〈常微分方程》应用题及答案
常微分方程_习题集(含答案)
《常微分方程》课程习题集一、单选题1. 设函数(,),(,)M x y N x y 连续可微, 则方程(,)(,)0M x y dx N x y dy += 是全微分方程的充分必要条件是 . (A) M N y x ∂∂=∂∂, (B) ,M N x y ∂∂=∂∂ (C) ,M N y x ∂∂≠∂∂ (D) .M N x y ∂∂≠∂∂2. 下面的方程是全微分方程的是 . (A) 0ydx xdy x y-=+, (B) 220y dx x dy +=, (C) 220xy dx x ydy -=, (D)220ydx xdy x y -=-. 3. 设一阶方程2()()(),(()()0)dy p x y q x y r x p x r x dx=++≠,则它是 。
(A )线性非齐次方程; (B )伯努利方程;(C )黎卡堤方程; (D) 克莱洛方程。
4. 设一阶方程()(),(0,1)n dy p x y q x y n dx=+≠,则它是 。
(A )线性非齐次方程; (B )伯努利方程;(C )黎卡堤方程; (D) 克莱洛方程。
5. 形如'(')y xy y ϕ=+的一阶隐式方程称为 。
(A )线性非齐次方程; (B )伯努利方程;(C )黎卡堤方程; (D) 克莱洛方程。
6. 二阶微分方程2100x x x '''++=的通解是 。
(A )12[cos3sin 3]t x e C t C t -=+,(B )312[cos sin ]t x e C t C t -=+,(C )12[cos sin ]t x e C t C t -=+,(D) 312[cos3sin 3]t x e C t C t -=+.7. 二阶微分方程250x x x '''++=的通解是 。
(A )12[cos sin ]t x e C t C t -=+,(B )212[cos sin ]t x e C t C t -=+,(C )12[cos 2sin 2]t x e C t C t -=+,(D) 212[cos 2sin 2]t x e C t C t -=+.8. 二阶微分方程440x x x '''-+=的通解是 。
常微分方程计算题及答案
计 算 题(每题10分)1、求解微分方程2'22x y xy xe -+=。
2、试用逐次逼近法求方程2y x dxdy+=通过点(0,0)的第三次近似解. 3、求解方程'2x y y y e -''+-=的通解4、求方程组dx dt ydydtx y ==+⎧⎨⎪⎩⎪2的通解5、求解微分方程'24y xy x +=6、试用逐次逼近法求方程2y x dxdy-=通过点(1,0)的第二次近似解。
7、求解方程''+-=-y y y e x '22的通解8、求方程组dxdt x ydydtx y =+=+⎧⎨⎪⎩⎪234的通解9、求解微分方程xy y x '-2=24 10、试用逐次逼近法求方程2y x dxdy-=通过(0,0)的第三次近似解. 11、求解方程''+-=-y y y e x '24的通解12、求方程组dxdtx y dydtx y =+=+⎧⎨⎪⎩⎪2332的通解13、求解微分方程x y y e x (')-=14、试用逐次逼近法求方程22x y dxdy+=通过点(0,0)的第三次逼近解. 15、求解方程''+-=--y y y e x '22的通解16、求解方程x e y y y -=-+''32 的通解17、求方程组⎪⎩⎪⎨⎧-+=-+=yx dt dydtdx x y dt dy dt dx243452的通解 18、解微分方程22(1)(1)0x y dx y x dy -+-= 19、试用逐次逼近法求方程2dyx y dx=-满足初始条件(0)0y =的近似解:0123(),(),(),()x x x x ϕϕϕϕ.20、利用逐次逼近法,求方程22dyy x dx=-适合初值条件(0)1y =的近似解:012(),(),()x x x ϕϕϕ。
(完整版)常微分方程试题及答案
第十二章常微分方程(A)、是非题1.任意微分方程都有通解。
(X )2.微分方程的通解中包含了它所有的解。
15•微分方程xy |nx 0的通解是y 2In① y 3 In xdx xdy 0是可分离变量微分方程。
② xy 2x dx y x 2y dy 0是可分离变量微分方程。
③ x? y 4是齐次方程。
y 2y 0是二阶常系数齐次线性微分方程。
6. ysiny 是一阶线性微分方程。
(X)7. y 3 3x yxy 不是一阶线性微分方程。
(O )8. y 2y 5y 0的特征方程为r 22r 5 0。
(9. dy 1 xy 2 xy 2是可分离变量的微分方程。
dx、填空题1.在横线上填上方程的名称o )(O )2. sin xy x cosx 的通解中应含 _3个独立常数。
3. 1 e 2x 的通解是-e 2x C 1x C 2。
42x4.1 sin2x cosx 的通解是 -sin2x cosx C 1x C 2。
45. xy 2x 2yx 41是二 ______ 阶微分方程。
3.函数y 3sinx 4cosx 是微分方程y y 0的解。
(0 )4.函数y x 2 e x 是微分方程y 2y y0的解。
(X )C (C 为任意常数)。
(0 )④xyy x 2 sinx 是一阶线性微分方程。
6 .微分方程y y阶微分方程。
1A. 3 B7. y y 满足y L 0 2的特解是(B ) oxA. y e x 1 B . y 2e x C . y 2 e 2&微分方程y y sinx 的一个特解具有形式 A . y a sinx24 .微分方程y 3y 3的一个特解是(cosxC 1e xC 2e x 是方程y y 0的(A ),其中C 1,C 2为任意常数。
A.通解B .特解C .是方程所有的解 D .上述都不对7. 8.丄所满足的微分方程是yx空的通解为y xCx 2。
9.dx dy 0的通解为 x10.dy dx 2yx 15x 1 2,其对应的齐次方程的通解为11. 方程xy 1 0的通解为y 12. 3阶微分方程x 3 * 5的通解为yx 2Cxe 2 o x C 1 x C 2 x C 3 o120三、选择题1 .微分方程 xyy 3y 4y 0的阶数是(D ) oA. 3 B 2 .微分方程x 51的通解中应含的独立常数的个数为3.下列函数中,哪个是微分方程dy 2xdx 0的解(A . y 2xB . y x 2C .2x Dy a cosxy xy 3y 2 011 .在下列函数中,能够是微分方程 y y 0的解的函数是(C )y 1 B . y x C . y sinx D . y.Cx17.微分方程0的解为(B )C . y x asin x bcosxy acosx bsinx9.下列微分方程中,是二阶常系数齐次线性微分方程。
常微分方程试题及答案
