最短路径问题 ppt课件
合集下载
《最短路径问题》PPT课件
A
a 3、连接PA,PB,由对称轴 的性质知,PA= P1A,
P1
PB=P2B
∴先到点A处吃草,再到点B
处饮水,最后回到营地,
这时的放牧路线总路程最
短,即 (PB+BA+AP)min
• 证明:
P2
b ∵ PA1+A1B1+B1P
B1 B
.P
河
= P1A1+A1B1+B1P2 > P1A+AB+BP2
前面和右面
D D1
③
A 1 A1
C1
2
4
B1
AC1 =√52+22 =√29
左面和上面
• 1、如图是一个长方体木块,已知 AB=5,BC=3,CD=4,假设一只蚂蚁 在点A处,它要沿着木块侧面爬到点D 处,则蚂蚁爬行的最短路径是 7 4 。
D
4
C
A
5
B3
• 2、现要在如图所示的圆柱体侧面A点 与B点之间缠一条金丝带(金丝带的宽 度忽略不计),圆柱体高为6cm,底面 圆周长为16cm,则所缠金丝带长度的 最小值为 10cm 。
在河上建一座桥MN,桥造在何处才能使从A到B
的路径最短?(假设河的两岸是平行的直线,桥
要与河垂直)
.A M
作法: 1、将点B沿垂直与河岸的方
向平移一个河宽到E
N
2、. E连接AE交河对岸与点M,则
.点BM为建桥的位置,MN为 所建的桥。
A C
M ND E
B
• 证明: ∵ AC+CD+DB = AC+CD+CE = AC+CE+CD > AE+CD = AM+ME+CD = AM+NB+MN ∴ AC+CD+DB > AM+NB+MN
《最短路径问题》PPT课件
13.4 课题学习 最短路径问题
导入新课
讲授新课
当堂练习
课堂小结
.
1
学习目标
1.体会图形的变化在解决最值问题中的作用,感悟转 化思想.(重点)
2.能利用轴对称解决简单的最短路径问题.(难点)
.
2
导入新课
复习引入 1.如图,连接A、B两点的所有连线中,哪条最短?为什么?
②最短,因为两点之间,线段最短
A.P是m上到A、B距离之和最短的
点,Q是m上到A、B距离相等的点
B.Q是m上到A、B距离之和最短的
点,P是m上到A、B距离相等的点
C.P、Q都是m上到A、B距离之和最
短的点
D.P、Q都是m上到A、B距离相等
的点
.
16
2.如图,∠AOB=30°,∠AOB内有一定点P,且
OP=10.在OA上有一点Q,OB上有一点R.若
△PQR周长最小,则最小周长是( A )
A.10
B.15
C.20
D.30
.
17
3.如图,牧童在A处放马,其家在B处,A、B到河岸的距离分 别为AC和BD,且AC=BD,若点A到河岸CD的中点的距离为500 米,则牧童从A处把马牵到河边饮水再回家,所走的最短距离 是 1000 米.
C
D 河
A
B
.
18
则点C 即为所求. ACΒιβλιοθήκη B lB′.
9
问题3 你能用所学的知识证明AC +BC最短吗?
证明:如图,在直线l 上任取一点C′(与点C 不重合),
连接AC′,BC′,B′C′.由轴对称的性质知,
BC =B′C,BC′=B′C′.
∴ AC +BC= AC +B′C = AB′,
导入新课
讲授新课
当堂练习
课堂小结
.
1
学习目标
1.体会图形的变化在解决最值问题中的作用,感悟转 化思想.(重点)
2.能利用轴对称解决简单的最短路径问题.(难点)
.
2
导入新课
复习引入 1.如图,连接A、B两点的所有连线中,哪条最短?为什么?
②最短,因为两点之间,线段最短
A.P是m上到A、B距离之和最短的
点,Q是m上到A、B距离相等的点
B.Q是m上到A、B距离之和最短的
点,P是m上到A、B距离相等的点
C.P、Q都是m上到A、B距离之和最
短的点
D.P、Q都是m上到A、B距离相等
的点
.
16
2.如图,∠AOB=30°,∠AOB内有一定点P,且
OP=10.在OA上有一点Q,OB上有一点R.若
△PQR周长最小,则最小周长是( A )
A.10
B.15
C.20
D.30
.
