物理:行星与人造卫星
人造卫星原理
人造卫星原理
人造卫星是通过人类设计、制造和发射到地球轨道上的一种航天器。
它们携带各种各样的科学仪器和设备,用于实现多种任务,如远程通信、气象监测、地球观测、导航和军事用途等。
人造卫星的工作原理基于牛顿的万有引力定律和开普勒的行星运动定律。
根据这些定律,卫星绕地球运动时会受到地球的引力作用,同时也需要具备足够的离心力以保持其稳定的运行轨道。
卫星的运行轨道可以分为三种类型:地球同步轨道、低地球轨道和极地轨道。
地球同步轨道是指卫星的轨道与地球的自转周期相同,使得卫星能够在相对固定的地点上提供连续的通信服务。
低地球轨道则通常用于地球观测和科学实验,它的高度较低,绕地球运行速度较快。
极地轨道则用于观测极地地区,以获取高分辨率的地球图像。
卫星的通信原理是通过接收和发送无线电信号实现的。
卫星上的通信设备接收地面站发送的信号,将其放大后再通过卫星向目标地区发送。
地面站也可以通过卫星接收来自其他地区的信号,实现远程通信。
在通信过程中,卫星需要将信号经过放大、转发和解码等处理,以确保信号的质量和稳定性。
除了通信功能,人造卫星还可以用于地球观测。
通过搭载各种传感器和仪器,卫星可以对地球的表面、大气、海洋和天气等进行监测和研究。
这些观测数据对于科学研究、气象预报、环境保护和军事侦察等领域具有重要意义。
总的来说,人造卫星的工作原理是基于牛顿力学和电磁波传输原理的。
通过在地球轨道上运行,并携带各种科学设备和仪器,卫星可以实现多种任务,为人类社会提供广泛的服务和支持。
2020高考备考物理重难点《天体运动与人造航天器》(附答案解析版)
重难点05 天体运动与人造航天器【知识梳理】考点一 天体质量和密度的计算1.解决天体(卫星)运动问题的基本思路(1)天体运动的向心力来源于天体之间的万有引力,即ma r mv r T m r m rMm G ====2222)2(πω(2)在中心天体表面或附近运动时,万有引力近似等于重力,即2R MmG mg =(g 表示天体表面的重力加速度).(2)利用此关系可求行星表面重力加速度、轨道处重力加速度: 在行星表面重力加速度:2R Mm Gmg =,所以2R MG g = 在离地面高为h 的轨道处重力加速度:2)(h R Mm G g m +=',得2)(h R MG g +=' 2.天体质量和密度的计算(1)利用天体表面的重力加速度g 和天体半径R .由于2R Mm G mg =,故天体质量GgR M 2=天体密度:GRgV M πρ43==(2)通过观察卫星绕天体做匀速圆周运动的周期T 和轨道半径r .①由万有引力等于向心力,即r T m rMm G 22)2(π=,得出中心天体质量2324GT r M π=;②若已知天体半径R ,则天体的平均密度3233RGT r V M πρ== ③若天体的卫星在天体表面附近环绕天体运动,可认为其轨道半径r 等于天体半径R ,则天体密度23GTV M πρ==.可见,只要测出卫星环绕天体表面运动的周期T ,就可估算出中心天体的密度. 【重点归纳】 1.黄金代换公式(1)在研究卫星的问题中,若已知中心天体表面的重力加速度g 时,常运用GM =gR 2作为桥梁,可以把“地上”和“天上”联系起来.由于这种代换的作用很大,此式通常称为黄金代换公式. 2. 估算天体问题应注意三点(1)天体质量估算中常有隐含条件,如地球的自转周期为24 h ,公转周期为365天等. (2)注意黄金代换式GM =gR 2的应用. (3)注意密度公式23GTπρ=的理解和应用. 考点二 卫星运行参量的比较与运算 1.卫星的动力学规律由万有引力提供向心力,ma r mv r T m r m rMm G ====2222)2(πω2.卫星的各物理量随轨道半径变化的规律r GM v =;3r GM =ω;GMr T 32π=;2r GM a = (1)卫星的a 、v 、ω、T 是相互联系的,如果一个量发生变化,其它量也随之发生变化;这些量与卫星的质量无关,它们由轨道半径和中心天体的质量共同决定.(2)卫星的能量与轨道半径的关系:同一颗卫星,轨道半径越大,动能越小,势能越大,机械能越大.3.极地卫星和近地卫星(1)极地卫星运行时每圈都经过南北两极,由于地球自转,极地卫星可以实现全球覆盖. (2)近地卫星是在地球表面附近环绕地球做匀速圆周运动的卫星,其运行的轨道半径可近似认为等于地球的半径,其运行线速度约为7.9 km/s. (3)两种卫星的轨道平面一定通过地球的球心. 【重点归纳】1.利用万有引力定律解决卫星运动的一般思路 (1)一个模型天体(包括卫星)的运动可简化为质点的匀速圆周运动模型. (2)两组公式卫星运动的向心力来源于万有引力:ma r mv r T m r m rMm G ====2222)2(πω在中心天体表面或附近运动时,万有引力近似等于重力,即:2R MmGmg = (g 为星体表面处的重2.卫星的线速度、角速度、周期与轨道半径的关系⎪⎪⎩⎪⎪⎨⎧⇒⇒⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫====减小增大减小减小增大时当半径a T v r r GM a GM r T r GM r GM v ωπω2332 考点三 宇宙速度 卫星变轨问题的分析1.第一宇宙速度v 1=7.9 km/s ,既是发射卫星的最小发射速度,也是卫星绕地球运行的最大环绕速度.2.第一宇宙速度的两种求法:(1)r mv r Mm G 212=,所以r GMv =1 (2)rmv mg 21=,所以gR v =1.3.第二、第三宇宙速度也都是指发射速度.4.当卫星由于某种原因速度突然改变时(开启或关闭发动机或空气阻力作用),万有引力不再等于向心力,卫星将变轨运行:(1)当卫星的速度突然增加时,r mv rMm G 22<,即万有引力不足以提供向心力,卫星将做离心运动,脱离原来的圆轨道,轨道半径变大,当卫星进入新的轨道稳定运行时由rGMv =可知其运行速度比原轨道时减小.(2)当卫星的速度突然减小时,r mv rMm G 22>,即万有引力大于所需要的向心力,卫星将做近心运动,脱离原来的圆轨道,轨道半径变小,当卫星进入新的轨道稳定运行时由rGMv =可知其运行速度比原轨道时增大.卫星的发射和回收就是利用这一原理.1.处理卫星变轨问题的思路和方法(1)要增大卫星的轨道半径,必须加速;(2)当轨道半径增大时,卫星的机械能随之增大.2.卫星变轨问题的判断:(1)卫星的速度变大时,做离心运动,重新稳定时,轨道半径变大.(2)卫星的速度变小时,做近心运动,重新稳定时,轨道半径变小.(3)圆轨道与椭圆轨道相切时,切点处外面的轨道上的速度大,向心加速度相同.3.特别提醒:“三个不同”(1)两种周期——自转周期和公转周期的不同(2)两种速度——环绕速度与发射速度的不同,最大环绕速度等于最小发射速度(3)两个半径——天体半径R和卫星轨道半径r的不同【限时检测】(建议用时:30分钟)1.(2019·新课标全国Ⅰ卷)在星球M上将一轻弹簧竖直固定在水平桌面上,把物体P轻放在弹簧上端,P由静止向下运动,物体的加速度a与弹簧的压缩量x间的关系如图中实线所示。
太阳系的行星与卫星
太阳系的行星与卫星太阳系是位于银河系内的一个星系,它由恒星太阳、行星、卫星、小行星、彗星和星际尘埃等组成。
在整个太阳系中,行星和卫星是其中最为重要的成员之一。
本文将详细介绍太阳系中的行星和卫星的特点及它们在宇宙中的重要性。
一、行星的分类和特点1. 内行星内行星是距离太阳较近的行星,包括水金火木四颗行星,即水星、金星、地球和火星。
这些行星主要由岩石和金属构成,它们没有明显的大气层,表面也相对较为干燥。
其中,地球是唯一已知存在生命的行星,具有丰富的水资源和适宜的温度。
2. 外行星外行星距离太阳较远,包括木土天海四颗行星,即木星、土星、天王星和海王星。
这些行星主要由气体和冰构成,它们拥有较大的体积和厚重的大气层。
其中,木星是太阳系中最大的行星,其大气层内存在着一个巨大的风暴区域,即众所周知的“大红斑”,也有许多卫星围绕其运行。
二、行星的重要性1. 保护地球生命地球是人类繁衍生息的家园,行星的引力和轨道稳定性在一定程度上保护了地球免受外来天体的撞击。
例如,木星作为太阳系中最大的行星,具有较强的引力吸附力,它吸引和吸收了许多小行星和彗星,从而减少了这些天体对地球的撞击风险。
2. 探索外太空行星也为人类探索外太空提供了基础。
例如,火星是人类未来可能的殖民地,科学家通过对火星的研究,可以了解和探索人类在其他星球上的生存条件和资源利用方式。
此外,外行星也为人类寻找其他生命体存在的线索提供了可能。
三、卫星的分类和特点1. 天然卫星天然卫星是围绕行星或其他天体运行的天体,它们是太阳系中最常见的卫星形式。
例如,地球拥有一个天然卫星,即月球;土星拥有众多的卫星,其中最著名的是土卫六,也被称为“天王星的奇迹”。
2. 人造卫星人造卫星是由人类制造和发射到太空中的人工卫星。
人造卫星的用途多种多样,包括通信、导航、气象预报、科学研究等。
人造卫星的发展使得人类能够更好地了解地球和宇宙,提供了便捷的通信和导航服务,推动了科学技术的进步。
什么是人造卫星
什么是人造卫星
卫星指宇宙中所有围绕行星轨道上运行的天体。
它们环绕哪一颗行星运转,就把它叫做哪一颗行星的卫星。
比如,月亮环绕着地球旋转,它就是地球的卫星。
由上推理,人造卫星就是“人工制造的卫星”。
它是由科学家用火箭把它发射到预定的轨道,使它环绕着地球或其他行星运转,以便用它来进行探测或科学研究。
它围绕哪一颗行星运转我们就叫它哪一颗行星的人造卫星,比如人造地球卫星,它通常被用来观测,以及生活通讯等方面。
由于地球对周围的物体有引力的作用,因而抛出的物体要落回地面。
而且,抛出的初速度越大,物体就会飞得越远。
牛顿就曾这样设想过,如果从高山上抛出物体时用不同的水平速度,那么它的落地点也是远近不同。
我们在生活中也会遇到这样的问题,假若你想把一个东西抛得更远,那么你就必须使出很大的力气,其实也就是使它的初速度很大。
所以如果没有空气阻力,当速度足够大时,物体就永远不会落到地面上来,人造卫星就是利用这个原理,在发射后它将围绕地球旋转,叫作人造地球卫星。
人造卫星是发射数量最多的航天器,因为它的用途很广泛,所以发展的很迅速。
