2015成都一诊文科数学试题答案解析
2015四川高考数学文科试卷带详解
2015年普通高等学校招生全国统一考试(四川卷)文科一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合要求的) 1.设集合A ={|12}x x -<<,集合B ={|13}x x <<,则A B =( )A. {|13}x x <-<B. {|11}x x <-<C. {|12}x x <<D. {|23}x x << 【参考答案】A【测量目标】考查集合的并集运算.【试题分析】集合(12)(13)A B =-,,=,,故(13)A B =-,,选A. 2.设向量(24)a =,与向量(6)b x =,共线,则实数x =( ) A.2 B.3 C.4 D.6 【参考答案】B【测量目标】考查向量平行的性质.【试题分析】 由向量平行的性质,有2:4=x :6,解得x =3,选B.3.某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是( )A.抽签法B.系统抽样法C.分层抽样法D.随机数法 【参考答案】C【测量目标】考查抽样方法的适用范围.【试题分析】按照各种抽样方法的适用范围可知,应使用分层抽样.选C.4.设a b ,为正实数,则1a b “>>”是22log log 0a b “>>”的( ) A.充要条件 B.充分不必要条件 C.必要不充分条件 D.既不充分也不必要条件 【参考答案】A【测量目标】考查充分、必要条件.【试题分析】1a b >>时,有22log log 0a b >>成立,反之也正确.选A. 5.下列函数中,最小正周期为π的奇函数是( )A.πsin(2)2y x =+B.πcos(2)2y x =+C.sin2cos2y x x =+D.sin cos y x x =+ 【参考答案】B【测量目标】考查三角函数的周期.【试题分析】A 、B 、C 的周期都是π,D 的周期是2π,但A 中,cos2y x =是偶函数,C 中π)4y x +是非奇非偶函数. 故正确答案为B.6.执行如图所示的程序框图,输出S 的值为( )第6题图A. - C.12-D.12【参考答案】D【测量目标】考查算法的程序框图,求值运算能力. 【试题分析】第四次循环后,5k =,输出5π1sin62S ==,选D. 7.过双曲线2213y x -=的右焦点且与x 轴垂直的直线交该双曲线的两条渐近线于A 、B 两点,则|AB |=( )B. C.6 D.【参考答案】D【测量目标】考查双曲线的交点、渐近线.【试题分析】由题意,1,a b ==2c =,渐近线方程为y =,将2x =代入渐近线方程,得y =±AB = D.8.某食品的保鲜时间y (单位:小时)与储藏温度x (单位:℃)满足函数关系e kx b y += (e 2.718= 为自然对数的底数,,k b 为常数).若该食品在0℃的保鲜时间是192小时,在22℃的保鲜时间是48小时,则该食品在33℃的保鲜时间是( )A.16小时B.20小时C.24小时D.21小时 【参考答案】C【测量目标】考查函数在实际问题中的应用.【试题分析】由题意,22192e 48ebk b+⎧=⎨=⎩得11192e 1e 2b k⎧=⎪⎨=⎪⎩,于是当33x =时 ,()33311eee k bk by +==⋅=31192242⎛⎫⨯= ⎪⎝⎭(小时).9.设实数x y ,满足2102146x y x y x y +≤⎧⎪+≤⎨⎪+≥⎩,则xy 4<的最大值为( )A.252B.492C.12D.14【参考答案】A【测量目标】考查运用线性规划求最值. 【试题分析】画出可行域如图,第9题图在ABC △区域中结合图象可知, 当动点在线段AC 上时xy 取得最大, 此时210x y +=,()112522222x y xy x y +⎛⎫=⋅≤ ⎪⎝⎭22=,当且仅当552x y =,=时取等号,对应点落在线段AC 上, 故最大值为25.2选A. 10.设直线l 与抛物线24y x =相较于A ,B 两点,与圆C :222(5)(0)x y r r -+=>相切于点M ,且M 为线段AB 中点,若这样的直线l 恰有4条,则r 的取值范围是( )A.(1,3)B.(1,4)C.(2,3)D.(2,4) 【参考答案】D【测量目标】考查抛物线、圆、直线的综合问题. 【试题分析】不妨设直线:l x ty m =+, 代入抛物线方程有:2440y ty m --=, 则216160t m ∆=+>,又中点2(2,2)M t m t +,则1MC l k k =-,即232m t =-(当0t ≠时),代入21616t m ∆=+,可得230t ->,即203t <<. 又由圆心到直线的距离等于半径,可得2d r ====由203t <<,可得(2,4)r ∈.选D.二、填空题(每小题5分,共25分,将答案填在答题纸上) 11.设i 是虚数单位,则复数1i i-=_____________.【参考答案】2i【测量目标】考查复数的四则运算. 【试题分析】1i i i 2i i-=+=. 12.2lg0.01log 16=+ _____________.【参考答案】2【测量目标】考查对数函数的求值运算. 【试题分析】2lg0.01log 16242+=-+=.13.已知sin 2cos 0αα+=,则22sin cos cos ααα-的值是______________.【参考答案】-1【测量目标】考查三角函数的求值运算. 【试题分析】由已知可得tan 2α=-,22sin cos cos ααα=-22222sin cos cos 2tan 1411sin cos tan 141ααααααα---===-+++-. 14.在三棱柱111ABC A B C -中,90BAC ∠︒=,其正视图和侧视图都是边长为1的正方形,俯视图是直角边长为1的等腰直角三角形,设点M ,N ,P 分别是AB ,BC ,B 1C 1的中点,则三棱锥P AMN -的体积是______.【参考答案】124【测量目标】空间几何体的体积.【试题分析】由题意,三棱柱是底面为直角边长为1的等腰直角三角形, 高为1的直三棱柱,底面积为12. 如图,三棱锥P AMN -底面积是三棱锥底面积的14,高为1, 故三棱锥P AMN -的体积为111132424⨯⨯=.第14题图15.已知函数()()22x f x g x x ax =,=+ (其中a ∈R ).对于不相等的实数12x x ,,设()()()()12121212,f x f x g x g x m n x x x x --=--=,现有如下命题:①对于任意不相等的实数12x x ,,都有0m >;②对于任意的a 及任意不相等的实数12x x ,,都有0n >; ③对于任意的a ,存在不相等的实数12x x ,,使得m n =; ④对于任意的a ,存在不相等的实数12x x ,,使得m n =-. 其中真命题有___________________(写出所有真命题的序号).【参考答案】①④【测量目标】考查函数与命题判断相结合的问题.【试题分析】对于①,因为()xf x '=2l n2>0恒成立,故①正确.对于②,取8a =-,即()28g x x '=-,当12x x ,<4时,0n <,②错误.对于③,令()()f x g x ''=,即2ln22xx a =+,记()2ln 22x h x x =-,则()()22ln22xh x '=-,存在()00,1x ∈,使得()00h x =,可知函数()h x 先减后增,有最小值. 因此,对任意的a ,m n =不一定成立. ③错误. 对于④,由()()f x g x ''=-,即2ln 22xx a =--,令()2ln 22xh x x =+,则()()22ln 220xh x '=+>恒成立,即()h x 是单调递增函数, 当x →+∞时,()h x →+∞; 当x →-∞时,()h x →-∞.因此,对任意的a ,存在y a =与函数()h x 有交点. ④正确.三、解答题(本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤). 16.(本小题满分12分)设数列{}(123)n a n ⋯=,,的前n 项和n S 满足12n n S a a =-,且1231a a a ,+,成等差数列. (1)求数列的通项公式;(2)设数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,求n T . 【测量目标】(1)考查等差数列与等比数列的概念、等比数列通项公式;(2)考查等比数列前n 项和、运算求解能力. 【试题分析】 (1) 由已知12n n S a a =-, 有1122(2)n n n n n a S S a a n ≥--=-=-, 即12(2)n n a a n ≥-=. 从而21321224a a a a a =,==, 又因为1231a a a ,+,成等差数列, 即1322(1)a a a +=+.所以111+4=2(2+1)a a a ,解得1=2a .所以,数列{}n a 是首项为2,公比为2的等比数列 故=2.n n a (2)由(1)得112n n a =, 所以211122111111222212nn n nT ⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦=+++==-- .17.(本小题满分12分)一辆小客车上有5个座位,其座位号为1,2,3,4,5,乘客12345,,,,P P P P P 的座位号分别为1,2,3,4,5,他们按照座位号顺序先后上车,乘客1P 因身体原因没有坐自己号座位,这时司机要求余下的乘客按以下规则就坐:如果自己的座位空着,就只能坐自己的座位.如果自己的座位已有乘客就坐,就在这5个座位的剩余空位中选择座位.(1)若乘客1P 坐到了3号座位,其他乘客按规则就座,则此时共有4种坐法.下表给出其中两种坐法,请填入余下两种坐法(将乘客就坐的座位号填入表中空格处);(2)若乘客1P 坐到了2号座位,其他乘客按规则就坐,求乘客1P 坐到5号座位的概率.【测量目标】(1)考查排列组合;(2)考查排列组合、古典概型.【试题分析】 (1)余下两种坐法如下表所示:做到了2号座位,其他乘客按规则就坐,则所有可能坐法可用下表表示为于是,所有可能的坐法共8种.设“乘客5P 坐到5号座位”为事件A ,则事件A 中的基本事件的个数为4, 所以()4182P A ==. 答:乘客5P 坐到5号座位的概率为12. 18.(本小题满分12分)一个正方体的平面展开图及该正方体的直观图的示意图如图所示. (1)请按字母F ,G ,H 标记在正方体相应地顶点处 (不需要说明理由) ; (2)判断平面BEG 与平面ACH 的位置关系.并说明你的结论; (3)证明:直线DF ⊥平面BEG .第18题图【测量目标】(1)考查简单空间图形的直观图,空间想象能力;(2)考查空间线面平行与面面平行的判定与性质,空间想象能力、推理论证能力;(3)考查空间线面垂直的判定与性质,空间想象能力、推理论证能力.【试题分析】(1)点F,G,H的位置如图所示第18题图(2)平面BEG∥平面ACH.证明如下:因为ABCD-EFGH为正方体,所以BC∥FG,BC=FG.又FG∥EH,FG=EH,所以BC∥EH,BC=EH.于是BCEH为平行四边形,所以BE∥CH.又CH⊂平面ACH,BE⊄平面ACH,所以BE∥平面ACH,同理BG∥平面ACH.又BE∩BG=B,所以平面BEG∥平面ACH.第18题图(3)连接FH,因为ABCD-EFGH为正方体,所以DH⊥平面EFGH.因为EG⊂平面EFGH,所以DH⊥EG.又EG⊥FH,DH∩FH=H,所以EG⊥平面BFHD.又DF⊂平面BFHD,所以DF⊥EG.同理DF ⊥BG , 又EG ∩BG =G ,所以DF ⊥平面BEG . 19.(本小题满分12分)已知A 、B 、C 为△ABC 的内角,tan A 、tan B 是关于方程x 2-p +1=0(p ∈R )两个实根. (1)求C 的大小;(2)若AB =3,ACp 的值. 【测量目标】(1)考查韦达定理,解三角形; (2)考查正弦定理的应用,正切值的计算.【试题分析】 (1)由已知,方程210x p -+=的判别式22)4(1)3440p p p ∆≥=--+=+-, 所以2p ≤-或2.3p ≥由韦达定理,有tan tan tan tan 1A B A B p +=,=-, 于是1tan tan 1(1)0A B p p =≠-=--,从而tan()A B +=tan tan 1tan tan A B A B +==-所以tan tan()C A B =-+ 所以60.C ︒=(2)由正弦定理,得sin B =sin AC C AB ==解得45B ︒=或135B ︒=(舍去), 于是18075,A B C ︒︒=--=则tan tan75tan(4530)A ︒︒︒==+=1tan 45tan 3021tan 45tan 303++==-所以tan )1p A B =-+=--20.(本小题满分13分)如图,椭圆E :()222210x y a b a b +=>>的离心率是2,点P (0,1)在短轴CD 上,且1PC PD ⋅=- . (1)求椭圆E 的方程;(2)设O 为坐标原点,过点P 的动直线与椭圆交于A 、B 两点.是否存在常数λ,使得OA OB PA PB λ⋅+⋅ 为定值?若存在,求λ的值;若不存在,请说明理由.第20题图【测量目标】(1)考查椭圆的标准方程,运算求解能力;(2)考查直线方程,推理论证能力、运算求解能力,数形结合、化归与转化、特殊与一般、分类与整合等数学思想.【试题分析】(1)由已知,点C ,D 的坐标分别为(0)(0),b b ,-,,又点P 的坐标为(01),,且1PC PD ⋅=- ,于是2222112b c a a b c ⎧-=-⎪⎪=⎨⎪-=⎪⎩,解得2a b =, 所以椭圆E 方程为22142x y +=. (2)当直线AB 斜率存在时,设直线AB 的方程为1y kx =+,A ,B 的坐标分别为1122()()x y x y ,,,. 联立221421x y y kx ⎧+=⎪⎨⎪=+⎩,得22(21)420k x kx ++-=, 其判别式()224+8(21)0k k ∆=+>. 所以12122242,,2121k x x x x k k +=-=-++ 从而OA OB PA PB λ⋅+⋅ 12121212[(1)(1)]x x y y x x y y λ=+++-- 21212(1)(1)()1k x x k x x λ=+++++()2224(21)21k k λλ--+--=+ 21221k λλ---+=-所以,当1λ=时,212321k λλ---=-+-,此时,OA OB PA PB λ⋅+⋅ 3=-为定值. 当直线AB 斜率不存在时,直线AB 即为直线CD ,此时OA OB PA PB OC OD PC PD λ⋅+⋅=⋅+⋅ 21=3=---.故存在常数1λ=,使得OA OB PA PB λ⋅+⋅ 为定值3-.21.(本小题满分14分)已知函数()222ln 2+f x x x x ax a =-+-,其中0a >.(1)设()g x 为()f x 的导函数,讨论g (x )的单调性;(2)证明:存在(01)a ∈,,使得()0f x ≥在区间(0,)+∞内恒成立,且()0f x =在(1,)+∞内有唯一解. 【测量目标】(1)考查导数的运算、导数在研究函数中的应用、函数的零点;(2) 函数与方程,推理论证能力、运算求解能力、创新意识,数形结合、化归与转化等数学思想.(1)由已知,函数()f x 的定义域为(0)∞,+,()()==2(1ln )g x f x x x a '---,所以()()2122x g x x x-'==-. 当(01)x ∈,时,()0g x '<,()g x 单调递减; 当(1)x ∈∞,+时,()g x '>0,()g x 单调递增.(2)由()'2(1ln )0f x x x a =---=,解得1ln a x x =--.令()x ϕ2222ln 2(1ln )(1ln )(1+ln )2ln x x x x x x x x x x x =-+---+--=-, 则()()110e 2(2e)0ϕϕ<=>,=-,于是存在0(1e)x ∈,,使得()00x ϕ=.令()00001ln a x x u x =--=,其中()1ln (1)u x x x x ≥=--,由()110u x x'≥=-知,函数()u x 在区间(1)∞,+上单调递增, 故()()0001()e e 21u a u x u <=<==-<,即0(01)a ∈,.当0a a =时,有()()()00000f x f x x ϕ'=,==.再由(1)知,()f x '在区间(1)∞,+上单调递增,当0(1)x x ∈, 时,()0f x '<,从而()()00f x f x >=; 当0()x x ∈∞,+时,()'0f x >,从而()()00f x f x >=;又当(01]x ∈,时,()20()2ln 0f x x a x x =-->, 故(0)x ∈∞,+时,()0f x ≥.综上所述,存在(01)a ∈,,使得()0f x ≥,在区间(0+)∞,内恒成立,且()0f x =在区间(1)∞,+内有唯一解.。
四川省成都市2015届高三第一次诊断数学(文)试题及答案
