2014届八年级全国数学竞赛赛前专项训练_命题及三角形边角不等关系(详解)
2014年全国初中数学竞赛试题参考答案及评分标准
2014年全国初中数学竞赛试题参考答案及评分标准一、选择题(共10小题,每小题6分,满分60分.) 1.已知x 、y 、z 满足2x =3y-x =5z+x ,则5x-yy+2z的值为( )(A )1 (B )13 (C )-13 (D )12【答】B .解:设 2x =3y-x =5z+x =1k 则x=2k ,y-z=3k ,z+x=5k ,即x=2k ,y=6k ,z=3k 。
所以5x-y y+2z =5·2k-6k 6k+6k =13,故选B.2.已知等腰三角形的周长为12,则腰长a 的取值范围是( )(A )a >3 (B )a <6 (C )3<a <6 (D )4<a <7 【答】C.解:腰长为a ,则底长为12-2a ,由2a >12-2a 及12-2a >0可得3<a <6 故选C. 3.设 21x x 、 是一元二次方程032=-+x x的两根,则 1942231+-x x 等于( )(A )-4 (B )8 (C )6 (D )0 【答】D.解:将21x x 、代入方程,将目标整式降次,利用两根之和求解.4.如果a b ,为给定的实数,且1a b <<,那么1121a a b a b ++++,, ,这四个数据的平均数与中位数之差的绝对值是( ) (A )1 (B )214a - (C )12 (D )14【答】D.解:由题设知,1112a a b a b <+<++<+,所以这四个数据的平均数为1(1)(1)(2)34244a ab a b a b+++++++++=, 中位数为 (1)(1)44224a ab a b++++++=, 于是 4423421444a b a b ++++-=. 故选D.5. 如图,正方形A BCD 和EFGC 中,正方形EFGC 的边长为a ,用a 的代数式表示阴影部分△AEG 的面积为( )(A )232a (B )223a (C )212a (D )2a【答】C .6.若△ABC 的三条边a,b,c 满足关系式a 4+b 2c 2- a 2c 2-b 4=0,则△ABC 的形状是( ) (A )等腰三角形 (B )等边三角形(C )直角三角形 (D )等腰三角形或直角三角形 【答】D.解法一:原方程左边变形为 (a 4-b 4)+(b 2c 2-a 2c 2)=0, (a 2+b 2)(a 2-b 2)+(b 2-a 2+)c 2=0,∴(a 2-b 2)(a 2+b 2-c 2)=0, ∴a=b 或c 2=a 2+b 2.∴△ABC 为等腰三角形或直角三角形. 解法二:应用配方法a 4+b 2c 2- a 2c 2-b 4=0, (a 4-a 2c 2)-(-b 2c 2+b 4)=0 (a 2-22c )2 -(22c -b 2)2=0 ∴(a 2-b 2)(a 2+b 2-c 2)=0, ∴a 2-b 2=0,或a 2+b 2-c 2=0. ∴a=b 或c 2=a 2+b 2. ∴△ABC 为等腰三角形或直角三角形. 故选D.7.一批志愿者组成了一个“爱心团队”,以募集爱心基金.第一个月他们就募集到资金1万元,随着影响的扩大,第n (n ≥2)个月他们募集到的资金都将会比上个月增加20%,则当该月所募集到的资金首次突破10万元时(参考数据: 51.22.5≈,61.2 3.0≈,71.2 3.6≈),相应的n 的值为( )(A )11 (B )12 (C )13 (D )14 【答】D.8.如图:点D 是△ABC 的边BC 上一点,若∠CAD = ∠DAB = 60°,AC = 3 ,AB = 6,则AD 的长度是( )(A )2 (B )2.5 (C )3 (D )3.5 【答】A.解:如图,作BE ⊥AC 交CA 的延长线于E ,在Rt △ABE 中, ∠BAE= 60° ∴∠ABE= 30° ∴AE=21AB = 3 由勾股定理得BE =33∴21BCA s △AC ·BE =329 ∵∠CAD = ∠DAB = 60°同理得△ADC 和△ABD 中AD 边上的高分别是323和33 ∴=CD A s △343AD ,=B DA s △323AD 又CD A s △+B DA s △=BC A s △ ∴343AD + 323AD =329 ∴AD = 2 故选A9.若m=20132+20132×20142+20142,则m ( )(A )是完全平方数,还是奇数 (B )是完全平方数,还是偶数 (C )不是完全平方数,但是奇数 (D )不是完全平方数,但是偶数 【答】A.解 :原式=20132-2×2013×2014+20142+2×2013×2014+20132×20142=(2013-2014)2+2×2013×2014+(2013×2014)2=1+2×2013×2014+(2013×2014)2=(2013×2014+1)2所以(2013×2014+1)2是一个完全平方数,末尾数字是9,所以也是奇数. 故选A. 10、设非零实数a ,b ,c 满足2302340a b c a b c ++=⎧⎨++=⎩,,则222ab bc caa b c ++++的值为( ) (A )12-(B )0 (C )12(D )1 【答】A.解:由已知得(234)(23)0a b c a b c a b c ++=++-++=,故 2()0a b c ++=.于是 2221()2ab bc ca a b c ++=-++, 所以22212ab bc ca a b c ++=-++.故选A.二、填空题(共5小题,每小题6分,满分30分)11.已知整数1234a a a a ⋅⋅⋅,,,,满足下列条件:10a =,21|1|a a =-+,32|2|a a =-+,43|3|a a =-+,…,依次类推,则2012a 的值为 .【答】1006-12.如图,四边形ABCD 中,AB =BC ,∠ABC =∠CDA =90°, BE ⊥AD 于点E ,且四边形ABCD 的面积为8,则BE = .【答】解:.如图,可以通过旋转变换将△ABE 绕点B 逆时针旋转90°,得到△CBF.证明出四边形BFDE 是正方形,且它的面积是8,则边长是或者过点B 作BF ⊥BE ,交DC 延长线于F. 证明△ABE ≌△CBF ,其余思路同上。
八年级数学竞赛专题训练13 三角形的基本知识(附答案)
八年级数学竞赛专题训练13 三角形的基本知识阅读与思考三角形是最基本的几何图形,是研究复杂几何图形的基础,许多几何问题都可转化为三角形的问题来解.三角形基本知识主要包括三角形基本概念、三角形三边关系定理及推论、三角形内角和定理及推论等,它们在线段和角度的计算、图形的计数等方面有广泛的应用.解与三角形的基本知识相关的问题时,常用到数形结合及分类讨论法,即用代数方法解几何计算题及简单的证明题,对三角形按边或按角进行恰当分类.应熟悉以下基本图形:图4图3图2图1CDBAD CBADCBA DCOBA例题与求解【例1】 在△ABC 中,∠A =50°,高BE ,CF 交于O ,则∠BOC =________.(“东方航空杯”——上海市竞赛试题)解题思路:因三角形的高不一定在三角形内部,故应注意符合题设条件的图形多样性.【例2】 等腰三角形一腰上的中线把这个三角形的周长分成12cm 和21cm 两部分,则这个等腰三角形底边的长为( )A .17cmB .5cmC .5cm 或17cmD .无法确定(北京市竞赛试题)解题思路:中线所分两部分不等的原因在于等腰三角形的腰与底的不等,应分情况讨论.【例3】 如图,BE 是∠ABD 的平分线,CF 是∠ACD 的平分线,BE 与CF 交于G ,若∠BDC =140°,∠BGC =110°,求∠A 的大小.(“希望杯”邀请赛试题)解题思路:运用凹四边形的性质计算.GC DBEF A【例4】 在△ABC 中,三个内角的度数均为正数,且∠A <∠B <∠C ,4∠C =7∠A ,求∠B 的度数.(北京市竞赛试题)解题思路:把∠A ,∠C 用∠B 的代数式表示,建立关于∠B 的不等式组,这是解本题的突破口.【例5】 (1)周长为30,各边长互不相等且都是整数的三角形共有多少个?(2)现有长为150cm 的铁丝,要截成)2(>n n 小段,每段的长不小于1cm 的整数,如果其中任意3小段都不能拼成三角形,试求n 的最大值.此时有几种方法将该铁丝截成满足条件的n 段.(江苏省竞赛试题)解题思路:对于(1),不妨设三角形三边为a ,b ,c ,且c b a <<,由条件及三角形三边关系定理可确定c 的取值范围,从而可以确定整数c 的值. 对于(2),因n 段之和为定值150cm ,故欲使n 尽可能的大,必须使每段的长度尽可能的小.这样依题意可构造一个数列.【例6】 在三角形纸片内有2 008个点,连同三角形纸片的3个顶点,共有2 011个点,在这些点中,没有三点在一条直线上.问:以这2 011个点为顶点能把三角形纸片分割成多少个没有重叠部分的小三角形?(天津市竞赛试题)解题思路:本题的解题关键是找到规律:三角形内角每增加1个内点,就增加了2个三角形和3条边.能力训练A 级1.设a ,b ,c 是△ABC 的三边,化简c b a c b a --+++=____________.2.三角形的三边分别为3,a 21-,8,则a 的取值范围是__________.3.已知一个三角形三个外角度数比为2:3:4,这个三角形是_______(按角分类)三角形.4.如图,∠A +∠B +∠C +∠D +∠E 的度数为____________. (“缙云杯“试题)EDCBAHDCMG BAEC BA(第4题) (第5题) (第6题)5.如图,已知AB ∥CD ,GM ,HM 分别是∠AGH ,∠CHG 的角平分线,那么∠GMH =_________.T ED GHCBA F21AC EDB(第7题) (第9题) 6.如图,△ABC 中,两外角平分线交于点E ,则∠BEC 等于( )A .)90(21A ∠-︒ B .A ∠+︒2190 C .)180(21A ∠-︒ D .A ∠-︒21180 7.如图,在△ABC 中,BD ,BE 分别是高和角平分线,点F 在CA 的延长线上,FH ⊥BE 交BD 于G ,交BC 于H .下列结论:①∠DBE =∠F ;②2∠BEF =∠BAF +∠C ;③∠F =21(∠BAC -∠C );④∠BGH =∠ABE +∠C . 其中正确的是( )A .①②③B .①③④C .①②③D .①②③④8.已知三角形的每条边长的数值都是2 001的质因数,那么这样的不同的三角形共有( ) A .6个 B .7个 C .8个 D .9个 9.如图,将纸片△ABC 沿着DE 折叠压平,则( ) A .∠A =∠1+∠2 B .∠A =21(∠1+∠2)C .∠A =31(∠1+∠2) D .∠A =41(∠1+∠2)(北京市竞赛试题)10.