自从1957年10月4日苏联发射了世界上第一颗人造卫星之后,各国也相继发射了人造卫星。
中国于1970年4月24日发射了“东方红1号”人造卫星,截至1992年底中国共成功发射33
颗不同类型的人造卫星。
高考物理第一轮复习 第五单元 万有引力律 人造地球卫星专题精讲(含解析)
避躲市安闲阳光实验学校第五单元 万有引力定律 人造地球卫星『夯实基础知识』1.开普勒行星运动三定律简介(轨道、面积、比值) 2.万有引力定律及其应用(1) 内容:(2)定律的适用条件: (3) 地球自转对地表物体重力的影响。
地面附近:G2R Mm= mg ⇒GM=gR 2 (黄金代换式) (1)天体表面重力加速度问题 (2)计算中心天体的质量 (3)计算中心天体的密度 (4)发现未知天体 3、人造地球卫星。
1、卫星的轨道平面:由于地球卫星做圆周运动的向心力是由万有引力提供的,所以卫星的轨道平面一定过地球球心,球球心一定在卫星的轨道平面内。
2、原理:由于卫星绕地球做匀速圆周运动,所以地球对卫星的引力充当卫星所需的向心力,于是有实际是牛顿第二定律的具体体现3、表征卫星运动的物理量:线速度、角速度、周期等: 应该熟记常识:地球公转周期1年, 自转周期1天=24小时=86400s , 地球表面半径6.4x103km 表面重力加速度g=9.8 m/s 2月球公转周期30天4.宇宙速度及其意义(1)三个宇宙速度的值分别为(2)当发射速度v 与宇宙速度分别有如下关系时,被发射物体的运动情况将有所不同5.同步卫星(所有的通迅卫星都为同步卫星) ⑴同步卫星。
⑵特点 『题型解析』【例题1】下列关于万有引力公式221r m m GF =的说法中正确的是( )A .公式只适用于星球之间的引力计算,不适用于质量较小的物体B .当两物体间的距离趋近于零时,万有引力趋近于无穷大C .两物体间的万有引力也符合牛顿第三定律D .公式中万有引力常量G 的值是牛顿规定的【例题2】设想把质量为m 的物体,放到地球的中心,地球的质量为M ,半径为R ,则物体与地球间的万有引力是( )A .2R GMmB .无穷大C .零D .无法确定【例题3】设想人类开发月球,不断地把月球上的矿藏搬运到地球上.假如经过长时间开采后,地球仍可看成均匀球体,月球仍沿开采前的圆轨道运动则与开采前比较A .地球与月球间的万有引力将变大B .地球与月球间的万有引力将减小C .月球绕地球运动的周期将变长D .月球绕地球运动的周期将变短表面重力加速度:轨道重力加速度:【例题4】设地球表面的重力加速度为g ,物体在距地心4R (R 是地球半径)处,由于地球的引力作用而产生的重力加速度g ,,则g/g ,为( )A 、1;B 、1/9;C 、1/4;D 、1/16。
人教高中物理新高考考点14 天体运动与人造卫星
考点规范练14天体运动与人造卫星一、单项选择题1.已知地球的质量约为火星质量的10倍,地球的半径约为火星半径的2倍,则航天器在火星表面附近绕火星做匀速圆周运动的速率约为()A.3.5 km/sB.5.0 km/sC.17.7 km/sD.35.2 km/s答案:A解析:根据题设条件可知m地=10m火,r地=2r火,万有引力提供向心力Gmm'r2=m'v2r,得v=√Gmr,即v火v地=√m火r地m地r火=√15,因为地球的第一宇宙速度为v地=7.9km/s,所以航天器在火星表面附近绕火星做匀速圆周运动的速率v火=3.5km/s,选项A正确。
2.有a、b、c、d四颗卫星,a还未发射,在地球赤道上随地球一起转动,b在地面附近近地轨道上正常运动,c是地球同步卫星,d是高空探测卫星。
设地球自转周期为24 h,所有卫星的运动均视为匀速圆周运动,各卫星排列位置如图所示。
则下列关于卫星的说法中正确的是()A.a的向心加速度等于重力加速度gB.c在4 h内转过的圆心角为π6C.b在相同的时间内转过的弧长最长D.d的运动周期可能是23 h答案:C解析:在地球赤道表面随地球自转的卫星,其所受万有引力提供重力和做圆周运动的向心力,a的向心加速度小于重力加速度g,选项A错误;由于c为同步卫星,所以c的周期为24h,4h内转过的圆心角为θ=π3,选项B错误;由四颗卫星的运行情况可知,b运动的线速度是最大的,所以其在相同的时间内转过的弧长最长,选项C正确;d运行的周期比c要长,所以其周期应大于24h,选项D错误。
3.(2019·浙江卷)某颗北斗导航卫星属于地球静止轨道卫星(即卫星相对于地面静止)。
则此卫星的()A.线速度大于第一宇宙速度B.周期小于同步卫星的周期C.角速度大于月球绕地球运行的角速度D.向心加速度大于地面的重力加速度 答案:C解析:根据万有引力提供向心力,Gm 地m r 2=m v 2r =m ω2r=ma ,可推导出,随轨道半径r 增加,线速度、角速度、加速度会减小;月球轨道半径最大,北斗卫星次之,近地卫星最小,故A 、D 错误,C 正确。
卫星问题分析(高中物理大难点突破)
卫星问题分析1(高中物理10大难点突破)一、难点形成原因:卫星问题是高中物理内容中的牛顿运动定律、运动学基本规律、能量守恒定律、万有引力定律甚至还有电磁学规律的综合应用。
其之所以成为高中物理教学难点之一,不外乎有以下几个方面的原因。
1、不能正确建立卫星的物理模型而导致认知负迁移由于高中学生认知心理的局限性以及由牛顿运动定律研究地面物体运动到由天体运动规律研究卫星问题的跨度,使其对卫星、飞船、空间站、航天飞机等天体物体绕地球运转以及对地球表面物体随地球自转的运动学特点、受力情形的动力学特点分辩不清,无法建立卫星或天体的匀速圆周运动的物理学模型(包括过程模型和状态模型),解题时自然不自然界的受制于旧有的运动学思路方法,导致认知的负迁移,出现分析与判断的失误。
2、不能正确区分卫星种类导致理解混淆人造卫星按运行轨道可分为低轨道卫星、中高轨道卫星、地球同步轨道卫星、地球静止卫星、太阳同步轨道卫星、大椭圆轨道卫星和极轨道卫星;按科学用途可分为气象卫星、通讯卫星、侦察卫星、科学卫星、应用卫星和技术试验卫星。
由于不同称谓的卫星对应不同的规律与状态,而学生对这些分类名称与所学教材中的卫星知识又不能吻合对应,因而导致理解与应用上的错误。
3、不能正确理解物理意义导致概念错误卫星问题中有诸多的名词与概念,如,卫星、双星、行星、恒星、黑洞;月球、地球、土星、火星、太阳;卫星的轨道半径、卫星的自身半径;卫星的公转周期、卫星的自转周期;卫星的向心加速度、卫星所在轨道的重力加速度、地球表面上的重力加速度;卫星的追赶、对接、变轨、喷气、同步、发射、环绕等问题。
因为不清楚卫星问题涉及到的诸多概念的含义,时常导致读题、审题、求解过程中概念错乱的错误。
4、不能正确分析受力导致规律应用错乱由于高一时期所学物体受力分析的知识欠缺不全和疏于深化理解,牛顿运动定律、圆周运动规律、曲线运动知识的不熟悉甚至于淡忘,以至于不能将这些知识迁移并应用于卫星运行原理的分析,无法建立正确的分析思路,导致公式、规律的胡乱套用,其解题错误也就在所难免。
太阳系中的行星与卫星
太阳系中的行星与卫星太阳系是我们所在的家园,它由太阳和围绕它运行的一系列行星、卫星、小行星和彗星组成。
在我们的太阳系中,行星和卫星是其中最引人注目的成员之一。
它们以各自的特点和独特之处,为我们揭示了宇宙的奥秘和多样性。
一、行星行星是太阳系中主要的天体成员之一,它们以围绕太阳运行且自身没有发光的特点而被定义。
根据其运行轨道的位置和特征,行星可以分成内行星和外行星两类。
1. 内行星内行星是太阳系中靠近太阳的行星,它们包括水金火土(水星、金星、火星和地球)。
这些行星离太阳较近,因此它们的轨道较小,运转速度也相对较快。
此外,这些行星还有一些共同的特征,比如密度较大、地壳较薄、表面温度较高等。
- 水星水星是太阳系中最靠近太阳的行星,它是一个偏离轨道近似椭圆形的行星,被称为“追日者”。
水星表面充满了撞击坑和陨石坑,因为它几乎没有大气层来阻挡陨石的撞击。
它与太阳的距离很近,因此表面温度极高,白天超过400摄氏度,夜晚则骤降至零下170摄氏度左右。
- 金星金星是太阳系中第二颗离太阳最近的行星,它与地球非常相似,被昵称为“姊妹行星”。
金星的表面温度极高,达到了摄氏470度,主要原因是其极厚的二氧化碳大气层形成了一种温室效应。
除了高温外,金星的大气层中还存在着硫酸云层,使得金星呈现出浓厚的大气污染。
- 火星火星是太阳系中第四颗行星,也被称为“红色星球”,因为它的表面呈现出红色。
火星上有许多与地球类似的地貌特征,包括火山口、峡谷和河床等。
科学家们一直对火星上是否存在生命展开着激烈的讨论和研究。
- 地球地球是太阳系中唯一有生命存在的行星,它是我们人类的家园。
地球拥有丰富的自然资源和多样的生物种类,它的表面被海洋和陆地所覆盖,拥有适宜人类生存的气候条件。
2. 外行星外行星是太阳系中离太阳较远的行星,包括木火土天(木星、土星、天王星和海王星)。
它们的轨道比较大,运转速度相对较慢,同时它们还具有一些独特的特征。
- 木星木星是太阳系中最大的行星,体积约为其它行星总和的2.5倍。
人造卫星的简介
【人造卫星的简介】卫星,是指在宇宙中所有围绕行星轨道上运行的天体。
环绕哪一颗行星运转,就把它叫做哪一颗行星的卫星。
比如,月亮环绕着地球旋转,它就是地球的卫星。
“人造卫星”就是我们人类“人工制造的卫星”。
科学家用火箭把它发射到预定的轨道,使它环绕着地球或其他行星运转,以便进行探测或科学研究。
围绕哪一颗行星运转的人造卫星,我们就叫它哪一颗行星的人造卫星,比如最常用于观测、通讯等方面的人造地球卫星。
【人造卫星种类】人造卫星是个兴旺的家族,如果按用途分,它可分为三大类:科学卫星,技术试验卫星和应用卫星。
①科学卫星是用于科学探测和研究的卫星,主要包括空间物理探测卫星和天文卫星,用来研究高层大气,地球辐射带,地球磁层,宇宙线,太阳辐射等,并可以观测其他星体。
②技术试验卫星是进行新技术试验或为应用卫星进行试验的卫星。
航天技术中有很多新原理,新材料,新仪器,其能否使用,必须在天上进行试验;一种新卫星的性能如何,也只有把它发射到天上去实际“锻炼”,试验成功后才能应用;人上天之前必须先进行动物试验……这些都是技术试验卫星的使命。