常微分方程试题及答案一、单项选择题(每题5分,共20分)1. 下列哪一项不是常微分方程的特点?A. 未知函数是连续的B. 未知函数是可微的C. 未知函数的导数是未知的D. 方程中包含未知函数的导数答案:A2. 常微分方程的解是指满足方程的函数,下列哪一项不是解的性质?A. 唯一性B. 存在性C. 可微性D. 可积性答案:D3. 一阶线性微分方程的一般形式是:A. \( y' + p(x)y = q(x) \)B. \( y' = p(x)y + q(x) \)C. \( y' - p(x)y = q(x) \)D. \( y' + p(x)y = q(x) \) 或 \( y' - p(x)y = q(x) \)答案:A4. 已知微分方程 \( y'' - y = 0 \) 的一个特解是 \( y = e^x \),那么它的通解是:A. \( y = C_1e^x + C_2e^{-x} \)B. \( y = C_1e^x + C_2 \)C. \( y = C_1e^x + C_2e^x \)D. \( y = C_1 + C_2e^{-x} \)答案:A二、填空题(每题5分,共20分)1. 微分方程 \( y'' + y' + y = 0 \) 的通解是 \( y = C_1e^{-x}+ C_2e^{-\frac{1}{2}x} \),其中 \( C_1 \) 和 \( C_2 \) 是常数。
2. 微分方程 \( y'' - 4y = 0 \) 的通解是 \( y = C_1\cos(2x) +C_2\sin(2x) \),其中 \( C_1 \) 和 \( C_2 \) 是常数。
3. 微分方程 \( y'' + 4y = 0 \) 的通解是 \( y = C_1\cos(2x) +C_2\sin(2x) \),其中 \( C_1 \) 和 \( C_2 \) 是常数。
数学必修二:常微分方程的应用习题答案
数学必修二:常微分方程的应用习题答案一、填空题1. 解微分方程 $\frac{dy}{dx}=\frac{x-y}{x+y}$,得到的特解为$y=$_____。
解答:首先,观察到该方程是一阶线性齐次方程的形式,所以我们假设解为 $y=ux$,代入原方程,得到 $\frac{du}{dx}=-\frac{1+u}{1-u}$。
化简后得到 $\frac{1+u}{u(1-u)}du=-dx$。
分离变量并两边积分,得到 $\ln\left|\frac{1+u}{u(1-u)}\right|=-x+c$,其中 $c$ 为常数。
进一步化简,得到 $\frac{1+u}{u(1-u)}=k\cdot e^{-x}$,其中 $k=\pm e^c$。
将$y=ux$ 代入,得到 $\frac{1+\frac{y}{x}}{\frac{y}{x}(1-\frac{y}{x})}=k\cdot e^{-x}$,整理后得到 $y=\frac{k\cdot x}{1-k\cdotx}$。
所以解为 $y=\frac{k\cdot x}{1-k\cdot x}$。
2. 解微分方程 $\frac{dy}{dx}=\frac{x^2+y^2}{2x+y}$,得到的特解为 $y=$_____。
解答:我们先观察到该方程是一个齐次方程的形式,所以我们可以做变换 $y=vx$,得到 $\frac{dv}{dx}=\frac{1+v^2}{2+v}$。
将分子移到右边并分离变量,得到 $\frac{dv}{1+v^2}=\frac{dx}{2+x}$。
对左边积分,得到$\arctan(v)=\ln|2+x|+c$,其中$c$ 为常数。
再次代入$y=vx$,得到 $\arctan\left(\frac{y}{x}\right)=\ln|2+x|+c$。
整理之后,得到$y=x\tan(\ln|2+x|+c)$。
所以解为 $y=x\tan(\ln|2+x|+c)$。
《常微分方程》答案_习题4.2
习题4.21. 解下列方程(1)045)4(=+''-x x x 解:特征方程1122045432124-==-===+-λλλλλλ,,,有根故通解为x=tt t t e c e c e c e c --+++432221 (2)03332=-'+''-'''x a x a x a x 解:特征方程0333223=-+-a a a λλλ有三重根a =λ故通解为x=at at at e t c te c e c 2321++ (3)04)5(=''-x x解:特征方程0435=-λλ有三重根0=λ,=4λ2,=5λ-2 故通解为54232221c t c t c e c e c x t t ++++=-(4)0102=+'+''x x x解:特征方程01022=++λλ有复数根=1λ-1+3i,=2λ-1-3i故通解为t e c t e c x t t 3sin 3cos 21--+= (5) 0=+'+'x x x解:特征方程012=++λλ有复数根=1λ,231i +-=2λ,231i-- 故通解为t ec t ec x t t 23sin 23cos 212211--+=(6) 12+=-''t s a s 解:特征方程022=-a λ有根=1λa,=2λ-a当0≠a 时,齐线性方程的通解为s=at at e c e c -+21Bt A s +=~代入原方程解得21aB A -== 故通解为s=at at e c e c -+21-)1(12-t a当a=0时,)(~212γγ+=t t s 代入原方程解得21,6121==γγ 故通解为s=t c c 21+-)3(612+t t(7) 32254+=-'+''-'''t x x x x解:特征方程025423=-+-λλλ有根=1λ2,两重根=λ 1 齐线性方程的通解为x=t t t te c e c e c 3221++又因为=λ0不是特征根,故可以取特解行如Bt A x +=~代入原方程解得A=-4,B=-1故通解为x=t t t te c e c e c 3221++-4-t (8) 322)4(-=+''-t x x x解:特征方程121201224-===+-λλλλ重根,重根有 故齐线性方程的通解为x=t t t t te c e c te c e c --+++4321取特解行如c Bt At x ++=2~代入原方程解得A=1,B=0,C=1 故通解为x=t t t t te c e c te c e c --+++4321+12+t (9)t x x cos =-'''解:特征方程013=-λ有复数根=1λ,231i +-=2λ,231i--13=λ 故齐线性方程的通解为t t t e c t e c t ec x 321221123sin 23cos ++=--取特解行如t B t A x sin cos ~+=代入原方程解得A=21,21-=B 故通解为t t t e c t e c t ec x 321221123sin 23cos ++=--)sin (cos 21t t +-(10) t x x x 2sin 82=-'+''解:特征方程022=-+λλ有根=1λ-2,=2λ 1 故齐线性方程的通解为x=t t e c e c 221-+ 因为+-2i 不是特征根取特解行如t B t A x 2sin 2cos ~+=代入原方程解得A=56,52-=-B 故通解为x=t t e c e c 221-+t t 2sin 562cos 52-- (11)t e x x =-'''解:特征方程013=-λ有复数根=1λ,231i +-=2λ,231i--13=λ 故齐线性方程的通解为t t t e c t e c t ec x 321221123sin 23cos ++=-- =λ1是特征方程的根,故t Ate x =~代入原方程解得A=31故通解为t t t e c t e c t ec x 321221123sin 23cos ++=--+t te 31(12)t e s a s a s =+'+''22解:特征方程0222=++a a λλ有2重根=λ-a 当a=-1时,齐线性方程的通解为s=t