17
3.如图,牧童在A处放马,其家在B处,A、B到河岸的距离分 别为AC和BD,且AC=BD,若点A到河岸CD的中点的距离为500 米,则牧童从A处把马牵到河边饮水再回家,所走的最短距离 是 1000 米.
C
D 河
A
B
.
18
则点C 即为所求. ACΒιβλιοθήκη B lB′.
9
问题3 你能用所学的知识证明AC +BC最短吗?
证明:如图,在直线l 上任取一点C′(与点C 不重合),
连接AC′,BC′,B′C′.由轴对称的性质知,
BC =B′C,BC′=B′C′.
∴ AC +BC= AC +B′C = AB′,
《最短路径问题》PPT
讲授新课
牧人饮马问题
“两点的所有连线中,线段最短”“连接直线外一点 与直线上各点的所有线段中,垂线段最短”等的问题,我
们称之为最短路径问题.
现实生活中经常涉及到选择最短路径问题,本节将利 用数学知识探究数学史上著名的“牧马人饮马问题”. P
①
② A ③ B A B C
D l
如图,牧马人从点A地出发,到一条笔直的河边l饮马,然后到B 地,牧马人到河边的什么地方饮马,可使所走的路径最短? B B 抽象成
13.4 课题学习 最短路径问题
导入新课
讲授新课
当堂练习
课堂小结
学习目标
1.体会图形的变化在解决最值问题中的作用,感悟转 化思想.(重点)
2.能利用轴对称解决简单的最短路径问题.(难点)
导入新课
复习引入 1.如图,连接A、B两点的所有连线中,哪条最短?为什么? ②最短,因为两点之间,线段最短 ① ② A ③ B
米,则牧童从A处把马牵到河边饮水再回家,所走的最短距离
是 1000 米. C D 河
A
B
4.如图,边长为1的正方形组成的网格中,△AOB的顶点均在格 点上,点A、B的坐标分别是A(3,2),B(1,3).点P在x轴 上,当PA+PB的值最小时,在图中画出点P. y
B
A
O
B'
P
x
拓展提升
5.(1)如图①,在AB直线一侧C、D两点,在AB上找一点P,使 C、D、P三点组成的三角形的周长最短,找出此点并说明理由. (2)如图②,在∠AOB内部有一点P,是否在OA、OB上分别存 在点E、F,使得E、F、P三点组成的三角形的周长最短,找出E、 F两点,并说明理由. (3)如图③,在∠AOB内部有两点M、N,是否在OA、OB上分 别存在点E、F,使得E、F、M、N,四点组成的四边形的周长最 短,找出E、F两点,并说明理由. A A D M C
最短路径问题-(PPT课件) 公开课
第十三章 轴对称
故事引入
导入新课
复习旧知
1.如图,连接A、B两点的所有连线中,哪条最短?
①
为什么?
②
②最短,因为两点之间,线段最短
A ③B
2.如图,点P是直线l外一点,点P与该直线l上各点连
接的所有线段中,哪条最短?为什么?
P
PC最短,因为垂线段最短
A BC
Dl
3.如图,如何作点A关于直线l的对称点?
B
A
C
l
联想旧知
B
A
C
l
B′
用旧知解决新知
A
C
l
B
提示:本题也可作A点关于直线l的对称点
典例精析
例1 如图,已知点D、点E分别是等边三角形ABC
中BC、AB边的中点,AD=5,点F是AD边上的动
点,则BF+EF的最小值为( B )
A.7.5
B.5
C.4
D.不能确定
解析:△ABC为等边三角形,点D是BC边的中点,即点B与点 C关于直线AD对称.∵点F在AD上,故BF=CF.即BF+EF的最小 值可转化为求CF+EF的最小值,故连接CE即可,线段CE的长 即为BF+EF的最小值.
l2
l2
2.关键: 作对称点,利用轴对称的性质将线段转化, 从而利用“两点之间,线段最短”来解决
作法及思路分析
1.作点A关于直线 l 的对称点A′ ,连接CA′。
B A
l
C
A′
2.由上步可知AC+CB=B_′_A_C_+_C_B_′ ___
思考:当C在直线 l 的什么位置时AC +CB′最短?