③应用卫星是直接为人类服务的卫星,它的种类最多,数量最大,其中包括:通信卫星,气象卫星,侦察卫星,导航卫星,测地卫星,地球资源卫星,截击卫星等等。
第一颗人造地球卫星1957年10月4日,苏联发射了第一颗人造地球卫星。
这一事件具有划时代的意义,它宣告人类已经进入空间时代。
人造卫星的优点在于能同时处理大量的资料及能传送到世界任何角落,使用三颗卫星即能涵盖全球各地,依使用目的,人造卫星大致可分为下列几类:科学卫星:送入太空轨道,进行大气物理、天文物理、地球物理等实验或测试的卫星,如中华卫星一号、哈伯等。
通信卫星:做为电讯中继站的卫星,如:亚卫一号。
军事卫星:做为军事照相、侦察之用的卫星。
气象卫星:摄取云层图和有关气象资料的卫星。
资源卫星:摄取地表或深层组成之图像,做为地球资源探勘之用的卫星。
星际卫星:可航行至其它行星进行探测照相之卫星,一般称之为「行星探测器」,如先锋号、火星号、探路者号等。
初中物理行星运动与卫星轨道的详细解析
初中物理行星运动与卫星轨道的详细解析行星运动是天文学中一个重要的研究领域。
在我们的太阳系中,行星的运动是基于万有引力定律和牛顿力学的规律。
同时,卫星轨道作为行星运动的一个重要部分,也是行星研究中的关键内容。
本文将详细解析初中物理中关于行星运动与卫星轨道的知识点。
一、行星运动1. 行星的定义行星是绕着恒星运动的大型天体,其运动轨道一般呈椭圆形。
在太阳系中,太阳是恒星,而地球、火星、金星等都是行星。
2. 行星运动的形式行星运动主要分为公转和自转两个方面。
公转是指行星绕恒星运动的轨道,而自转则是行星自身绕其自身轴心旋转。
3. 行星公转的规律根据开普勒定律,行星的公转轨道为椭圆,恒星位于椭圆的一个焦点上。
行星的公转速度是不均匀的,即椭圆轨道上的面积是相等的。
同时,根据牛顿第二定律和万有引力定律,行星公转的速度与距离恒星的距离有关,距离越远,公转速度越慢。
4. 行星自转的规律行星的自转速度一般较慢,不同行星的自转时间各不相同。
例如,地球的自转周期约为24小时,而金星的自转周期则要长得多,接近243地球日。
二、卫星轨道1. 卫星的定义卫星是绕行星或其他星体运动的天体,是行星系统中的附属物。
在地球系统中,月球即是地球的卫星,而在火星系统中,火卫一、火卫二等则是火星的卫星。
2. 卫星轨道的形式卫星运动的轨道一般呈椭圆形,与行星的公转轨道类似。
卫星的轨道还可以分为地心轨道和其他类型的轨道,地心轨道是指卫星绕地球运动的轨道。
3. 卫星的运行速度卫星的运行速度与其轨道高度有关。
根据太阳系的知识,行星与卫星的运行速度满足以下关系:速度越小,轨道半径越大。
4. 卫星的稳定性卫星轨道的稳定性是卫星运行中必须考虑的一个问题。
轨道的高度、速度和角动量等因素都会影响卫星的稳定性。
对于地球卫星而言,稳定性可以通过合适的轨道高度和速度来保证。
结论通过本文的解析,我们了解到了初中物理行星运动与卫星轨道的基本知识。
行星的运动包括公转和自转,公转轨道为椭圆形,自转速度较慢。
2019-2020年教科版物理必修二讲义:第3章+4.人造卫星 宇宙速度及答案
4.人造卫星 宇宙速度人造卫星与宇宙速度1.人造卫星卫星是太空中绕行星运动的物体.将第一颗人造卫星送入围绕地球运行轨道的国家是前苏联.2.宇宙速度1.思考判断(正确的打“√”,错误的打“×”)(1)第一宇宙速度是能使卫星绕地球运行的最小发射速度.()(2)第一宇宙速度是人造卫星绕地球运行的最小速度.()(3)第二宇宙速度是卫星在椭圆轨道上运行时近地点的速度.()(4)如果在地面发射卫星的速度大于11.2 km/s,卫星会永远离开地球.()(5)要发射一颗人造月球卫星,在地面的发射速度应大于16.7 km/s.()【提示】(1)√(2)×(3)×(4)√(5)×2.下面关于同步通信卫星的说法中不正确的是()A.各国发射的地球同步卫星的高度和速率都是相等的B.同步通信卫星的角速度虽已被确定,但高度和速率可以选择,高度增加,速率增大;高度降低,速率减小,仍同步C.我国发射第一颗人造地球卫星的周期是114 min,比同步通信卫星的周期短,所以第一颗人造卫星离地面的高度比同步通信卫星的低D.同步通信卫星的速率比我国发射的第一颗人造地球卫星的速率小B[同步通信卫星的周期与角速度跟地球自转的周期与角速度相同,由ω=GMr3和h=r-R知卫星高度确定.由v=ωr知速率也确定,A正确,B错误;由T=2π r 3GM知第一颗人造地球卫星高度比同步通信卫星的低,C正确;由v=GMr知同步通信卫星比第一颗人造地球卫星速率小,D正确.故选B.] 3.关于第一宇宙速度,下列说法中正确的是()A.第一宇宙速度是人造地球卫星环绕运行的最小速度B.第一宇宙速度是人造地球卫星环绕运行的最大速度C .第一宇宙速度是地球同步卫星环绕运行的速度D .不同行星的第一宇宙速度都是相同的B [第一宇宙速度的大小等于靠近地面附近飞行的卫星绕地球公转的线速度.卫星做圆周运动的向心力由地球对它的万有引力提供,由G Mm (R +h )2=m v 2(R +h )可得v =GM R +h.可见卫星的高度越高,则公转的线速度越小,所以靠近地球表面飞行的卫星(h 的值可忽略)的线速度最大,故选项B 正确;地球同步卫星在地球的高空运行,所以它的线速度小于第一宇宙速度,所以选项C 错误;行星的质量和半径不同,使得行星的第一宇宙速度的值也不相同,所以选项D 错误.]4.如图所示,若两颗人造卫星a 和b 均绕地球做匀速圆周运动,a 、b 到地心O 的距离分别为r 1、r 2,线速度大小分别为v 1、v2,则( )A.v 1v 2= r 2r 1B.v 1v 2= r 1r 2C.v 1v 2=⎝ ⎛⎭⎪⎫r 2r 12D.v 1v 2=⎝ ⎛⎭⎪⎫r 1r 22 A [对人造卫星,根据万有引力提供向心力GMm r2=m v 2r ,可得v = GMr .所以对于a 、b 两颗人造卫星有v 1v 2= r 2r 1,故选项A 正确.]1.人造卫星的轨道:由地球对它的万有引力充当向心力.因此卫星绕地球做匀速圆周运动的圆心必与地心重合,而这样的轨道有多种,其中比较特殊的有与赤道共面的赤道轨道和通过两极点上空的极地轨道.当然也存在着与赤道平面呈某一角度的圆轨道.如图所示.2.解决天体运动问题的基本思路:一般行星或卫星的运动可看作匀速圆周运动,所需要的向心力都由中心天体对它的万有引力提供,所以研究天体时可建立基本关系式:G Mm R 2=ma ,式中a 是向心加速度. 3.人造卫星的运行规律:人造卫星的运行规律类似行星的运行规律.(1)常用的关系式①G Mm r 2=m v 2r =mω2r =m 4π2T 2r ,万有引力全部用来提供行星或卫星做圆周运动的向心力.②mg =G Mm R 2即gR 2=GM ,物体在天体表面时受到的引力等于物体的重力.该公式通常被称为黄金代换式.(2)常用结论:卫星离地面高度越高,其线速度越小,角速度越小,周期越大,向心加速度越小.可以概括为“越远越慢”.4.地球同步卫星及特点:(1)概念:相对于地面静止且与地球自转具有相同周期的卫星,叫作地球同步卫星.(2)特点:①确定的转动方向:和地球自转方向一致;②确定的周期:和地球自转周期相同,即T =24 h ;③确定的角速度:等于地球自转的角速度;④确定的轨道平面:所有的同步卫星都在赤道的正上方,其轨道平面必须与赤道平面重合;⑤确定的高度:离地面高度固定不变(3.6×104 km);⑥确定的环绕速率:线速度大小一定(3.1×103 m/s).【例1】(多选)有a、b、c、d四颗地球卫星,a还未发射,在赤道表面上随地球一起转动,b是近地轨道卫星,c是地球同步卫星,d是高空探测卫星,它们均做匀速圆周运动,各卫星排列位置如图所示,则()A.a的向心加速度等于重力加速度gB.在相同时间内b转过的弧长最长C.c在2小时内转过的圆心角是π6D.d的运动周期有可能是20小时思路点拨:同步卫星的周期必须与地球自转周期相同,角速度相同,根据a =ω2r比较a与c的向心加速度大小,再比较c的向心加速度与g的大小.根据万有引力提供向心力,列出等式得出角速度与半径的关系,分析弧长关系.根据开普勒第三定律判断d与c的周期关系.BC[同步卫星的周期必须与地球自转周期相同,角速度相同,则知a与c的角速度相同,根据a=ω2r知,c的向心加速度大,由G Mmr2=ma,得a=GMr2,卫星的轨道半径越大,向心加速度越小,则同步卫星的向心加速度小于b的向心加速度,而b的向心加速度约为g,故知a的向心加速度小于重力加速度g,故A错误;由G Mmr2=m v2r,得v=GMr,卫星的半径越大,线速度越小,所以b的线速度最大,在相同时间内转过的弧长最长,故B正确;c是地球同步卫星,周期是24 h,则c在2h内转过的圆心角是π6,故C正确;由开普勒第三定律r3T2=k知,卫星的轨道半径越大,周期越大,所以d的运动周期大于c的周期24 h,故D错误.](1)人造卫星的a 、v 、ω、T 由地球的质量M 和卫星的轨道半径r 决定,当r 确定后,卫星的a 、v 、ω、T 便确定了,与卫星的质量、形状等因素无关,当人造卫星的轨道半径r 发生变化时,其a 、v 、ω、T 都会随之改变.(2)在处理人造卫星的a 、v 、ω、T 与半径r 的关系问题时,常用公式“gR 2=GM ”来替换出地球的质量M ,会使问题解决起来更方便.1.(2019·全国卷Ⅲ)金星、地球和火星绕太阳的公转均可视为匀速圆周运动,它们的向心加速度大小分别为a 金、a 地、a 火,它们沿轨道运行的速率分别为v 金、v 地、v 火.已知它们的轨道半径R 金<R 地<R 火,由此可以判定( )A .a 金>a 地>a 火B .a 火>a 地>a 金C .v 地>v 火>v 金D .v 火>v 地>v 金[答案] A1.第一宇宙速度(1)推导对于近地人造卫星,轨道半径r 近似等于地球半径R =6 400 km ,卫星在轨道处所受的万有引力近似等于卫星在地面上所受的重力,取g =9.8 m/s 2,则(2)决定因素由第一宇宙速度的计算式v =GM R 可以看出,第一宇宙速度的值由中心天体决定,第一宇宙速度的大小取决于中心天体的质量M 和半径R ,与卫星无关.(3)理解①“最小发射速度”:向高轨道发射卫星比向低轨道发射卫星困难,因为发射卫星要克服地球对它的引力.