国内外过热器再热器的布置及调温方式

合集下载

第八章过热器和再热器

第八章过热器和再热器

ϕ=
∆p h ∆o h
∆p= h
qp Ap Gp
qo A o ∆o= h G o
29
允许热偏差:管壁金属温度达到该金属材料的最 高许用值时的热偏差。
∆r h ϕr = ∆o h
ϕ p &数、流量不均、结构不均。
30
四、减少热偏差的措施 Measurements for reducing the heat deviation 1.受热面分段串联 2.段间连接采取措施 多管连接 3.在受热面具体结构上采取措施 均匀管束结构尺寸;减小管束前烟气 空间的深 度;增大联箱直径;短接、交叉连接屏式过热 器管子 如下图所示
31
32
第四节 汽温调节
Adjustment for temperature
●本节要求掌握不同受热面的汽温特性,调节汽温 常用的方法。 一、汽温要求Requirement for temperature ※维持稳定的过热蒸汽与再热蒸汽的温度。 ※汽温允许波动范围+5~-10℃。 二、汽温特性 Characteristics of temperature 1.对流过热器(再热器)的汽温特性:随着负荷 的增加,汽温增加。 2.辐射过热器(再热器)的汽温特性:随着负荷 的增加,汽温降低。 如下图所示。
50
51
52
※积灰的危害:经济性、安全性 ※对于容易积粘结灰的燃料,必须采取相应措施: (1)选取有效的吹灰装置。 (2)正确设计和布置对流面。 顺列布置、大横向节距。 (3)在锅炉运行初期,及时投入吹灰装置,否则,如 果受热面已粘结了灰就不易清除。 (4)采用低温燃烧(炉膛燃烧热强度不过高) 。 (5)喷射添加剂。 (6)飞灰再循环等方法。
33
34
35

锅炉原理-过热器与再热器

锅炉原理-过热器与再热器

1-过热器汽温特性;2-再热器汽温特性
Page 25
Principles of Boiler
2023/10/11
六、典型的过热器与再热汽系统
1、系统布置要求: 过热器的系统布置,应能满足蒸汽参数的要求,并具
有灵活的调温手段,还应保证运行中管壁不超温和具有较 高的经济性等。 2、过热器布置原则 (1)中压锅炉:一般仅采用对流过热器。 (2)大型锅炉:采用辐射—对流组合式过热器系统。
某超临界1900t/h锅炉高温过热器 ➢布置位置:水平烟道后部; ➢管径:38mm; ➢管道排列:
82排×12管/排=984根
Page 12
Principles of Boiler
2023/10/11
蒸汽与烟气流速的选择:
➢ 蒸汽流速:保持一定质量流速,使过热器和再热器得 到可靠冷却,同时要控制过热器或再热器压降,一般 过热器质量流速800-1100kg/(m2·s),再热器内蒸汽质量 流量250-400kg/(m2·s) 。
➢ 烟气流速:应综合考虑传热效果、管子的磨损和积灰 情况。烟气流速过高,传热效果较好,所需换热面积 少,积灰少,但管子的磨损严重。水平烟道内,烟温 高,灰粒较软,烟气流速10-15m/s;烟气低温区,飞灰 磨损能力加剧,控制流速在6-9m/s。
Page 13
Principles of Boiler
2023/10/11
2023/10/11
3、按管子的布置方式分类 立式(垂直式):布置在水平烟道
内,支吊简单,易积灰,不利疏水。 卧式(水平式):布置在尾部竖井
中,支吊复杂,多采用有工质冷却的 受热面管子作为悬吊管,便于疏水。
Page 11
2-悬吊管;3-联箱

超临界锅炉过热器-再热器的汽温特性及调节分析

超临界锅炉过热器-再热器的汽温特性及调节分析

超临界锅炉过热器\再热器的汽温特性及调节分析摘要:本文对直流锅炉的过热器、再热器汽温特性、变化特点、汽温调节进行了简要分析,并结合我厂实际情况阐述锅炉汽温偏差产生的原因,提出超临界压力锅炉运行中应关注的问题,与电力同仁共勉。

关键词:直流锅炉超临界过热器再热器汽温21世纪以来,为了提高锅炉效率,最大限度的降低能源消耗,电站锅炉逐步向超临界锅炉方向发展。

超临界锅炉的汽温特性与传统的汽包炉汽温特性有明显的不同,汽温过高将引起管壁超温、金属蠕变寿命降低,会影响机组的安全性;汽温过低将引起循环热效率的降低。

根据计算,过热器在超温10~20℃下长期工作,其寿命将缩短一半以上;汽温每降低10℃,循环热效率降低0.5%,而且汽温过低,会使汽轮机排汽湿度增加,从而影响汽轮机未级叶片的安全工作。

通常规定蒸汽温度与额定温度的偏差值在-10~+5℃范围内。

下面对直流锅炉的汽温特性进行分析,不断摸索调整汽温的最佳手段,控制汽温在允许范围内,保证锅炉安全运行。

一、过热器或再热器汽温特性1、过热器或再热器出口汽温随锅炉负荷的变化规律称为过热器或再热器的汽温特性。

过热器的汽温特性如图1-1所示。

图1-1 过热器的汽温特性l―辐射式过热器;2、3―对流式过热器23随着锅炉负荷的变化,辐射式过热器的汽温特性与对流式过热器相反。

当锅炉负荷增加时,燃料消耗量和过热器中蒸汽的流量都相应增大,由于炉内火焰温度变化不大,辐射式过热器吸收的炉膛辐射热增大不多,相对于每干克蒸汽的辐射吸热量反而减小,因此辐射式过热器的出口汽温随锅炉负荷的增大而降低。