一个三角形的周长是偶数,其中的两条边分别是4和1 997,则满足上述条件的三角形的个数是( ) A .1个 B .3个 C .5个 D .7个(北京市竞赛试题)11.如图,已知∠3=∠1+∠2,求证:∠A +∠B +∠C +∠D =180°.(河南省竞赛试题)321EG FDCBA12.平面内,四条线段AB ,BC ,CD ,DA 首尾顺次连接,∠ABC =24°,∠ADC =42°. (1)∠BAD 和∠BCD 的角平分线交于点M (如图1),求∠AMC 的大小.(2)点E 在BA 的延长线上,∠DAE 的平分线和∠BCD 平分线交于点N (如图2),求∠ANC .CDBAEND CBA图1 图213.三角形不等式是指一个三角形的两边长度之和大于第三边的长度.在下图中,E 位于线段CA 上,D 位于线段BE 上.(1)证明:AB +AE >DB +DE ; (2)证明:AB +AC >DB +DC ;(3)AB +BC +CA 与2(DA +DB +DC )哪一个更大?证明你的结论; (4)AB +BC +CA 与DA +DB +DC 哪一个更大?证明你的结论.(加拿大埃蒙德顿市竞赛试题)E DCBAB 级1.已知三角形的三条边长均为整数,其中有一条边长是4,但不是最短边,这样的三角形的 个数有_______个.(“祖冲之杯”邀请赛试题)2.以三角形的3个顶点和它内部的9个点共12个点为顶点能把原三角形分割成______个没有公共部分的小三角形.3.△ABC 中,∠A 是最小角,∠B 是最大角,且有2∠B =5∠A ,若∠B 的最大值是m ,最小值是n ,则=+n m ___________.(上海市竞赛试题)4.如图,若∠CGE =α,则∠A +∠B +∠C +∠D +∠E +∠F =_______.(山东省竞赛试题)αGFEDCBADA 2A 1CBA(第4题) (第5题)5.如图,在△ABC 中,∠A =96°,延长BC 到D ,∠ABC 与∠ACD 的平分线相交于1A 点,BC A 1∠与CD A 1∠的平分线相交于2A 点,依此类推,BC A 4∠与CD A 4∠的平分线相交于5A 点,则5A ∠的大小是( )A .3°B .5°C .8°D .19.2°6.四边形ABCD 两组对边AD ,BC 与AB ,DC 延长线分别交于点E ,F ,∠AEB ,∠AFD 的平分线交于点P .∠A =64°,∠BCD =136°,则下列结论中正确的是( )①∠EPF =100°; ②∠ADC +∠ABC =160°; ③∠PEB +∠PFC +∠EPF =136°; ④∠PEB +∠PFC =136°.A .①②③B .②③④C .①③④D .①②③④FEDPCBA7.三角形的三角内角分别为α,β,γ,且γβα≥≥,βα2=,则β的取值范围是( ) A .4536≤≤β B .6045≤≤β C .9060≤≤β D .3245≤≤β(重庆市竞赛试题)8.已知周长小于15的三角形三边的长都是质数,且其中一边的长为3,这样的三角形有( ) A .4个 B .5个 C .6个 D .7个(山东省竞赛试题)9.不等边△ABC 的两条高的长度分别为4和12,若第三条高的长也是整数,试求它的长.(第三十二届美国邀请赛试题)10.设m ,n ,p 均为自然数,满足p n m ≤≤且15=++p n m ,试问以m ,n ,p 为三边长的三角形有多少个?11.锐角三角形用度数来表示时,所有角的度数为正整数,最小角的度数是最大角的度数的41,求满足此条件的所有锐角三角形的度数.(汉城国际数学邀请赛试题)12.如图1,A 为x 轴负半轴上一点,B 为x 轴正半轴上一点,C (0,-2),D (-2,-2). (1)求△BCD 的面积;(2)如图2,若∠BCO =∠BAC ,作AQ 平分∠BAC 交y 轴于P ,交BC 于Q .求证:∠CPQ =∠CQP ;(3)如图3,若∠ADC =∠DAC ,点B 在x 轴正半轴上运动,∠ACB 的平分线交直线AD 于E ,DF ∥AC交y 轴于F ,FM 平分∠DFC 交DE 于M ,EDMFBCF ∠∠-∠2的值是否发生变化?证明你的结论.x图313.如图1,),0(m A ,)0,(n B .且m ,n 满足0)42(32≤-+-n m.图1 图2(1)求A ,B 的坐标;(2)C 为y 轴正半轴上一动点,D 为△BCO 中∠BCO 的外角平分线与∠COB 的平分线的交点,问是否存在点C ,使∠D =41∠COB .若存在,求C 点坐标; (3)如图2,C 为y 轴正半轴上A 的上方一动点,P 为线段AB 上一动点,连CP 延长交x 轴于E ,∠CAB 和∠CEB 平分线交于F ,点C 在运动过程中FECOABO ∠∠+∠的值是否发生变化?若不变求其值;若变化,求其范围.专题13 三角形的基本知识例1130°或50°例2 B 例380°提示:∠A=2∠BGC-∠BDC例4设∠C=x°,则∠A=(47 x)°,∠B=180°-∠C-∠A=180°-117x°由∠A<∠B<∠C,得47x<180-117x<x.解得70<x<84.∵47x是整数,∴x=77.故∠C=77°,则∠A=44°,∠B=180°-77°-44°=59°.例5(1)不妨设a<b<c,则由30a b ca b c+=-⎧⎨+>⎩,得10<c<15.∵c是整数,∴c=11,12,13,14.当c=11时,b=10,a=9.当c=12时,b=11,a=7;b=10,a=8.当c=13时,b=12,a=5;b=11,a=6;b=10,a=7;b=19,a=8.当c=14时,b=13,a=3;b=12,a=4;b=11,a=5;b=10,a=6;b=9,a=7.(2)这些小段的长度只可能分别是1,1,2,3,5,8,13,21,34,55,89…但1+1+2+5+8+13+21+34+55=143<150,1+1+2+3+5+8+13+21+34+55+89>150,故n的最大值为10.共有以下7种方式:(1,1,2,3,5,8,13,21,34,62);(1,1,2,3,5,8,13,21,35,61);(1,1,2,3,5,8,13,21,36,60);(1,1,2,3,5,8,13,21,37,59);(1,1,2,3,5,8,13,22,35,60);(1,1,2,3,5,8,13,22,36,59);(1,1,2,3,5,8,14,22,36,58).例6 解法1一个小三角形内,它与该三角形的三个顶点可得到三个小三角形,从而增加了两个小三角形,于是可以推出,当三角形内有2008个点是,连线可得到小三角形的个数为:3+2×(2008-1)=4017(个).解法2 整体核算法设连线后把原三角形分割成n个小三角形,则它们的内角和为180°·n,又因为原三角形内每一个点为小三角形顶点时,能为小三角形提供360°的内角,2008个点共提供内角2008×360°,于是得方程180n=360×2008+180,解得n=4017,即这2008个点能将原三角形纸片分割成4017个小三角形.A 级1. 2(b +c )2. -5<a <-23. 钝角4. 180°5. 90°6. C7. D8. B9. B 10. B 11. 提示:过G 作GH ∥EB ,可推得BE ∥CF . 12. (1)∠AMC =12(∠ABC +∠ADC )=12×(24°+42°)=33° (2)∵AN 、CN 分别平分∠DAE ,∠BCD ,∴可设∠EAN =∠DAB =x ,∠BCN =∠DCN =y ,∴∠BAN =180°-x ,设BC 与AN 交于S ,∴∠BSA =∠CSN ,∴180°-x +∠B =y +∠ANC ,① 同理:180°-2x +∠B =2y +∠D ,②由①×2-②得:2∠ANC =180°+∠B +∠D . ∴∠ANC =12(180°+24°+42°)=123°. 13. (1)(2)略 提示:(3)DA +DB >AB ,DB +DC >DC ,DC +DA >CA ,将三个不等式相加,得2(DA +DB +DC )>AB +CB +CA .(4)由(2)知AB +AC >DB +DC ,同理BC +BA >DC +DA ,CA +CB >DA +DB , 故AB +BC +CA >DA +DB +DCB 级1. 82. 193. 175 提示:设∠A =(2x )°,∠B =(5x )°,则∠C =180°-(7x )°,由∠A ≤∠C ≤∠B 得15≤x ≤204. 2a5. A6. D7. D8. B9. 提示:设长度为4和12的高分别是边a ,b 上的,边c 上的高为h ,△ABC 的面积为S , 则24S a =,212S b =,2S c h =,由22222412412S S S S S h -<<+得36h <<,故5h =. 10. 711. 设锐角三角形最小角的度数为x ,最大角的度数为4x ,另一角为y ,则41804490x x y x y xx ++=︒⎧⎪⎨⎪<︒⎩,解得20≤x ≤22.5,故x =20或21或22. 所有锐角三角形的度数为:(20°,80°,80°),(21°,75°,84°),(22°,70°,88°). 12. (1)S △BCD =2 (2)略(3)设∠ABC =x ,则∠BCF =90°+x ,可证:∠E =12x ,∠DMF =45°. ∴2(90)245212BCF DMF x E x ∠-∠︒+-⨯︒==∠。
2014初中数学联赛初二年级
.
17 n k 15
【答】144.
由条件得 7 k 8 ,由 k 的唯一性,得 k 1 7 且 k 1 8 ,所以 2 k 1 k 1 8 7 1 ,
8n9
n8 n9
n n n 9 8 72
所以 n 144 .
当 n 144 时,由 7 k 8 可得126 k 128 , k 可取唯一整数值 127. 8n9
()
A.21
B.20
C.31
D.30
【答】 C.
2014 年全国初中数学联合竞赛初二年级试题参考答案 第 1 页(共 4 页)
可以称出的重物的克数可以为 1、2、3、4、5、6、7、8、9、10、20、21、22、23、24、25、26、27、
28、29、30、31、32、33、34、35、36、37、38、39、40,共 31 种.
x 2, y 3, z 1, xyz 6 .
6.已知△ ABC 的三边长分别为 2,3,4, M 为三角形内一点,过点 M 作三边的平行线,交各边于
D 、 E 、 F 、 G 、 P 、 Q (如图),如果 DE FG PQ x ,则 x =
()
18
A.
13
20
B.
13
22
C.
13
24
PAE 1 (BAD CAE) 1 (66 30) 18 ,
2
2
所以 PAC PAE CAE 18 30 48 .
EP
C
D
A
4.已知 n 为正整数,且 n4 2n3 6n2 12n 25 为完全平方数,则 n =
.
【答】8.