3.如图,如何作点A关于直线l的对称点?
故事引入
导入新课
复习旧知
1.如图,连接A、B两点的所有连线中,哪条最短?
①
为什么?
②
②最短,因为两点之间,线段最短
A ③B
2.如图,点P是直线l外一点,点P与该直线l上各点连
接的所有线段中,哪条最短?为什么?
P
PC最短,因为垂线段最短
A BC
Dl
3.如图,如何作点A关于直线l的对称点?
B
A
C
l
联想旧知
B
A
C
l
B′
用旧知解决新知
A
C
l
B
提示:本题也可作A点关于直线l的对称点
典例精析
例1 如图,已知点D、点E分别是等边三角形ABC
中BC、AB边的中点,AD=5,点F是AD边上的动
点,则BF+EF的最小值为( B )
A.7.5
B.5
C.4
D.不能确定
解析:△ABC为等边三角形,点D是BC边的中点,即点B与点 C关于直线AD对称.∵点F在AD上,故BF=CF.即BF+EF的最小 值可转化为求CF+EF的最小值,故连接CE即可,线段CE的长 即为BF+EF的最小值.
l2
l2
2.关键: 作对称点,利用轴对称的性质将线段转化, 从而利用“两点之间,线段最短”来解决
作法及思路分析
1.作点A关于直线 l 的对称点A′ ,连接CA′。
B A
l
C
A′
2.由上步可知AC+CB=B_′_A_C_+_C_B_′ ___
思考:当C在直线 l 的什么位置时AC +CB′最短?
3.如图,如何作点A关于直线l的对称点?
人教版数学八年级上册13.4 课题学习 最短路径问题课件(共27张PPT)
A∙ 请小组讨论证明这个结论吧!
A′
M′ a M
b
N′
N
∙B
13.4 最短路径问题
证明
证明:在直线b上另外任意取一点N′,过点N′作N′M′⊥a,垂足为M′,
连接AM′,A′N′,N′B.
∵在△A′N′B中,A′B<A′N′+BN′,
∴A′N+NB<A′N′+BN′. 即A′N+NB+MN<A′N′+BN′+M′N′. ∴AM+NB+MN<AM′+BN′+M′N′, 即AM+NB+MN的值最小.
13.4 最短路径问题
解:∵点B 和 点C 关于直线 AD 对称, ∴BF = CF . 求BF + EF 最小值,只需 CF + EF 最小. 连接EC,线段 CE 的长即为 BF + EF 的最 小值. ∵D、E 是等边△ABC 中 BC、AB 的中点, ∴CE = AD = 5. ∴BF+EF的最小值为5.
路程最短? C
A
D
A1
A C
C1 D1 E
E1 B B1
C1 B
解:如图,作 AA1⊥CD,且 AA1 = 河宽,作 BB1⊥CE,且 BB1 = 河宽, 连接 A1B1,与内河岸相交于 E1,D1. 过 E1,D1作河岸的垂线段 EE1 、 DD1,即为桥.
13.4 最短路径问题
13.4 最短路径问题
学习目标 1. 利用轴对称、平移等变化解决简单的最短路径问题. 重点
2. 体会图形的变化在解决最值问题中的作用,感受由实际问题转化为
数学问题的思想. 难点
最短路径问题 ppt课件
12
图论及其应用 作业 用Dijkstra算法求出下图中从顶点a到其它所有 顶点的最短路径及及长度。
13
图论及其应用
有向图中求最短路径的Dijkstra算法
设Sj是带权有向图G中自顶点1到顶点j的最短有向路的长度 步骤1:置P={1},T={2,3,…,n}且S1=0,Sj=w1j, j=2,3,…,n 。 步骤2:在T中寻找一点k,使得Sk=min{Sj},置P=P{k}, T=T- {k}。若T=,终止;否则,转向步骤3。 步骤3:对T中每一点j,置Sj=min {Sj ,Sk+ wkj},然后转向步 骤2。 算法经过n-1 次循环结束。
6
1-6-8-B
6-8-B
13
10
5
图论及其应用
指定点到其它所有点的最短路径
解决这一问题最著名的方法是 Dijkstra算法,这个算法是由荷 兰计算机科学教授Edsger W.Dijkstra在1959年提出的。 他在1972年获得美国计算机协 会授予的图灵奖,这是计算机 科学中最具声望的奖项之一。
最终,起点上方的最短路线及权值即为起点到终点的最 短路线及长度。
3
图论及其应用
例 使用回溯法求下图中结点1到结点10的最短路径
2-6-9-10 600
1-4-6-9-10 650
4-6-9-10 500
6-9-10
300
9-10
100 5-8-10
400
8-10
150
3-5-8-10 600
7-8-10 275
定义2 已知矩阵A=(aij)m n ,B =(bij)mn,规定C=AB=(dij)mn,
其中dij=min(aij, bij)
新人教版八年级数学上册《最短路径问题》精品课件(共15张PPT)
13.4 课题学习 最短路径问题
1.学会轴对称变换知识的应用,提高解决实际问题 的能力.
