分数、小数四则运算中速算与巧算(一)解读
第1讲 速算与巧算
第一章速算与巧算知识要点在速算与巧算中,主要是运算定律、性质和一些技巧方法的运用。
1.加法巧算。
(1)加法交换律:两个数相加,交换加数的位置,它们的和不变。
字母表示:a+b=b+a(2)加法结合律;三个数相加,先把前两个数相加,再加上第三个数,或者先把后两个数相加,再同第一个数相加,它们的和不变。
字母表示:a+b+c=(a+b)+c=a+(b+c)交换律和结合律通常是在一起使用。
如果多个数相加,任意交换加数的位置,它们的和不变,或者先把其中的几个数结合成一组相加,再把所得的和同其他剩下的数相加,它们的和仍然不变。
字母表示:a+b+c+d+e=d+(b+d+e)+c2.减法巧算。
(1)减法的运算性质(有时可以将减法的运算性质理解成填括号或去括号的性质):一个数减去几个数的和,等于从这个数里依次减去和中的每一个加数。
字母表示:a-(b+c+d)=a-b-c-d(2)一个数连续减去几个数,等于从这个数中减去这几个数的和。
字母表示:a-b-c-d=a-(b+c+d)3.乘法巧算。
(1)乘法交换律:两个数相乘,交换因数的位置,积不变。
字母表示:a×b=b×a(2)乘法结合律:三个数相乘,可以先把前两个数结合起来相乘,再和第三个数相乘;也可以先把后两个数结合起来先乘,再和第一个数相乘,它们的积不变。
字母表示:a×b×c=(a×b)×c=a×(b×c)交换律和结合律通常是在一起使用。
如果多个数相乘,任意交换因数的位置,它们的积不变;可以选择两个因数相乘,得出便于运算的整十、整百、整千……的积,再将这个积与其他的因数相乘;有时可以把一个因数用几个因数相乘的形式表示,使其中一个因数与算式中其他的某个因数的积成为便于运算的数,然后再与其他的因数相乘,使计算快捷准确。
(3)积不变的规律:如果一个因数扩大若干倍,另一个因数缩小同样的倍数,那么它们的积不变。
(1)速算与巧算
加法运算中的运算定律有:
1.加法交换律:两个数相加,交换加数的位置,它们的和不变,即:
a+b=b+a
2.加法结合律:三个数相加,可以先把前两个数相加,再加上第三个数,也可以先把后两个数相加,再同第一个数相加,它们的和不变,即
(a+b)+c=a+(b+c)
在整数加法运算中,通常利用加法交换律和结合律把几个能够凑成整十、整百、整千……的数先相加,再与题中剩下的数相加。
=659+2-3
=658
[例7]简便计算:
(1)474-57+126-243 (2)936-867-99+267
[分析]这两题的综合性较强。
[解]
(1)474-57+126-243
=474+126-(57+243)
=600-300
=300
(2)936-867-99+267
=(936-99)-(867-267)
=(936-100+1)-600
=837-600
=237
[小结]在这一讲中,我们介绍了简便运算的一种基本方法——凑整法。即利用加法运算定律、利用找基准数、四则运算性质,在题目中凑出整十、整百、整千……的数,达到速算的目的。
【能力训练】
用简便方法计算下列各题:
1.(1)72+67+28
(2)804+600+1400+250+196+1750
=989-800
=189
(2)30000-(1596+10000)
=30000-10000-1596
=20000-1596
=18404
(3)2536-(558+536)
=2536-536-558
=2000-558
=1442
(4)2938-3755+1755
小学数学速算与巧算方法例解
小学数学速算与巧算方法例解【转】2011-04-17 21:04:55| 分类:教海拾贝|举报|字号订阅速算与巧算在小学数学中,关于整数、小数、分数的四则运算,怎么样才能算得既快又准确呢?这就需要我们熟练地掌握计算法则和运算顺序,根据题目本身的特点,综合应用各种运算定律和性质,或利用和、差、积、商变化规律及有关运算公式,选用合理、灵活的计算方法。