易知 n 1 , n 2 均不符合题意,所以 n 3 ,此时一定有
2014年全国初中数学联合竞赛(初二组)初赛试题参考答案及评分标准
2014年全国初中数学联合竞赛(初二组)初赛试题参考答案及评分标准说明:评阅试卷时,请依据本评分标准.第一试,选择题和填空题只设7分和0分两档;第二试各题,请严格按照本评分标准规定的评分档次给分,不要再增加其他中间档次.如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数.一、选择题(本题满分42分,每小题7分)1、C2、B3、B4、D5、D6、C二、填空题(本题满分28分,每小题7分)1、41n -2、43、14、3三、(本大题满分20分)解不等式13|2|-<-x x解:(1)当2<x 时,不等式化为132-<-x x ,解此不等式得43>x 故此时243<<x ;(10分) (2)当2≥x 时,不等式化为132-<-x x ,解此不等式得21->x 故此时2≥x . (15分) 综上所述,不等式的解为:34x >.(20分)四、(本大题满分25分) 如图,在等腰梯形ABCD 中,//AD BC ,DE BC ⊥于E .若3,5DE BD ==, 求梯形ABCD 的面积.解:在直角△BDE 中,由勾股定理有:422=-=DE BD BE ;(5分)过D 作AC 的平行线交BC 的延长线于F ,连接DF 、CF ,则ACFD 是平行四边形,故CF =AD ,DF AC BD ==,所以DE 是等腰△DBF 底边上的高,故28BF BE ==(15分) 所以1221)(21=⋅=+=DE BF DE AD BC S ABCD (25分).五、(本大题满分25分)已知正整数a 、b 满足332)(b a b a +=+,试求a 、b 的值.解:由已知得b a b ab a +=+-22,(5分)则2)1()1()(222=-+-+-b a b a .(10分)因为a 、b 均为正整数,故01≥-a ,01≥-b ,(1)当a=b 时,1)1()1(22=-=-b a ,即a =b=2;(15分)(2)当a b ≠时,2()1a b -=,从而2(1)1a -=且2(1)0b -=;或者2(1)0a -=且2(1)1b -=; 所以,2,1a b ==,或者1,2a b ==.(20分)综上所述,所求,a b 的值是:2a b ==;或者1,2a b ==;或者2,1a b ==.(25分)。
2014年下八年级数学竞赛试题及答案
2014年下八年级数学竞赛试题1. 一辆汽车从湄江出发开往娄底.如果汽车每小时行使a 千米,则t 小时可以到达,如果汽车每小时行使b ()b a >千米,那么可以提前到达娄底的时间是( )小时..A at a b + B.bt a b + C.abta b+ D.bt at b -2. 分式方程()()1112x mx x x -=--+有增根,则m 的值为( ) A.0和3 B.1 C.1和2- D.33. 由下列条件可以作出唯一的等腰三角形的是( )A.已知等腰三角形的两腰B.已知一腰和一腰上的高C.已知底角的度数和顶角的度数 D .已知底边长和底边上的中线的长4. )A.(1x -B.(1x -C.(1x -+D.(1x -5. 当x =时,代数式()20033420052001x x --的值是( ) A.0 B.1- C.1 D.20032-6. 若34x -<<45x -=的x 值为( )A.2B.3C.4D.5 7. 设0a b <<,224a b ab +=,则a ba b+-的值为( )C.2D.3 8. 若不等式组211x a x a >-⎧⎨<+⎩无解,则a 的取值范围是( )A.2a <B.2a =C.2a >D.2a ≥9. 已知a 、b 为常数,若0ax b +>的解集是13x <,则0bx a -<的解集是( ) A.3x >- B.3x <- C.3x > D.3x <10. 在等腰ABC △中,AB AC =,中线BD 将这个三角形的周长分为15和12两个部分,则这个等腰三角形的底边长为( )A.7B.11C.7或11D.7或10二.填空题(共8小题,每小题5分,共40分)11. 如图ABC △中,AD 平分BAC ∠,且AB BD AC +=,若64B ∠=︒,则C ∠= .12. 若22013a x +=,22014b x +=,22015c x +=,且24abc =,则111a b c bc ac ab a b c++---的值为 .13. 一条线段的长为a ,若要使31a -,41a +,12a -这三条线段组成一个三角形,则a 的取值范围是 . 14. 方程1998x y +=的整数解有 组.15. 如图BD 是ABC △的一条角平分线,8AB =,4BC =,且24ABC S =△,则DBC △的面积是 .16. 若关于x 的方程212x ax +=--的解为正数,则a 的取值范围是 . 17. 关于x 的不等式332x m m -≤-的正整数解为1,2,3,4,则m 的取值范围是 . 18. 如果21a -和5a -是一个数m 的平方根,则m 的值为 .三.解答题(共5小题,每小题8分,共40分)19. 已知:在ABC △中,AD 是BC 边上的中线,E 是AD 上一点,延长BE 交AC 于F ,若AF EF =,求证:BE AC =.20. 若关于x 的分式方程311x m x x--=-无解,求m 的值.21. 已知有理数a ,b ,c 满足0a b c ++-=,求()2015a cb +-的值.22. 某商店准备购进甲、乙两种商品.已知甲商品每件进价15元,售价20元;乙商品每件进价35元,售价45元.(1)若该商店同时购进甲、乙两种商品共100件,恰好用去2700元,求购进甲、乙两种商品各多少件?(2)若该商店准备用不超过3100元购进甲、乙两种商品共100件,且这两种商品全部售出后获利不少于890元,问应该怎样进货,才能使总利润最大,最大利润是多少?(利润=售价﹣进价)23. 如图,已知在ABC △中,AB AC =,CE 是AB 边上的中线,延长AB 到D ,使BD AB =,连接CD .求证:12CE CD =.参考答案题号 1 2 3 4 5 6 7 8 9 10 答案DDDBABADBC二.填空题(共8小题)11、 32︒ 12、18 13、352a << 14、 4 15、 8 16、 a <2且a ≠﹣4 17、12≤m <15 18、 81或9三.解答题(共5小题,每小题10分,共40分)19、证明:如图,延长AD 到点G ,使得AD=DG ,连接BG .∵AD 是BC 边上的中线(已知),∴DC=DB ,在△ADC 和△GDB 中,∴△ADC ≌△GDB (SAS ), ∴CAD G ∠=∠,BG AC =,∵AF EF =,∴CAD AEF ∠=∠, 又∠BED=∠AEF (对顶角相等),∴∠BED=∠G ∴BE=BG ,又BG AC =, ∴BE=AC .20、解:去分母得x (x ﹣m )﹣3(x ﹣1)=x (x ﹣1),﹣mx ﹣3x+3=﹣x ,整理得(2+m )x ﹣3=0,∵关于x 的分式方程﹣=1无解,分两种情况:(1)当此方程的解为增根时,则x=1或0, 当x=1时,2+m ﹣3=0,解得m=1, 当x=0时,﹣3=0,无解;(2)当整式方程无解时,即当2+m=0时,方程(2+m )x ﹣3=0无解,即m=﹣2. 综上所述,m=1或﹣2.21.解:将等式整理配方,得)))2221122310a b c -+-+-=,110a -=220b -=310c -=,∴2a =,6b =,4c =,∴()()20152015201524600.a c b +-=+-==22、解:(1)设购进甲种商品x 件,购进乙商品y 件,根据题意得:,解得:,答:商店购进甲种商品40件,购进乙种商品60件;(2)设商店购进甲种商品a 件,则购进乙种商品(100﹣a )件, 根据题意列得:,解得:20≤a ≤22,∵a 为整数,故20a =,21,22.当20a =时,利润为:()()201520453580900-⨯+-⨯=元 当21a =时,利润为:()()201521453579895-⨯+-⨯=元 当22a =时,利润为:()()201522453578890-⨯+-⨯=元∴当a=20时,利润最大,最大利润为900元,此时乙种商品应购进数量为100﹣20=80, 答:应购进甲种商品20件,乙种商品80件,才能使总利润最大,最大利润为900元.23、证明:如图,延长CE 到F ,使EF=CE ,连接FB ,∵CE 是AB 边上的中线,∴AE=BE , 又∵∠BEF=∠AEC ,∴△AEC ≌△BEF , ∴FB=AC ,∠1=∠A , ∵BD=AB ,∴FB=BD ,∵∠3=∠A+∠ACB=∠1+∠2,即∠CBD=∠CBF ,又∵BC 为公共边,∴△CDB ≌△CFB ,∴CD=CF=2CE ,即CE=CD .。
2014奥林匹克数学竞赛(中国区)选拔赛试题 八年级数学
(1)当点F、E分别从C、A两点同时出发,以每秒1个单位长度的速度沿CA、AB运动,到点A、B时停止;设△DEF的面积为y,F点运动的时间为x,求y与x的函数关系式.
(2)在(1)的条件下,点F、E分别沿CA、AB的延长线继续运动,求此时y与x的函数关系式.
17.已知a,b,c是三个不同的有理数。
试证明: 是有理数.
参考答案
一、选择题
1-5 ADCBB
二、填空题
6.40°
7. 2
8.(x2+5x+8)(x2+5x+3)
9.
10.
11.
12.
13. ;
14. ;
15.10
16.(1)根据题意得 ,则 ,因为 ,所以 ,那么 ,所以y与x的函数关系式为
(2)根据题意得 , , ,所以 。
11.如图,直线 与x轴、y轴分别交于点A、B,以线段AB为直角边在第一象限内作等腰Rt△ABC,∠BAC=90°,如果在第二象限内有一点P ,且△ABP的面积与△ABC的面积相等,则a=________.
第11题图第12题图
12.如图,直线 与x轴,y轴分别交于点A和B,M是OB上的一点,若将△ABM沿AM折叠,点B恰好落在x轴上的B点处,则直线AM的解析式为_________________.
A.2<c<4B.2<c≤3C.2<c≤ D. <c<
3.如图,一个凸六边形的六个内角都是120°,六条边的长分别为a、b、c、d、e、f,则下列等式中成立的是()。
A.a+b+c=d+e+fB.a+c+e=b+d+fC.a+b=d+eD.a+c=b+d
2014年全国初中数学联合竞赛试题参考答案和评分标准
初三数学竞赛试题 2014年全国初中数学联合竞赛试题参考答案及评分标准A.B. C. D.2014年全国初中数学联合竞赛试题参考答案及评分标准2.【答】 A.,易知:当,时,取得最大值.4.【答】 B.若取出的3张卡片上的数字互不相同,有2×2×2=8种取法;若取出的3张卡片上的数字有相同的,有3×4=12种取法.所以,从6张不同的卡片中取出3张,共有8+12=20种取法.6.【答】 A.过作于,易知△≌△,△∽△.设,则,,,,故,即.又,故可得.故.1.【答】 0.由题意知,所以2.【答】144.由条件得,由的唯一性,得且,所以,所以.当时,由可得,可取唯一整数值127.故满足条件的正整数的最大值为144.4.【答】36.设的最大公约数为,,,均为正整数且,,则,所以,从而,设(为正整数),则有,而,所以均为完全平方数,设,则,均为正整数,且,.又,故,即.注意到,所以或.若,则,验算可知只有满足等式,此时,不符合题意,故舍去.解由已知条件可得,.设,,则有,,……………………5分若,即,,则是一元二次方程的两根,但这个方程的判别式,没有实数根;……………………15分若,即,,则是一元二次方程的两根,这个方程的判别式,它有实数根.所以. ……………………20分解取,,可得,所以1具有性质.取,,可得,所以5具有性质.…………………5分为了一般地判断哪些数具有性质,记,则=.即……………………10分如果,即,则有;如果,即,则有;如果,即,则有;由此可知,形如或或(为整数)的数都具有性质.因此,1,5和2014都具有性质. ……………………20分若2013具有性质,则存在整数使得.注意到,从而可得,故,于是有,即,但2013=9×223+6,矛盾,所以2013不具有性质. ……………………25分2014年全国初中数学联合竞赛试题参考答案及评分标准,易知:当,时,取得最大值.【答】 B.若取出的3张卡片上的数字互不相同,有2×2×2=8种取法;若取出的3张卡片上的数字有相同的,有3×4=12种取法.所以,从6张不同的卡片中取出3张,共有8+12=20种取法.要使得三个数字可以构成三角形的三边长,只可能是:(2,4,4),(4,4,6),(2,6,6),(4,6,6),由于不同的卡片上所写数字有重复,所以,取出的3张卡片上所写的数字可以作为三角形的三边长的情况共有4×2=8种.A.B. C. D.【答】 A.设,则,,,,故,即.又,故可得.故.。
八年级“我爱数学”竞赛专题练习及答案
