谷轮压缩机使用指南
压缩机运行操作说明
压缩机运行操作说明
一、运转前
1.确认电源的电压,显示状态正常。
2.请将油桶的卸油阀打开,泄放冷凝水后关闭。
3.请检查油位,需保持在H-L两条红线之间。
4.如水冷式压缩机请确认冷却水是否正常供应。
5.在开机前必须要把储气罐和过滤器内部的油和水泄放完后关闭。
二、启动
1.开启电源开关。
2.按下启动按钮,电机即自动起动,显示主电机运转。
3.检查排气压力及排气温度,显示是否正常。
三、运转
1.请保持排气温度在75-100度之间,避免冷凝水析出,将油乳化。
四、停机
1.按下停机按钮,显示停机倒计时,压缩机即停止运转。
2.将电源关闭。
3.非紧急情况,请勿使用紧急停机按钮停机。
五、注意事项
1.初次启动必须从进气口加大约1L油进主机,电机保养后必须确认压缩机启动的运行方向。
2.请勿将不同厂家牌子的润滑油混合使用。
谷轮压缩机应用手册
谷轮压缩机应用手册压缩机的安装安装步骤介绍现场安装的系统绝大多数不能运转的原因很可能归咎于粗心或安装时操作不当。
下述操作指南系统地涉及了必须考虑的要点,并有助于安装或维修人员进行每一步安装时避免错误操作。
这些操作指南具有普遍性。
主要是针对于现场安装和使用2马力或更大功率的压缩机系统。
但是本操作指南几乎可适用任何类型的现场安装系统,而所采用的步骤可视具体安装情况而定。
设计及运用压缩机选择的位置应有良好的通风,即使是使用相隔很远的冷凝器也得如此。
因为压缩机电机和排气会释放出热量。
风冷的压缩机必须供有强制对流循环空气以进行强制冷却。
风冷冷凝器必须安装在能确保有足够空气来冷凝的地方。
必须特别小心以免空气从一个冷凝器再循环至另一个冷凝器。
水冷机组必须供有足够的水来达到要求的冷凝温度。
为了避免在冷却塔和蒸发式冷凝器中聚集杂质﹑霉菌和水垢,必须按每马力每小时2加仑(约7.5升)的比例从排水管中连续排出污水,并连续不断地补充新鲜水。
机组和压缩机必须保持水平,确保一定的润滑。
吸气管的大小必须使油有适当的回流速度。
电气安装电源的容量﹑电压﹑频率及相数必须与压缩机标牌相同。
必须按国家电力法则或其它当地运用的法则连接。
检查确保做到:A.线径能承受相应负载。
B.选用压缩机适用的熔断器(参考谷轮电气手册)。
C.使用谷轮认可的磁性启动器,接触器和电机保护装置。
D.使用油压安全控制装置,动作准确。
E.风机或水泵的旋转方向及速度。
F.电气线路是否无接地线或无控制器。
制冷管道的安装在安装前应格外仔细,确保制冷管道清洁和干燥。
应采取以下步骤:A.除湿过的压缩机或过滤干燥装置暴露于大气中的时间应尽可能短(建议最多为一至二分钟)。
B.只使用制冷专用铜管,并密封以防止污染。
水管经常含有石蜡及其它引起故障的污染物。
C.建议在所有现场安装系统中,使用永久性的吸气管干燥过滤器和液管干燥过滤器。
D.吸气管道应向压缩机方向每10英寸倾斜1/2英寸。
压缩机操作规程
压缩机操作规程一、目的本操作规程的目的是确保压缩机的安全运行,提高工作效率,减少故障和事故的发生。
二、适用范围本操作规程适用于所有压缩机的操作人员。
三、操作要求1. 操作人员必须经过相关培训,并持有相关资质证书。
2. 在操作压缩机前,操作人员应仔细阅读压缩机的操作手册,并了解压缩机的工作原理和操作流程。
3. 操作人员应穿戴好个人防护装备,包括安全帽、防护眼镜、防护手套和防滑鞋等。
4. 在操作压缩机前,应检查压缩机及其周围的环境是否安全,确保没有任何隐患。
5. 在操作过程中,操作人员应严格按照操作手册的要求进行操作,不得擅自改变操作参数。
6. 操作人员应定期检查压缩机的运行状况,包括温度、压力、噪音等指标,如发现异常情况应及时报告上级。
7. 操作人员应保持操作区域的整洁,确保没有杂物堆积和易燃物品存在。
8. 操作人员应定期对压缩机进行维护保养,包括清洁、润滑和更换易损件等工作。
9. 在操作结束后,操作人员应关闭压缩机,并将操作区域清理干净。
四、安全措施1. 在操作压缩机前,应确保压缩机的电源已经切断,并进行相应的安全标识。
2. 操作人员应注意压缩机周围的安全距离,避免发生人身伤害。
3. 在操作过程中,不得随意触摸压缩机的运转部件,以免造成伤害。
4. 操作人员应遵守防火、防爆和防毒等相关安全规定,确保操作环境的安全。
5. 在进行维护保养时,应先切断电源,并确保压缩机完全停止运行后再进行操作。
五、紧急情况处理1. 在发生紧急情况时,操作人员应立即切断压缩机的电源,并向上级报告。
2. 在处理紧急情况时,应按照应急预案进行操作,并采取必要的安全措施,确保人员的安全。
六、责任与违规处理1. 操作人员应严格遵守本操作规程,如有违反规定的行为,将会受到相应的纪律处分。
2. 如因操作人员的违规行为导致事故或损失,操作人员将承担相应的法律责任。
本操作规程将定期进行评估和更新,以确保其与实际操作的一致性。
所有操作人员都应严格遵守本规程,确保压缩机的安全运行。
压缩机的使用及操作
压缩机的使用及操作第五章压缩机的使用及操作注意:1.如果用户采用空气介质进行试运转,运转时压缩机的入口压力,气体温度和电机功率都必须控制,它们不得大于额定工况的规定值。
2.一旦通入实际生产气体进行运行,压缩机内切勿再通入空气,否则机内或管道内由于存在易燃物质而十分容易引起火灾或爆炸。
1 开车前准备1.1 压缩机操作人员在开车前应仔细阅读使用说明书,弄懂说明书中各种规定和要求。
各岗位应配备工作人员,认真负责,密切配合。
1.2 机组开车前应严格检查各管路及机械设备连接面是否紧固可靠,各阀门是否处在规定位置。
1.3 检查仪表管线及导线,调节并校正仪表,检验联锁控制。
1.4 检查油箱的液位,点动油泵,检查电机转向。
1.5 松开主机与电机之间的联轴器,按工作方向盘动阳转子,要求在不施加强力下能盘动,无轻重不均匀的感觉,无磨擦撞击声即表明主机正常。
1.6 点动主电机,检查主电机的转向是否正确,此时应松开主机与电机之间的联轴器。
1.7 气体置换。
通入实际生产气体运转之前,应把机器中和管道里的空气先用氮气后用工艺气体置换,保证运转安全。
2 启动机组2.1 准备工作结束后,工作可转入启动阶段。
启动在现场进行。
通电后如情况正常就可启动。
2.2 起动油泵。
2.3 供给仪表压缩空气。
2.4 起动主机,注意允许启动灯亮后,主机即可起动,启动几秒后再打开入口蝶阀和喷柴油管口的补液阀。
如果先开补液阀,则可能由于延缓启动,机内会因进液过多造成启动困难。
机组一经启动后,操作人员应注意观察以下几个方面:起动电流是否超过;压力表、温度表读数是否正常;各机械部位是否有异常杂声和振动;各管路、接头是否有漏气、漏油、漏水现象。
尚若存在问题和故障,应立即按下停车按钮。
如果机组正常可立即进入连续空负荷试车。
此时旁通阀、出口截止阀都在全开状态。
空负荷运转2h,同时每半小时记录一次数据。
3 加压运转如果升压是从停车状态开始的,请按下述步骤进行。
3.1 起动压缩机。
艾默生 LA10-020 谷轮半封闭活塞压缩机 说明书
谷轮半封闭活塞压缩机LA10-020E产品技术参数 Technical Data2244.5X36.59.918.5启动电流(LRA)(A)EWL380-420V 3PH 50Hz 34.0-37.6最大运行电流(MCC)(A)EWL380-420V 3PH 50Hz5.770排气管Discharge Port 15吸气管Suction Port 22长Length460宽Width330高(不带风扇)Height (w/o head fan)385高(带风扇)Height (w/ head fan)555295x2792.3净重Net Weight 77毛重Gross Weight85重量(kg)Weight油充注量(L)Oil Charging底脚安装尺寸(孔径)(mm)Mounting Size外型尺寸(mm)Dimension接管外径尺寸(Inch)Connection Size曲轴箱加热器功率(W)Crankcase Heater排气量(m 3/h)Displacement电机冷却最小风量(立方米/分钟)缸数Number Of Cylinders 名义功率(HP)Norminal Input Power 缸径×行程(mm)Bore×Stroke 型号ModelLA10-020ER404A产品性能参数 Performance Sheet命名规则 Nomenclature需缸头风扇冷却20℃回气,无过冷冷凝温度℃制冷量 KW功率 KW蒸发温度℃压缩机许可运行范围 Envelope 需缸头风扇冷却压缩机铭牌示例Nameplate蒸发温度℃冷凝温度℃压缩机接线示意图 Wiring DiagramA1A5B1F1F3F6,F7,F8H1,H2K1K5L1,L2,L3N R21-12Q1压缩机配置 Compressor Configuration 标准配置吸 / 排气阀垫电气附件曲轴箱加热器底角弹簧手动开关电源零线曲轴箱加热器附件连接点冷却风扇接触器三相电源热保护器报警指示灯压缩机接触器控制回路保险丝压力控制器压缩机接线盒电机保护模块温控器电气代码说明压缩机尺寸图 Dimension7/16” - 20 UNF 3/8" - 18 NPTF压缩机应用指导 Application Guideline请参考《L 系列半封闭制冷压缩机使用说明书》5. 磁堵3/8" - 27 NPTF3. 注油口丝堵规格1/4” - 18 NPTF4. 油加热器孔塞DL 排气管1. 低压接口丝堵7/16” - 20 UNF2. 高压接口丝堵规格SL吸气管艾默生环境优化技术上海分公司上海市中山南路28号久事大厦16楼电话*************传真************广州分公司广州市黄埔大道西76号富力盈隆广场508-509室电话************传真************北京分公司北京市西城区南礼士路66号建威大厦310室电话************传真************。
谷轮ZW系列(中间补气涡旋)压缩机应用指南
AE4-1381May 2011ZW21 to ZW61KAE and ZW30 to ZW61KSECopeland Scroll® Water Heating CompressorsTABLE OF CONTENTSSection Page Section PageIntroduction (2)ZW**KA Application (2)ZW**KS ApplicationVapour Injection - Theory of Operation (2)Heat Exchanger and Expansion Device Sizing (3)Flash Tank Application (3)Intermediate Pressure and Vapour Injection Superheat (3)Application ConsiderationsHigh Pressure Cut-Out (4)Low Pressure Cut-Out (4)Discharge Temperature Protection (4)Discharge Temperature Control (4)Discharge Mufflers (4)Oil Dilution and Compressor Cooling (4)Electrical Considerations (5)Brazing and Vapour Injection Line (5)Low Ambient Cut-Out (5)Internal Pressure Relief Valve (5)Internal Temperature Protection (5)Quiet Shutdown (5)Discharge Check Valve (5)Motor Protector (5)Accumulators (5)Screens (6)Crankcase Heat-Single Phase (6)Crankcase Heat-Three Phase (6)Pump Down Cycle (6)Minimum Run Time (6)Reversing Valves (6)Oil Type (7)System Noise & Vibration (7)Single Phase Starting Characteristics (7)PTC Start Components (7)Electrical Connections (7)Deep Vacuum Operation (7)Shell Temperature (7)Suction & Discharge Fittings (7)Three Phase Scroll Compressors (8)Brief Power Interruptions ..........................................8Assembly Line ProceduresInstalling the Compressor (8)Assembly Line Brazing Procedure (8)Pressure Testing (8)Assembly Line System Charging Procedure (8)High Potential (AC Hipot) Testing (9)Unbrazing System Components (9)Service ProceduresCopeland Scroll Functional Check (9)Compressor Replacement After Motor Burn (10)Start Up of a New or Replacement Compressor (10)FiguresBrief Product Overview (11)ZW21KAE Envelope (R-134a) (11)ZWKAE Envelope (R-407C, Dew Point) (12)ZWKA Envelope (R-22) (12)ZWKS Envelope (R-22) (13)ZWKSE Envelope (R-407C, Dew Point) (13)Heat Pump with Vapour Injection – EXV Control (14)Heat Exchanger Schematic (14)Heat Pump with Flash Tank (15)Possible Flash Tank Configuration (15)Oil Dilution Chart (16)Crankcase Heater (17)Compressor Electrical Connection (17)Scroll Tube Brazing (17)How a Scroll Works (18)IntroductionThe ZW**KA and ZW**KS Copeland Scroll®compressors are designed for use in vapour compression heat pump water heating applications. Typical model numbers include ZW30KA-PFS and ZW61KSE-TFP. This bulletin addresses the specifics of water heating in the early part and deals with the common characteristics and general application guidelines for Copeland Scroll compressors in the later sections. Operating principles of the scroll compressor are described in Figure 15 at the end of this bulletin.As the drive for energy efficiency intensifies, water heating by fossil-fueled boilers and electric elements is being displaced by vapour compression heat pumps. Emerson Climate Technologies has developed two lines of special water heater compressors to meet