数列极限的运算法则
极限的四则运算(数列极限、函数极限)
![极限的四则运算(数列极限、函数极限)](https://img.taocdn.com/s3/m/efba087f03d8ce2f006623b5.png)
a
k
,lim(C n
an)
Ca
。
例1、已知 lnim(6an bn ) 11 lnim(3an 2bn ) 7
求 lnim(2an bn ) 的值。
解:2an+bn=
1 15
(6an-bn)+
8 15
(3an+bn),
∴ lnim(2an bn )
3)
lim (
x
x3 2x2 1
x2 2x
) 1
KEY:1) 0(分子分母同除以x4); 2)0(分子有理化) 3)1/4(通分)
例3、(1)求
lim
x1
2x2 x3
x 1 2x2 1
的值。
x2 1
(2)求
lim
x1
2x2
x 1
的值
(见课本P87,注意其中的说明。)
3 5
( 2)n1 5
[1 ( 2)n ] 5
2
3 [(2)n1 55
( 2)2n1] 5
∴
lim
n
Tn
3 5
[ 1
1
2
5 1
4
]
3 (5 10) 5 . 5 3 21 7
5 25
例5、有一个边长为1的正方形,以其四边中点为顶点画 第二个正方形,再以第二个正方形的四边中点为顶点画
=
lim[ 1 n 15
(6an
bn
)
185(3an
2bn
)]
=
1 15
×11+
185×(-7)
大学高数极限运算法则
![大学高数极限运算法则](https://img.taocdn.com/s3/m/a8400f07ec630b1c59eef8c75fbfc77da2699784.png)
1.极限法则:极限是一个数列取极限值的概念,它表示一个数包含在另一个数中时,前者的值趋于后者。
2.链式法则:链式法则是极限的一种计算方法,即从一个已知限的出发,由此推出另外一个极限。
3.运算法则:
(1)可积性法则:假设函数有连续的极限,则在极限中乘以另外一个函数后再求极限,则取得的极限结果等于先求出两个函数的极限再相乘;
(2)可逆性法则:假设函数有连续的极限,则在极限中除以另外一个函数后再求极限,则取得的极限结果等于先求出两个函数的极限再相除;
(3)可幂次性:假设对函数求极限,则取出的极限结果等于该函数的幂次方的极限。
1.2.2-1.2.4 数列极限的性质和运算法则
![1.2.2-1.2.4 数列极限的性质和运算法则](https://img.taocdn.com/s3/m/cc32157a03d8ce2f01662336.png)
xn
a
,
lim
n
yn
b
,
且 a b ,则 N N ,当 n N xn yn 。
2
数列极限的性质和运算法则
性质 1(唯一性)若{ xn } 收敛,则其极限唯一。
证明:用反证法。
假设
lim
n
xn
a
,
lim
n
xn
b ,( a b),取
ba 2
0,
∴收敛数列的极限是唯一的。
3
数列极限的性质和运算法则
性质 2(有界性) 若{ xn } 收敛,则{ xn } 必有界,
即 M 0, n N , 有 xn M 。
注证明:②①:收性设敛质ln数im2列的x必n等有价a界命,;题反是之:若有界xn数无列界未,必则收敛xn。发散。
lim
n
n3
lim
n
n(n
1)(2n 6n3
1)
1 3
11
数列极限的性质和运算法则
(2) lim[ 1 2 L n 1 2 L (n 1)] n
解: lim[ 1 2 L n 1 2 L (n 1)] n
lim[ n (n 1) n (n 1) ] lim 1 [ n2 n n2 n]
n yn lim yn b
n
说明:可以推广到有限多个数列的和差或乘积。
7
数列极限的性质和运算法则
思考:
① 若:{ xn } 收敛,{ yn } 发散, 它们的和、差、积、商 数列的敛散性如何?
② 若:{ xn } , { yn } 都发散呢?
2.5极限运算法则
![2.5极限运算法则](https://img.taocdn.com/s3/m/2a3791666c175f0e7dd13734.png)
(3) lim[Cf ( x)] C lim f ( x) CA ( C 是与x 无关的常数);
xX
xX
lim
f (x)
lim
xX
f (x)
A
(这里要求 B 0).
xX g( x) lim g( x) B
xX
注意: 利用极限四则运算法则求极限时,必须满足定理的条件: 参加求极限的函数应为有限个,每个函数的极限都必须 存在,在考虑商的极限时,还需要求分母的极限不为零。
例1、求极限 lim(3x2 2x 1) x1
解: lim(3x2 2x 1) lim 3x2 lim 2x lim 1
x1
x1
x1
x1
3lim x2 2lim x lim 1
x1
x1
x1
31 21 1 2
例2、求极限 lim 2x2 x 5 x2 3x 1
xX
x X
lim[ f ( x) g( x)] 是否存在 ? 为什么 ?
xX
答: 不存在 . 否则由
g(x) [ f (x) g(x)] f (x)
利用极限四则运算法则可知 lim g( x) 存在 , 与已知条件 x X
矛盾.