成都市2015届高中毕业班第一次诊断性检测数学试题(文科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集{|0}=≥U x x,集合{1}=P,则UP=ð(A)[0,1)(1,)+∞(B)(,1)-∞(C)(,1)(1,)-∞+∞(D)(1,)+∞2.若一个几何体的正视图和侧视图是两个全等的正方形,则这个几何体的俯视图不可能是(A)(B)(C)(D)3.命题“若22≥+x a b,则2≥x ab”的逆命题是(A)若22<+x a b,则2<x ab(B)若22≥+x a b,则2<x ab(C)若2<x ab,则22<+x a b(D)若2≥x ab,则22≥+x a b4.函数31,0()1(),03xx xf xx⎧+<⎪=⎨≥⎪⎩的图象大致为(A)(B)(C)(D)5.复数5i(2i)(2i)=-+z(i是虚数单位)的共轭复数为(A)5i3-(B)5i3(C)i-(D)i6.若关于x的方程240+-=x ax在区间[2,4]上有实数根,则实数a的取值范围是消费支出/元(A )(3,)-+∞ (B )[3,0]- (C )(0,)+∞ (D )[0,3] 7.已知53cos()25+=πα,02-<<πα,则sin 2α的值是 (A )2425 (B )1225 (C )1225- (D )2425-8.已知抛物线:C 28y x =,过点(2,0)P 的直线与抛物线交于A ,B 两点,O 为坐标原点,则OA OB ⋅的值为(A )16- (B )12- (C )4 (D )0 9.已知m ,n 是两条不同直线,α,β是两个不同的平面,且n ⊂β,则下列叙述正确的是(A )若//m n ,m ⊂α,则//αβ (B )若//αβ,m ⊂α,则//m n (C )若//m n ,m α⊥,则αβ⊥ (D )若//αβ,m n ⊥,则m α⊥ 10.如图,已知正方体1111ABCD A B C D -棱长为4,点H 在棱1AA 上,且11HA =.点E ,F 分别为棱11B C ,1C C 的中点,P 是侧面11BCC B 内一动点,且满足⊥PE PF .则当点P 运动时, 2HP 的最小值是 (A)7(B)27-(C)51-(D)14-二、填空题:本大题共5小题,每小题5分,共25分. 11.已知100名学生某月饮料消费支出情况的频率分布直方图如右图所示.则这100名学生中,该月饮料消费支出超过150元的人数是________.12.若非零向量a ,b 满足a b a b +=-,则a ,b 的夹ABCD1A 1B 1C 1D HPEF角的大小为__________.13.在∆ABC 中,内角,,A B C 的对边分别为,,a b c ,若2=c a ,4=b ,1cos 4=B .则边c 的长度为__________.14.已知关于x 的不等式()(2)0---≤x a x a 的解集为A ,集合{|22}=-≤≤B x x .若“x A ∈”是“x B ∈”的充分不必要条件,则实数a 的取值范围是__________. 15.已知函数21()()2f x x a =+的图象在点n P (,())n f n (*n ∈N )处的切线n l 的斜率为n k ,直线n l 交x 轴,y 轴分别于点(,0)n n A x ,(0,)n n B y ,且11y =-.给出以下结论: ①1a =-;②记函数()=n g n x (*n ∈N ),则函数()g n 的单调性是先减后增,且最小值为1;③当*n ∈N 时,1ln(1)2n n n y k k++<+; ④当*n ∈N时,记数列的前n 项和为n S ,则1)n n S n -<. 其中,正确的结论有 (写出所有正确结论的序号)三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分12分)口袋中装有除编号外其余完全相同的5个小球,编号依次为1,2,3,4,5.现从中同时取出两个球,分别记录下其编号为,m n . (Ⅰ)求“5+=m n ”的概率; (Ⅱ)求“5≥mn ”的概率.17.(本小题满分12分)如图,在多面体ECABD 中,EC ⊥平面ABC ,//DB EC ,ABC ∆为正三角形,F 为EA 的中点,2EC AC ==,1BD =.(Ⅰ)求证:DF //平面ABC ; (Ⅱ)求多面体ECABD 的体积. 18.(本小题满分12分)已知数列{}n a 的前n 项和为n S ,且122+=-n n S ;数列{}n b 满足11b =,12n n b b +=+.*n ∈N .(Ⅰ)求数列{}n a 和{}n b 的通项公式;(Ⅱ)记n n n c a b =,*n ∈N .求数列{}n c 的前n 项和n T .19.(本小题满分12分)某大型企业一天中不同时刻的用电量y (单位:万千瓦时)关于时间t (024t ≤≤,单位:小时)的函数()y f t =近似地满足()sin()(0,0,0)f t A t B A ωϕωϕπ=++>><<,下图是该企业一天中在0点至12点时间段用电量y 与时间t 的大致图象. (Ⅰ)根据图象,求A ,ω,ϕ,B 的值; (Ⅱ)若某日的供电量()g t (万千瓦时)与时间t (小时)近似满足函数关系式205.1)(+-=t t g (012t ≤≤).当该日内供电量小于该企业的用电量时,企业就必须停产.请用二分法计算该企业当日停产的大致时刻(精确度0.1). 参考数据:20.(本小题满分13分)已知椭圆Γ:12222=+by a x (0>>b a )的右焦点为)0,22(,且过点.(Ⅰ)求椭圆Γ的标准方程;(Ⅱ)设直线:()l y x m m =+∈R 与椭圆Γ交于不同两点A 、B ,且AB =点0(,2)P x 满足=PA PB ,求0x 的值.21.(本小题满分14分) 已知函数()ln 2mf x x x=+,()2g x x m =-,其中m ∈R ,e 2.71828= 为自然对数的底数.(Ⅰ)当1m =时,求函数()f x 的极小值;(Ⅱ)对1[,1]e x ∀∈,是否存在1(,1)2m ∈,使得()()1>+f x g x 成立?若存在,求出m 的取值范围;若不存在,请说明理由;(Ⅲ)设()()()F x f x g x =,当1(,1)2m ∈时,若函数()F x 存在,,a b c 三个零点,且a b c <<,求证: 101ea b c <<<<<.数学(文科)参考答案及评分意见第Ⅰ卷(选择题,共50分)一、选择题:(本大题共10个小题,每小题5分,共50分)1.A ; 2.C ; 3.D ;4.A ;5.C ;6.B ;7.D ;8.B ;9.C ;10.B .第Ⅱ卷(非选择题,共100分)二、填空题:(本大题共5个小题,每小题5分,共25分)11.30 12.90︒ 13.4 14.[2,0]- 15.①②④ 三、解答题:(本大题共6个小题,共75分) 16.(本小题满分12分)解:同时取出两个球,得到的编号,m n 可能为: (1,2),(1,3),(1,4),(1,5) (2,3),(2,4),(2,5) (3,4),(3,5)(4,5)…………………………………………………………………………………6分(Ⅰ)记“5+=m n ”为事件A ,则 21()105==P A .……………………………………………………………………………3分(Ⅱ)记“5≥mn ”为事件B ,则 37()11010=-=P B .…………………………………………………………………… 3分 17.(本小题满分12分)(Ⅰ)证明:作AC 的中点O ,连结BO .在∆AEC 中,//=FO 12EC ,又据题意知,//=BD 12EC . ∴//=FO BD ,∴四边形FOBD 为平行四边形. ∴//DF OB ,又⊄DF 面ABC ,⊂OB 平面ABC .∴//DF 面ABC .………………………6分 (Ⅱ)据题意知,多面体ECABD 为四棱锥-A ECBD . 过点A 作⊥AH BC 于H .∵⊥EC 平面ABC ,⊂EC 平面ECBD , ∴平面⊥ECBD 平面ABC .又⊥AH BC ,⊂AH 平面ABC ,平面 ECBD 平面=ABC BC , ∴⊥AH 面ECBD .∴在四棱锥-A ECBD 中,底面为直角梯形ECBD,高=AH .∴1(21)232-+⨯=⨯=A ECBD V ∴多面体ECABD6分 18.(本小题满分12分) 解:(Ⅰ)∵122+=-n n S ① 当2≥n 时,122-=-n n S ② ①-②得,2=n n a (2≥n ).∵当2≥n 时,11222--==nn n n a a ,且12=a .∴数列{}n a 是以2为首项,公比为2的等比数列,∴数列{}n a 的通项公式为1222-=⋅=n n n a .………………………………………4分又由题意知,11b =,12n n b b +=+,即12+-=n n b b ∴数列{}n b 是首项为1,公差为2的等差数列,∴数列{}n b 的通项公式为1(1)221=+-⨯=-n b n n .……………………………2分(Ⅱ)由(Ⅰ)知,(21)2=-n n c n ……………………………………………………1分 ∴231123252(23)2(21)2-=⨯+⨯+⨯++-⋅+-⋅ n n n T n n 231121232(25)2(23)2(21)2-+=⨯+⨯++-⋅+-⋅+-⋅ n n n n T n n n ④由 -④得2311222222222(21)2-+-=+⨯+⨯++⋅+⋅--⋅ n n n n T n (1)分23112(12222)(21)2-+-=++++--⋅ n nn n T n∴12222(21)212+-⋅-=⨯--⋅-n n n T n (1)分∴111224222+++-=⋅--⋅+n n n n T n 即1(32)24+-=-⋅-n n T n ∴1(23)24+=-+n n T n∴数列{}n c 的前n 项和1(23)24+=-+n n T n ………………………………………3分19.(本小题满分12分) 解:(Ⅰ)由图知12T =,6πω=.………………………………………………………1分2125.15.22m i n m a x =-=-=y y A ,225.15.22min max =+=+=y y B .……………2分 ∴0.5sin()26y x πϕ=++.又函数0.5sin()26y x πϕ=++过点(0,2.5).代入,得22k πϕπ=+,又0ϕπ<<,∴2πϕ=.…………………………………2分综上,21=A ,6πω=,2πϕ=,21=B . ………………………………………1分即2)26sin(21)(++=ππt t f . (Ⅱ)令)()()(t g t f t h -=,设0)(0=t h ,则0t 为该企业的停产时间. 由0)11()11()11(<-=g f h ,0)12()12()12(>-=g f h ,则)12,11(0∈t . 又0)5.11()5.11()5.11(<-=g f h ,则)12,5.11(0∈t . 又0)75.11()75.11()75.11(>-=g f h ,则)75.11,5.11(0∈t .又0)625.11()625.11()625.11(<-=g f h ,则)75.11,625.11(0∈t .又0)6875.11()6875.11()6875.11(>-=g f h ,则)6875.11,625.11(0∈t .…4分……………………………………………1分 ∴应该在11.625时停产.……………………………………………………………1分 (也可直接由)625.11()625.11()625.11(<-=g f h ,0)6875.11()6875.11()6875.11(>-=g f h ,得出)6875.11,625.11(0∈t ;答案在11.625—11.6875之间都是正确的;若换算成时间应为11点37分到11点41分停产)20.(本小题满分13分)(Ⅰ)由已知得=a,又=c ∴2224=-=b a c .∴椭圆Γ的方程为141222=+y x .…………………………………………………4分 (Ⅱ)由⎪⎩⎪⎨⎧=++=,1412,22y x m x y 得01236422=-++m mx x ① ………………………1分∵直线l 与椭圆Γ交于不同两点A 、B ,∴△0)123(163622>--=m m , 得216<m .设),(11y x A ,),(22y x B ,则1x ,2x 是方程①的两根,则2321mx x -=+, 2123124-⋅=m x x .∴12=-==AB x又由AB =231294-+=m ,解之2m =±.……………………………3分 据题意知,点P 为线段AB 的中垂线与直线2=y 的交点. 设AB 的中点为),(00y x E ,则432210m x x x -=+=,400mm x y =+=, 当2m =时,31(,)22E -∴此时,线段AB 的中垂线方程为13()22y x -=-+,即1y x =--. 令2=y ,得03x =-.…………………………………………………………………2分 当2m =-时,31(,)22E -∴此时,线段AB 的中垂线方程为13()22y x +=--,即1y x =-+. 令2=y ,得01x =-.………………………………………………………………2分综上所述,0x 的值为3-或1-. 21.(本小题满分14分)解:(Ⅰ)1m =时,1()ln ,02=+>f x x x x. ∴221121()22-'=-=x f x x x x ……………………………………………………………………1分由()0'>f x ,解得12>x ;由()0'<f x ,解得102<<x ; ∴()f x 在1(0,)2上单调递减,1(,)2+∞上单调递增. (2)分∴=极小值)(x f 11()ln 11ln 222f =+=-.…………………………………………………… 2分(II )令1()()()1ln 21,,12⎡⎤=--=+-+-∈⎢⎥⎣⎦m h x f x g x x x m x x e ,其中1(,1)2m ∈由题意,()0h x >对1,1x e ⎡⎤∈⎢⎥⎣⎦恒成立,∵2221221()1,,122-+-⎡⎤'=--=∈⎢⎥⎣⎦m x x m h x x x x x e ∵1(,1)2m ∈,∴在二次函数222=-+-y x x m 中,480∆=-<m ,∴2220-+-<x x m 对∈x R 恒成立∴()0'<h x 对1,1x e ⎡⎤∈⎢⎥⎣⎦恒成立, ∴()h x 在1,1e ⎡⎤⎢⎥⎣⎦上单减. ∴min 5()(1)ln11212022==+-+-=->m h x h m m ,即45>m .故存在4(,1)5∈m 使()()f x g x >对1,1⎡⎤∀∈⎢⎥⎣⎦x e 恒成立.……………………………………4分(III )()(ln )(2),(0,)2mF x x x m x x=+-∈+∞,易知2x m =为函数()F x 的一个零点, ∵12>m ,∴21>m ,因此据题意知,函数()F x 的最大的零点1>c , 下面讨论()ln 2mf x x x=+的零点情况,∵2212()22m x m f x x x x -'=-=. 易知函数()f x 在(0,)2m上单调递减,在(,)2m +∞上单调递增.由题知()f x 必有两个零点,∴=极小值)(x f ()ln 1022=+<m mf ,解得20<<m e ,∴122<<m e ,即(,2)2∈eme .…………………………………………………………3分 ∴11(1)ln10,()ln 11102222=+=>=+=-<-=m m em emf f e e .…………………1分 又10101010101()ln 10100224---=+=->->m m f e e e e e .101()0,()0,(1)0f e f f e -∴><>.10101e a b c e -∴<<<<<<.101a b c e∴<<<<<,得证.……………………………………………………………1分。
2015年高考文科数学四川卷及答案
数学试卷 第1页(共15页)数学试卷 第2页(共15页)数学试卷 第3页(共15页)绝密★启用前2015年普通高等学校招生全国统一考试(四川卷)数学(文科)本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题).第Ⅰ卷1至3页,第Ⅱ卷4至6页,共6页.满分150分.考试时间120分钟.考生作答时,须将答案答在答题卡上.在本试题卷、草稿纸上答题无效.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷(选择题 共50分)注意事项:必须使用2B 铅笔在答题卡上将所选答案对应的标号涂黑. 第Ⅰ卷共10小题.一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{|12}A x x =-<<,集合{|13}B x x =<<,则A B = ( ) A .{|13}x x -<<B .{|11}x x -<<C .{|12}x x <<D .{|23}x x << 2.设向量a ()2,4=与向量b (),6x =共线,则实数x =( )A .2B .3C .4D .53.某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是( )A .抽签法B .系统抽样法C .分层抽样法D .随机数法4.设,a b 为正实数,则“1a b >>”是“22log log 0a b >>”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件5.下列函数中,最小正周期为π的奇函数是( )A .sin(2)2πy x =+ B .πcos(2)2y x =+ C .sin 2cos2y x x =+D .sin cos y x x =+6.执行如图所示的程序框图,输出S 的值为( )A.2-B.2C .12-D .127.过双曲线2213yx -=的右焦点且与x 轴垂直的直线,交该双曲线 的两条渐近线于A ,B 两点,则||=AB( ) A.3B.C .6D.8.某食品的保鲜时间y (单位:小时)与储藏温度x (单位:℃) 满足函数关系ekx by +=(e 2.718=…为自然对数的底数,k ,b为常数).若该食品在0℃的保鲜时间是192小时,在22℃的保 鲜时间是48小时,则该食品在33℃的保鲜时间是( ) A .16小时 B .20小时 C .24小时D .28小时9.设实数x ,y 满足2102146x y x y x y +⎧⎪+⎨⎪+⎩≤,≤,≥,则xy 的最大值为( )A .252B .492C .12D .1610.设直线l 与抛物线24y x =相交于A ,B 两点,与圆222(5)(0)x y r r -+=>相切于点M ,且M 为线段AB 的中点.若这样的直线l 恰有4条,则r 的取值范围是 ( )A .(1,3)B .(1,4)C .(2,3)D .(2,4)第Ⅱ卷(非选择题 共100分)注意事项:必须使用0.5毫米黑色墨迹签字笔在答题卡上题目所指示的答题区域内作答.作图题可先用铅笔绘出,确认后再用0.5毫米黑色墨迹签字笔描清楚.答在试题卷、草稿纸上无效.第Ⅱ卷共11小题.二、填空题:本大题共5小题,每小题5分,共25分.把答案填在题中的横线上.11.设i 是虚数单位,则复数1i i-=__________. 12.2lg0.01log 16+的值是___________.13.已知sin 2cos 0αα+=,则22sin cos cos ααα-的值是___________.14.在三棱柱111ABC A B C -中,90BAC ∠=︒,其正视图和侧视图都是边长为1的正方形,俯视图是直角边的长为1的等腰直角三角形,设点M ,N ,P 分别是棱AB ,BC ,11B C 的中点,则三棱锥1P A MN -的体积是__________.15.已知函数()2x f x =,2()g x x ax =+(其中a ∈R ).对于不相等的实数1x ,2x ,设1212()()f x f x m x x -=-,1212()()g x g x n x x -=-,现有如下命题:①对于任意不相等的实数1x ,2x ,都有0m >;②对于任意的a 及任意不相等的实数1x ,2x ,都有0n >; ③对于任意的a ,存在不相等的实数1x ,2x ,使得m n =; ④对于任意的a ,存在不相等的实数1x ,2x ,使得m n =-. 其中的真命题有__________(写出所有真命题的序号).三、解答题:本大题共6小题,共75分.解答应写出必要的文字说明、证明过程或演算步骤. 16.(本小题满分12分)设数列{}n a (1,2,3,)n =⋅⋅⋅的前n 项和n S 满足12n n S a a =-,且1a ,21a +,3a 成等差数列.(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设数列1{}na 的前n 项和为n T ,求n T .17.(本小题满分12分)一辆小客车上有5个座位,其座位号为1,2,3,4,5.乘客1P ,2P ,3P ,4P ,5P 的-------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________数学试卷 第4页(共15页)数学试卷 第5页(共15页) 数学试卷 第6页(共15页)座位号分别为1,2,3,4,5,他们按照座位号从小到大的顺序先后上车.乘客1P 因身体原因没有坐自己的1号座位,这时司机要求余下的乘客按以下规则就座:如果自己的座位空着,就只能坐自己的座位;如果自己的座位已有乘客就座,就在这5个座位的剩余空位中任意选择座位.(Ⅰ)若乘客1P 坐到了3号座位,其他乘客按规则就座,则此时共有4种坐法.下表给;(Ⅱ)若乘客1P 坐到了2号座位,其他乘客按规则就座,求乘客5P 坐到5号座位的概率.18.(本小题满分12分)一个正方体的平面展开图及该正方体的直观图的示意图如图所示.(Ⅰ)请将字母F ,G ,H 标记在正方体相应的顶点处(不需说明理由); (Ⅱ)判断平面BEG 与平面ACH 的位置关系,并证明你的结论. (Ⅲ)证明:直线DF ⊥平面BEG19.(本小题满分12分)已知A ,B ,C 为ABC △的内角,tan A ,tan B 是关于x 的方程210x p +-+=(p ∈R )的两个实根. (Ⅰ)求C 的大小.(Ⅱ)若3AB =,AC =p 的值.20.(本小题满分13分)如图,椭圆2222:+1(0)x y E a b a b =>>,点P (0,1)在短轴CD 上,且1PC PD =-.(Ⅰ)求椭圆E 的方程;(Ⅱ)设O 为坐标原点,过点P 的动直线与椭圆交于A ,B 两点.是否存在常数λ,使 OB PA PB λ+为定值?若存在,求λ的值;若不存在,请说明理由.21.(本小题满分14分)已知函数22()2ln 2f x x x x ax a =-+-+,其中0a >.(Ⅰ)设()g x 是()f x 的导函数,讨论()g x 的单调性;(Ⅱ)证明:存在(0,1)a ∈,使得()0f x ≥恒成立,且()0f x =在区间(1,)+∞内有唯一解.数学试卷 第7页(共15页)数学试卷 第8页(共15页)数学试卷 第9页(共15页)2015年普通高等学校招生全国统一考试(四川卷)数学(文科)答案解析第Ⅰ卷(13)A B =-,【提示】直接利用并集求解法则求解即可. :6x ,解得1)2x x y ⎛≤ ⎝2故最大值为25.2【提示】画出不等式组对应的平面区域,利用基本不等式进行求解即可. 第Ⅱ卷32424【提示】判断三视图对应的几何体的形状,画出图形,利用三视图的数据,求解三棱锥。
