π6,32),求f (x )的单调递增区间.解 ∵f (x )的最小正周期为π,则T =2πω=π,∴ω=2,∴f (x )=sin(2x +φ). (1)当f (x )为偶函数时,f (-x )=f (x ), ∴sin(2x +φ)=sin(-2x +φ), 将上式展开整理得sin 2x cos φ=0, 由已知上式对∀x ∈R 都成立, ∴cos φ=0,∵0<φ<2π3,∴φ=π2.(2)f (x )的图象过点(π6,32)时,sin(2×π6+φ)=32,即sin(π3+φ)=32.又∵0<φ<2π3,∴π3<π3+φ<π,∴π3+φ=2π3,φ=π3, ∴f (x )=sin(2x +π3).令2k π-π2≤2x +π3≤2k π+π2,k ∈Z ,得k π-5π12≤x ≤k π+π12,k ∈Z ,∴f (x )的单调递增区间为 [k π-5π12,k π+π12],k ∈Z .12.(2015·北京)已知函数f (x )=sin x -23sin 2x2.(1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤0,2π3上的最小值.解 (1)因为f (x )=sin x +3cos x - 3=2sin ⎝⎛⎭⎪⎫x +π3-3,所以f (x )的最小正周期为2π.(2)因为0≤x ≤2π3,所以π3≤x +π3≤π.当x +π3=π,即x =2π3时,f (x )取得最小值.所以f (x )在区间⎣⎢⎡⎦⎥⎤0,2π3上的最小值为f ⎝ ⎛⎭⎪⎫2π3=- 3.*13.已知a >0,函数f (x )=-2a sin ⎝ ⎛⎭⎪⎫2x +π6+2a +b ,当x ∈⎣⎢⎡⎦⎥⎤0,π2时,-5≤f (x )≤1.(1)求常数a ,b 的值;(2)设g (x )=f ⎝⎛⎭⎪⎫x +π2且lg g (x )>0,求g (x )的单调区间.解 (1)∵x ∈⎣⎢⎡⎦⎥⎤0,π2,∴2x +π6∈⎣⎢⎡⎦⎥⎤π6,7π6, ∴sin ⎝ ⎛⎭⎪⎫2x +π6∈⎣⎢⎡⎦⎥⎤-12,1, ∴-2a sin ⎝ ⎛⎭⎪⎫2x +π6∈[-2a ,a ],∴f (x )∈[b ,3a +b ],又∵-5≤f (x )≤1, ∴b =-5,3a +b =1,因此a =2,b =-5. (2)由(1)得f (x )=-4sin ⎝⎛⎭⎪⎫2x +π6-1,g (x )=f ⎝ ⎛⎭⎪⎫x +π2=-4sin ⎝⎛⎭⎪⎫2x +7π6-1=4sin ⎝ ⎛⎭⎪⎫2x +π6-1, 又由lg g (x )>0,得g (x )>1,∴4sin ⎝ ⎛⎭⎪⎫2x +π6-1>1,∴sin ⎝ ⎛⎭⎪⎫2x +π6>12, ∴2k π+π6<2x +π6<2k π+5π6,k ∈Z ,其中当2k π+π6<2x +π6≤2k π+π2,k ∈Z 时,g (x )单调递增,即k π<x ≤k π+π6,k ∈Z ,∴g (x )的单调增区间为⎝⎛⎦⎥⎤k π,k π+π6,k ∈Z .又∵当2k π+π2<2x +π6<2k π+5π6,k ∈Z 时,g (x )单调递减,即k π+π6<x <k π+π3,k ∈Z .∴g (x )的单调减区间为⎝ ⎛⎭⎪⎫k π+π6,k π+π3,k ∈Z .。
高考数学一轮总复习第四章三角函数与解三角形 4三角函数的图象与性质课件
( ×)
(2)常数函数 = 是周期函数,它没有最小正周期.
( √ )
(3) = sin 是偶函数. ( √ )
(4)已知 = sin + 1, ∈ ,则的最大值为 + 1.
(5) = tan 的对称中心是 π, 0 ∈ .
所以函数的定义域为[−4, −π] ∪ [0, π].故选D.
)
D.[−4, −π] ∪ [0, π]
√
(2)【多选题】下列函数中,最大值满足 ≥ 1的是(
A. = 2sin 2 − 1
√
)
B. = 2sin − cos
√
C. = −sin2 + 4sin − 3
D. = cos tan
(3)若是函数 的一个周期,则( ∈ 且 ≠ 0)也是 的周期.
(4)周期函数的定义域是无限集.
2.关于奇偶性的常用结论
π
2
(1) = sin + ≠ 0 ,则 为偶函数⇔ = + π ∈ .
(2) = sin + ≠ 0 ,则 为奇函数⇔ = π ∈ .
该函数的最小正周期为 =
2π
2
.
=π .
(3)由图象变换规则,知 = sin −
1
2
π
3
周期的一半,即 = × 2π = π .
π
3
的最小正周期是 = sin −
π
3
的最小正
【点拨】求三角函数周期的方法:①利用周期函数的定义.②利用公式
= sin + 和 = cos + 的最小正周期为
2018版高考数学复习第四章三角函数解三角形4.3三角函数的图像与性质教师用书文北师大版
2018版高考数学大一轮复习 第四章 三角函数、解三角形 4.3 三角函数的图像与性质教师用书 文 北师大版1.用五点法作正弦函数和余弦函数的简图正弦函数y =sin x ,x ∈[0,2π]的图像中,五个关键点是:(0,0),(π2,1),(π,0),(3π2,-1),(2π,0).余弦函数y =cos x ,x ∈[0,2π]的图像中,五个关键点是:(0,1),(π2,0),(π,-1),(3π2,0),(2π,1). 2.正弦函数、余弦函数、正切函数的图像与性质【知识拓展】 1.对称与周期(1)正弦曲线、余弦曲线相邻两对称中心、相邻两对称轴之间的距离是半个周期,相邻的对称中心与对称轴之间的距离是14个周期.(2)正切曲线相邻两对称中心之间的距离是半个周期. 2.奇偶性若f (x )=A sin(ωx +φ)(A ,ω≠0),则(1)f (x )为偶函数的充要条件是φ=π2+k π(k ∈Z );(2)f (x )为奇函数的充要条件是φ=k π(k ∈Z ).【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”) (1)y =sin x 在第一、第四象限是增函数.( × )(2)常数函数f (x )=a 是周期函数,它没有最小正周期.( √ ) (3)正切函数y =tan x 在定义域内是增函数.( × ) (4)已知y =k sin x +1,x ∈R ,则y 的最大值为k +1.( × ) (5)y =sin |x |是偶函数.( √ ) (6)若sin x >22,则x >π4.( × )1.函数f (x )=cos(2x -π6)的最小正周期是( )A.π2 B .π C .2π D .4π 答案 B解析 最小正周期为T =2πω=2π2=π.故选B.2.(教材改编)函数f (x )=3sin(2x -π6)在区间[0,π2]上的值域为( )A .[-32,32]B .[-32,3]C .[-332,332]D .[-332,3]答案 B解析 当x ∈[0,π2]时,2x -π6∈[-π6,5π6],sin(2x -π6)∈[-12,1],故3sin(2x -π6)∈[-32,3],即f (x )的值域为[-32,3].3.函数y =tan 2x 的定义域是( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x ≠k π+π4,k ∈ZB.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x ≠k π2+π8,k ∈ZC.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠k π+π8,k ∈Z D.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠k π2+π4,k ∈Z答案 D解析 由2x ≠k π+π2,k ∈Z ,得x ≠k π2+π4,k ∈Z ,∴y =tan 2x 的定义域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠k π2+π4,k ∈Z. 4.(2016·开封模拟)已知函数f (x )=4sin(π3-2x ),x ∈[-π,0],则f (x )的单调递减区间是( ) A .[-712π,-π12]B .[-π,-π2]C .[-π,-712π],[-π12,0]D .[-π,-512π],[-π12,0]答案 C解析 f (x )=4sin(π3-2x )=-4sin(2x -π3).由-π2+2k π≤2x -π3≤π2+2k π(k ∈Z ),得-π12+k π≤x ≤512π+k π(k ∈Z ). 所以函数f (x )的递减区间是 [-π12+k π,512π+k π](k ∈Z ). 因为x ∈[-π,0],所以函数f (x )的递减区间是[-π,-712π],[-π12,0].5.y =sin(x -π4)的图像的对称中心是____________.答案 (k π+π4,0),k ∈Z解析 令x -π4=k π(k ∈Z ),∴x =k π+π4(k ∈Z ),∴y =sin(x -π4)的图像的对称中心是(k π+π4,0),k ∈Z .题型一 三角函数的定义域和值域例1 (1)函数f (x )=-2tan(2x +π6)的定义域是____________.(2)(2016·郑州模拟)已知函数f (x )=sin(x +π6),其中x ∈[-π3,a ],若f (x )的值域是[-12,1],则实数a 的取值范围是________. 答案 (1){x |x ≠k π2+π6,k ∈Z } (2)[π3,π] 解析 (1)由2x +π6≠π2+k π,k ∈Z ,得x ≠k π2+π6,k ∈Z ,所以f (x )的定义域为{x |x ≠k π2+π6,k ∈Z }. (2)∵x ∈[-π3,a ],∴x +π6∈[-π6,a +π6],∵x +π6∈[-π6,π2]时,f (x )的值域为[-12,1],∴由函数的图像知π2≤a +π6≤7π6,∴π3≤a ≤π.思维升华 (1)三角函数定义域的求法求三角函数定义域实际上是构造简单的三角不等式(组),常借助三角函数线或三角函数图像来求解.(2)三角函数值域的不同求法①利用sin x 和cos x 的值域直接求;②把所给的三角函数式变换成y =A sin(ωx +φ)的形式求值域; ③通过换元,转换成二次函数求值域.(1)函数y =lg(sin x )+cos x -12的定义域为 .(2)函数y =2sin(πx 6-π3) (0≤x ≤9)的最大值与最小值的和为__________.答案 (1)⎩⎨⎧⎭⎬⎫x |2k π<x ≤π3+2k π,k ∈Z(2)2- 3解析 (1)要使函数有意义必须有⎩⎪⎨⎪⎧sin x >0,cos x -12≥0,即⎩⎪⎨⎪⎧sin x >0,cos x ≥12,解得⎩⎪⎨⎪⎧2k π<x <π+2k πk ∈Z ,-π3+2k π≤x ≤π3+2k πk ∈Z ,∴2k π<x ≤π3+2k π(k ∈Z ),∴函数的定义域为⎩⎨⎧⎭⎬⎫x |2k π<x ≤π3+2k π,k ∈Z .(2)∵0≤x ≤9,∴-π3≤πx 6-π3≤7π6,∴-32≤sin(πx 6-π3)≤1, 故-3≤2sin(πx 6-π3)≤2.即函数y =2sin(πx 6-π3)(0≤x ≤9)的最大值为2,最小值为- 3.∴最大值与最小值的和为2- 3.题型二 三角函数的单调性例2 (1)函数f (x )=tan ⎝ ⎛⎭⎪⎫2x -π3的单调递增区间是( ) A.⎣⎢⎡⎦⎥⎤k π2-π12,k π2+5π12(k ∈Z )B.⎝⎛⎭⎪⎫k π2-π12,k π2+5π12(k ∈Z ) C.⎝⎛⎭⎪⎫k π+π6,k π+2π3(k ∈Z )D.⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12(k ∈Z ) (2)已知ω>0,函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π4在⎝ ⎛⎭⎪⎫π2,π上单调递减,则ω的取值范围是________.答案 (1)B (2)⎣⎢⎡⎦⎥⎤12,54解析 (1)由k π-π2<2x -π3<k π+π2(k ∈Z ),得k π2-π12<x <k π2+5π12(k ∈Z ), 所以函数f (x )=tan ⎝⎛⎭⎪⎫2x -π3的单调递增区间为⎝⎛⎭⎪⎫k π2-π12,k π2+5π12(k ∈Z ),故选B.(2)由π2<x <π,ω>0,得ωπ2+π4<ωx +π4<ωπ+π4, 又y =sin x 的单调递减区间为[2k π+π2,2k π+3π2],所以⎩⎪⎨⎪⎧ωπ2+π4≥π2+2k π,ωπ+π4≤3π2+2k π,k ∈Z ,解得4k +12≤ω≤2k +54,k ∈Z .又由4k +12-(2k +54)≤0,k ∈Z 且2k +54>0,k ∈Z ,得k =0,所以ω∈[12,54].引申探究本例(2)中,若已知ω>0,函数f (x )=cos(ωx +π4)在(π2,π)上单调递增,则ω的取值范围是____________.