八年级“我爱数学”竞赛专项训练(1)(实 数)一、选择题1、如果自然数a 是一个完全平方数,那么与a 之差最小且比a 大的一个完全平方数是( ) A. a +1B. a 2+1C. a 2+2a+1D. a+2+12、在全体实数中引进一种新运算*,其规定如下:①对任意实数a 、b 有a *b=(a +b )(b -1)②对任意实数a 有a *2=a *a 。
当x =2时,[3*(x *2)]-2*x +1的值为 ( ) A. 34B. 16C. 12D. 63、已知n 是奇数,m 是偶数,方程有整数解x 0、y 0。
则( )A. x 0、y 0均为偶数B. x 0、y 0均为奇数C. x 0是偶数y 0是奇数D. x 0是奇数y 0是偶数4、设a 、b 、c 、d 都是非零实数,则四个数-ab 、ac 、bd 、cd ( ) A. 都是正数B. 都是负数C. 两正两负D. 一正三负或一负三正5、满足等式的正整数对的个数是( ) A. 1B. 2C. 3D. 46、已知p 、q 均为质数,且满足5p 2+3q=59,由以p +3、1-p +q 、2p +q -4为边长的三角形是 A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形7、一个六位数,如果它的前三位数码与后三位数码完全相同,顺序也相同,由此六位数可以被( )整除。
A. 111B. 1000C. 1001D. 11118、在1、2、3……100个自然数中,能被2、3、4整除的数的个数共( )个 A. 4 B. 6C. 8D. 16二、填空题 1、若,则S 的整数部分是____________________2、M 是个位数字不为零的两位数,将M 的个位数字与十位数字互换后,得另一个两位数N ,若M -N 恰a ⎩⎨⎧=+=+m y x n y 281120042003200320032003=+--+xy x y x y y x 20011198********⋯⋯++=S是某正整数的立方,则这样的数共___个。
八年级数学竞赛专题训练13 三角形的基本知识(附答案)
八年级数学竞赛专题训练13 三角形的基本知识阅读与思考三角形是最基本的几何图形,是研究复杂几何图形的基础,许多几何问题都可转化为三角形的问题来解.三角形基本知识主要包括三角形基本概念、三角形三边关系定理及推论、三角形内角和定理及推论等,它们在线段和角度的计算、图形的计数等方面有广泛的应用.解与三角形的基本知识相关的问题时,常用到数形结合及分类讨论法,即用代数方法解几何计算题及简单的证明题,对三角形按边或按角进行恰当分类.应熟悉以下基本图形:图4图3图2图1CDBAD CBADCBA DCOBA例题与求解【例1】 在△ABC 中,∠A =50°,高BE ,CF 交于O ,则∠BOC =________.(“东方航空杯”——上海市竞赛试题)解题思路:因三角形的高不一定在三角形内部,故应注意符合题设条件的图形多样性.【例2】 等腰三角形一腰上的中线把这个三角形的周长分成12cm 和21cm 两部分,则这个等腰三角形底边的长为( )A .17cmB .5cmC .5cm 或17cmD .无法确定(北京市竞赛试题)解题思路:中线所分两部分不等的原因在于等腰三角形的腰与底的不等,应分情况讨论.【例3】 如图,BE 是∠ABD 的平分线,CF 是∠ACD 的平分线,BE 与CF 交于G ,若∠BDC =140°,∠BGC =110°,求∠A 的大小.(“希望杯”邀请赛试题)解题思路:运用凹四边形的性质计算.GC DBEF A【例4】 在△ABC 中,三个内角的度数均为正数,且∠A <∠B <∠C ,4∠C =7∠A ,求∠B 的度数.(北京市竞赛试题)解题思路:把∠A ,∠C 用∠B 的代数式表示,建立关于∠B 的不等式组,这是解本题的突破口.【例5】 (1)周长为30,各边长互不相等且都是整数的三角形共有多少个?(2)现有长为150cm 的铁丝,要截成)2(>n n 小段,每段的长不小于1cm 的整数,如果其中任意3小段都不能拼成三角形,试求n 的最大值.此时有几种方法将该铁丝截成满足条件的n 段.(江苏省竞赛试题)解题思路:对于(1),不妨设三角形三边为a ,b ,c ,且c b a <<,由条件及三角形三边关系定理可确定c 的取值范围,从而可以确定整数c 的值. 对于(2),因n 段之和为定值150cm ,故欲使n 尽可能的大,必须使每段的长度尽可能的小.这样依题意可构造一个数列.【例6】 在三角形纸片内有2 008个点,连同三角形纸片的3个顶点,共有2 011个点,在这些点中,没有三点在一条直线上.问:以这2 011个点为顶点能把三角形纸片分割成多少个没有重叠部分的小三角形?(天津市竞赛试题)解题思路:本题的解题关键是找到规律:三角形内角每增加1个内点,就增加了2个三角形和3条边.能力训练A 级1.设a ,b ,c 是△ABC 的三边,化简c b a c b a --+++=____________.2.三角形的三边分别为3,a 21-,8,则a 的取值范围是__________.3.已知一个三角形三个外角度数比为2:3:4,这个三角形是_______(按角分类)三角形.4.如图,∠A +∠B +∠C +∠D +∠E 的度数为____________. (“缙云杯“试题)EDCBAHDCMG BAEC BA(第4题) (第5题) (第6题)5.如图,已知AB ∥CD ,GM ,HM 分别是∠AGH ,∠CHG 的角平分线,那么∠GMH =_________.T ED GHCBA F21AC EDB(第7题) (第9题) 6.如图,△ABC 中,两外角平分线交于点E ,则∠BEC 等于( )A .)90(21A ∠-︒ B .A ∠+︒2190 C .)180(21A ∠-︒ D .A ∠-︒21180 7.如图,在△ABC 中,BD ,BE 分别是高和角平分线,点F 在CA 的延长线上,FH ⊥BE 交BD 于G ,交BC 于H .下列结论:①∠DBE =∠F ;②2∠BEF =∠BAF +∠C ;③∠F =21(∠BAC -∠C );④∠BGH =∠ABE +∠C . 其中正确的是( )A .①②③B .①③④C .①②③D .①②③④8.已知三角形的每条边长的数值都是2 001的质因数,那么这样的不同的三角形共有( ) A .6个 B .7个 C .8个 D .9个 9.如图,将纸片△ABC 沿着DE 折叠压平,则( ) A .∠A =∠1+∠2 B .∠A =21(∠1+∠2)C .∠A =31(∠1+∠2) D .∠A =41(∠1+∠2)(北京市竞赛试题)10.一个三角形的周长是偶数,其中的两条边分别是4和1 997,则满足上述条件的三角形的个数是( ) A .1个 B .3个 C .5个 D .7个(北京市竞赛试题)11.如图,已知∠3=∠1+∠2,求证:∠A +∠B +∠C +∠D =180°.(河南省竞赛试题)321EG FDCBA12.平面内,四条线段AB ,BC ,CD ,DA 首尾顺次连接,∠ABC =24°,∠ADC =42°. (1)∠BAD 和∠BCD 的角平分线交于点M (如图1),求∠AMC 的大小.(2)点E 在BA 的延长线上,∠DAE 的平分线和∠BCD 平分线交于点N (如图2),求∠ANC .CDBAEND CBA图1 图213.三角形不等式是指一个三角形的两边长度之和大于第三边的长度.在下图中,E 位于线段CA 上,D 位于线段BE 上.(1)证明:AB +AE >DB +DE ; (2)证明:AB +AC >DB +DC ;(3)AB +BC +CA 与2(DA +DB +DC )哪一个更大?证明你的结论; (4)AB +BC +CA 与DA +DB +DC 哪一个更大?证明你的结论.(加拿大埃蒙德顿市竞赛试题)E DCBAB 级1.已知三角形的三条边长均为整数,其中有一条边长是4,但不是最短边,这样的三角形的 个数有_______个.(“祖冲之杯”邀请赛试题)2.以三角形的3个顶点和它内部的9个点共12个点为顶点能把原三角形分割成______个没有公共部分的小三角形.3.△ABC 中,∠A 是最小角,∠B 是最大角,且有2∠B =5∠A ,若∠B 的最大值是m ,最小值是n ,则=+n m ___________.(上海市竞赛试题)4.如图,若∠CGE =α,则∠A +∠B +∠C +∠D +∠E +∠F =_______.(山东省竞赛试题)αGFEDCBADA 2A 1CBA(第4题) (第5题)5.如图,在△ABC 中,∠A =96°,延长BC 到D ,∠ABC 与∠ACD 的平分线相交于1A 点,BC A 1∠与CD A 1∠的平分线相交于2A 点,依此类推,BC A 4∠与CD A 4∠的平分线相交于5A 点,则5A ∠的大小是( )A .3°B .5°C .8°D .19.2°6.四边形ABCD 两组对边AD ,BC 与AB ,DC 延长线分别交于点E ,F ,∠AEB ,∠AFD 的平分线交于点P .∠A =64°,∠BCD =136°,则下列结论中正确的是( )①∠EPF =100°; ②∠ADC +∠ABC =160°; ③∠PEB +∠PFC +∠EPF =136°; ④∠PEB +∠PFC =136°.A .①②③B .②③④C .①③④D .①②③④FEDPCBA7.三角形的三角内角分别为α,β,γ,且γβα≥≥,βα2=,则β的取值范围是( ) A .4536≤≤β B .6045≤≤β C .9060≤≤β D .3245≤≤β(重庆市竞赛试题)8.已知周长小于15的三角形三边的长都是质数,且其中一边的长为3,这样的三角形有( ) A .4个 B .5个 C .6个 D .7个(山东省竞赛试题)9.不等边△ABC 的两条高的长度分别为4和12,若第三条高的长也是整数,试求它的长.(第三十二届美国邀请赛试题)10.设m ,n ,p 均为自然数,满足p n m ≤≤且15=++p n m ,试问以m ,n ,p 为三边长的三角形有多少个?11.锐角三角形用度数来表示时,所有角的度数为正整数,最小角的度数是最大角的度数的41,求满足此条件的所有锐角三角形的度数.(汉城国际数学邀请赛试题)12.如图1,A 为x 轴负半轴上一点,B 为x 轴正半轴上一点,C (0,-2),D (-2,-2). (1)求△BCD 的面积;(2)如图2,若∠BCO =∠BAC ,作AQ 平分∠BAC 交y 轴于P ,交BC 于Q .求证:∠CPQ =∠CQP ;(3)如图3,若∠ADC =∠DAC ,点B 在x 轴正半轴上运动,∠ACB 的平分线交直线AD 于E ,DF ∥AC交y 轴于F ,FM 平分∠DFC 交DE 于M ,EDMFBCF ∠∠-∠2的值是否发生变化?证明你的结论.x图313.如图1,),0(m A ,)0,(n B .且m ,n 满足0)42(32≤-+-n m.图1 图2(1)求A ,B 的坐标;(2)C 为y 轴正半轴上一动点,D 为△BCO 中∠BCO 的外角平分线与∠COB 的平分线的交点,问是否存在点C ,使∠D =41∠COB .若存在,求C 点坐标; (3)如图2,C 为y 轴正半轴上A 的上方一动点,P 为线段AB 上一动点,连CP 延长交x 轴于E ,∠CAB 和∠CEB 平分线交于F ,点C 在运动过程中FECOABO ∠∠+∠的值是否发生变化?若不变求其值;若变化,求其范围.专题13 三角形的基本知识例1130°或50°例2 B 例380°提示:∠A=2∠BGC-∠BDC例4设∠C=x°,则∠A=(47 x)°,∠B=180°-∠C-∠A=180°-117x°由∠A<∠B<∠C,得47x<180-117x<x.解得70<x<84.∵47x是整数,∴x=77.故∠C=77°,则∠A=44°,∠B=180°-77°-44°=59°.例5(1)不妨设a<b<c,则由30a b ca b c+=-⎧⎨+>⎩,得10<c<15.∵c是整数,∴c=11,12,13,14.当c=11时,b=10,a=9.当c=12时,b=11,a=7;b=10,a=8.当c=13时,b=12,a=5;b=11,a=6;b=10,a=7;b=19,a=8.当c=14时,b=13,a=3;b=12,a=4;b=11,a=5;b=10,a=6;b=9,a=7.(2)这些小段的长度只可能分别是1,1,2,3,5,8,13,21,34,55,89…但1+1+2+5+8+13+21+34+55=143<150,1+1+2+3+5+8+13+21+34+55+89>150,故n的最大值为10.共有以下7种方式:(1,1,2,3,5,8,13,21,34,62);(1,1,2,3,5,8,13,21,35,61);(1,1,2,3,5,8,13,21,36,60);(1,1,2,3,5,8,13,21,37,59);(1,1,2,3,5,8,13,22,35,60);(1,1,2,3,5,8,13,22,36,59);(1,1,2,3,5,8,14,22,36,58).例6 解法1一个小三角形内,它与该三角形的三个顶点可得到三个小三角形,从而增加了两个小三角形,于是可以推出,当三角形内有2008个点是,连线可得到小三角形的个数为:3+2×(2008-1)=4017(个).