智能控制理论与方法

合集下载

智能控制理论和方法(第二版)李人厚1-5章 (4)

智能控制理论和方法(第二版)李人厚1-5章 (4)
能力,合适的学习因子可以加快算法的收敛且不易陷入局部最
优;xid∈[-xmaxd, xmaxd], 根据实际问题将解空间限制在一定 的范围;vid∈[-vmaxd, vmaxd], 根据实际问题将粒子的飞行速 度设定在一定的范围。
第9章 粒子群算法及其在智能控制中的应用 图9.2 基本粒子群算法流程
第9章 粒子群算法及其在智能控制中的应用 9.2 基本粒子群算法
9.2.1 基本粒子群算法的原理 设想有这样一个场景: 一群鸟在某一个区域里随机搜寻食
物。在这个区域里,只存在一处食物源,而所有的鸟都不知道 食物的具体位置,但是每只鸟知道自己当前的位置离食物源有 多远,也知道哪一只鸟距离食物源最近。在这样的情况下,鸟 群找到食物的最优策略是什么呢? 最简单有效的方法就是搜寻 目前离食物源最近的那只鸟的周围区域。PSO就是从这种搜寻食 物的场景中得到启示,并用于解决优化问题。PSO的形象图示见 图9.1。
第9章 粒子群算法及其在智能控制中的应用 在PSO算法中,每个优化问题的潜在解都类似搜索空间中的 一只鸟,称其为“粒子”。粒子们追随当前群体中的最优粒子, 在解空间中不断进行搜索以寻找最优解。PSO算法首先初始化一 群随机粒子(随机解集),通过不断迭代,且在每一次迭代中, 粒子通过跟踪两个极值来更新自己;第一个极值是粒子本身截 至目前所找到的最优解,这个解称为个体极值pb(pbest);另一 个极值是整个粒子群迄今为止所找到的最优解,称为全局极值 gb(gbest),最终找到图9.1 PSO的形象图示
第9章 粒子群算法及其在智能控制中的应用
9.2.2 基本粒子群算法 在基本PSO算法中,首先初始化一群粒子。设有N个粒子,
每个粒子定义为D维空间中的一个点,第i个粒子pi在D维空间 中的位置记为Xi=(xi1, xi2, …, xiD), i=1, 2, …, N,粒子 pi的飞翔速度记为Vi,Vi=(vi1, vi2, …, viD), i=1, 2, …, N。粒子pi从诞生到目前为止(第k次迭代后),搜索到最好位置 称其为粒子pi的个体极值,表示为pbki=(pbki1, pbki2, …, pbkiD)。在整个粒子群中,某粒子是迄今为止(第k次迭代后)所 有粒子搜索到的最好位置,称其为全局极值,表示为gbk=(gbk1, gbk2, …, gbkD),则PSO算法进行优化迭代中,第i个粒子pi按 照下面公式来更新自己的速度和位置:

智能控制技术

智能控制技术

遗传算法在优化问题中应用
遗传算法原理
遗传算法是一种模拟生物进化过程的智能优化算法,通过选择、交叉、变异等操作,寻找问题的最优解或近似最 优解。
应用案例
遗传算法在函数优化、生产调度、路径规划等领域有广泛应用,如路径规划问题中,通过遗传算法寻找最短路径 或最优路径,提高运输效率。
04
智能控制器设计与实现
THANKS
感谢观看
强化学习在自适应控制中应用
1 2
探索与利用
强化学习通过试错的方式探索最优控制策略,同 时利用已有经验进行优化,实现自适应控制。
延迟奖励处理
强化学习算法能够处理具有延迟奖励的控制问题 ,通过长期规划实现目标的最优控制。
3
稳定性与收敛性
强化学习算法在自适应控制中能够保证系统的稳 定性和收敛性,为实际应用提供可靠保障。
智能控制系统的基本结构
01
介绍智能控制系统的基本组成,包括传感器、执行器、控制器
以及被控对象等。
智能控制系统的设计原则
02
阐述设计智能控制系统时应遵循的原则,如可靠性、实时性、
可扩展性等。
智能控制系统的实现方法
03
探讨实现智能控制系统的具体方法,包括硬件选型、软件编程
、系统调试等,并介绍一些典型的智能控制系统案例。
02
智能控制基础理论
自动控制原理简介
01
自动控制的基本概念
介绍自动控制的定义、目的以及实现方式等。
02
系统建模与分析
阐述如何对控制系统进行建模,包括传递函数、状态空间等,并分析系
统的稳定性、频率响应等特性。
03
控制策略与设计
介绍经典控制理论和现代控制理论中的常用控制策略,如PID控制、最