答案 [32,74]解析 函数y =cos x 的单调递增区间为[-π+2k π,2k π],k ∈Z , 则⎩⎪⎨⎪⎧ωπ2+π4≥-π+2k π,ωπ+π4≤2k π,k ∈Z ,解得4k -52≤ω≤2k -14,k ∈Z ,又由4k -52-⎝ ⎛⎭⎪⎫2k -14≤0,k ∈Z 且2k -14>0,k ∈Z ,得k =1,所以ω∈⎣⎢⎡⎦⎥⎤32,74. 思维升华 (1)已知三角函数解析式求单调区间:①求函数的单调区间应遵循简单化原则,将解析式先化简,并注意复合函数单调性规律“同增异减”;②求形如y =A sin(ωx +φ)或y =A cos(ωx +φ)(其中ω>0)的单调区间时,要视“ωx +φ”为一个整体,通过解不等式求解.但如果ω<0,那么一定先借助诱导公式将ω化为正数,防止把单调性弄错. (2)已知三角函数的单调区间求参数.先求出函数的单调区间,然后利用集合间的关系求解.(1)函数f (x )=sin ⎝⎛⎭⎪⎫-2x +π3的单调减区间为________.(2)若函数f (x )=sin ωx (ω>0)在区间[0,π3]上单调递增,在区间[π3,π2]上单调递减,则ω等于( ) A.23 B.32 C .2D .3答案 (1)⎣⎢⎡⎦⎥⎤k π-π12,k π+512π,k ∈Z (2)B 解析 (1)已知函数可化为f (x )=-sin ⎝⎛⎭⎪⎫2x -π3,欲求函数的单调减区间,只需求f (x )=sin ⎝ ⎛⎭⎪⎫2x -π3的单调增区间. 由2k π-π2≤2x -π3≤2k π+π2,k ∈Z ,得k π-π12≤x ≤k π+5π12,k ∈Z .故所给函数的单调减区间为⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12(k ∈Z ).(2)∵f (x )=sin ωx (ω>0)过原点,∴当0≤ωx ≤π2,即0≤x ≤π2ω时,y =sin ωx 是增加的;当π2≤ωx ≤3π2,即π2ω≤x ≤3π2ω时, y =sin ωx 是减少的.由f (x )=sin ωx (ω>0)在⎣⎢⎡⎦⎥⎤0,π3上是增加的,在⎣⎢⎡⎦⎥⎤π3,π2上是减少的,知π2ω=π3,∴ω=32.题型三 三角函数的周期性、对称性 命题点1 周期性例3 (1)(2016·北京东城区模拟)函数y =12sin 2x +3cos 2x -32的最小正周期等于( )A .πB .2π C.π4 D.π2(2)若函数f (x )=2tan(kx +π3)的最小正周期T 满足1<T <2,则自然数k 的值为________. 答案 (1)A (2)2或3解析 (1)y =12sin 2x +3×1+cos 2x 2-32=12sin 2x +32cos 2x =sin(2x +π3),所以函数的最小正周期T =2πω=2π2=π,故选A.(2)由题意得,1<πk<2,∴k <π<2k ,即π2<k <π,又k ∈Z ,∴k =2或3. 命题点2 对称性例4 对于函数f (x )=sin ⎝ ⎛⎭⎪⎫πx +π2,下列说法正确的是( ) A .f (x )的周期为π,且在[0,1]上是增加的 B .f (x )的周期为2,且在[0,1]上是减少的 C .f (x )的周期为π,且在[-1,0]上是增加的 D .f (x )的周期为2,且在[-1,0]上是减少的 答案 B解析 因为f (x )=sin ⎝⎛⎭⎪⎫πx +π2=cos πx ,则周期T =2,在[0,1]上是减少的,故选B.命题点3 对称性的应用例5 (1)已知函数y =2sin ⎝ ⎛⎭⎪⎫2x +π3的图像关于点P (x 0,0)对称,若x 0∈⎣⎢⎡⎦⎥⎤-π2,0,则x 0=________.(2)若函数y =cos(ωx +π6) (ω∈N +)图像的一个对称中心是(π6,0),则ω的最小值为( )A .1B .2C .4D .8 答案 (1)-π6 (2)B解析 (1)由题意可知2x 0+π3=k π,k ∈Z , 故x 0=k π2-π6,k ∈Z , 又x 0∈⎣⎢⎡⎦⎥⎤-π2,0,∴-23≤k ≤13,k ∈Z ,∴k =0,则x 0=-π6.(2)由题意知ω6π+π6=k π+π2 (k ∈Z ),∴ω=6k +2(k ∈Z ),又ω∈N +,∴ωmin =2.思维升华 (1)对于函数y =A sin(ωx +φ),其对称轴一定经过图像的最高点或最低点,对称中心一定是函数的零点,因此在判断直线x =x 0或点(x 0,0)是不是函数的对称轴或对称中心时,可通过检验f (x 0)的值进行判断. (2)求三角函数周期的方法: ①利用周期函数的定义.②利用公式:y =A sin(ωx +φ)和y =A cos(ωx +φ)的最小正周期为2π|ω|,y =tan(ωx +φ)的最小正周期为π|ω|.(1)(2016·北京朝阳区模拟)已知函数f (x )=2sin(π2x +π5),若对任意的实数x ,总有f (x 1)≤f (x )≤f (x 2),则|x 1-x 2|的最小值是( )A .2B .4C .πD .2π(2)如果函数y =3cos(2x +φ)的图像关于点(4π3,0)中心对称,那么|φ|的最小值为( )A.π6B.π4C.π3D.π2 答案 (1)A (2)A解析 (1)由题意可得|x 1-x 2|的最小值为半个周期,即T 2=πω=2. (2)由题意得3cos(2×4π3+φ)=3cos(2π3+φ+2π)=3cos(2π3+φ)=0,∴2π3+φ=k π+π2,k ∈Z , ∴φ=k π-π6,k ∈Z ,取k =0,得|φ|的最小值为π6.5.三角函数的性质考点分析 纵观近年高考中三角函数的试题,其有关性质几乎每年必考,题目较为简单,综合性的知识多数为三角函数本章内的知识,通过有效地复习完全可以对此类题型及解法有效攻破,并在高考中拿全分.典例 (1)(2015·课标全国Ⅰ)函数f (x )=cos(ωx +φ)的部分图像如图所示,则f (x )的单调递减区间为( )A.⎝⎛⎭⎪⎫k π-14,k π+34,k ∈Z B.⎝⎛⎭⎪⎫2k π-14,2k π+34,k ∈Z C.⎝ ⎛⎭⎪⎫k -14,k +34,k ∈ZD.⎝⎛⎭⎪⎫2k -14,2k +34,k ∈Z (2)已知函数f (x )=2cos(ωx +φ)+b 对任意实数x 有f (x +π4)=f (-x )恒成立,且f (π8)=1,则实数b 的值为( )A .-1B .3C .-1或3D .-3(3)已知函数f (x )=2sin ωx (ω>0)在区间⎣⎢⎡⎦⎥⎤-π3,π4上的最小值是-2,则ω的最小值为________.解析 (1)由图像知,周期T =2×⎝ ⎛⎭⎪⎫54-14=2, ∴2πω=2,∴ω=π. 由π×14+φ=π2+2k π,k ∈Z ,不妨取φ=π4,∴f (x )=cos ⎝ ⎛⎭⎪⎫πx +π4.由2k π<πx +π4<2k π+π,k ∈Z ,得2k -14<x <2k +34,k ∈Z ,∴f (x )的单调递减区间为⎝⎛⎭⎪⎫2k -14,2k +34,k ∈Z .故选D.(2)由f (x +π4)=f (-x )可知函数f (x )=2cos(ωx +φ)+b 关于直线x =π8对称,又函数f (x )在对称轴处取得最值,故±2+b =1,∴b =-1或b =3. (3)∵ω>0,-π3≤x ≤π4,∴-ωπ3≤ωx ≤ωπ4.由已知条件知-ωπ3≤-π2,∴ω≥32.答案 (1)D (2)C (3)321.已知函数f (x )=sin(ωx +π4) (ω>0)的最小正周期为π,则f (π8)等于( )A .1 B.12 C .-1 D .-12答案 A解析 ∵T =π,∴ω=2,∴f (π8)=sin(2×π8+π4)=sin π2=1.2.若函数f (x )=-cos 2x ,则f (x )的一个递增区间为( )A .(-π4,0)B .(0,π2)C .(π2,3π4)D .(3π4,π)答案 B解析 由f (x )=-cos 2x 知递增区间为[k π,k π+π2],k ∈Z ,故只有B 项满足.3.关于函数y =tan(2x -π3),下列说法正确的是( )A .是奇函数B .在区间(0,π3)上单调递减C .(π6,0)为其图像的一个对称中心D .最小正周期为π 答案 C解析 函数y =tan(2x -π3)是非奇非偶函数,A 错误;在区间(0,π3)上是增加的,B 错误;最小正周期为π2,D 错误.∵当x =π6时,tan(2×π6-π3)=0,∴(π6,0)为其图像的一个对称中心,故选C.4.(2016·潍坊模拟)已知函数f (x )=2sin(ωx -π6)+1(x ∈R )的图像的一条对称轴为x =π,其中ω为常数,且ω∈(1,2),则函数f (x )的最小正周期为( ) A.3π5 B.6π5 C.9π5 D.12π5答案 B解析 由函数f (x )=2sin(ωx -π6)+1 (x ∈R )的图像的一条对称轴为x =π,可得ωπ-π6=k π+π2,k ∈Z ,∴ω=k +23,∴ω=53,从而得函数f (x )的最小正周期为2π53=6π5.5.已知函数f (x )=-2sin(2x +φ)(|φ|<π),若f (π8)=-2,则f (x )的一个单调递减区间是( ) A .[-π8,3π8]B .[π8,9π8]C .[-3π8,π8]D .[π8,5π8]答案 C解析 由f (π8)=-2,得f (π8)=-2sin(2×π8+φ)=-2sin(π4+φ)=-2,所以sin(π4+φ)=1.因为|φ|<π,所以φ=π4.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,解得k π-3π8≤x ≤k π+π8,k ∈Z .当k =0时,-3π8≤x ≤π8,故选C.6.若函数f (x )=sin(ωx +φ)(ω>0且|φ|<π2)在区间[π6,2π3]上是单调减函数,且函数值从1减少到-1,则f (π4)等于( )A.12B.22C.32 D .1 答案 C解析 由题意得函数f (x )的周期T =2(2π3-π6)=π,所以ω=2,此时f (x )=sin(2x +φ),将点(π6,1)代入上式得sin(π3+φ)=1 (|φ|<π2),所以φ=π6,所以f (x )=sin(2x +π6),于是f (π4)=sin(π2+π6)=cos π6=32.7.函数y =2sin x -1的定义域为______________. 答案 [2k π+π6,2k π+56π],k ∈Z解析 由2sin x -1≥0,得sin x ≥12,∴2k π+π6≤x ≤2k π+56π,k ∈Z .8.函数y =cos 2x +sin x (|x |≤π4)的最小值为___________________.答案1-22解析 令t =sin x ,∵|x |≤π4,∴t ∈⎣⎢⎡⎦⎥⎤-22,22. ∴y =-t 2+t +1=-⎝ ⎛⎭⎪⎫t -122+54,∴当t =-22时,y min =1-22. 9.函数y =cos(π4-2x )的单调减区间为______________.答案 [k π+π8,k π+5π8](k ∈Z )解析 由y =cos(π4-2x )=cos(2x -π4),得2k π≤2x -π4≤2k π+π (k ∈Z ),解得k π+π8≤x ≤k π+5π8(k ∈Z ),所以函数的单调减区间为[k π+π8,k π+5π8](k ∈Z ).10.(2016·威海模拟)若f (x )=2sin ωx +1(ω>0)在区间[-π2,2π3]上是增加的,则ω的取值范围是__________. 答案 (0,34]解析 方法一 由2k π-π2≤ωx ≤2k π+π2,k ∈Z ,得f (x )的增区间是[2k πω-π2ω,2k πω+π2ω],k ∈Z .因为f (x )在[-π2,2π3]上是增加的,所以[-π2,2π3]⊆[-π2ω,π2ω],即-π2≥-π2ω且2π3≤π2ω,所以ω∈(0,34].方法二 因为x ∈[-π2,2π3],ω>0.所以ωx ∈[-ωπ2,2πω3],又f (x )在区间[-π2,2π3]上是增加的,所以[-ωπ2,2πω3]⊆[-π2,π2],则⎩⎪⎨⎪⎧-ωπ2≥-π2,2πω3≤π2,又ω>0,得0<ω≤34.11.设函数f (x )=sin ()2x +φ(-π<φ<0),y =f (x )图像的一条对称轴是直线x =π8.(1)求φ;(2)求函数y =f (x )的单调递增区间. 解 (1)令2×π8+φ=k π+π2,k ∈Z ,∴φ=k π+π4,k ∈Z ,又-π<φ<0,则φ=-3π4.(2)由(1)得f (x )=sin ⎝ ⎛⎭⎪⎫2x -3π4, 令-π2+2k π≤2x -3π4≤π2+2k π,k ∈Z ,可解得π8+k π≤x ≤5π8+k π,k ∈Z ,因此y =f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤π8+k π,5π8+k π,k ∈Z .12.(2015·北京)已知函数f (x )=sin x -23sin 2x2.