北师大版八年级数学上册 第二章 实数 单元检测试题(无答案)

合集下载

北师大版八年级上册数学 第二章 实数 单元测试卷(Word版,含答案)

北师大版八年级上册数学 第二章 实数 单元测试卷(Word版,含答案)

北师大版八年级上册数学 第二章 实数 单元测试卷一、选择题(每小题3分,共30分)1.下列四个选项中,属于无理数的是 ( )A .3.1415926B .3.21C .√93D .-√1162.下列二次根式中,是最简二次根式的是 ( )A .√8B .√10C .√16D .√273.下列说法不正确的是 ( )A .125的平方根是±15B .(-4)3的立方根是-4C .√4的算术平方根是2D .-√273=-34.下列计算正确的是 ( )A .√52=±5B .√2÷√3=√63C .2√3×2√3=4√3D .√2+√3=√55.估计√153的大小在 ( )A .2与3之间B .3与4之间C .4与5之间D .5与6之间6.设a=(-√3)2,b=√(-3)2,则a ,b 的大小关系是 ( )A .a=bB .a>bC .a<bD .a+b=07.下列各实数比较大小,其中正确的是 ( )A .√7<2.5B .√16<2.2C .1π>√5D .√3-13<13 8.已知a ,b 互为倒数,c ,d 互为相反数,则-√ab 3+√c +d +1的平方根为( ) A .1 B .-1 C .0 D .±19.若x+y=3+2√2,x -y=3-2√2,则√x 2-y 2的值为 ( ) A .4√2 B .1 C .6 D .3-2√210.已知a ,b ,c 在数轴上的对应点的位置如图所示,则化简√a 2-|a+c|+√(c -b )2的结果是 ( )A .2c -bB .-bC .bD .-2a -b二、填空题(每小题4分,共24分)11.计算:|√3-2|= .12.已知a=√3,则a 的倒数是 .13.已知√2.021≈1.422,√20.21≈4.496,则√2021≈ .14.√643的平方根是 .15.有边长为5厘米的正方形和长为18厘米,宽为8厘米的长方形,现要制作一个面积为这两个图形面积之和的正方形,则此正方形的边长应为 厘米.16.已知y=√(x -4)2-x+5,当x 分别取1,2,3,…,2021时,所对应y 值的总和是 .三、解答题(共46分)17.(4分)计算:(1)√24×4√12÷√48;。

第二章 实数 单元测试题 北师大版八年级数学上册

第二章 实数 单元测试题 北师大版八年级数学上册

第二章 实数 单元测试题 北师大版八年级数学上册(本试卷满分150分,考试用时120分钟)A 卷(共100分)一、选择题(本大题共10小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求)1.下列式子是二次根式的是( )A.3B.1-C.35D.4-π2.在1,-2,0,-3这四个实数中,最小的是( ) A.1 B.-2 C.0 D.-33.下列二次根式中最简二次根式是( ) A.31 B.12 C.3.0 D.23 4.已知a=17-1,a 介于两个连续自然数之间,则下列结论正确的是( )A.1<a<2B.2<a<3C.3<a<4D.4<a<55.下列各组数中,互为相反数的一组是( ) A.|-2|与2 B.|-2|与4 C.-2与22-)( D.-2与38-6.下列计算正确的是( ) A.2+3=5 B.3-2=1 C.428= D.3×2=6 7.计算344318⨯÷的结果为( ) A.32 B.42 C.52 D.628.下列说法:①4936的算术平方根是±76;②27102-是34-的立方根;③无理数包括正无理数、负无理数和零;④有理数和数轴上的点是一一对应的.其中正确的有( )A.0个B.1个C.2个D.3个9.如图,在长方形ABCD 中无重叠放入面积分别为16cm 2和12cm 3的两张正方形纸片,则图中空白部分的面积为( ) A.(-12+83)cm 2 B.(16-83)cm 2 C.(8-43)cm 2 D.(4-23)cm 210.如图是一个按某种规律排列的数阵:根据数阵排列的规律,第n(n 是整数,且n ≥4)行从左向右数第(n-3)个数是( )(用含n 的代数式表示)A.1-n 2B.2-n 2C.4-n 2D.3-n 2二、填空题(本大题共4小题,每小题4分,共16分)11.81的算术平方根是_______,81的立方根是_______. 12.下列各数:4,3.1415926,5,-π,35,2.060606…(相邻两个6之间有1个0).其中属于无理数的有_______个.13.已知b=a -3-3-a +4,则ab =_______.14.如图,数轴上点A 与点B 表示的数互为相反数,若点A 表示的数是-2,用圆规在数轴上确定一点C ,则点C 对应的实数是_______.三、解答题(本大题共6小题,共54分,解答应写出文字说明、证明过程或演算步骤)15.(12分)计算: (1)214-5051183+(2)))(()(353-5-622++16.(6分)计算: (1)232--9427-)(+ (2))(31-2|2-3|64-3+⨯+17.(8分)已知一个正数的两个平方根分别是m+3和2m-15.(1)求这个正数;(2)求5m +的平方根.18.(8分)如图,有一张边长为63cm 的正方形纸板,现将该纸板的四个角剪掉,制作个有底无盖的长方体盒子,剪掉的四个角都是边长为3cm 的小正方形.求(1)剪掉四个角后,制作长方体盒子的纸板面积;(2)长方体盒子的体积.19.(10分)实数与数轴上的点成一一对应关系,无理数也可以在数轴上表示出来.请你借助三角尺、圆规等作图工具,运用合理的方法,在图所示的数轴上作出表示1-5的点.(保留作图痕迹,标清数据,不写作法,不另下结论)20.(10分)某同学想用一块面积为400cm2的正方形纸片(如图所示),沿着边的方向裁出一块面积为300cm2的长方形纸片,使它的长、宽之比为3:2,请你用所学过的知识说明能否用这块纸片裁出符合要求的纸片.B卷(共50分)一、填空题(本大题共5小题,每小题4分,共20分)21.已知a,b,c是△ABC的三边长,化简222a-b-c)((+)+的结果是++-ba-c(cba)_______.22.根据如图所示的程序,当输人x的值为2时,输出y的值为_______.23.对于任意两个不相等的数a ,b ,定义一种新运算“⊕”如下:a ⊕b=b -a b a +(a+b>0) 如:3⊕2=52-323=+,那么9⊕(5⊕4)=_______. 24.已知a 是5+7的小数部分,b 是5-7的小数部分,那么ab+5b 的值为_______.25.在学习平方根后,同学们总结出:在a x=N 中,已知底数a 和指数x ,求幂N 的运算是乘方运算:已知幂N 和指数x ,求底数a 的运算是开方运算.小明提出一个问题:“如果已知底数a 和 N ,求指数x 是否也对应着一种运算呢?"老师首先肯定了小明善于思考,继而告诉大家这是同学们进高中将继续学习的对数,感兴趣的同学可以课下自主探究,小明课后借助网络查到了对数的定义:对数的定义如果N=a x (a >0,a ≠1),那么数x 叫做以a 为底N 的对数( logarithm),记作:x=logN.其中,a 叫作对数的底数,N 叫作真数.小明根据对数的定义,尝试进行了下列探究::31=3,log 33=1;32=9,log 39=2;33=27,:log 327=3; 34=81,:log 481=4.计算:log 264=_______.二、解答题(本大题共3小题,共30分,解答应写出文字说明、证明或演算过程)26.(8分)把二次根式a -23与8分别化为最简二次根式后,被开方数相同.(1)如果a 是正整数,那么符合条件的a 有哪些?(2)如果a 是整数,那么符合条件的a 有多少个?最大值是多少?有没有最小值?27.(10分)观察下列各组式子的变形过程,然后回答问题: 1-21-2121-2121=+=+))((;2-32-3232-3231=+=+))((; 2-52-5252-5251=+=+))((; 根据以上解法,试求:(1)求671+的值. (2)求n1n 1++(n 为正整数)的值; (3)求10099199981.....431321211++++++++++的值.28.(12分)阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+22=221)(+,善于思考的小明进行了以下探索:设a+b 2=22n m )(+(其中a ,b ,m ,n 均为正整数),则有a+b 2=22m n n 2m 22++.所以a=m 2+2n 2,b=2mn.这样小明就找到了一种把部分a+b 2的式子化为平方式的方法. 请你仿照小明的方法探索并解决下列问题:(1)当a ,b ,m ,n 均为正整数时,若a+b 3=23n m )(+,用含m ,n 的代数式分别表示a ,b 得a=_______,b=_________.(2)利用所探索的结论,找一组正整数a ,b ,m ,n 填空:____+___3=(____+___3)2.(3)若a+63=(m+n 3)2,a ,m ,n 均为正整数,求a 的值;(4)化简:5614+=______.。