智能控制系统中的控制理论与方法研究

智能控制系统中的控制理论与方法研究

智能控制系统中的控制理论与方法研究智能控制系统是一种针对复杂系统进行自主决策的智能控制方法。

它可以利用复杂系统的特性和任务,通过灵活的智能控制来实现其最佳控制效果,从而解决复杂系统的控制问题。

本文将从控制理论和方法的角度出发,深入分析智能控制系统中的控制理论与方法。

首先,有关智能控制系统的控制理论,必须要根据复杂系统的特性和任务,提出有效的控制策略,以便在设计智能控制系统时能够实现其最佳控制绩效。

一方面,要实现智能控制策略,必须依赖于传统的控制理论,包括线性系统控制理论、非线性系统控制理论、时变系统控制理论等。

这些控制理论为智能控制系统提供了基础,为智能控制系统的设计提供了理论的参考。

另一方面,如何实现智能控制策略,则必须依赖于智能控制方法。

目前,研究者们提出了一系列有效的智能控制方法,包括模糊控制、神经网络控制、遗传算法控制、模式识别控制等。

这些智能控制方法可以实现对复杂系统的智能控制,能够解决复杂系统中的控制问题,具有较强的智能化、非线性化、动态化等优势。

总之。

人工智能自动控制的理论与应用

人工智能自动控制的理论与应用

人工智能自动控制的理论与应用随着科技的不断更新和进步,人工智能自动控制已经成为了一种趋势。

人工智能技术的应用范围越来越广泛,不仅局限于工业生产领域,还在包括医疗、金融、教育、交通等方面得到了广泛的应用。

本文将从理论与应用两个方面进行探讨。

一、理论(一)人工智能自动控制的定义所谓人工智能自动控制,是指建立在参数自适应控制技术基础之上,利用人工智能技术实现的自动控制系统。

它通过对系统内部的参数进行自适应调节,使得系统在外界变化的情况下仍能保持稳定运行。

(二)人工智能自动控制的原理人工智能自动控制的原理在于建立了控制系统模型,并将其与人工智能算法相结合,通过偏差反馈来实现自动调节控制。

此外,还可以利用神经网络模型来进行精准控制和数据分析。

(三)人工智能自动控制的算法人工智能自动控制技术的算法有很多种,比较常用的有模糊控制、遗传算法、粒子群算法、蚁群算法、神经网络算法等等。

这些算法在不同的场景下都可以发挥其独特的优势,从而提高自动控制的效率和精度。

二、应用(一)工业生产人工智能自动控制技术在工业生产中应用最为广泛,它可以通过对机器设备进行自动控制和参数调节,从而提高工厂生产效率和产品质量。

另外,在生产过程中还可以利用人工智能技术对数据进行分析,从而实现工艺流程的优化和改进。

(二)医疗应用人工智能自动控制技术在医疗应用中也有着广泛的应用。

例如,利用神经网络模型来对医学影像进行分析,可以实现对医学影像的快速识别和诊断;再例如,通过对患者生命体征数据的实时监测和分析,可以实现自动报警和提醒,以便医护人员尽可能快地做出响应。

(三)金融应用人工智能自动控制技术在金融应用中也有着非常重要的作用。

可以利用其高效的风险控制能力,对股票、债券等重要资产进行自动化投资和风险管理。

此外,它还可以利用大数据分析技术对金融市场的走向进行预测和判断,为投资者提供有效的投资决策依据。

三、总结人工智能自动控制技术的发展将会带来极其深远的影响。

智能控制理论及应用 PPT

智能控制理论及应用 PPT

智能控制理论及应用 PPT智能控制是控制理论发展的高级阶段,它综合了人工智能、自动控制、运筹学等多学科的知识,旨在解决那些传统控制方法难以处理的复杂系统控制问题。

本 PPT 将带您深入了解智能控制理论及其广泛的应用领域。

一、智能控制的概念智能控制是指在无人干预的情况下能自主地驱动智能机器实现控制目标的自动控制技术。

与传统控制相比,智能控制具有以下显著特点:1、不确定性:能够处理系统中的不确定性,如模型不确定性、参数变化和外部干扰等。

2、复杂性:适用于复杂的、非线性的和时变的系统。

3、自适应性:可以根据系统的运行情况和环境变化自动调整控制策略。

4、学习能力:能够从数据和经验中学习,不断优化控制性能。

二、智能控制的主要理论1、模糊控制模糊控制是基于模糊集合理论和模糊逻辑推理的一种智能控制方法。

它通过将精确的输入量模糊化,利用模糊规则进行推理,最后将模糊输出解模糊化为精确的控制量。

模糊控制适用于那些难以建立精确数学模型的系统,例如温度控制、速度控制等。

2、神经网络控制神经网络控制是利用人工神经网络的学习和自适应能力来实现控制的方法。

神经网络可以通过对大量数据的学习,提取系统的特征和规律,从而实现对系统的有效控制。

在机器人控制、模式识别等领域有着广泛的应用。

3、专家控制专家控制是将专家系统的知识和经验与控制理论相结合的一种智能控制方法。

专家系统包含了大量的领域知识和控制策略,能够根据系统的状态和需求提供准确的控制决策。

4、遗传算法遗传算法是一种基于生物进化原理的优化算法,通过模拟自然选择和遗传变异的过程来寻找最优的控制参数或策略。

它在控制器的参数优化、系统的建模和优化等方面发挥着重要作用。

三、智能控制的应用领域1、工业生产在工业生产过程中,智能控制可以提高生产效率、产品质量和设备的可靠性。

例如,在化工生产中,通过智能控制可以实现对反应过程的精确控制,优化生产工艺;在机器人制造中,利用神经网络控制可以实现机器人的精确动作和轨迹规划。

智能制造中的控制理论与方法

智能制造中的控制理论与方法

智能制造中的控制理论与方法智能制造是近年来工业界和学术界一直关注的热门话题,它不仅是传统制造业向数字化和自动化转型的途径,也是实现制造业高效、高速、高质量发展的必经之路。