the requirements of this demanding application. ZW**KA compressors are designed for lighter duty applications where the ambient temperature does not fall below 0°C and where lower water temperatures can be accepted as the ambient temperature falls. ZW**KS compressors are equipped with a vapour injection cycle which allows reliable operation in cold climates with significantly enhanced heating capacity, higher efficiency, and minimal requirement to reduce water outlet temperatures. Figure 1gives a brief product overview.Water heating is characterized by long operating hours at both high load and high compression ratios. Demand for hot water is at its highest when ambients are low and when conventional heat pump capacity falls off. On the positive side, the system refrigerant charge is usually small, so the risk to the compressor from dilution and flooded starts will usually be lower than in split type air-to-air heat pumps.Water heaters must operate in a wide range of ambient temperatures, and many systems will require some method of defrost. Some systems such as Direct Heating, Top Down Heating or Single Pass Heating operate at a constant water outlet temperature with variable water flow. Others such as Recirculation Heating, Cyclic Heating or Multipass Heating use constant water flow with the water outlet and inlet temperatures both rising slowly as the storage tank heats up. Both system types need to cope with reheating a tank where the hot water has been partially used, and reheating to the setpoint temperature is required. More complex systems deliver water at relatively low temperatures for under-floor heating circuits and are switched over to sanitary water heating a few times per day to provide higher temperature water for sanitary use. In addition, some countries have specific water temperature requirements for legionella control.ZW**KA ApplicationThe application envelopes for ZW**KA compressors are shown in Figures 2 - 4.Appropriate system hardware and control logic must be employed to ensure that the compressor is always operating within the envelope. Small short-term excursions outside the envelope are acceptable at the time of defrost when the load on the compressor is low. Operation with suction superheat of 5 -10K is generally acceptable except at an evaporating tem-perature above 100C when a minimum superheat of 10K is required.ZW**KS ApplicationThe ZW**KS* vapour-injected scroll compressors differ from ZW**KA models in many important details:• Addition of vapour injection• Significantly different application envelopes• Some differences in locked rotor amps (LRA), maximum continuous current (MCC), andmaximum operating current (MOC) – seenameplatesThe application envelopes for ZW**KS compressors are shown in Figures 5 and 6.Vapour Injection – Theory of Operation Operation with vapour injection increases the capacity of the outdoor coil and in turn the capacity and efficiency of the system – especially in low ambient temperatures. A typical schematic is shown in Figure 7. A heat exchanger is added to the liquid line and is used to cool the liquid being delivered to the heating expansion device. Part of the liquid refrigerant flow is flashed through an expansion valve on the evaporator side of the heat exchanger at an intermediate pressure and used to subcool the main flow of liquid to the main expansion device. Vapour from the liquid evaporating at intermediate pressure is fed to the vapour injection port on the ZW**KS compressor. This refrigerant is injected into the mid-compression cycle of the scroll compressor and compressed to discharge pressure. Heating capacity is increased, because low temperature liquid with lower specific enthalpy supplied to the outdoor coil increases the amount of heat that can be absorbed from the ambient air. Increased heat absorbed from the ambient increases the system condensing temperature and in turn the compressor power input. The increase in power inputalso contributes to the improvement in the overall heating capacity.Vapour Injection can be turned on and off by the addition of an optional solenoid valve on the vapour injection line on systems using a thermostatic expansion valve. Alternatively, an electronic expansion valve can be used to turn vapour injection on and off and to control the vapour injection superheat. A capillary tube is not suitable for controlling vapour injection.The major advantage of the electronic expansion valve is that it can be used to optimise the performance of the system and at the same time control the discharge temperature by injecting “wet vapour” at extreme operating conditions.The configurations and schematics shown are for reference only and are not applicable to every system. Please consult with your Emerson Application Engineer.Heat Exchanger and Expansion Device Sizing Various heat exchanger designs have been used successfully as subcoolers. In general they should be sized so that the liquid outlet temperature is less than 5K above the saturated injection temperature at the customer low temperature rating point. At very high ambient temperatures, it will normally be beneficial to turn vapour injection off to limit the load on the compressor motor. Application Engineering Bulletin AE4-1327 and Emerson Climate Technologies Product Selection Software can be used to help size the subcooling heat exchanger and thermal expansion valves, but selection and proper operation must be checked during development testing. Plate type subcoolers must be installed vertically with the injection expansion device connected at the bottom through a straight tube at least 150mm long to ensure good liquid distribution. See the schematic in Figure 8. Flash Tank ApplicationA possible flash tank configuration is shown in Figure9. This particular configuration is arranged to have flow through the flash tank and expansion devices in heating, and it bypasses the tank in defrost mode. The flash tank system works by taking liquid from the condenser and metering it into a vessel through a high-to-medium pressure expansion device. Part of the liquid boils off and is directed to the compressor vapour injection port. This refrigerant is injected into the mid-compression cycle of the scroll compressor and compressed to discharge pressure. The remaining liquid is cooled, exits from the bottom of the tank at intermediate pressure, and flows to the medium-to-low pressure expansion device which feeds the outdoor coil. Low temperature liquid with lower specific enthalpy increases the capacity of the evaporator without increasing mass flow and system pressure drops.Recommended tank sizing for single compressor application in this size range is a minimum of 200 mm high by 75 mm in diameter with 3/8 in. (9.5mm) tubing connections, although it is possible to use a larger tank to combine the liquid/vapour separation and receiver functions in one vessel. A sight tube (liquid level gauge) should be added to the tank for observation of liquid levels during lab testing. See schematic diagram Figure 10 for clarification.It is important