北师大版八年级数学上册《第二章 实数》单元测试卷及答案

北师大版八年级数学上册《第二章 实数》单元测试卷及答案

北师大版八年级数学上册《第二章实数》单元测试卷及答案学校:___________姓名:___________班级:___________考号:___________一、选择题1.在√6、32、1.8、π这4个数中,无理数有()A.1个B.2个C.3个D.4个2.下列说法错误的是()A.4的算术平方根是2B.√2是2的平方根C.−1的立方根是−1D.−3是√(−3)2的平方根3.下列式子中,属于最简二次根式的是()A.√8B.√11C.√45D.√164.如图,√7在数轴上对应的点可能是()A.点E B.点F C.点M D.点P5.要使式子√x−53有意义,则x的取值范围是()A.x≤5B.x≠5C.x>5D.x≥56.若将三个数- √3,√7和√11表示在数轴上,其中能被如图所示的墨迹覆盖的数是()A.- √3B.√7C.√11D.无法确定7.如图,在Rt△OBC中,OC=1,OB=2,数轴上点A所表示的数为a,则a的值是()A.-√5-2 B.-√5C.√5﹣2 D.﹣√5+28.下列运算正确的是()A.√(−2)2=±2B.√419=213C.3√2×2√3=6√5D.4√3÷√12=2二、填空题9.计算√−8273的结果等于.10.若a<√11<b,且a,b是两个连续的整数,则a+b的值为.11.已知x−2的平方根是±2,2x+y+7的立方根是3,则x+y的值是12.已知a,b分别是√13的整数部分和小数部分,则2a﹣b的值为.13.已知:y=√a−2+√3(b+1),当a,b取不同的值时,y也有不同的值,当y最小时,b a的算术平方根为.三、解答题14.计算:(1)√4+√(−3)2+√−273.(2)|√3−2|+√−273−√49.(3)(−2)2+|√2−1|−√9+√−83.15.计算下列各题:(1)√27÷√3−2√15×√10+√8(2)√3(√2−√3)−√24−|√6−3|16.把下列各数分别填入相应集合内0与√5,3.14−π,227,−0.101001,−√−133.无理数集合:{ ...};负数集合:{ ...};分数集合:{ ...};17.已知5a+3的立方根是2,3b+1的算术平方根是5,求a+b的平方根.18.已知a=2+√3,b=2−√3分别求下列代数式的值:(1)a2−b2(2)a2−ab+b2参考答案1.B2.D3.B4.C5.D6.B7.D8.D9.−2310.711.1412.9−√1313.114.(1)解:√4+√(−3)2+√−273=2+3−3=2.(2)解:原式=2−√3−3−7=−8−√3(3)解:原式=4+√2−1−3+(−2)=√2−215.(1)解:原式=3√3÷√3−25√5×√10+2√2 =3−2√2+2√2=3(2)解:原式=√6−3−2√6−3+√6=−616.解:无理数集合{√5,3.14−π,−√−13,3...}负数集合{3.14−π,−0.101001,...}分数集合{227,−0.101001,...}17.解:因为5a+3的立方根是2所以5a+3=8,解得a=1.因为3b+1的算术平方根是5所以3b+1=25,解得b=8所以a+b=1+8=9.因为9的平方根是±3所以a+b的平方根是±3.18.(1)解:∵a=2+√3,b=2−√3∴a2−b2=(a+b)(a−b)=(2+√3+2−√3)×(2+√3−2+√3)=4×2√3=8√3;(2)解:∵a=2+√3,b=2−√3∴a2−ab+b2=(a−b)2+ab=(2+√3−2+√3)2+(2+√3)(2−√3)=12+4−3=13.。

