《命题演算》PPT课件

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Solution: We construct the truth table for these propositions in Table 3. Since
the truth values of equivalent.
p∨q and p→q agree, these propositions are logically
11/21/2020 5:28 AM
Deren Chen, Zhejiang Univ.
11
Table 4
11/21/2020 5:28 AM
Deren Chen, Zhejiang Univ.
12
• 基本逻辑等价定理:
• 对于任意的命题公式p、q、r,下面的命题公 式是等价的。
11/21/2020 5:28 AM
Deren Chen, Zhejiang Univ.
3
EXAMPLE 1
• We can construct examples of tautologies and contradictions using just one
proposition. Consider the truth tables of p∨ p and p∧ p, shown in Table 1.
Deren Chen, Zhejiang Univ.
5
DEFINITION 2
• The propositions p and q are called logically equivalent if p q is a tautotogy. The notation p q denotes that p and q are logically equivalent.
equivalent.This is the distributive law of disjunction over conjunction.
Solution: We construct the truth table for these propositions in Table 4. Since the truth values of p∨(q∧r) and (p∨q)∧(p∨r) agree, these propositions are logically equivalent.
Augustus De Morgan, of the mid-nineteenth century.
Solution: The truth tables for these propositions are displayed in Table 2. Since the truth values of the propositions (p∨q) and p∧ q agree for all possible combinations of the truth values of p and q, it follows that these propositions are logically equivalent.
• 1.2 命题演算 • Propositional Equivalences
11/21/2020 5:28 AM
Deren Chen, Zhejiang Univ.
1
• 1、命题(Proposition)
• 2、从简单命题(atomic proposition)到
•ห้องสมุดไป่ตู้
复合命题(compositional proposition)
11/21/2020 5:28 AM
Deren Chen, Zhejiang Univ.
9
Table 3
11/21/2020 5:28 AM
Deren Chen, Zhejiang Univ.
10
EXAMPLE 4
• Show that the propositions p∨(q∧r) and (p∨q)∧(p∨r) are logically
• 3、从命题常量(propositional constant)到

命题变量(propositional variable)
• 4、从复合命题(compositional proposition)到

命题公式(propositional formulas)
11/21/2020 5:28 AM
Deren Chen, Zhejiang Univ.
2
• 永真命题公式(Tautology) • 公式中的命题变量无论怎样代入,公式对应的真值恒为T。 • 永假命题公式(Contradiction) • 公式中的命题变量无论怎样代入,公式对应的真值恒为F。 • 可满足命题公式(Satisfaction) • 公式中的命题变量无论怎样代入,公式对应的真值总有一种情况为T。 • 一般命题公式(Contingency) • 既不是永真公式也不是永假公式。
Since p∨ p is always true, it is a tautology. Since p∧ p is always false, it is a
contradiction.
11/21/2020 5:28 AM
Deren Chen, Zhejiang Univ.
4
Table 1
11/21/2020 5:28 AM
11/21/2020 5:28 AM
Deren Chen, Zhejiang Univ.
7
Table 2
11/21/2020 5:28 AM
Deren Chen, Zhejiang Univ.
8
EXAMPLE 3
• Show that the propositions p→q and p∨q are logically equivalent.
逻辑等值,或逻辑等价
11/21/2020 5:28 AM
Deren Chen, Zhejiang Univ.
6
EXAMPLE 2
• Show that (p∨q) and p∧ q are logically equivalent. This equivalence is one
of De Morgan's laws for propositions, named after the English mathematician
相关文档
最新文档