解法2 整体核算法设连线后把原三角形分割成n个小三角形,则它们的内角和为180°·n,又因为原三角形内每一个点为小三角形顶点时,能为小三角形提供360°的内角,2008个点共提供内角2008×360°,于是得方程180n=360×2008+180,解得n=4017,即这2008个点能将原三角形纸片分割成4017个小三角形.A 级1. 2(b +c )2. -5<a <-23. 钝角4. 180°5. 90°6. C7. D8. B9. B 10. B 11. 提示:过G 作GH ∥EB ,可推得BE ∥CF . 12. (1)∠AMC =12(∠ABC +∠ADC )=12×(24°+42°)=33° (2)∵AN 、CN 分别平分∠DAE ,∠BCD ,∴可设∠EAN =∠DAB =x ,∠BCN =∠DCN =y ,∴∠BAN =180°-x ,设BC 与AN 交于S ,∴∠BSA =∠CSN ,∴180°-x +∠B =y +∠ANC ,① 同理:180°-2x +∠B =2y +∠D ,②由①×2-②得:2∠ANC =180°+∠B +∠D . ∴∠ANC =12(180°+24°+42°)=123°. 13. (1)(2)略 提示:(3)DA +DB >AB ,DB +DC >DC ,DC +DA >CA ,将三个不等式相加,得2(DA +DB +DC )>AB +CB +CA .(4)由(2)知AB +AC >DB +DC ,同理BC +BA >DC +DA ,CA +CB >DA +DB , 故AB +BC +CA >DA +DB +DCB 级1. 82. 193. 175 提示:设∠A =(2x )°,∠B =(5x )°,则∠C =180°-(7x )°,由∠A ≤∠C ≤∠B 得15≤x ≤204. 2a5. A6. D7. D8. B9. 提示:设长度为4和12的高分别是边a ,b 上的,边c 上的高为h ,△ABC 的面积为S , 则24S a =,212S b =,2S c h =,由22222412412S S S S S h -<<+得36h <<,故5h =. 10. 711. 设锐角三角形最小角的度数为x ,最大角的度数为4x ,另一角为y ,则41804490x x y x y xx ++=︒⎧⎪⎨⎪<︒⎩,解得20≤x ≤22.5,故x =20或21或22. 所有锐角三角形的度数为:(20°,80°,80°),(21°,75°,84°),(22°,70°,88°). 12. (1)S △BCD =2 (2)略(3)设∠ABC =x ,则∠BCF =90°+x ,可证:∠E =12x ,∠DMF =45°. ∴2(90)245212BCF DMF x E x ∠-∠︒+-⨯︒==∠。
2014年全国初中数学竞赛精彩试题及问题详解
中国教育学会中学数学教学专业委员会2014年全国初中数学竞赛试题答题时注意:1.用圆珠笔或钢笔作答; 2.解答书写时不要超过装订线; 3.草稿纸不上交.一、选择题(共5小题,每小题7分,共35分.每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的.请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分)1.设非零实数a ,b ,c 满足2302340a b c a b c ++=⎧⎨++=⎩,,则222ab bc caa b c ++++的值为( ). (A )12-(B )0 (C )12(D )12.已知关于x 的不等式组255332x x x t x +⎧->-⎪⎨+⎪-<⎩,恰有5个整数解,则t 的取值范围是( ).(A )6-<t <112-(B )6-≤t <112-(C )6-<t ≤112-(D )6-≤t ≤112-3.如图,在Rt △ABC 中,已知O 是斜边AB 的中点,CD ⊥AB ,垂足为D ,DE ⊥OC ,垂足为E .若AD ,DB ,CD 的长度都是有理数,则线段OD ,OE ,DE ,AC 的长度中,不一定...是有理数的为( ).(A )OD (B )OE (C )DE(D )AC4.如图,已知△ABC 的面积为24,点D 在线段AC 上,点F 在线段BC 的延长线上,且4BC CF =,DCFE 是平行四边形,则图中阴影部分的面积为( ).(A )3 (B )4 (C )6(D )85.对于任意实数x ,y ,z ,定义运算“*”为:()()32233333451160x y x y xy x y x y +++*=+++-,且()x y z x y z **=**,则2013201232****的值为( ). (A )607967(B )1821967(C )5463967(D )16389967二、填空题(共5小题,每小题7分,共35分)6.设a =b 是a 的小数部分,c 是2a 的小数部分,则(4)b b c ++的值为 .7.一个质地均匀的正方体的六个面上分别标有数1,2,3,4,5,6.掷这个正方体三次,则其朝上的面的数和为3的倍数的概率是 .8.已知正整数a ,b ,c 满足2220+--=a b c ,2380-+=a b c ,则abc 的最大值为 .9.实数a ,b ,c ,d 满足:一元二次方程20x cx d ++=的两根为a ,b ,一元二次方程20x ax b ++=的两根为c ,d ,则所有满足条件的数组(),,,a b c d 为 .10.22121+++-…的值为 .三、解答题(共4题,每题20分,共80分)11.如图,抛物线y=23ax bx+-,顶点为E,该抛物线与x轴交于A,B两点,与y轴交于点C,且OB=OC=3OA.直线113y x=-+与y轴交于点D.求∠DBC-∠CBE.12.设△ABC的外心、垂心分别为O H、,若B C H O、、、共圆,对于所有的△ABC,求BAC∠所有可能的度数.13.如图,设点D 在△ABC 外接圆上,且为BC 的中点,点X 在BD 上,E 是AX 的中点,过△ABC 的内心I 作直线R T 平行于DE ,分别与BC ,AX 交于点R ,T ,设直线DR 与ET 交于点S .证明:点S 在△ABC 的外接圆上.14.如果将正整数M 放在正整数m 左侧,所得到的新数可被7整除,那么称M 为m 的“魔术数”(例如,把86放在415的左侧,得到的数86415能被7整除,所以称86为415的魔术数).求正整数n 的最小值,使得存在互不相同的正整数12n a a a ,,…,,满足对任意一个正整数m ,在12n a a a ,,…,中都至少有一个为m 的魔术数.中国教育学会中学数学教学专业委员会2013年全国初中数学竞赛试题参考答案一、选择题 1.A解:由已知得(234)(23)0a b c a b c a b c ++=++-++=,故2()0a b c ++=.于是2221()2ab bc ca a b c ++=-++,所以22212ab bc ca a b c ++=-++. 2.C解:根据题设知不等式组有解,解得,32t -<x <20.由于不等式组恰有5个整数解,这5个整数解只能为15,16,17,18,19,因此14≤32t -<15,解得6-<t ≤112-. 3.D解:因AD ,DB ,CD 的长度都是有理数,所以,OA =OB =OC =2AD BD+是有理数.于是,OD =OA -AD 是有理数.由Rt △DOE ∽Rt △COD ,知2OD OE OC =,·DC DODE OC=都是有理数,而AC=不一定是有理数.4.C解:因为DCFE 是平行四边形,所以DE //CF ,且EF //DC .连接CE ,因为DE //CF ,即DE //BF ,所以S △DEB = S △DEC ,因此原来阴影部分的面积等于△ACE 的面积.连接AF ,因为EF //CD ,即EF //AC ,所以S △ACE = S △ACF .因为4BC CF =,所以S △ABC = 4S △ACF .故阴影部分的面积为6.5.C解:设201320124m ***=,则()20132012433m ****=*32323339274593316460m m m m m m ⨯+⨯+⨯+==++++-, 于是()201320123292****=*3223333923929245546310360967⨯⨯+⨯⨯+⨯+==+-.二、填空题 6.2解:由于2123a a <<<<,故1=-b a ,22=-c a .所以223(4)(1)(124)(1)(1)12b b c a a a a a a a ++=--+-+=-++=-=.7.13解:掷三次正方体,朝上的面的数和为3的倍数的是3,6,9,12,15,18,且3=1+1+1,6=1+1+4=1+2+3=2+2+2,9=1+2+6=1+3+5=1+4+4=2+2+5=2+3+4=3+3+3, 12=1+5+6=2+4+6=2+5+5=3+3+6=3+4+5=4+4+4, 15=3+6+6=4+5+6=5+5+5, 18=6+6+6.记掷三次正方体面朝上的数分别为x ,y ,z .则使x +y +z 为3的倍数的(x ,y ,z )中,3个数都不相等的有8组,恰有两个相等的有6组,3个数都相等的有6组.故所求概率为83263616663⨯⨯+⨯+=⨯⨯.8.2013解:由已知2220+--=a b c ,2380-+=a b c 消去c ,并整理得()228666b a a -++=.由a 为正整数及26a a +≤66,可得1≤a ≤3.若1a =,则()2859b -=,无正整数解; 若2a =,则()2840b -=,无正整数解;若3a =,则()289b -=,于是可解得11=b ,5b =. (i )若11b =,则61c =,从而可得311612013abc =⨯⨯=; (ii )若5b =,则13c =,从而可得3513195abc =⨯⨯=. 综上知abc 的最大值为2013.9.(1212),,,--,(00),,,-t t (t 为任意实数) 解:由韦达定理得,,,.+=-⎧⎪=⎪⎨+=-⎪=⎪⎩a b c ab d c d a cd b 由上式,可知b a c d =--=.若0b d =≠,则1==d a b ,1==bc d ,进而2b d a c ==--=-.若0b d ==,则c a =-,有()(00),,,,,,=-a b c d t t (t 为任意实数). 经检验,数组(1212)--,,,与(00),,,-t t (t 为任意实数)满足条件. 10.200解:设0k >,那么=11111(1)1k k k k ⎤⎫=+=+-⎪⎥++⎝⎭⎣⎦. 上式对1=k ,2,…,99求和,得原式11991100100100⎫⎫=+-=-=⎪⎪⎝⎭⎝⎭.三、解答题11.解:将0x =分别代入y =113x -+,23y ax bx =+-知,D (0,1),C (0,3-),所以B (3,0),A (1-,0).直线y =113x -+过点B .将点C (0,3-)的坐标代入y =(1)(3)a x x +-,得1a =.…………5分抛物线223y x x =--的顶点为E (1,4-).于是由勾股定理得BC=CE,BE=因为BC 2+CE 2=BE 2,所以,△BCE 为直角三角形,90BCE ∠=︒.…………10分因此tan CBE ∠=CE CB =13.又tan ∠DBO =13OD OB =,则∠DBO =CBE ∠.所以,45DBC CBE DBC DBO OBC ∠-∠=∠-∠=∠=︒.…………20分12.解:分三种情况讨论. (i )若△ABC 为锐角三角形.因为1802B HC A B OC A ∠=︒-∠∠=∠,,所以由BHC BOC ∠=∠,可得1802A A ︒-∠=∠,于是60A ∠=︒.…………5分(ii )若△ABC 为钝角三角形.当90A ∠>︒时,因为()1802180BHC A BOC A ∠=︒-∠∠=︒-∠,,所以由180BHC BOC ∠+∠=︒,可得()3180180A ︒-∠=︒,于是120A ∠=︒;当90A ∠<︒时,不妨假设90B ∠>︒,因为2BHC A BOC A ∠=∠∠=∠,,所以由180BHC BOC ∠+∠=︒,可得3180A ∠=︒,于是60A ∠=︒.…………15分(iii )若△ABC 为直角三角形.当90A ∠=︒时,因为O 为边BC 的中点,B C H O ,,,不可能共圆,所以A ∠不可能等于90︒;当90A ∠<︒时,不妨假设90B ∠=︒,此时点B 与H 重合,于是总有B C H O ,,,共圆,因此A ∠可以是满足090A ︒<∠<︒的所有角.综上可得,A ∠所有可能取到的度数为所有锐角及120︒.…………20分13.证明:如图,设DR 与△ABC 的外接圆交于点S ',AX 与S E '交于点T ',连接S C CD S A AE AD '',,,,.由D 为BC 的中点知,A ,I ,D 三点共线,且∠CS D '=∠RCD ,△S CD '∽△CRD ,所以S D CDCD RD'=, ①即2CD S D RD '=⋅. ②…………5分由E 为AX 的中点知,∠AS E '=∠T AE ',△AS E '∽△T AE ',所以S E AEAE T E'=', ③ 即2AE S E T E ''=⋅. ④由IR ∥DE ,知180IRD S'DE S'AE ∠=︒-∠=∠.又因为IDR S DA S EA ''∠=∠=∠,所以△IRD ∽△S AE ',则有ID S ERD AE'=. ⑤ …………10分由I 为△ABC 的内心,连接CI ,由CID CAI ACI DCB BCI ICD ∠=∠+∠=∠+∠=∠知ID CD =.由式①,⑤,得S D S ECD AE''=, 即S D CDS E AE'='. ⑥ 由式②,④,得22CD S D RDAE S E T E'⋅=''⋅. ⑦ 由式⑥,⑦得S D RDS E T E'='', …………15分于是RT '∥DE .又RT ∥DE ,故点T '与T 重合,即点S '在直线ET 上.从而,点S '与S 重合,即点S 在△ABC 的外接圆上.…………20分14.解:若n ≤6,取m =1,2,…,7,根据抽屉原理知,必有12na a a ,,…,中的一个正整数M 是(1i j ,≤i <j ≤7)的公共的魔术数,即7|(10M i +),7|(10M j +).则有7|(j i -),但0<j i -≤6,矛盾.故n ≥7.…………10分又当12n a a a ,,…,为1,2,…,7时,对任意一个正整数m ,设其为k 位数(k 为正整数).则10k i m +(12i =,,…,7)被7除的余数两两不同.若不然,存在正整数i ,(1j ≤i <j ≤7),满足7|[(10)(10)]k k j m i m +-+,即7|10()kj i -,从而7|()j i -,矛盾.故必存在一个正整数i (1≤i ≤7),使得7|(10)k i m +,即i 为m 的魔术数. 所以,n 的最小值为7.…………20分。