四川省成都市青羊区2015届中考数学一诊试题(含解析)汇总
四川省成都市青羊区2015届中考数学一诊试题一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.4的平方根是()A.±2B.2 C.±D.2.已知点P(3,﹣2)与点Q关于x轴对称,则Q点的坐标为()A.(﹣3,2)B.(﹣3,﹣2) C.(3,2) D.(3,﹣2)3.今年3月5日,温家宝总理在《政府工作报告》中,讲述了六大民生新亮点,其中之一就是全部免除了细部地区和部分中部地区农村义务教育阶段约52 000 000名学生的学杂费.这个数据保留三个有效数字用科学记数法表示为()A.5.2×107B.52×108C.5.2×108D.5.20×1074.如图所示的几何体是由几个相同的小正方体搭成的一个几何体,它的俯视图是()A.B.C.D.5.如图,已知a∥b,∠1=40°,则∠2=()A.140°B.120°C.40° D.50°6.若一个多边形的内角和是900°,则这个多边形的边数是()A.5 B.6 C.7 D.87.不等式组的解集的情况为()A.x<﹣1 B.x<C.﹣1<x<D.无解8.在Rt△ABC中,∠C=90°,BC=2,AB=4,则cosA=()A.B.C.D.9.如图,图中正方形ABCD的边长为4,则图中阴影部分的面积为()A.16﹣4πB.32﹣8πC.8π﹣16 D.无法确定|10.如图,在△ABC中,AB=10,AC=8,BC=6,经过点C且与边AB相切的动圆与CA、CB分别相交于点P、Q,则线段PQ长度的最小值是()A.4.75 B.4.8 C.5 D.4二、填空题(本大题共4个小题,每小题4分,共16分)11.如图,AB是⊙O的直径,点C在⊙O上,OD∥BC,若OD=1,则BC的长为.12.某班开展为班上捐书活动.共捐得科技、文学、教辅、传记四类图书,分别用A、B、C、D表示,如图是未制作完的捐书数量y(单位:百本)与种类x(单位:类)关系的条形统计图,若D类图书占全部捐书的10%,则D类图书的数量(单位:百本)是.13.写出一个图象位于二、四象限的反比例函数的表达式,y= .14.如图,AD是△ABC的高,AD=h,点R在AC边上,点S在AB边上,SR⊥AD,垂足为E.当SR=BC 时,则DE= .三、解答题(本大题共6个小题,共54分.解答应写出必要的文字说明、证明过程或演算步骤.)15.(1)计算:(2)解方程:.16.先化简,后求值:,其中x=﹣.17.过原点的直线交反比例函数y=图象于A、B两点,BD⊥x轴于点D,AE⊥y轴于点E.问:(1)直线AB与直线ED的位置关系是什么?并说明理由.(2)四边形ABDE的面积等于多少?18.某市今年的信息技术结业考试,采用学生抽签的方式决定自己的考试内容.规定:每位考生先在三个笔试题(题签分别用代码B1、B2、B3表示)中抽取一个,再在三个上机题(题签分别用代码J1、J2、J3表示)中抽取一个进行考试.小亮在看不到题签的情况下,分别从笔试题和上机题中随机地抽取一个题签.(1)用树状图或列表法表示出所有可能的结果;(2)求小亮抽到的笔试题和上机题的题签代码的下标(例如“B1”的下标为“1”)为一个奇数一个偶数的概率.19.如图所示,山坡上有一棵与水平面垂直的大树,一场台风过后,大树被刮倾斜后折断倒在山坡上,树的顶部恰好接触到坡面.已知山坡的坡角∠AEF=23°,量得树干倾斜角∠BAC=38°,大树被折断部分和坡面所成的角∠ADC=60°,AD=8m.(1)求∠CAE的度数;(2)求这棵大树折断前的高度?(结果精确到个位,参考数据: =1.4, =1.7, =2.4).20.在△ABC中,∠BAC=90°,AB<AC,∠PMQ是直角,且直角顶点M是BC边的中点,MN⊥BC交AC 于点N.PM边上动点P从点B出发沿射线BA以每秒2cm的速度运动,同时,MQ边上动点Q从点N 出发沿射线NC运动,设运动时间为t秒(t>0).(1)求证:△PBM∽△QNM;(2)探求BP2、PQ2、CQ2三者之间的数量关系,并说明理由.(3)若∠ABC=60°,BC=8cm.①求动点Q的运动速度;②设△APQ的面积为S(平方厘米),求S与t的函数关系式;一、填空(本大题5个小题,每小题4分,共20分.)21.如果关于x的一元二次方程x2﹣4x+3m=0有两个不相等的实数根,则m的取值范围是.22.如图,在△ABC中,AC=BC=2,∠ACB=90°,D是BC边的中点,E是AB边上一动点,则EC+ED 的最小值是.23.如图,已知一次函数y=x+1的图象与反比例函数的图象在第一象限相交于点A,与x轴相交于点C,AB⊥x轴于点B,△AOB的面积为1,则AC的长为(保留根号).24.如图,已知A(2,0)、B(0,5),⊙C的圆心坐标为C(﹣1,0),半径为1,若D是⊙C上一个动点,线段DA与y轴交于点E,则△ABE面积的最小值是.25.用火柴棒按下图中的方式搭图形,按照这种方式搭下去,搭第2015个图形需根火柴棒.二、解答题(本大题共3个小题,共30分.解答题应写出必要的文字说明,证明过程或演算步骤.)26.据我们调查,成都市某家电商场今年一月至六月份销售型号为“JSQ20﹣H”的海尔牌热水器的(2)由于此型号的海尔牌热水器的价格适中,消费者满意度很高,商场计划八月份销售此型号的热水器72台,与上半年平均月销售量相比,七、八月销售此型号的热水器平均每月的增长率是多少?27.如图,已知⊙O的直径AB垂直于弦CD于点E,过C点作CG∥AD交AB的延长线于点G,连接CO 并延长交AD于点F,且CF⊥AD.(1)试问:CG是⊙O的切线吗?说明理由;(2)求证:E为OB的中点;(3)若AB=10,求CD的长.28.如图,在直角坐标系中有一直角三角形AOB,O为坐标原点,OB=6,tan∠ABO=,将此三角形绕原点O逆时针旋转90°,得到△DOC,抛物线y=ax2+bx+c经过点A、B、C.(1)求抛物线的解析式;(2)若点P是第二象限内抛物线上的动点,其横坐标为t,①设抛物线对称轴l与x轴交于一点E,连接PE,交CD于F,若△CEF∽△COD,求t的值;②是否存在一点P,使△PCD得面积最大?若存在,求出△PCD的面积的最大值;若不存在,请说明理由.2015年四川省成都市青羊区中考数学一诊试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.4的平方根是()A.±2B.2 C.±D.【考点】平方根.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±2)2=4,∴4的平方根是±2.故选:A.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.2.已知点P(3,﹣2)与点Q关于x轴对称,则Q点的坐标为()A.(﹣3,2)B.(﹣3,﹣2) C.(3,2) D.(3,﹣2)【考点】关于x轴、y轴对称的点的坐标.【分析】利用关于x轴对称的两点,横坐标相同,纵坐标互为相反数的性质来求解.【解答】解:根据轴对称的性质,得点P(3,﹣2)关于x轴对称的点的坐标为(3,2).故选:C.【点评】熟记关于x轴对称的两点,横坐标相同,纵坐标互为相反数,关于y轴对称的两点,横坐标互为相反数,纵坐标相同,关于原点对称的两点,横坐标和纵坐标均互为相反数.3.今年3月5日,温家宝总理在《政府工作报告》中,讲述了六大民生新亮点,其中之一就是全部免除了细部地区和部分中部地区农村义务教育阶段约52 000 000名学生的学杂费.这个数据保留三个有效数字用科学记数法表示为()A.5.2×107B.52×108C.5.2×108D.5.20×107【考点】科学记数法与有效数字.【专题】应用题.【分析】科学记数法就是将一个数字表示成a×10的n次幂的形式,其中1≤|a|<10,n表示整数.n 为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.而保留三个有效数字,要观察第4个有效数字,四舍五入,不足的补0.【解答】解:52 000 000=5.20×107.故选D.【点评】本题考查学生对科学记数法的掌握.科学记数法要求前面的部分是大于或等于1,而小于10,小数点向左移动7位,应该为5.20×107.4.如图所示的几何体是由几个相同的小正方体搭成的一个几何体,它的俯视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】俯视图是从上面看到的图形.【解答】解:从上面看,左边和中间都是2个正方形,右上角是1个正方形,故选D.【点评】本题考查了三视图的知识,关键是找准俯视图所看的方向.5.如图,已知a∥b,∠1=40°,则∠2=()A.140°B.120°C.40° D.50°【考点】平行线的性质;对顶角、邻补角.【专题】计算题.【分析】如图:由a∥b,根据两直线平行,同位角相等,可得∠1=∠3;又根据邻补角的定义,可得∠2+∠3=180°,所以可以求得∠2的度数.【解答】解:∵a∥b,∴∠1=∠3=40°;∵∠2+∠3=180°,∴∠2=180°﹣∠3=180°﹣40°=140°.故选A.【点评】此题考查了平行线的性质:两直线平行,同位角相等以及邻补角互补.6.若一个多边形的内角和是900°,则这个多边形的边数是()A.5 B.6 C.7 D.8【考点】多边形内角与外角.【分析】根据多边形的内角和公式(n﹣2)•180°,列式求解即可.【解答】解:设这个多边形是n边形,根据题意得,(n﹣2)•180°=900°,解得n=7.故选:C.【点评】本题主要考查了多边形的内角和公式,熟记公式是解题的关键.7.不等式组的解集的情况为()A.x<﹣1 B.x<C.﹣1<x<D.无解【考点】解一元一次不等式组.【分析】由题意分别解出不等式组中的两个不等式,再根据求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解)来求出不等式的解集.【解答】解:由移项整理,得x<﹣1,由3x﹣2<0移项,得3x<2,∴x<,∴不等式的解集:x<﹣1,故选A.【点评】主要考查了一元一次不等式组解集的求法,考不等式组解集的口诀,还考查学生的计算能力.8.在Rt△ABC中,∠C=90°,BC=2,AB=4,则cosA=()A.B.C.D.【考点】锐角三角函数的定义.【分析】根据勾股定理求出AC,根据余弦的定义计算即可.【解答】解:∵∠C=90°,BC=2,AB=4,∴AC==2,∴cosA===,故选:D.【点评】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.9.如图,图中正方形ABCD的边长为4,则图中阴影部分的面积为()A.16﹣4πB.32﹣8πC.8π﹣16 D.无法确定|【考点】扇形面积的计算.【专题】压轴题.【分析】根据图形,知阴影部分的面积即为直径为4的圆面积的2倍减去边长为4的正方形的面积.【解答】解:根据图形,得阴影部分的面积=2×π×22﹣4×4=8π﹣16.故选C.【点评】此题关键是能够看出阴影部分的面积的整体计算方法.10.如图,在△ABC中,AB=10,AC=8,BC=6,经过点C且与边AB相切的动圆与CA、CB分别相交于点P、Q,则线段PQ长度的最小值是()A.4.75 B.4.8 C.5 D.4【考点】切线的性质.【专题】压轴题.【分析】设QP的中点为F,圆F与AB的切点为D,连接FD,连接CF,CD,则有FD⊥AB;由勾股定理的逆定理知,△ABC是直角三角形,FC+FD=PQ,由三角形的三边关系知,FC+FD>CD;只有当点F 在CD上时,FC+FD=PQ有最小值,最小值为CD的长,即当点F在直角三角形ABC的斜边AB的高CD 上时,PQ=CD有最小值,由直角三角形的面积公式知,此时CD=BC•AC÷AB=4.8.【解答】解:如图,设QP的中点为F,圆F与AB的切点为D,连接FD、CF、CD,则FD⊥AB.∵AB=10,AC=8,BC=6,∴∠ACB=90°,FC+FD=PQ,∴F C+FD>CD,∵当点F在直角三角形ABC的斜边AB的高CD上时,PQ=CD有最小值,∴CD=BC•AC÷AB=4.8.故选:B.【点评】本题利用了切线的性质,勾股定理的逆定理,三角形的三边关系,直角三角形的面积公式求解.二、填空题(本大题共4个小题,每小题4分,共16分)11.如图,AB是⊙O的直径,点C在⊙O上,OD∥BC,若OD=1,则BC的长为 2 .【考点】三角形中位线定理;圆的认识.【分析】首先证明OD是△ABC的中位线,根据三角形的中位线定理即可求解.【解答】解:∵OD∥BC,且O是AB的中点.∴OD是△ABC的中位线.∴BC=2OD=2.故答案是:2.【点评】本题主要考查了三角形的中位线定理,正确证明OD是中位线是解题的关键.12.某班开展为班上捐书活动.共捐得科技、文学、教辅、传记四类图书,分别用A、B、C、D表示,如图是未制作完的捐书数量y(单位:百本)与种类x(单位:类)关系的条形统计图,若D类图书占全部捐书的10%,则D类图书的数量(单位:百本)是10本.【考点】条形统计图.【分析】首先设D地车票有x张,根据去D地的车票占全部车票的10%列方程即可求得去D地的车票的数量.【解答】解:设D类图书数量为x,则x=(x+20+40+30)×10%,解得x=10.即D类书有10本.故答案为:10本.【点评】此题考查条形统计图,关键是读懂统计图,会分析数据进行解答问题.13.写出一个图象位于二、四象限的反比例函数的表达式,y= 答案不唯一,如y=﹣x等.【考点】正比例函数的性质.【专题】开放型.【分析】根据正比例函数的系数与图象所过象限的关系,易得答案.【解答】解:根据正比例函数的性质,其图象位于第二、四象限,则其系数k<0;故只要给出k小于0的正比例函数即可;答案不唯一,如y=﹣x等.【点评】解题关键是掌握正比例函数的图象特点.14.如图,AD是△ABC的高,AD=h,点R在AC边上,点S在AB边上,SR⊥AD,垂足为E.当SR=BC时,则DE= h .【考点】相似三角形的判定与性质.【分析】根据AD⊥BC,SR⊥AD可得出SR∥BC,故△ASR∽△ABC,再由相似三角形的性质可得出AE 的长,进而可得出结论.【解答】解:∵AD⊥BC,SR⊥AD,SR=BC,AD=h,∴SR∥BC,∴△ASR∽△ABC,∴=,即=,解得AE=h,∴DE=AD﹣AE=h﹣h=h.故答案为: h.【点评】本题考查的是相似三角形的判定与性质,熟知相似三角形对应高的比等于相似比是解答此题的关键.三、解答题(本大题共6个小题,共54分.解答应写出必要的文字说明、证明过程或演算步骤.)15.(1)计算:(2)解方程:.【考点】实数的运算;零指数幂;负整数指数幂;解分式方程;特殊角的三角函数值.【专题】实数;分式方程及应用.【分析】(1)原式第一项利用负整数指数幂法则计算,第二项利用二次根式性质化简,第三项利用零指数幂法则计算,最后一项利用特殊角的三角函数值计算即可得到结果;(2)分式方程整理后,去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)原式=4﹣3+1﹣2×=4﹣3+1﹣2=0;(2)原方程可化为: =+,去分母得:1=3x﹣1+43x﹣1=﹣3,解得:x=﹣,经检验x=﹣是原方程的解.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.16.先化简,后求值:,其中x=﹣.【考点】分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.【解答】解:原式=+•=+•=+=,当x=﹣时原式==﹣=﹣.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.17.过原点的直线交反比例函数y=图象于A、B两点,BD⊥x轴于点D,AE⊥y轴于点E.问:(1)直线AB与直线ED的位置关系是什么?并说明理由.(2)四边形ABDE的面积等于多少?【考点】反比例函数与一次函数的交点问题.【分析】(1)根据题意得出A、B关于原点对称,得出AE=OD,AE∥OD,从而证得四边形OAED是平行四边形,即可证得AB∥ED.(2)根据反比例函数系数k的几何意义即可求得.【解答】解:(1)AB∥ED;理由如下:∵过原点的直线交反比例函数y=图象于A、B两点,∴A、B关于原点对称,∴AE=OD,∵AE⊥y轴于点E.∴AE∥x轴,∴AE∥OD,∴四边形OAED是平行四边形,∴AB∥ED.(2)∵四边形OAED是平行四边形,∴S△AOE=S△EOD,根据反比例函数系数k的几何意义:S△AOE=S△BOD=×12=6,∴四边形ABDE的面积=3×6=18.【点评】本题考查了反比例函数和一次函数的交点问题,平行四边形的判定和性质以及反比例函数系数k的几何意义.18.某市今年的信息技术结业考试,采用学生抽签的方式决定自己的考试内容.规定:每位考生先在三个笔试题(题签分别用代码B1、B2、B3表示)中抽取一个,再在三个上机题(题签分别用代码J1、J2、J3表示)中抽取一个进行考试.小亮在看不到题签的情况下,分别从笔试题和上机题中随机地抽取一个题签.(1)用树状图或列表法表示出所有可能的结果;(2)求小亮抽到的笔试题和上机题的题签代码的下标(例如“B1”的下标为“1”)为一个奇数一个偶数的概率.【考点】列表法与树状图法.【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由(1)中的树状图可求得小亮抽到的笔试题和上机题的题签代码的下标(例如“B1”的下标为“1”)为一个奇数一个偶数的情况,然后直接利用概率公式求解即可求得答案.