速算和巧算不仅能简便运算过程,化繁为简,化难为易,同时又会算得又快又准确。
一、“凑整”先算1.计算:(1)24+44+56(2)53+36+47解:(1)24+44+56=24+(44+56)=24+100=124这样想:因为44+56=100是个整百的数,所以先把它们的和算出来.(2)53+36+47=53+47+36=(53+47)+36=100+36=136这样想:因为53+47=100是个整百的数,所以先把+47带着符号搬家,搬到+36前面;然后再把53+47的和算出来.2.计算:(1)96+15(2)52+69解:(1)96+15=96+(4+11)=(96+4)+11=100+11=111这样想:把15分拆成15=4+11,这是因为96+4=100,可凑整先算.(2)52+69=(21+31)+69=21+(31+69)=21+100=121这样想:因为69+31=100,所以把52分拆成21与31之和,再把31+69=100凑整先算.3.计算:(1)63+18+19解:(1)63+18+19=60+2+1+18+19=60+(2+18)+(1+19)=60+20+20=100这样想:将63分拆成63=60+2+1就是因为2+18和1+19可以凑整先算.(2)28+28+28=(28+2)+(28+2)+(28+2)-6=30+30+30-6=90-6=84这样想:因为28+2=30可凑整,但最后要把多加的三个2减去.二、改变运算顺序:在只有“+”、“-”号的混合算式中,运算顺序可改变计算:(1)45-18+19(2)45+18-19解:(1)45-18+19=45+19-18=45+(19-18)=45+1=46这样想:把+19带着符号搬家,搬到-18的前面.然后先算19-18=1.(2)45+18-19=45+(18-19)=45-1=44这样想:加18减19的结果就等于减1.三、计算等差连续数的和相邻的两个数的差都相等的一串数就叫等差连续数,又叫等差数列,如:1,2,3,4,5,6,7,8,91,3,5,7,92,4,6,8,103,6,9,12,154,8,12,16,20等等都是等差连续数.1. 等差连续数的个数是奇数时,它们的和等于中间数乘以个数,简记成:(1)计算:1+2+3+4+5+6+7+8+9=5×9 中间数是5=45 共9个数(2)计算:1+3+5+7+9=5×5 中间数是5=25 共有5个数=6×5 中间数是6=30 共有5个数(4)计算:3+6+9+12+15=9×5 中间数是9=45 共有5个数(5)计算:4+8+12+16+20=12×5 中间数是12=60 共有5个数2. 等差连续数的个数是偶数时,它们的和等于首数与末数之和乘以个数的一半,简记成:(1)计算:1+2+3+4+5+6+7+8+9+10=(1+10)×5=11×5=55共10个数,个数的一半是5,首数是1,末数是10.(2)计算:3+5+7+9+11+13+15+17=(3+17)×4=20×4=80共8个数,个数的一半是4,首数是3,末数是17.(3)计算:2+4+6+8+10+12+14+16+18+20=(2+20)×5=110共10个数,个数的一半是5,首数是2,末数是20.四、基准数法(1)计算:23+20+19+22+18+21解:仔细观察,各个加数的大小都接近20,所以可以把每个加数先按20相加,然后再把少算的加上,把多算的减去.23+20+19+22+18+21=20×6+3+0-1+2-2+1=120+3=1236个加数都按20相加,其和=20×6=120.23按20计算就少加了“3”,所以再加上“3”;19按20计算多加了“1”,所以再减去“1”,以此类推.(2)计算:102+100+99+101+98解:方法1:仔细观察,可知各个加数都接近100,所以选100为基准数,采用基准数法进行巧算.102+100+99+101+98=100×5+2+0-1+1-2=500方法2:仔细观察,可将5个数重新排列如下:(实际上就是把有的加数带有符号搬家)102+100+99+101+98=98+99+100+101+102=100×5=500可发现这是一个等差连续数的求和问题,中间数是100,个数是5.加法中的巧算1.什么叫“补数”?两个数相加,若能恰好凑成整十、整百、整千、整万…,就把其中的一个数叫做另一个数的“补数”。