八年级数学竞赛题:直角三角形
八年级数学竞赛题:直角三角形直角三角形是一类特殊三角形,有以下丰富的性质:角的关系:两锐角互余;边的关系:斜边的平方等于两直角边的平方和;边角关系:30°所对的直角边等于斜边的一半.这些性质广泛应用于线段计算、证明线段倍分关系、证明线段平方关系等方面.问题解决例1 若a 、b 、c 是直角三角形的三条边长,斜边c 上的高的长是h ,给出下列结论:①以a 2,b 2,c 2的长为边的三条线段能组成一个三角形;②以a ,b ,c 的长为边的三条线段能组成一个三角形;③以a +b ,c +h ,h 的长为边的三条线段能组成直角三角形;④以1a ,,1b ,1c的长为边的三条线段能组成直角三角形.其中所有正确结论的序号为______________.例2 如图,梯子AB 斜靠在墙面上,AC ⊥BC ,AC =BC ,当梯子的顶端A 沿AC 方向下滑x 米时,梯足B 沿CB 方向滑动y 米,则x 与y 的大小关系是( ).A .x =yB .x >yC .x <yD .不确定例3 如图,在⋅⊥=∠∆AB CD ACB ABC Rt .90, 中.,,,h CD c AB a BC b AC ====求证:(1)222111hb =+α; (2)h c b a +<+;(3)h c h b a ++、、为边的三角形是直角三角形.例4 已知∠AOB =90°,在∠AOB 的平分线OM 上有一点C ,将一个三角板的直角顶点与C 重合,它的两条直角边分别与OA 、OB (或它们的反向延长线)相交于点D 、E . 当三角板绕C 旋转到CD 与OA 垂直时,如图①,易证OD +OE 2.当三角板绕点C旋转到CD与OA不垂直时,如图②、图③这两种情况下、上述结论是否还成立?若成立,请给予证明;若不成立,线段OD、OE、OC之间又有怎样的数量关系?请写出你的猜想,不需证明.例5 如图,已知P为△ABC边BC上的一点.且PC=2PB,∠ABC=45°,∠APC=60°,求∠ACB的度数.1.用直角边分别为3和4的两个直角三角形拼成凸四边形.所得的四边形的周长是__________.2.如图,P是正△ABC内的一点,且P A=6,PB=8,PC=10,若将△P AC绕点A旋转后,得到△P’AB,则点P与点P’ 之间的距离为____________,∠APB=____________.3.如图,已知AB=13,BC=14,AC=15,AD⊥BC于D,则AD=____________.4.如图,在四边形ABCD中,AB、BC、CD、DA的长分别为2,2,232,并且AB⊥BC,则∠BAD的度数为____________.’5.如图,在△ABC中,AB=AC=5,BC=6,点M为BC的中点,MN⊥AC于点N,则MN 等于().A.65B.95C.125D.1656.如图,小正方形边长为1,连接小正方形的三个顶点,可得△ABC ,则AC 边上的高为( ).A .322B .3510C .355D .4557.如图,有一张直角三角形纸片,两直角边AC =6cm ,BC =8cm ,将△ABC 折叠. 使B 点与A 点重合,折痕为DE ,则CD 等于( )cm . A .254 B .223 C .74 D . 538.如图,在R t △ABC 中,A B ⊥AC ,AD ⊥BC ,BE 平分∠ABC ,交AD 于E ,EF ∥AC ,下列结论一定成立的是( ). A .AB=BF B .AE=ED C .AD=DC D .∠ABE=∠DFE9.如图,已知△ABC 和△ECD 都是等腰直角三角形,∠ACB=∠DCE=90°,D 为AB 边上一点.求证:222DE AE AD =+10.△ABC 中,BC =a ,AC =b ,AB =c ,若∠C =90°,如图(1),根据勾股定理,则a 2+b 2=c 2,若△ABC 不是直角三角形,如图(2)、(3),请你类比勾股定理,试猜想 a 2+b 2与c 2的关系,并证明你的结论.11.如图,在△ABC 中,已知AB=BC=CA ,AE=CD ,AD 、BE 相交于P ,BQ ⊥AD 于Q ,求证:BP =2PQ .12.美丽的人造平面珊瑚礁图案.图中的三角形都是直角三角形,图中的四边形都是正方形,如果图中所有的正方形的面积之和是980平方厘米.问:最大的正方形的边长是___________.13.如图,在△ABC 中,AB =5,AC =13,边BC 上的中线AD =6,则BC 的长为____________.14.△ABC 中,AC =BC ,∠ACB =90°,D 、E 是AB 上两点,AD =3,BE =4,∠DCE =45°,则△ABC 的面积是____________.15.如图,在四边形ABCD 中,∠A =∠BCD =90°,BC =CD ,E 是AD 延长线上一点,若DE=AB =3,CE =4在,则AD 的长为____________.16.如图,Rt △ABC 中,∠ACB =90°,CD ⊥AB 于D ,AF 平分∠CAB 交CD 于E ,交CB 于F ,且EG ∥AB 交CB 于G ,则CF 与GB 的大小关系是( ).A .CF >GB B .CF =GBC .CF <GBD .无法确定17.对如下的3个命题:命题l :边长为连续整数的直角三角形是存在的.命题2:边长为连续整数的锐角三角形是存在的.命题3:边长为连续整数的钝角三角形是存在的.正确命题的个数为( ).A .0B .1C .2D .318.2002年8月在北京召开的国际数学家大会会标取材于我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图所示).如果大正方形的面积是13,小正方形的面积是1,直角三角形的较短直角边为a ,较长直角边为b ,那么(a +b )2的值为( ).A .13B .19C .25D .16919.在锐角三角形中,已知某两边a =1,b =3,那么第三边的变化范围是( ).A .42<<cB .32≤<cC .102<<cD .108<<c20.如图,已知∠ACB=90°,是∠CAB的平分线,BC=4,CD=32,求AC的长.21.如图,已知∠ABC=30°,∠ADC=60°,AD=DC.求证:BD2=AB2+BC2.22.如图,在Rt△ABC中,∠C=90°,∠A=30°,分别以AB、AC为边在△ABC的外侧作等边△ABE和等边△ACD,DE与AB交于F,求证:EF=FD.23.如图,直线OB是一次函数y=2x的图象,点A的坐标为(0,2),在直线OB上找点C,使得△ACO为等腰三角形,求点C的坐标.24.如图,在平面直角坐标系中,四边形OABC为矩形,点A、B的坐标分别为(3,0)、(3,4),动点M、N分别从O、B同时出发,以每秒l个单位的速度运动,其中,点M从O点出发沿OA向终点A运动,点N从B出发沿BC向终点C运动,过点N作N P⊥BC,交AC于P.连MP,若M、N两动点运动了x秒.(1)设△MP A面积为y,试求y与x的函数关系式;(2)请你探索:当x为何值时,△MP A是一个等腰三角形?。
竞赛题答案
2014—2015年八年级数学竞赛试题参考答案与试题解析一.选择题(共8小题,满分24分,每小题3分)D3.(3分)(2014•天水)如图,将矩形纸片ABCD折叠,使点D与点B重合,点C落在C′处,折痕为EF,若AB=1,BC=2,则△ABE和BC′F的周长之和为()4.(3分)(2012•孝感)如图,△ABC在平面直角坐标系中第二象限内,顶点A的坐标是(﹣2,3),先把△ABC向右平移4个单位得到△A1B1C1,再作△A1B1C1关于x轴对称图形△A2B2C2,则顶点A2的坐标是()5.(3分)(2012•河源)如图,在折纸活动中,小明制作了一张△ABC纸片,点D、E分别是边AB、AC上,将△ABC 沿着DE折叠压平,A与A′重合,若∠A=75°,则∠1+∠2=()6.(3分)小明在加一多边形的角的和时,不小心把一个角多加了一次,结果为1500°,则小明多加的那个角的大7.(3分)(2012•深圳)如图,已知:∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=1,则△A6B6A7的边长为()8.(3分)如图是一个4×4的正方形网格,图中所标示的7个角的角度之和等于()二.填空题(共8小题,满分24分,每小题3分)9.(3分)分解因式:a4﹣4a3+4a2﹣9=(a﹣3)(a+1)(a2﹣2a+3).10.(3分)(2013•德阳)若,则=6.+解:∵,∴a+)∴=711.(3分)(2010•贺州)已知10m=2,10n=3,则103m+2n=72.12.(3分)如图,AC=BC,DC=EC,∠ACB=∠ECD=90°,且∠EBD=42°,则∠AEB=132°.13.(3分)(2007•哈尔滨)如图,∠AOB=30°,OP平分∠AOB,PC∥OB,PD⊥OB,如果PC=6,那么PD等于3.PE=14.(3分)(2011•贵港)如图所示,在边长为2的正三角形ABC中,E、F、G分别为AB、AC、BC的中点,点P 为线段EF上一个动点,连接BP、GP,则△BPG的周长的最小值是3.15.(3分)如图,已知AB=AC,D为∠BAC的角平分线上面一点,连接BD,CD;如图2,已知AB=AC,D、E 为∠BAC的角平分线上面两点,连接BD,CD,BE,CE;如图3,已知AB=AC,D、E、F为∠BAC的角平分线上面三点,连接BD,CD,BE,CE,BF,CF;…,依次规律,第n个图形中有全等三角形的对数是.个点时,图中有个全等三角形即可.个点时,图中有个全等三角形.故答案为:16.(3分)如图,△ABC的外角∠ACD的平分线CP与内角∠ABC平分线BP交于点P,若∠BPC=36°,则∠CAP=54°.三.解答题(共6小题)17.计算:(﹣1)(﹣1)…(﹣1)(﹣1).﹣(﹣﹣((((())(﹣×(﹣)××)×18.如图,已知:E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA,C、D是垂足,连接CD,且交OE于点F.(1)求证:OE是CD的垂直平分线.(2)若∠AOB=60°,请你探究OE,EF之间有什么数量关系?并证明你的结论.19.(2013•张湾区模拟)如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点.求证:AE=BD.20.(2013•临沂)如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1)求证:AF=DC;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.AD=BC=DC21.如图,AF平分∠BAC,DF平分∠BDC,求证:∠AFD=(∠H+∠BGC).∠BDC+∴(∠∠BDC+22.(2013•东营)(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC 平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状.。
三角形三边关系练习题(1)
(
)
又∵AD=AC(
)
∴AB–AD<BC(
)
而AB–AD=BD
∴BD<BC(
)
(3)如图,△ABC中,AB=BC,D是AB延长 线上的点,说明AD>DC的理由。
2、如图,已知P是△ABC内任意一点,则 有AB+AC>PB+PC.