机动 目录 上页 下页 返回 结束
2. 试确定常数 k 使
lim x
8x2
7x
总结例4可得:
a0
lim
x
a0 xn b0 xm
a1 x n1 b1 x m1
an bm
b0 0
数列极限四则运算法则的证明
![数列极限四则运算法则的证明](https://img.taocdn.com/s3/m/e483ee89fe4733687f21aa67.png)
数列极限四则运算法则的证明work Information Technology Company.2020YEAR数列极限四则运算法则的证明设limAn=A,limBn=B,则有法则1:lim(An+Bn)=A+B法则2:lim(An-Bn)=A-B法则3:lim(An·Bn)=AB法则4:lim(An/Bn)=A/B.法则5:lim(An的k次方)=A的k次方(k是正整数)(n→+∞的符号就先省略了,反正都知道怎么回事.)首先必须知道极限的定义:如果数列{Xn}和常数A有以下关系:对于ε>0(不论它多么小),总存在正数N,使得对于满足n>N的一切Xn,不等式|Xn-A|<ε都成立,则称常数A是数列{Xn}的极限,记作limXn=A.根据这个定义,首先容易证明: 引理1: limC=C. (即常数列的极限等于其本身)法则1的证明:∵limAn=A, ∴对任意正数ε,存在正整数N₁,使n>N₁时恒有|An-A|<ε.①(极限定义)同理对同一正数ε,存在正整数N₂,使n>N₂时恒有|Bn-B|<ε.②设N=max{N₁,N₂},由上可知当n>N时①②两式全都成立.此时|(An+Bn)-(A+B)|=|An-A)+(Bn-B)|≤|An-A|+|Bn-B|<ε+ε=2ε.由于ε是任意正数,所以2ε也是任意正数.即:对任意正数2ε,存在正整数N,使n>N时恒有|(An+Bn)-(A+B)|<2ε.由极限定义可知,lim(An+Bn)=A+B.为了证明法则2,先证明1个引理.引理2:若limAn=A,则lim(C·An)=C·A.(C是常数)证明:∵limAn=A, ∴对任意正数ε,存在正整数N,使n>N时恒有|An-A|<ε.①(极限定义)①式两端同乘|C|,得: |C·An-CA|<Cε.由于ε是任意正数,所以Cε也是任意正数.即:对任意正数Cε,存在正整数N,使n>N时恒有|C·An-CA|<Cε.由极限定义可知,lim(C·An)=C·A. (若C=0的话更好证)法则2的证明:lim(An-Bn)=limAn+lim(-Bn) (法则1)=limAn+(-1)limBn (引理2)=A-B.为了证明法则3,再证明1个引理.引理3:若limAn=0,limBn=0,则lim(An·Bn)=0.证明:∵limAn=0, ∴对任意正数ε,存在正整数N₁,使n>N₁时恒有|An-0|<ε.③(极限定义)同理对同一正数ε,存在正整数N₂,使n>N₂时恒有|Bn-0|<ε.④设N=max{N₁,N₂},由上可知当n>N时③④两式全都成立.此时有|An·Bn| =|An-0|·|Bn-0| <ε·ε=ε².由于ε是任意正数,所以ε²也是任意正数.即:对任意正数ε²,存在正整数N,使n>N时恒有|An·Bn-0|<ε².由极限定义可知,lim(An·Bn)=0.法则3的证明:令an=An-A,bn=Bn-B.则liman=lim(An-A)=limAn+lim(-A) (法则1)=A-A (引理2) =0.同理limbn=0.∴lim(An·Bn)=lim[(an+A)(bn+B)]=lim(an·bn+B·an+A·bn+AB)=lim(an·bn)+lim(B·an)+lim(A·bn)+limAB (法则1)=0+B·liman+A·limbn+limAB (引理3、引理2)=B×0+A×0+AB (引理1) =AB.引理4:如果limXn=L≠0,则存在正整数N和正实数ε,使得对任何正整数n>N,有|Xn|≥ε.证明:取ε=|L|/2>0,则存在正整数N,使得对任何正整数n>N,有|Xn-L|<ε.