to maintain a visible liquid refrigerant level in the tank under all operating conditions. Ideally the liquid level should be maintained in the 1/3 to 2/3 full range.Under no circumstances should the level drop to empty or rise to a full tank. As the tank level rises, liquid droplets tend to be swept into the vapour line leading to “wet” vapour injection. Although this can be useful for cooling a hot compressor, the liquid quantity cannot be easily controlled. Compressor damage is possible if the tank overflows. If liquid injection is required for any reason, it can be arranged as shown in Figures 7 and 9.Since liquid leaves the tank in a saturated state, any pressure drop or temperature rise in the line to the medium-to-low pressure expansion device will lead to bubble formation. Design or selection of the medium-to-low pressure expansion device requires careful attention due to the possible presence of bubbles at the inlet and the low pressure difference available to drive the liquid into the evaporator. An electronic expansion valve is the preferred choice. Intermediate Pressure and Vapour Injection SuperheatPressure in the flash tank cannot be set and is a complex function of the compressor inlet condition and liquid condition at the inlet of the high-to-medium pressure expansion device. However, liquid level can be adjusted, which in turn will vary the amount of liquid subcooling in the condenser (water to refrigerant heat exchanger) and vary the injection pressure. Systems with low condenser subcooling will derive the biggest gains by the addition of vapour injection. Systems operating with high pressure ratios will show the largest gains when vapour injection is applied. Such systems will have higher vapour pressure and higher injectionmass flow. Intermediate pressures in flash tank and heat exchanger systems should be very similar unless the subcooling heat exchanger is undersized and there is a large temperature difference between the evaporator and the liquid sides. Vapour exiting a flash tank will be saturated and may pick up 1 - 2K superheat in the vapour line to the compressor. Vapour injection superheat cannot be adjusted on flash tank systems. Heat exchanger systems will be at their most efficient when the vapour injection superheat is maintained at approximately 5K.APPLICATION CONSIDERATIONSHigh Pressure Cut OutIf a high pressure control is used with these compressors, the recommended maximum cut out settings are listed in Figure 1. The high pressure control should have a manual reset feature for the highest level of system protection. It is not recommended to use the compressor to test the high pressure switch function during the assembly line test.Although R-407C runs with higher discharge pressure than R-22, a common setting can be used. The cutout settings for R-134a are much lower, and the switches must be selected or adjusted accordingly.Low Pressure Cut OutA low pressure cut out is an effective protection against loss of charge or partial blockage in the system. The cut out should not be set more than 3 - 5K equivalent suction pressure below the lowest operating point in the application envelope. Nuisance trips during defrost can be avoided by ignoring the switch until defrost is finished or by locating it in the line between the evaporator outlet and the reversing valve. This line will be at discharge pressure during defrost. Recommended settings are given in Figure 1. Discharge Temperature ProtectionAlthough ZW compressors have an internal bi-metal Therm-O-Disc®(TOD) on the muffler plate, external discharge temperature protection is recommended for a higher level of protection and to enable monitoring and control of vapour injection on ZW**KS* models. The protection system should shut down the compressor when the discharge line temperature reaches 125°C. In low ambient operation, the temperature difference between the scroll center and the discharge line is significantly increased, so protection at a lower discharge temperature, e.g. 120°C when the ambient is below 0°C, will enhance system safety. For the highest level of system protection, the discharge temperature control should have a manual reset feature. The discharge sensor needs to be well insulated to ensure that the line temperature is accurately read. The insulation material must not deteriorate over the expected life of the unit.Discharge Temperature ControlSome systems use an electronic expansion valve to control the vapour injection superheat and a thermistor to monitor the discharge temperature. This combination allows the system designer to inject a small quantity of liquid to keep the discharge temperature within safe limits and avoid an unnecessary trip. Liquid injection should begin at approximately 115°C and should be discontinued when the temperature falls to 105°C. Correct functioning of this system should be verified during system development. It is far preferable to use liquid injection into the vapour injection port to keep the compressor cool rather than inject liquid into the compressor suction which runs the risk of diluting the oil and washing the oil from the moving parts. If some operation mode requires liquid injection but without the added capacity associated with “wet” vapour injection, a liquid injection bypass circuit can be arranged as shown in Figures 7 and 9.Caution: Although the discharge and oil temperature are within acceptable limits, the suction and discharge pressures cannot be ignored and must also fall within the approved application envelope.Discharge MufflersDischarge mufflers are not normally required in water heaters since the refrigerant does not circulate within the occupied space.Oil Dilution and Compressor CoolingThe oil temperature diagram shown in Figure 11is commonly used to make a judgment about acceptable levels of floodback in heat pump operation. Systems operating with oil temperatures near the lower limit line are never at their most efficient. Low ambient heating capacity and efficiency will both be higher if floodback is eliminated and the system runs with 1 - 5K suction superheat. Discharge temperature can be controlled by vapour injection, “wet” vapour injection, or even liquid injection if necessary. In this situation, the oil temperature will rise well into the safe zone, and the compressor will not be at risk of failure from diluted oil. The oil circulation rate will also be reduced as crankcase foaming disappears. Special care needs to be taken at the end of defrost to ensure that the compressor oil is not unacceptably diluted. The system will resume heating very quickly and bearing loads willincrease accordingly, so proper lubrication must be ensured.Electrical ConsiderationsMotor configuration and protection are similar to those of standard Copeland Scroll compressors. In some cases, a larger motor is required in the ZW**KS* models to handle the load imposed by operating with vapour injection. Wiring and fuse sizes should be reviewed accordingly.Brazing the Vapour Injection LineThe vapour injection connection is made from copper