辐射式过热器的汽温特性见图1-1中的曲线1。

当锅炉负荷增大时,燃料消耗量增大,烟气流速增大,烟温升高、对流传热量增加,相对于每千克蒸汽的对流吸热量增加,因此对流式过热器的出门汽温随锅炉负荷的增大而增大。

对流式过热器的汽温特性见图1-1中曲线2、3,过热器离炉膛越远,过热器进口烟温越低,烟气对过热器的辐射换热份额越少,汽温随负荷增加而上升的趋势更加明显。

过热器与再热器

过热器与再热器
❖ 给水温度的变化对辐射式过热器的出口汽温影响很小,基 本保持不变。
❖ 一般锅炉过热器总体呈对流汽温特性,若给水温度降低过 多,有可能引起过热蒸汽超温。运行经验标明,给水温度 降低10℃ ,过热 蒸汽温度增加4~5℃ ,燃煤耗量增加 0.65%。通常采用降低负荷运行方法保证过热器的安全。
❖ 大容量锅炉的烟道宽度相对较小,满足烟气流速度 的管排数后,就不能满足蒸汽流速的要求。因其管 内流通截面太小,蒸汽质量流速太大,超过工质压 降限制,所以通常以多管并联套弯的型式来满足蒸 汽流速的要求。通常,蛇形管有如图所示的单管圈 和多管圈结构。
蛇形管结构 (a)单管圈;(b)双管圈;(c)三管圈
❖ 过热器的作用是将饱和蒸汽加热成具有一定温度的过热蒸汽。 在锅炉负荷或其他工况变动时应保证过热蒸汽温度正常,并 处在允许的波动范围之内。
❖ 随着蒸汽压力的提高,要求相应提高蒸汽温度,否则在汽轮 机尾部的蒸汽湿度会过高,影响汽轮机的安全。但过热汽温 又受金属材料的限制,日前,受金属材料的限制,绝大部分 锅炉的过热汽温仍保持在540~555℃的范围内,为避免汽轮 机尾部叶片蒸汽湿度太大,采用中间再热系统。
❖ 尾部烟井中低温过热器和低温 再热器一般采用错列布置,以 增强传热,但有的大型电站锅 炉将它们以顺列方式布置,以 便于吹灰和支吊。
s1/d=2.0~3.5
s1/d=3.0~3.5
管子的顺列和错列布置方式 (a)顺列 (b)错列
❖ 过热器和再热器并联蛇形管的排数主要由烟气速度 决定。其横向管间相对节距s1/d,顺列布置时选取 s1/d=2.0~3.5,错列布置时取s1/d=3.0~3.5。
4.包覆壁过热器
❖ 大型锅炉为了简化炉墙结构采用悬吊结构的敷管炉墙,在水 平烟道和尾部竖井烟道内壁象布置水冷壁那样布置过热器, 称为包覆壁过热器。

过热蒸汽和再热蒸汽和减温水系统

过热蒸汽和再热蒸汽和减温水系统

过热蒸汽和再热蒸汽及减温水系统一、设备资料1.我厂炉膛内前墙布置有六片中温过热器管屏、六片高温过热器管屏,六片高温再热器管屏及一片水冷隔墙,后墙布置两片水冷蒸发屏。

尾部采纳双烟道结构,前烟道布置了三组低温再热器,后烟道布置四组低温过热器。

2.过热器系统中设有两级喷水减温器,别离布置与屏过前后。

再热器系统中布置有事故喷水减温器和微喷水减温器,别离布置于低再前后。

过热器减温水来自给水母管,再热器减温水来自给水泵中间抽头。

3.低温过热器、低温再热器管组采纳长伸缩式吹灰器吹灰,低温过热器管组间8只,低温再热器管组间6只。

4.要紧设计参数5.锅炉热力性能计算数据6.平安阀整定参数过热器平安阀再热器入口平安阀再热器出口平安阀过热器出口电磁泄放阀7.蒸汽品质二、过热蒸汽及其减温水系统1.过热蒸汽流程从汽包分离出来的饱和蒸汽从汽包顶部的蒸汽连接管引出。

饱和蒸汽从汽包引出后,由饱和蒸汽连接管引入冷却式旋风分离器入口烟道的上集箱,下行冷却烟道后由连接管引入冷却式旋风分离器下集箱,上行冷却分离器筒体以后,由连接管从分离器上集箱引至尾部竖井侧包墙上集箱,下行冷却侧包墙后进入侧包墙下集箱,由包墙连接管引入前、后包墙下集箱,向上行进入中间包墙上集箱汇合,向下进入中间包墙下集箱,即低温过热器入口集箱,逆流向上对后烟道低温过热器管组进行冷却后,从锅炉双侧连接管引至炉膛顶部中温过热器入口集箱,流经中温过热器受热面后,在炉前从锅炉双侧连接管引至炉前高温过热器入口集箱,最后合格的过热蒸汽由位于炉膛顶部的高过出口集箱双侧引出。

2.过热蒸汽温度调剂方式过热器系统采取调剂灵活的喷水减温作为汽温调剂和爱惜各级受热面管子的手腕,整个过热器系总共布置有两级喷水。

一级减温器(左右各一台)布置在低过出口至屏过入口管道上,作为粗调操纵屏式过热器出口温度,爱惜屏式过热器;二级减温器(左右各一台)位于屏过与高过之间的连接管道上,作为细调操纵高过出口温度,保证蒸汽参数合格,其主环和付环均为比例积分调剂。

电站锅炉过热器和再热器的布置和特点

电站锅炉过热器和再热器的布置和特点

电站锅炉过热器和再热器的布置和特点一. 过热器与再热器结构型式1.对流过热器对流过热器布置在锅炉的对流烟道中,主要依靠对流传热从烟气中吸收热量。

在中小型锅炉中,一般采用纯对流式过热器,在大型锅炉中,采用复杂的过热器系统,然而对流过热器仍是其中主要的部分。

对流过热器有垂直布置和水平布置的两种型式。

垂直式过热器通常布置在炉膛出口的水平烟道中,其优点是结构简单,吊挂方便,结灰渣较少,得到了广泛的应用。

其主要缺点是停炉后管内积水难以排除,长期停炉将引起管子腐蚀。

在升炉时,由于内积存部分水,在工质流量不大时,可能形成气塞而将管子烧坏,因此在升炉时应控制过热器的热负荷,在空气没有完全排除以前,热负荷不应过大。

布置在尾部竖井中的对流过热器以及塔式和箱式锅炉的过热器采用水平布置的方式。

水平式过热器的优点是易于疏水排气,但支吊比较困难,在高烟温区通常采用管子吊挂的方式,以节省高合金钢的耗量。

对流过热器是由大量平行连接的蛇形管束所组成,其进出口与集箱相连,蛇形管采用外径为32-42mm的无缝钢管制成,壁厚3-7mm,由强度计算确定,过热器所用材料决定于其工作温度。