(1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤0,2π3上的最小值.解 (1)因为f (x )=sin x +3cos x - 3=2sin ⎝⎛⎭⎪⎫x +π3-3,所以f (x )的最小正周期为2π.(2)因为0≤x ≤2π3,所以π3≤x +π3≤π.当x +π3=π,即x =2π3时,f (x )取得最小值.所以f (x )在区间⎣⎢⎡⎦⎥⎤0,2π3上的最小值为f ⎝ ⎛⎭⎪⎫2π3=- 3.13.已知a >0,函数f (x )=-2a sin⎝ ⎛⎭⎪⎫2x +π6+2a +b ,当x ∈⎣⎢⎡⎦⎥⎤0,π2时,-5≤f (x )≤1. (1)求常数a ,b 的值;(2)设g (x )=f ⎝⎛⎭⎪⎫x +π2且lg g (x )>0,求g (x )的单调区间.解 (1)∵x ∈⎣⎢⎡⎦⎥⎤0,π2,∴2x +π6∈⎣⎢⎡⎦⎥⎤π6,7π6, ∴sin ⎝ ⎛⎭⎪⎫2x +π6∈⎣⎢⎡⎦⎥⎤-12,1, ∴-2a sin ⎝ ⎛⎭⎪⎫2x +π6∈[-2a ,a ],∴f (x )∈[b,3a +b ],又∵-5≤f (x )≤1, ∴b =-5,3a +b =1,因此a =2,b =-5. (2)由(1)得f (x )=-4sin ⎝⎛⎭⎪⎫2x +π6-1,g (x )=f ⎝ ⎛⎭⎪⎫x +π2=-4sin ⎝⎛⎭⎪⎫2x +7π6-1=4sin ⎝ ⎛⎭⎪⎫2x +π6-1, 又由lg g (x )>0,得g (x )>1,∴4sin ⎝ ⎛⎭⎪⎫2x +π6-1>1,∴sin ⎝ ⎛⎭⎪⎫2x +π6>12, ∴2k π+π6<2x +π6<2k π+5π6,k ∈Z ,其中当2k π+π6<2x +π6≤2k π+π2,k ∈Z 时,g (x )是增加的,即k π<x ≤k π+π6,k ∈Z ,∴g (x )的单调增区间为⎝ ⎛⎦⎥⎤k π,k π+π6,k ∈Z .又∵当2k π+π2<2x +π6<2k π+5π6,k ∈Z 时,g (x )是减少的,即k π+π6<x <k π+π3,k ∈Z .∴g (x )的单调减区间为⎝⎛⎭⎪⎫k π+π6,k π+π3,k ∈Z .。
浙江专用2018版高考数学大一轮复习第四章三角函数解三角形4.4函数y=Asin(ωx+φ)的图象及应用
(浙江专用)2018版高考数学大一轮复习 第四章 三角函数、解三角形 4.4 函数y =Asin(ωx +φ)的图象及应用教师用书1.y =A sin(ωx +φ)的有关概念2.用五点法画y =A sin(ωx +φ)一个周期内的简图时,要找五个特征点 如下表所示:3.函数y =sin x 的图象经变换得到y =A sin(ωx +φ) (A >0,ω>0)的图象的步骤如下:【知识拓展】1.由y =sin ωx 到y =sin(ωx +φ)(ω>0,φ>0)的变换:向左平移φω个单位长度而非φ个单位长度.2.函数y =A sin(ωx +φ)的对称轴由ωx +φ=k π+π2,k ∈Z 确定;对称中心由ωx +φ=k π,k ∈Z 确定其横坐标.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)y =sin ⎝ ⎛⎭⎪⎫x -π4的图象是由y =sin ⎝ ⎛⎭⎪⎫x +π4的图象向右平移π2个单位得到的.( √ )(2)将函数y =sin ωx 的图象向右平移φ(φ>0)个单位长度,得到函数y =sin(ωx -φ)的图象.( × )(3)利用图象变换作图时“先平移,后伸缩”与“先伸缩,后平移”中平移的长度一致.( × )(4)函数y =A sin(ωx +φ)的最小正周期为T =2πω.( × )(5)把y =sin x 的图象上各点纵坐标不变,横坐标缩短为原来的12,所得图象对应的函数解析式为y =sin 12x .( × )(6)若函数y =A cos(ωx +φ)的最小正周期为T ,则函数图象的两个相邻对称中心之间的距离为T2.( √ )1.(教材改编)y =2sin(12x -π3)的振幅,频率和初相分别为( )A .2,4π,π3B .2,14π,π3C .2,14π,-π3D .2,4π,-π3答案 C解析 由题意知A =2,f =1T =ω2π=14π,初相为-π3.2.(2016·杭州模拟)将函数y =sin x 的图象上所有的点向右平行移动π10个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是( ) A .y =sin(2x -π10)B .y =sin(2x -π5)C .y =sin(12x -π10)D .y =sin(12x -π20)答案 C解析 y =sin x =――――――――――→右移10π10个单位y =sin(x -π10)――――――→横坐标伸长到原来的2倍y =sin(12x -π10).3.(2016·宁波高三第二次适应性考试)函数f (x )=2sin(ωx +φ)(ω>0,|φ|<π2)的图象如图所示,则ω=________,φ=________.答案 2π6解析 根据图象知T =π,∴ω=2,又f (x )图象过点(0,1),且点(0,1)位于函数图象的递增部分, ∴由2sin φ=1得φ=π6+2k π(k ∈Z ),又∵|φ|<π2,∴φ=π6.4.若将函数f (x )=sin(2x +π4)的图象向右平移φ个单位,所得图象关于y 轴对称,则φ的最小正值是________. 答案3π8解析 ∵函数f (x )=sin(2x +π4)的图象向右平移φ个单位得到g (x )=sin[2(x -φ)+π4]=sin(2x +π4-2φ),又∵g (x )是偶函数,∴π4-2φ=k π+π2(k ∈Z ),∴φ=-k π2-π8(k ∈Z ). 当k =-1时,φ取得最小正值3π8.题型一 函数y =A sin(ωx +φ)的图象及变换例1 (2015·湖北)某同学用“五点法”画函数f (x )=A sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|<π2在某一个周期内的图象时,列表并填入了部分数据,如下表:(1) 请将上表数据补充完整,并直接写出函数f (x )的解析式;(2) 将y =f (x )图象上所有点向左平行移动θ(θ>0)个单位长度,得到y =g (x )的图象.若y =g (x )图象的一个对称中心为⎝⎛⎭⎪⎫5π12,0,求θ的最小值.解 (1)根据表中已知数据,解得A =5,ω=2,φ=-π6.数据补全如下表:且函数解析式为f (x )=5sin ⎝ ⎛⎭⎪⎫2x -π6. (2)由(1)知f (x )=5sin ⎝ ⎛⎭⎪⎫2x -π6, 得g (x )=5sin ⎝⎛⎭⎪⎫2x +2θ-π6. 因为函数y =sin x 图象的对称中心为(k π,0),k ∈Z . 令2x +2θ-π6=k π,解得x =k π2+π12-θ,k ∈Z .由于函数y =g (x )的图象关于点⎝ ⎛⎭⎪⎫5π12,0成中心对称,所以令k π2+π12-θ=5π12,解得θ=k π2-π3,k ∈Z . 由θ>0可知,当k =1时,θ取得最小值π6.引申探究在本例(2)中,将f (x )图象上所有点向左平移π6个单位长度,得到g (x )的图象,求g (x )的解析式,并写出g (x )图象的对称中心. 解 由(1)知f (x )=5sin(2x -π6),因此g (x )=5sin[2(x +π6)-π6]=5sin(2x +π6).因为y =sin x 的对称中心为(k π,0),k ∈Z .令2x +π6=k π,k ∈Z ,解得x =k π2-π12,k ∈Z .即y =g (x )图象的对称中心为(k π2-π12,0),k ∈Z . 思维升华 (1)五点法作简图:用“五点法”作y =A sin(ωx +φ)的简图,主要是通过变量代换,设z =ωx +φ,由z 取0,π2,π,32π,2π来求出相应的x ,通过列表,计算得出五点坐标,描点后得出图象.(2)图象变换:由函数y =sin x 的图象通过变换得到y =A sin(ωx +φ)的图象,有两种主要途径:“先平移后伸缩”与“先伸缩后平移”.(2017·金华十校高三上学期调研)将函数y =sin 2x 的图象向右平移φ个单位长度后所得图象的解析式为y =sin(2x -π6),则φ=________(0<φ<π2),再将函数y =sin(2x -π6)图象上各点的横坐标伸长到原来的2倍(纵坐标不变)后得到的图象的解析式为________. 答案π12 y =sin(x -π6) 解析 将y =sin 2x 中的x 替换为x -π12后得到y =sin(2x -π6),故向右平移π12个单位长度;将y =sin(2x -π6)图象上各点横坐标伸长到原来的2倍,则将x 替换为x 2得到y =sin(x -π6).题型二 由图象确定y =A sin(ωx +φ)的解析式例2 已知函数f (x )=A sin(ωx +φ) (A >0,|φ|<π2,ω>0)的图象的一部分如图所示.(1)求f (x )的表达式; (2)试写出f (x )的对称轴方程.解 (1)观察图象可知A =2且点(0,1)在图象上,∴1=2sin(ω·0+φ),即sin φ=12.∵|φ|<π2,∴φ=π6,又∵11π12是函数的一个零点且是图象递增穿过x 轴形成的零点,∴11π12ω+π6=2π,∴ω=2. ∴f (x )=2sin(2x +π6).(2)设2x +π6=B ,则函数y =2sin B 的对称轴方程为B =π2+k π,k ∈Z ,即2x +π6=π2+k π(k ∈Z ),解得x =k π2+π6(k ∈Z ), ∴f (x )=2sin(2x +π6)的对称轴方程为x =k π2+π6(k ∈Z ).思维升华 求y =A sin(ωx +φ)+B (A >0,ω>0)解析式的步骤 (1)求A ,B ,确定函数的最大值M 和最小值m ,则A =M -m2,B =M +m2.(2)求ω,确定函数的周期T ,则ω=2πT.(3)求φ,常用方法如下:①代入法:把图象上的一个已知点代入(此时要注意该点在上升区间上还是在下降区间上)或把图象的最高点或最低点代入.②五点法:确定φ值时,往往以寻找“五点法”中的特殊点作为突破口.具体如下:“第一点”(即图象上升时与x 轴的交点)为ωx +φ=0;“第二点”(即图象的“峰点”)为ωx +φ=π2;“第三点”(即图象下降时与x 轴的交点)为ωx +φ=π;“第四点”(即图象的“谷点”)为ωx +φ=3π2;“第五点”为ωx +φ=2π.(2016·太原模拟)已知函数f (x )=sin(ωx +φ) (ω>0,|φ|<π2)的部分图象如图所示,则y =f (x +π6)取得最小值时x 的集合为( )A .{x |x =k π-π6,k ∈Z }B .{x |x =k π-π3,k ∈Z }C .{x |x =2k π-π6,k ∈Z }D .{x |x =2k π-π3,k ∈Z }答案 B解析 根据所给图象,周期T =4×(7π12-π3)=π,故π=2πω,∴ω=2,因此f (x )=sin(2x+φ),另外图象经过点(7π12,0),代入有2×7π12+φ=k π(k ∈Z ),再由|φ|<π2,得φ=-π6,∴f (x +π6)=sin(2x +π6),当2x +π6=-π2+2k π (k ∈Z ),即x =-π3+k π(k ∈Z )时,y =f (x +π6)取得最小值.题型三 三角函数图象性质的应用 命题点1 三角函数模型的应用例 3 (2015·陕西)如图,某港口一天6时到18时的水深变化曲线近似满足函数y =3sin ⎝ ⎛⎭⎪⎫π6x +φ+k ,据此函数可知,这段时间水深(单位:m)的最大值为( )A .5B .6C .8D .10答案 C解析 由题干图易得y min =k -3=2,则k =5. ∴y max =k +3=8.命题点2 函数零点(方程根)问题例4 已知关于x 的方程2sin 2x -3sin 2x +m -1=0在⎝⎛⎭⎪⎫π2,π上有两个不同的实数根,则m 的取值范围是________. 答案 (-2,-1)解析 方程2sin 2x -3sin 2x +m -1=0可转化为m =1-2sin 2x +3sin 2x=cos 2x +3sin 2x=2sin ⎝ ⎛⎭⎪⎫2x +π6,x ∈⎝ ⎛⎭⎪⎫π2,π. 设2x +π6=t ,则t ∈⎝ ⎛⎭⎪⎫76π,136π,∴题目条件可转化为m 2=sin t ,t ∈⎝ ⎛⎭⎪⎫76π,136π有两个不同的实数根.∴y =m 2和y =sin t ,t ∈⎝ ⎛⎭⎪⎫76π,136π的图象有两个不同交点,如图:由图象观察知,m 2的范围为(-1,-12),故m 的取值范围是(-2,-1). 引申探究例4中,若将“有两个不同的实数根”改成“有实根”,则m 的取值范围是__________. 答案 [-2,1)解析 由例4知,m 2的范围是⎣⎢⎡⎭⎪⎫-1,12,∴-2≤m <1,∴m 的取值范围是[-2,1). 