传感器复习总结(必看)
传感器知识点总结
传感器知识点总结一、传感器的基本概念传感器是将感知到的信息转化为电信号或其他可识别形式的装置。
传感器可以感知物理量、化学量、生物量等,并将其转换为电信号输出。
传感器是现代科技发展中不可或缺的重要组成部分,广泛应用于工业自动化、环境监测、医疗诊断和智能家居等领域。
传感器的种类繁多,包括压力传感器、温度传感器、光学传感器、湿度传感器等。
二、传感器的分类根据传感原理的不同,传感器可以分为多种类型。
常见的传感器分类包括:1. 按照感知物理量不同分类- 压力传感器:用于测量压力的传感器,常用于工业控制和汽车行业。
- 温度传感器:用于测量温度的传感器,广泛应用于空调、冰箱、热水器等设备中。
- 湿度传感器:用于测量湿度的传感器,常用于气象观测和温室控制等场合。
- 光学传感器:用于测量光的强度和波长的传感器,广泛应用于光电设备和光学仪器中。
- 力传感器:用于测量物体受力情况的传感器,常用于机械测试和体重秤等设备中。
2. 按照传感原理不同分类- 电阻式传感器:利用电阻值的变化来感知物理量的传感器,包括压敏电阻、热敏电阻等。
- 电容式传感器:利用电容值的变化来感知物理量的传感器,包括湿度传感器和接近开关等。
- 光电式传感器:利用光电效应来感知物理量的传感器,包括光敏电阻、光电开关等。
3. 按照工作原理不同分类- 主动式传感器:需要外部能量源来激励的传感器,如光电传感器、超声波传感器等。
- 被动式传感器:不需要外部能量源来激励的传感器,如压力传感器、温度传感器等。
4. 按照测量方式不同分类- 直接测量传感器:直接测量感知物理量的传感器,如温度计、湿度计等。
- 间接测量传感器:通过其他物理量的变化间接测量感知物理量的传感器,如电磁流量计、毫米波雷达等。
三、传感器的工作原理传感器的工作原理多种多样,其中常见的包括电阻变化原理、电容变化原理、光电效应原理、霍尔效应原理等。
不同类型的传感器采用不同的工作原理来感知物理量,并将其转化为电信号输出。
(完整版)传感器期末复习重点知识点总结必过
第一章传感器概述人的体力和脑力劳动通过感觉器官接收外界信号,将这些信号传送给大脑,大脑把这些信号分析处理传递给肌体。
如果用机器完成这一过程,计算机相当人的大脑,执行机构相当人的肌体,传感器相当于人的五官和皮肤。
1.1.1传感器的定义广义:传感器是一种能把特定的信息(物理、化学、生物)按一定规律转换成某种可用信号的输出器件和装置。
狭义:能把外界非电信息转换成电信号输出的器件。
国家标准对传感器定义是:能够感受规定的被测量并按照一定规律转换成可用输出信号的器件和装置以上定义表明传感器有以下含义:1、它是由敏感元件和转换元件构成的检测装置;2、能按一定规律将被测量转换成电信号输出;3、传感器的输出与输入之间存在确定的关系;按使用的场合不同又称为: 变换器、换能器、探测器1.1.2传感器的组成传感器由敏感元件、转换元件、基本电路三部分组成:图示:被测量---敏感原件-----转换原件----基本电路-------电量输出电容式压力传感器-------------------压电式加速度传感器----------------------电位器式压力传感器1.1.3传感器的分类1)按传感器检测的范畴分类:生物量传感器、化学量传感器、物理量传感器、2)按输入量分类:速度、位移、角速度、力、力矩、压力、流速、液面、温度、湿度3)按传感器的输出信号分类:模拟传感器数字传感器4)按传感器的结构分类:结构型传感器、物性型传感器、复合型传感器5)按传感器的功能分类:智能传感器、多功能传感器、单功能传感器6)按传感器的转换原理分类:机—电传感器、光—电传感器、热—电电传感器、磁—电传感器电化学传感器。
7)按传感器的能源分类:有源传感器、无源传感器国标制定的传感器分类体系表将传感器分为:物理量、化学量、生物类传感器三大门类;1.2 传感器的地位与作用在基础学科研究中,传感器更有突出的地位。
宏观上的茫茫宇宙、微观上的粒子世界、长时间的天体演化、短的瞬间反应。
传感器原理与应用复习要点
传感器原理与应用复习要点传感器是一种将非电学量转换为电学信号的装置,广泛应用于各个领域。
其原理可以分为物理效应、化学效应和生物效应三类。
下面是传感器原理与应用的复习要点:1.物理效应传感器:-热敏电阻:利用物质的电阻随温度变化的特性,常用于温度测量。
-压电传感器:利用压电材料电荷随机梯度变化的特性,可用于压力、力和加速度的测量。
-光电传感器:利用光的吸收、散射或发射等特性,常用于光强度、颜色和距离的测量。
-磁敏电阻:利用材料的磁阻随磁场变化的特性,可用于磁场的测量。
2.化学效应传感器:-pH传感器:利用溶液中氢离子浓度对电位的影响,用于测量酸碱度。
-气体传感器:利用气体与特定材料发生化学反应,测量气体浓度或类型。
-电化学传感器:利用电化学反应产生的电位差,测量氧气、氢气等的浓度。
3.生物效应传感器:-生物传感器:利用生物体与特定物质相互作用的特性,测量生物学参数,如酶、抗原和抗体等。
-DNA传感器:利用DNA序列的特定识别反应,用于检测和识别DNA的序列。
传感器的应用:1.工业自动化:传感器可用于测量温度、压力、流量、液位等工业参数,实现工业自动化控制。
2.环境监测:用于监测大气污染物质、水质、土壤质量等环境参数。
3.医疗保健:用于测量心率、体温、血压等生物参数,实现远程医疗监护。
4.智能家居:用于检测温度、湿度、光线等,实现智能调控家居环境。
5.汽车工业:应用于测量车速、转向角度、发动机参数,提升安全性和性能。
6.农业领域:用于监测土壤水分、光照强度、气温等农作物生长参数,实现精确农业。
总结起来,传感器的原理涉及物理、化学和生物效应,应用广泛,包括工业自动化、环境监测、医疗保健、智能家居、汽车工业和农业等领域。