吊挂和定距零件由于没有工质冷却,工作温度高,通常采用高Cr,Ni材料。

过热器的布置按蒸汽与烟气的流动方向可成顺流、逆流、双逆流或混流布置,如图2.7-1所示。

逆流布置的温压最大,但工作条件最差,顺流布置的温压最小,耗用金属最多。

一般在低烟温区采用逆流,在高烟温区采用混流布置。

图7-18 过热器中蒸汽与烟气流动方向图(a)顺流(b)逆流(c)双逆流(d)混流过热器并联蛇形管的数目由蒸汽及烟气的流速确定。

蒸汽流速系根据管子必须的冷却条件和流动阻力不致过大的原则来选取。

通常过热器系统的总流动阻力应不超过过热蒸汽出口压力的10%。

过热器中烟气流速根据管子不受磨损和不易积灰以及通过技术经济比较来选择,在燃煤炉中,一般为10~14m/s,在油炉和气炉中,则可提高到20m/s。

过热器和再热器PPT课件

过热器和再热器PPT课件

B G
Qar,netb
保证煤水比即可以维持汽温的稳定。实际过程中控制中间点温度。
7
第四节 过热器和再热器的汽温特性
• 再热器的汽温特性
– 再热器的汽温特性原则上与过热器的汽温特性相似,但又 有其不同的特点 。
– 再热器的汽温受进口汽温影响,其工质进口参数决定于汽 轮机高压缸的排汽参数。
• 定压运行时,锅炉负荷降低,汽轮机高压缸排汽温度降低,再热 器的进口汽温也随之降低,所以出口汽温一般随之下降。
低)
低少)
调温幅度(℃) ~16
~40
~50
延迟时间(s)
65
75
90
32
旁路系统示意图
图6-24 保护再热器的旁路系统示意图 1—锅炉;2—高压缸;3—再热器;4—中压缸;6—凝汽器;7—高压旁路;
8—低压旁路
33
• 为维持过热汽温,需要适当提高B/G比:B不变,适当减小G,但机组 负荷降低;满负荷时,G不变,必须增加B,锅炉超出力运行,需 注意受热面金属温度,防止超温
4)受热面的污染情况 • 水冷壁结渣,过热汽温有所下降;过热器结渣、积灰,过热汽温下降明 显。
5)燃烧器运行(燃烧器的摆动、喷口的投入方式) • 火焰中心高度变化的影响类似于过量空气系数的影响。
3)给水温度
• 给水温度降低,产生一定蒸汽量所需的燃料量增加,与负荷变化相同, 对流传热量增加,辐射传热量变化较小。
• 对流式过、再热器汽温升高,辐射式过、再热器汽温基本保持不变。
4)受热面的污染情况 5)饱和蒸汽用量 6)燃烧器运行(燃烧器的摆动、喷口的投入方式) 7)燃料种类和成分
各因素对过热汽温的影响综合表
9
第五节 运行中影响汽温的因素

过热器与再热器

过热器与再热器

58
烟温偏差和烟速偏差
01.04.2020
59
一台300MW锅炉上的实测数据
01.04.2020
60
(4)过热器和再热器的积灰结渣。
过热器和再热器的积灰结渣总是不均匀的,这就使灰层热 阻是不均匀的,从而导致过热器和再热器的热负荷的不均 匀。另外,积灰结渣会造成阻塞,引起烟速分布不均,会 进一步加剧热负荷的不均。
过热器压降小于10%工作压力,对流过热器 ρω控制在800~1000kg/(㎡·s);对于再 热器压降不超过0.2MPa,蒸汽ρω采用 250~400kg/(㎡·s)。
01.04.2020
18
过热器和再热器的蛇形管可做成单管圈、 双管圈和多管圈,见图7-5。这与锅炉 容量和管内必须维持的蒸汽速度有关。大 容量锅炉一般采用多管圈结构。
h p
h o
(7-1)
式中 △hp为偏差管(所检测管子)中工质的焓增,kJ/kg;
△ho为管组中工质的平均焓增,kJ/kg。 在过热器和再热器中,从安全的角度看,应关心那些值 最大,即焓增最大,管壁温度最高的管子。因此,通常所 说的某个管组的热偏差是指该管组中焓增最大的那些管子 的热偏差,偏差管通常也指这些焓增最大的管子。
01.04.2020
37
01.04.2020
38
安装中的墙式过热器
01.04.2020
墙式过热器
39
四、顶棚过热器和包覆壁过热器 顶棚过热器布置在炉膛和烟道棚顶部分;
包覆壁过热器是布置在水平烟道和尾部竖井烟道 内壁上的、类似于水冷壁的一种过热器。
布置包覆壁过热器的主要目的是为了简化炉墙结 构、减轻炉墙的重量、便于采用悬吊结构的敷管 炉墙。
01.04.2020

第七章 过热器再热器解剖

第七章 过热器再热器解剖
0来自:54二、过热汽温的调节方式
① 喷水减温器 水源一般来自给水泵出口。
② 燃烧器摆角 调整火焰中心位置。 上下摆动±20~30。
NCEPU
02:54
三、再热汽温的调节方式
1、再热器的特点 ① 再热器阻力应尽可能的降低, 以提高机组经济性。 ② 再热蒸汽压力低、温度高、 比容大。再热蒸汽管道直径 大。 ③ 蒸汽与管壁间的对流换热系 数小。再热器对管材要求高。 ④ 再热器有保护系统——高低 压旁路系统
NCEPU
第七章 过热器和再热器
02:54
第一节 过热器和再热器的作用
1. 过热受热面的作用 完成蒸汽的过热过程
2. 种类 过热器:一次蒸汽的过热 再热器:二次蒸汽的过热
3. 一次、二次蒸汽的特点 一次蒸汽压力高 二次蒸汽压力低,一般为中 压参数 两者蒸汽性质差别很大。
02:54
NCEPU
第四节 热偏差
1、定义:并列管中蒸汽焓增各不相同,出口蒸
汽温度也不相同,这种现象称为过热器热偏
差。
热偏差φ表示为: hp
h0
式中:
hp
qp Fp Gp
——偏差管中1kg蒸汽的焓增;
h0
q0 F0 G0
——整个管组蒸汽平均焓增;
02:54
NCEPU
hp qp Fp 1 qF h0 q0 F0 Gp G
NCEPU
四.包覆过热器
锅炉为了采用全悬吊 结构和敷管炉墙,在 水平烟道或尾部烟道 内壁布置过热器管, 称为包墙管过热器。
它主要用于悬吊炉墙。 传热效果差,不能作 为主要受热面。
02:54
NCEPU
第三节 典型过热器再热器系统
NCEPU
02:54