于是有|Xn|≥|L|-|Xn-L|≥|L|-ε=ε引理5: 若limAn存在,则存在一个正数M,使得对所有正整数n,有|An|≤M.证明:设limAn=A,则存在一个正整数N,使得对n>N有|An-A|≤1,于是有|An|≤|A|+1,我们取M=max(|A1|,...,|AN|,|A|+1)即可法则4的证明:由引理4,当B≠0时(这是必要条件),正整数N1和正实数ε0,使得对正整数n>N1,有|Bn|≥ε0.由引理5,又正数M,K,使得使得对所有正整数n,有|An|≤M,|Bn|≤K.现在对ε>0,正整数N2和N3,使得:当n>N2,有|An-A|<ε0*|B|*ε/(M+K+1);当n>N3,有|Bn-B|<ε0*|B|*ε/(M+K+1);现在,当n>max(N1,N2,N3)时,有|An/Bn-A/B|=|An*B-Bn*A|/|B*Bn|=|An(B-Bn)+Bn(An-A)|/|B*Bn|≤(|An|*|B-Bn|+|Bn|*|A-An|)/(|B|*ε0)≤ε(M+K)/((M+K+1)<ε法则5的证明:lim(An的k次方)=limAn·lim(An的k-1次方) (法则3) ....(往复k-1次) =(limAn)的k次方=A的k次方.。
数学分析 第二章21-2数列极限的准则、运算法则
![数学分析 第二章21-2数列极限的准则、运算法则](https://img.taocdn.com/s3/m/c2972cc5a216147916112885.png)
2021/3/22
1
极限存在准则
1.定理3(夹逼准则)
若数列( xn )n1, ( yn )n1,(zn ) 满足下列条件:
(1) yn xn zn (n N),
(2)
lim
n
yn
lim
n
zn
a,
则数列
(
xn
)n1的极限存在,
且
lim
n
xna.Leabharlann 2021/3/222
证 yn a, zn a,(n )
xn
yn
a b.
3.lim xn a , (b 0).
y n n
b
2021/3/22
11
证1 xn a, yn b,(n )
0, N1 0, N2 0, 使得
当 n N1时恒有 xn a ,
当 n N2时恒有 yn b ,
取 N max{ N1, N2 }, 当 n N时, 恒有 上两式同时成立,
M | b | (M | b |)
即lim n
xn
yn
ab
lim
n
xn
lim n
yn
特别地,两个无穷小量的积仍是无穷小量.
更一般,一个有界量与一个无穷小量的积仍
是无穷小量.
2021/3/22
15
证3 xn a, yn b,(n )
0, N1 0, N2 0, 使得
当 n N1时恒有 xn a , 当 n N2时恒有 yn b ,
| (xn yn ) (a b) | | xn a | | yn b | 2
即lim( n
xn
yn )
a
b
1.5 极限的运算法则
![1.5 极限的运算法则](https://img.taocdn.com/s3/m/878a8ef2fab069dc502201e9.png)
o
x
例11
当a0 0, b0 0, m和n为非负整数时求 , a0 x m a1 x m 1 am lim 。 n n 1 x b x b x bn 0 1
x m a0 a1 x 1 am x m ) 解 原 式 l i m( n 1 n x x b0 b1 x bn x
单侧极限为 解 x 0是函数的分段点,两个
x 0
lim f ( x ) lim (1 x ) 1,
x 0
x 0
lim f ( x ) lim ( x 1) 1,
2 x 0
y 1 x
y x2 1
y
左右极限存在且相等,
1
故 lim f ( x ) 1.
n n
(1) lim ( xn yn ) A B
n
(2) lim xn yn AB
n
xn A (3) 当 yn 0 且 B 0时, lim n y n B
提示: 因为数列是一种特殊的函数 , 故此定理 可由 定理2.1/2.2 直接得出结论 .