3. 如图所示,在△ABC中,D是BA上一点, 则AB+2CD>AC+BC成立吗? 说明你的理 由.
三角形边角不等式关系练习题
一、边的不等关系证明
1、如图,在△ABC的边AB上截取AD=AC, 连结CD,
(1)说明2AD>CD的理由(填空);
解:∵AD+AC>CD
(
)
又∵AD=AC(
)
∴AD+AD>CD(
)
∴2AD>CD
(2)说明BD<BC的理由。
解:∵_______<BC
BC(
)
即AE+BC>AC( AD+AC
) ∴AB+AE=CD,∵ BD-BC <CD,∴ BD-BC<AD-AB.
5.(1)AC+AD>CD,BC+BD>CD,两式 相加:AB+BC+CA>2CD.
(2)AD+CD>AC,BD+CD>BC,两式相 加:AB+2CD>AC+BC.
4.如图,已知△ABC中,AB=AC,D在AC的 延长线上.求证:BD-BC<AD-AB.
5.如图,△ABC中,D是AB上一点.求证:
(1)AB+BC+CA>2CD;(2)AB+2CD> AC+BC.
6.在右图中,已知AD是△ABC的BC边上的 高,AE是BC边上的中线,求证: AB+AE+BC>AD+AC
八年级数学竞赛讲座几何不等式附答案
第三十二讲 几何不等式1.三角形的不等关系是研究许多几何不等问题的基础,这种不等关系分为两类:一类是在同一三角形中进行比较;一类是在两个三角形中比较.这里主要方法是把要比较的边或角如何转化到同一个三角形或适当安排在两个三角形之中.2.在同一个三角形中有关边或角不等关系的证明,常有以下定理: (1)三角形任何两边之和大于第三边. (2)三角形任何两边之差小于第三边.(3)三角形的一个外角大于任何一个与它不相邻的内角. (4)同一三角形中大边对大角. (5)同一三角形中大角对大边. 例题求解【例1】 如图19-2,在等腰梯形ABCD 中,A ∥BC ,AB=CD ,E 、F 分别在AB 、CD 上且AE=CF .求证:)(21BC AD EF +≥.思路点拨 如图所示,延长AD 至D 1使DD 1=BC ,延长BC 至C l ,使CC l =AD ,连结C l D l ,则ABC 1D l 是平行四边形,ABCD 和CDD l C l 是两个全等的梯形,在D 1C 1上取一点G 使D 1G=AE ,连结FG 和EG . 由AE=CF ,则EF=FG ,又EG=AD 1=AD+BC , ∴ 2EF=EF+FG ≥EG=AD+BC . 即)(21BC AD EF +≥. 注 当且仅当点F 落在EG 上时,即E 为AB 的中点时,结论中的等号成立.证明这类不等式的一个常用方法是能过添加辅助线,把要比较大小的线段或角集中到一个三角形中,或者适当地安排在两个三角形中,以便应用上述基本不等式关系.【例2】 如图19-3,△ABC 中,AB>AC ,BE 、CF 是中线,求证:B E>CF .思路点拨将BE、CE分别平移到FG、FD,则四边形EFDC为平行四边形,作FH⊥BC于H.∴AB>AC,且F,E分别为AB、AC的中点,∴ FB>CE.∴ FB>FD,由勾股定理得:HB>HD,即FB>FD.又∵GH=GB+BH=EF+BH=DC+BH>CD+DH=CH,即GH>CH,∴ GF>CF.即 BE>CF.【例3】如图19-4,在等腰△ABC中,AB=AC,D为形内一点,∠ADC>∠ADB,求证:DB>DC.思路点拨把△ABD绕点A按逆时针方向旋转△BAC至△ACD′,连接DD′,则AD=AD'.∴∠ADD′=∠AD′D,而∠ADC>∠ADB,∴∠ADC>∠AD′C,∴∠ADD′+∠D′DC>∠AD′D+∠CD′D∴∠D'DC>∠DD'C.∴ CD′>DC,即DB>DC.注几何图形在平移、对称、旋转变换中,只是图形位置发生变化,而线段的长度、角的大小不变.【例4】如图19-5,在△ABC中,a、b、c分别为∠A、∠B、∠C的对边,且2 b < a +c,求证:2∠B<∠A+∠C.思路点拨延长BA到D,使AD=BC= a,延长BC到E,使CE=AB=,连结DE,这就把图形补成一个等腰三角形,即有BD=BE= a + c.∴∠BDE=∠BED.作DF∥AC,CF∥AD,相交于F,连结EF,则ADFC是平行四边形.∴CF=AD=BC.又∠FCE=∠CBA,∴△FCE≌△CBA∴ EF=AC= b.于是 DE≤DF+EF=2 b < a+c=BD=BE.这样,在△BDE中,便有∠B<∠BDE=∠BED∴∠2B<∠BDE+∠BED=180°一∠B=∠A+∠C,即2∠B<∠A+∠C.【例5】过三角形的重心任作一直线,把这个三角形分成两部分,求证:这两部分面积之差不大于整个三角形面积的91. 思路点拨 如图19-6,设△ABC 重心为,过点G 分别作各边的平行线与各边交点依次为A 1、B 1、B 2、C 1、C 2、A 2连结A 1A 2;B 1B 2、C 1C 2,∵ 三角形重心到一个顶点的距离等于它到对边中点距离的二倍, ∴ A 1A=A 1B l =B 1B , BB 2=B 2C l =C 1C ,CC 2=C 2A 2=A 2A . ∵ A 1A 2∥BC ,B 1B 2∥AC ,C 1C 2∥AB , ∴ 图中的9个三角形全等.即△AA 1A 2≌△A 1B 1G ≌△B 2GB 1≌…≌△C 2C l C . 所以上述9个小三角形的面积均等于△ABC 面积的91. 若过点C 作的直线恰好与直线A 1C 1、B 1C 2、B 2A 2重合,则△ABC 被分成的两部分的面积之差等于一个小三角形的面积,即等于△ABC 面积的91. 若过点C 作的直线不与直线A 1C 1、B 1C 2、B 2A 2重合,不失一般性,设此直线交AC 于F ,交AB 于E ,交C 1C 2于D ,∵ GB l =GC 2,∠EB 1G=∠DC 2C ,∠B 1GE=∠C 2GD , ∴ △B 1GE ≌△C 2GD .∴ EF 分△ABC 成两部分的面积之差等于12DFCC DF C S S 四边形-∆, 而这个差的绝对值不会超过S △C 1C 2C 的面积. 从而EF 分△ABC 成两部分的面积之差不大于△ABC 面积的91. 综上所述:过三角形重心的任一直线分三角形成两部分的面积之差不大于整个三角形面积的91. 【例6】 如图19-12,在△ABC 中,P 、Q 、R 将其周长三等分,且P 、Q 在A B 上,求证:92>∆∆ABCPQR S S . 思路点拨 易想到作△ABC 和△PQR 的高,将三角形的面积比化成线段的乘积比,并利用平行线截线段成比例定理,把其中两条高的比转换成三角形边上线段的比. 如图19-12,作CL ⊥AB 于L ,RH ⊥PQ 于H ,则ACAB ARPQ CL AB RH PQ S S ABCPQR ⋅⋅=⋅⋅=∆∆.不妨设△ABC 的周长为1,则PQ=31,AB<21,∴32>AB PQ .∵AP ≤AP+BQ=AB —PQ<613121=-,∴AR=31—AP>31-6161=.又AC<21,从而31>AC AR ,∴923132=⨯>∆∆ABC PQR S S . 【例7】 (2000年江苏省初三竞赛题)如图19-13,四边形A BCD 中,AB=BC ,∠ABC=60°,P 为四边形ABCD 内一点,且∠APD=120°.证明:PA+PD+PC ≥BD .思路点拨 在四边形ABCD 外侧作等边三角形AB ′D ,由∠APD=120°可证明B'P=AP+PD .易知B' C ≥PB'+PC .得B' C ≤AP+PD+PC .下证BD= B'C .∵△AB'D 是等边三角形,∴ AB'=AD ,∠B'AD=60°,又易知△ABC 是等边三角形,故AC=AB ,∠BAC=60°,于是△AB'C ≌△ADB ,∴ B'C= DB .【例8】 设a h 、b h 、c h 是锐角△ABC 三边上的高,求证:121<++++<cb a h h h cb a . 思路点拨 如图19-14,在Rt △ADC 中,由于AC>AD ,故a h b >,同理可证b h c >,c h a > ∴c b a h h h c b a ++<++,即1<++++cb a h h h cb a ①设△ABC 的垂心为H 点,由于HA+HB>AB ,HB+HC>BC ,HC+HA>AC ,即HA+HB+HC>)(21c b a ++.从而)(21c b a HC HB HA h h h c b a ++>++>++, 即21>++++c b a h h h c b a ② 由①、②得121<++++<cb a h h h cb a .学历训练 (A 级)1.在△ABC 中,AD 为中线,AB=7,AC=5,则AD 的取值范围为 .2.(安徽省数学竞赛)已知在△ABC 中,∠A ≤∠B ≤∠C ,且2∠B=5∠A ,则AB 的敢值范围是 .3.(太原市初中数学竞赛试题)用长度相等的100根火柴棍,摆放成一个三角形,使最大边的长度是最小边长度的3倍,求满足此条件的每个三角形的各边所用火柴棍的根数 .4.(全国高中理科试验班招生数学试题)面积为1的三角形中,三边长分别为a 、b 、c ,且满足a ≤b ≤c ,则a+b 的最小值是 .5.(江苏数学竞赛培训题)在任意△ABC 中,总存在一个最小角α,则这个角α的取值范围为 .(B 级)1.如图19-16,△ABC 中,E 、F 分别为AC 、AB 上任一点,BE 、CF 交于P ,求证:PE+PF<AE+AF .2.如图19-17,等线段AB 、CD 交于O ,且∠AOC=60°,求证:AC+BD ≥AB . 3.如图19-18,矩形ABCD 中,E 、F 别是AB 、CD 上的点,求证:EF<AC .4.已知 a 、b 、x 、y 均小于0,122=+y x ,求证:b a x b y a y b x a +≥+++22222222. 5.如图19-19,在△ABC 中,∠B=2∠C ,求证:AC<2AB .6.平面上有n 个点,其中任意三点构成一个直角三角形,求n 的最大值.7.如图19-20,已知△ABC 中AB>AC ,P 是角平分线AD 上任一点,求证:AB -AC>PB —PC .。
【名校竞赛】2014届八年级全国数学竞赛赛前专项训练:代数式、恒等式、恒..