近地轨道是人造卫星的最低运行轨道,而近地轨道的发射速度就是第一宇宙速度,所以第一宇宙速度是发射人造卫星的最小速度.②“最大环绕速度”:在所有环绕地球做匀速圆周运动的卫星中,近地卫星的轨道半径最小,由G Mm r 2=m v 2r 可得v =GM r ,轨道半径越小,线速度越大,所以在这些卫星中,近地卫星的线速度即第一宇宙速度是最大环绕速度.2.发射速度与运行速度的对比(1)三种宇宙速度都是指卫星的发射速度,而不是在轨道上的运行速度.(2)人造地球卫星的发射速度与运行速度的大小关系:v 运行≤7.9 km/s ≤v 发射<11.2 km/s.【例2】 使物体脱离星球的引力束缚,不再绕星球运行,从星球表面发射所需的最小速度称为第二宇宙速度,星球的第二宇宙速度v 2与第一宇宙速度v 1的关系是v 2=2v 1.已知某星球的半径为r ,它表面的重力加速度为地球表面重力加速度g 的16.不计其他星球的影响,则该星球的第二宇宙速度为( ) A.16gr B.13gr C.12gr D.grB [由G Mm r 2=m v 2r ,G Mm r 2=mg 6,联立解得星球的第一宇宙速度v 1=16gr ,星球的第二宇宙速度v 2=2v 1=216gr =13gr ,B 正确.]理解宇宙速度的注意点1.宇宙速度是在地球表面的发射速度,而不是卫星在高空中的运行速度.2.第一宇宙速度是卫星的最小发射速度,也是所有人造地球卫星做圆周运动的最大运行速度.3.不同星体都有自己对应的第一宇宙速度,v =GM R =gR .2.一探月卫星的轨道是圆形的,且贴近月球表面,已知月球的质量约为地球质量的181,月球半径约为地球半径的14,地球上的第一宇宙速度约为7.9 km/s ,则该探月卫星绕月运行的速率约为( )A .0.4 km/sB .1.8 km/sC .11 km/sD .36 km/sB [对于环绕地球或月球的人造卫星,其所受万有引力即为它们做圆周运动所需的向心力,即GMm r 2=m v 2r ,所以v =GM r ,第一宇宙速度指的是最小发射速度,同时也是近地卫星的环绕速度,对于近地卫星来说,其轨道半径近似等于中心天体半径,所以v 月v 地=M 月M 地·r 地r 月=481=29,所以v 月=29v 地=29×7.9 km/s ≈1.8 km/s.故选B.]1.当卫星绕天体做匀速圆周运动时,万有引力提供向心力,满足G Mm r2=m v 2r . 2.当卫星由于某种原因速度改变时,万有引力不再等于向心力,卫星将做变轨运行.(1)当卫星的速度突然增加时,G Mm r2<m v 2r ,即万有引力不足以提供向心力,卫星将做离心运动.(2)当卫星的速度突然减小时,G Mm r2>m v 2r ,即万有引力大于所需要的向心力,卫星将做近心运动,卫星的发射和回收就是利用这一原理.3.卫星到达椭圆轨道与圆轨道的切点时,卫星受到的万有引力相同,所以加速度相同.4.飞船对接问题:两飞船实现对接前应处于高低不同的两轨道上,目标船处于较高轨道,在较低轨道上运动的对接船通过合理地加速,做离心运动而追上目标船与其完成对接.【例3】如图所示,某次发射同步卫星的过程如下:先将卫星发射至近地圆轨道1,然后再次点火进入椭圆形的过渡轨道2,最后将卫星送入同步轨道3.轨道1、2相切于Q点,轨道2、3相切于P点,则当卫星分别在1、2、3轨道上正常运行时,以下说法正确的是()A.卫星在轨道3上的速率大于在轨道1上的速率B.卫星在轨道3上的角速度大于在轨道1上的角速度C.卫星在轨道1上经过Q点时的加速度大于它在轨道2上经过Q点时的加速度D.卫星在轨道2上经过P点时的加速度等于它在轨道3上经过P点时的加速度D[由G Mmr2=mv2r=mrω2得,v=GMr,ω=GMr3,由于r1<r3,所以v1>v3,ω1>ω3,A、B错;轨道1上的Q点与轨道2上的Q点是同一点,到地心的距离相同,根据万有引力定律及牛顿第二定律知,卫星在轨道1上经过Q点时的加速度等于它在轨道2上经过Q点时的加速度,同理卫星在轨道2上经过P 点时的加速度等于它在轨道3上经过P点时的加速度,C错,D对.]卫星变轨问题的分析方法1.变轨的两种情况人造地球卫星的发射过程要经过多次变轨,过程简图如图所示:2.相关物理量的比较(1)两个不同轨道的“切点”处线速度v 不相等,图中v ⅢB >v ⅡB ,v ⅡA >v ⅠA .(2)两个不同圆轨道上的线速度v 不相等,轨道半径越大,v 越小,图中v Ⅰ>v Ⅲ.(3)不同轨道的周期T 不相等,由开普勒第三定律知,内侧轨道的周期小于外侧轨道的周期,图中T Ⅰ<T Ⅱ<T Ⅲ.(4)两个不同轨道的“切点”处加速度a 相同,图中a ⅢB =a ⅡB ,a ⅡA =a ⅠA .3.如图所示,一颗人造卫星原来在椭圆轨道1绕地球E 运行,在P 点变轨后进入轨道2做匀速圆周运动.下列说法正确的是( )A .不论在轨道1还是轨道2运行,卫星在P 点的速度都相同B .不论在轨道1还是轨道2运行,卫星在P 点的加速度都相同C .卫星在轨道1的任何位置都具有相同加速度D .卫星在轨道2的任何位置都具有相同速度B [在P 点,沿轨道1运行时,地球对人造卫星的引力大于人造卫星做圆周运动需要的向心力,即F 引>m v 21r ,沿轨道2运行时,地球对人造卫星的引力刚好能提供人造卫星做圆周运动的向心力,即F 引=m v 22r ,故v 1<v 2,选项A 错误;在P 点,人造卫星在轨道1和轨道2运行时,地球对人造卫星的引力相同,由牛顿第二定律可知,人造卫星在P 点的加速度相同,选项B 正确;在轨道1的不同位置,地球对人造卫星引力大小不同,故加速度也不同,选项C 错误;在轨道2上不同位置速度方向不同,选项D 错误.]1.把人造地球卫星的运动近似看做匀速圆周运动,则离地球越近的卫星( )A .质量越大B .万有引力越大C .周期越大D .角速度越大D [由万有引力提供向心力得F 向=F 引=GMm r 2=mrω2=mr 4π2T 2,可知离地面越近,周期越小,角速度越大,且运动快慢与质量无关,所以卫星离地球的远近决定运动的快慢,与质量无关,故A 、C 错误,D 正确;由于卫星质量m 不确定,故无法比较万有引力大小,故B 错误.]2.下列关于绕地球运行的卫星的运动速度的说法中正确的是( )A .一定等于7.9 km/sB .一定小于7.9 km/sC .大于或等于7.9 km/s ,而小于11.2 km/sD .只需大于7.9 km/sB [卫星在绕地球运行时,万有引力提供向心力,由此可得v =GMr ,所以轨道半径r 越大,卫星的环绕速度越小,实际的卫星轨道半径大于地球半径R ,所以环绕速度一定小于第一宇宙速度,即v <7.9 km/s ,而C 选项是发射人造地球卫星的速度范围.]3.如图所示,a 、b 、c 、d 是在地球大气层外的圆形轨道上匀速运行的四颗人造卫星.其中a 、c 的轨道相交于P ,b 、d 在同一个圆轨道上.某时刻b 卫星恰好处于c 卫星的正上方.下列说法中正确的是( )A .b 、d 存在相撞危险B .a 、c 的加速度大小相等,且大于b 的加速度C .b 、c 的角速度大小相等,且小于a 的角速度D .a 、c 的线速度大小相等,且小于d 的线速度B [b 、d 在同一轨道,线速度大小相等,不可能相撞,A 错;由a 向=GM r 2知a 、c 的加速度大小相等且大于b 的加速度,B 对;由ω= GM r 3知,a 、c 的角速度大小相等,且大于b 的角速度,C 错;由v =GM r 知a 、c 的线速度大小相等,且大于d 的线速度,D 错.]4.研究表明,地球自转在逐渐变慢,3亿年前地球自转的周期约为22小时.假设这种趋势会持续下去,地球的其他条件都不变,未来人类发射的地球同步卫星与现在的相比( )A .距地面的高度变大B .向心加速度变大C .线速度变大D .角速度变大 A [地球的自转周期变大,则地球同步卫星的公转周期变大.由GMm (R +h )2=m 4π2T 2(R +h ),得h =3GMT 24π2-R ,T 变大,h 变大,A 正确.由GMm r 2=ma ,得a =GM r 2,r 增大,a 减小,B 错误.由GMm r 2=m v 2r ,得v =GM r ,r 增大,v 减小,C 错误.由ω=2πT 可知,角速度减小,D 错误.]5.宇航员站在一星球表面上的某高处,沿水平方向抛出一小球,经过时间t ,小球落到星球表面,测得抛出点与落点之间的距离为L .若抛出时的初速度增大到原来的2倍,则抛出点与落点之间的距离为3L .已知两落点在同一水平面上,该星球的质量为M ,引力常量为G .求该星球的第一宇宙速度.[解析]设第一次抛出速度为v、高度为h,根据题意可得(如图所示):L2=h2+(v t)2依图可得:(3L)2=h2+(2v t)2又h=12gt2,解方程组得g=23L3t2.根据万有引力等于重力得,mg=G MmR2解得R=GMg =3GMt22L.根据mg=m v 2R解得第一宇宙速度v=gR=423GML3t2[答案]423GML3t2。
高中物理课件:宇宙航行
成为一颗人造地球卫星。简称
人造卫。星
想一想:
物体初速度达到多大时就可以成为一颗人造 卫星呢?
由此可见,人造地球卫星运行遵从的规律 是:卫星绕地球做圆周运动,地球对卫星 的引力提供向心力。
二 、宇宙速度
当发射一颗卫星绕地球表面附近(100~200KM)运 动时,轨道半径近似为R,由万有引力提供向心 力可得:
小结:基本思路
1. 在星体表面附近 F引=G重
黄金代换:GM=gR 2
2.若不在星体表面将行星(或卫 星)的运动看成是匀速圆周运动.
3.万有引力充当向心力 F引=F向.
5、宇宙航行
牛顿的猜想
牛顿的手稿
一、人造卫星:
在地球上抛出的物体,当它的速度足够大时,
物体就永远不会落到地面上,它将围绕地球旋转,
GMm R2
m
v2 R2
GM=gR2
v GM R
v gR
代入数据可得:v=7.9km/s
(1)第一宇宙速度
第一宇宙速度是人造卫星在地面附近环绕 地球作匀速圆周运动所必须具有的速度, 所以也称为“环绕速度”。
v1=7.9km/s
V=16.7km/s V=11.2km/s
V=7.9km/s 11.2km/s>V>7.9km/s
心的距离为r,求卫星运动
的线速度v、角速度ω、
F
周期T ?