命题点3 图象与性质的综合应用例5 已知函数f (x )=3sin(ωx +φ) (ω>0,-π2≤φ<π2)的图象关于直线x =π3对称,且图象上相邻两个最高点的距离为π. (1)求ω和φ的值;(2)当x ∈[0,π2]时,求函数y =f (x )的最大值和最小值.解 (1)因为f (x )的图象上相邻两个最高点的距离为π,所以f (x )的最小正周期T =π,从而ω=2πT=2.又因为f (x )的图象关于直线x =π3对称,所以2·π3+φ=k π+π2,k ∈Z ,由-π2≤φ<π2,得k =0,所以φ=π2-2π3=-π6.综上,ω=2,φ=-π6.(2)由(1)知f (x )=3sin(2x -π6), 当x ∈[0,π2]时,-π6≤2x -π6≤5π6,∴当2x -π6=π2,即x =π3时,f (x )最大值=3;当2x -π6=-π6,即x =0时,f (x )最小值=-32.思维升华 (1)三角函数模型的应用体现在两方面:一是已知函数模型求解数学问题;二是把实际问题抽象转化成数学问题,建立数学模型,再利用三角函数的有关知识解决问题. (2)方程根的个数可转化为两个函数图象的交点个数.(3)研究y =A sin(ωx +φ)的性质时可将ωx +φ视为一个整体,利用换元法和数形结合思想进行解题.已知函数f (x )=cos(3x +π3),其中x ∈[π6,m ],若f (x )的值域是[-1,-32],则m 的取值范围是__________. 答案 [2π9,5π18]解析 画出函数的图象.由x ∈[π6,m ],可知5π6≤3x +π3≤3m +π3,因为f (π6)=cos 5π6=-32且f (2π9)=cos π=-1,要使f (x )的值域是[-1,-32],只要2π9≤m ≤5π18,即m ∈[2π9,5π18].4.三角函数图象与性质的综合问题典例 (14分)已知函数f (x )=23sin(x 2+π4)·cos(x 2+π4)-sin(x +π).(1)求f (x )的最小正周期;(2)若将f (x )的图象向右平移π6个单位长度,得到函数g (x )的图象,求函数g (x )在区间[0,π]上的最大值和最小值.思维点拨 (1)先将f (x )化成y =A sin(ωx +φ)的形式再求周期; (2)将f (x )解析式中的x 换成x -π6,得g (x ),然后利用整体思想求最值.规范解答解 (1)f (x )=23sin(x 2+π4)·cos(x 2+π4)-sin(x +π)=3cos x +sin x [4分]=2sin(x +π3),于是T =2π1=2π.[6分](2)由已知得g (x )=f (x -π6)=2sin(x +π6),[8分]∵x ∈[0,π],∴x +π6∈[π6,7π6],∴sin(x +π6)∈[-12,1],[10分]∴g (x )=2sin(x +π6)∈[-1,2].[12分]故函数g (x )在区间[0,π]上的最大值为2,最小值为-1.[14分]解决三角函数图象与性质的综合问题的一般步骤 第一步:(化简)将f (x )化为a sin x +b cos x 的形式; 第二步:(用辅助角公式)构造f (x )=a 2+b 2·(sin x ·a a 2+b2+cos x ·b a 2+b 2);第三步:(求性质)利用f (x )=a 2+b 2sin(x +φ)研究三角函数的性质; 第四步:(反思)反思回顾,查看关键点、易错点和答题规范.1.函数y =cos ⎝⎛⎭⎪⎫2x -π3的部分图象可能是( )答案 D解析 ∵y =cos ⎝⎛⎭⎪⎫2x -π3,∴当2x -π3=0, 即x =π6时,函数取得最大值1,结合图象看,可使函数在x =π6时取得最大值的只有D.2.(2016·杭州市学军中学高三5月模拟考试)已知函数f (x )=cos(ωx +π4)(ω>0)的最小正周期为π,为了得到函数g (x )=cos ωx 的图象,只要将y =f (x )的图象( ) A .向左平移π4个单位长度B .向右平移π4个单位长度C .向左平移π8个单位长度D .向右平移π8个单位长度答案 D解析 由f (x )的周期为π得ω=2,f (x )=cos(2x +π4)向右平移π8个单位长度后得到g (x )=cos 2x 的图象.3.已知函数f (x )=3sin ωx +cos ωx (ω>0),x ∈R .在曲线y =f (x )与直线y =1的交点中,若相邻交点距离的最小值为π3,则f (x )的最小正周期为( )A.π2B.2π3C .πD .2π答案 C解析 f (x )=3sin ωx +cos ωx =2sin(ωx +π6)(ω>0).由2sin(ωx +π6)=1,得sin(ωx +π6)=12,∴ωx +π6=2k π+π6或ωx +π6=2k π+56π(k ∈Z ).令k =0,得ωx 1+π6=π6,ωx 2+π6=56π,∴x 1=0,x 2=2π3ω.由|x 1-x 2|=π3,得2π3ω=π3,∴ω=2.故f (x )的最小正周期T =2π2=π.4.函数f (x )=sin(ωx +φ) (x ∈R ,ω>0,|φ|<π2)的部分图象如图所示,如果x 1,x 2∈(-π6,π3)且f (x 1)=f (x 2),则f (x 1+x 2)等于( )A.12B.32C.22D .1答案 B解析 观察图象可知,A =1,T =π, ∴ω=2,f (x )=sin(2x +φ).将(-π6,0)代入上式得sin(-π3+φ)=0,由|φ|<π2,得φ=π3,则f (x )=sin(2x +π3).函数图象的对称轴为x =-π6+π32=π12.又x 1,x 2∈(-π6,π3),且f (x 1)=f (x 2),∴x 1+x 22=π12,6∴f (x 1+x 2)=sin(2×π6+π3)=32.故选B.5.函数f (x )=sin(2x +φ)⎝⎛⎭⎪⎫|φ|<π2的图象向左平移π6个单位后所得函数图象的解析式是奇函数,则函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上的最小值为( )A .-32B .-12C.12D.32答案 A解析 由函数f (x )的图象向左平移π6个单位得g (x )=sin ⎝ ⎛⎭⎪⎫2x +φ+π3的图象, 因为是奇函数,所以φ+π3=k π,k ∈Z ,又因为|φ|<π2,所以φ=-π3,所以f (x )=sin ⎝⎛⎭⎪⎫2x -π3.又x ∈⎣⎢⎡⎦⎥⎤0,π2,所以2x -π3∈⎣⎢⎡⎦⎥⎤-π3,2π3,所以当x =0时,f (x )取得最小值为-32. 6.(2016·绍兴模拟)已知函数f (x )=sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|<π2的最小正周期是π,若将f (x )的图象向右平移π3个单位后得到的图象关于原点对称,则函数f (x )的图象( )A .关于直线x =π12对称B .关于直线x =5π12对称C .关于点⎝ ⎛⎭⎪⎫π12,0对称 D .关于点⎝⎛⎭⎪⎫5π12,0对称答案 B解析 由题意知2πω=π,∴ω=2;又由f (x )的图象向右平移π3个单位后得到y =sin[2⎝ ⎛⎭⎪⎫x -π3+φ]=sin ⎝ ⎛⎭⎪⎫2x +φ-2π3,此时关于原点对称,∴-2π3+φ=k π,k ∈Z ,∴φ=2π3+k π,k ∈Z ,2∴φ=-π3,∴f (x )=sin ⎝ ⎛⎭⎪⎫2x -π3. 当x =π12时,2x -π3=-π6,∴A、C 错误; 当x =5π12时,2x -π3=π2,∴B 正确,D 错误.7.(2016·全国丙卷)函数y =sin x -3cos x 的图象可由函数y =sin x +3cos x 的图象至少向右平移________个单位长度得到. 答案2π3解析 y =sin x -3cos x =2sin ⎝ ⎛⎭⎪⎫x -π3,y =sin x +3cos x =2sin ⎝⎛⎭⎪⎫x +π3,因此至少向右平移2π3个单位长度得到.8.(2016·杭州模拟)设偶函数f (x )=A sin(ωx +φ) (A >0,ω>0,0<φ<π)的部分图象如图所示,△KLM 为等腰直角三角形,∠KML =90°,KL =1,则f (16)的值为________.答案34解析 由题意知,点M 到x 轴的距离是12,根据题意可设f (x )=12cos ωx ,又由题图知12·2πω=1,所以ω=π,所以f (x )=12cos πx ,故f (16)=12cos π6=34.9.(2015·天津)已知函数f (x )=sin ωx +cos ωx (ω>0),x ∈R .若函数f (x )在区间(-ω,ω)内单调递增,且函数y =f (x )的图象关于直线x =ω对称,则ω的值为________. 答案π2解析 f (x )=sin ωx +cos ωx =2sin ⎝⎛⎭⎪⎫ωx +π4, 因为f (x )在区间(-ω,ω)内单调递增,且函数图象关于直线x =ω对称,所以f (ω)必为一个周期上的最大值,所以有ω·ω+π4=2k π+π2,k ∈Z ,所以ω2=π4+2k π,k ∈Z .又ω-(-ω)≤2πω2,即ω2≤π2,即ω2=π4,所以ω=π2.10.(2016·邢台模拟)先把函数f (x )=sin(x -π6)的图象上各点的横坐标变为原来的12(纵坐标不变),再把新得到的图象向右平移π3个单位,得到y =g (x )的图象.当x ∈(π4,3π4)时,函数g (x )的值域为________. 答案 (-32,1] 解析 依题意得g (x )=sin[2(x -π3)-π6]=sin(2x -5π6),当x ∈(π4,3π4)时,2x -5π6∈(-π3,2π3),此时sin(2x -5π6)∈(-32,1],故g (x )的值域是(-32,1]. 11.(2016·余姚模拟)已知函数y =A sin(ωx +φ) (A >0,ω>0)的图象过点P (π12,0),图象上与点P 最近的一个最高点是Q (π3,5).(1)求函数的解析式; (2)求函数f (x )的递增区间.解 (1)依题意得A =5,周期T =4(π3-π12)=π,∴ω=2ππ=2.故y =5sin(2x +φ),又图象过点P (π12,0),∴5sin(π6+φ)=0,由已知可得π6+φ=0,∴φ=-π6,∴y =5sin(2x -π6).(2)由-π2+2k π≤2x -π6≤π2+2k π,k ∈Z ,得-π6+k π≤x ≤π3+k π,k ∈Z ,故函数f (x )的递增区间为 [k π-π6,k π+π3] (k ∈Z ).12.(2016·浙江联考)已知函数f (x )=3cos 2x +sin x ·cos x -32. (1)求函数f (x )的最小正周期T 和函数f (x )的单调递增区间; (2)若函数f (x )的对称中心为(x,0),求x ∈[0,2π)的所有x 的和. 解 (1)由题意得f (x )=sin(2x +π3),∴T =2π2=π,令-π2+2k π≤2x +π3≤π2+2k π,k ∈Z .可得函数f (x )的单调递增区间为[-5π12+k π,π12+k π],k ∈Z .(2)令2x +π3=k π,k ∈Z ,可得x =-π6+k π2,k ∈Z .∵x ∈[0,2π),∴k 可取1,2,3,4. ∴所有满足条件的x 的和为2π6+5π6+8π6+11π6=13π3. *13. (2016·余姚模拟)函数f (x )=A sin(ωx +φ) (A >0,ω>0,0<φ<π2)的部分图象如图所示.(1)求f (x )的解析式;(2)设g (x )=[f (x -π12)]2,求函数g (x )在x ∈[-π6,π3]上的最大值,并确定此时x 的值.解 (1)由题图知A =2,T 4=π3,则2πω=4×π3,∴ω=32. 又f (-π6)=2sin[32×(-π6)+φ]=2sin(-π4+φ)=0,∴sin(φ-π4)=0,∵0<φ<π2,∴-π4<φ-π4<π4,∴φ-π4=0,即φ=π4,∴f (x )的解析式为f (x )=2sin(32x +π4).(2)由(1)可得f (x -π12)=2sin[32(x -π12)+π4]=2sin(32x +π8),∴g (x )=[f (x -π12)]2=4×1-cos 3x +π42=2-2cos(3x +π4),∵x ∈[-π6,π3],∴-π4≤3x +π4≤5π4,∴当3x +π4=π,即x =π4时,g (x )max =4.。
2018版高考数学文北师大版大一轮复习讲义教师版文档