速算与巧算的技巧
速算与巧算的技巧篇一:小学数学速算与巧算方法例解小学数学速算与巧算方法例解【转】2019-04-17 21:04:55| 分类:教海拾贝|举报|字号订阅速算与巧算在小学数学中,关于整数、小数、分数的四则运算,怎么样才能算得既快又准确呢?这就需要我们熟练地掌握计算法则和运算顺序,根据题目本身的特点,综合应用各种运算定律和性质,或利用和、差、积、商变化规律及有关运算公式,选用合理、灵活的计算方法。
速算和巧算不仅能简便运算过程,化繁为简,化难为易,同时又会算得又快又准确。
一、“凑整”先算1.计算:(1)24+44+56(2)53+36+47解:(1)24+44+56=24+(44+56)=24+100=124这样想:因为44+56=100是个整百的数,所以先把它们的和算出来.(2)53+36+47=53+47+36=(53+47)+36=100+36=136这样想:因为53+47=100是个整百的数,所以先把+47带着符号搬家,搬到+36前面;然后再把53+47的和算出来.2.计算:(1)96+15(2)52+69解:(1)96+15=96+(4+11)=(96+4)+11=100+11=111这样想:把15分拆成15=4+11,这是因为96+4=100,可凑整先算.(2)52+69=(21+31)+69=21+(31+69)=21+100=121这样想:因为69+31=100,所以把52分拆成21与31之和,再把31+69=100凑整先算.3.计算:(1)63+18+19(2)28+28+28解:(1)63+18+19=60+2+1+18+19=60+(2+18)+(1+19)=60+20+20=100这样想:将63分拆成63=60+2+1就是因为2+18和1+19可以凑整先算.(2)28+28+28=(28+2)+(28+2)+(28+2)-6=30+30+30-6=90-6=84这样想:因为28+2=30可凑整,但最后要把多加的三个2减去.二、改变运算顺序:在只有“+”、“-”号的混合算式中,运算顺序可改变计算:(1)45-18+19(2)45+18-19解:(1)45-18+19=45+19-18=45+(19-18)=45+1=46这样想:把+19带着符号搬家,搬到-18的前面.然后先算19-18=1.(2)45+18-19=45+(18-19)=45-1=44这样想:加18减19的结果就等于减1.三、计算等差连续数的和相邻的两个数的差都相等的一串数就叫等差连续数,又叫等差数列,如:1,2,3,4,5,6,7,8,91,3,5,7,92,4,6,8,103,6,9,12,154,8,12,16,20等等都是等差连续数.1. 等差连续数的个数是奇数时,它们的和等于中间数乘以个数,简记成:(1)计算:1+2+3+4+5+6+7+8+9=5×9 中间数是5=45 共9个数(2)计算:1+3+5+7+9=5×5 中间数是5=25 共有5个数(3)计算:2+4+6+8+10=6×5 中间数是6=30 共有5个数(4)计算:3+6+9+12+15=9×5 中间数是9=45 共有5个数(5)计算:4+8+12+16+20=12×5 中间数是12=60 共有5个数2. 等差连续数的个数是偶数时,它们的和等于首数与末数之和乘以个数的一半,简记成:(1)计算:1+2+3+4+5+6+7+8+9+10=(1+10)×5=11×5=55共10个数,个数的一半是5,首数是1,末数是10.(2)计算:3+5+7+9+11+13+15+17=(3+17)×4=20×4=80共8个数,个数的一半是4,首数是3,末数是17.