北师大版八年级上册 第二章 实数 检测题.(含详细答案解析)doc

北师大版八年级上册  第二章 实数 检测题.(含详细答案解析)doc

北师大版八年级上册第二章实数检测题一、选择题(共 10 小题,每小题 3 分,共 30 分)1.在实数-3.1415926,,,,,中,无理数有()A. 1个B. 2个C. 3个D. 4个2.的绝对值是()A. -4B. 4C.D.3.下列二次根式中,与是同类二次根式的是()A. B. C. D.4.的平方根是()A. 2B. 4C. -2或2D. -4或45.下列说法:①10的平方根是±;②-2是4的一个平方根;③的平方根是;④0.01的算术平方根是0.1;⑤.其中正确的有()A. 1个B. 2个C. 3个D. 4个6.如图,数轴上与,对应的点分别为,,点关于点的对称点为,设点表示的数为,则等于()A. B. 3 C. D. 57.下列计算正确的是()A. B. C. D. =48.已知是最小的正整数,则实数的值是()A. 12B. 11C. 8D. 39.我们知道,一元二次方程没有实数根,即不存在一个实数的平方等于.若我们规定一个新数“”,使其满足(即方程有一个根为).并且进一步规定:一切实数可以与新数进行四则运算,且原有运算律和运算法则仍然成立,于是有,,,,从而对于任意正整数,我们可以得到,同理可得,,.那么的值为()A. 0B. 1C. -1D.10.下列计算正确的是()A.B.C.D.二、填空题(共 8 小题,每小题 3 分,共 24 分)11.已知有理数,,满足,那么的值为________.12.当时,二次根式的值为________.13.若,,则的值________.14.的平方根是________,________(用代数式表示),________.15.若实数,则________.16.试写出两个无理数________和________,使它们的和为.17.有三个数,,,其中没有平方根,,则这三个数按照从小到大的顺序排列应为:________________________.18.化简下列二次根式:(1)________;(2)________;(3)________.三、解答题(共 6 小题,每小题 10 分,共 60 分)19.已知:为的小数部分的倒数,且,求下列代数式的值:;.20.把下列根式化成最简二次根式:(1) (2) (3) (4)21.利用计算器,比较下列各组数的大小:(1)与;(2)与.22.选择合适的方法计算:(1))(2)(3) (4)23.阅读下列材料:“为什么不是有理数”.假是有理数,那么存在两个互质的正整数,,使得,于是有.∵是偶数,∴也是偶数,∴是偶数.设(是正整数),则,∴也是偶数∴,都是偶数,不互质,与假设矛盾.∴假设错误∵不是有理数有类似的方法,请证明不是有理数.24.先阅读,后解答:像上述解题过程中,相乘,积不含有二次根式,我们可将这两个式子称为互为有理化因式,上述解题过程也称为分母有理化,(1)的有理化因式是________;的有理化因式是________.(2)将下列式子进行分母有理化:①________;②________.(3)计算.北师大版八年级上册第二章实数检测题一、选择题(共 10 小题,每小题 3 分,共 30 分)1.在实数-3.1415926,,,,,中,无理数有()A. 1个B. 2个C. 3个D. 4个【答案】B【解析】【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:π,是无理数,故选:B.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.的绝对值是()A. -4B. 4C.D.【答案】B【解析】【分析】根据复数的绝对值是它的相反数,可得答案.【详解】解:=-4,的绝对值为4,故选:B.【点睛】本题考查了实数的性质,利用绝对值的性质是解题关键.3.下列二次根式中,与是同类二次根式的是A. B. C. D.【答案】C【解析】试题解析:,是最简二次根式,,,则与是同类二次根式的是,故选C.4.的平方根是()A. 2B. 4C. -2或2D. -4或4【答案】C【解析】分析:根据算术平方根的意义,先求出的值,再根据平方根的意义求解.详解:由题意可得=4因为(±2)2=4所以4的平方根为±2即的平方根为±2.故选:C.点睛:此题主要考查了平方根的概念,一个数的平方等于a,那么这个数叫a的平方根,关键是要利用算术平方根化简.5.下列说法:①10的平方根是±;②-2是4的一个平方根;③的平方根是;④0.01的算术平方根是0.1;⑤.其中正确的有()A. 1个B. 2个C. 3个D. 4个【答案】C【解析】试题解析:①10的平方根是±,正确;②-2是4的一个平方根,正确;③的平方根是±,故错误;④0.01的算术平方根是0.1;⑤=a2,故错误,其中正确的是①②④.故选C.6.如图,数轴上与,对应的点分别为,,点关于点的对称点为,设点表示的数为,则等于()A. B. 3 C. D. 5【答案】D【解析】【分析】先根据已知条件可以求出线段AB的长度,然后根据对称的性质即可求出x,最后即可求出题目的结果.【详解】解:由数轴上各点的位置可知,x=1-(−1)=2-,则|x−3|+x2=4-2+(2-)2=4−2+7−4=5.故选:D.【点睛】此题主要考查了利用数轴表示实数的方法,关键是正确根据数在数轴上的位置判断数的符号以及绝对值的大小,再根据运算法则进行判断.7.下列计算正确的是()A. B. C. D. =4【答案】B【解析】【分析】根据同类二次根式才能合并可对A进行判断;根据二次根式的乘法对B进行判断;先把化为最简二次根式,然后进行合并,即可对C进行判断;根据二次根式的除法对D进行判断.【详解】解:A、与不能合并,所以A选项不正确;B、-=2−=,所以B选项正确;C、×=,所以C选项不正确;D、=÷=2÷=2,所以D选项不正确.故选:B.【点睛】此题考查二次根式的混合运算,注意先化简,再进一步利用计算公式和计算方法计算.8.已知是最小的正整数,则实数的值是()A. 12B. 11C. 8D. 3【答案】B【解析】【分析】直接利用算术平方根的定义分析得出答案.【详解】解:∵是最小的正整数,则12-n=1时,符合题意,∴实数n的值是:11.故选:B.【点睛】此题主要考查了算术平方根的定义,正确得出12-n的最小值是解题关键.9.我们知道,一元二次方程没有实数根,即不存在一个实数的平方等于.若我们规定一个新数“”,使其满足(即方程有一个根为).并且进一步规定:一切实数可以与新数进行四则运算,且原有运算律和运算法则仍然成立,于是有,,,,从而对于任意正整数,我们可以得到,同理可得,,.那么的值为()A. 0B. 1C. -1D.【答案】D【解析】【分析】原式利用题中的新定义化简,四项结合计算即可得到结果.【详解】解:根据题中的新定义得:原式=(i-1-i+1)+…+(i-1-i+1)+i=i,故答案为:D.【点睛】此题考查了解一元二次方程-直接开平方法,弄清题中的新定义是解本题的关键.10.下列计算正确的是()A.B.C.D.【答案】A【解析】【分析】根据二次根式的加减运算对A、B、C进行判断;根据二次根式的乘法法则对D进行判断.【详解】解:A、原式=3-2=,所以A选项正确;B、与不能合并,所以B选项错误;C、2与不能合并,所以C选项错误;D、原式==×,所以D选项错误.故选:A.【点睛】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.二、填空题(共 8 小题,每小题 3 分,共 24 分)11.已知有理数,,满足,那么的值为________.【答案】25【解析】【分析】由题中条件不难发现,等号左边含有未知数的项都含有根号,而等号右边的则没有.将等式移项后,可尝试用配方法,将等式转化为三个完全平方数之和等于0的形式,从而分别求出x、y、z的值,再求代数式的值.【详解】解:将题中等式移项并将等号两边同乘以2得:x−2+y−2+z−2=0.配方得(x−2+1)+(y−1−2+1)+(z−2−2+1)=0.∴(−1)2+(−1)2+(−1)2=0.∴=1且=1且=1.解得x=1 y-2 z=3.∴(x-yz)2=(1-2×3)2=25.【点睛】将已知条件移项后观察特征,选择正确的方法即配方法是关键.12.当时,二次根式的值为________.【答案】3【解析】【分析】把x=-3代入已知二次根式,通过开平方求得答案.【详解】解:把x=-3代入中,解得:=3,故答案为:3.【点睛】本题考查了二次根式的定义.此题利用代入法求得二次根式的值.13.若,,则的值________.【答案】-5【解析】【分析】首先把a、b分母有理化,再代入计算即可.【详解】解:∵a===-2-,b===-2+,∴a+b+ab.=-2--2++(-2-)(-2+).=-4+(-2)2-()2=-4+4-5.=-5.故答案为:-5.【点睛】本题考查了二次根式的化简求值、分母有理化、平方差公式;熟练掌握分母有理化是解决问题的关键.14.的平方根是________,________(用代数式表示),________.【答案】(1). ±2,(2). 3-,(3). -4【解析】【分析】=4,然后再求4的平方根;<3,然后再利用绝对值的性质计算即可,根据立方根的性质计算即可.【详解】解:∵=4,4的平方根是±2,∴的平方根是±2;∵5<9,∴<,即<3,.∴|−3|=3-;∵(-4)3=-64∴=−4.故答案为:±2;3-;-4.【点睛】本题主要考查的是平方根、立方根和绝对值的性质,先求得=4是解题的关键.15.若实数,则________.【答案】4【解析】【分析】直接利用二次根式有意义的条件得出x,y的值,进而代入求出答案.【详解】解:∵y=+有意义,∴x-2=0,y=0,解得:x=2,故x2+y2=22+0=4.故答案为:4.【点睛】此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.16.试写出两个无理数________和________,使它们的和为.【答案】(1). ,(2).【解析】【分析】由于无理数就是无限不循环小数,而两个无理数的和为有理数,所以此无理数应为有理数与无理数相加的形式,例如6+和-.由此即可求解.【详解】解:例如6+和-等,答案不唯一.【点睛】此题主要考查了无理数的定义,是开放性题目,答案不唯一,只要写出的两个无理数的和为6,即符合要求.17.有三个数,,,其中没有平方根,,则这三个数按照从小到大的顺序排列应为:________________________.【答案】(1). a,(2). b,(3). c【解析】【分析】根据算术平方根的意义求出a b c的范围,再比较即可.【详解】解:∵a没有平方根,∴a<0,∵>b,∴0<b<1,∵<c,∴c>1,∴这三个数按照从小到大的顺序排列应为a<b<c,故答案为:a,b,c.【点睛】本题考查了实数的大小比较和算术平方根的意义,关键是确定a b c的范围.18.化简下列二次根式:(1)________;(2)________;(3)________.【答案】(1). ,(2). ,(3).【解析】【分析】(1)、(3)把被开方数的分母去掉即可得出结论;(2)把假分数化为带分数,再化为最减二次根式即可.【详解】解:(1)原式==.故答案为:;(2)原式===.故答案为:;(3)原式=8=2.故答案为:2.【点睛】本题考查的是二次根式的性质与化简,熟知二次根式具有非负性是解答此题的关键.三、解答题(共 6 小题,每小题 10 分,共 60 分)19.已知:为的小数部分的倒数,且,求下列代数式的值:;.【答案】(1);(2).【解析】【分析】(1)先估算的范围,求出x、y的值,再代入求出即可;(2)把x、y的值代入求出即可.【详解】解:∵,为的小数部分的倒数,∴,∵,∴,当,时,;当,时,.【点睛】本题考查了估算无理数的大小,倒数,求代数式的值的应用,能求出x、y的值是解此题的关键.20.把下列根式化成最简二次根式:(1)(2)(3)(4)【答案】(1) ;(2).【解析】【分析】根据最简二次根式的定义和最简二次根式必须满足两个条件进行化简计算即可.【详解】解:(1);(2)原式;(3)原式;(4)原式.【点睛】本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.21.利用计算器,比较下列各组数的大小:(1)与;(2)与.【答案】(1) (2).【解析】【分析】(1)首先用计算器分别求出与的值各是多少;然后根据实数大小比较的方法判断即可.(2)首先用计算器分别求出与的值各是多少;然后根据实数大小比较的方法判断即可.【详解】解:(1),,∵,∴.(2),,∵,∴.【点睛】此题主要考查了计算器-数的开方问题,以及实数大小比较的方法,要熟练掌握.22.选择合适的方法计算:(1))(2)(3)(4)【答案】(1) ;(2) ;(3) ;(4).【解析】【分析】(1)直接进行二次根式的除法运算,然后将二次根式化为最简.(2)将化为最简后再进行根式的除法运算.(3)将带分数化为分数,然后再进行根式的除法运算.(4)直接进行根式的除法运算,然后再将二次根式化为最简.【详解】解:(1);(2);(3)原式;(4)原式.【点睛】本题考查二次根式的乘除法运算,难度不大,注意选择适当的方法可使运算变得简单.23.阅读下列材料:“为什么不是有理数”.假是有理数,那么存在两个互质的正整数,,使得,于是有.∵是偶数,∴也是偶数,∴是偶数.设(是正整数),则,∴也是偶数∴,都是偶数,不互质,与假设矛盾.∴假设错误∵不是有理数有类似的方法,请证明不是有理数.【答案】见解析【解析】【分析】利用类比的思想,仿照证“为什么不是有理数”来证明.【详解】解:假设是有理数,则存在两个互质的正整数,,使得,于是有,∵是的倍数,∴也是的倍数,∴是的倍数,设(是正整数),则,即,∴,∴也是的倍数,∴,都是的倍数,不互质,与假设矛盾,∴假设错误,∴不是有理数.【点睛】本题主要考查用反证法证明数学命题,把要证的结论进行否定,得到要证的结论的反面,从而得到所求.24.先阅读,后解答:像上述解题过程中,相乘,积不含有二次根式,我们可将这两个式子称为互为有理化因式,上述解题过程也称为分母有理化,(1)的有理化因式是________;的有理化因式是________.(2)将下列式子进行分母有理化:①________;②________.(3)计算.【答案】 (1),;(2)①;②3-;(3)9.【解析】【分析】(1)根据分母有理化常常是乘二次根式本身(分母只有一项)或与原分母组成平方差公式,所以,的有理化因式是;+2的有理化因式是−2;(2)①分子、分母同乘以;②分子、分母同乘以3-;计算解答出即可;(3)先对每个分式分母有理化,然后再相加减.【详解】解:(1)∵×=3;(+2)×(−2)=3;∴的有理化因式是;+2的有理化因式是−2;(2)①==;②==3-;(3)++…++.=++…++ .=-1+-+…+-+-.=9.【点睛】本题考查了分母有理化,两个含二次根式的代数式相乘时,它们的积不含二次根式,这样的两个代数式成互为有理化因式;一个二次根式的有理化因式不止一个.。