而在智能制造中,控制理论和方法是非常重要的一环,决定着制造过程中的质量、效率和能源消耗等因素。

本文将从“控制系统的基本概念”、“控制策略及应用实例”、“智能控制在制造中的应用”三个方面,简要介绍智能制造中的控制理论和方法。

第一部分:控制系统的基本概念控制系统是由若干个相互关联的元件组成的系统,它的目的是使被控对象按照既定要求运动或保持某种状态。

在传统制造中,控制系统通常是基于PID控制器的闭环控制模式,即通过传感器采集被控对象的反馈信号,进行误差计算和控制信号输出,使被控对象的状态达到既定值。

第二部分:控制策略及应用实例在智能制造中,随着控制理论和方法的不断发展,控制策略也不断更新和扩展。

目前主要的控制策略包括模型预测控制(MPC)、模糊控制、神经网络控制等。

下面分别介绍这几种控制策略及其应用实例。

1.模型预测控制(MPC)MPC是通过建立被控对象的动态模型,并根据模型进行预测和优化计算的一种控制策略。

相比传统的PID控制,MPC能够更好地处理复杂的非线性、时变系统,并通过变量优化和预测控制,实现对被控对象的优化控制。

例如,MPC广泛应用于石化、化工、电力等领域的过程控制,可以有效提高产品质量,降低生产成本。

2.模糊控制模糊控制是一种基于模糊理论的控制策略,它将模糊集合理论引入控制系统中,通过建立模糊逻辑规则来进行控制。

模糊控制能够克服传统控制方法中容易出现的模型不准确、参数难以确定等问题,具有非常好的适应性和鲁棒性。

例如,在纺织、食品加工等领域,模糊控制被广泛应用于无人机控制、食品烹调等领域。

3.神经网络控制神经网络控制是一种基于神经网络理论的控制策略,它通过建立神经网络模型,根据网络学习的结果输出控制信号,完成对被控对象的控制。

智能控制理论及应用

智能控制理论及应用

智能控制理论及应用在当今科技飞速发展的时代,智能控制理论作为一门新兴的交叉学科,正逐渐改变着我们的生活和生产方式。

它融合了控制理论、计算机科学、人工智能等多个领域的知识,为解决复杂系统的控制问题提供了新的思路和方法。

智能控制理论的核心在于模拟人类的智能行为,使控制系统能够在不确定、复杂的环境中自主地进行决策和控制。

与传统控制理论相比,智能控制具有更强的适应性和自学习能力。

传统控制理论通常基于精确的数学模型,然而在实际应用中,很多系统难以建立精确的数学模型,或者模型会随着环境和工作条件的变化而发生改变。

智能控制则能够在模型不精确或不确定的情况下,通过学习和优化来实现有效的控制。

模糊控制是智能控制的一个重要分支。

它利用模糊集合和模糊逻辑来描述和处理系统中的不确定性和模糊性。

例如,在温度控制中,“高温”“低温”“适中”等概念往往没有明确的界限,模糊控制可以很好地处理这种模糊性,根据经验和规则来调整控制策略。

模糊控制的优点在于它不需要精确的数学模型,只需要根据专家经验或操作人员的知识来制定模糊规则,就能够实现对系统的有效控制。

神经网络控制也是智能控制中的热门领域。

神经网络类似于人类大脑的神经元网络,具有强大的学习和泛化能力。

通过对大量数据的学习,神经网络可以自动提取特征和规律,并用于控制系统的优化和决策。

在机器人控制、图像处理等领域,神经网络控制都取得了显著的成果。

智能控制在众多领域都有着广泛的应用。

在工业生产中,智能控制可以提高生产效率和产品质量。

例如,在自动化生产线中,智能控制系统可以根据实时的生产数据和环境变化,自动调整生产参数,实现生产过程的优化。

在机器人领域,智能控制使机器人能够更加灵活地适应不同的任务和环境,完成复杂的操作,如无人驾驶汽车、工业机器人的精密操作等。

在智能家居方面,智能控制让我们的生活更加便捷和舒适。

通过传感器和智能算法,智能家居系统可以自动调节室内温度、照明、安防等,实现家居设备的智能化管理。

智能控制ppt课件

智能控制ppt课件
发展历程
从经典控制理论到现代控制理论 ,再到智能控制理论,经历了数 十年的发展。
智能控制与传统控制的区别
01
02
03
控制目标
传统控制追求精确的数学 模型,而智能控制更注重 实际控制效果。
控制方法
传统控制主要采用基于模 型的控制方法,而智能控 制则采用基于知识、学习 和经验的方法。
适应性
传统控制对环境和模型变 化适应性较差,而智能控 制具有较强的自适应能力 。
仿真调试、实验调试
调试方法
优化策略
性能评估
05
CATALOGUE
智能控制在工业领域的应用
工业自动化概述
工业自动化的定义和 发展历程
工业自动化对现代工 业的影响和意义
工业自动化的主要技 术和应用领域
中的应用
02
智能传感器和执行器在工业自动化中的应用
模糊控制器设计
包括模糊化、模糊推理、去模糊化等步骤,实现输入 输出的非线性映射。
神经网络控制技术
神经元模型
模拟生物神经元结构和功 能,构建基本计算单元。
神经网络结构
通过神经元之间的连接和 层次结构,构建复杂的神 经网络系统。
学习算法
基于样本数据训练神经网 络,调整连接权重和阈值 ,实现特定功能的控制。

智能控制在智能家居中的应用
智能照明控制
通过智能控制器和传感器,实 现灯光的自动调节和远程控制 ,提高照明舒适度和节能效果

智能窗帘控制
通过智能控制器和电机,实现 窗帘的自动开关和远程控制, 提高居住便捷性和私密性。
智能空调控制
通过智能控制器和温度传感器 ,实现空调的自动调节和远程 控制,提高居住舒适度和节能 效果。

智能控制理论与方法

智能控制理论与方法

智能控制理论与方法智能控制是自动控制发展的高级阶段,是人工智能、控制论、系统论、信息论、仿生学、神经生理学、进化计算和计算机等多种学科的高度综合与集成,是一门新兴的边缘交叉学科。

它不仅包含了自动控制、人工智能、运筹学和信息论的内容,而且还从计算机科学、生物学、心理学等学科中汲取营养。

什么又是智能控制理论呢?智能控制的概念和原理是针对被控对象及其环境、控制目标或任务的复杂性和不确定性而提出来的。

对“智能控制”这一术语没有确切的定义,但是也有前辈做过归纳总结的,例如,IEEE控制系统协会归纳为:只能控制系统必须具有模拟人类学习(Learning)和自适应(Adaptation)的能力。

智能控制系统是智能机自动完成其目标的控制过程,由智能机参与生产过程自动控制的系统称为智能控制系统。

定性的说,智能控制系统应具有学习、记忆和大范围的自适应和自组织能力;能够及时地适应不断变化的环境;能有效的处理各种信息,以减小不确定性;能够以安全和可靠地方式进行规划、生产和执行控制动作而达到预定的目的和良好的性能指标。

智能控制系统一般具有以知识表示的非数学广义模型和艺术学模型表示的混合控制过程。

它适用于含有复杂性、不完全性、模糊性、不确定和不存在的已知算法的生产过程。

它根据被控动态过程特征辨识,采用开闭环控制盒定性与定量控制相结合的多模态的控制方式。

智能控制器具有分层信息处理和决策机构。

它实际上是对人神经结构或专家决策机构的一种模仿。

复杂的系统中,通常采用任务分块、控制分散方式。

智能控制核心在高层控制,它对环境或过程进行组织、决策和规划,实现广义求解。

要实现此任务需要采集符号信息处理、启发式程序设计、知识展示及自动推理和决策的相关技术。

底层控制也属于智能控制系统不可缺少的一部分,一般采用常规控制。

智能控制器也具有非线性。

这是因为认得思维具有非线性,作为模仿人的思维进行决策的智能控制也具有非线性。

由于智能控制器具有在线特征辨识、特征记忆和拟人特点,在整个控制过程中计算机在线获取信息和实时处理并给出控制决策,通过不断优化参数和寻找控制器的最佳结构方式,以获取整体最有控制性能。

常用智能控制方法

常用智能控制方法

常用人工智能控制方法人工智能控制是将人工智能(AI, Artificial Intelligence)的理论和方法用于控制领域的技术,包括模糊逻辑与模糊控制(FL/FC, Fuzzy Logic/Fuzzy Control)、神经网络控制(ANN, Artificial Intelligence)、遗传算法(GA, Genetic Algorithm)和专家系统(ES, Expert System)等[6-10]。

4.1 模糊智能控制模糊控制是一种人类智能控制,它允许在模糊系统中纳入常识和自学习规则,并意味着一个学习模块能够用一个模糊规则集合来解释其行为。

因此模糊系统对使用者来说是透明的,与传统控制方法(如PID控制)相比,模糊控制利用人类专家控制经验,对非线性、复杂对象的控制显示了鲁棒性好、控制性能高的优点[11-14]。