【解答】解:(1)画树状图:则共有9种等可能的结果;(2)∵由树状图或表可知,所有可能的结果共有9种,其中笔试题和上机题的题签代码下标为一奇一偶的有4种,∴题签代码下标为一奇一偶的概率是.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.19.如图所示,山坡上有一棵与水平面垂直的大树,一场台风过后,大树被刮倾斜后折断倒在山坡上,树的顶部恰好接触到坡面.已知山坡的坡角∠AEF=23°,量得树干倾斜角∠BAC=38°,大树被折断部分和坡面所成的角∠ADC=60°,AD=8m.(1)求∠CAE的度数;(2)求这棵大树折断前的高度?(结果精确到个位,参考数据: =1.4, =1.7, =2.4).【考点】解直角三角形的应用-坡度坡角问题.【分析】(1)延长BA交EF于点G.根据三角形内角和定理求出∠CAE的度数;(2)过点A作AE⊥CD,根据余弦和正弦的概念分别求出DH和AH的长,根据等腰直角三角形的性质计算即可.【解答】解:(1)延长BA交EF于点G.在Rt△AGE中,∠E=23°,∴∠GAE=67°,又∵∠BAC=38°,∴∠CAE=180°﹣67°﹣38°=75°.(2)过点A作AE⊥CD,垂足为H.在△ADH中,∠ADC=60°,AD=8,cos∠ADC=,∴DH=4,sin∠ADC=,∴.在Rt△ACH中,∠C=180°﹣75°﹣60°=45°,∴,.∴(米).答:这棵大树折断前高约20米.【点评】本题考查的是解直角三角形的应用﹣坡度坡角问题,正确标注坡角、倾斜角、灵活运用锐角三角函数的概念是解题的关键,注意特殊角的三角函数值的应用.20.在△ABC中,∠BAC=90°,AB<AC,∠PMQ是直角,且直角顶点M是BC边的中点,MN⊥BC交AC 于点N.PM边上动点P从点B出发沿射线BA以每秒2cm的速度运动,同时,MQ边上动点Q从点N 出发沿射线NC运动,设运动时间为t秒(t>0).(1)求证:△PBM∽△QNM;(2)探求BP2、PQ2、CQ2三者之间的数量关系,并说明理由.(3)若∠ABC=60°,BC=8cm.①求动点Q的运动速度;②设△APQ的面积为S(平方厘米),求S与t的函数关系式;【考点】相似形综合题.【专题】综合题;图形的相似.【分析】(1)根据MQ垂直于MP,MN垂直于BC,利用等式的性质得到一对角相等,再利用同角的余角相等得到一对角相等,利用两角相等的三角形相似即可得证;(2)PQ2=BP2+CQ2,理由如下:如图1,延长QM至D,使MD=MQ,连结BD、PD,利用SAS得到三角形BDM与三角形CQM全等,利用全等三角形的对应角相等,对应边相等得到一对内错角相等,进而确定出BD与CQ平行且相等,利用两直线平行同旁内角互补,得到∠PBD为直角,利用勾股定理列出关系式,等量代换即可得证;(3)由M为BC中点,求出CM的长,在直角三角形MNC中,利用锐角三角函数定义求出MN的长,①设Q点的运动速度为vcm/s,如图1,当0≤t<2时,由(1)知△PBM∽△QNM,由相似得比例求出Q速度,如图2,易知当t≥2时,Q的速度;②由AC﹣NC表示出AN,如图1,当0≤t<2时,根据AP,AQ,表示出S;如图2,当t≥2时,同理表示出AP,AQ,进而表示出S即可.【解答】(1)证明:如图1,∵MQ⊥MP,MN⊥BC,∴∠PMB+∠PMN=90°,∠QMN+∠PMN=90°,∴∠PMB=QMN,∵∠PBM+∠C=90°,∠QNM+∠C=90°,∴∠PBM=∠QNM,∴△PBM∽△QNM;(2)解:PQ2=BP2+CQ2,理由如下:如图1,延长QM至D,使MD=MQ,连结BD、PD,∵BC、DQ互相平分,∴BM=CM,DM=QM,在△BDM和△CQM中,,∴△BDM≌△CQM(SAS),∴∠CQM=∠BDM,BD=CQ,∴BD∥CQ,∵∠BAC=90°,∴∠PBD=90°,∴PD2=BP2+BD2=BP2+CQ2,∵PM垂直平分DQ,∴PQ=PD,则PQ2=BP2+CQ2;(3)解:∵BC=8c m,M为BC的中点,∴BM=CM=4cm,∵∠ABC=60°,∠C=30°,∴MN=CM=cm;①设Q点的运动速度为vcm/s,如图1,当0≤t<2cm时,由(1)知△PBM∽△QNM,∴=,即=,∴v=cm/s;如图2,易知当t≥2时,v=cm/s,综上所述,Q点运动速度为cm/s;②∵BC=8cm,AB=4cm,AC=4cm,NC=cm,∴AN=AC﹣NC=4﹣=cm,∴如图1,当0≤t<2cm时,AP=(4﹣2t)cm,AQ=AN+NQ=(+t)cm,∴S=AP•AQ=(4﹣2t)(+t)=(﹣t2+)cm2;如图2,当t≥2cm时,AP=(2t﹣4)cm,AQ=AN+NQ=(+t)cm,∴S=AP•AQ=(2t﹣4)(+t)=(t2﹣)cm2.【点评】此题属于相似形综合题,涉及的知识有:相似三角形的判定与性质,全等三角形的判定与性质,以及勾股定理,利用了分类讨论的思想,熟练掌握相似三角形的判定与性质是解本题的关键.一、填空(本大题5个小题,每小题4分,共20分.)21.如果关于x的一元二次方程x2﹣4x+3m=0有两个不相等的实数根,则m的取值范围是m<.【考点】根的判别式.【分析】根据题意一元二次方程有两不相等实根,则有△=b2﹣4ac=16﹣12m>0,然后解得m的取值范围.【解答】解:∵关于x的一元二次方程x2﹣4x+3m=0有两个不相等的实数根,∴△>0,即△=16﹣12m>0,∴m<,故答案为:m<.【点评】本题主要考查了利用一元二次方程根的判别式(△=b2﹣4ac)判断方程的根的情况.一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.22.如图,在△ABC中,AC=BC=2,∠ACB=90°,D是BC边的中点,E是AB边上一动点,则EC+ED的最小值是.【考点】轴对称-最短路线问题.【专题】压轴题;动点型.【分析】首先确定DC′=DE+EC′=DE+CE的值最小.然后根据勾股定理计算.【解答】解:过点C作CO⊥AB于O,延长CO到C′,使OC′=OC,连接DC′,交AB于E,连接CE,此时DE+CE=DE+EC′=DC′的值最小.连接BC′,由对称性可知∠C′BE=∠CBE=45°,∴∠CBC′=90°,∴BC′⊥BC,∠BCC′=∠BC′C=45°,∴BC=BC′=2,∵D是BC边的中点,∴BD=1,根据勾股定理可得DC′==.故答案为:.【点评】此题考查了线路最短的问题,确定动点E何位置时,使EC+ED的值最小是关键.23.如图,已知一次函数y=x+1的图象与反比例函数的图象在第一象限相交于点A,与x轴相交于点C,AB⊥x轴于点B,△AOB的面积为1,则AC的长为(保留根号).【考点】反比例函数与一次函数的交点问题;反比例函数系数k的几何意义;勾股定理.【专题】压轴题.【分析】由于△AOB的面积为1,根据反比例函数的比例系数k的几何意义可知k=2,解由y=x+1与联立起来的方程组,得出A点坐标,又易求点C的坐标,从而利用勾股定理求出AC的长.【解答】解:∵点A在反比例函数的图象上,AB⊥x轴于点B,△AOB的面积为1,∴k=2.解方程组,得,.∴A(1,2);在y=x+1中,令y=0,得x=﹣1.∴C(﹣1,0).∴AB=2,BC=2,∴AC==2.【点评】本题考查函数图象交点坐标的求法及反比例函数的比例系数k与其图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系,即S=|k|.24.如图,已知A(2,0)、B(0,5),⊙C的圆心坐标为C(﹣1,0),半径为1,若D是⊙C上一个动点,线段DA与y轴交于点E,则△ABE面积的最小值是5﹣.【考点】一次函数综合题.【分析】△ABE的BE边上高为OA=2,当AD与⊙C相切时,BE最短,此时,△ABE的面积最小,由勾股定理求相切时,AD的长,利用三角形相似求OE,再求BE,由三角形面积公式求面积的最小值.【解答】解:如图,当AD与⊙C相切于D点时,△ABE的面积最小,连接CD,则△ACD为直角三角形,由勾股定理,得AD===2,∵∠CDA=∠EOA=90°,∠CAD=∠EAO,∴△CAD∽△EAO,∴=,即=,解得OE=,BE=OB﹣OE=5﹣,S△ABE=×(5﹣)×2=5﹣.故答案为:5﹣.【点评】本题考查了一次函数的综合运用.关键是根据动点的变化情况,找出使△ABE的面积最小时,D点的位置,利用相似比求OE.25.用火柴棒按下图中的方式搭图形,按照这种方式搭下去,搭第2015个图形需12096 根火柴棒.【考点】规律型:图形的变化类.【分析】由图可知:第一个图形用了12根火柴;即12=6×(1+1);第二个图形用了18根火柴;即18=6(2+1);…由此得出搭第n个图形需6n+6根火柴.进一步代入求得答案即可.【解答】解:∵搭第1个图形需12根火柴;搭第2个图形需12+6×1=18根;搭第3个图形需12+6×2=24根;…∴搭第n个图形需12+6(n﹣1)=6n+6根;∴搭第2015个图形需2015×6+6=12096根火柴棒.故答案为:12096.【点评】此题考查图形的变化规律,找出图形的变化规律:后面的图形总比前面的图形多6根火柴棒,由此规律解决问题.二、解答题(本大题共3个小题,共30分.解答题应写出必要的文字说明,证明过程或演算步骤.)26.据我们调查,成都市某家电商场今年一月至六月份销售型号为“JSQ20﹣H”的海尔牌热水器的(2)由于此型号的海尔牌热水器的价格适中,消费者满意度很高,商场计划八月份销售此型号的热水器72台,与上半年平均月销售量相比,七、八月销售此型号的热水器平均每月的增长率是多少?【考点】一元二次方程的应用;算术平均数;中位数;众数.【专题】增长率问题.【分析】(1)根据平均数、中位数、众数的概念求解;(2)根据增长率问题的公式:6月份生产台数×(1+增长率)n=72,列方程求解.【解答】解:(1),中位数为:,众数为:50;(2)设七、八月份销售量的平均增长率为x,依题意,得:50(1+x)2=72,解得:x1=0.2,x2=﹣(不合题意,舍去).答:七、八月销售此型号的热水器平均每月的增长率是20%.【点评】考查了一元二次方程的应用及有关统计量的意义,解题的关键是能够了解增长率问题的解法,难度不大.27.如图,已知⊙O的直径AB垂直于弦CD于点E,过C点作CG∥AD交AB的延长线于点G,连接CO并延长交AD于点F,且CF⊥AD.(1)试问:CG是⊙O的切线吗?说明理由;(2)求证:E为OB的中点;(3)若AB=10,求CD的长.【考点】切线的判定;勾股定理;相似三角形的判定与性质.【分析】(1)由CG∥AD,CF⊥AD,易得CF⊥CG,即可证得CG是⊙O的切线;(2)首先连接BD,易证得△BDE∽△OCE,然后由相似三角形的对应边成比例,证得E为OB的中点;(3)首先由E为OB的中点,AB=10,求得OE的长,然后由勾股定理求得CE的长,继而求得答案.【解答】(1)解:CG是⊙O的切线.理由:∵CG∥AD,∴∠FCG+∠CFD=180°,∵CF⊥AD,∴∠CFD=90°,∴∠FCG=90°,即OC⊥CG,又∵OC为⊙O的半径,∴CG是⊙O的切线;(2)证明:连接BD,∵AB为⊙O的直径,∴∠ADB=90°,又∵∠AFO=90°,∴∠ADB=∠AFO,∴CF∥BD,∴△BDE∽△OCE,∴,∵AE⊥CD,且AE过圆心O,∴CE=DE,∴BE=OE,∴点E为OB的中点;(3)解:∵AB=10,∴OC=AB=5,又∵BE=OE,∴OE=,∵AB⊥CD,∴CE=,∴CD=2CE=.【点评】此题考查了切线的性质与判定、勾股定理、垂径定理以及相似三角形的判定与性质.注意准确作出辅助线是解此题的关键.28.如图,在直角坐标系中有一直角三角形AOB,O为坐标原点,OB=6,tan∠ABO=,将此三角形绕原点O逆时针旋转90°,得到△DOC,抛物线y=ax2+bx+c经过点A、B、C.(1)求抛物线的解析式;(2)若点P是第二象限内抛物线上的动点,其横坐标为t,①设抛物线对称轴l与x轴交于一点E,连接PE,交CD于F,若△CEF∽△COD,求t的值;②是否存在一点P,使△PCD得面积最大?若存在,求出△PCD的面积的最大值;若不存在,请说明理由.【考点】二次函数综合题.【专题】综合题.。
四川省成都市高考数学一诊试卷(文科)含答案解析
四川省成都市高考数学一诊试卷(文科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合U=R,A={x|(x+l)(x﹣2)<0},则∁U A=()A.(一∞,﹣1)∪(2,+∞) B.[﹣l,2]C.(一∞,﹣1]∪[2,+∞)D.(一1,2)2.命题“若a>b,则a+c>b+c”的逆命题是()A.若a>b,则a+c≤b+c B.若a+c≤b+c,则a≤bC.若a+c>b+c,则a>b D.若a≤b,则a+c≤b+c3.双曲线的离心率为()A.4 B.C.D.4.已知α为锐角,且sinα=,则cos(π+α)=()A.一B.C.﹣D.5.执行如图所示的程序框图,如果输出的结果为0,那么输入的x为()A.B.﹣1或1 C.﹣l D.l6.已知x与y之间的一组数据:x1234y m 3.2 4.87.5若y关于x的线性回归方程为=2.1x﹣1.25,则m的值为()A.l B.0.85 C.0.7 D.0.57.已知定义在R上的奇函数f(x)满足f(x+3)=f(x),且当x∈[0,)时,f(x)=一x3.则f()=()A.﹣B.C.﹣D.8.如图,网格纸上小正方形的边长为1,粗实线画出的是某四棱锥的三视图,则该四棱锥的所有棱中,最长的棱的长度为()A.B.C.5 D.39.将函数f(x)=sin2x+cos2x图象上所有点向右平移个单位长度,得到函数g (x)的图象,则g(x)图象的一个对称中心是()A.(,0)B.(,0)C.(﹣,0)D.(,0)10.在直三棱柱ABC﹣A1B l C1中,平面α与棱AB,AC,A1C1,A1B1分别交于点E,F,G,H,且直线AA1∥平面α.有下列三个命题:①四边形EFGH是平行四边形;②平面α∥平面BCC1B1;③平面α⊥平面BCFE.其中正确的命题有()A.①②B.②③C.①③D.①②③11.已知A,B是圆O:x2+y2=4上的两个动点,||=2,=﹣,若M是线段AB的中点,则•的值为()A.3 B.2C.2 D.﹣312.已知曲线C1:y2=tx (y>0,t>0)在点M(,2)处的切线与曲线C2:y=e x+l﹣1也相切,则t的值为()A.4e2B.4e C.D.二、填空题:本大题共4小题,每小题5分,共20分.13.复数z=(i为虚数单位)的虚部为.14.我国南北朝时代的数学家祖暅提出体积的计算原理(组暅原理):“幂势既同,则积不容异”.“势”即是高,“幂”是面积.意思是:如果两等高的几何体在同高处裁得两几何体的裁面积恒等,那么这两个几何体的体积相等,类比祖暅原理,如图所示,在平面直角坐标系中,图1是一个形状不规则的封闭图形,图2是一个矩形,且当实数t取[0,4]上的任意值时,直线y=t被图1和图2所截得的线段始终相等,则图1的面积为.15.若实数x,y满足约束条件,则3x﹣y的最大值为.16.已知△ABC中,AC=,BC=,△ABC的面积为,若线段BA的延长线上存在点D,使∠BDC=,则CD=.三、解答题:本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.某省高中数学学业水平测试的原始成绩采用百分制,发布成绩使用等级制.各等级划分标准为:85分及以上,记为A等;分数在[70,85)内,记为B等;分数在[60,70)内,记为C等;60分以下,记为D等.同时认定A,B,C为合格,D为不合格.已知甲,乙两所学校学生的原始成绩均分布在[50,100]内,为了比较两校学生的成绩,分别抽取50名学生的原始成绩作为样本进行统计.按照[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出甲校的样本频率分布直方图如图1所示,乙校的样本中等级为C,D的所有数据的茎叶图如图2所示.(I)求图中x的值,并根据样本数据比较甲乙两校的合格率;(Ⅱ)在乙校的样本中,从成绩等级为C,D的学生中随机抽取两名学生进行调研,求抽出的两名学生中至少有一名学生成绩等级为D的概率.18.在等比数列{a n}中,已知a4=8a1,且a1,a2+1,a3成等差数列.(I)求数列{a n}的通项公式;(Ⅱ)求数列{|a n﹣4|}的前n项和S n.19.如图l,在正方形ABCD中,点E,F分别是AB,BC的中点,BD与EF交于点H,点G,R分别在线段DH,HB上,且=.将△AED,△CFD,△BEF分别沿DE,DF,EF折起,使点A,B,C重合于点P,如图2所示,(I)求证:GR⊥平面PEF;(Ⅱ)若正方形ABCD的边长为4,求三棱锥P﹣DEF的内切球的半径.20.已知椭圆的右焦点为F,设直线l:x=5与x轴的交点为E,过点F且斜率为k的直线l1与椭圆交于A,B两点,M为线段EF的中点.(I)若直线l1的倾斜角为,|AB|的值;(Ⅱ)设直线AM交直线l于点N,证明:直线BN⊥l.21.已知函数f(x)=xlnx+(l﹣k)x+k,k∈R.(I)当k=l时,求函数f(x)的单调区间;(Ⅱ)当x>1时,求使不等式f(x)>0恒成立的最大整数k的值.请考生在第(22)、(23)题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy中,倾斜角为α(α≠)的直线l的参数方程为(t为参数).以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线C的极坐标方程是ρcos2θ﹣4sinθ=0.(I)写出直线l的普通方程和曲线C的直角坐标方程;(Ⅱ)已知点P(1,0).若点M的极坐标为(1,),直线l经过点M且与曲线C相交于A,B两点,设线段AB的中点为Q,求|PQ|的值.[选修4-5:不等式选讲]23.已知函数f(x)=x+1+|3﹣x|,x≥﹣1.(I)求不等式f(x)≤6的解集;(Ⅱ)若f(x)的最小值为n,正数a,b满足2nab=a+2b,求2a+b的最小值.四川省成都市高考数学一诊试卷(文科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合U=R,A={x|(x+l)(x﹣2)<0},则∁U A=()A.(一∞,﹣1)∪(2,+∞) B.[﹣l,2]C.(一∞,﹣1]∪[2,+∞)D.(一1,2)【考点】补集及其运算.【分析】解不等式求出集合A,根据补集的定义写出∁U A.【解答】解:集合U=R,A={x|(x+l)(x﹣2)<0}={x|﹣1<x<2},则∁U A={x|x≤﹣1或x≥2}=(﹣∞,﹣1]∪[2,+∞).故选:C.2.命题“若a>b,则a+c>b+c”的逆命题是()A.若a>b,则a+c≤b+c B.若a+c≤b+c,则a≤bC.若a+c>b+c,则a>b D.若a≤b,则a+c≤b+c【考点】四种命题.【分析】根据命题“若p,则q”的逆命题是“若q,则p”,写出即可.【解答】解:命题“若a>b,则a+c>b+c”的逆命题是“若a+c>b+c,则a>b”.故选:C.3.双曲线的离心率为()A.4 B.C.D.【考点】双曲线的标准方程.【分析】通过双曲线方程求出a,b,c的值然后求出离心率即可.【解答】解:因为双曲线,所以a=,b=2,所以c=3,所以双曲线的离心率为:e==.故选B.4.已知α为锐角,且sinα=,则cos(π+α)=()A.一B.C.﹣D.【考点】三角函数的化简求值.【分析】根据α为锐角,且sinα=,可得cosα=,利用诱导公式化简cos(π+α)=﹣cosα可得答案.