(3)计算:2+4+6+8+10+12+14+16+18+20=(2+20)×5=110共10个数,个数的一半是5,首数是2,末数是20.四、基准数法(1)计算:23+20+19+22+18+21解:仔细观察,各个加数的大小都接近20,所以可以把每个加数先按20相加,然后再把少算的加上,把多算的减去.23+20+19+22+18+21=20×6+3+0-1+2-2+1=120+3=1236个加数都按20相加,其和=20×6=120.23按20计算就少加了“3”,所以再加上“3”;19按20计算多加了“1”,所以再减去“1”,以此类推.(2)计算:102+100+99+101+98解:方法1:仔细观察,可知各个加数都接近100,所以选100为基准数,采用基准数法进行巧算.102+100+99+101+98=100×5+2+0-1+1-2=500方法2:仔细观察,可将5个数重新排列如下:(实际上就是把有的加数带有符号搬家)102+100+99+101+98=98+99+100+101+102=100×5=500可发现这是一个等差连续数的求和问题,中间数是100,个数是5. 加法中的巧算1.什么叫“补数”?两个数相加,若能恰好凑成整十、整百、整千、整万?,就把其中的一个数叫做另一个数的“补数”。
四则运算常用速算与巧算方法 (1)
四、基准数法
1.计算:23+20+19+22+18+21 解:仔细观察,各个加数的大小都接近20,所以可以把每个加数先按20相 加,然后再把少算的加上,把多算的减去。 23+20+19+22+18+21 = 20×6+3+0-1+2-2+1 = 120+3 = 123 2.计算:102+100+99+101+98 解:仔细观察,可知各个加数都接近100,所以选100为基准数,采用基准 数法进行巧算. 102+100+99+101+98 = 100×5+2+0-1+1-2 = 500
3.几种特殊因数的巧算。 ⑴ 一个数乘以10,数后添0; 一个数乘以100,数后添00; 一个数乘以1000,数后添000;……以此类推。 ⑵ 一个数乘以9,数后添0,再减此数; 一个数乘以99,数后添00,再减此数; 一个数乘以999,数后添000,再减此数;……以此类推。 如:12×9=120-12=108 12×99=1200-12=1188 12×999=12000-12=11988 ⑶ 一个偶数乘以5,可以除以2添上0。 如: 6×5=30 16×5=80 116×5=580 ⑷ 一个数乘以11,“两头一拉,中间相加”。 如: 2222×11=24442 2456×11=27016 ⑸ 一个偶数乘以15,“加半添0”。 如:24×15 =(24+12)×10 =360 ⑹ 个位为5的两位数的自乘:十位数字×(十位数字加1)×100+25 如:15×15=1×(1+1)×100+25=225 25×25=2×(2+1)×100+25=625 35×35=3×(3+1)×100+25=1225 45×45=4×(4+1)×100+25=2025 55×55=5×(5+1)×100+25=3025 65×65=6×(6+1)×100+25=4225 75×75=7×(7+1)×100+25=5625
速算与巧算
速算与巧算(一)计算是数学的基础,小学生要学好数学,必须具有过硬的计算本领。
准确、快速的计算能力既是一种技巧,也是一种思维训练,既能提高计算效率、节省计算时间,更可以锻炼记忆力,提高分析、判断能力,促进思维和智力的发展。
我们在三年级已经讲过一些四则运算的速算与巧算的方法,本讲和下一讲主要介绍加法的基准数法和乘法的补同与同补速算法。
例1 四年级一班第一小组有10名同学,某次数学测验的成绩(分数)如下:86,78,77,83,91,74,92,69,84,75。
求这10名同学的总分。
分析与解:通常的做法是将这10个数直接相加,但这些数杂乱无章,直接相加既繁且易错。
观察这些数不难发现,这些数虽然大小不等,但相差不大。