第五节 极限的运算法则
一、极限的四则运算法则 二 、极限的复合运算法则 三、数列极限与函数极限的关系
第一章
一、 极限的四则运算法则
定理 1 . 若 lim f ( x) A , lim g ( x) B , 则有 证: 因 lim f ( x) A , lim g ( x) B , 则有
例2. 设有分式函数
其中
都是
多项式 , 若
证:
试证:
x x0 x x0
x x0
lim R( x)
数列极限的运算法则
![数列极限的运算法则](https://img.taocdn.com/s3/m/ce230f0eff4733687e21af45b307e87101f6f82f.png)
数列极限的运算法则
数列是由一系列数字按照一定规律排列而成的序列,而数列的极限是指当数列中的项无限接近某个特定值时,该特定值就是该数列的极限。
数列的极限可以通过一些运算法则来求解,这些运算法则包括以下几个方面。
1. 线性运算法则:如果数列{an}和{bn}的极限分别为A和B,那么对于任意
实数c,数列{can}的极限为cA,数列{an+bn}的极限为A+B,数列{an-bn}的极限
为A-B。
2. 乘法运算法则:如果数列{an}和{bn}的极限分别为A和B,那么数列{anbn}的极限为AB。
3. 除法运算法则:如果数列{an}和{bn}的极限分别为A和B,且B不等于0,那么数列{an/bn}的极限为A/B。
4. 幂运算法则:如果数列{an}的极限为A,且m是一个正整数,那么数列{an^m}的极限为A^m。
5. 复合函数运算法则:如果函数f(x)在x=A处连续,并且数列{an}的极限为A,那么数列{f(an)}的极限为f(A)。
6. 夹逼准则:如果数列{an},{bn}和{cn}满足an≤bn≤cn,并且数列{an}和{cn}的极限都为A,那么数列{bn}的极限也为A。
7. 极限的唯一性:如果数列{an}的极限存在,那么该极限是唯一的。
这些运算法则可以帮助我们计算数列的极限,使得我们能够更加方便地求解数列的极限问题。
但需要注意的是,这些运算法则只适用于满足一定条件的数列,例如乘法运算法则中要求乘积数列的每一项都存在,除法运算法则中要求除数数列的每一项都不为0等。
在应用运算法则时,我们需要仔细分析数列的性质,确保运算的合理性。
函数极限的四则运算
![函数极限的四则运算](https://img.taocdn.com/s3/m/c41b88274b35eefdc8d333c9.png)
x → x0 x→ x0
lim
f (x) g (x)
lim
=
a ( b ≠ 0 ). b
( x + 1)( x − 1) = lim x →1 ( x − 1)( 2 x + 1)
x +1 = lim x→1 2 x + 1
1+1 2 = = = lim ( 2 x + 1) 2 + 1 3
x →1 x →1
2
ax + x − 1 lim = 2, 求实数a的值. 2 x →1 x +2 2 ax + x − 1 =2 解: Q lim 2 x →1 x +2 2 ∴ a ⋅1 + 1 − 1 =2 2 1 +2
2
例5 已知
∴
2 x→2
2
解: ( x + 3 x ) = lim x + lim 3 x lim x→ 2 x→ 2
x → x0
lim [ f ( x ) ± g ( x ) ] = lim f ( x ) ± lim g ( x )
x → x0 x → x0
x → x0
lim x = x 0
n
n
x → x0
lim [Cf ( x )] = C lim f ( x )
x→2
=5
小结: 小结:
(1)概述极限的运算法则。 )概述极限的运算法则。 (2)本节课学习了两类计算函数极限 ) 的方法。 的方法。 (3) 通过各例求极限的过程可以看出, ) 通过各例求极限的过程可以看出, 在求有理函数的极限时, 在求有理函数的极限时,最后总 是归结为求下列极限: 是归结为求下列极限:
高等数学极限知识点总结
![高等数学极限知识点总结](https://img.taocdn.com/s3/m/fd9e9f809fc3d5bbfd0a79563c1ec5da50e2d6b0.png)
高等数学极限知识点总结
以下是高等数学极限知识点总结:
1. 极限的定义:极限是描述函数在某一点的行为的数学工具。
它包括数列的极限和函数的极限。
2. 极限的性质:包括唯一性,有界性,和收敛性。
3. 极限的四则运算法则:如果lim f(x),lim g(x)存在,那么对于加减乘除四种运算,极限都存在。
4. 极限的夹逼定理:如果一个数列被两个已知极限的数列夹在中间,那么这个数列的极限就是这两个数列的极限。