北师大版八年级数学上册《第二章实数》单元测试卷及答案

北师大版八年级数学上册《第二章实数》单元测试卷及答案

北师大版八年级数学上册《第二章实数》单元测试卷及答案一、单选题1.下列各式中,正确的是( )A ()255-=-B . 3.60.6=-C 255=±D 38=-2-2.下列计算正确的是( )A 42=±B 2462=C .(224=D 538+=3.下列各式计算正确的有( )个.①()32320.10.3ab a b -=- ①34a a a ÷= ()3322-=- ①()222219520052002200554000020002538025=-=-⨯⨯+=-+=A .1B .2C .3D .4 422169(35)x x x -+-的结果是( )A .66x -B .66x -+C .-4D .4522+的整数部分为a ,小数部分为b ,则13a b -的值为( ) A .22B 22 C .222 D 216.下列计算正确的是( )A 235=B 1091=C .1333=D 1226=7.下列实数中,无理数是( )A .0B 3C 9D .20198.若x <0233x x ( )A .xB .2xC .0D .﹣2x9.下列说法中正确的有( )个①过一点有且只有一条直线与已知直线垂直②过一点有且只有一条直线与已知直线平行③从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离④实数与数轴上的点是一一对应的A.4B.3C.2D.110.如果规定①为一种运算符号,且b aa b a b-☆=,则3(21)☆☆的值为()A.0B.1C.﹣1D.2二、填空题1135.25 1.73835250=.12.a,b为有理数,如果规定一种新的运算“*”,定义:2*,a b a ab=+请根据“*”的意义计算()3*4-=.13.比较大小:1033283,221(填“>”、“=”或“<”).14.定义运“#”运法则为:x#y=y﹣2,则(4#2)#(﹣3)=.15.如果y44x x--,则2x+y的值是.161012(填“>”或“=”或“<”)17.如果一个正数的平方根是23a-和5a-,那么a的值是.18.若利用计算器进行如下操作:屏幕显示的结果为12若现在进行如下操作:则屏幕显示的结果为.三、解答题19.计算:(1)027|13(2024)++-;(2)若分式221x-的值等于2,求x值.20.计算:11 2334830310+21.已知:实数a、b23(4)0a b+-=.(1)可得a b+的立方根是;(2)当一个正实数x 的平方根分别为m a +和2b m -时,求x 的值.22.计算: 112648327268323.我国南宋时期数学家秦九韶及古希腊的几何学家海伦对于问题:“已知三角形的三边,如何求三角形的面积”进行了研究,并得到了海伦—秦九韶公式:如果一个三角形的三条边分别为,,a b c ,记2a b c p ++=,那么三角形的面积为()()()S p p a p b p c =---ABC 中,AB=5,BC=6,AC=7,求ABC 的面积.24.计算 (1)0213π8(3)1 (2)220243*********--+-参考答案1.D2.B3.C4.D5.A6.C7.B8.D9.D10.D11.17.3812.3-13. < > <14.5-15.916.>17.2-18.1.2 19.(1)43 (2)1x= 20.233-21.(1)1;(2)422.(1)43(2)27 423.624.(1)1;33 2 4。

北师大版数学八年级上册第二章《实数》同步测试题

北师大版数学八年级上册第二章《实数》同步测试题

八年级上册第二章实数测试题一、选择题(每个小题3分,共36分)1、25的平方根是( )A 、5B 、-5C 、±5D 、5± 2、下列各式中正确的是( ) A. 981±= B. 38944944=⨯= C. 74343432223=+=+=+ D. 1)14.3(0=-π3、16的平方根是( ) A. 2 B. 6-C. 2-D. 2或2- 4、下列计算正确的是( )A. 123=-B. 42·8=C. 3232=+D. 228= 5、下列说法错误的是( )A. 1的平方根是1B. –1的立方根是-1C. 2是2的平方根D. –3是2)3(-的平方根6、下列平方根中, 已经简化的是( )A. 31B. 20C. 22D. 1217、 下列结论正确的是( )A.6)6(2-=--B.9)3(2=-C.16)16(2±=-D.251625162=⎪⎪⎭⎫ ⎝⎛-- 8、02783=-x ,则x=() A.32 B.54 C.-32 D-54 9、要使二次根式1x +有意义,字母x 必须满足的条件是( )A 1-≥X . B.1-≤X C.x=0 D x=110、2)3(-的平方根是x , 64的立方根是y ,则y x +的值为( )A 、3B 、7C 、3或7D 、1或711、若a 和a -都有意义,则a 的值是( )A.0≥aB.0≤aC.0=aD.0≠a12、估算56的值应在( )A. 6.5~7.0之间B. 7.0~7.5之间C. 7.5~8.0之间D. 8.0~8.5之间二、填空题(每空2分,共26分)13、36的平方根是 ;16的算术平方根是 ; 14、8的立方根是 ;327-= ;15、327-的相反数是 ;16、64的平方根是_____________,算术平方根是______________.9的平方根是_____________,算术平方根是______________.17、=-2)4( ;=-33)6( ; 2)196(= .18、已知5-a +3+b =0,那么a —b = ;三、解答题19、求下列各式的值:(每小题2分,共12分)(1)44.1; (2)3027.0-; (3)610-;(4)649 ; (5)25241+; (6) .20020、化简:(每小题2分,共12分)(1)44.1-21.1; (2)2328-+;(3)92731⋅+; (4)0)31(33122-++;(5)2)75)(75(++- (6) 2)325(-21、(本题8分)已知一个数的平方根是13+a 和11+a ,求这个数的立方根.()22、(本题8分)已知,a 、b 互为倒数,c 、d 互为相反数,求13+++-d c ab 的值。