1.用五点法作正弦函数和余弦函数的简图正弦函数y =sin x ,x ∈[0,2π]的图像中,五个关键点是:(0,0),(π2,1),(π,0),(3π2,-1),(2π,0).余弦函数y =cos x ,x ∈[0,2π]的图像中,五个关键点是:(0,1),(π2,0),(π,-1),(3π2,0),(2π,1).2.正弦函数、余弦函数、正切函数的图像与性质【知识拓展】 1.对称与周期(1)正弦曲线、余弦曲线相邻两对称中心、相邻两对称轴之间的距离是半个周期,相邻的对称中心与对称轴之间的距离是14个周期.(2)正切曲线相邻两对称中心之间的距离是半个周期. 2.奇偶性若f (x )=A sin(ωx +φ)(A ,ω≠0),则(1)f (x )为偶函数的充要条件是φ=π2+k π(k ∈Z );(2)f (x )为奇函数的充要条件是φ=k π(k ∈Z ).【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”) (1)y =sin x 在第一、第四象限是增函数.( × )(2)常数函数f (x )=a 是周期函数,它没有最小正周期.( √ ) (3)正切函数y =tan x 在定义域内是增函数.( × ) (4)已知y =k sin x +1,x ∈R ,则y 的最大值为k +1.( × ) (5)y =sin |x |是偶函数.( √ ) (6)若sin x >22,则x >π4.( × )1.函数f (x )=cos(2x -π6)的最小正周期是( )A.π2 B .π C .2π D .4π 答案 B解析 最小正周期为T =2πω=2π2=π.故选B.2.(教材改编)函数f (x )=3sin(2x -π6)在区间[0,π2]上的值域为( )A .[-32,32]B .[-32,3]C .[-332,332]D .[-332,3]答案 B解析 当x ∈[0,π2]时,2x -π6∈[-π6,5π6],sin(2x -π6)∈[-12,1],故3sin(2x -π6)∈[-32,3],即f (x )的值域为[-32,3].3.函数y =tan 2x 的定义域是( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪ x ≠k π+π4,k ∈Z B.⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠k π2+π8,k ∈Z C.⎩⎨⎧⎭⎬⎫x ⎪⎪ x ≠k π+π8,k ∈Z D.⎩⎨⎧⎭⎬⎫x ⎪⎪ x ≠k π2+π4,k ∈Z 答案 D解析 由2x ≠k π+π2,k ∈Z ,得x ≠k π2+π4,k ∈Z ,∴y =tan 2x 的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠k π2+π4,k ∈Z . 4.(2016·开封模拟)已知函数f (x )=4sin(π3-2x ),x ∈[-π,0],则f (x )的单调递减区间是( )A .[-712π,-π12]B .[-π,-π2]C .[-π,-712π],[-π12,0]D .[-π,-512π],[-π12,0]答案 C解析 f (x )=4sin(π3-2x )=-4sin(2x -π3).由-π2+2k π≤2x -π3≤π2+2k π(k ∈Z ),得-π12+k π≤x ≤512π+k π(k ∈Z ). 所以函数f (x )的递减区间是 [-π12+k π,512π+k π](k ∈Z ). 因为x ∈[-π,0],所以函数f (x )的递减区间是[-π,-712π],[-π12,0].5.y =sin(x -π4)的图像的对称中心是____________.答案 (k π+π4,0),k ∈Z解析 令x -π4=k π(k ∈Z ),∴x =k π+π4(k ∈Z ),∴y =sin(x -π4)的图像的对称中心是(k π+π4,0),k ∈Z .题型一 三角函数的定义域和值域例1 (1)函数f (x )=-2tan(2x +π6)的定义域是____________.(2)(2016·郑州模拟)已知函数f (x )=sin(x +π6),其中x ∈[-π3,a ],若f (x )的值域是[-12,1],则实数a 的取值范围是________. 答案 (1){x |x ≠k π2+π6,k ∈Z } (2)[π3,π]解析 (1)由2x +π6≠π2+k π,k ∈Z ,得x ≠k π2+π6,k ∈Z ,所以f (x )的定义域为{x |x ≠k π2+π6,k ∈Z }.(2)∵x ∈[-π3,a ],∴x +π6∈[-π6,a +π6],∵x +π6∈[-π6,π2]时,f (x )的值域为[-12,1],∴由函数的图像知π2≤a +π6≤7π6,∴π3≤a ≤π.思维升华 (1)三角函数定义域的求法求三角函数定义域实际上是构造简单的三角不等式(组),常借助三角函数线或三角函数图像来求解.(2)三角函数值域的不同求法 ①利用sin x 和cos x 的值域直接求;②把所给的三角函数式变换成y =A sin(ωx +φ)的形式求值域; ③通过换元,转换成二次函数求值域.(1)函数y =lg(sin x )+cos x -12的定义域为 .(2)函数y =2sin(πx 6-π3) (0≤x ≤9)的最大值与最小值的和为__________.答案 (1)⎩⎨⎧⎭⎬⎫x |2k π<x ≤π3+2k π,k ∈Z(2)2- 3解析 (1)要使函数有意义必须有⎩⎪⎨⎪⎧sin x >0,cos x -12≥0, 即⎩⎪⎨⎪⎧ sin x >0,cos x ≥12,解得⎩⎪⎨⎪⎧2k π<x <π+2k π(k ∈Z ),-π3+2k π≤x ≤π3+2k π(k ∈Z ), ∴2k π<x ≤π3+2k π(k ∈Z ),∴函数的定义域为⎩⎨⎧⎭⎬⎫x |2k π<x ≤π3+2k π,k ∈Z .(2)∵0≤x ≤9,∴-π3≤πx 6-π3≤7π6,∴-32≤sin(πx 6-π3)≤1, 故-3≤2sin(πx 6-π3)≤2.即函数y =2sin(πx 6-π3)(0≤x ≤9)的最大值为2,最小值为- 3.∴最大值与最小值的和为2- 3.题型二 三角函数的单调性例2 (1)函数f (x )=tan ⎝⎛⎭⎫2x -π3的单调递增区间是( ) A.⎣⎡⎦⎤k π2-π12,k π2+5π12(k ∈Z ) B.⎝⎛⎭⎫k π2-π12,k π2+5π12(k ∈Z ) C.⎝⎛⎭⎫k π+π6,k π+2π3(k ∈Z ) D.⎣⎡⎦⎤k π-π12,k π+5π12(k ∈Z ) (2)已知ω>0,函数f (x )=sin ⎝⎛⎭⎫ωx +π4在⎝⎛⎭⎫π2,π上单调递减,则ω的取值范围是________. 答案 (1)B (2)⎣⎡⎦⎤12,54解析 (1)由k π-π2<2x -π3<k π+π2(k ∈Z ),得k π2-π12<x <k π2+5π12(k ∈Z ), 所以函数f (x )=tan ⎝⎛⎭⎫2x -π3的单调递增区间为 ⎝⎛⎭⎫k π2-π12,k π2+5π12(k ∈Z ),故选B.(2)由π2<x <π,ω>0,得ωπ2+π4<ωx +π4<ωπ+π4, 又y =sin x 的单调递减区间为[2k π+π2,2k π+3π2],所以⎩⎨⎧ωπ2+π4≥π2+2k π,ωπ+π4≤3π2+2k π,k ∈Z ,解得4k +12≤ω≤2k +54,k ∈Z .又由4k +12-(2k +54)≤0,k ∈Z 且2k +54>0,k ∈Z ,得k =0,所以ω∈[12,54].引申探究本例(2)中,若已知ω>0,函数f (x )=cos(ωx +π4)在(π2,π)上单调递增,则ω的取值范围是____________. 答案 [32,74]解析 函数y =cos x 的单调递增区间为[-π+2k π,2k π],k ∈Z ,则⎩⎨⎧ωπ2+π4≥-π+2k π,ωπ+π4≤2k π,k ∈Z ,解得4k -52≤ω≤2k -14,k ∈Z ,又由4k -52-⎝⎛⎭⎫2k -14≤0,k ∈Z 且2k -14>0,k ∈Z , 得k =1,所以ω∈⎣⎡⎦⎤32,74.思维升华 (1)已知三角函数解析式求单调区间:①求函数的单调区间应遵循简单化原则,将解析式先化简,并注意复合函数单调性规律“同增异减”;②求形如y =A sin(ωx +φ)或y =A cos(ωx +φ)(其中ω>0)的单调区间时,要视“ωx +φ”为一个整体,通过解不等式求解.但如果ω<0,那么一定先借助诱导公式将ω化为正数,防止把单调性弄错.(2)已知三角函数的单调区间求参数.先求出函数的单调区间,然后利用集合间的关系求解.(1)函数f (x )=sin ⎝⎛⎭⎫-2x +π3的单调减区间为________. (2)若函数f (x )=sin ωx (ω>0)在区间[0,π3]上单调递增,在区间[π3,π2]上单调递减,则ω等于( )A.23 B.32 C .2D .3答案 (1)⎣⎡⎦⎤k π-π12,k π+512π,k ∈Z (2)B 解析 (1)已知函数可化为f (x )=-sin ⎝⎛⎭⎫2x -π3, 欲求函数的单调减区间,只需求f (x )=sin ⎝⎛⎭⎫2x -π3的单调增区间. 由2k π-π2≤2x -π3≤2k π+π2,k ∈Z ,得k π-π12≤x ≤k π+5π12,k ∈Z .故所给函数的单调减区间为⎣⎡⎦⎤k π-π12,k π+5π12(k ∈Z ). (2)∵f (x )=sin ωx (ω>0)过原点, ∴当0≤ωx ≤π2,即0≤x ≤π2ω时,y =sin ωx 是增加的;当π2≤ωx ≤3π2,即π2ω≤x ≤3π2ω时, y =sin ωx 是减少的.由f (x )=sin ωx (ω>0)在⎣⎡⎦⎤0,π3上是增加的, 在⎣⎡⎦⎤π3,π2上是减少的,知π2ω=π3, ∴ω=32.题型三 三角函数的周期性、对称性 命题点1 周期性例3 (1)(2016·北京东城区模拟)函数y =12sin 2x +3cos 2x -32的最小正周期等于( )A .πB .2π C.π4 D.π2(2)若函数f (x )=2tan(kx +π3)的最小正周期T 满足1<T <2,则自然数k 的值为________.答案 (1)A (2)2或3解析 (1)y =12sin 2x +3×1+cos 2x 2-32=12sin 2x +32cos 2x =sin(2x +π3),所以函数的最小正周期T =2πω=2π2=π,故选A.(2)由题意得,1<πk <2,∴k <π<2k ,即π2<k <π,又k ∈Z ,∴k =2或3. 命题点2 对称性例4 对于函数f (x )=sin ⎝⎛⎭⎫πx +π2,下列说法正确的是( ) A .f (x )的周期为π,且在[0,1]上是增加的 B .f (x )的周期为2,且在[0,1]上是减少的 C .f (x )的周期为π,且在[-1,0]上是增加的 D .f (x )的周期为2,且在[-1,0]上是减少的 答案 B解析 因为f (x )=sin ⎝⎛⎭⎫πx +π2=cos πx ,则周期T =2,在[0,1]上是减少的,故选B.命题点3 对称性的应用例5 (1)已知函数y =2sin ⎝⎛⎭⎫2x +π3的图像关于点P (x 0,0)对称,若x 0∈⎣⎡⎦⎤-π2,0,则x 0=________. (2)若函数y =cos(ωx +π6) (ω∈N +)图像的一个对称中心是(π6,0),则ω的最小值为( )A .1B .2C .4D .8 答案 (1)-π6(2)B解析 (1)由题意可知2x 0+π3=k π,k ∈Z ,故x 0=k π2-π6,k ∈Z ,又x 0∈⎣⎡⎦⎤-π2,0,∴-23≤k ≤13,k ∈Z , ∴k =0,则x 0=-π6.(2)由题意知ω6π+π6=k π+π2 (k ∈Z ),∴ω=6k +2(k ∈Z ),又ω∈N +,∴ωmin =2.思维升华 (1)对于函数y =A sin(ωx +φ),其对称轴一定经过图像的最高点或最低点,对称中心一定是函数的零点,因此在判断直线x =x 0或点(x 0,0)是不是函数的对称轴或对称中心时,可通过检验f (x 0)的值进行判断. (2)求三角函数周期的方法: ①利用周期函数的定义.②利用公式:y =A sin(ωx +φ)和y =A cos(ωx +φ)的最小正周期为2π|ω|,y =tan(ωx +φ)的最小正周期为π|ω|.(1)(2016·北京朝阳区模拟)已知函数f (x )=2sin(π2x +π5),若对任意的实数x ,总有f (x 1)≤f (x )≤f (x 2),则|x 1-x 2|的最小值是( ) A .2 B .4 C .πD .2π(2)如果函数y =3cos(2x +φ)的图像关于点(4π3,0)中心对称,那么|φ|的最小值为( )A.π6B.π4C.π3D.π2 答案 (1)A (2)A解析 (1)由题意可得|x 1-x 2|的最小值为半个周期, 即T 2=πω=2. (2)由题意得3cos(2×4π3+φ)=3cos(2π3+φ+2π)=3cos(2π3+φ)=0,∴2π3+φ=k π+π2,k ∈Z , ∴φ=k π-π6,k ∈Z ,取k =0,得|φ|的最小值为π6.5.三角函数的性质考点分析 纵观近年高考中三角函数的试题,其有关性质几乎每年必考,题目较为简单,综合性的知识多数为三角函数本章内的知识,通过有效地复习完全可以对此类题型及解法有效攻破,并在高考中拿全分.典例 (1)(2015·课标全国Ⅰ)函数f (x )=cos(ωx +φ)的部分图像如图所示,则f (x )的单调递减区间为( )A.