【解答】解:∵α为锐角,sinα=,∴cosα=,那么cos(π+α)=﹣cosα=﹣.故选A.5.执行如图所示的程序框图,如果输出的结果为0,那么输入的x为()A.B.﹣1或1 C.﹣l D.l【考点】程序框图.【分析】根据题意,模拟程序框图的运行过程,根据输出的结果为0,得出输入的x.【解答】解:根据题意,模拟程序框图的运行过程,x≤0,y=﹣x2+1=0,∴x=﹣1,x>0,y=3x+2=0,无解,故选:C.6.已知x与y之间的一组数据:x1234y m 3.2 4.87.5若y关于x的线性回归方程为=2.1x﹣1.25,则m的值为()A.l B.0.85 C.0.7 D.0.5【考点】线性回归方程.【分析】根据回归直线经过样本数据中心点,求出y的平均数,进而可求出m 值.【解答】解:∵=2.5,=2.1x﹣1.25,∴=4,∴m+3.2+4.8+7.5=16,解得m=0.5,故选:D.7.已知定义在R上的奇函数f(x)满足f(x+3)=f(x),且当x∈[0,)时,f(x)=一x3.则f()=()A.﹣B.C.﹣D.【考点】函数奇偶性的性质.【分析】根据函数奇偶性和条件求出函数是周期为3的周期函数,利用函数周期性和奇偶性的关系进行转化即可得到结论.【解答】解:∵奇函数f(x)满足f(x+3)=f(x),∴函数f(x)是周期为3的函数,∵当x∈[0,)时,f(x)=﹣x3,∴f()=f(﹣6)=f(﹣)=﹣f()=,故选:B.8.如图,网格纸上小正方形的边长为1,粗实线画出的是某四棱锥的三视图,则该四棱锥的所有棱中,最长的棱的长度为()A.B.C.5 D.3【考点】由三视图求面积、体积.【分析】由三视图可知:该几何体为四棱锥P﹣ABCD,其中PA⊥底面ABCD,底面是边长为3的正方形,高PA=4.可得最长的棱长为PC.【解答】解:由三视图可知:该几何体为四棱锥P﹣ABCD,其中PA⊥底面ABCD,底面是边长为3的正方形,高PA=4.连接AC,则最长的棱长为PC===.故选:B.9.将函数f(x)=sin2x+cos2x图象上所有点向右平移个单位长度,得到函数g (x)的图象,则g(x)图象的一个对称中心是()A.(,0)B.(,0)C.(﹣,0)D.(,0)【考点】函数y=Asin(ωx+φ)的图象变换.【分析】利用函数y=Asin(ωx+φ)的图象变换规律求得g(x)的解析式,再利用正弦函数的图象的对称性,求得g(x)图象的一个对称中心.【解答】解:将函数f(x)=sin2x+cos2x=2(sin2x+sin2x)=2sin(2x+)图象上所有点向右平移个单位长度,得到函数g (x)=2sin2x的图象,令2x=kπ,求得x=,k∈Z,令k=1,可得g(x)图象的一个对称中心为(,0),故选:D.10.在直三棱柱ABC﹣A1B l C1中,平面α与棱AB,AC,A1C1,A1B1分别交于点E,F,G,H,且直线AA1∥平面α.有下列三个命题:①四边形EFGH是平行四边形;②平面α∥平面BCC1B1;③平面α⊥平面BCFE.其中正确的命题有()A.①②B.②③C.①③D.①②③【考点】棱柱的结构特征.【分析】在①中,由AA1EH GF,知四边形EFGH是平行四边形;在②中,平面α与平面BCC1B1平行或相交;在③中,EH⊥平面BCEF,从而平面α⊥平面BCFE.【解答】解:如图,∵在直三棱柱ABC﹣A1B l C1中,平面α与棱AB,AC,A1C1,A1B1分别交于点E,F,G,H,且直线AA1∥平面α.∴AA1EH GF,∴四边形EFGH是平行四边形,故①正确;∵EF与BC不一定平行,∴平面α与平面BCC1B1平行或相交,故②错误;∵AA1EH GF,且AA1⊥平面BCEF,∴EH⊥平面BCEF,∵EH⊂平面α,∴平面α⊥平面BCFE,故③正确.故选:C.11.已知A,B是圆O:x2+y2=4上的两个动点,||=2,=﹣,若M是线段AB的中点,则•的值为()A.3 B.2C.2 D.﹣3【考点】平面向量数量积的运算.【分析】由A,B是圆O:x2+y2=4上的两个动点,||=2,得到与的夹角为,再根据向量的几何意义和向量的数量积公式计算即可.【解答】解:A,B是圆O:x2+y2=4上的两个动点,||=2,∴与的夹角为,∴•=||•||•cos=2×2×=2,∵M是线段AB的中点,∴=(+),∵=﹣,∴•=(+)•(﹣)=(5||2+3••﹣2||2)=(20+6﹣8)=3,故选:A12.已知曲线C1:y2=tx (y>0,t>0)在点M(,2)处的切线与曲线C2:y=e x+l﹣1也相切,则t的值为()A.4e2B.4e C.D.【考点】利用导数研究曲线上某点切线方程.【分析】求出y=的导数,求出斜率,由点斜式方程可得切线的方程,设切点为(m,n),求出y=e x+1﹣1的导数,可得切线的斜率,得到t的方程,解方程可得.【解答】解:曲线C1:y2=tx(y>0,t>0),即有y=,y′=•,在点M(,2)处的切线斜率为•=,可得切线方程为y﹣2=(x﹣),即y=x+1,设切点为(m,n),则曲线C2:y=e x+1﹣1,y′=e x+1,e m+1=,∴m=ln﹣1,n=m•﹣1,n=e m+1﹣1,可得(ln﹣1)•﹣1=e﹣1,即有(ln﹣1)•=,可得=e2,即有t=4e2.故选:A.二、填空题:本大题共4小题,每小题5分,共20分.13.复数z=(i为虚数单位)的虚部为1.【考点】复数代数形式的乘除运算.【分析】利用复数的运算法则、虚部的定义即可得出.【解答】解:z==i+1的虚部为1.故答案为:1.14.我国南北朝时代的数学家祖暅提出体积的计算原理(组暅原理):“幂势既同,则积不容异”.“势”即是高,“幂”是面积.意思是:如果两等高的几何体在同高处裁得两几何体的裁面积恒等,那么这两个几何体的体积相等,类比祖暅原理,如图所示,在平面直角坐标系中,图1是一个形状不规则的封闭图形,图2是一个矩形,且当实数t取[0,4]上的任意值时,直线y=t被图1和图2所截得的线段始终相等,则图1的面积为8.【考点】函数模型的选择与应用.【分析】根据祖暅原理,可得图1的面积=矩形的面积,即可得出结论.【解答】解:根据祖暅原理,可得图1的面积为4×2=8.故答案为8.15.若实数x,y满足约束条件,则3x﹣y的最大值为6.【考点】简单线性规划.【分析】作出可行域,变形目标函数,平移直线y=2x可得结论.【解答】解:作出约束条件,所对应的可行域如图,变形目标函数可得y=3x﹣z,平移直线y=3x可知当直线经过点A(2,0)时,直线的截距最小,z取最大值,代值计算可得z=3x﹣y的最大值为6,故答案为:616.已知△ABC中,AC=,BC=,△ABC的面积为,若线段BA的延长线上存在点D,使∠BDC=,则CD=.【考点】正弦定理.【分析】由已知利用三角形面积公式可求sin∠ACB=,从而可求∠ACB=,在△ABC中,由余弦定理可得AB,进而可求∠B,在△BCD中,由正弦定理可得CD的值.【解答】解:∵AC=,BC=,△ABC的面积为=AC•BC•sin∠ACB=sin∠ACB,∴sin∠ACB=,∴∠ACB=,或,∵若∠ACB=,∠BDC=<∠BAC,可得:∠BAC+∠ACB>+>π,与三角形内角和定理矛盾,∴∠ACB=,∴在△ABC中,由余弦定理可得:AB===,∴∠B=,∴在△BCD中,由正弦定理可得:CD===.故答案为:.三、解答题:本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.某省高中数学学业水平测试的原始成绩采用百分制,发布成绩使用等级制.各等级划分标准为:85分及以上,记为A等;分数在[70,85)内,记为B等;分数在[60,70)内,记为C等;60分以下,记为D等.同时认定A,B,C为合格,D为不合格.已知甲,乙两所学校学生的原始成绩均分布在[50,100]内,为了比较两校学生的成绩,分别抽取50名学生的原始成绩作为样本进行统计.按照[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出甲校的样本频率分布直方图如图1所示,乙校的样本中等级为C,D的所有数据的茎叶图如图2所示.(I)求图中x的值,并根据样本数据比较甲乙两校的合格率;(Ⅱ)在乙校的样本中,从成绩等级为C,D的学生中随机抽取两名学生进行调研,求抽出的两名学生中至少有一名学生成绩等级为D的概率.【考点】列举法计算基本事件数及事件发生的概率;频率分布直方图.【分析】(Ⅰ)由频率分布直方图中小矩形面积之和为1,能求出x=0.004,从而得到甲学校的合格率,由此能求出结果.(Ⅱ)由题意,将乙校样本中成绩等级为C,D的6名学生记为C1,C2,C3,C4,D1,D2,由此利用列举法能求出随机抽取2名学生,抽出的两名学生中至少有一名学生成绩等级为D的概率.【解答】解:(Ⅰ)由题意知10x+0.012×10+0.056×10+0.018×10+0.010×10=1,解得x=0.004,∴甲学校的合格率为1﹣10×0.004=0.96,而乙学校的合格率为:1﹣=0.96,故甲乙两校的合格率相同.(Ⅱ)由题意,将乙校样本中成绩等级为C,D的6名学生记为C1,C2,C3,C4,D1,D2,则随机抽取2名学生的基本事件有:{C1,C2},{C1,C3},{C1,C4},{C1,D1},{C1,D2},{C2,C3},{C2,C4},{C2,D1},{C2,D2},{C3,C4},{C3,D1},{C3,D2},{C4,D1},{C4,D2},{D1,D2},共15个,其中“抽出的两名学生中至少有一名学生成绩等级为D”包含的基本事件有9个,∴抽出的两名学生中至少有一名学生成绩等级为D的概率p=.18.在等比数列{a n}中,已知a4=8a1,且a1,a2+1,a3成等差数列.(I)求数列{a n}的通项公式;(Ⅱ)求数列{|a n﹣4|}的前n项和S n.【考点】数列的求和;数列递推式.【分析】(I)设等比数列{a n}的公比为q,a4=8a1,可得=8a1,解得q.又a1,a2+1,a3成等差数列,可得2(a2+1)=a1+a3,当然解得a1,利用等比数列的通项公式即可得出.(II)n=1时,a1﹣4=﹣2<0,可得S1=2.当n≥2时,a n﹣4≥0.数列{|a n﹣4|}的前n项和S n=2+(a2﹣4)+(a3﹣4)+…+(a n﹣4),再利用等比数列的求和公式即可得出.【解答】解:(I)设等比数列{a n}的公比为q,∵a4=8a1,∴=8a1,a1≠0,解得q=2.又a1,a2+1,a3成等差数列,∴2(a2+1)=a1+a3,∴2(2a1+1)=a1(1+22),解得a1=2.∴a n=2n.(II)n=1时,a1﹣4=﹣2<0,∴S1=2.当n≥2时,a n﹣4≥0.∴数列{|a n﹣4|}的前n项和S n=2+(a2﹣4)+(a3﹣4)+…+(a n﹣4)=2+22+23+…+2n﹣4(n﹣1)=﹣4(n﹣1)=2n+1﹣4n+2.∴S n=.19.如图l,在正方形ABCD中,点E,F分别是AB,BC的中点,BD与EF交于点H,点G,R分别在线段DH,HB上,且=.将△AED,△CFD,△BEF分别沿DE,DF,EF折起,使点A,B,C重合于点P,如图2所示,(I)求证:GR⊥平面PEF;(Ⅱ)若正方形ABCD的边长为4,求三棱锥P﹣DEF的内切球的半径.【考点】球的体积和表面积;直线与平面垂直的判定.【分析】(Ⅰ)推导出PD⊥平面PEF,RG∥PD,由此能证明GR⊥平面PEF.(Ⅱ)设三棱锥P﹣DEF的内切球半径为r,由三棱锥的体积V=,能求出棱锥P﹣DEF的内切球的半径.【解答】证明:(Ⅰ)在正方形ABCD中,∠A、∠B、∠C均为直角,∴在三棱锥P﹣DEF中,PE,PF,PD三条线段两两垂直,∴PD ⊥平面PEF , ∵=,即,∴在△PDH 中,RG ∥PD ,∴GR ⊥平面PEF .解:(Ⅱ)正方形ABCD 边长为4, 由题意PE=PF=2,PD=4,EF=2,DF=2,∴S △PDF =2,S △DEF =S △DPE =4,=6,设三棱锥P ﹣DEF 的内切球半径为r , 则三棱锥的体积:=,解得r=,∴三棱锥P ﹣DEF 的内切球的半径为.20.已知椭圆的右焦点为F ,设直线l :x=5与x 轴的交点为E ,过点F 且斜率为k 的直线l 1与椭圆交于A ,B 两点,M 为线段EF 的中点. (I )若直线l 1的倾斜角为,|AB |的值;(Ⅱ)设直线AM 交直线l 于点N ,证明:直线BN ⊥l .【考点】直线与椭圆的位置关系.【分析】(I )设直线l 的方程,代入椭圆方程,利用韦达定理及弦长公式即可求得|AB |的值;(Ⅱ)设直线l 1的方程为y=k (x ﹣1),代入椭圆方程,由A ,M ,N 三点共线,求得N点坐标,y0﹣y2=﹣y2=﹣k(x2﹣1),代入,利用韦达定理即可求得y0=y2,则直线BN⊥l.【解答】解:(I)由题意可知:椭圆,a=,b=2,c=1,则F(1,0),E(5,0),M(3,0),由直线l1的倾斜角为,则k=1,直线l的方程y=x﹣1,设A(x1,y1),B(x2,y2),则,整理得:9x2﹣10x﹣15=0,则x1+x2=,x1x2=﹣,则丨AB丨=•=,|AB|的值;(Ⅱ)设直线l1的方程为y=k(x﹣1),设A(x1,y1),B(x2,y2),则,整理得:(4+5k2)x2﹣10k2x+5k2﹣20=0,则x1+x2=,x1x2=,设N(5,y0),由A,M,N三点共线,有=,则y0=,由y0﹣y2=﹣y2=﹣k(x2﹣1)=,==0,∴直线BN∥x轴,∴BN⊥l.21.已知函数f(x)=xlnx+(l﹣k)x+k,k∈R.(I)当k=l时,求函数f(x)的单调区间;(Ⅱ)当x>1时,求使不等式f(x)>0恒成立的最大整数k的值.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【分析】(Ⅰ)当k=1时,f(x)=xlnx+1,f′(x)=lnx+1,由此利用导数性质能求出f(x)的单调区间.(Ⅱ)由f(x)>0恒成立,得xlnx+(1﹣k)x+k>0,推导出k<恒成立,设g(x)=,则g′(x)=,令μ(x)=﹣lnx+x﹣2,则,由此利用导数秘技能求出k的最大整数值.【解答】解:(Ⅰ)当k=1时,f(x)=xlnx+1,∴f′(x)=lnx+1,由f′(x)>0,得x>;由f′(x)<0,得0<x<,∴f(x)的单调递增区间为(,+∞),单调减区间为(0,).(Ⅱ)由f(x)>0恒成立,得xlnx+(1﹣k)x+k>0,∴(x﹣1)k<xlnx+x,∵x>1,∴k<恒成立,设g(x)=,则g′(x)=,令μ(x)=﹣lnx+x﹣2,则,∵x>0,∴μ′(x)>0,μ(x)在(1,+∞)上单调递增,而μ(3)=1﹣ln3<0,μ(4)=2﹣ln4>0,∴存在x0∈(3,4),使μ(x0)=0,即x0﹣2=lnx0,∴当x∈(x0,+∞)时,g′(x)<0,此时函数g(x)单调递减,当x∈(x0,+∞)时,g′(x0)>0,此时函数g(x)单调递增,∴g(x)在x=x0处有极小值(也是最小值),∴==x0∈(3,4),又由k<g(x)恒成立,即k<g(x)min=x0,∴k的最大整数值为3.请考生在第(22)、(23)题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy中,倾斜角为α(α≠)的直线l的参数方程为(t为参数).以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线C的极坐标方程是ρcos2θ﹣4sinθ=0.(I)写出直线l的普通方程和曲线C的直角坐标方程;(Ⅱ)已知点P(1,0).若点M的极坐标为(1,),直线l经过点M且与曲线C相交于A,B两点,设线段AB的中点为Q,求|PQ|的值.【考点】参数方程化成普通方程;简单曲线的极坐标方程.【分析】(Ⅰ)直线l的参数方程消去参数t,能求出直线l的普通方程;由曲线C的极坐标方程能求出曲线C的直角坐标方程.(Ⅱ)求出点M的直角坐标为(0,1),从而直线l的倾斜角为,由此能求出直线l的参数方程,代入x2=4y,得,由此利用韦达定理和两点间距离公式能求出|PQ|.【解答】解:(Ⅰ)∵直线l的参数方程为(t为参数).∴直线l的普通方程为y=tanα•(x﹣1),由曲线C的极坐标方程是ρcos2θ﹣4sinθ=0,得ρ2cos2θ﹣4ρsinθ=0,∴x2﹣4y=0,∴曲线C的直角坐标方程为x2=4y.(Ⅱ)∵点M的极坐标为(1,),∴点M的直角坐标为(0,1),∴tanα=﹣1,直线l的倾斜角为,∴直线l的参数方程为,代入x2=4y,得,设A,B两点对应的参数为t1,t2,∵Q为线段AB的中点,∴点Q对应的参数值为,又P(1,0),则|PQ|=||=3.[选修4-5:不等式选讲]23.已知函数f(x)=x+1+|3﹣x|,x≥﹣1.(I)求不等式f(x)≤6的解集;(Ⅱ)若f(x)的最小值为n,正数a,b满足2nab=a+2b,求2a+b的最小值.【考点】绝对值三角不等式;绝对值不等式的解法.【分析】(Ⅰ)根据题意,由绝对值的性质可以将f(x)≤6转化可得或,解可得x的范围,即可得答案;(Ⅱ)根据题意,由函数f(x)的解析式分析可得f(x)的最小值为4,即n=4;进而可得正数a,b满足8ab=a+2b,即+=8,将2a+b变形可得2a+b=(++5),由基本不等式的性质可得2a+b的最小值,即可得答案.【解答】解:(Ⅰ)根据题意,函数f(x)=x+1+|3﹣x|,x≥﹣1.若f(x)≤6,则有或,解可得﹣1≤x≤4,故原不等式的解集为{x|﹣1≤x≤4};(Ⅱ)函数f(x)=x+1+|3﹣x|=,分析可得f(x)的最小值为4,即n=4;则正数a,b满足8ab=a+2b,即+=8,2a+b=(+)(2a+b)=(++5)≥(5+2)=;即2a+b的最小值为.4月5日。
成都市2015届高三毕业班第一次诊断性考试试题【各学科带答案】
成都市2015届高三毕业班第一次诊断性考试试题【各学科带答案】②@①⑤届成都一诊成都市2015届高中毕业班第一次诊断性检测语文第I卷(单项选择题,共27分)一、(12分,每小题3分)1.下列词语中加点的字,每对读音都不相同的一项是A.招募./蓦.然轧.钢/倾轧.星辰./妊娠.应.许/应.接不暇B.粗犷./旷.野经纶./纶.巾隽.永/镌.刻接种./刀耕火种.C.颓圮./枸杞.勉强./强.求刍.议/胡诌.畜.牧/六畜.兴旺D.舷.梯/弦.歌复辟./辟.谣寺.庙/仗恃.解.数/解.甲归田2.下列词语中,没有错别字的一项是A.临摹忙不迭事必躬亲立椎之地B.频律并蒂莲见风使舵德高望重C.禀赋众生相寥若晨星相辅相成D.惊诧一遛烟文过饰非剑拔弩张3.下列各句中,加点词语使用恰当的一项是A.尽管..时代多么浮躁,社会总是需要沉潜下去努力拼搏的人,也总会认可他们凭真才实学和不懈努力而取得的成功。
B.每天坚持慢跑十分钟,可以有效缓解因紧张学习而产生的神志..恍惚的症状,能让我们以更好的状态备战高考。
C.七夕本足我国古代女子的“乞巧节”,但不知曾几何时....,它竞变成了谈情说爱的节日,被称为了“中国情人节”。
D.羊肉汤锅是成都人冬季暖身补气的首选佳肴,冬至前后,小关庙等地的羊肉汤馆人满为患....,洋溢着温馨热闹的气氛. 4.下列各句中,没有语病的一项是A首届世界互联网大会不仅是盛况空前的世界互联网领域的一次高峰会议,也是我国信息技术产业界规模最大、层次最高的盛会。
B近年来,部分中国游客在海外不讲卫生、乱涂乱画的不文明举止,遭到了当地人的批评指责,落下了素质低下、缺乏教养的坏名声。
C这款高清机顶盒采用了最新技术,具有收看电视、点播视频、高速上网、可视通话和运行稳定等功能,深受消费者喜爱。
D我省将建立和完善学生体质健康监测与评价的科学体系,规范记录每名学生的体质健康测试成绩,并将之作为升学的重要依据。