第二章实数单元测试卷 2024-2025学年北师大版八年级数学上册

第二章实数单元测试卷 2024-2025学年北师大版八年级数学上册

第二章实数单元测试卷一、选择题(每题 3分,共30分)1.下列式子中,是二次根式的是 ( ) A.√−3 B √9 C √3 D √a2.9的平方根是 ( ) A.3 B.±3 C.±√3 D.81 3 下列各数是无理数的是 ( ) A.-2 024 B.√20242 C.|-2024| D.√202434. 某同学利用科学计算器进行计算,其按键顺序如下:SHIFT 显示结果为( )A.32B.8C.4D.25.下列运算正确的是 ( ) A.3+√3=3√3 B.√2+√3=√5 C.√273÷√3=√3 D.√12−√102=√6−√56.估计 5−√13的值在 ( ) A.0和1之间 B.1和2之间 C.2和3之间 D.3和 4 之间7. 我国古代的《洛书》记载了世界上最早的幻方——“九宫格”.在如图所示的“九宫格”中,若要使横、竖、斜对角的3个实数相乘都得到同样的结果,则M 代表的实数为( )A.6√2B.2√3 C √6 D. √68.一个等腰三角形,已知其底边长为 √5 分米,底边上的高 √15分米,那么它的面积为 ( ) A.45√52平方分米 B.45√3平方分米 C.45√32平方分米 D.45√5平方分米9.若x 是整数,且 √x −3⋅√5−x 有意义,则 √x −3⋅√5−x 的值是 ( ) A.0或1 B.±1 C.1或2 D.±210.如果一个三角形的三边长分别为 12,k,72,则化简 √k 2−12k +36−|2k −5|的结果是( )A.-k--1B. k+1C.3k-11D.11-3k+)二、填空题(每题3分,共15分)11.计算√−198−13=¯.12 √64₄的倒数是,|π−11|=¯,√5−3的相反数是.13. 手工制作手工课上老师拿走了一块大的正方形布料做教学材料,小红和小芸按照如图所示的方式各剪下一块面积为42cm²和28cm²的小正方形布料做沙包,那么剩下的两块长方形布料的面积和为.14.我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的三斜求积公式, 即如果一个三角形的三边长分别为a,b,c,那么该三角形的面积. S=√14[a2b2−(a2+b2−c22)2],现已知△ABC的三边长分别为2, √6,3,则△ABC的面积为.15.若等式(√x3−2)x−1=1成立,则x的取值可以是.三、解答题(16, 17题每题8分, 19, 21题每题12分, 22题15分, 其余每题10分, 共75分)16.计算: (1)(√3+2)(√3−1)+|√3−2|;(2)√48÷√3−2√15×√30+(2√2+√3)2.17.解方程: 2√3x−√48=√3x+√12.18.先化简,再求值:(√2x+√y)(√2x−√y)−(√2x−√y)2,其中x=34,y=12.19.(1)若|2x−4|+(y+3)2+√x+y+z=0,求. x−2y+z的平方根;(2)如图,实数a,b,c是数轴上A,B,C三点所对应的数,化简√c33+|c−b|−√(a−b)2+|a+c|.20.已知7+√5和7−√5的小数部分分别为a,b,试求代数式. ab−a+4b−3的值.21. 高空抛物极其危险,是我们必须杜绝的行为.据研究,高空抛物下落的时间t(单位:s)和高度h(单位:m)近似满足式子t=√ℎ(不考虑风速的影响).5(1)从50 m高空抛物,落地所需时间l₁是多少秒? 从100m高空抛物,落地所需时间l₂是多少秒?(2)t₂是t₁的多少倍?22. 一只蜗牛A从原点出发向数轴负方向运动,同时,另一只蜗牛B 也从原点出发向数轴正方向运动,3√2秒后,两蜗牛相距15个单位长度.已知蜗牛A,B的速度比是1:4.(速度单位:单位长度/秒)(1)求两只蜗牛的运动速度,并在如图所示的数轴上标出蜗牛A,B从原点出发运动3√2秒时的大致位置.(2)若蜗牛A,B从(1)中的位置同时向数轴负方向运动,几秒时,原点恰好处在两只蜗牛的正中间?(3)若蜗牛A,B从(1)中的位置同时向数轴负方向运动时,另一只蜗牛C也同时从蜗牛B 的位置出发向蜗牛A 运动,当遇到蜗牛A后,立即返回向蜗牛B运动,遇到蜗牛B后又立即返回向蜗牛A运动,如此往返,直到蜗牛B追上蜗牛A 时,蜗牛C立即停止运动.若蜗牛C一直以2√5单位长度/秒的速度匀速运动,那么蜗牛C从开始运动到停止运动,运动的路程是多少个单位长度?一、1. C 2. B 3. D 4. C 5. C 6. B 7. B 8. C 9. A10. D 【点拨】因为一个三角形的三边长分别 12₂, k 72所以 72−12<k <12+72,所以3<k<4,所以k-6<0,2k-5>0.所以 √k 2−12k +36−|2k −5|=√(k −6)2−|2k −5|=6-k-(2k-5)=11-3k.二、11. 3212 14₄;11-π;3 √5 13.2 √6 cm14.√954【点拨】因为△ABC 的三边长分别为2 √6₆,3所以 S ADC =√14{22×(√6)2−[22+(√6)2−322]2} =√954. 15.1或3 或27 【点拨】①当底数为1时,无论指数为何数,等式都成立.令 √x3−2=1,解得x=27.②当底数 为 一1,指数 为偶数时,等式成立. 由 √x3−2=−1,得x=3.当x=3时,x--1=2,则x=3符合题意. ③当指数为0,底数不为0时,等式成立. 令x-1=0,得x=1.将x=1代入 √x3−2,得 √13− 2=√33−2≠0,所以当x=1时,等式成立.综上可知,x 的值为1或3或27.三、16.【解】(1)原式 =(√3)2−√3+2√3−2+2− √3=3. (2)原式 =4−2√6+8+3+4√6=2√6+15. 17.【解】移项,得 2√3x −√3x =√48+√12,所以 √3x =4√3+2√3, 所以 √3x =6√3,解得x=6.18.【解】原式 =(√2x)2−(√y)2−(√2x −√y)2=2x −y −2x +2√2xy −y =2√2xy −2y.当 x =34,y =12时,原式 =2√2×34×12−2× 12=√3−1, 19.【解】(1)因为 |2x −4|+(y +3)2+√x +y +z =0,所以2x-4=0,y+3=0,x+y+z=0, 所以x=2,y=-3,z=1, 所以x-2y+z=2+6+1=9,所以x-2y+z的平方根为±3.(2)由数轴可知,b<a<0<c,|c|>|a|,所以c--b>0,a-b>0,a+c>0,所以√c33+|c−b|−√(a−b)2+|a+c| =c+c-b-(a-b)+a+c=c+c-b-a+b+a+c=3c.20.【解】因√5₅的整数部分为2所以7+√5=9+a,7−√5=4+b即a=−2+√5,b=3−√5.所以ab−a+4b−3=(−2+√5)×(3−√5)−(−2+√5)+4×(3−√5)−3=−11+5√5+2−√5+12−4√5−3=0.21. 【解】(1)当h=50m时, t1=√505=√10(s).当h=100m时, ι2=√1005=√20=2√5(s).(2)因为l2t1=√5√10=√2,所以l₂是l₁√2₂倍22.【解】(1)设蜗牛A的速度为x单位长度/秒,蜗牛B的速度为4x单位长度/秒.依题意,得3√2(x+4x)=15.解得x=√22.所以4x=2√2.所以蜗牛A的运动速度√2₂单位长度/秒,蜗牛的运动速度为√2₂单位长度/秒运动√2₂秒时,蜗牛A的位置在一3处,蜗牛B的置在12处.在图上标注略.(2)设t秒时原点恰好处在两只蜗牛的正中间.依题意,得12−2√2t=3+√22t.解得t=9√25.答:9√25秒时,原点恰好处在两只蜗牛的正中间.(3)设y秒时蜗牛B 追上蜗牛A,依题意,得2√2y−√22y=15,解得y=5√2.所以蜗牛C从开始运动到停止运动,运动的路程为2√5×5√2=10√10(个).单位长度.。

北师大版新教材八年级(上)数学实数单元测试卷(两份)

北师大版新教材八年级(上)数学实数单元测试卷(两份)

F八年级(上)数学实数单元试卷一、填空题(20%)1、-3的绝对值是 ; 2、94的平方根是 . 3、-27 的立方根是____。

4、比较大小:7___65、如图:以直角三角形斜边为边的正方形面积是 .6________.(误差小于1) 7、如右图,数轴上点....A .表示的数是 . 8、写一个无理数,使它与2的积是有理数 9、当_______x 时,3x -有意义;10、已知0)3(22=++-b a ,则b a -= . 二、选择题(12%)11、下列说法中,正确的是( )A .数轴上的点表示的都是有理数 B.无理数不能比较大小 C .无理数没有倒数及相反数 D.实数与数轴上的点是一一对应的 12、下列各式中,正确的是( )A. 2)2(2-=- B. 9)3(2=- C. 39±=± D. 393-=-13、满足53<<-x的整数x 是( )A 、3,2,1,0,1,2--B 、2,1,0,1-C 、3,2,1,0,1,2--D 、3,2,1,0,1- 14 )。

A.7.0~7.5之间 B.6.5~7.0之间 C.7.5~8.0之间 D.8.0~8.5之间 15、下列各组数中互为相反数的是( )A、 -2与2)2(- B、-2与38- C、-2与21-D、2-与2 16、圆的面积增加为原来的4倍,则它的半径是原来的( ) A. 1倍; B. 倍2 C. 2倍 D. 4倍。

三、解答题17、把下列各数分别填在相应的集合内:.39014.325741413,,,,,,,,,----∏-2.0 , 51525354.0无理数集合: { …}; 正数集合: { …}; 负数集合: { …}. 18、快速口答题(本题18分) ①649= ② =-2)2( ③=-33)3( ④=728 ⑤=27⑥=+2243 ⑦32∙= ⑧=2)23( ⑨=3119、计算(每题3分,共30分) (1) 3833+ (2)9114- (3) 32764232)(--(4)5123-∙ (5))32)(32(-+(6) 2)25(- (7)0313348)(---(8))81()64(-⨯- (9)2863+ (10)24632-20.请在同一个数轴上用尺规作出 2- 的对应的点并估算2-的值(误差小于0.1)。

北师大版八年级数学上册第二章《实数》测试题及答案

北师大版八年级数学上册第二章《实数》测试题及答案

八年级上学期第二章《实数》单元测试及答案一、选择(每小题3分,共30分.在每题所给出的四个选项中,只有一项是符合题意的.把所选项前的字母代号填在题后的括号内. 相信你一定会选对!)1.下列说法中正确的是().(A)4是8的算术平方根(B)16的平方根是4(C)是6的平方根(D)没有平方根2.下列各式中错误的是().(A)(B)(C)(D)3.若,则().(A)-0。