5. 函数极限的运算法则:如果lim f(x)存在,那么lim [f(x) + c] = lim f(x) + lim c,lim [f(x) c] = lim f(x) lim c,其中c是一个常数。
6. 无穷小和无穷大的概念:无穷小是一个趋于0的变量,无穷大是一个趋于无穷的变量。
7. 洛必达法则:当分子和分母的极限都存在时,可以求出函数的极限。
8. 泰勒级数:将一个函数表示为其各阶导数的无限和的方法。
9. 单侧极限和双侧极限:函数在某一点的单侧极限是指函数在该点的左侧或右侧的极限;双侧极限是指函数在这一点左侧和右侧的极限。
10. 连续性和可微性:如果一个函数在某一点的极限值等于该点的函数值,则称该函数在该点连续;如果一个函数在某一点的导数存在,则称该函数在该点可微。
以上就是高等数学极限的基本知识点,希望对你有所帮助。
数列极限地运算法则
![数列极限地运算法则](https://img.taocdn.com/s3/m/8de372ddd0d233d4b14e69c8.png)
3 5
n
n
1 9
0
方法小结:
lim
n
kpn tpn
cqn dqn
1、如果 p q ,那么分子、分母同除以pn; 2、如果 p q ,那么分子、分母同除以qn;
再利用lim rn ,求极限值. n
例3:计算下列数列的极限:
(1) lim(1 2 3 2010) 0
n n n n
lim1 lim 1
n
n n n
(2) lim 2n 1
2 1 lim n
n 3n 2 n 3 2
lim(2
n
1) n
2
lim(3 2) 3
(3) lim 2n 1 n n2 3n
n
lim
2 n
1 n2
n 1 3
n
lim( n
2 n
nn12
)
lim(1 3)
0
n
n
n
(4) lim n2 2n 3 n 2n2 3n 7
(7) 1 6
a 1 (8) b 1
(9)
2 5
,
4 5
(10) 0,4
(11) 1 3
例7、计算下列数列的极限:
(1) lim n
n 1 n2
n
lim
n n
1 1 1 n
1 2 1 n
lim ( n 1 n)( n 1 n) n ( n 2 n)( n 1 n)
lim
1
练习:
书 P-42 练习 7.7(3) 书 P-44 练习 7.7(4)
作业:
一课一练: P-28 练习 7.7(3) 一课一练: P-30 练习 7.7(4)
作业:
2.4极限运算法则
![2.4极限运算法则](https://img.taocdn.com/s3/m/1953a1e250e2524de5187e80.png)
2n = lim
n n2 1 n2 1
化成 0 或 型 0
= lim
2
n
1
1 n2
1
1 n2
=
2
1
10 10
练习
求
x2 1
lim
x1
x2
2x
3
解 x 1时,分子,分母的极限都是零.
(0 型)先约去不为零的无穷小因子 0 x 1后再求极限.
lim
h0
h
3、
1 lim( x1 1
x
3 1 x3)
4、 lim x8
1 x 3 23 x
5、 lim ( x x x x)
x
6、
2x
lim
x
4
x
1 1
7、
lim
x1
x
x
m
m
x
xn n
2
练习题答案
一、1、-5;
5、0; 二、1、2;
5、1 ; 2
2、3;
6、0; 2、2x ; 6、0;
3、2;
7、1 ; 2
3、-1;
4、1 ; 5
8、(3)30 . 2
4、-2;
7、m n . mn
lim
x
2x3 5x3
3x2 4x2
5 1
2 lim
x 5
x 4 x
x3 1
x3
2. 5
小结:当a0 0,b0 0,m和 n为非负整数时有
a0 , 当 n m,
lim
x
a0 xm b0 xn
1.3.1数列极限的运算法则
![1.3.1数列极限的运算法则](https://img.taocdn.com/s3/m/1ce44be3ad02de80d5d84064.png)
(1)若n
N,xn1
xn
0,则xn 0, 则xn
;
(2)若n
N,xn1 xn
11,, 则则xxnn
;
(3)若xn1
f
(xn ),
f
(x) 0,则当当xx11
x2 ,xn x2 , xn
;
这是因为:若x1≤x2,由f(x)的单调递增性有 x2=f(x1)≤f(x2,)=x3,所以 x1≤x2≤x3,以此类推, 即可得到 {xn}是单调递增。
事实上, 0,按上确界定义 , aN an,使得a aN . 又由an的递增性,当n N时有a aN an.
而a是an的一个上界 ,故an ,都有an a a .
所以当n N时有 a an a .
即
lim
n
an
a.
同理可证有下界的递减 数列必有极限.
例1 证明数列{(1 1 )n}单调增加,{(1 1)n1}单调减少,
n
n
且收敛于同一极限.