2.通过独立思考,合作探究,学会求最值问题. 3.感受数学在实际生活中的巨大作用,享受成功学 习的乐趣.
重点:应用轴对称解决实际问题. 难点:如何应用轴对称解决实际问题.
阅读课本P85-87页内容,了解本节主要内容.
探究二:造桥选址问题中的最短路径问题
3.如图,A和B两地在一条河的两岸,现要在河上造 一座桥MN,桥造在何处可使从A到B的路径AMNB最短? (假设两岸是平行的直线,桥要与河垂直)
A
C
例:如图所示,点A是货运总部,想在公路m上建一
个分部B,在公路n上建一个分部C,要使AB+BC+CA最小,
应如何建?
l CC A’
解(:1)作AB的中垂线交l于点C,如图. (2)如图.
A1 B
C
解:如图所示,B、C为两个加A油2 站的位置.
本课时学习了生活中的最短路径可以转化 为数学中最值问题.
垂线段线段ຫໍສະໝຸດ 如图,牧马人从A地出发,到一条笔直的河边l饮马, 然后到B地,牧马人到河边的什么地方饮马,可使所走 的路径最短?
探究一:在直线上找一点,使它到直线外两点距离和最小
1.点A、B分别是直线l异侧的两个点,如何在l上找 到一个点,使得这个点到点A、点B的距离的和最短.
2.由上面情景导入,当A、B两点在直线l的同侧时, 又如何求解.
1、“手和脑在一块干是创造教育的开始,手脑双全是创造教育的目的。” 2、一切真理要由学生自己获得,或由他们重新发现,至少由他们重建。 3、反思自我时展示了勇气,自我反思是一切思想的源泉。 4、好的教师是让学生发现真理,而不只是传授知识。 5、数学教学要“淡化形式,注重实质.
1.学会轴对称变换知识的应用,提高解决实际问题 的能力.
2.通过独立思考,合作探究,学会求最值问题. 3.感受数学在实际生活中的巨大作用,享受成功学 习的乐趣.
重点:应用轴对称解决实际问题. 难点:如何应用轴对称解决实际问题.
阅读课本P85-87页内容,了解本节主要内容.
探究二:造桥选址问题中的最短路径问题
3.如图,A和B两地在一条河的两岸,现要在河上造 一座桥MN,桥造在何处可使从A到B的路径AMNB最短? (假设两岸是平行的直线,桥要与河垂直)
A
C
例:如图所示,点A是货运总部,想在公路m上建一
个分部B,在公路n上建一个分部C,要使AB+BC+CA最小,
应如何建?
l CC A’
解(:1)作AB的中垂线交l于点C,如图. (2)如图.
A1 B
C
解:如图所示,B、C为两个加A油2 站的位置.
本课时学习了生活中的最短路径可以转化 为数学中最值问题.
垂线段线段ຫໍສະໝຸດ 如图,牧马人从A地出发,到一条笔直的河边l饮马, 然后到B地,牧马人到河边的什么地方饮马,可使所走 的路径最短?
探究一:在直线上找一点,使它到直线外两点距离和最小
1.点A、B分别是直线l异侧的两个点,如何在l上找 到一个点,使得这个点到点A、点B的距离的和最短.
2.由上面情景导入,当A、B两点在直线l的同侧时, 又如何求解.