对传感器的深入理解和应用有助于提升各个领域的技术水平和生活质量。
(完整word版)传感器(唐文彦)总复习
一.电阻式传感器基本原理:将被测的非电量转换成电阻值的变化,再经转换电路变成电量输出。
1.应变式传感器工作原理:金属的电阻应变效应:金属导体的电阻随着机械变形(伸长或缩短)的大小发生变化的现象称为金属的电阻应变效应。
特点:结构简单,性能稳定,灵敏度较高,适用于动态测量。
1)横向效应:将直的电阻丝绕成敏感栅之后,虽然长度相同,但应变状态不同,其灵敏系数降低了。
这种现象称横向效应。
为了减少横向效应产生的测量误差,一般多采用箔式应变片,其圆弧部分尺寸较栅丝尺寸大得多,电阻值较小,因而电阻变化量也就小得多。
2)机械滞后应变片安装在试件上以后,在一定温度下,其(ΔR/R)–ε的加载特性与卸载特性不重合,在同一机械应变值εg下,其对应的ΔR/R值(相对应的指示应变εi)不一致。
加载特性曲线与卸载特性曲线的最大差值Δεm称应变片的滞后。
机械滞后产生的原因:敏感栅、基底和粘合剂在承受机械应变后所留下的残余变形所造成的.3)零漂(P0):粘贴在试件上的应变片,在温度保持恒定、不承受机械应变时,其电阻值随时间而变化的特性,称为应变片的零漂。
4)蠕变(θ): 如果在一定温度下,使其承受恒定的机械应变,其电阻值随时间而变化的特性,称为应变片的蠕变.一般蠕变的方向与原应变量变化的方向相反。
5)最大工作电流:是指允许通过应变片而不影响其工作的最大电流值。
6)绝缘电阻:是指应变片的引线与被测试件之间的电阻值。
通常要求50MΩ~100MΩ以上.7)电阻式应变片的温度误差:当测量现场环境温度变化时,由于敏感栅温度系数及栅丝与试件膨胀系数之差异性而给测量带来的附加误差,称为应变片的温度误差。
对应变片温度误差产生的主要因素进行分析: 1。
电阻温度系数的影响; 2。
测试件材料和电阻丝材料的线膨胀系数影响.温度补偿方法:(1)线路补偿法(加温度补偿电阻):利用电桥的和、差原理来达到温度补偿的目的.(2)自补偿法(选材):主要是通过精心选配敏感栅材料与应变片结构参数来实现温度补偿.2。
传感器简易背诵知识点总结 传感器知识点
传感器简易背诵知识点总结传感器知识点1 。
传感器定义:能够感受规定的被测量并按照一定规律转换成可用输出信号的器件或装置。
2 。
传感器组成:敏感元件,转换元件,基本转换电路3 。
传感器分类:A .按工作原理:物理型、化学型、生物型B .按构成原理:结构型、物性型C .按能量转换原理:能量控制型,能量转换型D .按转换过程可逆与否:可逆传感器和单向传感器E .按输出信号:模拟传感器和数字传感器4 。
传感技术领域的发展1. 扩展检测范围2. 提高检测性能3. 传感器的集成化、功能化4. 新领域、新原理的传感 5 。
传感器的集成化含义:其一是将传感器与其后级的放大电路、运算电路、温度补偿电路等制成一个组件、实现一体化其二是同一类传感器集成于同一芯片或器件上构成二维或三维式传感器6 。
传感器的研究与开发可以分成两大方面:一是传感器本身的研究开发,另一个是与计算机相连接的传感器系统(或智能传感器)的研究开发7 。
传感器本身的研究开发分为两大方面:一个是面对生产和生活的需要,研制大批新颖传感器、开辟和扩大传感器市场。
另一个则是开发新领域,应用新原理新技术的基础研究。
8 。
改善传感器的性能采用的技术途径:1. 差动技术 2. 平均技术 3. 补偿与修正技术 4. 屏蔽、隔离与干扰抑制 5. 稳定性处理9 。
智能传感器定义:是电五官和微电脑的统一体,对外界具有控测、数据处理、逻辑判断、自诊断和自适应能力的集成一体化多功能的传感器。
还具有与主机互相对话的功能,也可以自行选择最佳方案。
还能将已获得的大量数据进行分割处理,实现远距离高速度、高精度传输第一章传感器的一般特性1 。
传感器的特性:主要是指输出与输入之间的关系2 。
静特性:当输入量为常量,或变化极慢时,这一关系称为静特性动特性:当输入量随时间较快地变化时,这一关系称为动特性3 。
误差因素是衡量传感器特性的主要技术指标。
4 。
线性化方法:a. 直线拟合 b. 硬件实现 c. 软件实现5 。
(完整版)传感器期末复习重点知识点总结必过.doc
国家标准对传感器定义是:
能够感受规定的被测量并按照一定规律转换成可用输出信号的器件和装置
以上定义表明传感器有以下含义:
1、它是由敏感元件和转换元件构成的检测装置;
2、能按一定规律将被测量转换成电信号输出;
3、传感器的输出与输入之间存在确定的关系;
按使用的场合不同又称为:变换器、换能器、探测器
1.1.2传感器的组成
传感器由敏感元件、转换元件、基本电路三部分组成:
图示 :被测量---敏感原件-----转换原件----基本电路-------电量输出
电容式压力传感器-------------------压电式加速度传感器----------------------电位器式压力传感器
1.1.3传感器的分类
第一章传感器概述
人的体力和脑力劳动通过感觉器官接收外界信号, 将这些信号传送给大脑, 大脑把这些信号分析处理传递给肌体。
如果用机器完成这一过程, 计算机相当人的大脑, 执行机构相当人的肌体, 传感器相当于人的五官和皮肤。
1.1.1传感器的定义
广义: 传感器是一种能把特定的信息(物理、化学、生物)按一定规律转换成某种可用信号的输出器件和装置。
1) 按传感器检测的范畴分类:生物量传感器、化学量传感器、物理量传感器、
2)按输入量分类:速度、位移、角速度、力、力矩、压力、流速、液面、温度、湿度
3)按传感器的输出信号分类:模拟传感器数字传感器
4)按传感器的结构分类:结构型传感器、物性型传感器、复合型传感器
5)按传感器的功能分类:智能传感器、多功能传感器、单功能传感器
差!