广义模糊逻辑系统的万能逼近理论为模糊系统建模提供了理论依据,也为复杂的非线性系统提供了有效的手段。

遗传算法作为一种新的全局优化算法,以其简单通用、鲁棒性强、适用于并行处理等特点,在智能控制中发挥着愈来愈重要的作用。

文献[15]中涉及了一种新型的基于遗传算法的多变量模糊控制器,通过结合模糊预测和遗传算法来优化控制规律,利用遗传算法来辨识系统参数。

随着模糊控制技术的发展完善,板形模糊控制的研究日益受到重视。

早期研究工作主要集中于一些常规控制方法不能获得较好控制品质的情况,如轧辊喷射冷却模糊控制[16-17];多辊轧机(森吉米尔轧机)的板形控制[18] 自1995年以来,韩国科学与技术高等学院的Jong-Y eob Jung等人就普通六辊轧机的板形控制进行了系列、详细的研究,探讨了利用模糊逻辑进行六辊轧机板形控制的可行性,研究了对称板形的动态及静态控制特性[19]。

近来,Jong-Y eob Jung等已将模糊逻辑应用于控制包括非对称板形在内的任意板形,取得了较大进展[20-21]。

智能交通道路交通控制的基本理论和方法

智能交通道路交通控制的基本理论和方法

2)动态模型
2.2 交通参数的检测和计算
在交通控制系统中,常用的交通参数主要有: 交通流量 占有率 排队长度 速度和密度等。 这些参数有些可以直接测量,有些需要根据其他检测量计算得到。
相位差是协调控制系统中的
单击此处添加正文,文字是您思想的提炼,为了演示发布的良好效果,请言简意赅地阐述您的观点。您的内容已经简明扼要,字字珠玑,但信息却千丝万缕、错综复杂,需要用更多的文字来表述;但请您尽可能提炼思想的精髓,否则容易造成观者的阅读压力,适得其反。正如我们都希望改变世界,希望给别人带去光明,但更多时候我们只需要播下一颗种子,自然有微风吹拂,雨露滋养。恰如其分地表达观点,往往事半功倍。当您的内容到达这个限度时,或许已经不纯粹作用于演示,极大可能运用于阅读领域;无论是传播观点、知识分享还是汇报工作,内容的详尽固然重要,但请一定注意信息框架的清晰,这样才能使内容层次分明,页面简洁易读。如果您的内容确实非常重要又难以精简,也请使用分段处理,对内容进行简单的梳理和提炼,这样会使逻辑框架相对清晰。
3)流量与速度的关系
一路段内车辆占用的道路长度总和与路段长度之比,称为占有率或车辆占有率。
2、连续交通流模型
04
考察x的任意区间[a,b]和任意时刻t,设车流通过a,b点的流量分别为 和 。因为时刻t在区间[a,b]内的车辆数为 ,其变化率为 。在路段[a,b]没有其他出入口的情况下,车辆数是守恒的,于是
1、宏观稳态交通的基本特征
宏观模型的基本特征主要用交通流量、交通密度和空间平均车速等描述。 x点处,在t时刻,单位时间内通过的车辆数称为交通流量,用 表示,单位为veh/h。 x点处,在t时刻,每车道单位长度道路上拥有的车辆数称为交通密度,用 表示,单位为veh/km。 在t时刻,x点附近车辆的速度平均值称为空间平均速度,用 表示,单位为veh/h。 根据上述定义及实际测量结果,人们发现:当车流均匀、车种单一时,3个量之间符合关系