过热器再热器

过热器再热器

G
Gp G0
v0 vp
吸热多的管子→工质的比容大v→流量小→管壁冷却 差→壁温升高。 表现为强制工质流动受热面的流动特性(相对于自 然循环工质流动的自补偿特性而言)。
⑥ 减小热偏差的措施
过热器、再热器分级布置,级间联想混合
⑥ 减小热偏差的措施
沿烟道方向蒸汽交叉流动
⑥ 减小热偏差的措施
虽然管组出口蒸汽平均温度满足设计要求,但个别受热面管子(偏差管)吸热偏多,引起 该受热面管金属超温,造成高温蠕变损坏
① 蒸汽动力循环
T
1a
5
6b
4
3
2’ 2
s 2—3—4—5—6 6—1—b—a—2
1T2
T1
•过热:6—1 •再热:b—a
•平均初温增加,效率 提高—过热 温度取决于材料限值 •2点的干度高于2’ 干度大,对汽轮机损 害小—再热
① 蒸汽动力循环
T
1a
5
6b
4
3
2’ 2
s 2—3—4—5—6 6—1—b—a—2
对流式过热器出口汽温随负荷增 加而增加 燃料量和烟气量增加,流速增加
辐射式过热器出口汽温随负荷的 增加而减少 炉膛温度增加少、而蒸汽流量增 加大
半幅射式居中
④ 汽温特性
设计时采用适当比例的辐射式过热器,则可以达到 较平稳的汽温特性,
较小容量的锅炉以对流式过热器为主 大容量锅炉辐射式过热器比例增加。
屏位于炉膛内:热负荷是很高 安全要求: 质量流速700~1200kg/(㎡·s)。
② 辐射、半幅射式过热器、再热器
② 辐射、半幅射式过热器、再热器
布置在炉膛壁面上直接吸锅炉的过热吸热份额超过50% 300MW以上机组需考虑辐射式过热器 (2)降低炉膛出口烟温 (3)布置在高温区可降低金属耗量 (4)汽温特性平稳。

第八章:过热器和再热器的运行

第八章:过热器和再热器的运行
1、蒸汽侧调节:通过改变蒸汽热焓调节汽温,主要有喷水减温器
2、烟气侧调节:通过改变锅炉内辐射受热面和对流受热面的吸热量分配比例的方法(如烟气再循环、摆动燃烧器)或改变流经过热器、再热器烟气量的方法(如分隔烟气挡板)调节汽温。热偏差是沿烟道宽度方向并列管子间因吸热不均和工质流量不均引起的现象。蒸汽焓增大于管组平均值的管子称为偏差管,热偏差程度用热偏差系数φ表示。
3、给水温度tgs:tgs降低,煤耗量B增加,炉内烟气量增加,出口烟温增加,对流受热面出口蒸汽温度因此升高,辐射式受热面的出口汽温影响不大。
4、燃料性质:燃煤中的M和A增加,烟气容积增大,烟气速度提高,而炉内温度水平降低,出口烟温升高,过热器出口汽温升高。煤粉变粗时,煤粉在炉内时间增长,火焰中心上移,导致汽温升高。
3、受热面不同程度的污染。
4、燃烧器负荷不一致,火焰中心倾斜;炉膛上部或过热器局部地区发生煤粉再燃烧。
5、炉膛出口烟气流的残余扭转。
◆重位丫头对热偏差的影响
垂直上升管屏中,如流动阻力损失相当大(锅炉高负荷时),若个别管圈热负荷偏高,则因偏差管中工质平均比容的增大而引起流动阻力增大,并促使其流量降低。但与此同时,因偏差管中工质密度减小而使上升管增加,可促使流量回升,因此在垂直上升管屏中,重位压头占总压降的主要部分,则重位压头很大,致使该管中可能流动停滞。减少热偏差的措施:运行中确保燃烧稳定;烟气均匀充满炉膛;适时投入吹灰器减少积灰和结渣,沿炉膛宽度方向速度场和温度场尽量均匀。
◆过热器和再热器的汽温特性:锅炉负荷变化时,过热器与再热器出口的蒸汽温度跟随变化的规律称为汽温特性。
◆影响汽温的因素:
1、锅炉负荷:对流式过热器的出口气温是随着负荷的增加而增大的。采用辐射——对流式受热面,可获得较为平坦的汽温变化特性。减小汽温调节幅度,提高机组对负荷变化的适应性。

锅炉过热器和再热器

锅炉过热器和再热器

85000 10.3 845 883
464 523 500 552 580 12×84
77000
88000
12.2
10.6
629
471
835
620
5.4
4.72
439
346
478
441
457
415
512
438
552
552
6×168 6×168
446000 8.5 399 468
331 416 400 434 450 6×168
必须采用更多辐射式、半辐射式过热器、再热器
过热器、再热器的工作特点
❖壁温最高 受所用钢材(碳钢、合金钢)限制,汽温一般为540 -555 ℃;日本568-570 ℃; 钢材? ❖工质压降不能太大
过热器内工质压降不超过其工作压力的10% 再热器不超过0.2Mpa
技术要求 过 热 器 蒸 汽 侧 的 压 降 一 般 应 不 大 于 1.60 MPa (按B-MCR工况计算)。 再 热 器 蒸 汽 侧 的 压 降 应 不 大 于 0.19MPa ( 按 BMCR工况计算)
2、辐射式受热面
前墙、侧墙的上部:缩短或遮盖水冷壁 顶棚;
低温级受热面 较高的质量流速
3、半辐射式受热面
前屏(分隔屏过热器) 后屏过热器 后屏再热器
1)吸收了相当部分的热量,降低了炉膛出口烟气温度, 解决了大容量锅炉炉壁面积相对较小,布置辐射受热面 太少的困难 2)屏间节距大,较稀疏 汽冷定位夹紧管防止运行中的摆动横向节距 3)切割气流消旋 4) 增加辐射,更平稳的汽温特性
609.6/57
SA-213TP347H
140000 10.2 1060 1193 27.1 25.75 571 585 589 603 700