入信号按正弦 化 ,分析 特性的相位、振幅、
率, 称 率响 ;
高二传感器知识点总结
高二传感器知识点总结一、传感器的基本概念传感器是一种能够感知周围环境并将感知到的信息转化为电信号或其他形式信号的器件。
传感器在工业自动化、智能家居、医疗设备、汽车工业等领域都有广泛的应用,对于提高生产效率、改善生活质量有着重要的作用。
二、传感器的分类1. 按照测量物理量分类传感器根据其测量的物理量不同可以分为温度传感器、压力传感器、光敏传感器、湿度传感器、力传感器、位移传感器等多种类型。
2. 按照传感原理分类传感器还可以按照其传感原理不同进行分类,常见的传感原理包括电阻传感器、电容传感器、电感传感器、霍尔传感器、红外线传感器、激光传感器等。
3. 按照传感器的工作原理分类按照传感器的工作原理可以分为接触式传感器和非接触式传感器两种。
接触式传感器需要直接接触被测物体,而非接触式传感器可以通过无线、光学或者声波等方式进行测量。
三、传感器的特点1. 灵敏度高传感器能够感知到微小的变化,具有高的灵敏度。
2. 可靠性高传感器具有良好的稳定性和可靠性,能够长时间稳定工作。
3. 多功能性强传感器可以感知多种物理量,具有多功能性。
4. 体积小、重量轻传感器通常体积小、重量轻,便于安装和携带。
5. 自动化程度高传感器可以实现自动检测和自动控制,有助于提高生产效率。
四、传感器的应用1. 工业自动化传感器在工业自动化领域有着广泛的应用,可以用于测量温度、压力、液位、流量等参数,实现设备的自动化控制。
2. 智能家居在智能家居领域,传感器可以应用于智能灯光控制、温湿度监测、门窗开关检测等方面,提高生活的便利性和舒适性。
3. 医疗设备在医疗设备领域,传感器可以用于心率监测、血压监测、血糖监测等,为医疗人员提供重要的生理参数。
4. 汽车工业在汽车工业中,传感器可以用于车速测量、车重检测、发动机温度检测等,提高车辆的性能和安全性。
五、传感器的未来发展趋势1. 多功能集成传感器未来发展趋势是实现多功能集成,将多种传感功能整合在一个器件中,提高传感器的智能化和多功能性。
传感器原理及应用_复习总结
传感器原理及应用总结➢传感器一般由敏感元件、转换元件、转换电路三部分组成。
➢传感器的基本特性通常用其静态特性和动态特性来描述。
➢电阻传感器的基本原理是将各种被测非电量转为对电阻的变化量的测量,从而达到测量的目的。
➢金属丝电阻应变片与半导体应变片的工作原理主要区别在于前者利用导体形变引起电阻变化、后者利用半导体电阻率变化引起电阻变化。
➢金属丝在外力作用下发生机械形变时它的电阻值将发生变化,这种现象称应变效应;半导体或固体受到作用力后电阻率要发生变化,这种现象称压阻效应。
直线的电阻丝绕成敏感栅后,长度相同但应变不同,圆弧部分使灵敏度K下降了,这种现象称为横向效应。
➢光电开关和光电断续器是开关式光电传感器的常用器件,主要用来检测物体的靠近、通过等状态。
➢光电式传感器由光源、光学元器件和光电元器件组成光路系统,结合相应的测量转换电路而构成。
➢硅光电池的光电特性中,光照度与其短路电流呈线性关系。
➢光敏二极管的结构与普通二级管类似。
它是在反向电压下工作的。
➢压电传感元件是一种力敏感元件,它由压电传感元件和测量转换电路组成。
➢压电式传感器的工作原理是基于某些电介质材料的压电效应。
它是典型的有源传感器。
➢压电材料在使用中一般是两片以上,在以电荷作为输出的地方一般是把压电元件并联起来,而当以电压作为输出的时候则一般是把压电元件串联起来。
➢差动电感式传感器与单线圈电感式传感器相比,线性好、灵感度提高一倍、测量精度高。
➢螺线管式差动变压器式传感器理论上讲,衔铁位于中心位置时输出电压为零,而实际上差动变压器输出电压不为零,我们把这个不为零的电压称为零点残余电压;利用差动变压器测量位移时如果要求区别位移方向(或正负)可采用相敏检波电路。
➢差动变压器式传感器理论上讲,衔铁位于中心位置时输出电压为零,而实际上差动变压器输出电压不为零,我们把这个不为零的电压称为零点残余电压;利用差动变压器测量位移时如果要求区别位移方向(或正负)可采用相敏检波电路。
传感器与检测技术复习资料(重点版)
第一章byYYZ都是老师上课给的应该全都有了。
1.传感器是一种以一定精确度把被测量(主要是非电量)转换为与之有确定关系、便与应用的某种物理量(主要是电量)的测量装置。
2.传感器的组成:信号从敏感元件到转换元件转换电路。
3.敏感元件:它是直接感受被测量,并输出与被测量成确定关系的某一物理量的元件。
4.转换元件:敏感元件的输出就是它的输入,它把输入转换成为电路参数。
5.转换电路:将电路参数接入转换电路,便可转换为电量输出。
6.误差的分类:系统误差(测量设备的缺陷),随机误差(满足正态分布),粗大误差。
7.系统误差:在同一条件下,多次测量同一量值时绝对值和符号保持不变,按一定规律变化的误差称为系统误差。
材料、零部件及工艺的缺陷,标准测量值,仪器刻度的标准温度,压力会引起系统误差。
8.随机误差:绝对值和符号以不可预定的变化方式的误差。
仪表中的转动部件的间隙和摩擦,连接件的弹性形变可引起随机误差,随机误具有随机变量的一切特点。
9.粗大误差:超出规定条件下的预期的误差。
粗大误差明显歪曲测量结果,应该舍去不用。
10.精度:反映测量结果与真值接近度的值。
11.精度可分为准确度、精密度、精确度。