二、(9分,每小题3分)阅读下面的文字,完成5-7题。
2015届高三文科数学综合测试(一)参考答案.doc
2015届高三文科数学综合测试(一)参考答案一、选择题1-5,CBBDB 6-10,CBCBC 二、填空题11、150 12、-9 13、3 14、213- 15、 12三、解答题16、解:(1)(0)2sin()16f π=-=- 4分(2)110(3)2sin[(3)]2sin 232613f πππααα+=+-==,即5sin 13α= 6分16(32)2sin[(32)]2sin()3625f ππβπβπβ+=+-=+=,即3c o s 5β= 8分 ∵,0,2παβ⎡⎤∈⎢⎥⎣⎦,∴212cos 1sin 13αα=-=,24sin 1cos 5ββ=-= 10分∴5312463sin()sin cos cos sin 13513565αβαβαβ+=+=⨯+⨯= 12分 17、解: ⑴优秀 非优秀 合计 甲班 10 50 60 乙班 20 30 50 合计3080110………………………3分(2)假设成绩与班级无关,则()22211010302050()7.5()()()()30805060n ad bc K a b c d a c b d ⨯-⨯-==≈++++⨯⨯⨯则查表得相关的概率为99%,故没达到可靠性要求。
………………………8分(3)设“抽到9或10号”为事件A ,先后两次抛掷一枚均匀的骰子,出现的点数为),(y x .所有的基本事件有:)1,1(、)2,1(、)3,1(、 、)6,6(共36个. ………………………10分事件A 包含的基本事件有:)6,3(、)5,4(、)4,5(、)3,6(、)5,5(、)6,4(、)4,6(共7个………………… …12分所以367)(=A P ,即抽到9号或10号的概率为367. ………………………13分18、(1)证明:∵⊥PB 底面ABC ,且⊂AC 底面ABC , ∴AC PB ⊥ …………………1分由90BCA ∠=,可得CB AC ⊥ ………………………2分又 PB CB B = ,∴AC ⊥平面PBC …………………………3分 注意到⊂BE 平面PBC , ∴AC BE ⊥ ……………4分BC PB = ,E 为PC 中点,∴BE PC ⊥…………………………5分 PCAC C =, ∴BE ⊥平面PAC ……………………6分(2)取AF 的中点G ,AB 的中点M ,连接,,CG CM GM ,∵E 为PC 中点,2FA FP =,∴//EF CG . ……………7分 ∵CG ⊄平面,BEF EF ⊂平面BEF , ∴//CG 平面BEF .…………8分 同理可证://GM 平面BEF .又CG GM G =, ∴平面//CMG 平面BEF . …………9分 ∵CD ⊂平面CDG ,∴//CD 平面BEF . …………10分 (3)由(1)可知BE ⊥平面PAC ,又由已知可得22=BE .238213131=⋅⨯==∆∆PC AC S S PAC AEF …………11分∴93231=⋅==∆--BE S V V AEF AEF B ABE F …………12分所以三棱锥ABE F -的体积为932. …………13分19、解:(1)由已知和得,当2≥n 时,23))1(21)1(23()2123(221-=-----=-=-n n n n n S S b n n n ……2分又21311-⨯==b ,符合上式。
2015四川高考数学试题(文科解析版)
2015年普通高等学校招生全国统一考试(四川卷)数 学(文史类)第Ⅰ卷(选择题 共50分)一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合{|(1)(2)0}A x x x =+-<,集合{|13}B x x =<<,则A B =(A ){}1|3x x -<< (B ){}|11x x -<< (C ){}|12x x << (D ){}|23x x <<【答案】A【解析】∵{|12}A x x =-<<,{|13}B x x =<<,{|13}A B x x ∴=-<<,选A.2.设向量(2,4)a =与向量(,6)bx =共线,则实数x =(A)2 (B)3 (C) 4 (D)6【答案】B【解析】由共线向量()11,a x y =,()22,b x y =的坐标运算可知12210x y x y -=, 即26403x x ⨯-=⇒=,选B.3.某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是 (A)抽签法 (B )系统抽样法 (C )分层抽样法 (D )随机数法 【答案】C【解析】因为是为了解各年级之间的学生视力是否存在显著差异,所以选择分层抽样法。
4.设a ,b 为正实数,则“1a b >>”是“22log log a b >”的(A)充要条件 (B)充分不必要条件 (C)必要不充分条件 (D)既不充分也不必要条件 【答案】A【解析】由已知当1a b >>时,22log log 0a b >>∴,“1a b >>”是“22log log a b >”的充分条件。
反过来由22log log 0a b >>,可得1a b >>,∴“1a b >>”是“22log log a b >”的必要条件,综上,“1a b >>”是“22log log a b >”的充要条件,选A.5.下列函数中,最小正周期为π的奇函数是A.sin(22y x π=+B.cos(22y x π=+C.sin 2cos 2y x x =+D.sin cos y x x =+ 【答案】A【解析】A. cos(2)sin 22y x x π=+=-,可知其满足题意;B. sin(2cos 22y x x π=+=,可知其最小正周期为π,偶函数;C. sin 2cos 2)4y x x x π=+=+,最小正周期为π,非奇非偶函数;D. sin cos )4y x x x π=+=+,可知其最小正周期为2π,非奇非偶函数.选A6.执行如图所示的程序框图,输出S 的值是(A) 2- (B) 2(C)-12 (D) 12【答案】D【解析】易得当k =1,2,3,4时执行的是否,当k =5时就执行是的步骤, 所以51sin62S π==,选D. 7.过双曲线2213y x -=的右焦点且与x 轴垂直的直线,交该双曲线的两条渐近线于A ,B 两点,则AB =(A(B) (C )6 (D)【答案】D【解析】由题意可知双曲线的渐近线方程为y =,且右焦点(2,0),则直线2x =与两条渐近线的交点分别为A ,B (2,-,∴||AB =,选D. 8. 某食品的保鲜时间y (单位:小时)与储藏温度x (单位:°C )满足函数关系kx by e+=( e=2.718⋅⋅⋅ 为自然对数的底数,k ,b 为常数)。
2015级(2018届)高三第一次诊断性检测数学(文)
������ ������ ������4 分 ������ ������ ������6 分
(2)由
题
意
,bn
=
(2n
1 -1)(2n
+1)=
1������������������+bn
������ ������ ������8 分
=
1 2
成都市2015级高中毕业班第一次诊断性检测
数学(文科)参考答案及评分标准
第 Ⅰ 卷 (选 择 题 ,共 60 分 )
一 、选 择 题 :(每 小 题 5 分 ,共 60 分 )
1.B
2.A
3.D
7.A
8.B
9.C
4.C 10.C
5.C 11.A
6.D 12.B
第 Ⅱ 卷 (非 选 择 题 ,共 90 分 )
������ ������ ������12 分
21.解:(1)当 m =1时,f(x)= (x -1)ex -x2 +2.
∴f′(x)=xex -2x =x(ex -2).
由f′(x)=x(ex -2)=0,解得x =0或x =ln2.
������ ������ ������1 分
当x >ln2或x <0时,f′(x)>0.
23t).
îïy =2+ 2t
即t2 + (8-8 3)t-16=0.
������ ������ ������8 分
∵Δ>0,且 点 M 在直线l 上,
∴此方程的两个实数根为直线l 与曲线C 的交点A,B 对应的参数t1,t2.
∵t1t2 =-16,
∴ MA ������ MB = t1t2 =16.
∴(m2 +1)4- +3m2 + (m -1)4-+2mm2 +2=0.
成都七中2015级高三“一诊”模拟考试数学答案
C D OBE'AH成都七中2015级高三“一诊”模拟考试数学试题参考答案一、选择题:(本大题共10小题,每小题5分,共50分) BAADB ACBAD 二、填空题:(本大题共5小题,每小题5分,共25分) 11. 180 12.12 13. - 14. (-7, 3) 15. ①②③⑤ 三、解答题:本大题共6小题,共75分。
解答应写出文字说明,证明过程或演算步骤。
16、(本小题满分12分)【解析】(I )由已知条件得:cos23cos 1A A +=22cos 3cos 20A A ∴+-=,解得1cos 2A =,角60A =︒ (II )1sin 2S bc A ==4c ⇒=,由余弦定理得:221a =,()222228sin a R A ==25sin sin 47bc B C R ∴==.17、(本小题满分12分) 解答:(1)331328()327p C ==,22232128()33327p C =⋅=,222342114()()33227p C =⋅=(2)由题意可知X 的可能取值为:0, 1, 2, 3. 乙队得分X 的分布列为:乙队得分X 的数学期望:1644170123.27272799EX =⨯+⨯+⨯+⨯=18、(本小题满分12分)【解析】(Ⅰ) 在图1中,易得3,OC AC AD ===连结,OD OE,在OCD ∆中,由余弦定理可得OD由翻折不变性可知A D '=,所以222A O OD A D ''+=,所以A O OD '⊥,理可证A O OE '⊥, 又OD OE O = ,所以A O '⊥平面BCDE . (Ⅱ) 传统法:过O 作OH CD ⊥交CD 的延长线于H ,连结A H ', 因为A O '⊥平面BCDE ,所以A H CD '⊥, 所以A HO '∠为二面角A CD B '--的平面角.3210X P2742742719结合图1可知,H 为AC 中点,故2OH =,从而A H '==所以cos 5OH A HO A H '∠==',所以二面角A CD B '--的平面角的余弦值为5.向量法:以O 点为原点,建立空间直角坐标系O xyz -如图所示, 则(A ',()0,3,0C -,()1,2,0D -所以(CA '= ,(1,DA '=-设(),,n x y z = 为平面A CD '的法向量,则 00n CA n DA ⎧'⋅=⎪⎨'⋅=⎪⎩,即3020y x y⎧+=⎪⎨-++=⎪⎩,解得y x z =-⎧⎪⎨=⎪⎩令1x =,得(1,n =-由(Ⅰ) 知,(OA '=为平面CDB 的一个法向量,所以cos ,n OA n OA n OA '⋅'===',即二面角A CD B '--的平面角的余弦19、(本小题满分12分)(1)解:由222(1)()0n n S n n S n n -+--+=,得2[()](1)0.n n S n n S -++=由于{a n }是正项数列,所以20,.n n S S n n >=+于是112,2a S n ==≥时,221(1)(1)2.n n n a S S n n n n n -=-=+----= 综上,数列{a n }的通项2.n a n = (2)证明:由于2,n a n =221(2)n nn b n a +=+, 则22221111[4(2)16(2)n n b n n n n +==-++.2222222221111111111[11632435(1)(1)(2)n T n n n n =-+-+-++-+--++ 2221111[1]162(1)(2)n n =+--++2115(1).16264<+=【解析】(Ⅰ) 依题意,设抛物线C 的方程为24x cy =,2=结合0c >, 解得1c =.所以抛物线C 的方程为24x y =. (Ⅱ) 抛物线C 的方程为24x y =,即214y x =,求导得12y x '= 设()11,A x y ,()22,B x y (其中221212,44x x y y ==), 则切线,PA PB 的斜率分别为112x ,212x ,所以切线PA 的方程为()1112x y y x x -=-,即211122x x y x y =-+,即11220x x y y --= 同理可得切线PB 的方程为22220x x y y --=因为切线,PA PB 均过点()00,P x y ,所以1001220x x y y --=,2002220x x y y --= 所以()()1122,,,x y x y 为方程00220x x y y --=的两组解. 所以直线AB 的方程为00220x x y y --=.(Ⅲ) 由抛物线定义可知11AF y =+,21BF y =+, 所以()()()121212111AF BF y y y y y y ⋅=++=+++联立方程0022204x x y y x y--=⎧⎨=⎩,消去x 整理得()22200020y y x y y +-+=由一元二次方程根与系数的关系可得212002y y x y +=-,2120y y y =所以()221212000121AF BF y y y y y x y ⋅=+++=+-+又点()00,P x y 在直线l 上,所以002x y =+,所以22220000001921225222y x y y y y ⎛⎫+-+=++=++ ⎪⎝⎭所以当012y =-时, AF BF ⋅取得最小值,且最小值为92.。
成都市高2015届诊断性考试数学文科
成都市高2015届诊断性考试数学(文科)试题一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项符合题目要求.1. 设全集{}1,2,3,02U =---,,集合{}{}1,2,0,3,02A B =--=-,,则()U C A B ⋂=( )A.{}0 B.{}3,2- C.{}1,3-- D.φ2.某大学数学系共有本科生1000人,其中一、二、三、四年级的人数比为4∶3∶2∶1,要用分层抽样的方法从所有本科生中抽取一个容量为200的样本,则应抽取三年级的学生人数为( )A .80 B .40 C .60 D .203.如图所示,半径为3的圆中有一封闭曲线围成的阴影区域,在圆中随机撒一粒豆子,它落在阴影区域内的概率是13,则阴影部分的面积是 A .3π B .π C .2π D .3π 4. 已知110a b<<,则下列结论错误的是( ) A.22b a < B.2b a a b+> C.2b ab > D.2lg lg a ab < 5.某流程图如图所示,现输入如下四个函数,则可以输出的函数是A. B . C .D .6.下列命题的说法错误..的是( ) A .命题“若 则 ”的逆否命题为:“若, 则”.B .若q p ∧为假命题,则q p ,均为假命题.C .“”是“”的充分不必要条件.D .对于命题则2320x x -+=1=x 210.x x ++≤:,p x R ⌝∃∈210,x x ++>:,p x R ∀∈2320x x -+≠1≠x 1=x 2320,x x -+=2()f x x =()x f x x =()cos f x x =()sin f x x =7.设变量x ,y 满足约束条件362y x y x x y ≤⎧⎪≥-⎨⎪+≥⎩,则目标函数2z x y =+的最小值为( )A .9B .3C .4D .28.若函数()()log a f x x b =+的大致图像如下图,其中,a b 为常数,则函数()x g x a b =+的大致图像是( )9.定义12nn p +p ++p …为n 个正数n p p p ,,,21 的“均倒数”.若已知数列{}n a 的前n 项的“均倒数”为121n +,又14n n a b +=,则12231011111+b b b b b b ++…=( ) A .111B .910C .1011D .1112 10.()3sin()(0)f x x ωϕω=+>部分图象如图,若2||AB BC AB ⋅=,ω等于( )A .12π B .6π C .3π D .4π 二.填空题:本大题共5小题,每小题5分,共25分. 11. 已知函数()()()1,0,11,0.x x x f x f f a x -≤⎧==-⎨>⎩若,则实数a 的值等于___________.12.已知复数满足,则____________.13. 平面向量,,,若,∥,则与的夹角为 .14.某校运动会开幕式上举行升旗仪式,在坡度为15°的看台上,同一列上的第一排和最后=z 25)43(=+z i z (,3)a x =-(2,1)b =-(1,)c y =()a b c ⊥-b ()a c +b c一排测得旗杆顶部的仰角分别为60°和30°,第一排和最后一排的距离为106m (如图),则旗杆的高度为_____________.15.已知函数是定义在R 上的偶函数,对于任意都成立;当,且时,都有.给出下列四个命题:①; ②直线是函数图象的一条对称轴;③函数在上为增函数; ④函数在上有335个零点. 其中正确命题的是________________.三.解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤.16.(本小题满分12分)某次的一次学科测试成绩的茎叶图和频率分布直方图都受到不同程度的污损,可见部分如图.(1)求参加测试的总人数及分数在[80,90)之间的人数;(2)若要从分数在[80,100)之间的试卷中任取两份分析学生失分情况,求在抽取的试卷中,恰有一份分数在[90,100)之间的概率.17.(本小题满分12分)已知函数.(1)设,求)(x f 的值域; ()2cos 3cos sin 222x x x f x ⎛⎫=- ⎪⎝⎭⎥⎦⎤⎢⎣⎡-∈22ππ,x ]2014,0[)(x f y =]6,9[--)(x f y =)(x f y =6-=x 0)3(=f 0)()(2121>--x x x f x f 21x x ≠]3,0[,21∈x x )3()()6(f x f x f +=+R x ∈)(x f y =(2)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知c=1,13)(+=C f ,且△ABC的面积为,求边a 和b 的长.18.(本小题满分12分)如图,四棱锥P-ABCD 的底面是正方形,PD ⊥面ABCD ,E 是PD 上一点.(1)求证:AC ⊥BE.(2)若PD=AD=1,且PCE ∠的余弦值为31010,求三棱锥E-PBC 的体积.19.(本小题满分12分)在数列{}n a 中,已知()*111411,,23log 44n n n n a a b a n N a +==+=∈. (1)求数列{}n a 的通项公式;(2)求证:数列{}n b 是等差数列;(3)设数列{}n c 满足{}n n n n c a b c =+,求的前n 项和n S .3220.(本小题满分13分) 已知椭圆()2222:10x y C a b a b +=>>过点31,2⎛⎫ ⎪⎝⎭,且长轴长等于4. (1)求椭圆C 的方程;(2)12F F ,是椭圆C 的两个焦点,圆O 是以12F F ,为直径的圆,直线m kx y l +=:与圆O 相切,并与椭圆C 交于不同的两点A ,B ,若23-=⋅→→OB OA ,求k 的值.21.已知函数()()()0,1ln 2>+--++=a aax x a a x x f ; (Ⅰ)若,1=a 求()x f 的最小值;(Ⅱ)若()x f y =有两个零点,求实数a 的取值范围; ()I I I 当1=a 时方程()()0>=k k x f 存在两个异号实根21,x x ;求证:021>+x x 其中()()⎥⎦⎤⎢⎣⎡+--=+-111ln 'x x。