⎝⎛⎭⎫k π-14,k π+34,k ∈Z B.⎝⎛⎭⎫2k π-14,2k π+34,k ∈Z C.⎝⎛⎭⎫k -14,k +34,k ∈Z D.⎝⎛⎭⎫2k -14,2k +34,k ∈Z (2)已知函数f (x )=2cos(ωx +φ)+b 对任意实数x 有f (x +π4)=f (-x )恒成立,且f (π8)=1,则实数b 的值为( )A .-1B .3C .-1或3D .-3(3)已知函数f (x )=2sin ωx (ω>0)在区间⎣⎡⎦⎤-π3,π4上的最小值是-2,则ω的最小值为________. 解析 (1)由图像知,周期T =2×⎝⎛⎭⎫54-14=2,∴2πω=2,∴ω=π. 由π×14+φ=π2+2k π,k ∈Z ,不妨取φ=π4, ∴f (x )=cos ⎝⎛⎭⎫πx +π4. 由2k π<πx +π4<2k π+π,k ∈Z ,得2k -14<x <2k +34,k ∈Z ,∴f (x )的单调递减区间为⎝⎛⎭⎫2k -14,2k +34,k ∈Z .故选D. (2)由f (x +π4)=f (-x )可知函数f (x )=2cos(ωx +φ)+b 关于直线x =π8对称,又函数f (x )在对称轴处取得最值,故±2+b =1,∴b =-1或b =3.(3)∵ω>0,-π3≤x ≤π4, ∴-ωπ3≤ωx ≤ωπ4.由已知条件知-ωπ3≤-π2, ∴ω≥32. 答案 (1)D (2)C (3)321.已知函数f (x )=sin(ωx +π4) (ω>0)的最小正周期为π,则f (π8)等于( ) A .1B.12 C .-1D .-12答案 A解析 ∵T =π,∴ω=2,∴f (π8)=sin(2×π8+π4)=sin π2=1. 2.若函数f (x )=-cos 2x ,则f (x )的一个递增区间为( )A .(-π4,0)B .(0,π2)C .(π2,3π4) D .(3π4,π) 答案 B 解析 由f (x )=-cos 2x 知递增区间为[k π,k π+π2],k ∈Z ,故只有B 项满足. 3.关于函数y =tan(2x -π3),下列说法正确的是( ) A .是奇函数B .在区间(0,π3)上单调递减 C .(π6,0)为其图像的一个对称中心 D .最小正周期为π答案 C解析 函数y =tan(2x -π3)是非奇非偶函数,A 错误;在区间(0,π3)上是增加的,B 错误;最小正周期为π2,D 错误. ∵当x =π6时,tan(2×π6-π3)=0, ∴(π6,0)为其图像的一个对称中心,故选C. 4.(2016·潍坊模拟)已知函数f (x )=2sin(ωx -π6)+1(x ∈R )的图像的一条对称轴为x =π,其中ω为常数,且ω∈(1,2),则函数f (x )的最小正周期为( )A.3π5B.6π5C.9π5D.12π5答案 B解析 由函数f (x )=2sin(ωx -π6)+1 (x ∈R )的图像的一条对称轴为x =π,可得ωπ-π6=k π+π2,k ∈Z ,∴ω=k +23,∴ω=53, 从而得函数f (x )的最小正周期为2π53=6π5. 5.已知函数f (x )=-2sin(2x +φ)(|φ|<π),若f (π8)=-2,则f (x )的一个单调递减区间是( ) A .[-π8,3π8] B .[π8,9π8]C .[-3π8,π8] D .[π8,5π8] 答案 C解析 由f (π8)=-2,得 f (π8)=-2sin(2×π8+φ)=-2sin(π4+φ)=-2, 所以sin(π4+φ)=1. 因为|φ|<π,所以φ=π4. 由2k π-π2≤2x +π4≤2k π+π2,k ∈Z , 解得k π-3π8≤x ≤k π+π8,k ∈Z . 当k =0时,-3π8≤x ≤π8,故选C. 6.若函数f (x )=sin(ωx +φ)(ω>0且|φ|<π2)在区间[π6,2π3]上是单调减函数,且函数值从1减少到-1,则f (π4)等于( ) A.12 B.22 C.32D .1 答案 C解析 由题意得函数f (x )的周期T =2(2π3-π6)=π,所以ω=2,此时f (x )=sin(2x +φ),将点(π6,1)代入上式得sin(π3+φ)=1 (|φ|<π2),所以φ=π6, 所以f (x )=sin(2x +π6), 于是f (π4)=sin(π2+π6)=cos π6=32. 7.函数y =2sin x -1的定义域为______________.答案 [2k π+π6,2k π+56π],k ∈Z 解析 由2sin x -1≥0,得sin x ≥12, ∴2k π+π6≤x ≤2k π+56π,k ∈Z . 8.函数y =cos 2x +sin x (|x |≤π4)的最小值为___________________. 答案 1-22解析 令t =sin x ,∵|x |≤π4, ∴t ∈⎣⎡⎦⎤-22,22. ∴y =-t 2+t +1=-⎝⎛⎭⎫t -122+54, ∴当t =-22时,y min =1-22. 9.函数y =cos(π4-2x )的单调减区间为______________. 答案 [k π+π8,k π+5π8](k ∈Z ) 解析 由y =cos(π4-2x )=cos(2x -π4), 得2k π≤2x -π4≤2k π+π (k ∈Z ), 解得k π+π8≤x ≤k π+5π8(k ∈Z ), 所以函数的单调减区间为[k π+π8,k π+5π8](k ∈Z ). 10.(2016·威海模拟)若f (x )=2sin ωx +1(ω>0)在区间[-π2,2π3]上是增加的,则ω的取值范围是__________.答案 (0,34] 解析 方法一 由2k π-π2≤ωx ≤2k π+π2,k ∈Z , 得f (x )的增区间是[2k πω-π2ω,2k πω+π2ω],k ∈Z . 因为f (x )在[-π2,2π3]上是增加的, 所以[-π2,2π3]⊆[-π2ω,π2ω], 即-π2≥-π2ω且2π3≤π2ω,所以ω∈(0,34]. 方法二 因为x ∈[-π2,2π3],ω>0. 所以ωx ∈[-ωπ2,2πω3], 又f (x )在区间[-π2,2π3]上是增加的, 所以[-ωπ2,2πω3]⊆[-π2,π2],则⎩⎨⎧ -ωπ2≥-π2,2πω3≤π2,又ω>0,得0<ω≤34. 11.设函数f (x )=sin ()2x +φ(-π<φ<0),y =f (x )图像的一条对称轴是直线x =π8. (1)求φ; (2)求函数y =f (x )的单调递增区间.解 (1)令2×π8+φ=k π+π2,k ∈Z , ∴φ=k π+π4,k ∈Z , 又-π<φ<0,则φ=-3π4. (2)由(1)得f (x )=sin ⎝⎛⎭⎫2x -3π4, 令-π2+2k π≤2x -3π4≤π2+2k π,k ∈Z , 可解得π8+k π≤x ≤5π8+k π,k ∈Z , 因此y =f (x )的单调递增区间为⎣⎡⎦⎤π8+k π,5π8+k π,k ∈Z . 12.(2015·北京)已知函数f (x )=sin x -23sin 2x 2. (1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎡⎦⎤0,2π3上的最小值. 解 (1)因为f (x )=sin x +3cos x - 3=2sin ⎝⎛⎭⎫x +π3-3, 所以f (x )的最小正周期为2π.(2)因为0≤x ≤2π3,所以π3≤x +π3≤π. 当x +π3=π,即x =2π3时,f (x )取得最小值. 所以f (x )在区间⎣⎡⎦⎤0,2π3上的最小值为f ⎝⎛⎭⎫2π3=- 3. 13.已知a >0,函数f (x )=-2a sin ⎝⎛⎭⎫2x +π6+2a +b ,当x ∈⎣⎡⎦⎤0,π2时,-5≤f (x )≤1. (1)求常数a ,b 的值;(2)设g (x )=f ⎝⎛⎭⎫x +π2且lg g (x )>0,求g (x )的单调区间. 解 (1)∵x ∈⎣⎡⎦⎤0,π2,∴2x +π6∈⎣⎡⎦⎤π6,7π6, ∴sin ⎝⎛⎭⎫2x +π6∈⎣⎡⎦⎤-12,1, ∴-2a sin ⎝⎛⎭⎫2x +π6∈[-2a ,a ], ∴f (x )∈[b,3a +b ],又∵-5≤f (x )≤1, ∴b =-5,3a +b =1,因此a =2,b =-5.(2)由(1)得f (x )=-4sin ⎝⎛⎭⎫2x +π6-1, g (x )=f ⎝⎛⎭⎫x +π2=-4sin ⎝⎛⎭⎫2x +7π6-1 =4sin ⎝⎛⎭⎫2x +π6-1, 又由lg g (x )>0,得g (x )>1,∴4sin ⎝⎛⎭⎫2x +π6-1>1,∴sin ⎝⎛⎭⎫2x +π6>12, ∴2k π+π6<2x +π6<2k π+5π6,k ∈Z , 其中当2k π+π6<2x +π6≤2k π+π2,k ∈Z 时, g (x )是增加的,即k π<x ≤k π+π6,k ∈Z , ∴g (x )的单调增区间为⎝⎛⎦⎤k π,k π+π6,k ∈Z . 又∵当2k π+π2<2x +π6<2k π+5π6,k ∈Z 时, g (x )是减少的,即k π+π6<x <k π+π3,k ∈Z . ∴g (x )的单调减区间为⎝⎛⎭⎫k π+π6,k π+π3,k ∈Z .。
2018版高考数学理北师大版大一轮复习讲义教师版文档
1.用五点法作正弦函数和余弦函数的简图正弦函数y =sin x ,x ∈[0,2π]的图像中,五个关键点是:(0,0),(π2,1),(π,0),(3π2,-1),(2π,0).余弦函数y =cos x ,x ∈[0,2π]的图像中,五个关键点是:(0,1),(π2,0),(π,-1),(3π2,0),(2π,1).2.正弦函数、余弦函数、正切函数的图像与性质【知识拓展】 1.对称与周期(1)正弦曲线、余弦曲线相邻两对称中心、相邻两对称轴之间的距离是半个周期,相邻的对称中心与对称轴之间的距离是14个周期.(2)正切曲线相邻两对称中心之间的距离是半个周期. 2.奇偶性若f (x )=A sin(ωx +φ)(A ,ω≠0),则(1)f (x )为偶函数的充要条件是φ=π2+k π(k ∈Z );(2)f (x )为奇函数的充要条件是φ=k π(k ∈Z ).【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”) (1)y =sin x 在第一、第四象限是增函数.( × )(2)常数函数f (x )=a 是周期函数,它没有最小正周期.( √ ) (3)正切函数y =tan x 在定义域内是增函数.( × ) (4)已知y =k sin x +1,x ∈R ,则y 的最大值为k +1.( × ) (5)y =sin |x |是偶函数.( √ ) (6)若sin x >22,则x >π4.( × )1.函数f (x )=cos(2x -π6)的最小正周期是( )A.π2 B .π C .2π D .4π答案 B解析 最小正周期为T =2πω=2π2=π.故选B.2.(教材改编)函数f (x )=3sin(2x -π6)在区间[0,π2]上的值域为( )A .[-32,32]B .[-32,3]C .[-332,332]D .[-332,3]答案 B解析 当x ∈[0,π2]时,2x -π6∈[-π6,5π6],sin(2x -π6)∈[-12,1],故3sin(2x -π6)∈[-32,3],即f (x )的值域为[-32,3].3.函数y =tan 2x 的定义域是( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪ x ≠k π+π4,k ∈Z B.⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠k π2+π8,k ∈Z C.⎩⎨⎧⎭⎬⎫x ⎪⎪ x ≠k π+π8,k ∈Z D.⎩⎨⎧⎭⎬⎫x ⎪⎪ x ≠k π2+π4,k ∈Z 答案 D解析 由2x ≠k π+π2,k ∈Z ,得x ≠k π2+π4,k ∈Z ,∴y =tan 2x 的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠k π2+π4,k ∈Z . 4.(2016·开封模拟)已知函数f (x )=4sin(π3-2x ),x ∈[-π,0],则f (x )的单调递减区间是( )A .[-712π,-π12]B .[-π,-π2]C .[-π,-712π],[-π12,0]D .[-π,-512π],[-π12,0]答案 C解析 f (x )=4sin(π3-2x )=-4sin(2x -π3).由-π2+2k π≤2x -π3≤π2+2k π(k ∈Z ),得-π12+k π≤x ≤512π+k π(k ∈Z ).所以函数f (x )的递减区间是 [-π12+k π,512π+k π](k ∈Z ). 因为x ∈[-π,0],所以函数f (x )的递减区间是[-π,-712π],[-π12,0].5.已知函数f (x )=2sin(ωx +φ),对于任意x 都有f ⎝⎛⎭⎫π6+x =f ⎝⎛⎭⎫π6-x ,则f ⎝⎛⎭⎫π6的值为________. 