我们可以选择一个适当的数作“基准”,比如以“80”作基准,这10个数与80的差如下:6,-2,-3,3,11,-6,12,-11,4,-5,其中“-”号表示这个数比80小。
于是得到总和=80×10+(6-2-3+3+11-=800+9=809。
实际计算时只需口算,将这些数与80的差逐一累加。
为了清楚起见,将这一过程表示如下:通过口算,得到差数累加为9,再加上80×10,就可口算出结果为809。
例1所用的方法叫做加法的基准数法。
这种方法适用于加数较多,而且所有的加数相差不大的情况。
作为“基准”的数(如例1的80)叫做基准数,各数与基准数的差的和叫做累计差。
由例1得到:总和数=基准数×加数的个数+累计差,平均数=基准数+累计差÷加数的个数。
在使用基准数法时,应选取与各数的差较小的数作为基准数,这样才容易计算累计差。
同时考虑到基准数与加数个数的乘法能够方便地计算出来,所以基准数应尽量选取整十、整百的数。
例2 某农场有10块麦田,每块的产量如下(单位:千克):462,480,443,420,473,429,468,439,475,461。
求平均每块麦田的产量。
分数、小数四则运算中的巧算(一)
分数、小数四则运算中的巧算(一)同学们好!今天我们重点和同学们研究分数、小数四则运算中的速算与巧算。
在整数运算中有不少巧算的方法。
如,利用加法的交换律和结合律,乘法的交换律、结合律和分配律,以及和、差、积、商变化的规律进行巧算,使计算简便。
这些简单规律和方法,同样适用于今天研究的内容,下面我们共同研究几例,请石老师指导。
例1.解:原式例2. 计算:原式例3. 计算原式转化为观察比较例2、例3在解题技巧上有什么不同?例4. 解关于x的方程例5. 已知,那么□=________。
(第12届初赛题)解:设□为x,于是此题转化为解关于x的方程。
例6. 计算原式说说这个题的计算技巧。
例7. 计算:原式二. 尝试体验,合作交流下面是杨迪和韩军合作完成的,你能做出正确计算吗?计算:这道题的特点是:分子、分母又含有分数,我们把这样的分数称之为繁分数,较长的分数线称之为主分数线。
这道繁分数计算题中只含有乘除法运算,并且分子和分母都含有分数,在计算中需要注意的是不必先分别算出分子和分母各是多少,而是采用整体思考,先约分再计算的方法。
这样可以使计算简便。
原式4[答题时间:30分钟]三. 认真观察,独立完成。
1. 计算:2. 计算:3. 计算:4. 计算:5. 计算:6. 计算:【试题答案】三. 认真观察,独立完成。
1. 计算:2. 计算:3. 计算:4. 计算:5. 计算:6. 计算:【励志故事】简单的精彩地质考察队在大山里发现了一个罕见的山洞。
洞内地形非常曲折,大洞套小洞,变化无穷,还有深潭和峭壁,甚为奇险。
此事一经曝光便引来无数的探险者,但是进洞后安全返回的少之又少。
出得洞来的,也都是半途而废者,没有人探到过它的尽头。
于是人们便为该洞取名“死亡谷”。
渐渐地,前来探险的人少了。
正当此事就要归于平静时,一位从未上过学也没探过险的当地农民深入“死亡谷”,找到了洞的尽头,并安全返回。
许多媒体记者采访这位农民试图找到他成功的秘诀,结果出乎意料,他说了一个简单而笨拙的办法——“我只是找了几麻袋长而结实的绳子,把它们系在一起,一头牢牢地拴在裤带上,另一头拴在洞口一棵树干上,然后带上些自制的食物,不慌不忙地探寻。
小学数学分数四则运算技巧讲解
小学数学分数四则运算技巧讲解分数是小学数学中重要的一个概念,在数学运算中,我们经常会涉及到分数的加减乘除运算。
下面将为大家详细介绍小学数学分数四则运算的技巧和方法。
一、分数的加法1. 相同分母的分数相加当两个分数的分母相同,我们只需要将分子相加,分母保持不变即可。
例如,计算1/4 + 2/4,我们只需要将分子1和分子2相加,分母保持4不变,得到结果3/4。
2. 不同分母的分数相加当两个分数的分母不同,我们需要先找到一个相同的分母,然后将分数转化成相同分母的分数再相加。
方法一:通分加法将两个分数的分母相乘,得到一个新的分母,然后将分子按照相同比例扩大或缩小,使得分数的分母相同,最后将分子相加即可。