tte c e c 21+,=λ1是特征方程的2重根,故t e At x 2~=代入原方程解得A=21通解为s=22121t te c e c t t ++,当a ≠-1时,齐线性方程的通解为s=at atte c e c --+21,=λ1不是特征方程的根,故t Ae x =~代入原方程解得A=2)1(1+a故通解为s=at at te c e c --+21+te a 2)1(1+ (13)t e x x x 256=+'+''解:特征方程0562=++λλ有根=1λ-1,=2λ-5 故齐线性方程的通解为x=tte c e c 521--+=λ2不是特征方程的根,故t Ae x 2~=代入原方程解得A=211 故通解为x=t t e c e c 521--++t e 2211 (14)t e x x x t cos 32-=+'-''解:特征方程0322=+-λλ有根=1λ-1+2i,=2λ-1-2i故齐线性方程的通解为t e c t e c x t t 2sin 2cos21+=i ±-1不是特征方程的根, 取特解行如t e t B t A x -+=)sin cos (~代入原方程解得A=414,415-=B 故通解为t e c t e c x t t 2sin 2cos21+=+t e t t --)sin 414cos 415((15) t t x x 2cos sin -=+''解:特征方程012=+λ有根=1λi,=2λ- i 故齐线性方程的通解为t c t c x sin cos 21+=t x x sin =+'',=1λi,是方程的解 )sin cos (~t B t A t x +=代入原方程解得 A=21- B=0 故t t x cos 21~-=t x x 2cos -=+'' t B t A x 2sin 2cos ~+=代入原方程解得 A=31B=0 故t x 2cos 31~= 故通解为t c t c x sin cos 21+=t t cos 21-t 2cos 31+习 题 6-11. 求出齐次线性微分方程组y t A dtdy)(=的通解,其中A (t )分别为:(1)⎪⎪⎭⎫ ⎝⎛=1011)(t A ;(2)⎪⎪⎭⎫⎝⎛-=0110)(t A ;(3)⎪⎪⎪⎭⎫ ⎝⎛=000010100)(t A 。
常微分方程课后习题答案
常微分方程课后习题答案常微分方程课后习题答案在学习常微分方程的过程中,课后习题是巩固知识和提高能力的重要环节。
通过解答习题,我们可以更好地理解和应用所学的概念和方法。
下面是一些常见的常微分方程习题及其答案,供大家参考。
一、一阶常微分方程1. 求解方程:dy/dx = 2x。
解:对方程两边同时积分,得到y = x^2 + C,其中C为常数。
2. 求解方程:dy/dx = x^2 - 1。
解:对方程两边同时积分,得到y = (1/3)x^3 - x + C,其中C为常数。
3. 求解方程:dy/dx = 3x^2 + 2。
解:对方程两边同时积分,得到y = x^3 + 2x + C,其中C为常数。
二、二阶常微分方程1. 求解方程:d^2y/dx^2 + 4dy/dx + 4y = 0。
解:首先求解特征方程:r^2 + 4r + 4 = 0,解得r = -2。
因此,方程的通解为y = (C1 + C2x)e^(-2x),其中C1和C2为常数。
2. 求解方程:d^2y/dx^2 + 2dy/dx + y = x^2。
解:首先求解特征方程:r^2 + 2r + 1 = 0,解得r = -1。
因此,方程的通解为y = (C1 + C2x)e^(-x) + (1/6)x^2 - (1/2)x + (1/2),其中C1和C2为常数。
3. 求解方程:d^2y/dx^2 + 3dy/dx + 2y = e^(-x)。
解:首先求解特征方程:r^2 + 3r + 2 = 0,解得r = -1和r = -2。
因此,方程的通解为y = (C1e^(-x) + C2e^(-2x)) + (1/3)e^(-x),其中C1和C2为常数。
三、应用题1. 一个物体在空气中的速度满足以下方程:dv/dt = -9.8 - 0.1v,其中v为速度,t为时间。
求物体的速度随时间的变化情况。
解:这是一个一阶线性常微分方程。
将方程改写为dv/(9.8 + 0.1v) = -dt,再两边同时积分,得到ln|9.8 + 0.1v| = -t + C,其中C为常数。
(完整版)常微分方程习题及解答
常微分方程习题及解答一、问答题:1.常微分方程和偏微分方程有什么区别?微分方程的通解是什么含义?答:微分方程就是联系着自变量,未知函数及其导数的关系式。
常微分方程,自变量的个数只有一个。
偏微分方程,自变量的个数为两个或两个以上。
常微分方程解的表达式中,可能包含一个或几个任意常数,若其所包含的独立的任意常数的个数恰好与该方程的阶数相同,这样的解为该微分方程的通解。
2.举例阐述常数变易法的基本思想。
答:常数变易法用来求线性非齐次方程的通解,是将线性齐次方程通解中的任意常数变易为待定函数来求线性非齐次方程的通解。
例:求()()dyP x y Q x dx=+的通解。
首先利用变量分离法可求得其对应的线性齐次方程的通解为()P x dxy c ⎰=l ,然后将常数c 变易为x 的待定函数()c x ,令()()P x dxy c x ⎰=l ,微分之,得到()()()()()P x dxP x dx dy dc x c x P x dx dx⎰⎰=+l l ,将上述两式代入方程中,得到 ()()()()()()()()()P x dxP x dx P x dxdc x c x P x dx c x P x Q x ⎰⎰+⎰=+l l l即()()()P x dx dc x Q x dx-⎰=l 积分后得到()()()P x dxc x Q x dx c -⎰=+⎰%l 进而得到方程的通解()()(())P x dxP x dxy Q x dx c -⎰⎰=+⎰%l l3.高阶线性微分方程和线性方程组之间的联系如何?答:n 阶线性微分方程的初值问题()(1)11(1)01020()...()()()(),(),....()n n n n n nx a t xa t x a t x f t x t x t x t ηηη---'⎧++++=⎪⎨'===⎪⎩ 其中12()(),...(),()n a t a t a t f t ,是区间a tb ≤≤上的已知连续函数,[]0,t a b ∈,12,,...,n ηηη是已知常数。
〈常微分方程》应用题及答案
应 用 题(每题10分)1、设()f x 在(,)-∞∞上有定义且不恒为零,又()f x '存在并对任意,x y 恒有()()()f x y f x f y +=,求()f x 。
2、设()()()F x f x g x =,其中函数(),()f x g x 在(,)-∞∞内满足以下条件()(),()(),(0)0,()()2x f x g x g x f x f f x g x e ''===+=(1)求()F x 所满足的一阶微分方程; (2)求出()F x 的表达式。
3、已知连续函数()f x 满足条件320()3x xt f x f dt e ⎛⎫=+ ⎪⎝⎭⎰,求()f x 。
4、已知函数()f x 在(0,)+∞内可导,()0,lim ()1x f x f x →+∞>=,且满足110()lim ()h x h f x hx e f x →⎛⎫+ ⎪= ⎪⎪⎝⎭,求()f x 。