2015四川高考文科数学试题及答案解析(word版)
2015年普通高等学校招生全国统一考试(四川卷)数学(文科)一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一个是符合题目要求的。
1、设集合A ={x|-1<x <2},集合B ={x|1<x <3},则A ∪B =(A){x|-1<x <3} (B){x|-1<x <1} (C){x|1<x <2} (D){x|2<x <3} 2、设向量a =(2,4)与向量b =(x,6)共线,则实数x =(A)2 (B)3 (C)4 (D)63、某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是(A)抽签法 (B)系统抽样法 (C)分层抽样法 (D)随机数法 4、设a,b 为正实数,则“a >b >1”是“log 2a >log 2b >0”的(A)充要条件 (B)充分不必要条件 (C)必要不充分条件 (D)既不充分也不必要条件 5、下列函数中,最小正周期为π的奇函数是(A)y =sin(2x +2π) (B)y =cos(2x +2π)(C)y =sin2x +cos2x (D)y =sinx +cosx 6、执行如图所示的程序框图,输出S 的值为(A)-32 (B) 32(C)-12 (D) 127、过双曲线2213y x -=的右焦点且与x 轴垂直的直线交该双曲线的两条渐近线于A 、B 两点,则|AB|= (A)433(B)23(C)6 (D)438、某视频保鲜时间y(单位:小时)与储藏温度x(单位:℃)满足函数关系y =e tx (e =2.718…为自然对数的底数,t,b 为常数)。
若该食品在6℃的保鲜时间是???小时,在72℃的保鲜时间是41小时 ,则该食品在33℃的保鲜时间是(A)16小时 (B)20小时 (C)24小时 (D)21小时9、设实数x,y 满足2102146x y x y x y +≤⎧⎪+≤⎨⎪+≥⎩,则xy 的最大值为(A)252 (B) 492(C)12 (D)14 10、设直线l 与抛物线y 2=4x 相较于A,B 两点,与圆(x -5)2+y 2=r 2(r >0)相切于点M ,且M 为线段AB 中点,若这样的直线l 恰有4条,则r 的取值范围是(A)(1,3) (B)(1,4) (C)(2,3) (D)(2,4) 二、填空题:本大题共5小题,每小题5分,共25分。
2015全国卷1文科数学试题(附答案)
绝密★启封并使用完毕前2015年普通高等学校招生全国统一考试文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至3页,第Ⅱ卷4至6页。
注意事项:1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上。
考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。
2.第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。
第Ⅱ卷必须用0.5毫米黑色签字笔书写作答.若在试题卷上作答,答案无效。
3.考试结束,监考员将试题卷、答题卡一并收回。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合A={x|x=3n+2,n∈N},B={6,8,12,14},则集合A⋂B中元素的个数为(A)5 (B)4 (C)3 (D)2(2)已知点A(0,1),B(3,2),向量AC=(-4,-3),则向量BC=(A)(-7,-4)(B)(7,4)(C)(-1,4)(D)(1,4)(3)已知复数z满足(z-1)i=i+1,则z=(A)-2-I (B)-2+I (C)2-I (D)2+i(4)如果3个整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则3个数构成一组勾股数的概率为(A)103(B)15(C)110(D)120(5)已知椭圆E的中心在坐标原点,离心率为12,E的右焦点与抛物线C:y²=8x的焦点重合,A,B是C的准线与E的两个焦点,则|AB|=(A)3 (B)6 (C)9 (D)12(6)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。
问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆为一个圆锥的四分之一),米堆底部的弧度为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有A.14斛B.22斛C.36斛D.66斛(7)已知是公差为1的等差数列,则=4,= (A)(B)(C)10 (D)12(8)函数f(x)=的部分图像如图所示,则f(x)的单调递减区间为(A)(k-, k-),k(A)(2k-, 2k-),k(A)(k-, k-),k(A)(2k-, 2k-),k(9)执行右面的程序框图,如果输入的t=0.01,则输出的n=(A)5 (B)6 (C)7 (D)8(10)已知函数,且f(a)=-3,则f(6-a)=(A)-74(B)-54(C)-34(D)-14(11)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示,若该几何体的表面积为16+20π,则r=(A)1(B) 2(C) 4(D) 8(12)设函数y=f(x)的图像关于直线y=-x对称,且f(-2)+f(-4)=1,则a=(A)-1 (B)1 (C)2 (D)42015年普通高等学校招生全国统一考试文科数学第Ⅱ卷注意事项:第Ⅱ卷共3页,须用黑色墨水签字笔在答题卡上作答。
2015年高考文科数学四川卷及答案解析
绝密★启用前2015年普通高等学校招生全国统一考试(四川卷)数学(文科)本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题).第Ⅰ卷1至3页,第Ⅱ卷4至6页,共6页.满分150分.考试时间120分钟.考生作答时,须将答案答在答题卡上.在本试题卷、草稿纸上答题无效.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷(选择题 共50分)注意事项:必须使用2B 铅笔在答题卡上将所选答案对应的标号涂黑. 第Ⅰ卷共10小题.一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{|12}A x x =-<<,集合{|13}B x x =<<,则AB = ( )A .{|13}x x -<<B .{|11}x x -<<C .{|12}x x <<D .{|23}x x << 2.设向量a ()2,4=与向量b (),6x =共线,则实数x =( )A .2B .3C .4D .53.某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是( )A .抽签法B .系统抽样法C .分层抽样法D .随机数法4.设,a b 为正实数,则“1a b >>”是“22log log 0a b >>”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件5.下列函数中,最小正周期为π的奇函数是( )A .sin(2)2πy x =+ B .πcos(2)2y x =+ C .sin 2cos2y x x =+D .sin cos y x x =+6.执行如图所示的程序框图,输出S 的值为( )A .32-B .32C .12-D .127.过双曲线2213yx -=的右焦点且与x 轴垂直的直线,交该双曲线 的两条渐近线于A ,B 两点,则||=AB( ) A .433B .23C .6D .438.某食品的保鲜时间y (单位:小时)与储藏温度x (单位:℃) 满足函数关系ekx by +=(e 2.718=…为自然对数的底数,k ,b为常数).若该食品在0℃的保鲜时间是192小时,在22℃的保 鲜时间是48小时,则该食品在33℃的保鲜时间是( ) A .16小时 B .20小时 C .24小时D .28小时9.设实数x ,y 满足2102146x y x y x y +⎧⎪+⎨⎪+⎩≤,≤,≥,则xy 的最大值为( )A .252B .492C .12D .1610.设直线l 与抛物线24y x =相交于A ,B 两点,与圆222(5)(0)x y r r -+=>相切于点M ,且M 为线段AB 的中点.若这样的直线l 恰有4条,则r 的取值范围是( )A .(1,3)B .(1,4)C .(2,3)D .(2,4) 第Ⅱ卷(非选择题 共100分)注意事项:必须使用0.5毫米黑色墨迹签字笔在答题卡上题目所指示的答题区域内作答.作图题可先用铅笔绘出,确认后再用0.5毫米黑色墨迹签字笔描清楚.答在试题卷、草稿纸上无效.第Ⅱ卷共11小题.二、填空题:本大题共5小题,每小题5分,共25分.把答案填在题中的横线上.11.设i 是虚数单位,则复数1i i-=__________. 12.2lg0.01log 16+的值是___________.13.已知sin 2cos 0αα+=,则22sin cos cos ααα-的值是___________.14.在三棱柱111ABC A B C -中,90BAC ∠=︒,其正视图和侧视图都是边长为1的正方形,俯视图是直角边的长为1的等腰直角三角形,设点M ,N ,P 分别是棱AB ,BC ,11B C 的中点,则三棱锥1P A MN -的体积是__________.15.已知函数()2x f x =,2()g x x ax =+(其中a ∈R ).对于不相等的实数1x ,2x ,设1212()()f x f x m x x -=-,1212()()g x g x n x x -=-,现有如下命题:①对于任意不相等的实数1x ,2x ,都有0m >;②对于任意的a 及任意不相等的实数1x ,2x ,都有0n >; ③对于任意的a ,存在不相等的实数1x ,2x ,使得m n =; ④对于任意的a ,存在不相等的实数1x ,2x ,使得m n =-. 其中的真命题有__________(写出所有真命题的序号).三、解答题:本大题共6小题,共75分.解答应写出必要的文字说明、证明过程或演算步骤. 16.(本小题满分12分)设数列{}n a (1,2,3,)n =⋅⋅⋅的前n 项和n S 满足12n n S a a =-,且1a ,21a +,3a 成等差数列.(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设数列1{}na 的前n 项和为n T ,求n T .-------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________17.(本小题满分12分)一辆小客车上有5个座位,其座位号为1,2,3,4,5.乘客1P ,2P ,3P ,4P ,5P 的座位号分别为1,2,3,4,5,他们按照座位号从小到大的顺序先后上车.乘客1P 因身体原因没有坐自己的1号座位,这时司机要求余下的乘客按以下规则就座:如果自己的座位空着,就只能坐自己的座位;如果自己的座位已有乘客就座,就在这5个座位的剩余空位中任意选择座位.(Ⅰ)若乘客1P 坐到了3号座位,其他乘客按规则就座,则此时共有4种坐法.下表给出了其中两种坐法,请填入余下两种坐法(将乘客就座的座位号填入表中空格处);乘客1P 2P 3P 4P 5P座位号3 2 145 32 451(Ⅱ)若乘客1P 坐到了2号座位,其他乘客按规则就座,求乘客5P 坐到5号座位的概率.18.(本小题满分12分)一个正方体的平面展开图及该正方体的直观图的示意图如图所示.(Ⅰ)请将字母F ,G ,H 标记在正方体相应的顶点处(不需说明理由); (Ⅱ)判断平面BEG 与平面ACH 的位置关系,并证明你的结论. (Ⅲ)证明:直线DF ⊥平面BEG19.(本小题满分12分)已知A ,B ,C 为ABC △的内角,tan A ,tan B 是关于x 的方程2310x px p +-+= (p ∈R )的两个实根. (Ⅰ)求C 的大小.(Ⅱ)若3AB =,6AC =,求p 的值.20.(本小题满分13分)如图,椭圆2222:+1(0)x y E a b a b =>>的离心率是22,点P (0,1)在短轴CD 上,且1PC PD =-.(Ⅰ)求椭圆E 的方程;(Ⅱ)设O 为坐标原点,过点P 的动直线与椭圆交于A ,B 两点.是否存在常数λ,使得 OA OB PA PB λ+为定值?若存在,求λ的值;若不存在,请说明理由.21.(本小题满分14分)已知函数22()2ln 2f x x x x ax a =-+-+,其中0a >.(Ⅰ)设()g x 是()f x 的导函数,讨论()g x 的单调性;(Ⅱ)证明:存在(0,1)a ∈,使得()0f x ≥恒成立,且()0f x =在区间(1,)+∞内有唯一解.2015年普通高等学校招生全国统一考试(四川卷)数学(文科)答案解析第Ⅰ卷一、选择题1.【答案】A【解析】集合(12)(13)A B =-,,=,,故(13)A B =-,,选A . 【提示】直接利用并集求解法则求解即可. 【考点】集合的并集运算. 2.【答案】B【解析】由向量平行的性质,有2:4:6x =,解得3x =,选B . 【提示】利用向量共线的充要条件得到坐标的关系求出x . 【考点】向量平行的性质. 3.【答案】C【解析】按照各种抽样方法的适用范围可知,应使用分层抽样,选C .【提示】若总体由差异明显的几部分组成时,一般采用分层抽样的方法进行抽样. 【考点】抽样方法的适用范围. 4.【答案】A【解析】1a b >>时,有22log log 0a b >>成立,反之也正确,选A .【提示】先求出22log log 0a b >>的充要条件,再和1a b >>比较,从而求出答案. 【考点】充分、必要条件. 5.【答案】B【解析】AB C ,,的周期都是π,D 的周期是2π,但选项A 中,cos2y x =是偶函数,选项C 中π2sin 24y x ⎛⎫ ⎪⎝⎭=+是非奇非偶函数.【提示】求出函数的周期,函数的奇偶性,判断求解即可. 【考点】三角函数的周期. 6.【答案】D331e 1922b ⎛⎫⨯ ⎪⎝⎭【提示】由已知中保鲜时间与储藏温度是一种指数型关系,由已知构造方程组求出的值,运用指数幂的运算性质求解【考点】函数在实际问题中的应用【解析】画出可行域如图,区域中结合图像可知,当动点在线段1)2x x y ⎛≤ ⎝2故最大值为25.2【提示】画出不等式组对应的平面区域,利用基本不等式进行求解即可.第Ⅱ卷32424【提示】判断三视图对应的几何体的形状,画出图形,利用三视图的数据,求解三棱锥12n++=,求得数列{a 成等差数列,求得首项的值,可得数列项和公式求得数列55 5 5 1 1 5 1 【解析】(Ⅰ)点F G H ,,的位置如图所示(Ⅱ)平面BEG ∥平面ACH ,证明如下:CH ⊂平面ACH BE BG B =,所以平面(Ⅲ)连接FH ,因为EFGH ,所以DH FH H =,所以BFHD ,所以DF EG ⊥同理DH BG ⊥,又EG BG G =,所以DF ⊥平面BEG .6022=75︒,31tan 45tan303tan75tan(4530)1tan 45tan3013++=--=+=1(tan tan )(23+1)=133A B +=-+--. tan75,从而可求【考点】韦达定理,解三角形,正弦定理,正切值【答案】(Ⅰ),且1PC PD =-,21=.存在时,设直线所以1212221x x x x k +=-+,从而1212OA OB PA PB x x y y λ+=+21212)(1)()1k x x k x x λ++++ 2224)(21)21k k λλ-+--+ 2121k λλ---+,此时,3OA OB PA PB λ+=-为定值当直线AB 斜率不存在时,直AB 即为直线CD 21=3OA OB PA PB OC OD PC PD λ+=+=---故存在常数1λ=,使得OA OB PA PB λ+为定值3-【提示】(Ⅰ)通过1PC PD =-,计算即得22a =,=,进而可得结论. (Ⅱ)分情况对直线AB 斜率的存在性进行讨论:①当直线AB 的斜率存在时,与椭圆方程,利用韦达定理计算可得当1λ=时3OA OB PA PB λ+=-;②当直线率不存在时,3OA OB PA PB λ+=-【考点】椭圆的标准方程,分类与整合的数学思想. (Ⅰ)见解析. . (Ⅰ)由已知,函数()f x 的定义域为(0)∞,+,()=()=2(g x f x x '-2(1)x x-. ()0x '<()g x 得出.【考点】导数的运算,导数在研究函数中的应用,函数的零点.。
2015年普通高等学校招生全国统一考试(四川卷)数学试题 (文科)解析版