coated steel, and the techniques used for brazing the suction and discharge fittings apply to this fitting also. Low Ambient Cut-OutA low ambient cut-out is not required to limit heat pump operation with ZW**KS compressors. Water heaters using ZW**KA compressors must not be allowed to run in low ambients since this configuration would run outside of the approved operating envelope causing overheating or excessive wear. A low ambient cut-out should be set at 0°C for ZW**KA modelsIn common with many Copeland Scroll compressors, ZW models include the features described below: Internal Pressure Relief (IPR) ValveAll ZW compressors contain an internal pressure relief valve that is located between the high side and the low side of the compressor. It is designed to open when the discharge-to-suction differential pressure exceeds 26 - 32 bar. When the valve opens, hot discharge gas is routed back into the area of the motor protector to cause a trip.Internal Temperature ProtectionThe Therm-O-Disc® or TOD is a temperature-sensitive snap disc device located on the muffler plate between the high and low pressure sides of the compressor. It is designed to open and route excessively hot discharge gas back to the motor protector. During a situation such as loss of charge, the compressor will be protected for some time while it trips the protector. However, as refrigerant leaks out, the mass flow and the amperage draw are reduced and the scrolls will start to overheat.A low pressure control is recommended for loss of charge protection in heat pumps for the highest level of system protection. A cut out setting no lower than 2.5 bar for ZW**KA* models and 0.5 bar for ZW**KS* models is recommended. The low pressure cut-out, if installed in the suction line to the compressor, can provide additional protection against an expansion device failed in the closed position, a closed liquid line or suction line service valve, or a blocked liquid line screen, filter, orifice, or TXV. All of these can starve the compressor for refrigerant and result in compressor failure. The low pressure cut-out should have a manual reset feature for the highest level of system protection. If a compressor is allowed to cycle after a fault is detected, there is a high probability that the compressor will be damaged and the system contaminated with debris from the failed compressor and decomposed oil.If current monitoring to the compressor is available, the system controller can take advantage of the compressor TOD and internal protector operation. The controller can lock out the compressor if current draw is not coincident with the contactor energizing, implying that the compressor has shut off on its internal protector. This will prevent unnecessary compressor cycling on a fault condition until corrective action can be taken.Quiet Shut downAll scrolls in this size range have a fast acting valve in the center of the fixed scroll which provides a very quiet shutdown solution. Pressure will equalize internally very rapidly and a time delay is not required for any of the ZW compressors to restart. Also refer to the section on “Brief Power Interruption”. Discharge Check ValveA low mass, disc-type check valve in the discharge fitting of the compressor prevents the high side, high pressure discharge gas from flowing rapidly back through the compressor. This check valve was not designed to be used with recycling pump down because it is not entirely leak-proof.Motor ProtectorConventional internal line break motor protection is provided. The protector opens the common connection of a single-phase motor and the center of the Y connection on three-phase motors. The three-phase protector provides primary single-phase protection. Both types of protectors react to current and motor winding temperature.AccumulatorsThe use of accumulators is very dependent on the application. The scroll’s inherent ability to handle liquid refrigerant during occasional operating flood back situations often makes the use of an accumulator unnecessary in many designs. If flood back is excessive, it can dilute the oil to such an extent thatbearings are inadequately lubricated, and wear will occur. In such a case, an accumulator must be used to reduce flood back to a safe level that the compressor can handle.In water heaters, floodback is likely to occur when the outdoor coil frosts. The defrost test must be done at an outdoor ambient temperature of around 0°C in a high humidity environment. Liquid floodback must be monitored during reversing valve operation, especially when coming out of defrost. Excessive floodback occurs when the sump temperature drops below the safe operation line shown in Figure 11 for more than 10 seconds.If an accumulator is required, the oil return orifice should be 1 - 1.5mm in diameter depending on compressor size and compressor flood back results. Final oil return hole size should be determined through testing. ScreensScreens with a mesh size finer than 30 x 30 (0.6mm openings) should not be used anywhere in the system with these compressors. Field experience has shown that finer mesh screens used to protect thermal expansion valves, capillary tubes, or accumulators can become temporarily or permanently plugged with normal system debris and block the flow of either oil or refrigerant to the compressor. Such blockage can result in compressor failure.Crankcase Heater - Single PhaseCrankcase heaters are not required on single phase compressors when the system charge is not over 120% of the limit shown in Figure 1. A crankcase heater is required for systems containing more than 120% of the compressor refrigerant charge limit listed in Figure 1. This includes long line length systems where the extra charge will increase the standard factory charge above the 120% limit.Experience has shown that compressors may fill with liquid refrigerant under certain circumstances and system configurations, notably after longer off cycles when the compressor has cooled. This may cause excessive start-up clearing noise, or the compressor may lock up and trip on the protector several times before starting. The addition of a crankcase heater will reduce customer noise and light dimming complaints since the compressor will no longer have to clear out liquid during startup. Figure 12lists the crankcase heaters recommended for the various models and voltages.Crankcase Heat – Three-PhaseA crankcase heater is required for three-phase compressors when the system charge exceeds the compressor charge limit listed in Figure 1and an accumulator cannot be piped to provide free liquid drainage during the off cycle.Pump Down CycleA pump down cycle for control of refrigerant migration is not recommended for scroll compressors of this size. If a pump down cycle is used, a separate external check valve must be added.The scroll discharge check valve is designed to stop extended reverse rotation and prevent high-pressure gas from leaking rapidly into the low side after shut off. The check valve will in some cases leak more than reciprocating compressor discharge