V
由F引=F向得到:
Mm v2
G m
r2
r
GMm r2
mr ω2
v GM ( r↑,v ↓) r
GM ω r3 ( r↑,ω↓)
GMm r2
mr
4π2 T2
T 2π
r3
( r↑,T ↑)
高中物理人造卫星教案及反思
高中物理人造卫星教案及反思物理教案是物理教师根据教学大纲和学生的实际情况编写的教学设计方案,对于高中物理课堂的展开十分重要,下面小编为大家带来高中物理人造卫星教案及反思,供你参考。
人造卫星物理教案教学目标知识目标:1、通过对行星绕恒星的运动及卫星绕行星的运动的研究,使学生初步掌握研究此类问题的基本方法:万有引力作为圆周运动的向心力;2、使学生对人造卫星的发射、运行等状况有初步了解,使多数学生在头脑中建立起较正确的图景;能力目标通过学习万有引力定律在天文学上的应用,通过解世界和中国的航天事业的发展,了解世界上第一颗人造卫星、第一个宇宙飞船、第一个宇航员的知识,了解中国的神州一号、神州二号、神州三号的发射与回收,增强学生的爱国主义热情.情感目标通过学习万有引力定律在天文学上的应用,使学生真切感受到用自己所学的物理知识能解决天体问题,能解决实际问题,增强学生学习物理的热情教学建议本节的教学过程中在加强应用万有引力定律的同时,还应注重卫星的发射过程.请教师注意下列几个问题.一、天体运动和人造卫星运动模型二、地球同步卫星三、卫星运行速度与轨道卫星从发射升空到正常运行的连续过程,一般可分为几个阶段,每个阶段对应不同的轨道.例如发射轨道、转移轨道、运行轨道、同步轨道、返回轨道等.有些卫星的发射并不是直接到达运行轨道,而需要多次变轨.例如地球同步卫星就是先发射到近地的圆轨道上,再变为椭圆形转移轨道,最后在椭圆形轨道的远地点变为同步轨道.因此发射过程需多级火箭推动.教学设计方案教学重点:万有引力定律的应用教学难点:人造地球卫星的发射教学方法:讨论法教学用具:多媒体和计算机教学过程:一、人造卫星的运动问题:1、地球绕太阳作什么运动?回答:近似看成匀速圆周运动.2、谁提供了向心力?回答:地球与太阳间的万有引力.3、人造卫星绕地球作什么运动?回答:近似看成匀速圆周运动.4、谁提供了向心力?回答:卫星与地球间的万有引力.请学生思考讨论下列问题:例题1、根据观测,在土星外围有一个模糊不清的光环,试用力学方法判定土星的光环究竟是与土星相连的连续物,还是绕土星运转的小卫星群?分别请学生提出自己的方案并加以解释:1、如果是连续物则:这些物体作匀速圆周运动的线速度与半径成正比,2、如果是卫星则:这些物体作匀速圆周运动的线速度与半径的平方根成反比,这个题可以让学生充分讨论.二、人造卫星的发射问题:1、卫星是用什么发射升空的?回答:三级火箭2、卫星是怎样用火箭发射升空的?学生可以讨论并发表自己的观点.下面我们来看一道题目:例题2、1999年11月21日,我国“神州”号宇宙飞船成功发射并收回,这是我国航天史上重要的里程碑.新型“长征”运载火箭,将重达8.4t的飞船向上送至近地轨道1,飞船与火箭分离后,在轨道1上以速度7.2km/s绕地球作匀速圆周运动.试回答下列问题:(1)根据课文内容结合例题(2)(3)(4)问画出图示.(2)轨道1离地的高度约为:A、8000kmB、1600kmC、6400kmD、42000km解:由万有引力定律得:解得: =1600km故选(B)(3)飞船在轨道1上运行几周后,在点开启发动机短时间向外喷射高速气体使飞船加速,关闭发动机后飞船沿椭圆轨道2运行,到达点开启发动机再次使飞船加速,使飞船速率符合圆轨道3的要求,进入轨道3后绕地球作圆周运动,利用同样的方法使飞船离地球越来越远,飞船在轨道2上从点到点过程中,速率将如何变化?解:由万有引力定律得:解得:所以飞船在轨道2上从点到点过程中,速率将减小.(4)飞船在轨道1、2、3上正常运行时:①飞船在轨道1上的速率与轨道3上的速率哪个大?为什么?回答:轨道1上的速率大.②飞船在轨道1上经过点的加速度与飞船在轨道2上经过点的加速度哪个大?为什么?回答:一样大③飞船在轨道1上经过点的加速度与飞船在轨道3上经过点的加速度哪个大?为什么?回答:轨道1上的加速度大.探究活动收集资料。
航天与星体问题专题(有答案)
航天与星体问题专题一.要点归纳1.天体运动的两个基本规律 (1)万有引力提供向心力行星卫星模型:F =G Mm r 2=m v 2r =mrω2=m 4π2T2r双星模型:G m 1m 2L2=m 1ω2r 1=m 2ω2(L -r 1)其中,G =6.67×10-11 N·m 2/kg 2 2.万有引力等于重力 G MmR 2=mg (物体在地球表面且忽略地球自转效应); G Mm (R +h )2=mg ′(在离地面高h 处,忽略地球自转效应完全相等,g ′为该处的重力加速度)2.人造卫星的加速度、线速度、角速度、周期跟轨道半径的关系F 万=G Mmr2=F 向=⎩⎪⎨⎪⎧ma →a =GM r 2→a ∝1r2m v 2r →v =GM r →v ∝1rmω2r →ω=GM r 3→ω∝1r3m 4π2T 2r →T =4π2r3GM→T ∝r 3.3.宇宙速度(1)第一宇宙速度(环绕速度):v =gR =7.9_km/s ,是卫星发射的最小速度,也是卫星环绕地球运行的最大速度.(2)第二宇宙速度:v =11.2 km/s (3)第三宇宙速度:v =16.7 km/s注意:①三个宇宙速度的大小都是取地球中心为参照系; ②以上数据是地球上的宇宙速度,其他星球上都有各自的宇宙速度,计算方法与地球相同.4.关于地球同步卫星地球同步卫星是指与地球自转同步的卫星,它相对于地球表面是静止的,广泛应用于通信领域,又叫做同步通信卫星.其特点可概括为六个“一定”:(1)位置一定(必须位于地球赤道的上空)地球同步卫星绕地球旋转的轨道平面一定与地球的赤道面重合.假设同步卫星的轨道平面与赤道平面不重合,而与某一纬线所在的平面重合,如图3-4所示.同步卫星由于受到地球指向地心的万有引力F 的作用,绕地轴做圆周运动,F 的一个分力F 1提供向心力,而另一个分力F 2将使同步卫星不断地移向赤道面,最终直至与赤道面重合为止(此时万有引力F 全部提供向心力).图3-4(2)周期(T )一定①同步卫星的运行方向与地球自转的方向一致.②同步卫星的运转周期与地球的自转周期相同,即T =24 h . (3)角速度(ω)一定由公式ω=φt 知,地球同步卫星的角速度ω=2πT,因为T 恒定,π为常数,故ω也一定.(4)向心加速度(a )的大小一定地球同步卫星的向心加速度为a ,则由牛顿第二定律和万有引力定律得: G Mm (R +h )2=ma ,a =GM (R +h )2. (5)距离地球表面的高度(h )一定由于万有引力提供向心力,则在ω一定的条件下,同步卫星的高度不具有任意性,而是唯一确定的.根据G Mm (R +h )2=mω2(R +h )得: h =3GM ω2-R =3GM(2πT)2-R ≈36000 km . (6)环绕速率(v )一定在轨道半径一定的条件下,同步卫星的环绕速率也一定,且为v =GMr=R 2gR +h=3.08 km/s .因此,所有同步卫星的线速度大小、角速度大小及周期、半径都相等. 由此可知要发射同步卫星必须同时满足三个条件: ①卫星运行周期和地球自转周期相同; ②卫星的运行轨道在地球的赤道平面内; ③卫星距地面高度有确定值.二、天体质量、密度及表面重力加速度的计算1.星体表面的重力加速度:g =G MR22.天体质量常用的计算公式:M =r v 2G =4π2r 3GT2●例1 假设某个国家发射了一颗绕火星做圆周运动的卫星.已知该卫星贴着火星表面运动,把火星视为均匀球体,如果知道该卫星的运行周期为T ,引力常量为G ,那么( )A .可以计算火星的质量B .可以计算火星表面的引力加速度C .可以计算火星的密度D .可以计算火星的半径【解析】卫星绕火星做圆周运动的向心力由万有引力提供,则有:G Mm r 2=m 4π2T2r而火星的质量M =ρ43πr 3联立解得:火星的密度ρ=3πGT2由M =4π2r 3GT 2,g =G M r 2=4π2T2r 知,不能确定火星的质量、半径和其的表面引力加速度,所以C 正确.[答案] C 【点评】历年的高考中都常见到关于星体质量(或密度)、重力加速度的计算试题,如2009年高考全国理综卷Ⅰ第19题,江苏物理卷第3题,2008年高考上海物理卷1(A)等. ★同类拓展1 我国探月的嫦娥工程已启动,在不久的将来,我国宇航员将登上月球.假如宇航员在月球上测得摆长为l 的单摆做小振幅振动的周期为T ,将月球视为密度均匀、半径为r 的球体,则月球的密度为( )A .3πGT 2B .3πl GrT 2C .16πl 3GrT 2D .3πl 16GrT 2 【解析】设月球表面附近的重力加速度为g 0.有:T =2πlg 0又由g 0=G M r 2,ρ=3M4πr 3可解得ρ=3πlGrT 2.[答案] B三、行星、卫星的动力学问题不同轨道的行星(卫星)的速度、周期、角速度的关系在“要点归纳”中已有总结,关于这类问题还需特别注意分析清楚卫星的变轨过程及变轨前后的速度、周期及向心加速度的关系.●例2 2008年9月25日到28日,我国成功发射了神舟七号载人航天飞行并实现了航天员首次出舱.飞船先沿椭圆轨道飞行,后在远地点343千米处点火加速,由椭圆轨道变成高度为343千米的圆轨道,在此圆轨道上飞船运行周期约为90分钟.下列判断正确的是[2009年高考·山东理综卷]( )A .飞船变轨前后的机械能相等B .飞船在圆轨道上时航天员出舱前后都处于失重状态C .飞船在此圆轨道上运动的角速度大于同步卫星运动的角速度D .飞船变轨前通过椭圆轨道远地点时的加速度大于变轨后沿圆轨道运动的加速度 【解析】飞船点火变轨,反冲力对飞船做正功,飞船的机械能不守恒,A 错误.飞船在圆形轨道上绕行时,航天员(包括飞船及其他物品)受到的万有引力恰好提供所需的向心力,处于完全失重状态,B 正确.神舟七号的运行高度远低于同步卫星,由ω2∝1r3知,C 正确.由牛顿第二定律a =F 引m =G Mr2知,变轨前后过同一点的加速度相等.[答案] BC【点评】对于这类卫星变轨的问题,特别要注意比较加速度时不能根据运动学公式a =v 2r =ω2r ,因为变轨前后卫星在同一点的速度、轨道半径均变化,一般要通过决定式a =F m 来比较.★同类拓展1 为纪念伽利略将望远镜用于天文观测400周年,2009年被定为以“探索我的宇宙”为主题的国际天文年.我国发射的嫦娥一号卫星绕月球经过一年多的运行,完成了既定任务,于2009年3月1日16日13分成功撞月.