12.准确度:反映测量结果中系统误差的影响程度。
13.精密度:反映测量结果中随机误差的影响程度。
14.精确度:反映测量结果中系统误差和随机误差综合的影响程度,其定量特征可以用测量的不确定度(或极限误差)表示。
15.精密度高的准确度不一定高,准确度高的精密度不一定高,但精确度高,则精密度和准确度都高。
16.传感器的静态特性是指输入被测量不随时间变化,或随时间变化很缓慢时,传感器的输出与输入的关系。
17.衡量传感器静态特性的重要指标是线性度、灵敏度、迟滞、重复性、精度等18.线性度的计算例题:20.△Lmax为最大非线性绝对误差,Yfs为满量程输出。
21.传感器的线性度是指传感器的输出与输入之间的线性程度。
22.灵敏度是指传感器在稳态下的输出变化量A Y与引起次变化的输入变化量A x之比,它表征传感器对输入量变化的反映能力。
传感器知识点总结[大全5篇]
传感器知识点总结[大全5篇]第一篇:传感器知识点总结小知识点总结:1.传感器是能感受规定的被测量并按照一定规律转换成可用输出信号的器件或装置,通常由敏感元件和转换元件组成。
其中,敏感元件是指传感器中直接感受被测量的部分,转换元件是指传感器能将敏感元件输出转换为适于传输和测量的电信号部分。
2.传感器的静态特性:线性度、迟滞、重复性、分辨率、稳定性、温度稳定性和多种抗干扰能力3.电阻式传感器的种类繁多,应用广泛,其基本原理是将被测物理量的变化转换成电阻值的变化,再经相应的测量电路而最后显示被测量值的变化。
4.电位器通常都是由骨架、电阻元件及活动电刷组成。
常用的线绕式电位器的电阻元件由金属电阻丝绕成。
5.电阻丝要求电阻系数高,电阻温度系数小,强度高和延展性好,对铜的热电动势要小,耐磨耐腐蚀,焊接性好。
6.电阻应变片的工作原理是基于电阻应变效应,即在导体产生机械变形时,它的电阻值相应发生变化。
7.金属电阻应变片分金属丝式和箔式。
箔式应变片横向效应小。
8.电阻应变片除直接用来测量机械仪器等应变外,还可以与某种形式的弹性敏感元件相配合,组成其他物理量的测试传感器。
9.电感式传感器是利用线圈自感或互感的变化来实现测量的一种装置。
可以用来测量位移、振动、压力、流量、重量、力矩、应变等多种物理量。
10.电感式传感器的核心部分是可变自感或可变互感。
11.变压器式传感器是将非电量转换为线圈间互感M的一种磁电机构,很像变压器的工作原理,因此常称变压器式传感器。
这种传感器多采用差分形式。
12.金属导体置于变化着的磁场中,导体内就会产生感应电流,称之为电涡流或涡流。
这种现象称为涡流效应。
涡流式传感器就是在这种涡流效应的基础上建立起来的。
13.电容式传感器是利用电容器原理,将非电量转换成电容量,进而实现非电量到电量的转化的一种传感器。
14.电容式传感器可以有三种基本类型,即变极距型(非线性)、变面积型(线性)和变介电常数型(线性)。
传感器与检测技术总复习(精华)
填空:1.传感器是把外界输入的非电信号转换成(电信号)的装置。
2.传感器是能感受规定的(被测量)并按照一定规律转换成可用(输出信号)的器件或装置。
3.传感器一般由(敏感元件)与转换元件组成。
(敏感元件)是指传感器中能直接感受被测量的部分(转换元件)是指传感器中能将敏感元件输出量转换为适于传输和测量的电信号部分。
4.半导体应变片使用半导体材料制成,其工作原理是基于半导体材料的(压阻效应)。
5.半导体应变片与金属丝式应变片相比较优点是(灵敏系数)比金属丝高50~80倍。
6.压阻效应是指半导体材料某一轴向受到外力作用时,其(电阻率ρ)发生变化的现象。
7.电阻应变片的工作原理是基于(应变效应), 即在导体产生机械变形时, 它的电阻值相应发生变化。
8.金属应变片由(敏感栅)、基片、覆盖层和引线等部分组成。
9.常用的应变片可分为两类: (金属电阻应变片)和(半导体电阻应变片)。
半导体应变片工作原理是基于半导体材料的 (压阻效应)。
金属电阻应变片的工作原理基于电阻的(应变效应)。
10.金属应变片有(丝式电阻应变片)、(箔式应变片)和薄膜式应变片三种。
11.弹性敏感元件及其基本特性:物体在外力作用下而改变原来尺寸或形状的现象称为(变形),而当外力去掉后物体又能完全恢复其原来的尺寸和形状,这种变形称为(弹性变形)。
12.直线电阻丝绕成敏感栅后,虽然长度相同,但应变不同,园弧部分使灵敏系数K↓下降,这种现象称为(横向效应)。
13.为了减小横向效应产生的测量误差, 现在一般多采用(箔式应变片)。
14.电阻应变片的温度补偿方法1) 应变片的自补偿法这种温度补偿法是利用自身具有温度补偿作用的应变片(称之为温度自补偿应变片)来补偿的,应变片的自补偿法有(单丝自补偿)和(双丝组合式自补偿)。
15.产生应变片温度误差的主要因素有下述两个方面。
1) (电阻温度系数)的影响2) 试件材料和电阻丝材料的(线膨胀系数不同)的影响16.写出三种能够测量加速度的传感器( 电阻应变片式传感器 )(电容传感器)(压电传感器)17.根据电容式传感器工作原理可以将电容传感器分成三类(变介电常数型)、变面积型和(变极距型)。
传感器复习总结资料
传感器复习资料一、填空:1、传感器的输入输出特性指标可分为(静态特性)、(动态特性)两类,线性度和灵敏度是传感器的(静态)指标,而频率响应特性是传感器的(动态)指标。
2、热电隅所产生的热电势是由(接触)电势和(温差)电势组成。