智能控制的原理和应用

智能控制的原理和应用

智能控制的原理和应用1. 引言在当前人工智能技术快速发展的背景下,智能控制技术在各个领域中得到了广泛的应用。

智能控制采用先进的算法和智能化的系统,能够实现自主学习和自动决策,从而提高系统的效率和性能。

本文将介绍智能控制的基本原理及其在不同领域中的应用。

2. 智能控制的基本原理智能控制的基本原理是建立在人工智能和控制理论基础上的。

它主要包括以下几个方面:•数据获取和处理:智能控制系统通过传感器等设备获取系统的输入数据,并进行合理的处理和分析。

•数据建模和学习:系统根据获取的数据建立合适的数学模型,并在不断学习的过程中不断完善模型的性能。

•决策和控制:根据系统的目标和约束条件,智能控制系统通过优化算法或强化学习等方法进行决策,并对系统进行控制。

•反馈和调整:智能控制系统通过与环境的实时交互获取反馈信息,并根据反馈信息对控制策略进行调整。

3. 智能控制的应用领域智能控制技术已经在多个领域中得到了广泛的应用。

以下是几个应用领域的例子:3.1 智能家居智能家居是当前智能控制技术的一个重要应用领域。

智能家居系统可以通过感知设备获取家庭环境的信息,如温度、湿度等,通过学习和优化算法实现自动控制。

智能家居可以自动调节室内温度、控制照明和安防系统等,提高家居的舒适性和安全性。

3.2 自动驾驶自动驾驶技术是智能控制在交通领域的一个重要应用。

通过传感器和学习算法,自动驾驶系统可以实时感知周围环境,包括道路状况、车辆、行人等,并根据获取的数据进行决策和控制。

自动驾驶可以提高交通安全性、减少交通拥堵,并提供更便捷的出行方式。

3.3 工业自动化智能控制在工业自动化领域中也有着广泛的应用。

工业自动化系统可以通过与机器人、传感器等设备的联接,实现生产线的自动化控制。

智能控制系统可以对生产参数进行实时监控和调整,以提高生产效率和质量。

3.4 智能医疗智能控制技术在医疗领域中也有着重要的应用。

智能医疗系统可以通过传感器和智能算法实时监测患者的生理状态,并针对不同疾病提供个性化的治疗方案。

智能控制理论与技术

智能控制理论与技术

2.模糊控制系统
将模糊逻辑理论应用到控制领域称为模糊控制。模糊控 制主要研究现实生活中广泛存在的、定性的、模糊的、非精 确的信息系统的控制问题。模糊控制提供了一种基于自然语 言描述规则的控制规律。模糊控制的核心是模糊控制器。模 糊控制器有四个基本组成部分,分别是规则库、模糊化、模 糊推理和精确化四个基本功能模块。模糊控制器的原理结构 图如图7-8所示。
[智能信息]∩[智能反馈]∩
可见,相对于基于精确模型的常规控制,智能控制主要 核心在智能决策部分。如果说自动控制使人们从繁重的体力 劳动中解放出来的话,那么,智能控制则试图将人们从复杂 的脑力劳动中解放出来。
7.2智能控制的性能和特点
7.2.1智能控制的性能 智能控制主要用来解决传统控制难以解决的复杂系统
图7-1智能控制二元交集论
7.1.2智能控制三元交集论
Saridis等人于1977年提出了智能控制三元交集论,即 认为智能控制是人工智能、自动控制和运筹学的交集,可用 图7-2和式(7.2)表示。
IC=AC∩AI∩OR
(7.2)
式(7.2)中,OR表示运筹学(Operation Research)。由图7-2 可以看出,在三元交集论中除“智能”与“控制”之外,还 强调了更高层次控制中调度、规划和管理的作用。
(1)关联预测协调原则。协调器要预测各子系统的关联 输入输出变量,下层各决策单元根据预测的关联变量求解各 自的决策问题,然后把达到的性能指标值送给协调器,协调 器再修正关联预测值,直到总体目标达到最优为止。这种协 调模式称为直接干预模式。这种协调方法可在线应用,是一 种可行的方法。
(2)关联平衡协调原则。
(3)组织功能。对于复杂任务和分散的传感信息具有自 组织和协调功能,使系统具有主动性和灵活性。即智能控 制器可以在任务要求的范围内自行决策,主动采取行动。 当出现多目标冲突时,在一定限制下,各控制器可在一定 范围内自行解决,使系统能满足多目标、高标准的要求。

智能控制理论与技术

智能控制理论与技术

智能控制理论与技术第一章智能控制的研究对象:不确定性的模型、高度的非线性、复杂的任务要求。

不确定性包含的含义:模型未知或知之甚少、模型的结构和参数可能在很大范围内变化。

智能控制系统是实现某种控制任务的一种智能系统。

所谓智能系统是指具备一定智能行为的系统。

具体地说,若对于一个问题的激励输入,能够产生合适的求解问题响应,这样的系统便称为智能系统。

智能控制系统的主要功能特点:学习功能、适应功能、组织功能。

目前智能控制主要包括模糊控制、神经网络控制、分层递阶智能控制、专家控制、学习控制。

智能控制是人工智能、运筹学和自动控制三者的交叉。

第二章模糊性与随机性区别:模糊性主要是人为的主观理解上的不确定性,而随机性则主要反映的是客观上的自然的不确定性。

模糊集合的表示方法。

模糊集合术语:台集合、正则模糊集合、单点模糊集合。

模糊集合基本运算:交并补直积。

模糊关系的定义及表示,模糊关系的合成(最大-最小常用)。

每个模糊语言相当于一个模糊集合,通常在模糊语言前面加上极、非、相当、略、比较、稍微的修饰词,其结果改变了模糊语言的含义,相应的隶属度函数也要改变。

模糊蕴含关系(模糊蕴含最小运算、模糊蕴含积运算)模糊蕴含句子连接词(and、also)模糊推理的性质当论域为连续时推理计算方法(图形)。

Mamdani与T-S模糊模型的区别模糊控制器的结构两种模糊化方法(主要):单点模糊集合、三角形模糊集合知识库通常由数据库和模糊控制规则库两部分组成建立模糊规则的方法:基于专家的经验和控制工程知识、基于操作人员的实际控制过程、基于过程的模糊模型、基于学习。

模糊量清晰化的两种计算方法:最大隶属度法、加权平均法。

第三章人工神经元模型表示。

单层感知器网络学习算法BP网络利用一阶梯度法计算各层反向误差。

BP网络的优缺点离散hopfield异步工作方式、同步工作方式判断是不是网络的稳定点或吸引子海明距离的定义Hopfield网络的连接权设计第四章专家系统是一种基于知识的系统,它主要面临的是各种非结构化问题,尤其能处理定性的、启发式或不确定的知识信息,经过各种推理过程达到系统的任务目标。

智能控制理论

智能控制理论

在无人干预的情况下能自主地驱动智能机器实现控制目标的自动控制技术。

对许多复杂的系统,难以建立有效的数学模智能控制理论型和用常规的控制理论去进行定量计算和分析,而必须采用定量方法与定性方法相结合的控制方式。

定量方法与定性方法相结合的目的是,要由机器用类似于人的智慧和经验来引导求解过程。

因此,在研究和设计智能系统时,主要注意力不放在数学公式的表达、计算和处理方面,而是放在对任务和现实模型的描述、符号和环境的识别以及知识库和推理机的开发上,即智能控制的关键问题不是设计常规控制器,而是研制智能机器的模型。

此外,智能控制的核心在高层控制,即组织控制。

高层控制是对实际环境或过程进行组织、决策和规划,以实现问题求解。

为了完成这些任务,需要采用符号信息处理、启发式程序设计、知识表示、自动推理和决策等有关技术。

随着人工智能和计算机技术的发展,已经有可能把自动控制和人工智能以及系统科学中一些有关学科分支(如系统工程、系统学、运筹学、信息论)结合起来,建立一种适用于复杂系统的控制理论和技术。