图示为嫦娥一号卫星撞月的模拟图,卫星在控制点1开始进入撞月轨道.假设卫星绕月球做圆周运动的轨道半径为R ,周期为T ,引力常量为G .根据题中信息( )A .可以求出月球的质量B .可以求出月球对嫦娥一号卫星的引力C .可知嫦娥一号卫星在控制点1处应减速D .可知嫦娥一号在地面的发射速度大于11.2 km/s【解析】由G Mm R 2=m 4π2T 2R 可得月球的质量M =4π2R 3GT 2,A 正确.由于不知嫦娥一号的质量,无法求得引力,B 错误.卫星在控制点1开始做近月运动,知在该点万有引力要大于所需的向心力,故知在控制点1应减速,C 正确.嫦娥一号进入绕月轨道后,同时还与月球一起绕地球运行,并未脱离地球,故知发射速度小于11.2 km/s ,D 错误.[答案] AC四、星体、航天问题中涉及的一些功能关系1.质量相同的绕地做圆周运动的卫星,在越高的轨道动能E k =12m v 2=G Mm2r越小,引力势能越大,总机械能越大.2.若假设距某星球无穷远的引力势能为零,则距它r 处卫星的引力势能E p =-G Mmr(不需推导和记忆).在星球表面处发射物体能逃逸的初动能为E k ≥|E p |=G MmR.●例3 2008年12月,天文学家们通过观测的数据确认了银河系中央的黑洞“人马座A *”的质量与太阳质量的倍数关系.研究发现,有一星体S2绕人马座A *做椭圆运动,其轨道半长轴为9.50×102天文单位(地球公转轨道的半径为一个天文单位),人马座A *就处在该椭圆的一个焦点上.观测得到S2星的运动周期为15.2年.(1)若将S2星的运行轨道视为半径r =9.50×102天文单位的圆轨道,试估算人马座A *的质量M A 是太阳质量M S 的多少倍.(结果保留一位有效数字)(2)黑洞的第二宇宙速度极大,处于黑洞表面的粒子即使以光速运动,其具有的动能也不足以克服黑洞对它的引力束缚.由于引力的作用,黑洞表面处质量为m 的粒子具有的势能为E p =-G MmR(设粒子在离黑洞无限远处的势能为零),式中M 、R 分别表示黑洞的质量和半径.已知引力常量G =6.7×10-11 N·m 2 /kg 2,光速c =3.0×108 m/s ,太阳质量M S =2.0×1030 kg ,太阳半径R S =7.0×108 m ,不考虑相对论效应,利用上问结果,在经典力学范围内求人马座A *的半径R A 与太阳半径R S 之比应小于多少.(结果按四舍五入保留整数)[2009年高考·天津理综卷] 【解析】(1)S2星绕人马座A *做圆周运动的向心力由人马座A *对S2星的万有引力提供,设S2星的质量为m S2,角速度为ω,周期为T ,则有:G M A m S2r 2=m S2ω2rω=2πT设地球质量为m E ,公转轨道半径为r E ,周期为T E ,则: G M S m E r E 2=m E (2πT E)2r E 综合上述三式得:M A M S =(r r E )3(T ET)2上式中T E =1年,r E =1天文单位代入数据可得:M AM S=4×106.(2)引力对粒子作用不到的地方即为无限远处,此时粒子的势能为零.“处于黑洞表面的粒子即使以光速运动,其具有的动能也不足以克服黑洞对它的引力束缚”,说明了黑洞表面处以光速运动的粒子在远离黑洞的过程中克服引力做功,粒子在到达无限远之前,其动能便减小为零,此时势能仍为负值,则其能量总和小于零.根据能量守恒定律可知,粒子在黑洞表面处的能量也小于零,则有:12mc 2-G Mm R<0 依题意可知:R =R A ,M =M A可得:R A <2GM Ac2代入数据得:R A <1.2×1010 m 故R AR S<17. [答案] (1)4×106 (2)R AR S<17【点评】①“黑洞”问题在高考中时有出现,关键要理解好其“不能逃逸”的动能定理方程:12mc 2-G Mm R<0.②E p =-G MmR是假定离星球无穷远的物体与星球共有的引力势能为零时,物体在其他位置(与星球共有)的引力势能,同样有引力做的功等于引力势能的减少.★同类拓展2 2005年10月12日,神舟六号飞船顺利升空后,在离地面340 km 的圆轨道上运行了73圈.运行中需要多次进行轨道维持.所谓“轨道维持”就是通过控制飞船上发动机的点火时间、推力的大小和方向,使飞船能保持在预定轨道上稳定运行.如果不进行轨道维持,由于飞船在轨道上运动受摩擦阻力的作用,轨道高度会逐渐缓慢降低,在这种情况下,下列说法正确的是( )A .飞船受到的万有引力逐渐增大、线速度逐渐减小B .飞船的向心加速度逐渐增大、周期逐渐减小、线速度和角速度都逐渐增大C .飞船的动能、重力势能和机械能都逐渐减小D .重力势能逐渐减小,动能逐渐增大,机械能逐渐减小【解析】飞船的轨道高度缓慢降低,由万有引力定律知其受到的万有引力逐渐增大,向心加速度逐渐增大,又由于轨道变化的缓慢性,即在很短时间可当做匀速圆周运动,由G Mmr2=m v 2r =mω2r =m 4π2T2r 知,其线速度逐渐增大,动能增大,由此可知飞船动能逐渐增大,重力势能逐渐减小,由空气阻力做负功知机械能逐渐减少.[答案] BD五、双星问题●例4 天文学家将相距较近、仅在彼此的引力作用下运行的两颗恒星称为双星.双星系统在银河系中很普遍.利用双星系统中两颗恒星的运动特征可推算出它们的总质量.已知某双星系统中两颗恒星围绕它们连线上的某一固定点分别做匀速圆周运动,周期均为T ,两颗恒星之间的距离为r ,试推算这个双星系统的总质量.(引力常量为G )[2008年高考·宁夏理综卷]【解析】设两颗恒星的质量分别为m 1、m 2,做圆周运动的半径分别为r 1、r 2,角速度分别为ω1、ω2.根据题意有:ω1=ω2 r 1+r 2=r根据万有引力定律和牛顿定律,有:G m 1m 2r 2=m 1r 1ω12 G m 1m 2r 2=m 2r 2ω22 联立解得:r 1=m 2rm 1+m 2根据角速度与周期的关系知ω1=ω2=2πT联立解得:m 1+m 2=4π2r3T 2G.[答案] 4π2r3T 2G【点评】在双星系统中,当其中一星体质量远远大于另一星体时,它们的共同圆心就在大质量星球内部且趋近于球心.1.天文学家新发现了太阳系外的一颗行星.这颗行星的体积是地球的4.7倍,质量是地球的25倍.已知某一近地卫星绕地球运行的周期约为1.4小时,引力常量G =6.67×10-11N·m 2/kg 2,由此估算该行星的平均密度约为[2009年高考·全国理综卷Ⅰ]( )A .1.8×103 kg/m 3B .5.6×103 kg/m 3C .1.1×104 kg/m 3D .2.9×104 kg/m 3【解析】由G Mm R 2=m 4π2T 2R ,ρ=3M 4πR 3可得,地球密度ρ=3πGT 2,再由质量和体积关系得该行星的密度ρ′=2.9×104 kg/m 3.[答案] D练习1.2009年2月11日,俄罗斯的“宇宙-2251”卫星和美国的“铱-33”卫星在西伯利亚上空约805 km 处发生碰撞.这是历史上首次发生的完整在轨卫星碰撞事件.碰撞过程中产生的大量碎片可能会影响太空环境.假定有甲、乙两块碎片,绕地球运行的轨道都是圆,甲的运行速率比乙的大,则下列说法中正确的是[2009年高考·安徽理综卷Ⅰ]( )A .甲的运行周期一定比乙的长B .甲距地面的高度一定比乙的高C .甲的向心力一定比乙的小D .甲的加速度一定比乙的大【解析】由v =GMr可知,甲碎片的速率大,轨道半径小,故B 错误;由公式T =2πR 3GM可知,甲的周期小,故A 错误;由于未知两碎片的质量,无法判断向心力的大小,故C 错误;碎片的加速度是指引力加速度,由G Mm R 2=ma ,可得a =GMR2,甲的加速度比乙大,D 正确.[答案] D2.1990年4月25日,科学家将哈勃天文望远镜送上距地球表面约600 km 的高空,使得人类对宇宙中星体的观测与研究有了极大的进展.假设哈勃望远镜沿圆轨道绕地球运行.已知地球半径为6.4×106 m ,利用地球同步卫星与地球表面的距离为3.6×107m 这一事实可得到哈勃望远镜绕地球运行的周期.以下数据中,最接近其运行周期的是[2008年高考·四川理综卷]( )A .0.6小时B .1.6小时C .4.0小时D .24小时【解析】由开普勒行星运动定律可知,R 3T 2=恒量,所以(r +h 1)3t 12=(r +h 2)3t 22,其中r 为地球的半径,h 1,t 1,h 2,t 2分别表示望远镜到地表的距离、望远镜的周期、同步卫星距地表的距离、同步卫星的周期(24 h),代入解得:t 1=1.6 h .[答案] B【点评】高考对星体航天问题的考查以圆周运动的动力学方程为主,具体常涉及求密度值、同步卫星的参量、变轨的能量变化等.在具体解题时要注意运用好几个常用的代换.3.我国发射的嫦娥一号探月卫星沿近似于圆形的轨道绕月飞行.为了获得月球表面全貌的信息,让卫星轨道平面缓慢变化,卫星将获得的信息持续用微波信号发回地球.设地球和月球的质量分别为M 和m ,地球和月球的半径分别为R 和R 1,月球绕地球的轨道半径和卫星绕月球的轨道半径分别为r 和r 1,月球绕地球转动的周期为T .假定在卫星绕月运行的一个周期内卫星轨道平面与地月连心线共面,求在该周期内卫星发射的微波信号因月球遮挡而不能到达地球的时间.(用M 、m 、R 、R 1、r 、r 1和T 表示,忽略月球绕地球转动对遮挡时间的影响).[2008年高考·全国理综卷Ⅱ]【解析】如图所示,设O 和O ′分别表示地球和月球的中心.在卫星轨道平面上,A 是地月连心线OO ′与地月球表面的公切线ACD 的交点,D 、C 和B 分别是该公切线与地球表面、月球表面和卫星轨道的交点.过A 点在另一侧作地月球面的公切线,交卫星轨道于E 点.卫星在圆弧BE 上运动时发出的信号被遮挡.设探月卫星的质量为m 0,引力常量为G ,根据万有引力定律有: G Mm r 2=m (2πT )2r G mm 0r 12=m 0(2πT 1)2r 1(其中T 1表示探月卫星绕月球转动的周期) 由以上两式可得:(T 1T )2=M m (r 1r)3设卫星的微波信号被遮挡的时间为t ,则由于卫星绕月球做匀速圆周运动,有: t T 1=α-βπ,其中α=∠CO ′A ,β=∠CO ′B 由几何关系得:r cos α=R -R 1,r 1cos β=R 1联立解得:t =T πMr 13mr 3(arccos R -R 1r -arccos R 1r 1). [答案] T πMr 13mr 3(arccos R -R 1r -arccos R 1r 1) 【点评】航体星体问题有时在高考中也以计算题出现,解答的关键仍是做圆周运动的动力学方程.