5、设函数()f x 在(0,)+∞内连续,5(1)2f =,且对所有,(0,)x t ∈+∞,满足条件 111()()()xt x tf u du t f u du x f u du =+⎰⎰⎰,求()f x 。
6、求连续函数()f x ,使它满足10()()sin f tx dt f x x x =+⋅⎰。
7、已知可微函数()f t 满足31()()1()xf t dt f x t f t t =-+⎰,试求()f x 。
8、设有微分方程 '2()y y x ϕ-=, 其中21()01x x x ϕ<⎧=⎨>⎩。
试求在(,)-∞∞内的连续函数()y y x =使之在(,1)-∞和()1,+∞内部满足所给方程,且满足条件(0)0y =。
9、设位于第一象限的曲线()y f x =过点122⎛⎫⎪ ⎪⎝⎭,其上任一点(,)P x y 处的法线与y 轴的交点为Q ,且线段PQ 被x 轴平分。
〈常微分方程》应用题及答案doc资料
〈常微分方程》应用题及答案应用题(每题10 分)1、设f(X)在(,)上有定义且不恒为零,又f(X)存在并对任意x, y恒有f (x y) f(x)f(y),求 f (x)。
2、设F(x) f(x)g(x),其中函数f(x),g(x)在(,)内满足以下条件f (x) g(x),g (x) f (x), f (0) 0, f(x) g(x) 2e x(1)求F(x)所满足的一阶微分方程;(2)求出F(x)的表达式。
3x t “3、已知连续函数f(x)满足条件f(x) f - dt e ,求f (x)。
0 34、已知函数f (x)在(0,)内可导,f(x) 0, lim f (x) 1,且满足x11f (x hx)h7 十 \lim e x,求 f (x)。
h 0f(x)55、设函数f(x)在(0,)内连续,f(1) 2,且对所有x,t (0,),满足条件xt x t1 f (u)du t i f (u)du x 1 f (u)du,求f (x)。
16、求连续函数f(x),使它满足o f (tx)dt f (x) sinx x。
7、已知可微函数f(t)满足:J■包dt f(x) 1,试求f(x)。
1 t3f(t) t2 x 18设有微分方程y' 2y (x),其中(x) 。
试求在(,)内的连0 x 1续函数y y(x)使之在(,1)和1, 内部满足所给方程,且满足条件y(0) 0 。
42 19、设位于第一象限的曲线y f (x)过点——,-,其上任一点P(x,y)处的法线2 2与y轴的交点为Q,且线段PQ被x轴平分。
(1)求曲线y f(x)的方程;(2)已知曲线y si nx在[0,]上的弧长为I,试用I表示曲线y f (x)的弧长s。
17、已知连续函数f(x)满足 f (tx) dt x解:设u=tx ,则原式化为 xf (x)— f (t)dt ,求 f (x). x21 xf(x) - 0f (t)dtx 0 x即 2 0f (t)dt xf (x)1 x f (u)du xx 0由f (x)连续知上式右端可导 即f (X )可导对上式两端关于x 求导,得一阶线性方程f'( x)丄f(x)x3x 所求函数丄dx为 f(x) e x(3xe 产dx c) cx 3x 2c 为任意常数10、 求微分方程xdy (x 2y)dx 0的一个解y y(x),使得由曲线y y(x)与 直线x 1, x 2以及x 轴所围成的平面图形绕x 轴旋转一周的旋转体体积最 小。
(完整版)〈常微分方程》应用题及答案
应 用 题(每题10分)1、设在上有定义且不恒为零,又存在并对任意恒有()f x (,)-∞∞()f x ',x y ,求。
()()()f x y f x f y +=()f x 2、设,其中函数在内满足以下条件()()()F x fx g x =(),()f x g x (,)-∞∞()(),()(),(0)0,()()2xf xg x g x f x f f x g x e ''===+=(1)求所满足的一阶微分方程;()F x (2)求出的表达式。
()F x 3、已知连续函数满足条件,求。
()f x 320()3x xt f x f dt e ⎛⎫=+ ⎪⎝⎭⎰()f x 4、已知函数在内可导,,且满足()f x (0,)+∞()0,lim ()1x f x f x →+∞>=,求。
110()lim ()h x h f x hx e f x →⎛⎫+ ⎪= ⎪⎪⎝⎭()f x 5、设函数在内连续,,且对所有,满足条件()f x (0,)+∞5(1)2f =,(0,)x t ∈+∞,求。
111()()()xt x tf u du t f u du x f u du =+⎰⎰⎰()f x 6、求连续函数,使它满足。
()f x 1()()sin f tx dt f x x x =+⋅⎰7、已知可微函数满足,试求。
()f t 31()()1()xf t dt f x t f t t =-+⎰()f x 8、设有微分方程 , 其中。
试求在内的连续函'2()y y x ϕ-=21()01x x x ϕ<⎧=⎨>⎩(,)-∞∞数使之在和内部满足所给方程,且满足条件。
()y y x =(,1)-∞()1,+∞(0)0y =9、设位于第一象限的曲线过点,其上任一点处的法线与轴()y f x =12⎫⎪⎪⎭(,)P x y y 的交点为Q ,且线段PQ 被轴平分。
常微分方程_习题集(含答案)
《常微分方程》课程习题集一、单选题1. 设函数(,),(,)M x y N x y 连续可微, 则方程(,)(,)0M x y dx N x y dy += 是全微分方程的充分必要条件是 . (A) M N y x ∂∂=∂∂, (B) ,M N x y ∂∂=∂∂ (C) ,M N y x ∂∂≠∂∂ (D) .M N x y ∂∂≠∂∂2. 下面的方程是全微分方程的是 . (A) 0ydx xdy x y-=+, (B) 220y dx x dy +=, (C) 220xy dx x ydy -=, (D)220ydx xdy x y -=-. 3. 设一阶方程2()()(),(()()0)dy p x y q x y r x p x r x dx=++≠,则它是 。
(A )线性非齐次方程; (B )伯努利方程;(C )黎卡堤方程; (D) 克莱洛方程。
4. 设一阶方程()(),(0,1)n dy p x y q x y n dx=+≠,则它是 。
(A )线性非齐次方程; (B )伯努利方程;(C )黎卡堤方程; (D) 克莱洛方程。
5. 形如'(')y xy y ϕ=+的一阶隐式方程称为 。
(A )线性非齐次方程; (B )伯努利方程;(C )黎卡堤方程; (D) 克莱洛方程。
6. 二阶微分方程2100x x x '''++=的通解是 。
(A )12[cos3sin 3]t x e C t C t -=+,(B )312[cos sin ]t x e C t C t -=+,(C )12[cos sin ]t x e C t C t -=+,(D) 312[cos3sin 3]t x e C t C t -=+.7. 二阶微分方程250x x x '''++=的通解是 。
(A )12[cos sin ]t x e C t C t -=+,(B )212[cos sin ]t x e C t C t -=+,(C )12[cos 2sin 2]t x e C t C t -=+,(D) 212[cos 2sin 2]t x e C t C t -=+.8. 二阶微分方程440x x x '''-+=的通解是 。