7 (B)±0.7 (C)0.7 (D)0。

494.的立方根是().(A)-4 (B)±4 (C)±2 (D)-25.,则的值是().(A)(B)(C)(D)6.下列四种说法中:(1)负数没有立方根;(2)1的立方根与平方根都是1;(3)的平方根是;(4).共有()个是错误的.(A)1 (B)2 (C)3 (D)4+的值为()7.x是9的平方根,y是64的立方根,则x yA.3 B.7 C.3,7 D.1,7-=+-)82x1x1x1A. x ≥1B. x ≥—1C.—1≤x ≤1 D 。

x ≥1或x ≤—19. 计算515202145+-所得的和结果是( ) A .0 B .5- C .5 D .5310. x --23 (x ≤2)的最大值是( )A .6B .5C .4D .3二、填空(每小题3分,共30分.请把结果直接填在题中的横线上.只要你理解概念,仔细运算,积极思考,相信你一定会填对的) 1.若,则是的__________,是的___________.2.9的算术平方根是__________,的平方根是___________. 3.下列各数:①3。

141、②0.33333……、③75-、④π、⑤252.±、⑥32-、⑦0。

3030003000003……(相邻两个3之间0的个数逐次增加2)、⑧))((2727+-中.其中是有理数的有_______;是无理数的有_______.(填序号)4.的立方根是__________,125的立方根是___________.5.若某数的立方等于-0。

八年级数学上册《第二章实数》单元测试卷及答案-北师大版

八年级数学上册《第二章实数》单元测试卷及答案-北师大版

八年级数学上册《第二章实数》单元测试卷及答案-北师大版一、选择题1.下列各数中,为无理数的是( )A .327-B .0C 3D .3.524= ( )A .2B .±2C .-2D .43. -8的立方根是( )A .2-B .2C .2±D .不存在4.12 )A .点PB .点QC .点MD .点N5.2x -x 的值可以是( )A .0B .-1C .-2D .26.下列运算正确的是( )A 255=±B .0.40.2=C .()311--=-D .()22236m m n -=-7.7的值大概在( )A .-1到0之间B .0到1之间C .1到2之间D .2到3之间8.用我们数学课本上采用的科学计算器进行计算,其按键顺序如下,则计算结果为( )A .-5B .-1C .0D .59.如图,数轴上点A 表示的实数是( )A 51B 51C 31D 3110.已知12p <<()2212p p--=( )A .1B .3C .32p -D .12p -二、填空题11.25,-0.17与611和π4-中,无理数有 个. 1249的算术平方根为 ;比较大小:342 (用“>”,“<”或“=”连接)13.计算:()2021322-⎛⎫-÷-= ⎪⎝⎭.14.8x x 的最小正整数值为 .三、计算题15.计算:0|2|20234-+-四、解答题16.把下列各数的序号填在相应的大括号里:①12π,②16-,③0,9⑤5+,⑥227,8⑧ 3.24-,⑨3.1415926 整数:{ } 负分数:{ } 正有理数:{ } 无理数:{ }17.已知一个正数m 的两个平方根为37a -和3a +,求a 和m 的值.18.已知1a -的算术平方根是2,43a b +-的立方根是3,c 15ac b +的平方根.19.有一道练习题:对于式子2244a a a -+a 2.小明的解法如下:222442(2)2(2)222a a a a a a a a -+=-=--=+=.小明的解法对吗?如果不对,请改正.五、综合题20.已知m 是144的平方根,n 是125的立方根.(1)求m 、n 的值; (2)求()2m n +的平方根.21.阅读下面材料:.4692< 6<36的整数部分为26-2. 请解答下列问题;(122的整数部分是 ,小数部分是 ;(2)已知22的小数部分是m ,22的小数部分是n ,求m+n 的值.22.22的小数部分我们不可能全部写出来,但是由于12<<22的整数部分为12减去其整数部分1,差就是小数部分为21). 解答下列问题:(110的整数部分是 ,小数部分是 ;(26的小数部分为a 13b ,求a+b 6的值; (3)已知153+=x+y ,出其中x 是整数,且0<y <1,求x ﹣y 的相反数.23.定义:若两个二次根式a ,b 满足a b c ⋅=,且c 是有理数,则称a 与b 是关于c 的共轭二次根式.(1)若a 2是关于4的共轭二次根式,则a= (2)若33与63m +是关于12的共轭二次根式,求m 的值.参考答案与解析1.【答案】C【解析】【解答】解327-、0、3.53属于无理数.故答案为:C.【分析】无限不循环小数叫做无理数,对于开方开不尽的数,圆周率π都是无理数,据此判断. 2.【答案】A【解析】【解答】解:∵22=4∴4的算术平方根是242=.故答案为:A.【分析】一个正数x2等于a,则这个正数x就是a a x=(a、x都是正数).3.【答案】A【解析】【解答】解:∵(-2)3=-8∴-8的立方根为-2.故答案为:A.【分析】若a3=b,则a为b的立方根,据此解答.4.【答案】C【解析】【解答】解:91216<<91216<3124<<故答案为:C.【分析】被开方数的值越大,对应的算术平方根的值也越大,找到与被开方数相邻近的平方数是解题关键.5.【答案】D【解析】【解答】解:由题意得x-2≥0解得x≥2所以A、B、C三个选项都不符合题意,只有选项D符合题意.故答案为:D.【分析】根据二次根式的被开方数不能为负数列出不等式,求解得出x 的取值范围,从而即可一一判断得出答案.6.【答案】C【解析】【解答】A 255=,∴A 不符合题意;B 0.040.2=,∴B 不符合题意;C 、∵()311--=-,∴C 符合题意;D 、∵()2239m m -=,∴D 不符合题意; 故答案为: C.【分析】利用算术平方根、有理数的乘方和积的乘方的计算方法逐项判断即可。