例如,计算1/2 + 1/3,我们将分数的分母2和3相乘得到6,然后将1/2扩大为3/6,将1/3扩大为2/6,最后将分子相加得到结果5/6。
方法二:通约加法通过找到两个分数的最小公倍数(两个分母的最小公倍数),将分数转化为相同的分母,再进行相加。
例如,计算1/3 + 1/4,我们找到3和4的最小公倍数为12,分别将1/3和1/4转化为12的分数,得到4/12和3/12,最后将分子相加得到结果7/12。
二、分数的减法分数的减法与加法类似,也需要找到相同的分母。
分数的减法可以通过将减数转化为它的相反数,再进行加法运算来实现。
1. 相同分母的分数相减当两个分数的分母相同,我们只需要将分子相减,分母保持不变即可。
例如,计算3/4 - 1/4,我们只需要将分子3和分子1相减,分母保持4不变,得到结果2/4。
2. 不同分母的分数相减当两个分数的分母不同,我们需要先找到一个相同的分母,然后将分数转化成相同分母的分数再相减。
方法与相同分母的分数相加一致。
三、分数的乘法1. 分数与整数的乘法将整数作为分子,分母保持不变即可。
例如,计算3/4 × 2,我们将分数3/4转化为3/4,最后得到结果6/4。
2. 分数与分数的乘法将两个分数的分子相乘,分母相乘即可。
常用的巧算和速算方法
常用的巧算和速算方法小学数学速算与巧算方法例解【转】速算与巧算在小学数学中,关于整数、小数、分数的四则运算,怎么样才能算得既快又准确呢?这就需要我们熟练地掌握计算法则和运算顺序,根据题目本身的特点,综合应用各种运算定律和性质,或利用和、差、积、商变化规律及有关运算公式,选用合理、灵活的计算方法。
速算和巧算不仅能简便运算过程,化繁为简,化难为易,同时又会算得又快又准确。
一、“凑整”先算1.计算:(1)24+44+56(2)53+36+47解:(1)24+44+56=24+(44+56)=24+100=124这样想:因为44+56=100是个整百的数,所以先把它们的和算出来.(2)53+36+47=53+47+36=(53+47)+36=100+36=136这样想:因为53+47=100是个整百的数,所以先把+47带着符号搬家,搬到+36前面;然后再把53+47的和算出来.2.计算:(1)96+15(2)52+69解:(1)96+15=96+(4+11)=(96+4)+11=100+11=111这样想:把15分拆成15=4+11,这是因为96+4=100,可凑整先算.(2)52+69=(21+31)+69=21+(31+69)=21+100=121这样想:因为69+31=100,所以把52分拆成21与31之和,再把31+69=100凑整先算.3.计算:(1)63+18+19(2)28+28+28解:(1)63+18+19=60+2+1+18+19=60+(2+18)+(1+19)=60+20+20=100这样想:将63分拆成63=60+2+1就是因为2+18和1+19可以凑整先算.(2)28+28+28=(28+2)+(28+2)+(28+2)-6=30+30+30-6=90-6=84这样想:因为28+2=30可凑整,但最后要把多加的三个2减去.二、改变运算顺序:在只有“+”、“-”号的混合算式中,运算顺序可改变计算:(1)45-18+19(2)45+18-19解:(1)45-18+19=45+19-18=45+(19-18)=45+1=46这样想:把+19带着符号搬家,搬到-18的前面.然后先算19-18=1.(2)45+18-19=45+(18-19)=45-1=44这样想:加18减19的结果就等于减1.三、计算等差连续数的和相邻的两个数的差都相等的一串数就叫等差连续数,又叫等差数列,如:1,2,3,4,5,6,7,8,91,3,5,7,92,4,6,8,103,6,9,12,154,8,12,16,20等等都是等差连续数.1. 