1、“手和脑在一块干是创造教育的开始,手脑双全是创造教育的目的。” 2、一切真理要由学生自己获得,或由他们重新发现,至少由他们重建。 3、反思自我时展示了勇气,自我反思是一切思想的源泉。 4、好的教师是让学生发现真理,而不只是传授知识。 5、数学教学要“淡化形式,注重实质.
人教版八年级数学上册第十三章课题学习最短路径问题(共30张PPT)
此时从A到B点路径最短.
M N
P Q
G
H B1 B
同样,当A、B两点之间有4、5、 6,...n条河时,我们仍可以利用平 移转化桥长来解决问题.
例如: 沿垂直于河岸方向平移A点
依次至A1、A2、A3 ,..., An,平移距离分别等于各自河宽, AnB交第n条河近B点河岸于Nn,建桥 MnNn,连接MnAn-1交第(n-1)条河近 B点河岸与Nn-1,建桥Mn-1Nn-1,..., 连接M1A交第一条河近B点河岸于N1, 建桥M1N1,此时所走路径最短.
献 。 现 将 主 要工作 报告 一 、 关 心 爱 护学生 。经常 耐心细 致地做 学生的 思想教 育工作 ,有时可 以说达 到了废 寝 忘 食 的 地 步。特 别是在 抗击非 典期间 ,对学生 的生命 安全高 度负责 ,从协助校领导
制 定 各 项 预 防措施 到学生 病情的 监控和 学生的 诊治陪 护等都 凡事躬 亲。自 己带领 的 由 党 团 员 组成的 陪护小 组,不怕 死,不怕 累,出 色完成 了学校 交给的 陪护学 生的任 务 。 XX 年 7月 ,音 专 001班 黄德华 被骗到 合浦搞 传销,我 接到求 救电话 后,马上 与杨小 林 等 同 志 赶 赴合浦 解救学 生,回到 南宁后 ,又自己 掏钱为 学生购 好了返回龙州的车票
桥MN和PQ在中间,且方向不 能改变,仍无法直接利用“两 点之间,线段最短”解决问题, 只有利用平移变换转移到两侧 或同一侧先走桥长.
M N P Q
B
平移的方法有三种:两个桥长都平移 到A点处、都平移到B点处、MN平移 到A点处,PQ平移到B点处
思维方法一
1、沿垂直于第一条河岸的方向平移A点至 AA1使AA1=MN,此时问题转化为问题基本题 型两点(A1、B点)和一条河建桥(PQ)
长方体中的路径最短问题PPT课件
建立数学模型,将问题转化为求长方 体表面上两点之间的最短距离,以及 求长方体内部两点之间的最短路径。
考虑长方体的几何特性,最短路径可 能沿着长方体的表面或者通过其内部。
问题的求过计算两点之间的直线距离来 得到最短路径。
02
对于长方体内部的两点,需要采 用图论的方法,将长方体表面展 开为平面图,然后应用平面图中 的最短路径算法求解。
长方体的三个维度
长方体有三个不同的维度,分别是长 度、宽度和高度。
空间几何中的距离概念
01
02
03
距离的定义
在空间几何中,两点之间 的最短路径长度被称为这 两点之间的距离。
距离的测量
距离可以通过多种方式测 量,如直线距离、欧几里 得距离等。
距离的性质
距离具有非负性、对称性、 三角不等式等性质。
空间几何中的最短路径问题
确定长方体中任意点到任意平面的距 离公式。
算法步骤和流程
算法流程 输入长方体的三个边长a、b和c。
输入起点和终点坐标。
算法步骤和流程
根据公式计算起点和终点之间的距离。 根据距离公式计算最短路径。
输出最短路径。
算法实现和代码示例
算法实现 使用Python语言实现算法。 使用NumPy库进行数学计算。
问题的限制条件和特殊情况
限制条件
长方体的边长a、b和c必须大于0,且a、b、c不能为0。
特殊情况
当长方体为正方体时,所有边长相等,此时最短路径问题变得较为简单。
04
解决方案
算法步骤和流程
算法步骤 确定长方体的三个边长,分别为a、b和c。
确定长方体中任意两点间的距离公式。
算法步骤和流程
确定长方体中任意点到任意直线的距 离公式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最短路径问题
最短路径问题
如图所示,从A地到B地有三条路 可供选择,你会选走哪条路最近? 你的理由是什么?