《常微分方程》练习题库参考答案
《常微分⽅程》练习题库参考答案江苏师范⼤学数学教育专业《常微分⽅程》练习测试题库参考答案⼀、判断说明题1、在线性齐次⽅程通解公式中C 是任意常数⽽在常数变易法中C (x )是x 的可微函数。
将任意常数C 变成可微函数C (x ),期望它解决线性⾮齐次⽅程求解问题,这⼀⽅法成功了,称为常数变易法。
2、因p(x)连续,y(x)= y 0exp(-dx xx p(x))在p(x)连续的区间有意义,⽽exp(-dx xx p(x))>0。
如果y 0=0,推出y(x)=0,如果y(x)≠0,故零解y(x)=0唯⼀。
3、(1)它是常微分⽅程,因为含有未知函数的导数,f,g 为已知函数,y 为⼀元函数,所建⽴的等式是已知关系式。
(2)它是常微分⽅程,理由同上。
(3)它不是常微分⽅程,因y 是未知函数,y(y(y(x)))也是未知的,所建⽴的等式不是已知关系式。
4、微分⽅程求解时,都与⼀定的积分运算相联系。
因此,把求解⼀个微分⽅程的过程称为⼀个微分⽅程。
微分⽅程的解⼜称为(⼀个)积分。
5、把微分⽅程的通解⽤初等函数或通过它们的积分来表达的⽅法。
注意如果通解能归结为初等函数的积分表达,但这个积分如果不能⽤初等函数表⽰出来,我们也认为求解了这个微分⽅程,因为这个式⼦⾥没有未知函数的导数或微分。
6、 y `=f(x,y)主要特征是f(x,y)能分解为两个因式的乘积,其中⼀个因式仅含有x,另⼀因式仅含y ,⽽⽅程p(x,y)dx+q(x,y)dy=0是可分离变量⽅程的主要特征,就像f(x,y)⼀样,p,q 分别都能分解成两个因式和乘积。
7、⼆元函数f(x,y)满⾜f(rx,ry)=r mf(x,y),r.>0,则称f(x,y)为m 次齐次函数。
m=0则称它为0次齐次函数。
8、如果f(x,y)是0次齐次函数,则y `=f(x,y)称为齐次⽅程。
如果p(x,y)和q(x,y)同为m 次齐次函数,则pdx+qdy=0为齐次⽅程。
常微分方程试题及参考答案
常微分方程试题一、填空题(每小题3分,共39分)1.常微分方程中的自变量个数是________.2.路程函数S(t)的加速度是常数a,则此路程函数S(t)的一般形式是________.3.微分方程=g( )中g(u)为u的连续函数,作变量变换________,方程可化为变量分离方程.4.微分方程F(x,y′)=0中令P=y′,若x、P平面上的曲线F(x,P)=0的参数形式为x= (t),P=ψ(t),t为参数,则方程参数形式的通解为________.5.方程=(x+1)3的通解为________.6.如果函数f(x,y)连续,y= (x)是方程=f(x,y)的定义于区间x0≤x≤x0+h上,满足初始条件 (x0)=y0的解.则y= (x)是积分方程________定义于x0≤x≤x0+h 上的连续解.7.方程=x2+xy,满足初始条件y(0)=0的第二次近似解是________.8.方程+a1(t) +…+a n-1(t) +a n(t)x=0中a i(t) i=1,2,…,n是〔a,b〕上的连续函数,又x1(t),x2(t),…,x n(t)为方程n 个线性无关的解,则其伏朗斯基行列式W(t) 应具有的性质是:________.9.常系数线性方程x(4)(t)-2x″(t)+x(t)=0的通解为________.10.设A(t)是区间a≤t≤b上的连续n×n矩阵,x1(t),x2(t),…,x n(t)是方程组x′=A(t)x的n个线性无关的解向量.则方程组的任一解向量x(t)均可表示为:x(t)=________的形式.11.初值问题(t)+2x″(t)-tx′(t)+3x(t)=e-t,x(1)=1,x′(1)=2,x″(1)=3 可化为与之等价的一阶方程组________.12.如果A是3×3的常数矩阵,-2为A的三重特征值,则方程组x′=Ax的基解矩阵exp A t=________.13.方程组的奇点类型是________.二、计算题(共45分)1.(6分)解方程= .2.(6分)解方程x″(t)+ =0.3.(6分)解方程(y-1-xy)dx+xdy=0.4.(6分)解方程5.(7分)求方程:S″(t)-S(t)=t+1满足S(0)=1, (0)=2的解.6.(7分)求方程组的基解矩阵Φ(t).7.(7分)验证方程:有奇点x1=1, x2=0,并讨论相应驻定方程的解的稳定性.三、证明题(每小题8分,共16分)1.设f(x,y)及连续,试证方程dy-f(x,y)dx=0为线性方程的充要条件是它有仅依赖于x的积分因子.2.函数f(x)定义于-∞<x<+∞,且满足条件|f(x1)-f(x2)|≤N|x1-x2|,其中0<N<1,证明方程x=f(x)存在唯一的一个解.常微分方程试题参考答案一、填空题(每小题3分,共39分)1.12. 2+c1t+c23.u=4. c为任意常数5.y= (x+1)4+c(x+1)26.y=y0+7. (x)=8.对任意t9.x(t)=c1e t+c2te t+c3e-t+c4te-t10.x(t)=c1x1(t)+c2x2(t) +c n x n(t)11. x1(1)=1,x2(1)=2, x3(1)=312.expAt=e-2t[E+t(A+2E)+ ]13.焦点二、计算题(共45分)1.解:将方程分离变量为改写为等式两边积分得y-ln|1+y|=ln|x|-即y=ln 或e y=2.解:令则得=0当0时-arc cosy=t+c1y=cos(t+c1) 即则x=sin(t+c1)+c2当=0时y= 即x3.解:这里M=y-1-xy, N=x令u=xye-xu关于x求偏导数得与Me-x=ye-x-e-x-xye-x 相比有则因此u=xye-x+e-x方程的解为xye-x+e-x=c4.解:方程改写为这是伯努利方程,令z=y1-2=y-1 代入方程得解方程z==于是有或5.特征方程为特征根为对应齐线性方程的通解为s(t)=c1e t+c2e-tf(t)=t+1, 不是特征方程的根从而方程有特解=(At+B),代入方程得-(At+B)=t+1两边比较同次幂系数得A=B=-1故通解为S(t)=c1e t+c2e-t-(t+1)据初始条件得c1=因此所求解为:S(t)=6.解:系数矩阵A=则,而det特征方程det( )=0, 有特征根对对对因此基解矩阵7.解:因故x1=1,x2=0是方程组奇点令X1=x1-1, X2=x2, 即x1=X1+1,x2=X2代入原方程,得化简得*这里R(X)= , 显然(当时)方程组*中,线性部分矩阵det(A- )=由det(A- )=0 得可见相应驻定解渐近稳定三、证明题(每小题8分,共16分)1.证明:若dy-f(x,y)dx=0为线性方程则f(x,y)=因此仅有依赖于x的积分因子反之,若仅有依赖于x的积分因子。
《常微分方程》题库及答案
《常微分方程》题库及答案一.求解下列方程1.求方程0sin cos =+x y dxdyx之通解; 2.求方程xx y ax dy cos 1tan =+之通解; 3.解初值问题2(1)20(0)1dy x xy dx y ⎧-+=⎪⎨⎪=⎩; 4.求方程()lndy x yxy x y dx x+-=+ 之通解; 5.求方程 yx xy y dx dy 321++= 的通解; 6. 求方程 0)3()3(2323=-+-dy y x y dx xy x 的通解; 7.求由以xxx x cos ,sin 为基本解组的线性齐次方程; 8.求方程 2)(22x dx dy xdx dy y +-=的通解及奇解; 9.求方程⎰+=+xx y x dt dtt dy 02)(2))((1 的通解; 10. 求方程 0)sin ()2sin (22=-++dy y xy dx x y x 的通解; 11.求由以 x x x ln , 为基本解组的线性齐次方程; 12.求方程 2222)(12dxdy y y dx y d += 的通解. 13.求方程y y dxdyln =之通解。