证:
记
xn
(1
1 )n , n
yn
(1
1 )n1 n
利用平均值不等式
xn
(1
1 )n n
1
n(1 1) n
n 1
n1
1
xn1
xn
1 yn
(
n
n
)n1 1
1
(n
1) n
n
n
2
1
1
n2
1 yn1
yn
又由于 2 x1 xn yn y1 4
同理若x1 x2,由f(x)的单调递增性有 x2=f(x1)f(x2,)=x3,所以 x1x2x3,以此类推, 即可得到 {xn}是单调递减。
数列极限四则运算法则的证明
![数列极限四则运算法则的证明](https://img.taocdn.com/s3/m/1fff3254f12d2af90242e659.png)
数列极限四则运算法则的证明设 limAn=A,limBn=B, 则有法则 1:lim(A n+B n)=A+B法则 2:lim(An-Bn)=A-B法则 3:lim(An • Bn)=AB法则 4:lim(An/Bn)=A/B.法则5:lim(An的k次方)=A的k次方(k是正整数)(n T + g的符号就先省略了,反正都知道怎么回事.)首先必须知道极限的定义:如果数列{Xn}和常数A有以下关系:对于?£>0(不论它多么小),总存在正数 N,使得对于满足n > N的一切Xn,不等式|Xn-A| <e都成立,则称常数A是数列{Xn}的极限,记作limXn=A.根据这个定义,首先容易证明:引理1: limC=C.(即常数列的极限等于其本身)法则1的证明:•••limAn=A,二对任意正数£ ,存在正整数N?,使n > N?寸恒有|An-A| <£ .(极限定义)同理对同一正数& ,存在正整数N?,使n > N?时恒有|Bn-B| <£ .②设N=max{N ?,N?},由上可知当n > N时①②两式全都成立.此时 |(An+Bn)-(A+B)|=|An-A)+(Bn- B)| < |AA|+|Bn-B| <£ + £ =2 £.由于&是任意正数,所以2 &也是任意正数.即:对任意正数2 £ ,存在正整数N,使n > N时恒有|(An+Bn)-(A+B)| v 2 £.由极限定义可知,lim(An+Bn)=A+B.为了证明法则2,先证明1个引理.引理 2:若 limAn=A,贝U lim(C • An)=C(C・是常数)证明:vlimAn=A, 二对任意正数e ,存在正整数N,使n > N时恒有|An-A| Ve .(极限定义)①式两端同乘|C|,得:|C • -CA| v C e.由于e是任意正数,所以C e也是任意正数.即:对任意正数 C e ,存在正整数N,使n > N时恒有|C -C A n V C e.由极限定义可知,lim(C ・AAn=O0的话更好证)法则2的证明:lim(A n-B n)=limAn+lim(-Bn)( 法则 1)=limAn+(-1)limBn ( 引理 2)=A-B.为了证明法则3,再证明1个引理.引理 3:若 limAn=O,limBn=0, 贝U lim(An • Bn)=0.证明:vlimAn=0, 二对任意正数e ,存在正整数N ?,使n > N ?时恒有|An-0| Ve .(极限定义) 同理对同一正数 e ,存在正整数N?,使n > N?时恒有|Bn-0| Ve .④设N=max{N ?,N?},由上可知当n > N时③④两式全都成立.此时有 |An • =Bnn- 0| • \Bn<£•=££ 2.由于&是任意正数,所以£ 2也是任意正数即:对任意正数£ 2,存在正整数,使n> N时恒有|An -0|B< & 2.由极限定义可知,lim(A n • Bn )=0.法则3的证明:令an=An-A,bn=Bn-B.则 liman=lim(An-A)=limAn+lim(-A)( 法则 1)=A-A (引理 2) =0.同理 limbn=0./• lim(A n • Bn)=lim[(an+A)(bn+B)]=lim(an • bn+B • an+A • bn+AB)=lim(a n • bn )+lim(B • an )+lim(A • b法则mAB=0+B • liman+A • limbn+limAB引理 3、引理 2)=B x 0+A x 0+AB (引理 1) =AB.引理4:如果limXn=L 工0,则存在正整麵和正实数£ ,使得对任何正整数n>N,有|Xn| >£.证明:取£ =|L|/2>0, 则存在正整数使得对任何正整数n>N,有|Xn- L|< £ .于是有|Xn- > |L| |Xn- L| > -L£ = £引理5:若limAn存M,使得对所有正整数n,有|An| wM.