C ①D E
A
②
B
两点之间,线段最短
③
F
最短路径问题
Ⅰ 两点在一条直线异侧
已知:如图,A,B在直线L的两侧,在 L上求一点P,使得PA+PB最小。
连接AB,线段AB与直线L的交点P ,就是所求。
A
·
C′ C
B
·
l B′
最短路径问题
探索新知
回顾前面的探究过程,我们是通过怎样的 过程、借助什么解决问题的?
A
·
C′ C
B
·
l
最短路径问题
B′
练习
问题:如图所示,要在街道旁修建一个奶站,
向居民区A、B提供牛奶,奶站应建在什么地方, 才能使从A、B到它的距离之和最短.
最短路径问题
已知:如图A是锐角∠MON内部任意一点, 在∠MON的两边OM,ON上各取一点B, C,组成三角形,使三角形周长最小.
分析:当AB、BC和AC三条边的长度恰好能够体现在 一条直线上时,三角形的周长最小
D
B
C
E
最短路径问题
已知:如图A是锐角∠MON内部任意一点, 在∠MON的两边OM,ON上各取一点B, C,组成三角形,使三角形周长最小.
分别作点A关于OM,ON的对称 点A′,A″;连接A′,A″,分别交 OM,ON于点B、点C,则点B、 点C即为所求
∴CM+MN+ND=FM+MN+NE=FE,
CG+GH+HD=FG+GH+HE,
A
在四边形EFGH中,
F M
·C
GO
H N
∵FG+GH+HE>FE(两点之间,线段最短),
即CG+GH+HD>CM+MN+ND
D·
E
即CM+MN+ND最短
B
最短路径问题
如图,A和B两地在一条河的两岸,现要在 河上造一座桥MN,桥造在何处可使从A到B 的路径AMNB最短?(假定河的两岸是平行 的直线,桥要与河垂直。)
a
A
M
b
N
B
最短路径问题
你能证明一下如果在不同于MN的位置造桥 M/N/,距离是怎样的,能证明我们的做法 AM+MN+NB的和是最短距离吗?试一下。
A A′
M N
a b
B
最短路径问题
证明:取不同于,M,N的另外两点M/,N/ 由于M/N/=MN=AA/; 由平移的性质可知:AM=A/N,AM/=A/N/ 又根据“两点之间,线段最短”可知
P
为什么这样做就能得到最短距离呢?
最短路径问题
应用
如图,要在燃气管道L上修建一个泵站,分别向A、B两 镇供气,泵站修在管道的什么地方,可使所用的输气 管线最短?
所以泵站建在点P可使输气管线最短
P
最短路径问题
探索新知
问题1 相传,古希腊亚历山大里亚城里有一位久负盛 名的学者,名叫海伦.有一天,一位将军专程拜访海伦,求 教一个百思不得其解的问题:
证明:如图,在直线l 上任取一点C′(与点C 不
重合),连接AC′,BC′,B′C′.
由轴对称的性质知,
BC =B′C,BC′=B′C′. ∴ AC +BC = AC +B′C = AB′,
AC′+BC′
= AC′+B′C′.
在△AB′C′中, AB′<AC′+B′C′,
∴ AC +BC<AC′+BC′. 即 AC +BC 最短.
最短路径问题
3.某班举行晚会,桌子摆成两直条(如图中的AO,BO), AO桌面上摆满了桔子,OB桌面上摆满了糖果,坐在C 处的学生小明先拿桔子再拿糖果,然后回到座位,请 你帮助他设计一条行走路线,使其所走的总路程最短?
作法:1.作点C关于直线
OA 的 对称点点D, 2. 作点C关于直线 OB
AG
的对称点点E,
A/N/+N/B>A/B 所以,AM/+N/B>AM+NB, 所以,AM/+N/B+M/N/> AM+NB+MN.
a
M′
A
b
M
A′
N′
N
B
最短路径问题
பைடு நூலகம்
B A
C
l
最短路径问题
探索新知
如图,点A,B 在直线l 的同侧,点C 是直线上的一个动点, 当点C 在l 的什么位置时,AC 与CB 的和最小?