14.求方程xy dxdyy x 2)(22=+之通解。
15.求方程0)(222=-+dy y x xydx 之通解。
16. 求方程y x e dxdy-=之通解。
17. 求方程0)2(=+---dy xe y dx e yy 之通解。
18. 求方程x x y y sec tan '=+之通解。
二.1.解初值问题⎪⎩⎪⎨⎧-==y x e axdyy 20)1(2.求如下微分方程组之通解:⎪⎪⎪⎩⎪⎪⎪⎨⎧-=++-=--=z x dtdz z y x dtdyz y x dt dx2. 3.求出初值问题的逐次近似解21,0y y y :2(0)0dyx y dxy =+=⎧⎪⎨⎪⎩. 4. 求出微分方程0).().(=+dy y x N dx y x M 有形如)(22y x +=ϕυ的积分因子的充要条件。
数学必修二:常微分方程习题答案
数学必修二:常微分方程习题答案1. 问题1已知常微分方程dy/dx = x + y,求解该微分方程。
解答:将该微分方程重新整理,得到(dy/dx) - y = x。
这是一个一阶线性常微分方程。
首先求解其齐次方程(dy/dx) = y。
解齐次方程得到y = ce^x,其中c为任意常数。
然后我们利用常数变易法,假设原方程的特解形式为y = u(x)e^x,其中u(x)是待定函数。
将y代入原方程得到(u'e^x + u)e^x - u(x)e^x = x,化简可得u'e^x = x,解这个常微分方程得到u(x) = (1/2)x^2 + C1,其中C1为常数。
因此,原方程的通解为y = ce^x + (1/2)x^2 + C1e^x,其中c和C1为任意常数。
2. 问题2已知常微分方程 dy/dx = 2xy,求解该微分方程。
解答:将该微分方程进行整理,得到 dy/dx - 2xy = 0。
这是一个一阶线性齐次微分方程。
首先求解其齐次方程 dy/dx = 2xy,将其变形为 dy/y = 2x dx,并对两边同时积分,得到 ln|y| = x^2 + C,其中C为常数。
解出y为 y = Ce^(x^2),其中C为常数。
3. 问题3已知常微分方程 dy/dx + y = 3e^(-x),求解该微分方程。
解答:将该微分方程进行整理,得到 dy/dx = 3e^(-x) - y。
这是一个一阶非齐次线性微分方程。
首先求解其齐次方程dy/dx = -y,得到y = Ce^(-x),其中C为常数。
然后我们利用常数变易法,假设原方程的特解形式为y = u(x)e^(-x),其中u(x)是待定函数。
将y代入原方程得到 (u'e^(-x) - u)e^(-x) = 3e^(-x),化简可得 u' = 3,解这个常微分方程得到u(x) = 3x + C1,其中C1为常数。
因此,原方程的通解为 y = ce^(-x) + (3x + C1)e^(-x),其中c和C1为任意常数。
《常微分方程》作业参考答案
《常微分方程》作业参考答案一.求解下列方程1.x c y cos =2.通解为:x x c y sin cos +=3.dx x x dy 122-= ⎰⎰--=122)1(xx d dy 2ln 1y x c =-+ 1)0(==c y 2ln |1|1y x ∴=-+4.'(1)ln(1)y yyy x x x -=++ 令 xuy x yu =⇔= (1)ln(1)dyduu x u u u dx dx ∴=+=+++故 (1)ln(1)dux u u dx =++(1)ln(1)du dx u u x =++ ln(1)ln(1)d u dxu x +=+ln ln(1)ln ln u x c ∴+=+ ln(1)u cx +=cx e u =+1 cx e x y=+∴1 )1(-=cx e x y5. 可分离变量方程,通解为.)1)(1(222cx y x =++6.齐次方程,通解为 c x x yx y =++ln 422sin .7.全微分方程,通解为 .64224c y y x x =+-8..0222=++y dx dyx dx y d9. 解为 .)3(3x x y -=10. 通解为 .2sin 222c y x y x =++11.方程为 .011222=+-y x dx dyx dx y d12.通解为 ).tan(21c x c y +=二.1.通解为:c e e x y +=2212. 通解为: t t e c c e c z y x 2321123101210⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛-3.0)0(0==y y 2121x y =52220121x x y += 4. x uN y uM ∂∂=∂∂ xu N x N u y u M y M u ∂∂+∂∂=∂∂+∂∂ 令 u y x =+22 y u d u d y u 2⋅=∂∂∴ x ud u d x u 2⋅=∂∂ u d u d x x N u u d u d y y M u 22+∂∂=+∂∂ ⎪⎪⎭⎫ ⎝⎛∂∂-∂∂=-∴y M x N u u d u d x y )(2故满定充要条件的表达式为:)(22y x xy y M xN +=--∂∂∂∂ϕ 5.)(2122y x v +=)(*dtdv)(22s x +-≤∠0 022≠+s x ∴(0.0)渐近稳定 6.一次近似方程为:⎪⎩⎪⎨⎧+=--=y x dtdy y x dt dx 32 特征方程为:012=++λλ 3-=∴∆<0 P =1>0 ∴0)Re(0)Re(21<<λλ, 则(0.0)局部渐过稳定. 7.01032=--λλ 5,221=-=λλx B x B x A x A y o 2sin )(2cos )(101*1+++=为x x y y y 2cos 10'3"=-- 之特解,±2λ不是特征根5=a 是特征方程的单根 x o e c x c x c x y 52122)(++=∴*故其通解为: 215221y y e c ec y x x +++=-8.特征根为:2.1.1321==-=λλλ 11-=λ所属的特征向量为:⎪⎪⎪⎭⎫ ⎝⎛-=532α12=λ所属的特征向量为:⎪⎪⎪⎭⎫ ⎝⎛=111β13=λ所属的特征向量为:γ⎪⎪⎪⎭⎫ ⎝⎛=101通解为:t t t e c e c e c z y x 2321101111531⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛-9.0:)0(=o y y 2121x y =52220121x x y -= 10.特征方程为:01072=++λλ07>=p 010>=g 0>∆故 (0.0)为稳定结点11.1.一次近似方程为:⎪⎩⎪⎨⎧-=--=yx y x t d y d dt x d 0222=++∴λλ0)Re(1<λ 0)Re(2<λ ∴(0.0)为局部渐近稳定 2.)