证明:设limAn=A,则存在一个正整数N,使得对n>N 有|An- A| w 1,于是有|An| w |A|+1, 我们取 M=max(|A1|,...,|AN|,|A|+1) 即可法则4的证明:由引理4,当B M0时(这是必要条件),?正整数 N1和正实数£ 0,使得对正整数n>N1,有|Bn| 0.由引理5,又?正数M,K,使得使得对所有正整数n,有|An| < M,|Bn| < K.现在对?£ >0?正整数N2和N3,使得:当 n>N2,有|An- A|< £ 0*|B|* £ /(M+K+1);当 n>N3,有 |Bn- B|< £ 0*|B|* £ /(M+K+1);现在,当 n>max(N1,N2,N3)时,有|An/Bn-A/B|=|A n*B-B n*A|/|B*B n|=|A n( B-B n)+B n(An-A)|/|B*B n|w (|An|*|B-Bn|+|Bn|*|A- An|)/(|B|* £ 0)(M+K)/((M+K+1)< £法则5的证明:lim(An 的k次方)=limAn • lim(A的 k-1 次方)(法则 3)....(往复 k-1 次)=(limAn)的k次方=A的k次方.。
极限的性质与四则运算法则
![极限的性质与四则运算法则](https://img.taocdn.com/s3/m/183555b3ba0d4a7303763a1b.png)
例
求 极li限 m2x53x21。 x4x5 x3 7
计算过程
练习 求 极ln i限 m3n4n57n132。 答案 0 很容易可以看出,这一类的极限只和分子、分母的次数 以及(次数相等时)最高次项的系数有关。
例4 求xl i m27xx3334xx2215.
解 xl im 27xx3334xx2215xl im 72xx43xx1533
limf1(x)limf2(x)limfn(x)
推论4 如果 limf(x)存在 ,而k是正整 ,则数 limf[(x)]k [limf(x)]k.
推论5 如果 limf(x)存在且,不 而 k是 为正 零,整 则数 limf([x) ]k [lim f(x) ]k.
注 ⑴应用时必须注意条件,如极限存在、分母不为 零、偶次根号下非负等;
答案 a b
当x→-∞时结果为-(a+b),故x→∞ 时极限不存在
例7 求limx2 2x. x2 x2
解 原 l式 im x 2 2 xx 2 2 x x 2 x 2 x 2 2 x
lim x22x x 2x2 x2 2x
23 1 3
7. 3
x2
例2 求xl im 1x24x2x13.
解 lim (x22x3) 0, x 1
又 lim (4x1) 30,
x 1
limx22x3 0 0. x1 4x1 3
商的法则不能用
由无穷小与无穷大的关系,得 xl im 1x24x2x13.
0
lx i m b am nxxm n a bm n 1 1xxn m 11 a b00
a b
n m
数列极限的四则运算法则
![数列极限的四则运算法则](https://img.taocdn.com/s3/m/e745e4df03d276a20029bd64783e0912a2167c85.png)
数列极限的四则运算法则好嘞,今天咱们聊聊数列极限的四则运算法则。
听起来很严肃,对吧?其实这玩意儿就像你早上喝的豆浆,慢慢喝才有味道。
极限,这个词听上去高大上,其实说白了就是一个数列在无限逼近某个数字时的表现。
就像你追着一只小猫,越追越近,最后它就在你面前停下了。
这就是极限。
咱们得搞清楚,数列是什么东西。
数列就是一个个数字按一定规律排成的队伍。
想象一下,你在吃糖果,巧克力、牛奶糖、果仁糖,一颗接一颗,这些糖果就像数列里的数字。
你一开始可能就吃一颗,但随着时间推移,可能会吃到第十颗、第二十颗,甚至更多。
咱们要知道,每次吃到的新糖果代表数列中的一个数,慢慢地,你就会对它们的味道有个大概的了解。
极限的四则运算就像一场有趣的游戏。
加法、减法、乘法、除法,嘿,听起来是不是很简单?就像你和朋友一起吃火锅,大家分着吃,越吃越快乐。
先说加法,两个数列相加,就像把两盘菜放在一起,嘿嘿,味道更丰盛了。
假如你有两个数列,一个是2、4、6,另一个是3、5、7。
它们的极限分别是6和7,加起来,极限就是13。
这就跟你和朋友一起点了牛肉和虾,最后大家一起分享,肉虾双全,太幸福了。
再说减法,听上去似乎有点伤感。
两个数列相减,就像你从一盘菜里拿走一部分,虽然有点遗憾,但味道还是不错的。
比如说,数列A的极限是10,数列B的极限是4,AB的极限就是6。
别忘了,生活中总会有些失去,重要的是珍惜眼前的美好。
然后,咱们谈谈乘法,嘿,这个可真是让人激动。
两个数列相乘,就像把你最爱的两种口味的冰淇淋混合在一起。
假如一个数列的极限是2,另一个是3,它们的乘积的极限就是6。