3、光电传感器的的工作原理是基于物质的光电效应,目前所利用的光电效应大致有三大类:一是利用光线作用下的(光电效应),二是(热电效应),三是(波动相互作用效应)。
4、霍尔传感器是将(运动电荷)放在磁场中的霍尔效应而输出电。
,霍尔传感器可用来测量(力),(位移),(磁场),(电流)。
5、热电阻式温度传感器是利用金属和非金属的(电阻)随温度的变化而变化的特点来测温的。
6、某些电介质当沿一定方向对其施力,。
,这种现象称为(逆压电)效应;外力去掉后又恢复带电的状态,这种现象称为(顺压电)效应。
7热电偶中产生的热电势由两部分组成分别为(接触电势)和(温差电势),若两金属类型相同,两端温度不同,加热一端时电路中时势E=(0)8、传感器性能的优劣可以通过(静态特性)和(动态特性)特征来表征。
9、集成的温度传感器按输出量不同分为(电压型)和(电流型)两大类。
10、压电常数D11脚中的第一个1表示垂直于(X)轴表面产生的电荷,第二个表示在(X轴)方向施加力。
11、气敏传感器由三部分组成:(气敏传感元件)、加热器、封装部分。
12、集成温度传感器按输出量分为(P)型和(E)型。
13、应变片的结构主要由四部分组成,分别为:(电阻丝)、(机底和面胶)、粘合剂、(引出线)。
14、当传感器的输出特性非线性时,通常采用(线性化)来补偿措施。
15、光纤的结构通常由(纤心)和包层及外套组成,通常传感器由(光源)、(测量对象)、(光电元件)三部分组成,是能把外界(非电量)转换成(电量)的气件和装置。
16、金属在外力作用下发生机械形变时,它的电阻值将发生变化,称为(电阻应变)效应,固体受到作用后,(电阻率)要发生变化,称为(压电阻)效应。
传感器期末复习资料)
传感器绪论概念:1.传感器的定义:①:能够感受规定的被测量并按照一定的规律转换成可用输出信号的器件或装置。
②:狭义的定义:能把外界非电信息转换成电信号输出的器件。
2.传感器组成:传感器一般由敏感元件、转换元件、基本转换电路三部分组成。
第一章概念:1.传感器的一般特性:描述此种变换的输入与输出关系。
静特性:输入量为常量或变化极慢时(慢变或稳定信号)。
1) 线性度:传感器的输出与输入关系呈线性,实际上这往往是不可能的。
假设传感器没有迟滞和蠕变效应,其静态特性可用下列多项式来描述:x ——输入量; y ——输出量; a 0——零点输出;a 1——传感器的灵敏度,常用k 表示;a 2,a 3,…,a n ——非线性项系数。
非线性误差(线性度) 定义:输出输入的实际测量曲线与某一选定拟合直线之间的最大偏差,用相对误差γL表示其大小。
即传感器的正、反行程平∑=+=++++=n i i i n n x a a x a x a x a a y 102210...均测量曲线与拟合直线之间的最大偏差对满量程(F.S.)输出之比(%):γL——非线性误差(线性度);ΔLmax——输出平均值与拟合直线间的最大非线性误差;y F.S.——满量程输出。
满量程输出用测量上限标称值y H与测量下限标称值y L之差的绝对值表示,即y F.S.=|y H-y L|。
大多数传感器的输出曲线是通过零点的,或者使用“零点调节”使它通过零点。
某些量程下限不为零的传感器,也可以将量程下限作为零点处理。
目前常用的拟合方法有:①理论拟合;②过零旋转拟合;③端点连线拟合;④端点连线平移拟合;⑤最小二乘拟合;⑥最小包容拟合等。
2)迟滞:迟滞表明传感器在正(输入量增大)、反(输入量减小)行程期间,输出-输入曲线不重合的程度(信号大小不相等)。
迟滞产生原因:传感器的机械部分和结构材料方面不可避免的弱点,如轴承摩擦、灰尘积塞、间隙不适当,元件磨蚀、碎裂等。
传感器复习重点(传感器原理及其应用)(精心整理)
传感器原理及其应用第一章传感器的一般特性1)信息技术包括计算机技术、通信技术和传感器技术,是现代信息产业的三大支柱。
2)传感器又称变换器、探测器或检测器,是获取信息的工具广义:传感器是一种能把特定的信息(物理、化学、生物)按一定规律转换成某种可用信号输出的器件和装置。
狭义:能把外界非电信息转换成电信号输出的器件。
国家标准(GB7665-87):定义:能够感受规定的被测量并按照一定规律转换成可用输出信号的器件或装置。
3)传感器的组成:敏感元件是直接感受被测量,并输出与被测量成确定关系的某一物理量的元件。
转换元件:将敏感元件输出的非电物理量转换成电路参数或电量。
基本转换电路:上述电路参数接入基本转换电路(简称转换电路),便可转换成电量输出。
4)传感器的静态性能指标(1)灵敏度定义: 传感器输出量的变化值与相应的被测量(输入量)的变化值之比,传感器输出曲线的斜率就是其灵敏度。
①纯线性传感器灵敏度为常数,与输入量大小无关;②非线性传感器灵敏度与x有关。
(2)线性度定义:传感器的输入-输出校准曲线与理论拟合直线之间的最大偏离与传感器满量程输出之比,称为传感器的“非线性误差”或“线性度”。
线性度又可分为:①绝对线性度:为传感器的实际平均输出特性曲线与理论直线的最大偏差。
②端基线性度:传感器实际平均输出特性曲线对端基直线的最大偏差。
端基直线定义:实际平均输出特性首、末两端点的连线。
③零基线性度:传感器实际平均输出特性曲线对零基直线的最大偏差。
④独立线性度:以最佳直线作为参考直线的线性度。
⑤最小二乘线性度:用最小二乘法求得校准数据的理论直线。