reeds, normally used with pump down, causing the scroll compressor to cycle more frequently. Repeated short-cycling of this nature can result in a low oil situation and consequent damage to the compressor. The low-pressure control differential has to be reviewed since a relatively large volume of gas will re-expand from the high side of the compressor into the low side on shut down. Minimum Run TimeThere is no set answer to how often scroll compressors can be started and stopped in an hour, since it is highly dependent on system configuration. Other than the considerations in the section on Brief Power Interruptions, there is no minimum off time. This is because scroll compressors start unloaded, even if the system has unbalanced pressures. The most critical consideration is the minimum run time required to return oil to the compressor after startup.Since water heaters are generally of compact construction, oil return and short cycling issues are rare. Oil return should not be a problem unless the accumulator oil hole is blocked.Reversing ValvesSince Copeland Scroll compressors have very high volumetric efficiency, their displacements are lower than those of comparable capacity reciprocating compressors. As a result, Emerson recommends that the capacity rating on reversing valves be no more than 2 times the nominal capacity of the compressor with which it will be used in order to ensure proper operation of the reversing valve under all operating conditions.The reversing valve solenoid should be wired so that the valve does not reverse when the system isshut off by the operating thermostat in the heating or cooling mode. If the valve is allowed to reverse at system shutoff, suction and discharge pressures are reversed to the compressor. This results in pressures equalizing through the compressor which can cause the compressor to slowly rotate until the pressures equalize. This condition does not affect compressor durability but can cause unexpected sound after the compressor is turned off.Oil TypeThe ZW**K* compressors are originally charged with mineral oil. A standard 3GS oil may be used if the addition of oil in the field is required. See the compressor nameplate for original oil charge. A complete recharge should be ~100 ml less than the nameplate value.ZW**K*E are charged with POE oil. Copeland 3MAF or Ultra 22 CC should be used if additional oil is needed in the field. Mobil Arctic EAL22CC, Emkarate RL22, Emkarate 32CF and Emkarate 3MAF are acceptable alternatives. POE oil is highly hygroscopic, and the oil should not be exposed to the atmosphere except for the very short period required to make the brazing connections to the compressor.System Noise and VibrationCopeland Scroll compressors inherently have low sound and vibration characteristics, but the characteristics differ in some respects from those of reciprocating or rotary compressors. The scroll compressor makes both a rocking and a torsional motion, and enough flexibility must be provided to prevent vibration transmission into any lines attached to the unit. This is usually achieved by having tubing runs at least 30cm long parallel to the compressor crankshaft and close to the shell. ZW compressors are delivered with rubber grommets to reduce vibration transmission to the system baseplate.Single Phase Starting CharacteristicsStart assist devices are usually not required, even if a system utilizes non-bleed expansion valves. Due to the inherent design of the Copeland Scroll, the internal compression components always start unloaded even if system pressures are not balanced. In addition, since internal compressor pressures are always balanced at startup, low voltage starting characteristics are excellent for Copeland Scroll compressors. Starting current on any compressor may result in a significant “sag” in voltage where a poor power supply is encountered. The low starting voltage reduces the starting torque of the compressor and subsequently increases the start time. This could cause light dimming or a buzzing noise where wire is pulled through conduit. If required, a start capacitor and potential relay can be added to the electrical circuit. This will substantially reduce start time and consequently the magnitude and duration of both light dimming and conduit buzzing.PTC Start ComponentsFor less severe voltage drops or as a start boost, solid state Positive Temperature Coefficient devices rated from 10 to 25 ohms may be used to facilitate starting for any of these compressors.Electrical ConnectionThe orientation of the electrical connections on the Copeland Scroll compressors is shown in Figure 13 and is also shown on the wiring diagram on the top of the terminal box cover.Deep Vacuum OperationScrolls incorporate internal low vacuum protection and will stop pumping (unload) when the pressure ratio exceeds approximately 10:1. There is an audible increase in sound when the scrolls start unloading. This feature does not prevent overheating and destruction of the scrolls, but it does protect the power terminals from internal arcing.Copeland Scroll compressors(as with any refrigerant compressor) should never be used to evacuate a refrigeration or air conditioning system. The scroll compressor can be used to pump down refrigerant in a unit as long as the pressures remain within the operating envelope. Prolonged operation at low suction pressures will result in overheating of the scrolls and permanent damage to the scroll tips, drive bearings and internal seal. (See AE24-1105 for proper system evacuation procedures.)Shell TemperatureCertain types of system failures, such as condenser or evaporator blockage or loss of charge, may cause the top shell and discharge line to briefly but repeatedly reach temperatures above 175ºC as the compressor cycles on its internal protection devices. Care must be taken to ensure that wiring or other materials, which could be damaged by these temperatures, do not come in contact with these potentially hot areas. Suction and Discharge FittingsCopeland Scroll compressors have copper plated steel suction and discharge fittings. These fittings are far more rugged and less prone to leaks than。
谷轮冷冻压缩机手册
ZB 系列 Series
制冷量 (瓦) Capacity (Watts)
ZB58KQ ZB66KQ ZB76KQ ZB88KQ ZB92KC ZB11MC
冷凝温度℃
Condensing Temperature
30
Q
40
50
30
P
40
50
30
Q
40
50
30
P
40
50
30
Q
40
50
30
P
40
50
30
Q
30
P
40
50
30
Q
40
50
30
P
40
50
30
Q
40
50
30
P
40
50
30
Q
40
50
30
P
40
50
30
Q
40
50
30
P
40
50
30
Q
40
50
30
P
40
50
-12
3700 3300 2790 1080 1450 1870 4000 3650 3200 1270 1610 2020 5150 4650 4050 1610 1990 2480 5650 5100 4500 1770 2240 2810 6150 5400 4600 2230 2690 3280 8150 7300 6250 2490 3100 3880 10350 9400 8200 3160 3880 4810
沈阳谷轮压缩机样本
曲轴箱加热器功率(瓦) Crankcase Heater Power (W)
长(L)
Length
宽(W)
Width
高(不带风扇) (H)
Height (without fan)
高(带风扇) (J)
Height (with fan)
底脚安装尺寸(A)×(B)
Installation Size of Footing
TFC:200-3-50/60 内藏式保护器
Inner Protector
TWC:200-3-50/60 电子式保护器 Electronic Protector
TFM:380/400-3-50 内藏式保护器
Inner Protector
TWM:380/400-3-50 电子式保护器 Electronic Protector
R22
50Hz