2015年高考四川卷文数试题解析(精编版)(解析版)一、选择题1、设集合A={x|-1<x<2},集合B={x|1<x<3},则A∪B=( )(A){x|-1<x<3} (B){x|-1<x<1} (C){x|1<x<2} (D){x|2<x<3}【答案】A【考点定位】本题主要考查集合的概念,集合的表示方法和并集运算.【名师点睛】集合的运算通常作为试卷的第一小题,是因为概念较为简单,学生容易上手,可以让考生能够信心满满的尽快进入考试状态.另外,集合问题一般与函数、方程、不等式及其性质关联,也需要考生熟悉相关知识点和方法.本题最后求两个集合的并集,相对来说比较容易,与此相关的交集、补集等知识点也是常考点,应多加留意.属于简单题.2、设向量a=(2,4)与向量b=(x,6)共线,则实数x=( )(A)2 (B)3 (C)4 (D)6【答案】B【考点定位】本题考查平面向量的坐标表示,向量共线的性质,考查基本的运算能力.【名师点睛】平面向量的共线、垂直以及夹角问题,我们通常有两条解决通道:一是几何法,可以结合正余弦定理来处理.二是代数法,特别是非零向量的平行与垂直,一般都直接根据坐标之间的关系,两个非零向量平行时,对应坐标成比例(坐标中有0时单独讨论);两个向量垂直时,对应坐标乘积之和等于0,即通常所采用的“数量积”等于0.属于简单题.3、某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是( )(A)抽签法 (B)系统抽样法 (C)分层抽样法 (D)随机数法【答案】C【考点定位】本题考查几种抽样方法的概念、适用范围的判断,考查应用数学方法解决实际问题的能力.【名师点睛】样本抽样是现实生活中常见的事件,一般地,抽签法和随机数表法适用于样本总体较少的抽样,系统抽样法适用于要将样本总体均衡地分为n个部分,从每一部分中按规则抽取一个个体;分层抽样法则是当总体明显的分为几个层次时,在每一个层次中按照相同的比例抽取抽取样本.本题条件适合于分层抽样的条件,故应选用分层抽样法.属于简单题.4、设a,b为正实数,则“a>b>1”是“log2a>log2b>0”的( )(A)充要条件 (B)充分不必要条件(C)必要不充分条件 (D)既不充分也不必要条件【答案】A【考点定位】本题考查对数函数的概念和性质、充要条件等基本概念,考查学生综合运用数学知识和方法解决问题的能力.【名师点睛】判断条件的充要性,必须从“充分性”和“必要性”两个方向分别判断,同时注意涉及的相关概念和方法.本题中涉及对数函数基本性质——单调性和函数值的符号,因此可以结合对数函数的图象进行判断,从而得出结论.属于简单题.5、下列函数中,最小正周期为π的奇函数是( )(A )y =sin (2x +2π) (B )y =cos (2x +2π) (C )y =sin 2x +cos 2x (D )y =sinx +cosx【答案】B【考点定位】本题考查三角函数的基本概念和性质,考查函数的周期性和奇偶性,考查简单的三角函数恒等变形能力.【名师点睛】讨论函数性质时,应该先注意定义域,在不改变定义域的前提下,将函数化简整理为标准形式,然后结合图象进行判断.本题中,C 、D 两个选项需要先利用辅助角公式整理,再结合三角函数的周期性和奇偶性(对称性)进行判断即可.属于中档题.6、执行如图所示的程序框图,输出S 的值为( )(A )B(C )-12 (D )12【答案】D【考点定位】本题考查循环结构形式的程序框图,考查特殊角的三角函数值,考查基本运算能力. 【名师点睛】在算法的考点上,四川省以程序框图的考查为主,而考查程序框图,必定是以循环结构形式出现,它可以包括程序框图的所有结构类型.本题只需对循环后的k 值进行判定,最后输出相应的三角函数值即可,属于简单题.7、过双曲线2213y x-=的右焦点且与x 轴垂直的直线交该双曲线的两条渐近线于A 、B 两点,则|AB |=( )(A )43(B )23 (C )6 (D )43 【答案】D【考点定位】本题考查双曲线的概念、双曲线渐近线方程、直线与直线的交点、线段长等基础知识,考查简单的运算能力.【名师点睛】本题跳出直线与圆锥曲线位置关系的常考点,进而考查直线与双曲线渐近线交点问题,考生在解题中要注意识别.本题需要首先求出双曲线的渐近线方程,然后联立方程组,接触线段AB 的端点坐标,即可求得|AB |的值.属于中档题.8、某食品的保鲜时间y (单位:小时)与储藏温度x (单位:℃)满足函数关系kx by e+=( 2.718...e =为自然对数的底数,,k b 为常数).若该食品在0℃的保鲜时间是192小时,在22℃的保鲜时间是48小时,则该食品在33℃的保鲜时间是( )(A )16小时 (B )20小时 (C )24小时 (D )21小时 【答案】C【考点定位】本题考查指数函数的概念及其性质,考查函数模型在现实生活中的应用,考查整体思想,考查学生应用函数思想解决实际问题的能力.【名师点睛】指数函数是现实生活中最常容易遇到的一种函数模型,如人口增长率、银行储蓄等等,与人们生活密切相关.本题已经建立好了函数模型,只需要考生将已知的两组数据代入,即可求出其中的待定常数.但本题需要注意的是:并不需要得到k 和b 的准确值,而只需求出e b 和e 11k,然后整体代入后面的算式,即可得到结论,否则将增加运算量.属于中档题.9、设实数x ,y 满足2102146x y x y x y +≤⎧⎪+≤⎨⎪+≥⎩,则xy 的最大值为( )(A )252(B )492 (C )12 (D )14【答案】A【考点定位】本题主要考查线性规划与基本不等式的基础知识,考查知识的整合与运用,考查学生综合运用知识解决问题的能力.【名师点睛】本题中,对可行域的处理并不是大问题,关键是“求xy最大值”中,xy已经不是“线性”问题了,如果直接设xy=k,,则转化为反比例函数y=的曲线与可行域有公共点问题,难度较大,且有超出“线性”的嫌疑.而上面解法中,用基本不等式的思想,通过系数的配凑,即可得到结论,当然,对于等号成立的条件也应该给以足够的重视.属于较难题.10、设直线l与抛物线y2=4x相交于A,B两点,与圆C:(x-5)2+y2=r2(r>0)相切于点M,且M为线段AB中点,若这样的直线l恰有4条,则r的取值范围是( )(A)(1,3) (B)(1,4) (C)(2,3) (D)(2,4)【答案】D【考点定位】本题考查直线、圆及抛物线等基本概念,考查直线与圆、直线与抛物线的位置关系、参数取值范围等综合问题,考查数形结合和分类与整合的思想,考查学生分析问题和处理问题的能力.【名师点睛】本题实质是考查弦的中垂线过定点问题,注意到弦的斜率不可能为0,但有可能不存在,故将直线方程设为x=ty+m,可以避免忘掉对斜率不存在情况的讨论.在对r的讨论中,要注意图形的对称性,斜率存在时,直线必定是成对出现,因此,斜率不存在(t=0)时也必须要有两条直线满足条件.再根据方程的判别式找到另外两条直线存在对应的r取值范围即可.属于难题.二、填空题11、设i是虚数单位,则复数1ii=_____________.【答案】2i【考点定位】本题考查复数的概念,复数代数形式的四则运算等基础知识.【名师点睛】解决本题的关键取决于对复数运算的熟练程度,也就是=-i的运算,容易误解为=i,从而导致答案错误.一般地,i4n=1,i4n+1=i,i4n+2=-1,i4n+3=-i,而=i-1=-i.属于容易题12、lg0.01+log216=_____________.【答案】2【考点定位】本题考查对数的概念、对数运算的基础知识,考查基本运算能力.【名师点睛】对数的运算通常与指数运算相对应,即“若a b=N,则log a N=b”,因此,要求log a N的值,只需看a的多少次方等于N即可,由此可得结论.当然本题中还要注意的是:两个对数的底数是不相同的,对数符号的写法也有差异,要细心观察,避免过失性失误.属于简单题.13、已知sinα+2cosα=0,则2sinαcosα-cos2α的值是______________.【答案】-1【考点定位】本意考查同角三角函数关系式、三角函数恒等变形等基础知识,考查综合处理问题的能力.【名师点睛】同角三角函数(特别是正余弦函数)求值问题的通常解法是:结合sin2α+cos2α=1,解出sinα与cosα的值,然后代入计算,但这种方法往往比较麻烦,而且涉及符号的讨论.利用整体代换思想,先求出tanα的值,对所求式除以sin2α+cos2α(=1)是此类题的常见变换技巧,通常称为“齐次式方法”,转化为tanα的一元表达式,可以避免诸多繁琐的运算.属于中档题.14、在三棱住ABC -A 1B 1C 1中,∠BAC =90°,其正视图和侧视图都是边长为1的正方形,俯视图是直角边长为1的等腰直角三角形,设点M ,N ,P 分别是AB ,BC ,B 1C 1的中点,则三棱锥P -A 1MN 的体积是______.【答案】124【考点定位】本题主要考查空间几何体的三视图、直观图及空间线面关系、三棱柱与三棱锥的体积等基础知识,考查空间想象能力、图形分割与转换的能力,考查基本运算能力.【名师点睛】解决本题,首先要正确画出三棱柱的直观图,包括各个点的对应字母所在位置,结合条件,三棱锥P -A 1MN 的体积可以直接计算,但转换为三棱锥P -AMN 的体积,使得计算更为简便,基本上可以根据条件直接得出结论.属于中档偏难题.15、已知函数f (x )=2x,g (x )=x 2+ax (其中a ∈R ).对于不相等的实数x 1,x 2,设m =1212()()f x f x x x --,n =1212()()g x g x x x --,现有如下命题:①对于任意不相等的实数x 1,x 2,都有m >0;②对于任意的a 及任意不相等的实数x 1,x 2,都有n >0; ③对于任意的a ,存在不相等的实数x 1,x 2,使得m =n ; ④对于任意的a ,存在不相等的实数x 1,x 2,使得m =-n . 其中真命题有___________________(写出所有真命题的序号).【答案】①④ 【解析】对于①,因为f '(x )=2x ln 2>0恒成立,故①正确对于②,取a =-8,即g '(x )=2x -8,当x 1,x 2<4时n <0,②错误 对于③,令f '(x )=g '(x ),即2x ln 2=2x +a 记h (x )=2x ln 2-2x ,则h '(x )=2x (ln 2)2-2【考点定位】本题主要考查函数的性质、函数的单调性、导数的运算等基础知识,考查函数与方程的思想和数形结合的思想,考查分析问题和解决能提的能力.【名师点睛】本题首先要正确认识m ,n 的几何意义,它们分别是两个函数图象的某条弦的斜率,因此,借助导数研究两个函数的切线变化规律是本题的常规方法,解析中要注意“任意不相等的实数x 1,x 2”与切线斜率的关系与差别,以及“都有”与“存在”的区别,避免过失性失误.属于较难题.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤16.(本小题满分12分)设数列{a n }(n =1,2,3…)的前n 项和S n 满足S n =2a n -a 3,且a 1,a 2+1,a 3成等差数列. (Ⅰ)求数列的通项公式; (Ⅱ)设数列1{}na 的前n 项和为T n ,求T n . 【解析】本题考查等差数列与等比数列的概念、等比数列通项公式与前n 项和等基础知识,考查运算求解能力.(Ⅰ) 由已知S n =2a n -a 1,有 a n =S n -S n -1=2a n -2a n -1(n ≥2) 即a n =2a n -1(n ≥2)从而a 2=2a 1,a 3=2a 2=4a 1, 又因为a 1,a 2+1,a 3成等差数列 即a 1+a 3=2(a 2+1)所以a 1+4a 1=2(2a 1+1),解得a 1=2所以,数列{a n }是首项为2,公比为2的等比数列 故a n =2n .(Ⅱ)由(Ⅰ)得112n n a = 所以T n =211[1()]111122 (11222212)n n n-+++==--【考点定位】本题考查等差数列与等比数列的概念、等比数列通项公式与前n 项和等基础知识,考查运算求解能力.【名师点睛】数列问题放在解答题第一题,通常就考查基本概念和基本运算,对于已知条件是S n 与a n关系式的问题,基本处理方法是“变更序号作差”,这种方法中一定要注意首项a 1是否满足一般规律(代入检验即可,或者根据变换过程中n 的范围和递推关系中的表达式判断).数列求和时,一定要注意首项、公比和项数都不能出错.同时注意,对于较为简单的试题,解析步骤一定要详细具体,不可随意跳步.属于简单题.17、(本小题满分12分)一辆小客车上有5个座位,其座位号为1,2,3,4,5,乘客P 1,P 2,P 3,P 4,P 5的座位号分别为1,2,3,4,5,他们按照座位号顺序先后上车,乘客P 1因身体原因没有坐自己号座位,这时司机要求余下的乘客按以下规则就坐:如果自己的座位空着,就只能坐自己的座位.如果自己的座位已有乘客就坐,就在这5个座位的剩余空位中选择座位.(Ⅰ)若乘客P 1坐到了3号座位,其他乘客按规则就座,则此时共有4种坐法.下表给出其中两种坐法,请填11【解析】本题主要考查随机事件的概率、古典概型等概念及相关计算,考查运用概率知识与方法分析和解决问题的能力,考查推理论证能力、应用意识. 1设“乘客P 5坐到5号座位”为事件A ,则事件A 中的基本事件的个数为4 所以P (A )=4182答:乘客P 5坐到5号座位的概率为12.【考点定位】本题主要考查随机事件的概率、古典概型等概念及相关计算,考查运用概率知识与方法分析和解决问题的能力,考查推理论证能力、应用意识.【名师点睛】概率统计问题,文科的考查重点是随机事件、古典概型以及列举法求概率,本题需要考生根据条件细致填写座位表,通常采取按照某种顺序,如本题中已经设定的P1,P2,P3,P4,P5的座位号顺序填写,只要能正确填写好表格,相应概率随之得到.属于简单题.18、(本小题满分12分)一个正方体的平面展开图及该正方体的直观图的示意图如图所示.(Ⅰ)请按字母F,G,H标记在正方体相应地顶点处(不需要说明理由)(Ⅱ)判断平面BEG与平面ACH的位置关系.并说明你的结论.(Ⅲ)证明:直线DF⊥平面BEG【解析】本题主要考查简单空间图形的直观图、空间线面平行与垂直的判定与性质等基础知识,考查空间想象能力、推理论证能力.(I)点F,G,H的位置如图所示(II)平面BEG∥平面ACH.证明如下因为ABCD-EFGH为正方体,所以BC∥FG,BC=FG又FG∥EH,FG=EH,所以BC∥EH,BC=EH于是BCEH为平行四边形所以BE∥CH又CH⊂平面ACH,BE⊄平面ACH,所以BE∥平面ACH同理BG∥平面ACH又BE∩BG=B所以平面BEG∥平面ACH(Ⅲ)连接FH因为ABCD-EFGH为正方体,所以DH⊥平面EFGH因为EG⊂平面EFGH,所以DH⊥EG又EG⊥FH,EG∩FH=O,所以EG⊥平面BFHD又DF⊂平面BFDH,所以DF⊥EG同理DF⊥BG又EG∩BG=G所以DF⊥平面BEG.【考点定位】本题主要考查简单空间图形的直观图、空间线面平行与垂直的判定与性质等基础知识,考查空间想象能力、推理论证能力.【名师点睛】本题引入了几何体表面的折展问题,对空间想象能力要求较高.立体几何的证明一定要详细写出所有步骤,列举(推证)出所有必备的条件,如在(Ⅱ)中证明两个平面平行时,除了找到两组平行线外,一定不能忘掉“相交”这个条件;同样,(Ⅲ)中证明线面垂直,也不能忘掉“EG∩BG=G”这个条件.属于中档题.19、(本小题满分12分)已知A、B、C为△ABC的内角,tanA、tanB是关于方程x2-p+1=0(p∈R)两个实根.(Ⅰ)求C的大小(Ⅱ)若AB=1,ACp的值【解析】(Ⅰ)由已知,方程x2-p+1=0的判别式△=)2-4(-p+1)=3p2+4p-4≥0所以p≤-2或p≥2 3由韦达定理,有tanA+tanB,tanAtanB=1-p于是1-tanAtanB=1-(1-p)=p≠0从而tan(A+B)=tan tan1tan tanA BA B+== -所以tanC=-tan(A+B)所以C=60°(Ⅱ)由正弦定理,得sinB=sin6032 AC CAB==解得B=45°或B=135°(舍去) 于是A=180°-B-C=75°则tanA=tan75°=tan(45°+30°)=00001tan45tan302 1tan45tan303++==+ -所以p(tanA+tanB)1)=-1【考点定位】本题主要考查和角公式、诱导公式、正弦定理、一元二次方程根与系数关系等基础知识,考查运算求解能力,考查函数与方程、化归与转化等数学思想.【名师点睛】本题利用一元二次方程的韦达定理,给出三角形两个内角正切值的关系式,求解过程中要注意对判别式的判定,表面上看,判别式对结论没有什么影响,但这对考查学生思维习惯及其严谨性是很有必要的.第(Ⅰ)问得到C=60°后,第(Ⅱ)问中要注意舍去B=135°,否则造成失误.属于中档题.20、(本小题满分13分)如图,椭圆E :22221x y a b +=(a >b >0)的离心率是2,点P (0,1)在短轴CD 上,且PC PD ⋅=-1 (Ⅰ)求椭圆E 的方程;(Ⅱ)设O 为坐标原点,过点P 的动直线与椭圆交于A 、B 两点.是否存在常数λ,使得OA OB PA PB λ⋅+⋅为定值?若存在,求λ的值;若不存在,请说明理由.【解析】本题主要考查椭圆的标准方程、直线方程等基础知识,考查推理论证呢过能留、运算求解能力,考查数形结合、化归与转化、特殊与一般、分类与整合等数学思想.(I )由已知,点C ,D 的坐标分别为(0,-b ),(0,b )又点P 的坐标为(0,1),且PC PD ⋅=-1于是222211b c aa b c ⎧-=-⎪⎪=⎨⎪⎪-=⎩,解得a =2,b所以椭圆E 方程为22142x y +=. (II )当直线AB 斜率存在时,设直线AB 的方程为y =kx +1A ,B 的坐标分别为(x 1,y 1),(x 2,y 2) 联立221421x y y kx ⎧+=⎪⎨⎪=+⎩,得(2k 2+1)x 2+4kx -2=0 其判别式△=(4k )2+8(2k 2+1)>0 所以12122242,2121k x x x x k k +=-=-++ 从而OA OB PA PB λ⋅+⋅=x 1x 2+y 1y 2+λ[x 1x 2+(y 1-1)(y 2-1)]=(1+λ)(1+k 2)x 1x 2+k (x 1+x 2)+1 =22(24)(21)21k k λλ--+--+ =-21221k λλ---+ 所以,当λ=1时,-21221k λλ---+=-3 此时,OA OB PA PB λ⋅+⋅=-3为定值当直线AB 斜率不存在时,直线AB 即为直线CD此时OA OB PA PB OC OD PC PD λ⋅+⋅=⋅+⋅=-2-1=-3故存在常数λ=-1,使得OA OB PA PB λ⋅+⋅为定值-3.【考点定位】本题主要考查椭圆的标准方程、直线方程、平面向量等基础知识,考查推理论证能力、运算求解能力,考查数形结合、化归与转化、特殊与一般、分类与整合等数学思想.【名师点睛】本题属于解析几何的基本题型,第(Ⅰ)问根据“离心率是,且=-1”建立方程组可以求出椭圆方程;第(Ⅱ)问设出直线方程后,代入椭圆方程,利用目标方程法,结合韦达定理,得到两交点横坐标的和与积,再代入中化简整理.要得到定值,只需判断有无合适的λ,使得结论与k无关即可,对考生代数式恒等变形能力要求较高.属于较难题.21、(本小题满分14分)已知函数f(x)=-2lnx+x2-2ax+a2,其中a>0.(Ⅰ)设g(x)为f(x)的导函数,讨论g(x)的单调性;(Ⅱ)证明:存在a∈(0,1),使得f(x)≥0恒成立,且f(x)=0在区间(1,+∞)内有唯一解.(I)由已知,函数f(x)的定义域为(0,+∞)g(x)=f '(x)=2(x-1-lnx-a)所以g'(x)=2-22(1)xx x-=当x∈(0,1)时,g'(x)<0,g(x)单调递减当x∈(1,+∞)时,g'(x)>),g(x)单调递增(II)由f '(x)=2(x-1-lnx-a)=0,解得a=x-1-lnx令Φ(x)=-2xlnx+x2-2x(x-1-lnx)+(x-1-lnx)2=(1+lnx)2-2xlnx 则Φ(1)=1>0,Φ(e)=2(2-e)<0于是存在x0∈(1,e),使得Φ(x0)=0令a0=x0-1-lnx0=u(x0),其中u(x)=x-1-lnx(x≥1)由u'(x)=1-1x≥0知,函数u(x)在区间(1,+∞)上单调递增故0=u(1)<a0=u(x0)<u(e)=e-2<1即a0∈(0,1)当a=a0时,有f '(x0)=0,f(x0)=Φ(x0)=0再由(I)知,f '(x)在区间(1,+∞)上单调递增当x∈(1,x0)时,f '(x)<0,从而f(x)>f(x0)=0当x∈(x0,+∞)时,f '(x)>0,从而f(x)>f(x0)=0又当x∈(0,1]时,f(x)=(x-a0)2-2xlnx>0故x∈(0,+∞)时,f(x)≥0综上所述,存在a∈(0,1),使得f(x)≥0恒成立,且f(x)=0在区间(1,+∞)内有唯一解.【考点定位】本题主要考查导数的运算、导数在研究函数中的应用、函数的零点等基础知识,考查推理论证能力、运算求解能力、创新意识,考查函数与方程、数形结合、化归与转化等数学思想.【名师点睛】本题第(Ⅰ)问隐藏二阶导数知识点,由于连续两次求导后,参数a消失,故函数的单调性是确定的,讨论也相对简单.第(Ⅱ)问需要证明的是:对于某个a∈(0,1),f(x)的最小值恰好是0,而且在(1,+∞)上只有一个最小值.因此,本题仍然要先讨论f(x)的单调性,进一步说明对于找到的a,f(x)在(1,+∞)上有且只有一个等于0的点,也就是在(1,+∞)上有且只有一个最小值点.属于难题.。