(3)迟滞定义:对某一输入量,传感器在正行程时的输出量不同于其在反行程时的输出量,这一现象称为迟滞。
即:传感器在正(输入量增大)反(输入量减小)行程中输出输入曲线不重合称为迟滞。
(4)重复性定义:在相同工作条件下,在一段短的时间间隔内,同一输入量值多次测量所得的输出之间相互偏离的程度。
传感器复习总结必看
4.简述电阻应变片式传感器的工作原理(6分)
答:电阻应变片的工作原理是基于电阻应变效应,即在导体产生机械变形时,它的电阻值相应发生变化。
5.分析(线性)电位器式传感器由于测量线的线路中的负载电阻RL带来的负载误差,并计算它与位移x之间的关系。(10分)
传感器复习总结(必看)
————————————————————————————————作者:
————————————————————————————————日期:
此份要重点看
1.测量系统的静态特性指标主要有线性度、迟滞、重复性、分辨力、稳定性、温度稳定性、各种抗干扰稳定性等。(2分)
2.霍尔元件灵敏度的物理意义是表示在单位磁感应强度下单位控制电流时的霍尔电势的大小。(2分)
Uo=U(RL//Rx)/((RL//Rx)+(Rmax-Rx))ﻫ=RL*Rx*U/((RL*Rx)+(Rmax-Rx)*(RL+Rx))
=RL*Rx*U/(Rmax*Rx+Rmax*RL-Rx*Rx)ﻫ=(RL*Rx*U/Rmax^2)/(Rx/Rmax+RL/Rmax-Rx^2/Rmax^2)ﻫ=RL*(U/Rmax)*(X/L)/(X/L-X^2/L^2+RL/Rmax)
当RL=无穷大时,ﻫUo=(U/Rmax)*(X/L)
误差E=RL*(U/Rmax)*(X/L)/(X/L-X^2/L^2+RL/Rmax)-(U/Rmax)*(X/L)ﻫ=(U/Rmax)*(X/L)(RL/(X/L-X^2/L^2+RL/Rmax))
二、下图所示电路是电阻应变仪中所用的不平衡电桥的简化电路,图中R2=R3=R是固定电阻,R1与R4是电阻应变片,工作时R1受拉,R4受压,ΔR=0,桥路处于平衡状态,当应变片受力发生应变时,桥路失去平衡,这时,就用桥路输出电压Ucd表示应变片变后电阻值的变化量。试证明:Ucd=-(E/2)(ΔR/R)。(10分)
传感器原理复习总结
1.传感器的作用传感器实际上是一种功能块,其作用是将来自外界的各种信号转换成电信号。
传感器所检测的信号品种极其繁多。
为了对各种各样的信号进行检测、控制,就必须获得尽量简单易于处理的信号,这样的要求只有电信号能够满足。
电信号能较容易地进行放大、反馈、滤波、微分、存贮、远距离操作等。
2.传感器(Transducer或Sensor)定义:“能感受规定的被测量并按照一定的规律转换成可用信号的器件或装置,通常由敏感元件组成”。
传感器有时也叫换能器、变换器、变送器或探测器。
从定义中可看出传感器有两个功能:既敏感和变换。
3. 传感器通常由敏感元件、转换元件二部分组成,有时也将测量电路及辅助电源作为传感器的组成部分。
4.传感器的输出—输入关系特性就是传感器的基本特性。
传感器的静态特性是指传感器在被测量处于稳定状态时(静态的输入信号)的输出—输入关系。
5衡量传感器静态特性的主要技术指标是:线性度、灵敏度、精确度、迟滞、重复性和分辨率等。
6线性误差(Linearity Error)线性误差是指在规定条件下(利用一定等级的校准设备,对传感器进行反复循环测试)得出输出--输入特性曲线与拟合直线(fitting straight line)间最大偏差与满量程F·S—full span)输出值的百分比称为线性误差7灵敏度是指传感器在稳态下输出变化量(增量)与输入变化量(增量)的比值,即K=输出变化量/输入变化量=ΔY/ΔX灵敏度越高,系统反映输入微小变化的能力就越强。
在电子测量中,灵敏度越高往往容易引入噪声并影响系统的稳定性及测量范围,在同等输出范围的情况下,灵敏度越大测量范围越小,反之则越大。
8. 分辨力是指传感器可能感受到的被测量的最小变化的能力9,是指在一定时间间隔内,传感器的输出存在着与被测量无关的、不需要的变化。
漂移包括零点漂移和灵敏度漂移。
10.准确度指测量仪器给出的示值和真值的接近程度。
11传感器的动态特性是指传感器在测量动态信号时,输出对输入的响应特性12传感器的发展趋势1)开发新型传感器2)开发新材料3)新工艺的采用4)集成化、多功能化5)智能化第二章光电式传感器1.将光量转换为电量的器件称为光电传感器或光电元件。
传感器原理与应用复习要点
第一章传感器的一般特性1.传感器技术的三要素。
传感器由哪3部分组成?2.传感器的静态特性有哪些指标?并理解其意义。
3.画出传感器的组成方框图,理解各部分的作用。
4.什么是传感器的精度等级?一个0.5级电压表的测量范围是0~100V,那么该仪表的最大绝对误差为多少伏?5.传感器工作在差动状态与非差动状态时的优点有哪些?灵敏度、非线性度?第二章应变式传感器6.应变片有那些种类?金属丝式、金属箔式、半导体式。
7.什么是压阻效应?8.应变式传感器接成应变桥式电路的理解、输出信号计算。
应变片桥式传感器为什么应配差动放器?9.掌握电子称的基本原理框图,以及各部分的作用。
10.电阻应变片/半导体应变片的工作原理各基于什么效应?11.半导体应变片与金属应变片各有哪些特点。