答案 2或-2解析 ∵f ⎝⎛⎭⎫π6+x =f ⎝⎛⎭⎫π6-x ,∴x =π6是函数f (x )=2sin(ωx +φ)的一条对称轴.∴f ⎝⎛⎭⎫π6=±2.题型一 三角函数的定义域和值域例1 (1)函数f (x )=-2tan(2x +π6)的定义域是____________.(2)(2016·郑州模拟)已知函数f (x )=sin(x +π6),其中x ∈[-π3,a ],若f (x )的值域是[-12,1],则实数a 的取值范围是________. 答案 (1){x |x ≠k π2+π6,k ∈Z } (2)[π3,π]解析 (1)由2x +π6≠π2+k π,k ∈Z ,得x ≠k π2+π6,k ∈Z ,所以f (x )的定义域为{x |x ≠k π2+π6,k ∈Z }.(2)∵x ∈[-π3,a ],∴x +π6∈[-π6,a +π6],∵x +π6∈[-π6,π2]时,f (x )的值域为[-12,1],∴由函数的图像知π2≤a +π6≤7π6,∴π3≤a ≤π.思维升华 (1)三角函数定义域的求法求三角函数定义域实际上是构造简单的三角不等式(组),常借助三角函数线或三角函数图像来求解.(2)三角函数值域的不同求法 ①利用sin x 和cos x 的值域直接求;②把所给的三角函数式变换成y =A sin(ωx +φ)的形式求值域; ③通过换元,转换成二次函数求值域.(1)函数y =lg(sin x )+cos x -12的定义域为 .(2)函数y =2sin(πx 6-π3) (0≤x ≤9)的最大值与最小值的和为__________.答案 (1)⎩⎨⎧⎭⎬⎫x |2k π<x ≤π3+2k π,k ∈Z(2)2- 3解析 (1)要使函数有意义必须有⎩⎪⎨⎪⎧sin x >0,cos x -12≥0, 即⎩⎪⎨⎪⎧ sin x >0,cos x ≥12,解得⎩⎪⎨⎪⎧2k π<x <π+2k π(k ∈Z ),-π3+2k π≤x ≤π3+2k π(k ∈Z ), ∴2k π<x ≤π3+2k π(k ∈Z ),∴函数的定义域为⎩⎨⎧⎭⎬⎫x |2k π<x ≤π3+2k π,k ∈Z .(2)∵0≤x ≤9,∴-π3≤πx 6-π3≤7π6,∴-32≤sin(πx 6-π3)≤1, 故-3≤2sin(πx 6-π3)≤2.即函数y =2sin(πx 6-π3)(0≤x ≤9)的最大值为2,最小值为- 3.∴最大值与最小值的和为2- 3. 题型二 三角函数的单调性例2 (1)函数f (x )=tan ⎝⎛⎭⎫2x -π3的单调递增区间是( ) A.⎣⎡⎦⎤k π2-π12,k π2+5π12(k ∈Z ) B.⎝⎛⎭⎫k π2-π12,k π2+5π12(k ∈Z ) C.⎝⎛⎭⎫k π+π6,k π+2π3(k ∈Z )D.⎣⎡⎦⎤k π-π12,k π+5π12(k ∈Z ) (2)已知ω>0,函数f (x )=sin ⎝⎛⎭⎫ωx +π4在⎝⎛⎭⎫π2,π上单调递减,则ω的取值范围是________. 答案 (1)B (2)⎣⎡⎦⎤12,54解析 (1)由k π-π2<2x -π3<k π+π2(k ∈Z ),得k π2-π12<x <k π2+5π12(k ∈Z ), 所以函数f (x )=tan ⎝⎛⎭⎫2x -π3的单调递增区间为 ⎝⎛⎭⎫k π2-π12,k π2+5π12(k ∈Z ),故选B.(2)由π2<x <π,ω>0,得ωπ2+π4<ωx +π4<ωπ+π4, 又y =sin x 的单调递减区间为[2k π+π2,2k π+3π2],所以⎩⎨⎧ωπ2+π4≥π2+2k π,ωπ+π4≤3π2+2k π,k ∈Z ,解得4k +12≤ω≤2k +54,k ∈Z .又由4k +12-(2k +54)≤0,k ∈Z 且2k +54>0,k ∈Z ,得k =0,所以ω∈[12,54].引申探究本例(2)中,若已知ω>0,函数f (x )=cos(ωx +π4)在(π2,π)上单调递增,则ω的取值范围是____________. 答案 [32,74]解析 函数y =cos x 的单调递增区间为[-π+2k π,2k π],k ∈Z ,则⎩⎨⎧ωπ2+π4≥-π+2k π,ωπ+π4≤2k π,k ∈Z ,解得4k -52≤ω≤2k -14,k ∈Z ,又由4k -52-⎝⎛⎭⎫2k -14≤0,k ∈Z 且2k -14>0,k ∈Z ,得k =1,所以ω∈⎣⎡⎦⎤32,74.思维升华 (1)已知三角函数解析式求单调区间:①求函数的单调区间应遵循简单化原则,将解析式先化简,并注意复合函数单调性规律“同增异减”;②求形如y =A sin(ωx +φ)或y =A cos(ωx +φ)(其中ω>0)的单调区间时,要视“ωx +φ”为一个整体,通过解不等式求解.但如果ω<0,那么一定先借助诱导公式将ω化为正数,防止把单调性弄错.(2)已知三角函数的单调区间求参数.先求出函数的单调区间,然后利用集合间的关系求解.(1)函数f (x )=sin ⎝⎛⎭⎫-2x +π3的单调减区间为________. (2)若函数f (x )=sin ωx (ω>0)在区间[0,π3]上单调递增,在区间[π3,π2]上单调递减,则ω等于( )A.23 B.32 C .2D .3答案 (1)⎣⎡⎦⎤k π-π12,k π+512π,k ∈Z (2)B 解析 (1)已知函数可化为f (x )=-sin ⎝⎛⎭⎫2x -π3, 欲求函数的单调减区间,只需求f (x )=sin ⎝⎛⎭⎫2x -π3的单调增区间. 由2k π-π2≤2x -π3≤2k π+π2,k ∈Z ,得k π-π12≤x ≤k π+5π12,k ∈Z .故所给函数的单调减区间为⎣⎡⎦⎤k π-π12,k π+5π12(k ∈Z ). (2)∵f (x )=sin ωx (ω>0)过原点, ∴当0≤ωx ≤π2,即0≤x ≤π2ω时,y =sin ωx 是增加的;当π2≤ωx ≤3π2,即π2ω≤x ≤3π2ω时, y =sin ωx 是减少的.由f (x )=sin ωx (ω>0)在⎣⎡⎦⎤0,π3上是增加的, 在⎣⎡⎦⎤π3,π2上是减少的,知π2ω=π3, ∴ω=32.题型三 三角函数的周期性、对称性 命题点1 周期性例3 (1)在函数①y =cos|2x |,②y =|cos x |,③y =cos ⎝⎛⎭⎫2x +π6,④y =tan ⎝⎛⎭⎫2x -π4中,最小正周期为π的所有函数为( ) A .①②③ B .①③④ C .②④D .①③(2)若函数f (x )=2tan(kx +π3)的最小正周期T 满足1<T <2,则自然数k 的值为________.答案 (1)A (2)2或3解析 (1)①y =cos|2x |=cos 2x ,最小正周期为π; ②由图像知y =|cos x |的最小正周期为π; ③y =cos ⎝⎛⎭⎫2x +π6的最小正周期T =2π2=π; ④y =tan ⎝⎛⎭⎫2x -π4的最小正周期T =π2,因此选A. (2)由题意得,1<πk <2,∴k <π<2k ,即π2<k <π,又k ∈Z ,∴k =2或3. 命题点2 对称性例4 (2016·西安模拟)当x =π4时,函数f (x )=sin(x +φ)取得最小值,则函数y =f (3π4-x )( )A .是奇函数且图像关于点(π2,0)对称B .是偶函数且图像关于点(π,0)对称C .是奇函数且图像关于直线x =π2对称D .是偶函数且图像关于直线x =π对称 答案 C解析 ∵当x =π4时,函数f (x )取得最小值,∴sin(π4+φ)=-1,∴φ=2k π-3π4(k ∈Z ),∴f (x )=sin(x +2k π-3π4)=sin(x -3π4),∴y =f (3π4-x )=sin(-x )=-sin x,∴y =f (3π4-x )是奇函数,且图像关于直线x =π2对称.命题点3 对称性的应用例5 (1)已知函数y =2sin ⎝⎛⎭⎫2x +π3的图像关于点P (x 0,0)对称,若x 0∈⎣⎡⎦⎤-π2,0,则x 0=________. (2)若函数y =cos(ωx +π6) (ω∈N +)图像的一个对称中心是(π6,0),则ω的最小值为( )A .1B .2C .4D .8答案 (1)-π6(2)B解析 (1)由题意可知2x 0+π3=k π,k ∈Z ,故x 0=k π2-π6,k ∈Z ,又x 0∈⎣⎡⎦⎤-π2,0,∴-23≤k ≤13,k ∈Z , ∴k =0,则x 0=-π6.(2)由题意知ω6π+π6=k π+π2 (k ∈Z ),∴ω=6k +2(k ∈Z ),又ω∈N +,∴ωmin =2.思维升华 (1)对于函数y =A sin(ωx +φ),其对称轴一定经过图像的最高点或最低点,对称中心一定是函数的零点,因此在判断直线x =x 0或点(x 0,0)是不是函数的对称轴或对称中心时,可通过检验f (x 0)的值进行判断. (2)求三角函数周期的方法: ①利用周期函数的定义.②利用公式:y =A sin(ωx +φ)和y =A cos(ωx +φ)的最小正周期为2π|ω|,y =tan(ωx +φ)的最小正周期为π|ω|.(1)(2016·北京朝阳区模拟)已知函数f (x )=2sin(π2x +π5),若对任意的实数x ,总有f (x 1)≤f (x )≤f (x 2),则|x 1-x 2|的最小值是( ) A .2 B .4 C .πD .2π (2)如果函数y =3cos(2x +φ)的图像关于点(4π3,0)中心对称,那么|φ|的最小值为( )A.π6B.π4C.π3D.π2答案 (1)A (2)A解析 (1)由题意可得|x 1-x 2|的最小值为半个周期, 即T 2=πω=2. (2)由题意得3cos(2×4π3+φ)=3cos(2π3+φ+2π)=3cos(2π3+φ)=0,∴2π3+φ=k π+π2,k ∈Z , ∴φ=k π-π6,k ∈Z ,取k =0,得|φ|的最小值为π6.5.三角函数的性质考点分析 纵观近年高考中三角函数的试题,其有关性质几乎每年必考,题目较为简单,综合性的知识多数为三角函数本章内的知识,通过有效地复习完全可以对此类题型及解法有效攻破,并在高考中拿全分.典例 (1)(2015·课标全国Ⅰ)函数f (x )=cos(ωx +φ)的部分图像如图所示,则f (x )的单调递减区间为( )A.⎝⎛⎫k π-14,k π+34,k ∈Z B.⎝⎛⎭⎫2k π-14,2k π+34,k ∈Z C.⎝⎛⎭⎫k -14,k +34,k ∈Z D.⎝⎛⎭⎫2k -14,2k +34,k ∈Z (2)已知函数f (x )=2cos(ωx +φ)+b 对任意实数x 有f (x +π4)=f (-x )恒成立,且f (π8)=1,则实数b 的值为( )A .-1B .3C .-1或3D .-3(3)已知函数f (x )=2sin ωx (ω>0)在区间⎣⎡⎤-π3,π4上的最小值是-2,则ω的最小值为________.解析 (1)由图像知,周期T =2×⎝⎛⎭⎫54-14=2, ∴2πω=2,∴ω=π. 由π×14+φ=π2+2k π,k ∈Z ,不妨取φ=π4,∴f (x )=cos ⎝⎛⎭⎫πx +π4. 由2k π<πx +π4<2k π+π,k ∈Z ,得2k -14<x <2k +34,k ∈Z ,∴f (x )的单调递减区间为⎝⎛⎭⎫2k -14,2k +34,k ∈Z . 故选D.(2)由f (x +π4)=f (-x )可知函数f (x )=2cos(ωx +φ)+b 关于直线x =π8对称,又函数f (x )在对称轴处取得最值,故±2+b =1,∴b =-1或b =3. (3)∵ω>0,-π3≤x ≤π4,∴-ωπ3≤ωx ≤ωπ4.由已知条件知-ωπ3≤-π2,∴ω≥32.答案 (1)D (2)C (3)321.已知函数f (x )=sin(ωx +π4) (ω>0)的最小正周期为π,则f (π8)等于( )A .1 B.12 C .-1 D .-12答案 A解析 ∵T =π,∴ω=2, ∴f (π8)=sin(2×π8+π4)=sin π2=1.2.若函数f (x )=-cos 2x ,则f (x )的一个递增区间为( ) A .(-π4,0)B .(0,π2)C .(π2,3π4)D .(3π4,π)答案 B解析 由f (x )=-cos 2x 知递增区间为[k π,k π+π2],k ∈Z ,故只有B 项满足.3.关于函数y =tan(2x -π3),下列说法正确的是( )A .是奇函数B .在区间(0,π3)上单调递减C .(π6,0)为其图像的一个对称中心D .最小正周期为π 答案 C解析 函数y =tan(2x -π3)是非奇非偶函数,A 错误;在区间(0,π3)上是增加的,B 错误;最小正周期为π2,D 错误.∵当x =π6时,tan(2×π6-π3)=0,∴(π6,0)为其图像的一个对称中心,故选C. 4.