智能控制正是在这种条件下产生的。

它是自动控制技术的最新发展阶段,也是用计算机模拟人类智能进行控制的研究领域。

1965年,傅京孙首先提出把人工智能的启发式推理规则用于学习控制系统。

1985年,在美国首次召开了智能控制学术讨论会。

1987年又在美国召开了智能控制的首届国际学术会议,标志着智能控制作为一个新的学科分支得到承认。

智能控制具有交叉学科和定量与定性相结合的分析方法和特点。

一个系统如果具有感知环境、不断获得信息以减小不确定性和计划、产生以及执行控制行为的能力,即称为智能控制系统.智能控制技术是在向人脑学习的过程中不断发展起来的,人脑是一个超级智能控制系统,具有实时推理、决策、学习和记忆等功能,能适应各种复杂的控制环境.智能控制与传统的或常规的控制有密切的关系,不是相互排斥的. 常规控制往往包含在智能控制之中,智能控制也利用常规控制的方法来解决“低级”的控制问题,力图扩充常规控制方法并建立一系列新的理论与方法来解决更具有挑战性的复杂控制问题.1. 传统的自动控制是建立在确定的模型基础上的,而智能控制的研究对象则存在模型严重的不确定性,即模型未知或知之甚少者模型的结构和参数在很大的范围内变动,比如工业过程的病态结构问题、某些干扰的无法预测,致使无法建立其模型,这些问题对基于模型的传统自动控制来说很难解决.2. 传统的自动控制系统的输入或输出设备与人及外界环境的信息交换很不方便,希望制造出能接受印刷体、图形甚至手写体和口头命令等形式的信息输入装置,能够更加深入而灵活地和系统进行信息交流,同时还要扩大输出装置的能力,能够用文字、图纸、立体形象、语言等形式输出信息. 另外,通常的自动装置不能接受、分析和感知各种看得见、听得着的形象、声音的组合以及外界其它的情况. 为扩大信息通道,就必须给自动装置安上能够以机械方式模拟各种感觉的精确的送音器,即文字、声音、物体识别装置. 可喜的是,近几年计算机及多媒体技术的迅速发展,为智能控制在这一方面的发展提供了物质上的准备,使智能控制变成了多方位“立体”的控制系统.3. 传统的自动控制系统对控制任务的要求要么使输出量为定值(调节系统) ,要么使输出量跟随期望的运动轨迹(跟随系统) ,因此具有控制任务单一性的特点,而智能控制系统的控制任务可比较复杂,例如在智能机器人系统中,它要求系统对一个复杂的任务具有自动规划和决策的能力,有自动躲避障碍物运动到某一预期目标位置的能力等. 对于这些具有复杂的任务要求的系统,采用智能控制的方式便可以满足.4. 传统的控制理论对线性问题有较成熟的理论,而对高度非线性的控制对象虽然有一些非线性方法可以利用,但不尽人意. 而智能控制为解决这类复杂的非线性问题找到了一个出路,成为解决这类问题行之有效的途径. 工业过程智能控制系统除具有上述几个特点外,又有另外一些特点,如被控对象往往是动态的,而且控制系统在线运动,一般要求有较高的实时响应速度等,恰恰是这些特点又决定了它与其它智能控制系统如智能机器人系统、航空航天控制系统、交通运输控制系统等的区别,决定了它的控制方法以及形式的独特之处.智能控制理论5. 与传统自动控制系统相比,智能控制系统具有足够的关于人的控制策略、被控对象及环境的有关知识以及运用这些知识的能力6. 与传统自动控制系统相比,智能控制系统能以知识表示的非数学广义模型和以数学表示的混合控制过程,采用开闭环控制和定性及定量控制结合的多模态控制方式.7. 与传统自动控制系统相比,智能控制系统具有变结构特点,能总体自寻优,具有自适应、自组织、自学习和自协调能力.8. 与传统自动控制系统相比,智能控制系统有补偿及自修复能力和判断决策能力.总之,智能控制系统通过智能机自动地完成其目标的控制过程,其智能机可以在熟悉或不熟悉的环境中自动地或人─机交互地完成拟人任务.智能控制的主要技术方法智能控制是以控制理论、计算机科学、人工智能、运筹学等学科为基础,扩展了相关的理论和技术,其中应用较多的有模糊逻辑、神经网络、专家系统、遗传算法等理论和自适应控制、自组织控制、自学习控制等技术。

智能控制基础

智能控制基础
结合的多模态控制; ❖ 启发式和直觉推理逻辑的应用。
五 仿人智能控制基本原理
1. 引言
❖ 仿人智能控制在结构上是分级递阶的控制 结构,遵循“智能增加而相应精度降低” (IPDI)原则,但不同于Saridis的分级递 阶结构理论 。
❖ 仿人智能控制认为:其最低层(运行控制 级)不仅仅由常规控制器构成,而应具有 一定智能,以满足实时,高速,高精度的 控制要求。
e
五 仿人智能控制基本原理
图3-2 仿人智能控制器 原型的静态特性
B)抑制系数k偏小
e
em1
em3
1
2
em2
u
u01
u
02
u 03
A)抑制系数k偏大
ee
em1 em3
m2
u
u01
u02
B)抑制系数k偏小
五 仿人智能控制基本原理
t
图3-3 仿人智能控制器
u04
原形的动态特性
t
它表明了当系统受到
阶跃干扰的作用,输出响
智能控制基础
主要内容
一 控制理论的发展概况 二 智能控制的认识论与方法论 三 智能与人工智能 四 智能控制基本理论与方法 五 仿人智能控制基本原理
五 仿人智能控制基本原理
1. 引言 2. 仿人智能控制器的原型 3. 特征模型、特征辨识与特征记忆 4. 多模态控制与多目标决策 5. 启发式搜索与直觉推理 6. 分层递阶的信息处理和决策机构
五 仿人智能控制基本原理
2. 仿人智能控制器的原型
❖ 基本算法和静特性 ❖ 动态特性分析 ❖ 仿人智能控制器原型中的智能属性
五 仿人智能控制基本原理
2.1 基本算法和静特性
❖ 仿人智能控制器的基本算法是以熟练操作者的 观察、决策等智力行为做基础,根据被调量偏 差及变化趋势决定控制策略,因此它接近于人 的思维方式。

工程学中的智能控制理论应用实例分析

工程学中的智能控制理论应用实例分析

工程学中的智能控制理论应用实例分析1. 引言智能控制是指利用先进的计算技术和人工智能算法,对工程系统进行自动化控制的一种方法。

在工程学中,智能控制理论被广泛应用于各种领域,包括机械、电子、自动化、能源等。

本文将以几个实际的应用实例,分析智能控制在工程学中的具体应用。

2. 机器人智能控制机器人智能控制是工程学中应用智能控制理论的一个重要领域。

在制造业中,机器人已经成为生产线上不可或缺的一部分。

通过使用智能控制算法,可以提高机器人的自动化水平和生产效率。

例如,在装配线上,机器人可以通过视觉识别系统感知待装配产品的位置和姿态,然后利用智能控制算法精确地进行装配操作。

通过不断学习和优化算法,机器人可以逐渐提高装配效率和质量。

另外,智能控制还可以使机器人具备自主导航和路径规划的能力。

通过结合感知系统、定位系统和智能算法,机器人可以根据环境中的障碍物和目标位置,自动规划最优路径,并避开障碍物。

3. 智能家居控制智能家居控制是另一个应用智能控制理论的领域。

智能家居通过将传感器、执行器和智能控制系统集成在一起,实现对家庭设备的智能控制和管理。

在智能家居中,智能控制系统可以根据家庭成员的需求和行为模式,自动调节室内温度、光照亮度和空气质量等参数。

例如,当家庭成员进入卧室时,智能控制系统可以自动调整温度和湿度,以提供最佳的睡眠环境。

智能家居还可以通过智能控制系统与外部环境进行交互。

例如,当外部温度过高时,智能控制系统可以自动关闭窗帘和调整空调温度,以保持室内的舒适度。

4. 能源系统智能控制能源系统智能控制是工程学中另一个重要的应用领域。

通过利用智能控制理论,可以对能源系统进行优化控制,实现能源的高效利用和降低能源消耗。

例如,在太阳能电池发电系统中,智能控制系统可以根据实时的天气情况和能源需求,灵活调整太阳能电池板的角度和光照面积,以最大程度地捕获太阳能并转化为电能。

而在风力发电系统中,智能控制系统可以根据风速和风向,自动调整风力发电机的转速和叶片角度,以实现最佳的发电效率。

智能控制理论及应用(2023版)