初中数学竞赛专项训练(代数式、恒等式、恒等变形)(代数式、恒等式、恒等变形)一、选择题:下面各题的选项中,只有一项是正确的,请将正确选项的代号填在括号内。
下面各题的选项中,只有一项是正确的,请将正确选项的代号填在括号内。
1、某商店经销一批衬衣,进价为每件m 元,零售价比进价高a%a%,后因市场的变化,该店,后因市场的变化,该店把零售价调整为原来零售价的b%b%出售,那么调价后每件衬衣的零售价是出售,那么调价后每件衬衣的零售价是出售,那么调价后每件衬衣的零售价是( ) A. m(1+A. m(1+a%)(1-b%)a%)(1-b%)元 B. m·m·a%(1-b%)a%(1-b%)元 C. m(1+a%)b%元 D. m(1+a%b%)元 2、如果a 、b 、c 是非零实数,且a+b+c=0,那么||||||||abc abc c c b b a a +++的所有可能的值为的所有可能的值为( ) A. 0 B. 1或-1 C. 2或-2 D. 0或-2 3、在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,若∠B =60°,则bc ab ac +++的值为的值为 ( ) A. 21B. 22C. 1 D. 24、设a <b <0,a 2+b 2=4ab ,则ba ba -+的值为的值为 ( )A. 3B. 6C. 2 D. 3 5、已知a =1999x +2000,b =1999x +2001,c =1999x +2002,则多项式a 2+b 2+c 2-ab-bc-ca 的值为的值为 ( )A. 0 B. 1 C. 2 D. 3 6、设a 、b 、c 为实数,226232222ppp+-=+-=+-=a c z c b y b a x ,,,则x 、y 、z 中,至少有一个值一个值( )A. 大于0 B. 等于0 C. 不大于0 D. 小于0 7、已知abc ≠0,且a+b+c =0,则代数式abcca b bc a 222++的值是的值是 ( )A. 3 B. 2 C. 1 D. 0 8、若136498322++-+-=y x y xy x M (x 、y 是实数),则M 的值一定是的值一定是 ( ) A. 正数正数 B. 负数负数C. 零D. 整数整数二、填空题1、某商品的标价比成本高p%,当该商品降价出售时,为了不亏损成本,售价的折扣(即降价的百分数)不得超过d%,则d 可用p 表示为_____表示为_____c A B C a b 2、已知-1<a <0,化简4)1(4)1(22+-+-+aa a a 得_______得_______3、已知实数z 、y 、z 满足x+y=5及z 2=xy+y-9,则x+2y+3z=_______________ 4、已知x 1、x 2、……、x 40都是正整数,且x 1+x 2+……+x 40=58,若x 12+x 22+……+x 402的最大值为A ,最小值为B ,则A +B 的值等于________5、计算=+¼¼+++++¼¼++++)441()417)(413)(49)(45()439()415)(411)(47)(43(4444444444________________ 6、已知多项式154723--+x bx ax 可被13+x 和32-x 整除,则=+b a _____ 三、解答题:1、已知实数a 、b 、c 、d 互不相等,且xa d d c cb b a =+=+=+=+1111,试求x 的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学竞赛专项训练(命题及三角形边角不等关系)一、选择题:1、如图8-1,已知AB =10,P 是线段AB 上任意一点,在AB 的同侧分别以AP 和PB 为边作两个等边三角形APC 和BPD ,则线段CD 的长度的最小值是 ( ) A. 4B. 5C. 6D. )15(5-2、如图8-2,四边形ABCD 中∠A =60°,∠B =∠D =90°,AD =8,AB =7, 则BC +CD 等于 ( ) A. 36B. 53C. 43D. 333、如图8-3,在梯形ABCD 中,AD ∥BC ,AD =3,BC =9,AB =6,CD =4,若EF ∥BC ,且梯形AEFD 与梯形EBCF 的周长相等,则EF 的长为 ( ) A. 745 B. 533 C. 539 D. 2154、已知△ABC 的三个内角为A 、B 、C 且α=A+B ,β=C+A ,γ=C+B ,则α、β、γ中,锐角的个数最多为 ( ) A. 1 B. 2 C. 3 D. 05、如图8-4,矩形ABCD 的长AD =9cm ,宽AB =3cm ,将其折叠,使点D 与点B 重合,那么折叠后DE 的长和折痕EF 的长分别为 ( )A. 4cm cm 10B. 5cm cm 10C. 4cm cm 32D. 5cm cm 326、一个三角形的三边长分别为a ,a ,b ,另一个三角形的三边长分别为a ,b ,b ,其中a>b ,若两个三角形的最小内角相等,则b a的值等于 ( )A.213+ B.215+ C. 223+ D. 225+ 7、在凸10边形的所有内角中,锐角的个数最多是( )A. 0B. 1C. 3D. 58、若函数)0(>=k kx y 与函数xy 1=的图象相交于A ,C 两点,AB 垂直x 轴于B ,则△ABC 的面积为 ( ) A. 1B. 2C. kD. k 2二、填空题1、若四边形的一组对边中点的连线的长为d ,另一组对边的长分别为a ,b ,则d 与2ba +的大小关系是_______60°A B CD A CD P图8-1 图8-2图8-3 图8-42、如图8-5,AA ′、BB ′分别是∠EAB 、∠DBC 的平分线,若AA ′=BB ′=AB ,则∠BAC 的度数为___3、已知五条线段长度分别是3、5、7、9、11,将其中不同的三个数组成三数组,比如(3、5、7)、(5、9、11)……问有多少组中的三个数恰好构成一个三角形的三条边的长_____4、如图8-6,P 是矩形ABCD 内一点,若PA =3,PB =4,PC =5,则PD =_______5、如图8-7,甲楼楼高16米,乙楼座落在甲楼的正北面,已知当地冬至中午12时太阳光线与水平面的夹角为30°,此时求①如果两楼相距20米,那么甲楼的影子落在乙楼上有多高?______②如果甲楼的影子刚好不落在乙楼上,那么两楼的距离应当是______米。
6、如图8-8,在△ABC 中,∠ABC =60°,点P 是△ABC 内的一点,使得∠APB =∠BPC =∠CPA ,且PA =8,PC =6,则PB =__三、解答题1、如图8-9,AD 是△ABC 中BC 边上的中线,求证:AD <21(AB+AC )2、已知一个三角形的周长为P ,问这个三角形的最大边长度在哪个范围内变化?图8-6图8-7图8-8 BBD 图8-9′图8-5A ′3、如图8-10,在Rt △ABC 中,∠ACB =90°,CD 是角平分线,DE ∥BC 交AC 于点E ,DF ∥AC 交BC 于点F 。
求证:①四边形CEDF 是正方形。
②CD 2=2AE ·BF4、从1、2、3、4……、2004中任选k 个数,使所选的k 个数中一定可以找到能构成三角形边长的三个数(这里要求三角形三边长互不相等),试问满足条件的k 的最小值是多少?A CB 图8-10参考答案一、选择题1、如图过C 作CE ⊥AD 于E ,过D 作DF ⊥PB 于F ,过D 作DG ⊥CE 于G 。
显然DG =EF =21AB =5,CD ≥DG ,当P 为AB 中点时,有CD =DG =5,所以CD 长度的最小值是5。
2、如图延长AB 、DC 相交于E ,在Rt △ADE 中,可求得AE =16,DE =83,于是BE =AE -AB =9,在Rt △BEC 中,可求得BC =33,CE =63,于是CD =DE -CE =23 BC +CD =53。
3、由已知AD+AE+EF+FD =EF+EB+BC+CF∴AD+AE+FD =EB+BC+CF =11)(21=+++CD BC AB AD ∵EF ∥BC ,∴EF ∥AD ,FCDFEB AE = 设k FC DF EB AE ==,141161+=+=+=+=k kCD k k DF k k AB k k AE , AD+AE+FD =3+13131416++=+++k k k k k k ∴111313=++k k 解得k =4 作AH ∥CD ,AH 交BC 于H ,交EF 于G ,则GF =HC =AD =3,BH =BC -CH =9-3=6∵54==AB AE BH EG ,∴52454==BH EG ∴5393524=+=+=GF EG EF 4、假设α、β、γ三个角都是锐角,即α<90°,β<90°,γ<90°,也就是A+B <90°,B+C <90°,C+A <90°。
∵2(A+B+C )<270°,A +B +C <135°与A +B +C =180°矛盾。
故α、β、γ不可能都是锐角,假设α、β、γ中有两个锐角,不妨设α、β是锐角,那么有A +B <90°,C +A <90°,∴A +(A +B +C)<180°,即A+180°<180°,A <0°这也不可能,所以α、β、γ中至多只有一个锐角,如A =20°,B =30°,C =130°,α=50°,选A 。
5、折叠后,DE =BE ,设DE =x ,则AE =9-x ,在Rt △ABC 中,AB 2+AE 2=BE 2,即222)9(3x x =-+,解得x =5,连结BD 交EF 于O ,则EO =FO ,BO =DO∵1033922=+=BD ∴DO =1023在Rt △DOE 中,EO =210)1023(52222=-=-DO DE ∴EF =10。
选B 。
6、设△ABC 中,AB =AC =a ,BC =b ,如图D 是AB 上一点,有AD =b ,因a>b ,ABC D P EG 60°ABC DEH故∠A 是△ABC 的最小角,设∠A =Q ,则以b,b,a 为三边之三角形的最小角亦为Q ,从而它与△ABC 全等,所以DC =b ,∠ACD =Q ,因有公共底角∠B ,所以有等腰△ADC ∽等腰△CBD ,从而得BC BD AB BC =,即b b a a b -=,令ba x =,即得方程012=--x x ,解得215+==b a x 。
选B 。
7、C 。
由于任意凸多边形的所有外角之和都是360°,故外角中钝角的个数不能超过3个,又因为内角与外角互补,因此,内角中锐角最多不能超过3个,实际上,容易构造出内角中有三个锐角的凸10边形。
8、A 。
设点A 的坐标为(y x ,),则1=xy ,故△ABO 的面积为2121=xy ,又因为△ABO 与△CBO 同底等高,因此△ABC 的面积=2×△ABO 的面积=1。
二、填空题1、如图设四边形ABCD 的一组对边AB 和CD 的中点分别为M 、N ,MN=d ,另一组对边是AD 和BC ,其长度分别为a 、b ,连结BD ,设P 是BD 的中点,连结MP 、PN ,则MP =2a ,NP =2b ,显然恒有2ba d +≤,当AD ∥BC ,由平行线等分线段定理知M 、N 、P 三点共线,此时有2b a d +=,所以d 与2b a +的大小关系是)2(2d ba b a d ≥++≤或。
2、12°。
设∠BAC 的度数为x ,∵AB =BB ′ ∴∠B ′BD =2x ,∠CBD =4x∵AB =AA ′ ∴∠AA ′B =∠AB A ′=∠CBD =4x ∵∠A ′AB =)180(21x -︒ ∴︒=++-︒18044)180(21x x x ,于是可解出x =12°。
3、以3,5,7,9,11构成的三数组不难列举出共有10组,它们是(3,5,7)、(3,5,9)、(3,5,11)、(3,7,9)、(3,7,11)、(3,9,11)、(5,7,9)、(5,7,11)、(5,9,11)、(7,9,11)。
由3+5<9,3+5<11,3+7<11可以判定(3,5,9)、(3,5,11)、(3,7,11)这三组不能构成三角形的边长,因此共有7个数组构成三角形三边长。
4、过P 作AB 的平行线分别交DA 、BC 于E 、F ,过P 作BC 的平行线分别交AB 、CD 于G 、H 。
设AG =DH =a ,BG =CH =b ,AE =BF =c ,DE =CF =d , 则222222222222DP ad c b BP d b CP c a AP ++=+=+==, ,,于是2222DP BP CP AP +=+,故184532222222=-+=-+=BP CP AP DP , DP =325、①设冬天太阳最低时,甲楼最高处A 点的影子落在乙楼的C 处,那么图中CD 的长度就是甲楼的影子在乙楼上的高度,设CE ⊥AB 于点E ,那么在△AEC 中,∠AEC =90°,∠ACE =30°,EC =20米。
ABDCPMN E H所以AE =EC 6.11332030tan 20tan ≈⨯=︒⋅=∠⋅ACE (米)。
CD =EB =AB-AE =16-11.6=4.4(米)②设点A 的影子落到地面上某一点C ,则在△ABC 中,∠ACB =30°,AB =16米,所以7.27316cot ≈⨯=∠⋅=ACB AB BC (米)。
所以要使甲楼的影子不影响乙楼,那么乙楼距离甲楼至少要27.7米。
6、提示:由题意∠APB =∠BPC =∠CPA =120°,设∠PBC =α,∠ABC =60° 则∠ABP =60°-α,∴∠BAP =∠PBC =α,∴△ABP ∽△BPC ,PCBPBP AP =,BP 2=AP ·PC 3448==⋅=PC AP BP三、解答题1、证明:如图延长AD 至E ,使AD =DE ,连结BE 。