-25 5300 2625 4410 2800 3600 3000 7270 3350 6390 3650 4880 3990 10700 5200 9340 5750 7890 6000 15700 7400 14180 8100 12790 8800
-30 3840 2300
5350 2950
最大工作电流(MCC)(安培)Max.Working Current(MCC)(A)
TFC和TWC电机
TFC and TWC Motor
TFM和TWM电机
TFM and TWM Motor
接管尺寸(毫米)
Size of Pipe (mm)
排气阀接管
Exhaust Valve Pipe
吸气阀接管
Suction Valve Pipe
91 100
压缩机控制功能说明
压缩机控制功能说明一、新机试车1、确认压缩机的安装及配管满足所有要求。
2、确认供电线路接线无误,接好接地线。
3、松开防震台、支撑架或电机上运输固定螺栓。
4、检查油桶内油位是否在规定油位。
5、若交货很久才试车,应从进气阀内加入约0.5公升润滑油,并用手转动空压机数转,防止起动时空压机内失油烧损,请特别注意不可让异物掉入压缩机体,以免损坏压缩机。
6、送电至压缩机控制盘。
如电源相位不符,液晶屏显示“电源相序错误”信息。
此时只需切断供电电源,将电源线中任意两相对调即可。
测试主电压是否正确,三相电压是否平衡。
7、打开压缩机空气出口,确认机组内各泄水阀关闭。
水冷式机型打开冷却水进出口。
8、将配套设备先开机运转,如干燥机、冷却塔等,并确认其运转正常。
9、转向测试:按下“ON”键,压缩机转动,立即按“紧急停止按钮”,确认压缩机转向。
正确转向请参考压缩机体上的箭头。
冷却风扇亦需注意转向。
虽然压缩机在生产过程已测试过,转向测试仍然是新机试车的重要步骤。
10、起动:再按下“ON”键起动压缩机运转。
11、观察显示仪表及指示灯是否正常,如有异常声音、振动、泄漏,立即按下“紧急停止按钮”停机检修。
12、运转温度调整压缩机运转40分钟后,调整回水阀开度,控制重车排气温度在80℃上下。
(气冷式不须调整)。
调整时,逐渐减小回水阀开度,视压缩机排气温度反应后,再行调整开度。
13、停止:按下“OFF”键,压缩机延时15秒后停止运转。
14、压缩机的各种保护功能在出厂前的试机中已经测试调整好,故您不必再次测试,完全可以放心使用。
因为如果重新测试这些保护功能,许多零件需要重新调整。
对机组而言,这些测试不一定是经济和有益的,例如过载保护、高温跳机保护、安全阀起跳压力等的测试。
二、日常开机前检查日常开机前检查是压缩机正常运转的必要工作,请确实执行。
1、油气桶泄水:打开油气桶之泄水阀些许,将停机时的凝结水排出,直到有润滑油流出时,立刻关闭。
2、检查油位:油位应在观油镜上线附近以保证运转时油位不至于过低。
谷轮半封闭活塞压缩机 LA20-020E 说明书
谷轮半封闭活塞压缩机LA20-020E产品技术参数 Technical Data2250.8X36.512.918.5启动电流(LRA)(A)EWL380-420V 3PH 50Hz 34.0-37.6最大运行电流(MCC)(A)EWL380-420V 3PH 50Hz5.570排气管Discharge Port 15吸气管Suction Port 22长Length460宽Width330高(不带风扇)Height (w/o head fan)385高(带风扇)Height (w/ head fan)555295x2792.3净重Net Weight 76毛重Gross Weight84重量(kg)Weight油充注量(L)Oil Charging底脚安装尺寸(孔径)(mm)Mounting Size外型尺寸(mm)Dimension接管外径尺寸(Inch)Connection Size曲轴箱加热器功率(W)Crankcase Heater排气量(m 3/h)Displacement电机冷却最小风量(立方米/分钟)缸数Number Of Cylinders 名义功率(HP)Norminal Input Power 缸径×行程(mm)Bore×Stroke 型号ModelLA20-020ER404A产品性能参数 Performance Sheet命名规则 Nomenclature需缸头风扇冷却20℃回气,无过冷冷凝温度℃制冷量 KW功率 KW蒸发温度℃压缩机许可运行范围 Envelope 需缸头风扇冷却压缩机铭牌示例Nameplate蒸发温度℃冷凝温度℃压缩机接线示意图 Wiring DiagramA1A5B1F1F3F6,F7,F8H1,H2K1K5L1,L2,L3N R21-12Q1压缩机配置 Compressor Configuration 标准配置吸 / 排气阀垫电气附件曲轴箱加热器底角弹簧手动开关电源零线曲轴箱加热器附件连接点冷却风扇接触器三相电源热保护器报警指示灯压缩机接触器控制回路保险丝压力控制器压缩机接线盒电机保护模块温控器电气代码说明压缩机尺寸图 Dimension7/16” - 20 UNF 3/8" - 18 NPTF压缩机应用指导 Application Guideline请参考《L 系列半封闭制冷压缩机使用说明书》5. 磁堵3/8" - 27 NPTF3. 注油口丝堵规格1/4” - 18 NPTF4. 油加热器孔塞DL 排气管1. 低压接口丝堵7/16” - 20 UNF2. 高压接口丝堵规格SL吸气管艾默生环境优化技术上海分公司上海市中山南路28号久事大厦16楼电话*************传真************广州分公司广州市黄埔大道西76号富力盈隆广场508-509室电话************传真************北京分公司北京市西城区南礼士路66号建威大厦310室电话************传真************。
谷轮压缩机使用指南
压缩机的配置所有谷轮半封闭压缩机均设了滤油网,加油孔,带有压力表接口的排气和吸气截止阀,吸气过滤网及视油镜。
谷轮半封闭回气冷却型压缩机(以及LA60型空气冷却压缩机)安装了带有针型阀油压检测接口的油泵强制润滑油系统,可以连接机械式油压差控制器,其中S系列压缩机可使用电子油压差控制器。
油泵强制润滑油系统必须使用油压差控制器监控油压。
谷轮半封闭压缩机电机覆有防止润滑油和制冷剂渗透的绝缘层。
电机定子被压入机体,转子则直接固定在压缩机主轴上。
电机的冷却极为重要,因为它直接影响压缩机的使用寿命。
一般而言,电机绕组最适合的温度为70 C至90 C,最高不能超过100 C。
电机的承载能力取决于它的运转温度,如果绝缘层承受的温度过高,电机就可能损坏。
电压过度波动,缺相,电机堵转及散热效果不良都可增加额外功耗,从而使电机温度急剧上升。
每台压缩机都带有电机保护装置以保证在极端工况时电机的安全使用。
压缩机的冷却风冷压缩机可由冷凝器风机的空气流冷却,也可采用有足够风量的独立的风机冷却;冷却风必须要直接吹向压缩机。
回气冷却型压缩机在回气冷却压缩机中,电动机被经过定子和转子间的气态制冷剂冷却。
回气冷却压缩机中电机的热量由流经内置电机的制冷剂蒸汽带走.由于回气密度随着蒸发温度降低而减小,气体在压缩前的温度将因电机热而过度上升.进入吸气腔较高温度的气体再加上压缩热,将引起排气温度过高.因此在某些应用场合,必须用一个垂直安装的风量为 328.5米 /分的风机冷却汽缸头。
在R22低温应用时,通常用附加喷液冷却来保证排气温度在允许的范围之内。
排气温度过高将产生一系列的问题,例如引起润滑油变质或形成酸性物质,从而引发电机或轴承的故障。
蒸发温度越低,排气温度就越高。
为了防止过高的排气温度,应使压缩机运行在相应于不同的制冷剂的规定使用范围内。
对于使用R22制冷剂并且蒸发温度低于-20oC的S系列半封闭压缩机,采用强制冷却系统(DTC阀喷液冷却系统),这是一种防止排气温度过高的有效措施。
谷轮半封闭双级压缩机的操作及应用
谷轮半封闭双级压缩机的操作及应用1.概述DWM Copeland的双级压缩机是为了满足现今许多应用领域的低温需求而研制的。
它们主要被设计用在使用R22和R502制冷剂的设备中。
双级压缩机的特别之处在于用R502制冷剂时蒸发温度可低至-60℃,而单级压缩机最低仅能达到-50℃。
双级压缩机内的气缸分为低压级(LP)和高压级(HP)。
3缸的型号分为:低压级2个缸,高压级1个缸。
6缸的型号分为:低压级4个缸,高压级2个缸。
吸气端口的气体进入低压级的气缸,被压缩至介于吸气压力和冷凝压力间的压力值,此称为中间压力。
此气体从低压段缸头进入中压混合管路。
在此处,气体温度相对较高。
为防止过热,借助一膨胀阀的控制,喷射入液态制冷剂对其进行冷却。
被冷却后的气体通过压缩机外部的中压混合管路进入电机壳体内,以对电机进行必需且有效的冷却。
随后进入高压段,被压缩至冷凝压力,排入冷凝器。
从低压段排入电机壳体和曲轴箱的气体压力低于中级压力。
并不需要电机强制空气冷却和缸头辅助通风装置。
2.管路的连接高低压端口的连接同那些单级压缩机一样,吸气和排气旋转锁定阀被安装在相应不同的位置。
在双级压缩机中,安装了Schrader阀,以连接压力测控装置,易于监测中间压力。
这种阀通过特殊的接合插头,在管路连接后即可自动打开。
它们也可安装在所有的压缩机上,以此就不必再安装连接插头于电机壳体上部。
Schrader阀为1/8螺纹喇叭口-27NPTF,有特殊的接合插头,可由DWM Copeland供应。
3.液管路过冷器为提高系统的制冷量和效率,一对管式热交换器被作为液管路过冷器安装在双级压缩机的中冷膨胀阀和中压混合管路间。
经过冷凝器后的制冷剂首先冷却流向蒸发器的制冷剂,随后是来自低压段气缸的排气。
来自过冷器的流体温度大约为6K,高于中压饱和温度(对应于中间压力的饱和温度)。
液管路必须要保温绝缘,以使过冷器流体被充分利用。
当焊接过冷器时,必须要防止过高的温度对其内部造成损伤。
谷轮压缩机启动运行操作规则
本文由谷轮压缩机(w w w.g u l u n.o r g)提供压缩机启动运行操作规则1、试运行前的准备11试漏:压缩机出厂时进行了干燥、检漏处理,并冲有保护气体(氮气)。
使用时建议采用工业氮气(N z)试压检漏。
用干燥空气检漏时,压缩机的吸排气阀应关闭,与系统隔离,以免影响冷冻油的稳是性。
试压检漏压力为162M p a(表压)。
1.2抽真空:检漏后,系统包括压缩机应使用真空泵抽空气,不可使用压缩机本身抽空气,真空泵要蔑时接到压缩机的高压侧和低压侧。
系统抽空气到绝对压力≤150P a(此时制冷系统所有阀件包括电磁舞均应处于开启状态),保持30分钟,压力不应变化。
注意:不要在真空下启动压缩机,不要接任何电源…即使为试验目的也是不允许的。
1.3充制冷剂:在充制冷剂或运行压缩机前先检查油面(如图5),并开通曲轴箱中电加热器。
制冷剂噩在压缩机关机状态以液态形式直接加入冷凝器或贮液器(对满液式蒸发系统,也可以加入蒸发器):在开车后如需进一步加制冷剂,可以在吸气侧(最好在蒸发器入口)以气体形式边运行边补充。
注意:当吸气侧以液态形式充制冷剂时特别要注意一下几点:131液击(湿运行)运行是十分危险的。
132曲轴箱油温一般应高于环境温度15~20度,最好大于40度。
133安全装置的设定和运行情况:时间继电器的设定;油压差继电器延时时间;高压和低压控制器的断开压力。
134开机前检查油位(液面在图5视油镜范围内)。
注意:如更换压缩机。
可能需要放掉一些油,因为系统中已存在冷冻油,如果系统中存在大量的油l i能由于前一台压缩机的故障),有产生油击(敲缸)的危险。
运转中适当的油位油过多三条竖线全g口淹没可见.应将油排放到适当的油位2、启动运行操作2 1开机前的准备工作。
2.1 1压缩机的油位应在图5视油镜的范围之内。
2.1 2贮液器的液位应在视液镜的1/2处。
213各压力表的阀应处于开启状态,自控仪表指针应调整到要求的数值。
压缩机的操作说明
1. 压缩机的基本结构和工作原理2. 压缩机的安装、运行、维护和故障排除的方法和注意事项3.压缩机的主要性能参数和技术数据4 .压缩机的安全指南和预防事故规定压缩机的基本结构和工作原理压缩机是一种将气体或空气从低压处吸入,经过压缩后送到高压处的机械设备。
压缩机的主要部件有:气缸:用于容纳活塞和气体,分为各级压缩气缸。
活塞:用于在气缸内做往复运动,实现气体的压缩和排出。
曲轴:用于将电动机的旋转运动转换为活塞的往复运动。
连杆:用于连接曲轴和活塞,传递动力。
十字头:用于连接连杆和活塞杆,减少摩擦。
活塞杆:用于连接十字头和活塞,传递运动。
气阀:用于控制气体的进出气缸,分为吸气阀和排气阀。
缓冲器:用于减少气体的脉动和噪声,分为吸气缓冲器和排气缓冲器。
换热器:用于冷却压缩后的气体,分为各级换热器。
滤清器:用于过滤进入压缩机的气体或空气,分为吸入滤清器和排出滤清器。
油水分离器:用于分离压缩后的气体中的油水杂质,提高气体质量。
润滑系统:用于给压缩机的运动部件提供润滑油,减少磨损,分为油泵、油冷却器、油滤器、油箱等。
冷却系统:用于给压缩机的气缸、换热器等提供冷却水,降低温度,分为进水管、排水管、水泵等。
电控系统:用于控制压缩机的启停、保护、显示等功能,分为电动机、控制柜、传感器等。
1.压缩机的工作原理是:当电动机启动后,通过联轴器带动曲轴旋转,曲轴通过连杆将旋转运动转换为活塞的往复运动。
当活塞向下运动时,在上方形成一个真空区域,使得外部低压气体或空气经过吸入滤清器和吸气阀进入一级气缸。
当活塞向上运动时,在上方形成一个高压区域,使得一级压缩后的气体经过排气阀进入一级排气缓冲器。
然后经过一级换热器冷却后,进入二级吸气缓冲器。
同样的过程在二级、三级、四级等压缩气缸中重复进行,直到达到所需的压力。
最后,经过排出滤清器和油水分离器处理后,将压缩后的气体送入后续装置或使用场所。
2.压缩机的安装、运行、维护和故障排除的方法和注意事项压缩机的安装、运行、维护和故障排除的方法和注意事项,根据不同型号和规格的压缩机可能有所不同,具体请参考压缩机的使用说明书。
谷轮压缩机使用指南
谷轮压缩机使用指南谷轮压缩机使用指南1:简介谷轮压缩机是一种常用的压缩设备,主要用于将气体压缩为高压气体,以便在工业生产中使用。
本使用指南将详细介绍谷轮压缩机的使用方法和注意事项。
2:安全须知在使用谷轮压缩机之前,请务必遵守以下安全须知:- 在操作谷轮压缩机之前,确保已经接受相关培训并了解设备的工作原理和操作流程。
- 使用谷轮压缩机时,必须佩戴适当的个人防护设备,如护目镜、手套和安全鞋。
- 在操作过程中,应严格遵守相关安全操作规程,注意安全阀的状态,并确保压力不超过设定范围。
- 在清洁和维修设备前,务必先将谷轮压缩机与电源断开,并等待设备冷却。
3:谷轮压缩机的组成和工作原理谷轮压缩机主要由以下几个部件组成:- 谷轮:用于压缩气体。
- 凸轮:控制谷轮的运转。
- 进气阀和排气阀:调整气体的进出。
- 冷却系统:用于降低设备的温度。
谷轮压缩机的工作原理是通过谷轮的旋转来吸入气体,并将其压缩后排出。
进气阀在气体进入时打开,而排气阀则在气体压缩到一定压力后打开,释放压缩气体。
4:使用步骤4.1 准备工作- 检查设备和周围环境是否干净,无障碍物。
- 检查电源连接是否正常。
- 检查冷却系统的工作状态。
4.2 启动谷轮压缩机- 打开电源,并观察设备是否正常启动。
- 若设备正常运转,请等待一段时间,使其达到额定工作温度。
4.3 操作谷轮压缩机- 操作面板上的控制按钮和旋钮,调整进气和排气阀的开启程度,以控制气体的压缩程度。
- 当需要停止谷轮压缩机时,先调整进气阀和排气阀关闭,然后断开电源。
5:维护和保养- 定期清洁设备,去除污垢和积尘,注意不要损坏设备表面。
- 检查设备的冷却系统,保证其正常运作。
- 定期检查进气阀和排气阀的状态,并涂抹适量的润滑油。
6:附件本文档涉及以下附件:- 设备操作手册- 维修记录表- 安全操作规程- 故障排除手册7:法律名词及注释- 设备:指谷轮压缩机及其相关部件。
- 个人防护设备:用于保护操作人员安全的设备,如护目镜、手套等。
谷轮涡旋压缩机应用指南
关于涡旋压缩机在 1 小时内究竟能启动和停机多少次还没有肯定的答复,因为它很大程 度上取决于系统配置。因为涡旋压缩机是在卸载条件下启动的,即使在不平衡压力下,所以 没有最短停机时间的规定。最关键的考虑是在启动后需要让油返回压缩机的最小运行时间。 由于这些压缩机装有玻璃视镜,所以很容易进行测试。最短的运行时间就是当压缩机启动时 失油至油返回压缩机油池至恢复视镜中正常油位时所需要的时间。如果将压缩机在比该时间 短的时间间隔进行循环停开,例如为了保持非常精确的温度控制,会造成逐渐失去润滑油以 致损坏压缩机。进一步关于防止压缩机频繁循环停开的资料可查阅应用工程手册 17-1262.