第三章电容式传感器12.电容式传感器按工作原理可分为哪3种?13.寄生电容和分布电容对电容式传感器有什么影响?解决电缆电容影响的方法有那些?14.什么是电容电场的边缘效应?理解等位环的工作原理。
15.运算法电容传感器测量电路的原理及特点。
第四章电感式传感器16.了解差动变压器的用途及特点。
17.差动变压器的零点残余电压产生的原因?第五章压电式传感器18.什么是压电效应?什么是逆压电效应?常用压电材料有哪些?19.压电传感器能否测量缓慢变化和静态信号?为什么?20.压电传感器的前置放大器电路形式主要有哪两种?理解电压放大器、电荷放大器的作用。
第六章数字式传感器21.光栅传感器的原理。
采用什么技术可测量小于栅距的位移量?22.振弦式传感器的工作原理。
第七章热电式传感器23.热电偶的热电势由那几部分组成?24.热电偶的三定律的理解。
25.掌握热电偶的热电效应。
26.热电偶冷端补偿原理和必要性及补偿电桥法的补偿原理。
27.铂电阻采用三线制接线方式的原理和特点?28.采用负温度系数热敏电阻稳定晶体管放大器静态工作点的工作原理。
29.集成温度传感器AD590的主要特点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6.变气隙式自感传感器,当街铁移动靠近铁心时,铁心上的线圈电感量(增加)
8.电容传感器的输入被测量与输出被测量间的关系,除(变极距型)外是线性的。(2分)
四、下面是热电阻测量电路,试说明电路工作原理
答:该热电阻测量温度电路由热敏电阻、测量电阻和显示仪表组成。
图中G为指示仪表,R1、R2、R3为固定电阻,Ra为零位调节电阻。热电阻都通过电阻分别为r2、r3、Rg的三个导线和电桥连接,r2和r3分别接在相邻的两臂,当温度变化时,只要它们的Rg分别接在指示仪表和电源的回路中,其电阻变化也不会影响电桥的平衡状态,电桥在零位调整时,应使R4=Ra+Rt0为电阻在参考温度(如0C)时的电阻值。三线连接法的缺点之一是可调电阻的接触电阻和电桥臂的电阻相连,可能导致电桥的零点不稳。
接触电动势:接触电动势是由两种不同导体的自由电子,其密度不同而在接触处形成的热电动势。它的大小取决于两导体的性质及接触点的温度,而与导体的形状和尺寸无关。
温差电动势:是在同一根导体中,由于两端温度不同而产生的一种电动势。
热电偶测温原理:热电偶的测温原理基于物理的“热电效应”。所谓热电效应,就是当不同材料的导体组成一个闭合回路时,若两个结点的温度不同,那么在回路中将会产生电动势的现象。两点间的温差越大,产生的电动势就越大。引入适当的测量电路测量电动势的大小,就可测得温度的大小。
答:电阻应变片的工作原理是基于电阻应变效应,即在导体产生机械变形时,它的电阻值相应发生变化。
一、简答题(30分,6分/题)
1.传感器的定义和组成框图.画出自动控制系统原理框图并指明传感器在系统中的位置和作用。
答:传感器是能感受规定的被测量并按照一定规律转换成可用输出信号的器件或装置传感器。通常由直接响应于被测量的敏感元件和产生可用信号输出的转换元件以及相应的信号调节转换电路组成。
证明:
略去 的二次项,即可得
三、什么叫做热电动势、接触电动势和温差电动势?说明热电偶测温原理及其工作定律的应用。分析热电偶测温的误差因素,并说明减小误差的方法。(10分)
答: 热电动势:两种不同材料的导体(或半导体)A、B串接成一个闭合回路,并使两个结点处于不同的温度下,那么回路中就会存在热电动势。因而有电流产生相应的热电动势称为温差电动势或塞贝克电动势,通称热电动势。
6.热电偶所产生的热电动势是由两种导体的接触电动势和单一导体的温差电动势组成的,其表达式为Eab(T,To)= 。在热电偶温度补偿中,补偿导线法(即冷端延长线法)是在连接导线和热电偶之间,接入延长线它的作用是将热电偶的参考端移至离热源较远并且环境温度较稳定的地方,以减小冷端温度变化的影响。
2.简述霍尔电动势产生的原理。(5分)
答:一块半导体薄片置于磁感应强度为B的磁场(磁场方向垂直于薄片)中,当有电流I流过时,电子受到洛伦兹力作用而发生偏转。结果在半导体的后端面上电子有所积累。而前端面缺少电子,因此后端面带负电,前端面带正电,在前后端面形成电场,该电场产生的力阻止电子继续偏转当两力相平衡时,电子积累也平衡,这时在垂直于电流和磁场的方向上将产生电场,相应的电势称为霍尔电动势UH。
7.光栅传感器中莫尔条纹的一个重要特性是具有位移放大作用。如果两个光栅距相等,即W=0.02mm,其夹角θ=0.1°,则莫尔条纹的宽度B=11.43㎜莫尔条纹的放大倍数K=573.2。(6分)
8.测量系统的静态特性指标通常用输入量与输出量的对应关系来表征。(5分)
1.光纤传感器的工作原理。(4分)
答:光导纤维工作的基础是光的全内反射,当射入的光线的入射角大于纤维包层间的临界角时,就会在光纤的接口上产生全内反射,并在光纤内部以后的角度反复逐次反射,直至传递到另一端面。
一、选择与填空题:(30分)
1.变面积式自感传感器,当衔铁移动使磁路中空气缝隙的面积增大时,铁心上线圈的电感量(增大)。
2.在平行极板电容传感器的输入被测量与输出电容值之间的关系中,(变面积型)是线性的关系。
3.在变压器式传感器中,一次侧和二次侧互感M的大小与一次侧线圈的匝数成(反比),与二次侧线圈的匝数成(正比),与回路中磁阻成(不成比例)。