(2122y x v +=. )1)((2222)(-++=*y x y x l dt dv 故122<+y x 0<∴dtdv 故(0.0)局部渐近稳定. 12. 1.,00=y ,31),(3020001x dx x dx y x f y y x x==+=⎰⎰ .63131)91(),(730620102x x dx x x dx y x f y y x x+=+=+=⎰⎰ 2. ,),(22y x y x f += ∴ ,5),(max ),(==∈y x f M Dy x ,42max max ),(),(L y y f D y x D y x ===∂∂∈∈ .5252,1min ,min =⎭⎬⎫⎩⎨⎧=⎭⎬⎫⎩⎨⎧=m b a h则 .7564)52(32145)()(322=⋅⋅⋅≤-x y x y 13. 系数阵为 ,110111110⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡- 特征方程为 .0)1()det(2=--=-λλλE A E A λ-的初等因子为 2)1(,-λλ,通解为.101010101112321t t e t c e c c z y x ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛14.证:设 [).),0()(..,0+∞∈∀≤>∃x M x f t s M .则[)+∞∈∀,0x ,有 .)1()(0)(0000M y e M y ds e Me y x y x x xx s x+≤-+=+≤--⎰[]),,0()(0x C x y ∈ ∴ [].,0,)(..,00x x M x y t s M ∈≤>∃令 {},,max 0M y M K += ∴ [).,0,)(+∞∈∀≤x K x y15.通解为 .)21(221xx e x x x c e c y -++=16.,2=α 特解为 ,1x y = 通解为 ).ln 21(221x x x c x c y +-+=。
常微分试题及答案
常微分试题及答案一、选择题1. 若微分方程 dy/dx = 3x^2,则它的通解为:A. y = x^3 + CB. y = x^2 + CC. y = x^3/3 + CD. y = x^4/2 + C答案:C2. 设 y = e^x 是微分方程 dy/dx - y = 0 的解,则该微分方程的通解为:A. y = e^xB. y = e^(2x)C. y = e^(3x)D. y = e^(4x)答案:A3. 设 y = x^2 是齐次微分方程 y'' - y' - 2y = 0 的解,则该微分方程的通解为:A. y = x^2B. y = x^2 + CC. y = e^x + CD. y = e^(2x) + C答案:B二、计算题1. 解微分方程 dy/dx = 2x + 1,并求出满足初始条件 y(0) = 1 的特解。
解:对微分方程进行分离变量得:dy = (2x + 1)dx两边同时积分得:∫dy = ∫(2x + 1)dxy = x^2 + x + C代入初始条件 y(0) = 1 得:1 = 0^2 + 0 + CC = 1特解为:y = x^2 + x + 12. 求微分方程 y'' + 2y' + y = 0 的通解。
解:首先设通解为 y = e^(rx),带入微分方程得:r^2e^(rx) + 2re^(rx) + e^(rx) = 0化简得:e^(rx)(r^2 + 2r + 1) = 0由指数函数的性质可知,e^(rx) 不等于 0,因此:r^2 + 2r + 1 = 0求解这个二次方程得:r = -1 (二重根)所以,通解为 y = (C1 + C2x)e^(-x)三、应用题有一容器中装有某种细菌,已知初始时刻容器中有 1000 个细菌,随着时间的推移,细菌的数量的变化率与它们的数量成正比。
经实验测得 2 小时后细菌的数量增加到 2000 个。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
应 用 题(每题10分)1、设()f x 在(,)-∞∞上有定义且不恒为零,又()f x '存在并对任意,x y 恒有()()()f x y f x f y +=,求()f x 。
2、设()()()F x f x g x =,其中函数(),()f x g x 在(,)-∞∞内满足以下条件()(),()(),(0)0,()()2x f x g x g x f x f f x g x e ''===+=(1)求()F x 所满足的一阶微分方程; (2)求出()F x 的表达式。
3、已知连续函数()f x 满足条件320()3x xt f x f dt e ⎛⎫=+ ⎪⎝⎭⎰,求()f x 。
;4、已知函数()f x 在(0,)+∞内可导,()0,lim ()1x f x f x →+∞>=,且满足110()lim ()h x h f x hx e f x →⎛⎫+ ⎪= ⎪⎪⎝⎭,求()f x 。
5、设函数()f x 在(0,)+∞内连续,5(1)2f =,且对所有,(0,)x t ∈+∞,满足条件 111()()()xt x tf u du t f u du x f u du =+⎰⎰⎰,求()f x 。
6、求连续函数()f x ,使它满足10()()sin f tx dt f x x x =+⋅⎰。
7、已知可微函数()f t 满足31()()1()xf t dt f x t f t t =-+⎰,试求()f x 。
8、设有微分方程 '2()y y x ϕ-=, 其中21()01x x x ϕ<⎧=⎨>⎩。
试求在(,)-∞∞内的连续函数()y y x =使之在(,1)-∞和()1,+∞内部满足所给方程,且满足条件(0)0y =。
9、设位于第一象限的曲线()y f x =过点122⎛⎫⎪ ⎪⎝⎭,其上任一点(,)P x y 处的法线与y 轴的交点为Q ,且线段PQ 被x 轴平分。
(1)求曲线()y f x =的方程;(2)已知曲线sin y x =在[0,]π上的弧长为l ,试用l 表示曲线()y f x =的弧长s 。
'10、求微分方程(2)0xdy x y dx +-=的一个解()y y x =,使得由曲线()y y x =与直线1,2x x ==以及x 轴所围成的平面图形绕x 轴旋转一周的旋转体体积最小。
11、设曲线L 位于xOy 平面的第一象限内,L 上任一点M 处的切线与y 轴总相交,交点记为A ,已知||||MA OA =,且L 过点33,22⎛⎫⎪⎝⎭,求L 的方程。
12、设曲线L 的极坐标方程为(),(,)r r M r θθ=为L 上任一点,0(2,0)M 为L 上一定点,若极径0,OM OM 与曲线L 所围成的曲边扇形面积值等于L 上0,M M 两点间弧长值的一半,求曲线L 的方程。
13、设1y x =和2ln y x x =是二阶齐次线性方程 "()'()0y p x y q x y ++= 的两个解,求(),()p x q x 以及该方程的通解。
14、设对任意0x >,曲线()y f x =上点(,())x f x 处的切线在y 轴上的截距等于01()xf t dt x⎰,求()f x 的一般表达式。
15、设函数(),()f x g x 满足'()(),'()2()xf xg x g x e f x ==-,且(0)0,(0)2f g ==,求20()()1(1)g x f x dx x x π⎡⎤-⎢⎥++⎣⎦⎰。