4-1316
ZR90K3~ZR19M3 和 ZR250KC~ZR300KC 谷轮涡旋压缩机应用指南
筑龙网
前言 本手册叙述 7.5~25HP R22 和 R407C 谷轮涡旋压缩机的运行特性,设计特点和应用要求。
典型机型是 ZR90K3-TWC, ZR16M3-TW7 和 ZR300KC-TWD。如 需 得 到 更 多 详 情 , 请 上 网 页 查询产品资料。谷轮涡旋压缩机的工作原理已在谷轮工程应用 手册 4-1312 中叙述了。以下叙述的压缩机运行特性和设计特点有一些是与小型的谷轮涡 旋压缩机不同的。
在接近 0.05MPa(表)(7psig)(-32℃/-25°F 饱和吸气温度)压力下运行明显地超出图 2 表 示的允许运行范围了。但是,由于环境温度低,热泵在某些地理位置必须运行在这些范围。 只要冷凝温度不超过 32℃(90°F)且排气温度不超过 135℃(275°F),这是允许的。在这些工 况下有些液体返回压缩机有助于保持排气温度在控制范围内。某些情况下甚至 0.05MPa (表)(7psig)低压控制器还会造成噪扰性跳闸。这可能在换向阀动作时发生的短暂性吸气阻塞 或在热泵启动时节流元件前没有足够的液体压力。因此,可以将低压控制器移至液管,在那 里不会发生会引起噪扰性跳闸的短暂性吸气压力下降。但是,必需增加一排气温度控制器。 另一种方法是将低压控制器仍放在吸气管路而给低压控制器 60 秒钟(最大)的低压延时时间。 让机组在 60 秒钟内不理采低压控制器的讯号而让压缩机继续运行。
谷轮半封闭压缩机系列产品手册
50
580 1090 1680 2340 3100 4000 5050 6200 7600 9150
30
860 1050 1230 1400 1570 1720 1850 1950 2020 2050 2040 2020
P
40
740 960 1180 1400 1620 1830 2030 2200 2350 2470 2550 2580
C 系列 Series
制冷量 Capacity R22 技术参数 Technical Data 外形尺寸 Dimensions 型号说明 Model Nomenclature 电气原理图 Electrical Wiring Diagrams
S 系列 Series
制冷量 Capacity R22 R404A R407c 型号说明 Model Nomenclature 外形尺寸 Dimensions 技术参数 Technical Data 电气原理图 Electrical Wiring Diagrams
Q
40
1080 1720 2530 3500 4700 6150 7850
50
2000 2880 3950 5250
30
1180 1420 1680 1960 2240 2520 2800 3050 3260 3440
P
40
1390 1680 2010 2350 2710 3070 3410
50
2030 2430 2860 3290
50
810 1070 1340 1610 1880 2140 2390 2620 2830 3000
筑龙网
30
900 1480 2170 3000 3950 5050
EMERSON ZF K4系列低温涡旋压缩机 应用工程手册
前言谷轮涡旋TM K4系列压缩机是为低温冷冻工业提供的新一代柔性涡旋压缩机。
在K3系列的基础上主要改进以下4项内容:· 新涡旋型线-特殊设计以更强地满足冷冻应用中的高压缩比要求。
· 低泄漏率动态排气阀-提高高压比工况下的效率。
· 优化喷液控制-适应不同的系统设计可实现液体喷射。
· DU 驱动轴承-聚四氟乙烯的青铜轴承提供更高的可靠性。
这些特点使该压缩机能适应大多数严酷的低温冷冻应用需要。
型号命名谷轮涡旋TM 压缩机型号中标有60Hz / ARI 额定工况下的名义制冷量。
请参见产品样本中关于型号标称的具体内容。
运行范围K4机型可根据所选型号和所用润滑油使用下面各种制冷剂:下列润滑油可以使用于该系列压缩机:R22:Suniso 3GS Capella WF32R404A/R134a:Copeland Ultra 22CC Mobil EAL Arctic 22CC ICI Emkarate RL 32CF Thermzl Zone 22CC有关谷轮认可的润滑油的详细信息, 请参阅谷轮应用手册17-1248。
ZF 系列专为低温冷冻应用设计。
这些机型许可的运行范围详见图1A 至1C 。
表1机型 制冷剂 润滑油 ZF R22 矿物油 ZFR-404A,R-134aPOE 油application engineering bulletin应用工程手册605040302010-45-40-50-35-30-25-20-15蒸发温度℃冷凝温度℃R22图1AZF**K4系列低温涡旋压缩机CNZF-001-08application engineering bulletin 应用工程手册ZF**K4系列低温涡旋压缩机CNZF-001-08压缩机或阀的维护更换带DTC 阀的ZF 压缩机我们推荐将DTC 阀和压缩机同时更换。
如果你想使用原DTC 阀,旧阀的过滤网(零件号013-0119-20)应进行清洗或更换。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
压缩机的配置所有谷轮半封闭压缩机均设了滤油网,加油孔,带有压力表接口的排气和吸气截止阀,吸气过滤网及视油镜。
谷轮半封闭回气冷却型压缩机(以及LA60型空气冷却压缩机)安装了带有针型阀油压检测接口的油泵强制润滑油系统,可以连接机械式油压差控制器,其中S系列压缩机可使用电子油压差控制器。
油泵强制润滑油系统必须使用油压差控制器监控油压。
谷轮半封闭压缩机电机覆有防止润滑油和制冷剂渗透的绝缘层。
电机定子被压入机体,转子则直接固定在压缩机主轴上。
电机的冷却极为重要,因为它直接影响压缩机的使用寿命。
一般而言,电机绕组最适合的温度为70 C至90 C,最高不能超过100 G电机的承载能力取决于它的运转温度,如果绝缘层承受的温度过高,电机就可能损坏。
电压过度波动,缺相,电机堵转及散热效果不良都可增加额外功耗,从而使电机温度急剧上升。
每台压缩机都带有电机保护装置以保证在极端工况时电机的安全使用。
压缩机的冷却风冷压缩机可由冷凝器风机的空气流冷却,也可采用有足够风量的独立的风机冷却;冷却风必须要直接吹向压缩机。
回气冷却型压缩机在回气冷却压缩机中,电动机被经过定子和转子间的气态制冷剂冷却。
回气冷却压缩机中电机的热量由流经内置电机的制冷剂蒸汽带走•由于回气密度随着蒸发温度降低而减小,气体在压缩前的温度将因电机热而过度上升•进入吸气腔较高温度的气体再加上压缩热,将引起排气温度过高•因此在某些应用场合,必须用一个垂直安装的风量为328.5米/分的风机冷却汽缸头。
在R22 低温应用时,通常用附加喷液冷却来保证排气温度在允许的范围之内。
排气温度过高将产生一系列的问题,例如引起润滑油变质或形成酸性物质,从而引发电机或轴承的故障。
蒸发温度越低,排气温度就越高。
为了防止过高的排气温度,应使压缩机运行在相应于不同的制冷剂的规定使用范围内。
对于使用R22制冷剂并且蒸发温度低于-20oC的S系列半封闭压缩机,采用强制冷却系统(DTC阀喷液冷却系统),这是一种防止排气温度过高的有效措施。
运动机件的润滑在风冷压缩机中,运动机件的润滑油通过一个磁性栓引向偏心轴的入口•磁性栓是为了清除润滑油中微小的铁屑•蒸发器的回油经过吸气截止阀后的一个油分离腔由一连通小孔进入曲轴箱•压缩机停机后,曲轴箱内的平衡压力即通过该小孔来调整,这时制冷剂将富集于润滑油中•当压缩机在长期停机后再次启动时,曲轴箱压力将通过该小孔缓慢降低至蒸发压力,由此可以减少因制冷剂蒸发引起的润滑油与制冷剂混溶液体的气泡沸腾现象。
在回气冷却压缩机中,润滑油由不受电机旋转方向影响的油泵经滤油器和磁性栓吸入,与回气一起返回压缩机并在电机腔中分离。