另外,还需要同学们具有丰富的想象力,描绘情境图、难图化易、化整为零等能力.六.能力演练4.2005年12月11日,有着“送子女神”之称的小行星“婚神”(Juno)冲日,在此后十多天的时间里,国内外天文爱好者凭借双筒望远镜可观测到它的“倩影”.在太阳系中除了八大行星以外,还有成千上万颗肉眼看不见的小天体,沿着椭圆轨道不停地围绕太阳公转.这些小天体就是太阳系中的小行星.冲日是观测小行星难得的机遇.此时,小行星、太阳、地球几乎成一条直线,且和地球位于太阳的同一侧.“婚神”星冲日的虚拟图如图所示,则( )A .2005年12月11日,“婚神”星的线速度大于地球的线速度B .2005年12月11日,“婚神”星的加速度小于地球的加速度C .2006年12月11日,必将发生下一次“婚神”星冲日D .下一次“婚神”星冲日必将在2006年12月11日之后的某天发生【解析】由G Mm r 2=m v 2r 得v 2∝1r ,“婚神”的线速度小于地球的线速度,由a =F m =G Mr2知,“婚神”的加速度小于地球的加速度,地球的公转周期为一年,“婚神”的公转周期大于一年,C 错误,D 正确.[答案] BD5.2007年11月5日,嫦娥一号探月卫星沿地月转移轨道到达月球附近,在距月球表面200 km 的P 点进行第一次“刹车制动”后被月球俘获,进入椭圆轨道 Ⅰ 绕月飞行,如图所示.之后,卫星在P 点经过几次“刹车制动”,最终在距月球表面200 km 、周期127 min 的圆形轨道 Ⅲ 上绕月球做匀速圆周运动.若已知月球的半径R 月和引力常量G ,忽略地球对嫦娥一号的引力作用,则由上述条件( )A .可估算月球的质量B .可估算月球表面附近的重力加速度C .可知卫星沿轨道Ⅰ经过P 点的速度小于沿轨道Ⅲ经过P 点的速度D .可知卫星沿轨道Ⅰ经过P 点的加速度大于沿轨道Ⅱ经过P 点的加速度【解析】由G Mm (R 月+h )2=m (R 月+h )4π2T 2可得:月球的质量M =4π2(R 月+h )3GT 2,选项A 正确.月球表面附近的重力加速度为:g 月=G M R 月2=4π2(R 月+h )3R 月2T 2,选项B 正确.卫星沿轨道Ⅰ经过P 点时有: m v P Ⅰ2R 月+h >G Mm (R 月+h )2沿轨道Ⅲ经过P 点时:m v P Ⅲ2(R 月+h )=G Mm(R 月+h )2可见v P Ⅲ<v P Ⅰ,选项C 错误.加速度a P =F m =G M(R 月+h )2,与轨迹无关,选项D 错误.[答案] AB6.假设太阳系中天体的密度不变,天体的直径和天体之间的距离都缩小到原来的 12,地球绕太阳公转近似为匀速圆周运动,则下列物理量变化正确的是( )A .地球绕太阳公转的向心力变为缩小前的 12B .地球绕太阳公转的向心力变为缩小前的 116C .地球绕太阳公转的周期与缩小前的相同D .地球绕太阳公转的周期变为缩小前的 12【解析】天体的质量M =ρ43πR 3,各天体质量变为M ′=18M ,变化后的向心力F ′=G 164Mm (r 2)2=116F ,B 正确.又由G Mm r 2=m 4π2T 2r ,得T ′=T .[答案] BC 7.假设有一载人宇宙飞船在距地面高度为4200 km 的赤道上空绕地球做匀速圆周运动,地球半径约为6400 km ,地球同步卫星距地面高为36000 km ,宇宙飞船和一地球同步卫星绕地球同向运动,每当两者相距最近时.宇宙飞船就向同步卫星发射信号,然后再由同步卫星将信号发送到地面接收站,某时刻两者相距最远,从此刻开始,在一昼夜的时间内,接收站共接收到信号的次数为( )A .4次B .6次C .7次D .8次 【解析】设宇宙飞船的周期为T 有:T 2242=(6400+42006400+36000)3 解得:T =3 h设两者由相隔最远至第一次相隔最近的时间为t 1,有: (2πT -2πT 0)·t 1=π 解得t 1=127h再设两者相邻两次相距最近的时间间隔为t 2,有: (2πT -2πT 0)·t 2=2π 解得:t 2=247 h由n =24-t 1t 2=6.5(次)知,接收站接收信号的次数为7次.[答案] C8.图示为全球定位系统(GPS).有24颗卫星分布在绕地球的6个轨道上运行,它们距地面的高度都为2万千米.已知地球同步卫星离地面的高度为3.6万千米,地球半径约为6400 km ,则全球定位系统的这些卫星的运行速度约为()A .3.1 km/sB .3.9 km/sC .7.9 km/sD .11.2 km/s 【解析】同步卫星的速度v 1=2πT r =3.08 km/s .又由v 2∝1r,得定位系统的卫星的运行速度v 2=3.9 km/s .[答案] B9.均匀分布在地球赤道平面上空的三颗同步通信卫星够实现除地球南北极等少数地区外的全球通信.已知地球的半径为R ,地球表面的重力加速度为g ,地球的自转周期为T .下列关于三颗同步卫星中,任意两颗卫星间距离s 的表达式中,正确的是( )A .3RB .23RC .334π2gR 2T 2 D .33gR 2T 24π2【解析】设同步卫星的轨道半径为r ,则由万有引力提供向心力可得:G Mm r 2=m 4π2T 2r解得:r =3gR 2T 24π2由题意知,三颗同步卫星对称地分布在半径为r 的圆周上,故s =2r cos 30°=33gR 2T 24π2,选项D 正确.[答案] D10.发射通信卫星的常用方法是,先用火箭将卫星送入一近地椭圆轨道运行;然后再适时开动星载火箭,将其送上与地球自转同步运行的轨道.则( )A .变轨后瞬间与变轨前瞬间相比,卫星的机械能增大,动能增大B .变轨后瞬间与变轨前瞬间相比,卫星的机械能增大,动能减小C .变轨后卫星运行速度一定比变轨前卫星在椭圆轨道上运行时的最大速度要大D .变轨后卫星运行速度一定比变轨前卫星在椭圆轨道上运行时的最大速度要小【解析】火箭是在椭圆轨道的远地点加速进入同步运行轨道的,故动能增大,机械能增大,A 正确.设卫星在同步轨道上的速度为v 1,在椭圆轨道的近地点的速度为v 2,再设椭圆轨道近地点所在的圆形轨道的卫星的速度为v 3.由G Mmr 2=m v 2r,知v 3>v 1;又由向心力与万有引力的关系知v 2>v 3.故v 1<v 2.选项C 错误,D 正确.[答案] AD11.(10分)火星和地球绕太阳的运动可以近似看做是同一平面内同方向的匀速圆周运动.已知火星公转轨道半径大约是地球公转轨道半径的32.从火星、地球于某一次处于距离最近的位置开始计时,试估算它们再次处于距离最近的位置至少需多少地球年.[计算结果保留两位有效数字,⎝⎛⎭⎫3232=1.85]【解析】由G Mm r 2=m 4π2T2r 可知,行星环绕太阳运行的周期与行星到太阳的距离的二分之三次方成正比,即T ∝r 32所以地球与火星绕太阳运行的周期之比为: T 火T 地=(r 火r 地)32=(32)32=1.85 (3分) 设从上一次火星、地球处于距离最近的位置到再一次处于距离最近的位置,火星公转的圆心角为θ,则地球公转的圆心角必为2π+θ,它们公转的圆心角与它们运行的周期之间应有此关系:θ=2πt T 火,θ+2π=2πtT 地 (3分)得:2π+2πt T 火=2πtT 地(2分)最后得:t =T 火T 地T 火-T 地=1.850.85T 地≈2.2年 (2分)[答案] 2.212.(11分)若宇航员完成了对火星表面的科学考察任务,乘坐返回舱返回围绕火星做圆周运动的轨道舱,如图所示. 为了安全,返回舱与轨道舱对接时,必须具有相同的速度. 已知:该过程宇航员乘坐的返回舱至少需要获得的总能量为E (可看做是返回舱的初动能),返回舱与人的总质量为m ,火星表面重力加速度为g ,火星半径为R ,轨道舱到火星中心的距离为r ,不计火星表面大气对返回舱的阻力和火星自转的影响. 问:(1)返回舱与轨道舱对接时,返回舱与人共具有的动能为多少?(2)返回舱在返回轨道舱的过程中,返回舱与人共需要克服火星引力做多少功?【解析】(1)在火星表面有:GM R 2=g (2分) 设轨道舱的质量为m 0,速度大小为v ,则有 :G Mm 0r 2=m 0v 2r(2分) 返回舱和人应具有的动能E k =12m v 2 (1分) 联立解得E k =mgR 22r. (1分) (2)对返回舱在返回过程中,由动能定理知:W =E k -E (2分)联立解得:火星引力对返回舱做的功W =mgR 22r-E (2分) 故克服引力做的功为:-W =E -mgR 22r. (1分) [答案] (1)mgR 22r (2)E -mgR 22r13.(11分)中国首个月球探测计划嫦娥工程预计在2017年送机器人上月球,实地采样送回地球,为载人登月及月球基地选址做准备.设想机器人随嫦娥号登月飞船绕月球飞行,飞船上备有以下实验仪器:A .计时表一只;B .弹簧秤一把;C .已知质量为m 的物体一个;D .天平一台(附砝码一盒).在飞船贴近月球表面时可近似看成绕月球做匀速圆周运动,机器人测量出飞船在靠近月球表面的圆形轨道绕行N 圈所用的时间为t .飞船的登月舱在月球上着陆后,遥控机器人利用所携带的仪器又进行了第二次测量,利用上述两次测量的物理量可出推导出月球的半径和质量.(已知引力常量为G ),要求:(1)说明机器人是如何进行第二次测量的.(2)试推导用上述测量的物理量表示的月球半径和质量的表达式.【解析】(1)机器人在月球上用弹簧秤竖直悬挂物体,静止时读出弹簧秤的示数F ,即为物体在月球上所受重力的大小. (3分)(2)在月球上忽略月球的自转可知:mg 月=F (1分)G Mm R 2=mg 月 (1分) 飞船在绕月球运行时,因为是靠近月球表面,故近似认为其轨道半径为月球的半径R ,由万有引力提供物体做圆周运动的向心力可知:G Mm R 2=mR 4π2T 2,又T =t N(2分) 联立可得:月球的半径R =FT 24π2m =Ft 24π2N 2m (2分) 月球的质量M =F 3t 416π4GN 4m 3. (2分) [答案] (1)机器人在月球上用弹簧秤竖直悬挂物体,静止时读出弹簧秤的示数F ,即为。
人造卫星
• • •