过、再热汽温变化的影响因素及调节方法

过、再热汽温变化的影响因素及调节方法

汽温特性——锅炉负荷变化时,过热器与再热器
出口蒸汽温度跟随变化的规律。(负荷对汽 温影响)

1 —辐射式过热器 2 —半辐射式过热器 3 —对流式过热器
汽 温
额定汽温
本厂2*300MW单元机组,锅炉形式为亚临界、 一次中间再热、自然循环锅炉,汽轮机形式为亚 临界、单轴、双缸、双排汽、中间再热凝汽式。 以此机组为例分析气温影响因素及调节方法。
★汽温的调节方式
蒸汽侧调节方法 烟气侧调节方法
★各类汽温调节方式的基本要求为:
①调节范围广(60/70—100%负荷); ②调节惯性或延迟时间小,灵敏度好; ③结构简单可靠,维护工作量小; ④附加的金属消耗量和能量消耗量小;
⑤对电站循环热效率影响小。
蒸汽侧的调节,是指通过降低蒸汽的焓值来调
节温度。例如喷水式减温器向过热器中喷水,喷 入的水的加热和蒸发要消耗过热蒸汽的一部分热 量,从而使汽温下降,调节喷入的水量,可以达 到调节汽温的目的。
过、再热汽温变化的影响因素及 调节方法
—白文方
一 、过、再热汽温变化的影响因素
控制汽温的重要性,影响汽温变化的因素。
二、过热器、再热器汽温调节方法
蒸汽侧和烟气侧调温方法与原理,汽温调节选择 原则。
过热器—将饱和蒸汽加热到额定过热温度的锅炉受热 面部件; 再热器—将汽轮机高压缸排汽重新加热到额定再热温 度的锅炉受热面部件。
汽温影响因素:锅炉的受热面设计时,规定了锅炉的 燃料特性、给水温度、过剩空气系数和各种热损失等 额定参数,但实际运行时由于各种扰动,不能获得设 计预定的工况,导致锅炉的蒸汽参数发生变化。
内扰—由锅炉设备本身的工作条件变化所引起,如受 热面积灰、结渣,烟道漏风等因素; 外扰—由锅炉外部的条件引起时,如用户对锅炉负荷 需要的变化随时间而变化。

电站锅炉过热器和再热器的布置和特点

电站锅炉过热器和再热器的布置和特点

电站锅炉过热器和再热器的布置和特点一. 过热器与再热器结构型式1.对流过热器对流过热器布置在锅炉的对流烟道中,主要依靠对流传热从烟气中吸收热量。

在中小型锅炉中,一般采用纯对流式过热器,在大型锅炉中,采用复杂的过热器系统,然而对流过热器仍是其中主要的部分。

对流过热器有垂直布置和水平布置的两种型式。

垂直式过热器通常布置在炉膛出口的水平烟道中,其优点是结构简单,吊挂方便,结灰渣较少,得到了广泛的应用。

其主要缺点是停炉后管内积水难以排除,长期停炉将引起管子腐蚀。

在升炉时,由于内积存部分水,在工质流量不大时,可能形成气塞而将管子烧坏,因此在升炉时应控制过热器的热负荷,在空气没有完全排除以前,热负荷不应过大。

布置在尾部竖井中的对流过热器以及塔式和箱式锅炉的过热器采用水平布置的方式。

水平式过热器的优点是易于疏水排气,但支吊比较困难,在高烟温区通常采用管子吊挂的方式,以节省高合金钢的耗量。

对流过热器是由大量平行连接的蛇形管束所组成,其进出口与集箱相连,蛇形管采用外径为32-42mm的无缝钢管制成,壁厚3-7mm,由强度计算确定,过热器所用材料决定于其工作温度。

吊挂和定距零件由于没有工质冷却,工作温度高,通常采用高Cr,Ni材料。

过热器的布置按蒸汽与烟气的流动方向可成顺流、逆流、双逆流或混流布置,如图2.7-1所示。

逆流布置的温压最大,但工作条件最差,顺流布置的温压最小,耗用金属最多。

一般在低烟温区采用逆流,在高烟温区采用混流布置。

图7-18 过热器中蒸汽与烟气流动方向图(a)顺流(b)逆流(c)双逆流(d)混流过热器并联蛇形管的数目由蒸汽及烟气的流速确定。

蒸汽流速系根据管子必须的冷却条件和流动阻力不致过大的原则来选取。

通常过热器系统的总流动阻力应不超过过热蒸汽出口压力的10%。

过热器中烟气流速根据管子不受磨损和不易积灰以及通过技术经济比较来选择,在燃煤炉中,一般为10~14m/s,在油炉和气炉中,则可提高到20m/s。

什么是过热器或再热器的顺流、逆流、混合流布置方式?这些布置方式有何特点?

什么是过热器或再热器的顺流、逆流、混合流布置方式?这些布置方式有何特点?

什么是过热器或再热器的顺流、逆流、混合流布置方式?这些布置方式有何特点?
关键词:
方式
再热器
过热器
什么是过热器'>过热器或再热器'>再热器的顺流、逆流、混合流布置方式'>方式?这些布置方式'>方式有何特点?
过热器'>过热器或再热器'>再热器的布置,按工质与烟气的相对流动方向可分为顺流、逆流、混合流等方式。