(2016·潍坊模拟)已知函数f (x )=2sin(ωx -π6)+1(x ∈R )的图像的一条对称轴为x =π,其中ω为常数,且ω∈(1,2),则函数f (x )的最小正周期为( ) A.3π5 B.6π5 C.9π5 D.12π5答案 B解析 由函数f (x )=2sin(ωx -π6)+1 (x ∈R )的图像的一条对称轴为x =π,可得ωπ-π6=k π+π2,k ∈Z ,∴ω=k +23,∴ω=53,从而得函数f (x )的最小正周期为2π53=6π5.5.已知函数f (x )=-2sin(2x +φ)(|φ|<π),若f (π8)=-2,则f (x )的一个单调递减区间是( )A .[-π8,3π8]B .[π8,9π8]C .[-3π8,π8]D .[π8,5π8]答案 C解析 由f (π8)=-2,得f (π8)=-2sin(2×π8+φ)=-2sin(π4+φ)=-2, 所以sin(π4+φ)=1.因为|φ|<π,所以φ=π4.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,解得k π-3π8≤x ≤k π+π8,k ∈Z .当k =0时,-3π8≤x ≤π8,故选C.6.若函数f (x )=sin(ωx +φ)(ω>0且|φ|<π2)在区间[π6,2π3]上是单调减函数,且函数值从1减少到-1,则f (π4)等于( )A.12B.22C.32D .1答案 C解析 由题意得函数f (x )的周期T =2(2π3-π6)=π,所以ω=2,此时f (x )=sin(2x +φ),将点(π6,1)代入上式得sin(π3+φ)=1 (|φ|<π2),所以φ=π6,所以f (x )=sin(2x +π6),于是f (π4)=sin(π2+π6)=cos π6=32.7.函数y =2sin x -1的定义域为______________. 答案 [2k π+π6,2k π+56π],k ∈Z解析 由2sin x -1≥0,得sin x ≥12,∴2k π+π6≤x ≤2k π+56π,k ∈Z .8.函数y =cos 2x +sin x (|x |≤π4)的最小值为____________________.答案1-22解析 令t =sin x ,∵|x |≤π4,∴t ∈⎣⎡⎦⎤-22,22. ∴y =-t 2+t +1=-⎝⎛⎭⎫t -122+54, ∴当t =-22时,y min =1-22. 9.函数y =cos(π4-2x )的单调减区间为______________.答案 [k π+π8,k π+5π8](k ∈Z )解析 由y =cos(π4-2x )=cos(2x -π4),得2k π≤2x -π4≤2k π+π (k ∈Z ),解得k π+π8≤x ≤k π+5π8(k ∈Z ),所以函数的单调减区间为[k π+π8,k π+5π8](k ∈Z ).10.(2016·威海模拟)若f (x )=2sin ωx +1(ω>0)在区间[-π2,2π3]上是增加的,则ω的取值范围是__________. 答案 (0,34]解析 方法一 由2k π-π2≤ωx ≤2k π+π2,k ∈Z ,得f (x )的增区间是[2k πω-π2ω,2k πω+π2ω],k ∈Z .因为f (x )在[-π2,2π3]上是增加的,所以[-π2,2π3]⊆[-π2ω,π2ω],即-π2≥-π2ω且2π3≤π2ω,所以ω∈(0,34].方法二 因为x ∈[-π2,2π3],ω>0.所以ωx ∈[-ωπ2,2πω3],又f (x )在区间[-π2,2π3]上是增加的,所以[-ωπ2,2πω3]⊆[-π2,π2],则⎩⎨⎧-ωπ2≥-π2,2πω3≤π2,又ω>0,得0<ω≤34.11.已知函数f (x )=sin(ωx +φ)(0<φ<2π3)的最小正周期为π.(1)求当f (x )为偶函数时φ的值;(2)若f (x )的图像过点(π6,32),求f (x )的单调递增区间.解 (1)∵f (x )的最小正周期为π,则T =2πω=π,∴ω=2,∴f (x )=sin(2x +φ). 当f (x )为偶函数时,f (-x )=f (x ), ∴sin(2x +φ)=sin(-2x +φ), 将上式展开整理得sin 2x cos φ=0, 由已知上式对任意x ∈R 都成立, ∴cos φ=0,∵0<φ<2π3,∴φ=π2.(2)f (x )的图像过点(π6,32)时,sin(2×π6+φ)=32,即sin(π3+φ)=32.又∵0<φ<2π3,∴π3<π3+φ<π,∴π3+φ=2π3,φ=π3, ∴f (x )=sin(2x +π3).令2k π-π2≤2x +π3≤2k π+π2,k ∈Z ,得k π-5π12≤x ≤k π+π12,k ∈Z ,∴f (x )的单调递增区间为 [k π-5π12,k π+π12],k ∈Z .12.(2015·北京)已知函数f (x )=sin x -23sin 2x 2.(1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎡⎦⎤0,2π3上的最小值. 解 (1)因为f (x )=sin x +3cos x - 3 =2sin ⎝⎛⎭⎫x +π3-3, 所以f (x )的最小正周期为2π. (2)因为0≤x ≤2π3,所以π3≤x +π3≤π.当x +π3=π,即x =2π3时,f (x )取得最小值.所以f (x )在区间⎣⎡⎦⎤0,2π3上的最小值为f ⎝⎛⎭⎫2π3=- 3. 13.已知a >0,函数f (x )=-2a sin ⎝⎛⎭⎫2x +π6+2a +b ,当x ∈⎣⎡⎦⎤0,π2时,-5≤f (x )≤1. (1)求常数a ,b 的值;(2)设g (x )=f ⎝⎛⎭⎫x +π2且lg g (x )>0,求g (x )的单调区间. 解 (1)∵x ∈⎣⎡⎦⎤0,π2,∴2x +π6∈⎣⎡⎦⎤π6,7π6, ∴sin ⎝⎛⎭⎫2x +π6∈⎣⎡⎦⎤-12,1, ∴-2a sin ⎝⎛⎭⎫2x +π6∈[-2a ,a ], ∴f (x )∈[b,3a +b ],又∵-5≤f (x )≤1, ∴b =-5,3a +b =1,因此a =2,b =-5. (2)由(1)得f (x )=-4sin ⎝⎛⎭⎫2x +π6-1, g (x )=f ⎝⎛⎭⎫x +π2=-4sin ⎝⎛⎭⎫2x +7π6-1 =4sin ⎝⎛⎭⎫2x +π6-1, 又由lg g (x )>0,得g (x )>1,∴4sin ⎝⎛⎭⎫2x +π6-1>1,∴sin ⎝⎛⎭⎫2x +π6>12, ∴2k π+π6<2x +π6<2k π+5π6,k ∈Z ,其中当2k π+π6<2x +π6≤2k π+π2,k ∈Z 时,g (x )是增加的,即k π<x ≤k π+π6,k ∈Z ,∴g (x )的单调增区间为⎝⎛⎦⎤k π,k π+π6,k ∈Z . 又∵当2k π+π2<2x +π6<2k π+5π6,k ∈Z 时,g (x )是减少的,即k π+π6<x <k π+π3,k ∈Z .∴g (x )的单调减区间为⎝⎛⎭⎫k π+π6,k π+π3,k ∈Z .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
思维升华
(1)三角函数定义域的求法 求三角函数定义域实际上是构造简单的三角不等式(组),常借助三角函 数线或三角函数图象来求解. (2)三角函数值域的不同求法 ①利用sin x和cos x的值域直接求; ②把所给的三角函数式变换成y=Asin(ωx+φ)的形式求值域; ③通过换元,转换成二次函数求值域.
6
答案 解析
由 2x+π6≠π2+kπ,k∈Z,得 x≠k2π+π6,k∈Z,
所以 f(x)的定义域为{x|x≠k2π+π6,k∈Z}.
(2)(2017·郑州月考)已知函数 f(x)=sin(x+π6),其中 x∈[-π3,a],若 f(x)的 值域是[-12,1],则实数 a 的取值范围是__[π3_,__π_]__. 答案 解析 ∵x∈[-π3,a],∴x+π6∈[-π6,a+π6],
跟踪训练1 (1)函数y=lg(sin x)+ cos x-21 的定义域为 答案 解析 __x_|2_k_π_<__x_≤__π3_+__2_k_π_,__k∈__Z___.
sin(2x-π6)∈[-12,1],
故 3sin(2x-π6)∈[-32,3],
即 f(x)的值域为[-32,3].
3.函数y=tan 2x的定义域是 答案 解析
A.xx≠kπ+π4,k∈Z
B.xx≠k2π+π8,k∈Z
C.xx≠kπ+π8,k∈Z
D.xx≠k2π+π4,k∈Z
由 2x≠kπ+π2,k∈Z,得 x≠k2π+π4,k∈Z,
心
__
____
____
对称轴 _x_=_π2_+__kπ_(k_∈__Z)_ __x_=_k_π_(k_∈_Z_)__
方程
_____
__周期2π2ππ知识拓展
1.对称与周期
(1)正弦曲线、余弦曲线相邻两对称中心、相邻两对称轴之间的距离是 半个周期,相邻的对称中心与对称轴之间的距离是14 个周期. (2)正切曲线相邻两对称中心之间的距离是半个周期.
(3)正切函数y=tan x在定义域内是增函数.( × )
(4)已知y=ksin x+1,x∈R,则y的最大值为k+1.( × )
(5)y=sin |x|是偶函数.( √ )
(6)若sin x>
22,则x>
π .( 4
×
)
考点自测
1.函数f(x)=cos(2x-π)的最小正周期是 答案 解析 6
A.
单调 递增;
______上递增;
性 在x=-π2+2kπ(k∈Z) 在 π+2kπ(k∈Z) __
__________
____________ ____________ _上递增
奇偶性
奇函数
偶函数
奇函数
对称中
___________
(kπ,0)(k∈Z)
_(π2_+_k_π_,_0_) (_k_∈_Z_) __(k2_π,__0_)(_k∈__Z_) _
π 2
B.π
C.2π
D.4π
最小正周期为 T=2ωπ=22π=π.故选 B.
2.(教材改编)函数 f(x)=3sin(2x-π6)在区间[0,π2]上的值域为 答案
A.[-32,32]
B.[-32,3]
解析
C.[-3
2 3,3
2
3 ]
D.[-3 2 3,3]
当 x∈[0,π2]时,2x-π6∈[-π6,56π],
x,x∈[0,2π]的图象中,五个关键点是:(0,1),(
π 2
,0),
(π,-1) ,(3π,0),(2π,1). 2
2.正弦函数、余弦函数、正切函数的图象与性质
函数 y=sin x y=cos x
y=tan x
图象
定义 域
值域
__R__
[-1,1]
__R__
[-1,1]
π
_{x_|x_∈_R_且__x≠__2_+_k_π,
∴y=tan 2x 的定义域为xx≠k2π+π4,k∈Z
.
4.(2016·开封模拟)已知函数f(x)=4sin( π -2x),x∈[-π,0],则f(x)的单 3
调递减区间是 答案 解析
A.[-172π,-1π2]
B.[-π,-π2]
C.[-π,-172π],[-1π2,0]
D.[-π,-152π],[-1π2,0]
5.y=sin(x-π4)的图象的对称中心是_(k_π_+__π4_,__0_)_,__k_∈__Z_. 答案 解析
令 x-π4=kπ(k∈Z), ∴x=kπ+π4 (k∈Z), ∴y=sin(x-π4)的图象的对称中心是(kπ+π4,0),k∈Z.
题型分类 深度剖析
题型一 三角函数的定义域和值域 例1 (1)函数f(x)=-2tan(2x+π)的定义域是_{_x|_x_≠__k2π__+_π_6_,_k_∈__Z__}.
§4.3 三角函数的图象与性 质
内容索引
基础知识 自主学习 题型分类 深度剖析 课时作业
基础知识 自主学习
知识梳理
1.用五点法作正弦函数和余弦函数的简图
正弦函数y=sin x,x∈[0,2π]的图象中,五个关键点是:(0,0),( ,π 1),
(π,0), (32π,-1),(2π,0).
2
余弦函数y=cos
f(x)=4sin(π3-2x)=-4sin(2x-π3).
由-π2+2kπ≤2x-π3≤π2+2kπ(k∈Z),得-1π2+kπ≤x≤152π+kπ(k∈Z).
所以函数 f(x)的递减区间是[-1π2+kπ,152π+kπ](k∈Z). 因为 x∈[-π,0],所以函数 f(x)的递减区间是[-π,-172π],[-1π2,0].
2.奇偶性
若f(x)=Asin(ωx+φ)(A,ω≠0),则 (1)f(x)为偶函数的充要条件是φ=π +kπ(k∈Z);
2 (2)f(x)为奇函数的充要条件是φ=kπ(k∈Z).
思考辨析
判断下列结论是否正确(请在括号中打“√”或“×”)
(1)y=sin x在第一、第四象限是增函数.( × )
(2)常数函数f(x)=a是周期函数,它没有最小正周期.( √ )
k∈Z}
___________
R
在[-π2+2kπ,π2+ _2k_π_[]π2(_+k∈_2_Zk_π),__32π_+__
[-π+2kπ,2kπ]
在(k∈Z)
[2kπ,π+2kπ]
(-π2+kπ,π2 +kπ)(k∈Z)
_2k_π](k∈Z)
_(k_∈_Z_)________ 在
__x_=_π2_+_2_k_π(_k上∈Z) __ 2kπ(k∈Z) __________