智能控制理论及应用(2023版)

智能控制理论及应用智能控制理论及应用⒈简介⑴研究背景⑵研究目的⑶研究内容⑷研究方法⑸研究意义⒉控制理论基础⑴控制系统分类⑵控制系统的基本组成⑶控制系统的数学模型⑷控制系统的性能指标⒊经典控制理论⑴比例控制⑵比例-积分控制⑶比例-积分-微分控制⑷标准PID控制⑸ PID控制器参数整定方法⑹ PID控制在工业领域的应用⒋高级控制理论⑴模糊控制⑵自适应控制⑶预测控制⑷智能控制⑸控制器的设计与实现⒌控制应用案例分析⑴温度控制系统案例分析⑵液位控制系统案例分析⑶速度控制系统案例分析⑷压力控制系统案例分析⑸其他应用案例分析⒍控制系统的优化与调试⑴控制系统的建模与仿真⑵控制系统优化方法⑶控制系统调试技巧⑷控制系统故障排除⒎未来发展趋势⑴智能控制技术的前景⑵控制理论与工程的融合⑶控制系统的自主学习与适应能力⑷控制技术在领域的应用附件:附件1:温度控制系统仿真模型代码附件2:液位控制系统设计方案附件3:PID控制器参数整定方法总结法律名词及注释:⒈控制系统:指用于实现对某个过程或系统变量的调节和稳定的一组设备和方法的总称。

⒉ PID控制:比例-积分-微分控制的简称,是一种常用的控制方法,通过调节比例、积分和微分部分的参数来实现系统的稳定和优化控制。

⒊比例控制:通过调节输出信号与误差信号之间的线性关系,来实现对系统过程的控制。

⒋积分控制:通过在控制过程中累积误差信号,并根据累积误差值进行调节,来实现对系统过程的控制。

⒌微分控制:通过监测误差变化速率,并根据变化速率进行调节,来实现对系统过程的控制。

智能控制理论及应用PPT课件

智能控制理论及应用PPT课件
智能控制理论及应用PPT课件
目 录
• 智能控制理论概述 • 智能控制基础理论 • 智能控制技术与方法 • 智能控制系统设计与实现 • 智能控制在工业领域应用案例 • 智能控制在非工业领域应用案例 • 智能控制发展趋势与挑战
01
智能控制理论概述
智能控制定义与发展
定义
智能控制是模拟人类智能,具有自 学习、自适应、自组织等能力,能 够处理复杂、不确定和非线性系统 的控制方法。
模糊控制器设计 介绍模糊控制器的结构、设计步骤及优化方法, 包括输入输出变量的选择、模糊化方法、模糊规 则制定等。
神经网络基础
01
神经元模型与神经网络结构
阐述神经元模型的基本原理,介绍常见的神经网络结构,如前馈神经网
络、循环神经网络等。
02
神经网络学习算法
介绍神经网络的学习算法,包括监督学习、无监督学习和强化学习等,
发展历程
从经典控制理论到现代控制理论, 再到智能控制理论,经历了数十年 的发展,目前已成为控制领域的研 究热点。
智能控制与传统控制比较
控制对象
控制性能
传统控制主要针对线性、时不变系统, 而智能控制则面向复杂、非线性、时 变系统。
传统控制在稳定性和精确性方面表现 较好,而智能控制则在适应性和鲁棒 性方面更具优势。
智能家居系统架构
包括传感器、控制器、执行器等 组成部分,实现家庭环境的智能 感知与控制。
智能家居应用场景
如智能照明、智能安防、智能家 电等,提高家居生活的便捷性和 舒适性。
智能家居系统实现
技术
包括物联网技术、云计算技术、 人工智能技术等,实现家居设备 的互联互通和智能化控制。
智能交通信号控制策略优化
模糊控制在生产调度中的应用
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

智能控制理论与方法
智能控制是自动控制发展的高级阶段,是人工智能、控制论、系统论、信息论、仿生学、神经生理学、进化计算和计算机等多种学科的高度综合与集成,是一门新兴的边缘交叉学科。

它不仅包含了自动控制、人工智能、运筹学和信息论的内容,而且还从计算机科学、生物学、心理学等学科中汲取营养。

什么又是智能控制理论呢?
智能控制的概念和原理是针对被控对象及其环境、控制目标或任务的复杂性和不确定性而提出来的。

对“智能控制”这一术语没有确切的定义,但是也有前辈做过归纳总结的,例如,IEEE控制系统协会归纳为:只能控制系统必须具有模拟人类学习(Learning)和自适应(Adaptation)的能力。

智能控制系统是智能机自动完成其目标的控制过程,由智能机参与生产过程自动控制的系统称为智能控制系统。

定性的说,智能控制系统应具有学习、记忆和大范围的自适应和自组织能力;能够及时地适应不断变化的环境;能有效的处理各种信息,以减小不确定性;能够以安全和可靠地方式进行规划、生产和执行控制动作而达到预定的目的和良好的性能指标。

智能控制系统一般具有以知识表示的非数学广义模型和艺术学模型表示的混合控制过程。

它适用于含有复杂性、不完全性、模糊性、不确定和不存在的已知算法的生产过程。

它根据被控动态过程特征辨识,采用开闭环控制盒定性与定量控制相结合的多模态的控制方式。

智能控制器具有分层信息处理和决策机构。

它实际上是对人神经
结构或专家决策机构的一种模仿。

复杂的系统中,通常采用任务分块、控制分散方式。

智能控制核心在高层控制,它对环境或过程进行组织、决策和规划,实现广义求解。

要实现此任务需要采集符号信息处理、启发式程序设计、知识展示及自动推理和决策的相关技术。

底层控制也属于智能控制系统不可缺少的一部分,一般采用常规控制。

智能控制器也具有非线性。

这是因为认得思维具有非线性,作为模仿人的思维进行决策的智能控制也具有非线性。

由于智能控制器具有在线特征辨识、特征记忆和拟人特点,在整个控制过程中计算机在线获取信息和实时处理并给出控制决策,通过不断优化参数和寻找控制器的最佳结构方式,以获取整体最有控制性能。