工质与烟气流动方向一致时称顺流,相反时称逆流,顺流与逆流兼有时称为混合流。

顺流布置的过热器和再热器,传热温差较小,所需受热面较多,蒸汽出口处烟温较低,受热面金属壁温也较低。

这种布置方式工作较安全,但经济性较差,一般使用于蒸汽温度最高的末级(高温段)过热器或再热器。

逆流布置时,具有较大的传热温差,可节省金属耗量,但蒸汽出口恰好处于较高的区域,金属壁温高,对安全不利。

这种布置方式一般用于过热器或再热器的低温段(进口级),以获取较大的传热温差,又不使壁温过高。

混合布置是上述两种布置方式的折中方案,在一定程度上保留了它们的优点,克服了它们的缺点。

第7章 过热器和再热器解剖

第7章 过热器和再热器解剖

2020/10/12
长沙理工大学能动学院
§1、对流式过热器和再热器
• 1、对流式过热器和再热器分类 • 2、对流式过 of Boiler
2020/10/12
长沙理工大学能动学院
对流式过热器和再热器分类
结构 分类:
➢立式、卧式 ➢顺流、逆流、混合流 ➢顺列、错列 ➢多管圈、单管圈
2020/10/12
长沙理工大学能动学院
半辐射、辐射式过、再热器结构
做成挂屏、壁式形式,由U型管及进出口联箱构成
布置 ➢ 半辐射式 布置在炉膛出口烟窗处,称后屏 ➢ 辐射式 布置在炉膛上部的前墙和两侧的前 半部或布置在炉膛顶部或悬挂在炉膛上部靠近 前墙处,分别称为墙式、顶棚式和前屏(分隔 屏)
2/3
➢ 对流受热面 锅炉负荷D增加,流经对 流受热面烟速和烟温提高,工质焓增升 高,出口蒸汽温度上升,图中曲线2
➢ 采用半辐射式受热面,可获得较为平 坦的汽温变化特性,减小汽温调节幅度, 提高机组对负荷变化的适应性
1/3
Page 19
Principles of Boiler
2020/10/12
长沙理工大学能动学院
长沙理工大学能动学院
第七章过热器和再热器
§1、对流式过热器和再热器 §2、半辐射、辐射式过、再热器 §3、运行中影响汽温的因素 §4、过热与再热汽温调节 §5、热偏差
Page 1
Principles of Boiler
2020/10/12
HG-
亚 临 界 自 然 循 环 汽 包 锅 炉
Page 2
Page 11
Principles of Boiler
1-前墙管;2、3-两侧墙管 4-上联箱工质引出管

锅炉原理-第七章-过热器和再热器

锅炉原理-第七章-过热器和再热器

2、辐射式和半辐射式过热器
在炉膛内吸收辐射热。 注意的问题:工作条件恶劣。(可采用的措施:布置在炉膛上部、作低温受热面、 高质量流速) 半辐射式也叫屏式过热器。特点是热负荷高、热偏差大。
二、过、再热器系统
基本要求:满足蒸汽参数要求 有灵活的调温手段 保证管壁不超温 经济性高
1、分级分段问题
如过热器内焓增较大(超过420KJ/kg),就需分级布置,以减小热偏差。 分级分段的要求: a、单级焓增小于60~100KCal/kg。 b、各级中气温选择应与采用的钢材许用温度吻合(气温超过 400℃需采用 合金钢,否则可采用20#碳钢)。 c、考虑气温调节的反应速度。
二、过热器和再热器蒸汽参数的选择
蒸汽参数Байду номын сангаас选择主要取决于经济性和安全性两方面的限制。
过热器 再热器 温度
540-550 0C
亚临界压力以下: 12Cr2MoWVB
1Cr18Ni9Ti
Cr25Ni12MnSi2 560-660 0C 运行中汽温波动要求 不超过 +5 ~-10 ℃
三、过热器和再 热器的布置 低压 中压 高压
根据结构型式分为立式和卧式
根据管圈数分为单管圈、双管圈、多管圈 根据管子布置结构分为顺列和错列 αs< αc ,但顺列吹灰容易,错列吹灰困难。 总原则:高温水平烟道立式顺列;低温竖直烟道卧式错列。
4
对流式过(再)热器质量流速问题:
为保护金属管道,工质应有一定的质量流速。质量流速增大,对金属 的冷却能力增强,但同时也增大了流动阻力。
8
1、吸热不均
受热面污染
炉内温度场
烟道内热负荷分布
2、流量不均
管子连接方式:Z型、U型、多管型

第七章过热器和再热器

第七章过热器和再热器

第七章过热器和再热器第一节过热器和再热器的作用及其特点一、过热器和再热器的作用过热器的作用是将饱和蒸汽加热成具有必然温度的过热蒸汽。

在锅炉负荷或其他工况变更时应保证过热蒸汽温度正常,并处在许诺的波动范围之内。

再热器的作用是将汽轮机高压缸的排汽加热到与过热蒸汽温度相等(或相近)的再热温度,然后再送到中压缸及低压缸中膨胀作功,以提高汽轮机尾部叶片蒸汽的干度。

二、过热器和再热器蒸汽参数的选择为了提高循环热效率,过热蒸汽的压力已经由超高压提高到亚临界和超临界压力。

但过热器和再热器蒸汽温度的选择要受到金属材料性能的限制,此刻蒸汽温度还维持在540℃左右。

过热器和再热器是锅炉内工质温度最高的部件,专门是再热蒸汽的吸热能力 (冷却管子的能力)较差,如何使管子金属能长期平安工作就成为过热器和再热器设计和运行中的重要问题。