作法:
(1)作点B 关于直线l 的对称
A
·
点B′;
(2)连接AB′,与直线l 相交
C
B
·
l
于点C.
则点C 即为所求.
B′
最短路径问题
探索新知
问题3 你能用所学的知识证明AC +BC最短吗?
G
O
·C
H
D·
E
B
3.连接EF分别交直线OA.OB于点G.H,
则CG+GH+DH最短最短路径问题
最短路线:A P Q B
N
A/
P
Q
B/
A
M
最短路径问题
B
l
证明:在直线OA 上另外任取一点G,连接…
∵点F,点C关于直线OA对称,点G.M在OA上, ∴GF=GC,FM=CM,
同理HD=HE,ND=NE,
3.连接DE分别交直线OA.OB于点M.N,
则CM+MN+CN最短
D MO
H
C .
N
.E
B
最短路径问题
如图:C为马厩,D为帐篷,牧马人某一天要从马
厩牵出马,先到草地边某一处牧马,再到河边
饮马,然后回到帐篷,请你帮他确定这一天的
最短路线。
F
作法:1.作点C关于直线 A OA 的 对称点点F,
2. 作点D关于直线 OB 的对称点点E,
从图中的A 地出发,到一条笔直的河边l 饮马,然后到B 地.到河边什么地方饮马可使他所走的路线全程最短?
B A
l
最短路径问题
探索新知
这是一个实际问题,你打算首先做什么?
将A,B 两地抽象为两个点,将河l 抽象为一条直 线.
·B A·
l
你能用自己的语言说明这个问题的意思, 并把它抽 象为数学问题吗?
(1)从A 地出发,到河边l 饮马,然后到B 地; (2)在河边饮马的地点有无穷多处,把这些地点与A,
B 连接起来的两条线段的长度之和,就是从A 地到饮马地点,再回到B 地的路程之和;
最短路径问题
探索新知
现在的问题是怎样找出使两条线段长度之和为最 短的直线l 上的点.设C 为直线上的一个动点,上面的问题就转化为:当 点C 在l 的什么位置时,AC 与CB 的和最小(如图).
最短路径问题
如图所示,从A地到B地有三条路 可供选择,你会选走哪条路最近? 你的理由是什么?
C ①D E
A
②
B
两点之间,线段最短
③
F
最短路径问题
Ⅰ 两点在一条直线异侧
已知:如图,A,B在直线L的两侧,在 L上求一点P,使得PA+PB最小。
连接AB,线段AB与直线L的交点P ,就是所求。
A
·
C′ C
B
·
l B′
最短路径问题
探索新知
回顾前面的探究过程,我们是通过怎样的 过程、借助什么解决问题的?
A
·
C′ C
B
·
l
最短路径问题
B′
练习
问题:如图所示,要在街道旁修建一个奶站,
向居民区A、B提供牛奶,奶站应建在什么地方, 才能使从A、B到它的距离之和最短.
最短路径问题
已知:如图A是锐角∠MON内部任意一点, 在∠MON的两边OM,ON上各取一点B, C,组成三角形,使三角形周长最小.
分析:当AB、BC和AC三条边的长度恰好能够体现在 一条直线上时,三角形的周长最小
D
B
C
E
最短路径问题
已知:如图A是锐角∠MON内部任意一点, 在∠MON的两边OM,ON上各取一点B, C,组成三角形,使三角形周长最小.
分别作点A关于OM,ON的对称 点A′,A″;连接A′,A″,分别交 OM,ON于点B、点C,则点B、 点C即为所求
∴CM+MN+ND=FM+MN+NE=FE,
CG+GH+HD=FG+GH+HE,
A
在四边形EFGH中,
F M
·C
GO
H N
∵FG+GH+HE>FE(两点之间,线段最短),
即CG+GH+HD>CM+MN+ND
D·
E
即CM+MN+ND最短
B
最短路径问题
如图,A和B两地在一条河的两岸,现要在 河上造一座桥MN,桥造在何处可使从A到B 的路径AMNB最短?(假定河的两岸是平行 的直线,桥要与河垂直。)
a
A
M
b
N
B
最短路径问题
你能证明一下如果在不同于MN的位置造桥 M/N/,距离是怎样的,能证明我们的做法 AM+MN+NB的和是最短距离吗?试一下。
A A′
M N
a b
B
最短路径问题
证明:取不同于,M,N的另外两点M/,N/ 由于M/N/=MN=AA/; 由平移的性质可知:AM=A/N,AM/=A/N/ 又根据“两点之间,线段最短”可知
P
为什么这样做就能得到最短距离呢?