模糊控制系统是智能控制的重要组成部分。

模糊控制器是非线性控制器,许多传统的建模、分析和设计方法可以直接采用。

任何的控制都有其数学理论和数学基础,模糊控制系统的数学基础是模糊集合、模糊规则和模糊推理。

模糊集合就是指具有某个模糊概念所描述的属性的对象的全体,这一概念是美国加利福尼亚大学控制论专家L.A.扎德于 1965 年首先提出的。

模糊集合这一概念的出现使得数学的思维和方法可以用于处理模糊性现象,从而构成了模糊集合论(中国通常称为模糊性数学)的基础。

模糊控制的核心就是利用模糊集合理论,把表达的人控制策略的自然语言转化为计算机能够承受的算法语言的控制算法,这种方法不仅能实现控制,而且能模拟人的思维方式,对一些无法构造的数学模
型的被控对象进行有效的控制。

模糊控制与一般的自动控制的根本区
别是,不需要建立精确地数学模型,而是运用模糊理论将人的经验知
识与思维推理相结合,其控制过程的方法与策略是由模糊控制器来实现的。

定义变量:也就是决定程序被观察的状况及考虑控制的动作,例如在一般控制问题上,输入变量有输出误差E与输出误差变化率EC,而模糊控制还将控制变量作为下一个状态的输入U。

其中E、EC、U
统称为模糊变量。

模糊化:将输入值以适当的比例转换到论域的数值,利用口语化变量来描述测量物理量的过程,根据适合的语言值(linguistic value)求该值相对的隶属度,此口语化变量称为模糊子集合(fuzzy subsets)。

知识库:包括数据库(data base)与规则库(rule base)两部分,其中数据库提供处理模糊数据的相关定义;而规则库则藉由一群语言控制规则描述控制目标和策略。

逻辑判断:模仿人类下判断时的模糊概念,运用模糊逻辑和模糊推论法进行推论,得到模糊控制讯号。

该部分是模糊控制器的精髓所在。

解模糊化:将推论所得到的模糊值转换为明确的控制讯号,做为系统的输入值。

智能控制离不开神经网络的控制,它好比人的大脑进行思考判断一样,进行下达指令。

在此就对神经网络进行简单的描述下。

神经网络技术是以大脑的生理研究成果为基础的。

神经网络是利用大量的神
经元按一定的拓扑结构和学习调整方法。

它能表示出丰富的特性:并行计算、分布存储、可变结构、高度容错、非线性运算、自我组织、学习或自学习等。

这些特性是人们长期追求和期望的系统特性. 它在智能控制的参数、结构或环境的自适应、自组织、自学习等控制方面具有独特的能力。

神经网络可以和模糊逻辑一样适用于任意复杂对象的控制,但它与模糊逻辑不同的是擅长单输入多输出系统和多输入多输出系统的多变量控制。

模糊神经网络技术和神经模糊逻辑技术:模糊逻辑和神经网络作为智能控制的主要技术已被广泛应用. 两者既有相同性又有不同性. 其相同性为:两者都可作为万能逼近器解决非线性问题,并且两者都可以应用到控制器设计中. 不同的是:模糊逻辑可以利用语言信息描述系统,而神经网络则不行;模糊逻辑应用到控制器设计中,其参数定义有明确的物理意义,因而可提出有效的初始参数选择方法;神经网络的初始参数(如权值等) 只能随机选择. 但在学习方式下,神经网络经过各种训练,其参数设置可以达到满足控制所需的行为. 模糊逻辑和神经网络都是模仿人类大脑的运行机制,可以认为神经网络技术模仿人类大脑的硬件,模糊逻辑技术模仿人类大脑的软件. 根据模糊逻辑和神经网络的各自特点,所结合的技术即为模糊神经网络技术和神经模糊逻辑技术. 模糊逻辑、神经网络和它们混合技术适用于各种学习方式智能控制的相关技术与控制方式结合或综合交叉结合,构成风格和功能各异的智能控制系统和智能控制器是智能控制技术方法的一个主要特点.
思考题:
1、简单的叙述白箱、灰箱和黑箱理论。

白箱理论:是指研究者不仅知道该系统的输入——输出关系,而且知道实现输入——输出关系的结构与过程。

若用箱子来类比系统,则这种系统可称为“白箱”系统。

它相当于一只能打开来看清楚内部到底装有何物的箱子。

研究者对该系统有较充分的认识,能从理论上描述和精确预测这一系统的运动规律。

黑箱理论:指那些既不能打开,又不能从外部直接观察其内部状态的系统,比如人们的大脑只能通过信息的输入输出来确定其结构和参数。

“黑箱方法”从综合的角度为人们提供了一条认识事物的重要途径,尤其对某些内部结构比较复杂的系统,对迄今为止人们的力量尚不能分解的系统,黑箱理论提供的研究方法是非常有效的。

灰箱理论:由邓聚龙教授提出,灰色理论研究的贫信息不确定,基础信息为灰色朦胧集,信息覆盖上,用灰序列算子运算,用任意分布侧重于内涵,小样本。

2、传统的控制包括哪些内容有什么特点?
传统的自动控制系统的输入或输出设备与人及外界环境的信息交换很不方便,希望制造出能接受印刷体、图形甚至手写体和口头命令等形式的信息输入装置,能够更加深入而灵活地和系统进行信息交流,同时还要扩大输出装置的能力,能够用文字、图纸、立体形象、语言等形式输出信息. 另外,通常的自动装置不能接受、分析和感知各种看得见、听得着的形象、声音的组合以及外界其它的情况. 为扩大信息通道,就必须给自动装置安上能够以机械方式模拟各种感觉的精
确的送音器,即文字、声音、物体识别装置. 可喜的是,近几年计算机及多媒体技术的迅速发展,为智能控制在这一方面的发展提供了物质上的准备,使智能控制变成了多方位“立体”的控制系统.
特点:传统控制比较准确,控制的算法清楚,模糊控制不要求系统数学模型,传统控制需要数学模型。

3、简单说明模糊控制盒神经网络的应用
模糊控制:模糊系统广泛应用于自动控制工程、科学研究、信号处理、数据库管理、信息重现、可是计算、数据分类、生物医电、生理学等等。

神经网络:农业生产、交通运输、国防建设、航空航天事业。

还有应用于工业生产、信息处理领域、自动化领域、医学领域等等。

相关文档
最新文档