答:石英晶体在沿一定的方向受到外力的作用变形时,由于内部电极化现象同时在两个表面上产生符号相反的电荷,当外力去掉后,恢复到不带电的状态;而当作用力方向改变时,电荷的极性随着改变。晶体受力所产生的电荷量与外力的大小成正比。这种现象称为正压电效应。反之,如对石英晶体施加一定变电场,晶体本身将产生机械变形,外电场撤离,变形也随之消失,称为逆压电效应。
3.分析应变片式传感器在使用单臂电桥测量电路时由于温度变化而产生测量误差的过程。(10分)
答:在外界温度变化的条件下,由于敏感栅温度系数 及栅丝与试件膨胀系数( )之差异性而产生虚假应变,输出有时会产生与真实应变同数量级的误差。
2.光电传感器的工作原理是基于物质的光电效应,目前所利用的光电效应大致有三大类:第一类是利用在光线作用下光电子逸出物体表面的外光电效应,这类器件有光电管、光电倍增管等;第二类是利用在光线作用下使材料内部电阻率改变的内光电效应,这类器件有光敏电阻等;第三类是利用在光线作用下使物体内部产生一定方向电动势的光生伏特效应,这类器件有光电池、光电仪表。(6分)
此份要重点看
1.测量系统的静态特性指标主要有线性度、迟滞、重复性、分辨力、稳定性、温度稳定性、各种抗干扰稳定性等。(2分)
2.霍尔元件灵敏度的物理意义是表示在单位磁感应强度下单位控制电流时的霍尔电势的大小。(2分)
3.光电传感器的理论基础是光电效应。通常把光线照射到物体表面后产生的光电效应分为三类。第一类是利用在光线作用下光电子逸出物体表面的外光电效应,这类元件有光电管、光电倍增管;第二类是利用在光线作用下使材料内部电阻率改变的内光电效应,这类元件有光敏电阻;第三类是利用在光线作用下使物体内部产生一定方向电动势的光生伏特效应,这类元件有光电池、光电仪表。
热电偶三定律
a中间导体定律
热电偶测温时,若在回路中插入中间导体,只要中间导体两端的温度相同,则对热电偶回路总的热电动势不产生影响。在用热电偶测温时,连接导线及显示一起等均可看成中间导体。
b中间温度定律
任何两种均匀材料组成的热电偶,热端为T,冷端为 时的热电动势等于该热电偶热端为T冷端为 时的热电动势与同一热电偶热端为 ,冷端为 时热电势的代数和。
4.传感器是能感受规定的被测量并按照一定规律转换成可用输出信号的器件或装置,传感器通常由直接响应于被测量的敏感元件和产生可用信号输出的转换元件以及相应的信号调节转换电路组成。
5.热电偶所产生的热电动势是由两种导体的接触电动势和单一导体的温差电动势组成。
1.简述霍尔电动势产生的原理。(6分)
答:一块长为l、宽为d的半导体薄片置于磁感应强度为磁场(磁场方向垂直于薄片)中,当有电流I流过时,在垂直于电流和磁场的方向上将产生电动势Uh。这种现象称为霍尔效应,也是霍尔电动势的产生原理。
误差因素:参考端温度受周围环境的影响。
措施:a 0℃恒温法
b计算修正法(冷端温度修正法)
c仪表机械零点调整法
d热电偶补偿法
e电桥补偿法
f冷端延长线法
四、霍尔元件能够测量哪些物理参数?霍尔元件的不等位电动势的概念是什么?温度补偿的方法有哪几种?请详细推导分流法。(10分)
答:霍尔组件可测量磁场、电流、位移、压力、振动、转速等。
4.热电偶所产生的热电动势是两种导体的接触电动势和单一导体的温差电动势组成的,其表达式为Eab(T,To)= 。在热电偶温度补偿中补偿导线法(即冷端延长线法)是在连接导线和热电偶之间,接入延长线,它的作用是将热电偶的参考端移至离热源较远并且环境温度较稳定的地方,以减小冷端温度变化的影响。
5.压磁式传感器的工作原理是:某些铁磁物质在外界机械力作用下,其内部产生机械压力,从而引起极化现象,这种现象称为正压电效应。相反,某些铁磁物质在外界磁场的作用下会产生机械变形,这种现象称为负压电效应。
2.简述热电偶的工作原理。(6分)
答:热电偶的测温原理基于物理的“热电效应”。所谓热电效应,就是当不同材料的导体组成一个闭合回路时,若两个结点的温度不同,那么在回路中将会产生电动势的现象。两点间的温差越大,产生的电动势就越大。引入适当的测量电路测量电动势的大小,就可测得温度的大小。
3.以石英晶体为例简述压电效应产生的原理。(6分)
霍尔组件的不等位电动势是霍尔组件在额定控制电流作用下,在无外加磁场时,两输出电极之间的空载电动势,可用输出的电压表示。
温度补偿方法:
a分流电阻法:适用于恒流源供给控制电流的情况。
b电桥补偿法。
2.电阻应变片式传感器按制造材料可分为①_金属___材料和②____半导体_____体材料。它们在受到外力作用时电阻发生变化,其中①的电阻变化主要是由_电阻应变效应___形成的,而②的电阻变化主要是由材料传感器的灵敏度较大所造成的。
3.在变压器式传感器中,一次侧和二次侧互感M的大小与绕组匝数成正比,与穿过线圈的磁通____成正比,与磁回路中磁阻____成反比。
5.光电传感器的工作原理是基于物质的光电效应,目前所利用的光电效应大致有三大类:第一类是利用在光线作用下__材料中电子溢出表面的_________现象,即外光电效应,___光电管以及光电倍增管_传感器属于这一类;第二类是利用在光线作用下材料电阻率发生改变的______现象,即内光电效应。光敏电阻传感器属于这一类。第三类是利用在光线作用下光势垒现象,即_光生伏特_____效应,光敏二极管及光敏三极管______传感器属于这一类。
应用:对热电偶冷端不为 时,可用中间温度定律加以修正。