·16、设函数()y y x =在(,)-∞+∞内具有二阶导数,且'0y ≠,()x x y = 是()y y x =的反函数。
(1)试将()x x y =满足的微分方程 322(sin )0d xdx y x dy dy ⎛⎫++= ⎪⎝⎭,变换为()y y x =所满足的微分方程;(2)求变换后的微分方程满足初始条件3(0)0,'(0)2y y ==的解。
17、已知连续函数f x ()满足f tx dt x f x x f t dt x()()()01201⎰⎰=+-,求f x ().解:设u=tx ,则原式化为1102x f u du x f x x f t dt x x ()()()=+-⎰⎰即203f t dt x xf x x()()⎰=+ 由f (x)连续知上式右端可导 即f (x)可导对上式两端关于x 求导,得一阶线性方程f x xf x x '()()-=-13 所求函数为f x exedx c cx x dxx dx()()=⎰-⎰+=-⎰1133x 2 c 为任意常数18、.对于任意简单闭曲线L ,恒有20224xyf x dx f x x dy L()[()]+-=⎰,其中 f (x)在()-∞+∞,有连续的导数,且f (0)=2.求f x ().19、设f (x)满足)(x f '=f (1-x),求f x ()20、设ϕϕ()()()x e x u u du xx=--⎰,其中(x)为连续函数,求(x )21、人工繁殖细菌,其增长速度和当时的细菌数成正比。
(1)如果4小时的细菌数为原细菌数的2倍,那么经过12小时应有多少(2)如在3小时的时候,有细菌数410个,在5小时的时候有4410⨯个,那么在开始时有多少个细菌应 用 题 答 案1、解: 首先从导数定义出发,证明()f x 处处可微,并求出()f x 与()f x '满足的关系,最后定出()f x 。
由于()f x 不恒为零,设0(0)0f x +≠,因而 000()(0)()(0)f x f x f x f =+=得到(0)1f =又由'(0)f 存在,对任意x 有`00()()()()()'()limlimx x f x x f x f x f x f x f x x x∆→∆→+∆-∆-==∆∆ 0()[()1]lim ()(0)x f x f x f x f x∆→∆-'==⋅∆ 由此可见()f x 处处可微且满足 '()()'(0)f x f x f = 即 (0)dff dx f'= 解得'(0)()f x f x ce =又由 (0)1f = 所以 '(0)()f xf x e =。
2、解:(1)22()()()()()()()F x f x g x f x g x g x f x '''=+=+222[()()]2()()(2)2()f x g x f x g x e F x =+-=-于是()F x 满足一阶线性微分方程 224xy y e '+=(2)按一阶线性微分方程的通解公式,|{}{}2222422()44dxdxx xxx x F x e e edx C e edx C e Ce ---⎰⎰=⋅+=+=+⎰⎰由 (0)(0)(0)0F f g == 得 1C =-,于是 22()xxF x e e -=-.3、解:方程两端同时对x 求导,得到 2()3()2xf x f x e '=+ 由题设知道 0(0)01f e =+=。
故令 ()f x y = 即得 20321xx y y ey ='⎧-=⎪⎨=⎪⎩332332222dx dx xx x x x y e C e e dx e C e dx Ce e --⎡⎤⎰⎰⎡⎤=+⋅=+=-⎢⎥⎣⎦⎣⎦⎰⎰ 由 01x y == 得到 3C =于是 32()32xx f x ee =-.】4、解:设1()()hf x hx y f x ⎛⎫+=⎪⎝⎭, 则 1()ln ln ()f x hx y h f x +=. 因为 0001()[ln ()ln ()]limln lim lnlim [ln ()]()h h h f x hx x f x hx f x y x f x h f x hx→→→++-'===, 故1[ln ()]0()lim ()hx f x h f x hx e f x '→⎛⎫+= ⎪⎝⎭. 由已知条件得1[ln ()]x f x xee'=,因此 1[ln ()]x f x x '=,即 21[ln ()]f x x'=. 解之得 1()xf x Ce-= 。
由lim ()1x f x →+∞=,得 1C =。
故 1()xf x e -=。
5、解:由题意可知,等式的每一项都是x 的可导函数,于是等式两边对x 求导,得1()()()ttf xt tf x f u du =+⎰ (1)|在(1)式中令1x =,由5(1)2f =,得 15()()2t tf t t f u du =+⎰, (2)则()f t 是(0,)+∞内的可导函数,(2)式两边对t 求导,得 5()'()()2f t tf t f t +=+,即 5'()2f t t=。
上式两边求积分,得 5()ln 2f t t C =+由5(1)2f =,得52C =。
于是 5()(ln 1)2f t t =+。
6、解:令,u tx du xdt ==,原方程变为 01()()sin xf u du f x x x x =+⎰即20()()sin x f u du xf x x x =+⎰.两边求导数,得到 2()()()2sin cos f x f x xf x x x x x '=+++'()2sin cos f x x x x =---积分得 ()2cos sin 2cos sin cos f x x xd x x x x x C =-=-++⎰cos sin x x x C =-+.7、解:首先从题设可求得 (1)1f =, 方程两边求导得 3()'()()f x f x x f x x=+. 记 ()y f x = ,得 3'yy x y x=+ 考虑 ()x x y =,方程可化为伯努利方程31dx x x dy y-= 且 11x y == 令 232u xdu x dx --==-22du u dy y+=- 22322122233dy dy y y C u e C e dy C y y y y -⎡⎤⎰⎰⎡⎤=+-⋅=-=-⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦⎰ 变量还原得 22123C y x y =- 或者23()2()3f x f x C x +=. 又因为(1)1f =,代入上式可得C =53。
即23()25().33f x f x x += #8、解:当1x <时, 22y y '-=22222111221dxdx x x x y e C e dx e C e dx C e --⎡⎤⎰⎰⎡⎤=+=+=-⎢⎥⎣⎦⎣⎦⎰⎰ 1x < 由 (0)0y = 代入得 11C = 所以 21(1)xy e x =-< 当 1x > 时 20y y '-=通解为 2222(1)dxxy C e C e x ⎰==>由 1x = 处()y x 是连续的 2222221010lim lim (1)1xx x x C eC e e e →+→-==-=-.所以 2221C e e =- 221C e =-.于是若补充函数值 211x y e ==- ,则得到(,)-∞∞上连续函数是所求的函数22211()(1)1x xe x y x e ex -⎧-≤=⎨->⎩ #是所求的函数。