在过热器和再热器的设计和运行中,应注意如下问题:(1)运行中应维持汽温稳固。

汽温的波动不该超过+5~-10 ℃;(2)过热器和再热器要有靠得住的调温手腕,使运行工况在必然范围内转变时能维持额定的气温;⑶尽可能减少并联管间的热误差。

三、过热器和再热器的布置过热器设计和布置时,必需确保其受热面管子外壁温度低于钢材的抗侵蚀和氧化温度,并保证其高温持久强度。

蒸汽参数提高,使锅炉受热面的布置也相应发生转变。

主若是蒸汽参数转变时水和蒸汽的加热、蒸发、过热的吸热比例发生了转变,从而引发了受热面布置的转变。

第二节过热器和再热器的结构型式及气温特性过热器和再热器的型式较多,依照不同的分类方式,其型式不同。

依照传热方式,过(再)热器可分为对流、辐射及半辐射(也称为屏式受热面)三种型式。

一、对流式过(再)热器对流式过(再)热器布置在水平烟道或尾部竖井中,要紧吸收烟气的对流放热量。

对流式过(再)热器是由蛇形管组成,其进出口别离用联箱连接。

一、按管子的排列方式分类按管子的排列方式分类,对流过(再)热器可分为错列和顺列两种形式,如图7—1所示。

什么是水冷壁、过热器、再热器、省煤器和空气预热器

什么是水冷壁、过热器、再热器、省煤器和空气预热器

什么是水冷壁、过热器、再热器、省煤器和空气预热器?水冷壁、过热器、再热器、省煤器和空气预热器都是与锅炉烟气进行热交换的热交换器。

它们利用了烟气的余热,使锅炉降低了能耗。

同时又与水系统是密切相关的。

(1)水冷壁在炉膛四周内壁上竖立布置很多直径为50~80mm 的管子,组成水冷壁。

它的作用是吸收烟气辐射的热量,同时起到保护炉墙的作用。

在烟道前方的后墙水冷壁上部拉稀成数列管束,称为防渣管。

它的作用是防止结渣,同时保护后方的过热器。

从汽包来的炉水经下降管进入联箱,再分布到水冷壁管组,水在水冷壁管内一边上升一边被加热,变为水汽混合物,再回到汽包中。

(2)过热器和再热器为蛇管式换热器,一般由直径为30~50mm 管组成。

由汽包来的饱和蒸汽通过过热器管内与烟气热交换被加热成为过热蒸汽。

烟气离开炉膛与过热器热交换之后,温度降至500~600℃。

在超高压系统常设再热器,又称二次过热器或中间过热器。

由汽轮机高压缸来的蒸汽进入再热器与烟气热交换之后升温送往汽轮机中压缸再使用。

(3)省煤器为蛇管式换热器,管外径一般为25~38mm。

由给水泵送来的给水送入管内与管外的烟气进行热交换之后提高温度,然后送入汽包。

(4)空气预热器通常布置在锅炉出口。

空气在此与烟气进行热交换,加热后的空气送至燃烧器助燃。

空气预热器分管式及回转式两种。

管式为间壁传热,由两端设管板的多根平行管组成,烟气走管内,空气由送风机送来从管间通过,与烟气热交换。

离开锅炉的烟气大约100~200℃。

回转式空气预热器利用蓄热板传热。

在旋转的转子周围装有许多蓄热板。

当蓄热板转到烟气通道时,吸收了热量,温度升高;当蓄热板转到空气通道时,放出热量,温度下降,同时使空气被加热到300~400℃。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

国内外过热器再热器的布置及调温方式————————————————————————————————作者:————————————————————————————————日期:国内外二次再热机组过热器、再热器布置的特点及其调温方式(王萌 2 热A)摘要:二次中间再热技术是提高火电机组热效率的一种有效方法。

本文从国内三大锅炉厂(上锅、哈锅、东锅)和国外经典二次再热机组日本姬路第二电厂6号机组入手,主要论述了,超超临界二次再热机组过热器、再热器布置的特点及其调温方式,并评价了其优缺点。

关键字:上锅哈锅东锅日本姬路第二电厂过热器再热器调温方式我国是以煤炭为主要一次能源的国家,火力发电在我国电力生产中占有主导地位。

在很长一段时间内,我国的能源结构不会发生大的改变。

我们所要做的就是提高燃煤的利用效率和降低燃煤机组的污染物排放来改善能源紧张的情况和环境污染的压力。

提高火电机组发电效率是我国电力行业发展的必然趋势。

二次中间再热技术是提高机组热效率的一种有效方法。

一般再热蒸汽压力为过热蒸汽压力的20%左右。

采用再热系统可使电站热经济性提高约4%~~5%。

二次再热可使循环热效率再提高2%。

二次再热系统中蒸汽在超高压缸和高压缸中做功后会分别在锅炉的一次再热器和二次再热器中再次加热。

相比一次再热系统,二次再热系统锅炉增加一级再热系统,汽轮机则增加一级循环做功。

本文将从国内外典型的二次再热机组过热器、再热器布置的特点及其调温方式进行说明,并对其优缺点进行评价。

1.上海锅炉厂新型二次再热超超临界锅炉机组1.1上海锅炉厂二次再热锅炉典型举例以国电泰州二期工程为例。

国电泰州电厂二期2×1000MW超超临界二次再热燃煤发电示范项目是国内首个百万级超超临界二次再热机组。

机组发电效率高达47.94%,比当今世界最好的二次再热发电机组效率47%高0.94%,比国内常规投运一次再热发电机组最高效率45.82%高 2.12%。

机组设计发电煤耗256.2g/kWh,比当今世界最好水平低5g/kWh。

项目采用二次再热综合提效技术较常规百万机组降低发电煤耗约10g/ kWh。

与常规百万级超超临界机组相比,CO2、SO2、 NOx、粉尘排放量减少5%以上。

1.2过热器及再热器的布置过热器受热面的布置为顶棚和包墙过热器、分隔屏过热器、屏式过热器、末级高温过热器;再热器受热面布置为二级布置,低温再热器和高温再热器。

锅炉的蒸汽温度是温度参数为600/610/610℃,其正负偏差都会影响火力发电设备的正常运行,甚至造成故障,所以要对蒸汽温度进行调节。

过热器的调温方式为二级减温水和燃烧器倾角,煤水比。

喷水减温过热器利用锅炉给水作为减温水直接喷入过热蒸汽中,使其雾化、吸热蒸发,达到降低蒸汽温度的目的。

第一级喷水减温器位于屏式过热器前,主要作用是保护屏式过热器;第二级喷水减温器位于末级高温过热器之前。

水的喷射依靠冷凝器和减温器之间的压差来实现,不需专门的减温水泵。

喷水减温器的特点是结构简单,调温幅度大(可达50℃--65'C),调节温度灵敏,减温器出口的气温延迟时间仅为5~~10s,压力损失小,一般不超过50kPa,易于实现自动化,锅炉中普遍采用。