最短路径问题
应用
如图,要在燃气管道L上修建一个泵站,分别向A、B两 镇供气,泵站修在管道的什么地方,可使所用的输气 管线最短?
所以泵站建在点P可使输气管线最短
P
最短路径问题
探索新知
问题1 相传,古希腊亚历山大里亚城里有一位久负盛 名的学者,名叫海伦.有一天,一位将军专程拜访海伦,求 教一个百思不得其解的问题:
证明:如图,在直线l 上任取一点C′(与点C 不
重合),连接AC′,BC′,B′C′.
由轴对称的性质知,
BC =B′C,BC′=B′C′. ∴ AC +BC = AC +B′C = AB′,
AC′+BC′
= AC′+B′C′.
在△AB′C′中, AB′<AC′+B′C′,
∴ AC +BC<AC′+BC′. 即 AC +BC 最短.
最短路径问题
3.某班举行晚会,桌子摆成两直条(如图中的AO,BO), AO桌面上摆满了桔子,OB桌面上摆满了糖果,坐在C 处的学生小明先拿桔子再拿糖果,然后回到座位,请 你帮助他设计一条行走路线,使其所走的总路程最短?
作法:1.作点C关于直线
OA 的 对称点点D, 2. 作点C关于直线 OB
AG
的对称点点E,
A/N/+N/B>A/B 所以,AM/+N/B>AM+NB, 所以,AM/+N/B+M/N/> AM+NB+MN.
a
M′
A
b
M
A′
N′
N
B
最短路径问题
பைடு நூலகம்
B A
C
l
最短路径问题
探索新知
如图,点A,B 在直线l 的同侧,点C 是直线上的一个动点, 当点C 在l 的什么位置时,AC 与CB 的和最小?
作法:
(1)作点B 关于直线l 的对称
A
·
点B′;
(2)连接AB′,与直线l 相交
C
B
·
l
于点C.
则点C 即为所求.
B′
最短路径问题
探索新知
问题3 你能用所学的知识证明AC +BC最短吗?
G
O
·C
H
D·
E
B
3.连接EF分别交直线OA.OB于点G.H,
则CG+GH+DH最短最短路径问题
最短路线:A P Q B
N
A/
P
Q
B/
A
M
最短路径问题
B
l
证明:在直线OA 上另外任取一点G,连接…
∵点F,点C关于直线OA对称,点G.M在OA上, ∴GF=GC,FM=CM,
同理HD=HE,ND=NE,
3.连接DE分别交直线OA.OB于点M.N,
则CM+MN+CN最短
D MO
H
C .
N
.E
B
最短路径问题
如图:C为马厩,D为帐篷,牧马人某一天要从马
厩牵出马,先到草地边某一处牧马,再到河边
饮马,然后回到帐篷,请你帮他确定这一天的
最短路线。
F
作法:1.作点C关于直线 A OA 的 对称点点F,
2. 作点D关于直线 OB 的对称点点E,
从图中的A 地出发,到一条笔直的河边l 饮马,然后到B 地.到河边什么地方饮马可使他所走的路线全程最短?
B A
l
最短路径问题
探索新知
这是一个实际问题,你打算首先做什么?
将A,B 两地抽象为两个点,将河l 抽象为一条直 线.
·B A·
l
你能用自己的语言说明这个问题的意思, 并把它抽 象为数学问题吗?
(1)从A 地出发,到河边l 饮马,然后到B 地; (2)在河边饮马的地点有无穷多处,把这些地点与A,
B 连接起来的两条线段的长度之和,就是从A 地到饮马地点,再回到B 地的路程之和;
最短路径问题
探索新知
现在的问题是怎样找出使两条线段长度之和为最 短的直线l 上的点.设C 为直线上的一个动点,上面的问题就转化为:当 点C 在l 的什么位置时,AC 与CB 的和最小(如图).