北师大版八年级上册数学第二章实数检测试卷

北师大版八年级上册数学第二章实数检测试卷

检测内容:第二章 实数得分________ 卷后分________ 评价________一、选择题(每小题3分,共30分)1.在实数:3-27,3.141 592 6,0.1·2·3·,π2,34,103,25,22,0.101 001 000 1…(相邻两个1之间0的个数逐次加1)中,无理数有( )A .2个B .3个C .4个D .5个2.下列说法正确的是( )A .1的平方根是1B .-25的平方根是±5C .16的算术平方根是4D .3是(-3)2的算术平方根 3.求0.052 9的正确按键顺序为( ) A .0·0529 B .0·0529 C .0·0529=D .0·0529=4.已知二次根式23-a 与8化成最简二次根式后被开方数相同,则正整数a 的最小值为( )A .23B .21C .15D .55.(北京)实数a ,b ,c 在数轴上的对应点的位置如图所示,则正确的结论是( )A .|a|>4B .c -b >0C .ac >0D .a +c >0 6.下列计算错误的是( ) A .43÷121=27B .(8+3)×3=26+3 C .(42-36)÷22=2-323D .(5+7)(5-7)=-27.现规定一种运算:a ※b =ab +a -b ,其中a ,b 为实数,则16※3-8等于( ) A .-6 B .-2 C .2 D .68.在化简m -nm +n 时,甲、乙两位同学的解答如下,那么两人的解法( )甲:m -n m +n =(m -n )(m -n )(m +n )(m -n )=(m -n )(m -n )(m )2-(n )2=m -n ; 乙:m -nm +n =(m )2-(n )2m +n =(m +n )(m -n )m +n=m -n.A.都对B.甲错乙对C.甲对乙错D.都错9.如图,在长方形ABCD中无重叠放入面积分别为8 cm2和12 cm2的两张正方形纸片,则图中空白部分的面积为()A.43cm2B.(83-12)cm2C.(46-8)cm2D.(46+12)cm210.已知x=2-3,则代数式(7+43)x2+(2+3)x+3的值是()A.0 B.3C.2+3D.2- 3二、填空题(每小题3分,共24分)11.(-9)2的平方根是__________,若a的平方根等于±4,则a的值是__________.12.若a,b都是实数,且b=1-2a+2a-1-2,则a b的值为.13.若x<6-1<y,且x,y是两个连续的整数,则x+y的值是.14.(广州)如图,数轴上点A表示的数为a,化简:a+a2-4a+4=.,第14题图),第15题图),第17题图)15.如图所示,已知四边形ABCD是边长为2的正方形,AP=AC,则数轴上点P所表示的数是.16.将式子-(m-n)-1m-n化为最简二次根式为.17.如图,等边三角形和长方形具有一条公共边,长方形内有一个正方形,其四个顶点都在长方形的边上,等边三角形的周长和正方形的面积分别是62和2,则图中阴影部分的面积是.18.观察下列二次根式的化简:S1=1+112+122=1+11-12;S2=1+112+122+1+122+132=(1+11-12)+(1+12-13);S3=1+112+122+1+122+132+1+132+142=(1+11-12)+(1+12-13)+(1+13-14);则S2 0192 019=__________.三、解答题(共66分)19.(8分)计算:(1)(12+20)+(3-5); (2)(62-24)÷8;(3)(5+3)2-(5+3)(5-3); (4)(523-54)÷3+12× 6.20.(6分)已知5a+2的立方根是3,4a+2b+1的平方根是±5,求a-2b的算术平方根.21.(9分)如图,用两个边长为152cm的小正方形拼成一个大的正方形.(1)求大正方形的边长;(2)沿此大正方形边的方向能否剪出一张长、宽之比为4∶3且面积为720 cm2的长方形纸片?若能,试求出剪出的长方形纸片的长与宽;若不能,试说明理由.22.(9分)如图,在等腰梯形ABCD中,上底AD=32cm,下底BC=318cm,高AE =32cm.(1)求梯形ABCD的周长l;(2)求梯形ABCD的面积S.23.(10分)解答下列各题:(1)已知x=3+1,y=3-1,求式子x2+y2-xy的值;(2)a,b分别是4-5的整数部分和小数部分,求式子3b+5ab的值.24.(11分)阅读材料:在二次根式中有一种相辅相成的“对子”,如:(2+3)(2-3)=1,(5+2)(5-2)=3,它们的积不含根号,我们说这两个二次根式互为有理化因式,其中一个是另一个的有理化因式,于是,二次根式除法可以这样理解:如:13=1×33×3=33,2+32-3=(2+3)(2+3)(2-3)(2+3)=7+4 3.像这样,通过分子、分母同乘以一个式子把分母中的根号化去或把根号中的分母化去,叫做分母有理化.解决问题:(1)4-7的有理化因式可以是 ,323分母有理化得 ;(2)①已知x =3+13-1,y =3-13+1,求x 2+y 2的值; ②计算:11+2+12+3+13+4+…+11 999+2 000.25.(13分)小明在解方程24-x -8-x =2时采用了下面的方法: 解:由(24-x -8-x)(24-x +8-x)=(24-x)2-(8-x)2=(24-x)-(8-x)=16,又有24-x -8-x =2,可得24-x +8-x =8,将这两式相加可得⎩⎪⎨⎪⎧24-x =5,8-x =3,将24-x =5两边平方可解得x =-1,经检验x =-1是原方程的解. 请你学习小明的方法后完成下列各题:(1)方程x 2+42+x 2+10=16的解是__________;(2)解方程:4x 2+6x -5+4x 2-2x -5=4x.1.C 2.D 3.D 4.D 5.B 6.D 7.B 8.B 9.C 10.C 11.±3 256 12.4 13.3 14.2 15.-2216.n -m 17.2 18.2 0212 02019.解:(1)原式=33+5 (2)原式=3- 3(3)原式=6+215 (4)原式=143220.解:因为5a +2的立方根是3,4a +2b +1的平方根是±5,所以5a +2=27,4a +2b +1=25,解得a =5,b =2,所以a -2b =5-4=1,所以a -2b 的算术平方根为121.解:(1)大正方形的边长为(152)2×2=30(cm )(2)不能,理由如下:设长方形纸片的长为4x cm ,宽为3x cm ,则4x·3x =720,解得x =215,所以4x =815>30,所以沿此大正方形边的方向不能剪出一张长、宽之比为4∶3且面积为720 cm 2的长方形纸片22.解:(1)过点D 作DH ⊥BC ,垂足为H ,则BE =CH =12(BC -AD)=12×(318-32)=32(cm ),所以CD =AB =BE 2+AE 2=(32)2+(32)2=52(cm ),所以l =2×52+32+318=222(cm )(2)S =12×(32+318)×32=48(cm 2)23.解:(1)x 2+y 2-xy =(x +y)2-3xy=(3+1+3-1)2-3×(3+1)×(3-1) =(23)2-3×(3-1)=6(2)因为4<5<9,所以2<5<3,所以-3<-5<-2,所以1<4-5<2,所以a =1,b =4-5-1=3-5,所以3b +5ab =3×(3-5)-5×1×(3-5)=14-6 524.解:(1)4+732(2)①当x =3+13-1=(3+1)(3+1)(3-1)(3+1)=4+232=2+3,y =3-13+1=(3-1)(3-1)(3+1)(3-1)=4-232=2-3时,x 2+y 2=(x +y)2-2xy =(2+3+2-3)2-2×(2+3)×(2-3)=16-2×1=14②原式=2-1+3-2+4-3+…+ 2 000- 1 999= 2 000-1=2505-1 25.解:(1)x =±39(2)因为(4x 2+6x -5+4x 2-2x -5)(4x 2+6x -5-4x 2-2x -5)=(4x 2+6x -5)2-(4x 2-2x -5)2=(4x 2+6x -5)-(4x 2-2x -5)=8x ,所以4x 2+6x -5-4x 2-2x -5=2,所以⎩⎨⎧4x 2+6x -5=2x +1,4x 2-2x -5=2x -1,所以(4x 2+6x -5)2=(2x +1)2,所以4x 2+6x -5=4x 2+4x +1,所以2x =6,解得x =3,经检验x =3是原方程的解,所以方程4x 2+6x -5+4x 2-2x -5=4x 的解是x =3。

北师大版八年级上册数学 第二单元实数 单元清

北师大版八年级上册数学  第二单元实数  单元清

24.(10 分)观察图形,每个小正方形的边长均为 1. (1)图中阴影部分的面积是多少?边长是多少? (2)估计边长的值在哪两个整数之间; (3)把边长在数轴上表示出来.
(1)图中阴影部分的面积是17,边长是 (2)边 长的值在4与5之间 (3)图略
25.(12 分)大家知道,因式分解是代数中一种重要的恒等变形,
7 9 11
15-2
A.2 B.2 C. 2 D. 2
8.下列式子成立的是( D )
A. 314=2 13 B. mn =n mn
C. ab2+ba2=(1a+1b)(a>0,b>0) D. 8- 2= 2
9.已知△ABC 的三边长分别为 a=3 2,b= 6,c=2 6,则△ABC 为( B )
应用因式分解的思维方式解题有时能取得意想不到的效果,如化简:
21+1= 22-+11=(
22)+21-1=(
2+1)( 2+1
2-1)=
2-1;
1 3+
= 2
3-2 3+
( = 2
3+
2)( 3- 3+ 2
2)=
3-
2.
(1)化简:
1 4+
; 3
(2)从以上化简的结果中找出规律,写出用 n(n≥1 且 n 为正整数)
A.等腰三角形 B.直角三角形 C.等腰直角三角形 D.不确定 10.设实数 a,b 在数轴上对应的位置如图所示,化简“ a2+|a+ b|的结果是( D )
A.-2a+b B.2a+b C.-b D.b
二、填空题(每小题 3 分,共 24 分)
11.要使 |xx|-+32有意义,则 x 应满足的条件是_x_≥_0_且__x_≠_3. 12. (-9)2的平方根是___±__3___,若 a的平方根等于±4,则 a 的值是___2_5_6___. 13.用计算器比较大小:3 17- 6____>____0.(填“>”“=”或“<”)

2024-2025学年北师大版数学八年级上册《第2章 实数》单元测试试卷附答案解析

2024-2025学年北师大版数学八年级上册《第2章 实数》单元测试试卷附答案解析

第1页(共11页)2024-2025学年北师大版数学八年级上册《第2章实数》单元试卷一、选择题(本大题10小题,每小题3分,共30分)1.(3分)在下列实数中:0,2.5,﹣3.1415,4,227,0.343343334…无理数有()A .1个B .2个C .3个D .4个2.(3分)下列x 的值能使−6有意义的是()A .x =1B .x =3C .x =5D .x =73.(3分)将33×2化简,正确的结果是()A .32B .±32C .36D .±364.(3分)下列判断中,你认为正确的是()A .0的倒数是0B .5大于2C .π是有理数D .9的值是±35.(3分)下列计算正确的是()A .310−25=5B11=11C .(75−15)÷3=25D −=26.(3分)若a <5<b ,且a 、b 是两个连续整数,则a +b 的值是()A .2B .3C .4D .57.(3分)点A 在数轴上,点A 所对应的数用2a +1表示,且点A 到原点的距离等于3,则a 的值为()A .﹣2或1B .﹣2或2C .﹣2D .18.(3分)下列说法:①﹣7是49的平方根;②49的平方根是﹣7;③16的算术平方根是4;④(−4)2=(−4)2;⑤(3−8)3=3(−8)3.其中错误的有()A .1个B .2个C .3个D .4个9.(3)A .26B .62C .66D .1210.(3分)实数a ,b 在数轴上对应点的位置如图所示,下列判断正确的是()A .|a |<1B .ab >0C .a +b >0D .1﹣a >1二、填空题(本大题7小题,每小题4分,共28分)。