但是由于由于减温水直接与水蒸气混合,故对水质要求较高,其品质不能低于蒸汽品质。

再热器的调温方式为双烟道烟气挡板、过量空气系数和摆动燃烧器。

对于烟气挡板调温方式,是将塔式锅炉的对流竖井上部烟道分成两部分,分别布置再热器和过热器。

调节分隔烟道下部烟道挡板的开度。

如负荷降低时,开大装有再热器一侧的烟道挡板,关小另一侧烟道挡板,就可提高再热蒸汽温度。

结构简单、操作方便,在调节再热汽温时,对炉膛燃烧工况影响小,调温幅度大。

但是汽温调节的延迟时间太大,挡板开度与汽温变化不成线性关系,开度的有效范围仅为0~~40%,挡板开的较大时易引起磨损,关的较小又易引起积灰。

改变燃烧器的倾角可直接影响炉膛内燃烧工况来调节汽温。

这种调温方法具有调温比较灵敏,时滞较小且过热器和再热器布置在延期高温区域,受热面积小及锅炉钢耗较低等优点。

同时这种方法也有一定的问题。

燃烧器的倾角不宜过大,下倾角过大会造成冷灰斗区域结渣,上倾角过大又会增加燃料的未完全燃烧热损失。

由于烟气温度变化同时作用在整个过热系统上,也影响了过热汽温的同向变化。

过量空气系数调温即向炉底注入新鲜空气,改变炉内传热工况。

2.哈尔滨锅炉厂二次再热超超临界锅炉机组2.1过热器及再热器的布置过热器受热面的布置为低温过热器、分隔屏过热器、屏式过热器、高温过热器。

低温再热器和低温过热器分别布置于尾部烟道的前、后竖井中,逆流布置。

在上炉膛、折焰角和水平烟道内分别布置分隔屏过热器、屏式过热器、高温过热器、高温再热器,因为烟温较高,采用顺流布置。

再热器的受热面布置为二级布置,低温再热器和高温再热器。

低温再热器布置在尾部烟道的前竖井中,逆流布置。

在水平烟道中布置高温再热器,因为烟温较高,顺流布置。

锅炉的蒸汽参数为566/566/566℃。

过热器的调温方式为三级减温水和改变燃烧器倾角。

燃烧器的倾角不宜过大,下倾角过大会造成冷灰斗区域结渣,上倾角过大又会增加燃料的未完全燃烧热损失。

在调节过程中,主要以改变燃烧器倾角为主要修正方式,以混合式减温水的喷水量为辅助方式,按照汽温特性,当锅炉负荷降低时,过热器系统汽温的总变化趋势是下降的,因此应减少过热减温水量,但是由于燃烧器向上摆动,使炉膛出口烟温升高,从而使过热器系统的吸热量增加,尤其是辐射受热面吸热量显著增加。

这时,汽温变化总趋势不是下降而是升高,因此,低负荷时反而需要增加过热减温水量;反之,高负荷时减少过热减温水量。

再热器的调温方式为尾部调温挡板和燃烧器倾角。

锅炉尾部对流烟道分为两部分,低温再热器和第温过热器分别置于尾部烟道的前烟道和后烟道,下面布置省煤器。

通过调节布置在省煤器下方的烟气挡板的开度来改变低过和低再侧的烟气量进行汽温调节。

尾部调温挡板的调节对于过热汽温和再热汽温均有影响,不影响炉内的燃烧特性及高温受热面的辐射传热特性,调温方式安全、可靠;但调温反应时间较长,符合变化可与事故减温水配合使用,烟气侧阻力引起引风机能耗增加,挡板有较大的磨损。

改变燃烧器倾角不宜作为再热蒸汽调节的主要手段,可以作为对于煤种适应性和负荷变化是的辅助调温手段。

烟气挡板调温方式比喷燃烧器摆动调温方式更为有效,运行中再热器可以不投减温水,使机组循环效率不会因喷入减温水而降低。

但对烟气调节挡板的制造工艺和可靠性要求较高。

3.东方锅炉厂二次再热超超临界锅炉机组3.1过热器及再热器的布置过热器受热面的布置为顶棚和包墙过热器、分隔屏过热器、屏式过热器、末级高温过热器;再热器受热面布置为二级布置,低温再热器和高温再热器。

3.2过热器、再热器的调温方式及其优缺点过热器的调温方式为煤水比,三级减温水,燃烧器倾角。

和上海锅炉厂的过热器调温特性基本相同。

再热器的调温方式为尾部调温挡板,燃烧器倾角,事故喷水、尾部调温挡板的调节对于过热汽温和再热汽温均有影响,不影响炉内的燃烧特性及高温受热面的辐射传热特性,调温方式安全、可靠;但调温反应时间较长,符合变化可与事故减温水配合使用,烟气侧阻力引起引风机能耗增加,挡板有较大的磨损。

4.国外经典二次再热机组过热器、再热器布置的特点及其调温方式日本姬路第二电厂6号炉系二次再热超临界压力锅炉采用了二次再热以及表面式热交换器来控制温度。

过热器类型为辐射式和对流式混合。

一次再热器布置在尾部平行烟道的一侧(锅炉前侧),由烟道出口处的烟气挡板调节一次再热器的出口蒸汽温度。

二次再热器的水平段布置在尾部平行烟道的另一侧(锅炉后侧),其垂直段布置在水平烟道的烟温较高处。

二次再热器出口汽温是由布置在水平段与垂直段之间的管壳式热交换器(表面式减温器)进行调节。

在热交换器内水平段二次再热器的出口蒸汽(高温工质)与省煤器进口的一部分给水(低温工质)进行热交换。

通过调节阀调节热交换器进口的给水量来控制热交换量,使二次再热器的出日蒸汽温度保持在规定值。

再热蒸汽通过热交换器降低温度,然后进入垂直段二次再热器,而来自热交换器的给水在炉膛第3回路进口处与流经省煤器、炉膛第1回路及炉膛第2回路的工质汇合。

5.小结项目名称哈锅(HG)东锅(DG)上锅(SG)过热器系统低过、分隔屏、屏过、高过顶棚+包墙、低过、屏过、高过顶棚+包墙、分隔屏、屏过、高过过热蒸汽调温方式煤水比三级减温水燃烧器倾角煤水比二级减温水煤水比二级减温水燃烧器倾角再热器系统低温再热器高温再热器低温再热器高温再热器低温再热器高温再热器再热蒸汽调温方式尾部调温挡板燃烧器倾角事故喷水尾部烟气挡板事故喷水燃烧器倾角过量空气系数事故喷水参考资料:①王刚--中国动力工程学会超超临界机组技术交流2013年会--上海锅炉厂有限公司技术部高级工程师②黄莺--中国动力工程学会超超临界机组技术交流2013年会--哈尔滨锅炉厂二次再热锅炉研发现状哈尔滨锅炉厂锅炉研究所高级工程师/副所长黄莺③超超临界机组技术交流2014年会--国电泰州电厂二期百万千瓦超超临界二次再热燃煤发电示范项目设计回顾④宋宝军--超临界直流锅炉再热蒸汽汽温调温方式探讨-=电站系统工程-第29卷第3 期2013 年5 月⑤王振雷李奕-=哈锅1000MW超超临界锅炉技术特点简介=-电站系统工程-第22卷第5期2006 年9月⑥姚丹花徐雪元--上海锅炉厂有限公司超(超)临界锅炉主要技术特点--锅炉技术--第40卷第4期2009 年7月⑦高昊天范浩杰董建聪张忠孝--超超临界二次再热机组的发展--锅炉技术-- 第45卷第4期2014 年7月。

相关文档
最新文档