经过电机腔和曲轴箱隔板上的释压阀到达曲轴箱•在一段时间里缓慢下降,减少了因压力下降过快引起的油/制冷剂混溶液体的起泡现象•该释压阀仅当压力通过另一释压阀达到平衡才能重新开启•这另一释压阀将曲轴箱和吸气侧汽缸头连接起来,通过该释压阀板上的一个微孔缓慢地减小压力差,这样减少了油泡沫而且只有极少的起泡的油/制冷剂混溶液体进入油泵。
润滑油生产商已规定了盛装容器的最大允许含水率指标。
由于水汽仍有可能进入密封的容器,所以必须将容器存放在干燥的地方,但是必须注意不能超过规定的存放时限。
同样原因,应根据制冷系统的最大用量而尽可能的采用小规格容器盛装的润滑油,并且将残余部分及容器妥善处置。
制冷剂谷轮半封闭制冷压缩机可按压缩机型号和用途使用R22,R502, R134a及R404A 等制冷剂•各种用途和相应制冷剂的资料•可参阅相关的选型表。
使用新制冷剂的系统的安装要点运行新型制冷剂系统的部件选用必须符合新制冷剂的特性(具体可咨询部件生产商):•必须使用与新型制冷剂相容的膨胀阀叮叮小文库•必须使用与新型制冷剂相容的足够容量的干燥过滤器•选用有关阀件、控制器件时必须考虑R134a,R404A,R507等新型制冷剂产生的质量流量改变•必须使用与新型制冷剂相容的专用加注管件•矿物油不能用于运行HFC新制冷剂的制冷系统中,因为矿物油不能与此类制冷剂混溶。
POE润滑油已被确证可以取代矿物油而很好的用于这种场合。
为了保证一如既往的延长使用寿命,必须特别注意这多元酯类油的性能和使用特点。
已经过认证的酯类油,它们可用于R404A,R507,R407C和R134a的系统中,并且可以互相混合使用。
为了防止矿物油和多元酯油的互相污染,应将相应用于传统制冷剂和新型制冷剂的各种器件如真空泵,管接件,加注和回收设备及零部件等严格分开使用。
经过谷轮认证的酯类油有:Mobil: EAL Arctic 22CC;ICI: Emkarate RL 32CF 等经过谷轮认证的矿物油有:Sun Oil Co.: Suniso 3GS ; Texaco : Capella WF32 等有关谷轮批准的润滑油详情请参阅谷轮应用指导手册AE17-1248。
机组或系统的生产商必须在铭牌上注明所用制冷剂的型号。
安装减震每台压缩机配有4个彩色的弹簧减震垫. 它们能吸收并缓冲压缩机的启动冲击,在运行中能阻止噪声和振动传递到压缩机底座并进一步扩散•在压缩机启动前或压缩机安装过程中,应将减震垫调整至工作状态,此项操作时,注意将压缩机保持水平以确保运动构件良好的润滑•弹簧的配置见说明书。
弹簧减震垫支承的压缩机要求在吸、排气管上安装柔性金属软管(避震管)以防止压缩机通过制冷剂管路传导的震动和噪声. 当管道直径在12mm以下时,在管道中设置避震环就足够了。
避震管应尽量靠近压缩机,并尽量与曲轴平行.在启动阶段,电机的启动力矩使压缩机向两侧摇摆,而平行于曲轴安装的避震管易于适应这种运动.不允许水平安装的避震管垂直于曲轴。
管道的连接制冷设备中的管道安装要求非常小心并保持高度的清洁.原则上只能使用内部清洁干燥、无氧化皮、无锈蚀、无磷酸盐层的管道。
管道焊接时必须在管内通以干燥氮气为防止管道内焊接处产生污垢,必须尽量控制材料熔化的程度.不能在有制冷剂的管道上进行焊接工作(即便制冷剂处于非压力状态).因为受热的制冷剂、油及空气会形成酸性物质.另外,还应考虑有毒气体的产生. 由制冷剂携带的润滑油必须尽可能快速不断地返回压缩机,但应该用存油弯管或单向阀防止润滑油和制冷剂通过排气管返回汽缸头.同样重要的是吸气管和排气管中的气体最低速度应符合规定以保证回油,在吸气上升管底部设置’U"型回油弯,并且每上升5米增设一个干燥过滤器和湿度指示仪安装在液体管道的干燥过滤器应有足够的容量并适合连续运行.其选型应根据制冷剂的流量.不能使用诸如氯化钾等吸收大量湿气后变成液体状态的干燥剂.建议用多孔性的块状干燥剂以吸附湿汽和酸,阻止脏物和金属碎屑.干燥过滤器的安装必须在第二次抽空工序后才能进行.湿度指示仪的视镜应安装在液体管道的易观察部位以达到检查制冷剂流量的目的。
吸气管过滤器为避免压缩机故障,在运行前必须把所有的杂质(污垢、焊接氧化皮、硼砂、金属屑等)从系统中清除。
许多杂质非常微小,可通过微孔过滤器进入压缩机吸气侧。
压缩机吸气过滤网也会发生其它原因的堵塞,甚至产生很大的压力降而使之损坏。
在进行现场装配或无法保证所需清洁度时,建议使用大容量的吸气管过滤器(仅产生极小的压力降)。
在过滤器前应设置压力计接口用以检测由过滤器引起的压力降。
油分离器在安装油分离器时,其中必须注满润滑油至溢流阀刚开始打开.油分离器中必须总是保持这些油量,否则压缩机中的润滑油将被油分离器取出而减少•电气连接进行电气连接前,应检查所用动力电路的电压、相数、频率是否与压缩机铭牌上的数据相符•另外还必须注意铭牌上与电机启动方式有关的电压连接转换方式的标志•在确定电机的连接方式(△或Y)时,请注意铭牌上电压连接转换方式标志和可以采取的启动方叮叮小文库式。
△或Y举例:220-240V △ /380-420VY电机可在与△或Y方式相应的连接位置(即电缆接点的连接方式)直接启动或以变压器启动•如果电网与该连接状态的电机的额定电压相符,电机也适合于Y/△启动,有关启动连接必须随后断开。
操作应按接线盒盖上电路图进行。
△,Y启动举例:380-420V △,Y启动电机可在△方式直接启动或以变压器启动,也可在规定电压下进行Y/ △转换启动。
YY,Y分绕组启动举例:380-420VYY,Y分绕组启动电机可直接启动、分绕组或以变压器启动。
该电机由直接启动或以变压器启动时并行接通的两部分绕组组成•两部分分绕组之间的连接应符合接线盒上的电路图提供的连接方式,此两部分分绕组之间可有接通延时(1秒土0.1)以减少启动电流而降低电网的负载•这个启动过程就是分绕组启动。
(启动后)必须按照电路图断开启动连接。
内置电机的容许电压范围很容易确定,即铭牌上标注的最大电压范围再加上土10%的容许电压偏差。
如下例所示。
例:铭牌上额定电压范围是220-240V △ /380-420Y电压偏差土10%电机可接成△或Y方式a)△接法中,从220V-10%=198V 到240V+10% = 264Vb)Y 接法中,从380V-10%=342V 到420V+10% = 462V有关谷轮半封闭压缩机的电气装置及在50Hz及60Hz运行时的详细资料,包括电机保护装置、连接方式、熔断器规格,启动转换方式,风机等,可参见压缩机说明书•抽真空(干燥)系统在泄漏试验后必须抽真空•抽真空必须使用真空泵而不允许用压缩机自行抽真空•为了便于抽真空操作,建议在吸气管道和液体管道上安装抽真空阀•抽真空阀与真空泵之间的连接管道内径至少为8mm抽真空阀上的接口截面应不小于连接管的截面•所有连接管截面之和不应小于真空泵吸气口截面。
真空泵的连接管(高压橡胶管或0 10x 1铜管)应尽量短,而且不能有狭窄或急剧弯曲的地方•抽真空能力会因狭窄的接口和连接管道而明显降低•还应注意的是由于真空表通常位于真空泵上,其指示值难以和系统末端的真空度相一致,所以应增加额外的抽真空时间,以便系统各部位都达到相同的真空度• 一台抽气速率40~50 l/min 的真空泵足以应付中小型机器•大型设备应配用内径0 10以上的连接管或$ 12 x 1, 015 X 1铜管,并配用相应大规格的真空阀及真空泵,也许还必须用双级真空泵.真空度不能用常规压力表而必须用真空表测量•应该先后两次将系统抽真空至2mbar (1・5 torr ),这样可避免某些运行故障•两次抽真空之间加入所用制冷剂(可吸收大量气态水分)至表压0・15bar。
接着将包括压缩机或机组在内的整个系统第三次抽真空至0.7mbar (约0.5 torr )。
先关闭系统和真空泵的连接阀,最后关闭真空泵,向系统中加入所用制冷剂至表压0・15bar。
注意:不允许在真空状态下启动压缩机及进行高压试验和绝缘强度试验,以免损坏电机。