这就像你吃到巧克力和香草的组合,哇,简直是味蕾的狂欢,幸福感直线飙升。
别忘了除法。
这个有点儿小心翼翼,毕竟不是所有的数都能被完美地分开。
就像你和朋友一起分披萨,不能让某个人分到0片,那可就没法玩了。
如果数列A的极限是8,B的极限是2,A除以B的极限就是4。
记住,除法的时候一定得小心,确保分母不是零,不然就得抓瞎。
极限的四则运算
![极限的四则运算](https://img.taocdn.com/s3/m/d52672d2ad02de80d4d840ea.png)
一、数列的极限:1.极限的概念和运算法则数列极限的定义:一般地,如果当项数n 无限增大时,无穷数列{a n }的项a n 无限地趋近于某个常数a ,那么就说数列{a n }以a 为极限.数列极限的运算法则:如果A a n n =∞→lim ,Bb n n =∞→lim .则 ① ()B A b a n n n +=+∞→lim .② ()AB b a n n n =∞→lim .② ()0,0lim ≠≠=∞→B b B A b a n n n n .(注意:和与积中包含的数列个数必须是有限的,另外这些运算法则逆命题并不一定成立,例如,若已知()n n n b a ∞→lim 存在,n n a ∞→lim ,nn b ∞→lim 不一定存在,可以进行这样的改编,让学生自行判断和举反例。
)2.基本数列极限①为常数);C C C n (lim =∞→ ②);*(01lim N n n n ∈=∞→ ③);1|(|0lim <=∞→q q n n 而对于n n q lim ∞→,当1=q 时,1lim =∞→n n q ;当1||>q 或1-=q 时,n n q lim ∞→极限不存在。
3.无穷等比数列各项和当公比1||0<<q 时,无穷等比数列ΛΛn a a a a ,,,321的各项和为:);1||0(11lim <<-==∞→q q a S S n n(可以让学生解释各项和怎么由前n 项和公式演变而来,注意适用范围及两者区别)4.常见的数列极限可以归纳为两大类:第一类是两个关于自然数n 的多项式的商的极限:)0,0,,(.0;,*01110111lim ≠≠∈⎪⎩⎪⎨⎧>==++++++++----∞→l k l l l l k k k k n b a N l k k l k l b a b n b n b n b a n a n a n a 时,当时当ΛΛ当l k >时,上述极限不存在.第二类是关于n 的指数式的极限: ⎩⎨⎧=<=∞→时,当时;当111||,0lim q q q nn当1||>q或1-=q时,上述极限不存在(注意:求极限时,把常数项提到极限记号外面可以使运算变得很简洁。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精心整理
数列极限的运算法则(5月3日)
教学目标:掌握数列极限的运算法则,并会求简单的数列极限的极限。
教学重点:运用数列极限的运算法则求极限 教学难点:数列极限法则的运用
[→lim 0
x x 如果}有极二.例1.例2.(例3.求下列有限: (1)1312lim
++∞
→n n n (2)1
lim 2-∞→n n
n 分析:(1)(2)当n 无限增大时,分式的分子、分母都无限增大,分子、分母都没有极限,上面的极限运算法则不能直接运用。
例4.求下列极限:
(1))1
1
2171513(
lim 2
222+++++++++∞
→n n n n n n K (2)39312421(lim
1
1--∞→++++++++n n n K K 说明:1.数列极限的运算法则成立的前提的条件是:数列的极限都是存在,在进行极限运算时,要特别注意这一点。
当n 无限增大时,分式的分子、分母都无限增大,分子、分母都没有极限,上面的极限运算法则不能直接运用。
2.
3.1.(12.(13.(1)n n lim
∞→; (2) 2
3lim -∞→n n ;
(3)2
12
3lim n n n --∞→; (4)1325lim 22--∞→n n n n 。
4.求下列极限
已知,3lim =∞→n n a ,5lim =∞
→n n b 求下列极限:
(1).).43(lim n n n b a -∞
→ (2). n
n n
n n b a b a +-∞
→lim
5.求下列极限:
(1). );2
7(lim n n -∞→ (2).)51
(
lim 2-∞
→n
n (3).)43
(1lim +∞→n n n (4).11
1
1
lim -+∞→n
n n
(5).22321lim n
n n ++++∞→Λ (6).11657lim -+∞→n n
n (7).
n (9。