最新北师版八年级初二上册数学第2章《实数》单元测试试卷及答案

最新北师版八年级初二上册数学第2章《实数》单元测试试卷及答案

新版北师大版八年级数学上册第2章《实数》单元测试试卷及答案(2)本检测题满分:100分,时间:90分钟一、选择题(每小题3分,共30分)1. 有下列说法:(1)开方开不尽的数的方根是无理数; (2)无理数是无限不循环小数;(3)无理数包括正无理数、零、负无理数; (4)无理数都可以用数轴上的点来表示. 其中正确的说法的个数是( ) A .1 B .2 C .3 D .4 2. ()20.9-的平方根是( )A .0.9-B .0.9±C .0.9D .0.81 3. 若、b 为实数,且满足|-2|+=0,则b -的值为( )A .2B .0C .-2D .以上都不对 4. 下列说法错误的是( )A .5是25的算术平方根B .1是1的一个平方根C .的平方根是-4D .0的平方根与算术平方根都是05. 要使式子有意义,则x 的取值范围是( )A .x >0B .x ≥-2C .x ≥2D .x ≤2 6. 若均为正整数,且,,则的最小值是( )A.3B.4C.5D.6 7. 在实数,,,,中,无理数有( )A.1个B.2个C.3个D.4个 8. 已知=-1,=1,=0,则的值为( )A.0 B .-1 C. D.9. 有一个数值转换器,原理如图所示:当输入的=64时,输出的y 等于( )第9题图A .2B .8C .3D .210. 若是169的算术平方根,是121的负的平方根,则(+)2的平方根为( )A. 2B. 4C.±2D. ±4二、填空题(每小题3分,共24分)11. 已知:若≈1.910,≈6.042,则≈ ,±≈ .12. 绝对值小于的整数有_______. 13.的平方根是 ,的算术平方根是 .14. 已知5-a +3+b ,那么.15. 已知、b 为两个连续的整数,且,则= . 16. 若5+的小数部分是,5-的小数部分是b ,则+5b = .17. 在实数范围内,等式+-+3=0成立,则= . 18. 对实数、b ,定义运算☆如下:☆b =例如2☆3=.计算[2☆(-4)]×[(-4)☆(-2)]= 三、解答题(共46分)19.(6分)已知,求的值.20.(6分)先阅读下面的解题过程,然后再解答:形如n m 2±的化简,只要我们找到两个数,使m b a =+,n ab =,即m b a =+22)()(,n b a =⋅,那么便有:b a b a n m ±=±=±2)(2)(b a >.例如:化简:347+.解:首先把347+化为1227+,这里7=m ,12=n , 由于,,即7)3()4(22=+,1234=⨯,所以347+1227+32)34(2+=+.根据上述方法化简:42213-.21.(6分)已知28-++=b a a M 是()8+a 的算术平方根,423+--=b a b N 是()3-b 的立方根,求N M +的平方根. 22. (6分)比较大小,并说理:(1)与6;(2)与.23.(6分)大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不能全部地写出来,于是小平用-1来表示的小数部分,你同意小平的表示方法吗?事实上小平的表示方法是有道理的,因为的整数部分是1,用这个数减去其整数部分,差就是小数部分. 请解答:已知:5+的小数部分是, 5-的整数部分是b ,求+b 的值.24.(8分) 若实数满足条件,求的值.25.(8分)阅读下面问题:12)12)(12()12(1121-=-+-⨯=+;();23)23)(23(231231-=-+-⨯=+()25)25)(25(251251-=-+-⨯=+.试求:(1)671+的值;(2)nn ++11(n 为正整数)的值.(3122334989999100+⋅⋅⋅+++++++.参考答案一、选择题1.C 解析:本题考查对无理数的概念的理解.由于0是有理数,所以(3)应为无理数包括正无理数和负无理数.2.B 解析:=0.81,0.81的平方根为3.C 解析:∵ |-2|+=0,∴=2,b=0,∴b-=0-2=-2.故选C.4.C 解析:A.因为=5,所以A正确;B.因为±=±1,所以1是1的一个平方根说法正确;C.因为±=±=±4,所以C错误;D.因为=0,=0,所以D正确.故选C.5. D 解析:∵二次根式的被开方数为非负数,∴ 2-x≥,解得x≤2.6.C 解析:∵均为正整数,且,,∴的最小值是3,的最小值是2,则的最小值是5.故选C.7. A 解析:因为所以在实数,0,,,中,有理数有,0,,,只有是无理数.8.C 解析:∵∴,∴.故选C.9.D 解析:由图表得,64的算术平方根是8,8的算术平方根是2.故选D.10.C 解析:因为169的算术平方根为13,所以 =13.又121的平方根为,所以 =-11,所以4的平方根为,所以选C.二、填空题11.604.2 0.019 1 解析:;±0.019 1.12.±3,±2,±1,0 解析:,大于-的负整数有:-3、-2、-1,小于的正整数有:3、2、1,0的绝对值也小于. 13.3 解析:;,所以的算术平方根是3.14. 8 解析:由5-a +3+b ,得,所以.15.11 解析:∵,、b 为两个连续的整数,又<<,∴ =6,b =5,∴ .16.2 解析:∵ 2<<3,∴ 7<5+<8,∴ =-2.又可得2<5-<3,∴ b =3-.将、b 的值代入+5b 可得+5b =2.故答案为2.17.8 解析:由算术平方根的性质知,又+-y +3=0,所以2- =0,-2=0,-y +3=0,所以=2,y =3,所以==8.18.1 解析:[2☆(-4)]×[(-4)☆(-2)]=2-4×(-4)2=×16=1.三、解答题 19.解:因为,所以,即,所以.故,从而,所以,所以.20. 解:根据题意,可知,由于,所以.21. 解:因为是的算术平方根,所以又是的立方根,所以解得所以M=3,N=0,所以M + N=3.所以M + N的平方根为22.分析:(1)可把6转化成带根号的形式再比较被开方数即可比较大小;(2)可采用近似求值的方法来比较大小.解:(1)∵ 6=,35<36,∴<6;(2)∵ -+1≈-2.236+1=-1.236,- ≈-0.707,1.236>0.707,∴<.23. 解:∵ 4<5<9,∴ 2<<3,∴ 7<5+<8,∴=-2.又∵-2>->-3,∴ 5-2>5->5-3,∴ 2<5-<3,∴b=2,∴+b=-2+2=.24. 分析:分析题中条件不难发现等号左边含有未知数的项都有根号,而等号右边的则都没有.由此可以想到将等式移项,并配方成三个完全平方数之和等于0的形式,从而可以分别求出的值.解:将题中等式移项并将等号两边同乘4得,∴,∴,∴,,,∴,,,∴∴.∴ =120.25. 解:(1)671+1(76)(76)(76)⨯-=+-=76-.(2)11(1)11(1)(1)n n n n n n n n n n ⨯+-==+-+++++-.(3)11111122334989999100+++⋅⋅⋅+++++++。

北师大新版八年级数学上学期《第2章 实数》单元测试卷

北师大新版八年级数学上学期《第2章 实数》单元测试卷

6.(3 分)若 a、b 为实数,且满足|a﹣2|+
=0,则 b﹣a 的值为( )
A.2 7.(3 分)若
B.0
C.﹣2
,则 a 的取值范围是( )
D.以上都不对
A.a>3 8.(3 分)若代数式
B.a≥3
C.a<3
有意义,则 x 的取值范围是( )
D.a≤3
A.x页(共4页)
24.(12 分)细心观察图形,认真分析各式,然后解答问题.
( )2+1=2
S1=
( )2+1=3
S2=
( )2+1=4
S3=
… (1)推算出 S10 的值; (2)请用含有 n(n 是正整数)的等式表示上述变化规律; (3)求出 S12+S22+S32+…+S102 的值.
25.(12 分)阅读材料: 小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如 3+ =(1+ )2.善于思考的小明进行了以下探索: 设 a+b =(m+n )2(其中 a、b、m、n 均为整数),则有 a+b =m2+2n2+2mn . ∴a=m2+2n2,b=2mn.这样小明就找到了一种把类似 a+b 的式子化为平方式的方法. 请你仿照小明的方法探索并解决下列问题:
北师大新版八年级数学上册《第 2 章 实数》单元测试卷
一、选择题(每小题 3 分,共 30 分)
1.(3 分) 的值等于( )
A.3
B.﹣3
C.±3
D.
2.(3 分)在﹣1.414, ,π,3. ,2+ ,3.212212221…,3.14 这些数中,无理数的
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档