为低轨道卫星、中轨道卫星,高轨道卫星、地球同步轨道卫星、地球静止轨道卫星、太阳同步轨道卫星、 大椭圆轨道卫星和极轨道卫星;按用途区分为科学卫星、应用卫星和技术试验卫星。 人造卫星的运行轨道(除近地轨道外)通常有三种:地球同步轨道,太阳同步轨道,极轨轨道。 ①地球同步轨道是运行周期与地球自转周期相同的顺行轨道。但其中有一种十分特殊的轨道,叫地球静 止轨道。这种轨道的倾角为零,在地球赤道上空35786千米。地面上的人看来,在这条轨道上运行的卫 星是静止不动的。一般通信卫星,广播卫星,气象卫星选用这种轨道比较有利。地球同步轨道有无数条, 而地球静止轨道只有一条。 ②太阳同步轨道是绕着地球自转轴,方向与地球公转方向相同,旋转角速度等于地球公转的平均角速度 (360度/年)的轨道,它距地球的高度不超过6000千米。在这条轨道上运行的卫星以相同的方向经过同 一纬度的当地时间是相同的。气象卫星、地球资源卫星一般采用这种轨道。 ③极地轨道是倾角为90度的轨道,在这条轨道上运行的卫星每圈都要经过地球两极上空,可以俯视整个 地球表面。气象卫星、地球资源卫星、侦察卫星、军用卫星常采用此轨道。
科学卫星:送入太空轨道,进行大气物理、天文物理、地球物理等实验或测试 的卫星,如中华卫星一号、哈伯等。 通信卫星:做为电讯中继站的卫星,如:亚卫一号。 军事卫星:做为军事照相、侦察之用的卫星。
•
• •
气象卫星:摄取云层图和有关气象资料的卫星。
资源卫星:摄取地表或深层组成之图像,做为地球资源探勘之用的卫星。 星际卫星:可航行至其它行星进行探测照相之卫星,一般称之为「行星探测 器」,如先锋号、火星号、探路者号等。
•
• • • • •
俄罗斯科学家说,如果不是因为苏联面临着核威胁,“斯普特尼克”号可能要到很久之后才会升空。
(完整版)人造卫星变轨问题
人造卫星变轨问题一、人造卫星基本原理绕地球做匀速圆周运动的人造卫星所需向心力由万有引力提供。
轨道半径r 确定后,与之对应的卫星线速度r GM v =、周期GMr T 32π=、向心加速度2r GM a =也都是确定的。
如果卫星的质量也确定,一旦卫星发生变轨,即轨道半径r 发生变化,上述物理量都将随之变化。
同理,只要上述物理量之一发生变化,另外几个也必将随之变化。
在高中物理中,会涉及到人造卫星的两种变轨问题。
二、渐变由于某个因素的影响使卫星的轨道半径发生缓慢的变化(逐渐增大或逐渐减小),由于半径变化缓慢,卫星每一周的运动仍可以看做是匀速圆周运动。
解决此类问题,首先要判断这种变轨是离心还是向心,即轨道半径是增大还是减小,然后再判断卫星的其他相关物理量如何变化。
如:人造卫星绕地球做匀速圆周运动,无论轨道多高,都会受到稀薄大气的阻力作用。
如果不及时进行轨道维持(即通过启动星上小型火箭,将化学能转化为机械能,保持卫星应具有的速度),卫星就会自动变轨,偏离原来的圆周轨道,从而引起各个物理量的变化。
由于这种变轨的起因是阻力,阻力对卫星做负功,使卫星速度减小,所需要的向心力r mv 2减小了,而万有引力大小2r GMm 没有变,因此卫星将做向心运动,即半径r 将减小。
由㈠中结论可知:卫星线速度v 将增大,周期T 将减小,向心加速度a 将增大。
三、突变由于技术上的需要,有时要在适当的位置短时间启动飞行器上的发动机,使飞行器轨道发生突变,使其到达预定的目标。
如:发射同步卫星时,通常先将卫星发送到近地轨道Ⅰ,使其绕地球做匀速圆周运动,速率为v 1,第一次在P 点点火加速,在短时间内将速率由v 1增加到v 2,使卫星进入椭圆形的转移轨道Ⅱ;卫星运行到远地点Q 时的速率为v 3,此时进行第二次点火加速,在短时间内将速率由v 3增加到v 4,使卫星进入同步轨道Ⅲ,绕地球做匀速圆周运动。
第一次加速:卫星需要的向心力r mv 2增大了,但万有引力2rGMm 没变,因此卫星将开始做离心运动,进入椭圆形的转移轨道Ⅱ。
第五章 行星和卫星的运动
在太阳附近来回运动, 与太阳保持一 定的角 距范围。
地外行星:
与太阳的角距任意。
2、地外行星相对恒星的视运动: 合→ 西方照→ 留 → 冲→ 留 → 东方照 → 合 顺 顺 逆 逆 顺 顺
火 星 视 运 动 的 原 理
行星相对恒星的视运动
可以用速度合成解释
三、行星的会合周期
行星连续两次合(冲)的时间间隔,为行星 相对太阳的视运动周期。 会合方程: S (360 0/E –360 0/T)= 360 0 1/E –1/T 外 =1/S; 1/T 内 –1/E =1/S E:地球公转周期 S:会合周期; E = 365.256 ; T:行星公转周期。
经相差1800时,称为
冲日 (Opposition)
Aspects and Phases of the Superior Planets
外行星的几乎总呈现 “望”似的圆面,而 几乎没有位相的变化, 仅对火星在方照附近 时才会略略显示为有 些“凸月”似的大半 个圆脸。
2、外行星相对太阳的视运动
公转周期: 火 1.8808年 木 11.862年 土 29.45年 外行星相对太阳的几个位置: 合→ 西方照→ 冲 → 东方照 → 合 看不见 子夜升 整夜见 正午升 看不见 大冲:行星处于近日 点附近时的冲日。 (距离最小的冲) (外行星的公转角速度 小于地球,合后外行星 相对太阳逐渐偏西。)
三、外行星的视运动
外行星的视运动
► 外行星与太阳的地心黄
“冲日”或“冲”。在 冲日附近,外行星离地 球近,整夜可见,是有 利的观测时期。 ► 由于地球和外行星的轨 道都是椭圆,外行星与 地球的距离在每次冲时 不同,距里最小的冲称 为“大冲”。 ► 注意:冲日和离地球最 近是两个不同的概念, 因为行星轨道面与黄道 轨道面不重合,所以冲 日一般不是最近时刻。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
14
狂飙的地球(Ⅲ)
3.地球在公转轨道上:
平均速率 2πR 2 3.141.5108
T
365.25 24
107500(km/hr) 110000(km/hr)
≒88倍 比較: 250 C時聲速 vs 1246 (km/hr)
15
范例 1:人造卫星的运动
若人造卫星绕地球运行的轨 迹为一圆形(如右图所示) ,则关于人造卫星所作“等 速率圆周运动”的叙述,下 列何者正确?(应选两项) (A)人造卫星受定力作用,故作等加速度运动 (B)人造卫星作等速率运动,故合力必为零 (C)人造卫星受变力作用,故作变加速度运动 (D)人造卫星受变力作用,故作变速度运动 (E)人造卫星受定力作用,但作变速度运动。
注:第一颗人造卫星“史波尼克(sputnik) 一号”由前苏联于 1957 年 10 月 4 日发射 升空。在离地面约 250 千米的轨道上,以 98 分钟的周期,道面:人造卫星的轨道面必通过地心 环赤道卫星:
轨道面与赤道面重 合,即为同步轨道 卫星。 例:通信卫星、气 象卫星
3
行星(Ⅲ)
2.由克卜勒行星运动周期定律:行星绕日 运转(或卫星绕地运转)
1
2
2
R3 T2
K
R K 3 (T ) 3 T 3
T
1
3
3
R2 R2
K
4
行星(Ⅳ)
又行星运动速率:
v
2R T
R T
2
T3 T
1
1
T3
R1 3 1
R2 R2
故,行星运动速率 与轨道半径的平方根成 反比 ,而
16
范例 1:人造卫星的运动
人造卫星受向心力,恒指向圆心,故方向时 时在变,为变力作用。 同理,向心加速度为变加速度,而速度方向 沿切线方向亦时时在变, 故为变速度的等速率运动, 且合力=向心力≠0。
17
范例 2:行星与卫星
在望远镜中观察某一行星外有一小卫星以 T
的周期绕其公转,其轨道为半径 R 的圆周,
4-3
行星与人造卫星
本节主题
一、行星 二、人造卫星
范例1 人造卫星的运动 范例2 行星与卫星
1
行星(Ⅰ)
1.不论是绕太阳运转的行星,或是绕地球 运转的人造卫星(含月球),均遵守万 有引力定律及克卜勒行星运动的周期定 律,设运行的轨道均为圆形,则行星绕 太阳或卫星绕地球均作等速率圆周运动 ,且向心力= 万有引力 ,故
则该行星的质量应为若干?
(A)
4 2 R3
GT 2
(B) 4 2R
GT
(E) 8 2T 。
GR 3
(C) 4 2R
GT 2
(D) 4 2T
GR 2
由克卜勒常数 :
R3 GM
K T 2 4 2
则行星质量: M 4 2R3
GT 2
18
1.地球半径约 6400 千米,自转周期 24 小时, 公转周期 365.25 天,公转轨道平均半径 约为 1.5×108 千米(1A.U.)。
13
狂飙的地球(Ⅱ)
2.在地球赤道上:
平均速率 2πR 23.14 6400 1675(km/hr)
T
24
比较:25℃时声速,
≒1.34倍
vs 331 0.6 25 346 (m/s) 346 3600 1246 (km/hr) 1000
F
G
Mm R2
m
4 2R
T2
Fc
,
2
行星(Ⅱ)
R3 K GM
T2
4 2 可知,克卜勒常数
K
R3 T2
GM
4 2 ,仅和中心星体的质量(M,例
如:太阳或地球)有关,而与绕其运行的小
天体之质量(m,例如:地球或卫星)无关。
换言之,绕太阳运转的各行星及彗星具有相
同的 K1 值,绕地球运转的各人造卫星及月球 具有相同的 K2值,但 K1≠K2。
10
人造卫星(Ⅵ)
环极卫星:
轨道面与地球自转 轴重合,属于低轨 道卫星。 例:军事卫星、气 象卫星、资源卫星。
11
人造卫星(Ⅶ)
倾斜轨道卫星: 轨道面与赤道面夹 某一角度者。
12
狂飙的地球(Ⅰ)
我们所生存的地球是太阳系的第三行星,在 绕太阳公转时,同时也在自转,根据下列数 据,来感受一下在宇宙中狂飙的地球。
6
人造卫星(Ⅱ)
2.分类: (1)依目的:可分成科学卫星、通信卫星、
军事卫星、气象卫星、资源卫星(探勘 地球资源之用)等。
《补充资料》 人造卫星的脱离速率约为11.2 km/s,相当 于音速的33倍左右。
7
人造卫星(Ⅲ)
(2)依高度: 低轨道卫星:飞行高度在 1000 千米以
下,绕地球一圈的时间约为 100 分钟。 中轨道卫星:离地高度在 1000 千米~
10000 千米间者。 高轨道卫星:离地高度在 10000 千米以
上者。
同步轨道卫星:飞行高度约为 35860 千 米(轨道半径约为地球半径的 6.6 倍) ,绕地球一圈的时间与地球自转周期相 同高轨道卫星。
8
人造卫星(Ⅳ)
表面卫星:飞行高度约为100千米(轨 道半径约等于地球半径),绕地球一圈 的时间约为84分钟低轨道卫星。
与周期的立方根成 反比 。
※推论:天体运行时,轨道半径愈大者 ,周期愈大、运转速率愈小。
5
人造卫星(Ⅰ)
1.地球上空的人造卫星,以所受地球引力 作为向心力绕地球作等速率圆周运动。 换言之,轨道上的人造卫星所受之地球 引力若恰等于在轨道上作等速率圆周运 动所需的向心力,则人造卫星即可稳定 地在轨道上运行而不需外加推力。