等差连续数的个数是奇数时,它们的和等于中间数乘以个数,简记成:(1)计算:1+2+3+4+5+6+7+8+9=5×9 中间数是5=45 共9个数(2)计算:1+3+5+7+9=5×5 中间数是5=25 共有5个数(3)计算:2+4+6+8+10=6×5 中间数是6=30 共有5个数(4)计算:3+6+9+12+15=9×5 中间数是9=45 共有5个数(5)计算:4+8+12+16+20=12×5 中间数是12=60 共有5个数2. 等差连续数的个数是偶数时,它们的和等于首数与末数之和乘以个数的一半,简记成:(1)计算:1+2+3+4+5+6+7+8+9+10=(1+10)×5=11×5=55共10个数,个数的一半是5,首数是1,末数是10.(2)计算:3+5+7+9+11+13+15+17=(3+17)×4=20×4=80共8个数,个数的一半是4,首数是3,末数是17.(3)计算:2+4+6+8+10+12+14+16+18+20=(2+20)×5=110共10个数,个数的一半是5,首数是2,末数是20.四、基准数法(1)计算:23+20+19+22+18+21解:仔细观察,各个加数的大小都接近20,所以可以把每个加数先按20相加,然后再把少算的加上,把多算的减去.23+20+19+22+18+21=20×6+3+0-1+2-2+1=120+3=1236个加数都按20相加,其和=20×6=120.23按20计算就少加了“3”,所以再加上“3”;19按20计算多加了“1”,所以再减去“1”,以此类推.(2)计算:102+100+99+101+98解:方法1:仔细观察,可知各个加数都接近100,所以选100为基准数,采用基准数法进行巧算.102+100+99+101+98=100×5+2+0-1+1-2=500方法2:仔细观察,可将5个数重新排列如下:(实际上就是把有的加数带有符号搬家)102+100+99+101+98=98+99+100+101+102=100×5=500可发现这是一个等差连续数的求和问题,中间数是100,个数是5.加法中的巧算1.什么叫“补数”?两个数相加,若能恰好凑成整十、整百、整千、整万…,就把其中的一个数叫做另一个数的“补数”。
速算与巧算(一)(含答案)-
速算与巧算(一)速算与巧算是在运算过程中,根据数的特点与数之间的特殊关系,恰当,准确,灵活地运用定律,性质及和、差、积、商的变化规律,进行一种简便、迅速的计算。
(一)指导探索:例L 计算8 + 89 + 899 + 8999 + 89999分析与解:观察题目的特点发现:8可以看作9-1, 89可以看作90-1, 899可以看作900-1……,又是连加的算式。
根据这个特点,可以看作9, 90, 900, 9000与90000的和再减去5个1的和。
8 + 89÷899+ 8999 + 89999= (9-1) + (90-1) + (900-1) + (9000-1)÷ (90000-1)=(9+90 ÷ 900+ 9000 +90000)-(1 + 1 +1 + 1 + 1)=99999 - 5=99994还可以这样想:8 + 89 + 899 + 8999 + 89999= 4 + 1 + 1 + 1 + 1 + 89 + 899 + 8999 + 89999= 4 + (89 + 1) + (899 + 1) + (8999 + 1) + (89999 +1)= 4 + 90 + 900 + 9000 + 90000=99994例 2.计算:20+19 — 18—17 + 16+15—14- 13+・・・+4 + 3 — 2 — 1分析与解:这是一道加,减混合算式,由于加、减数较多,要仔细观察能不能简化计算。
观察发现:20-18 = 2, 19-17 = 2, 16-14 = 2, 15-13 = 2, -4-2 = 2,3-1 = 2,因此通过前后次序的交换,把某些数结合在一起算,比较简便。
20+19-18-17 + 16+15-14-13+ ∙∙∙+4 + 3-2-l=(20-18)+ (19-17)+ (16-14) + - ÷(4-2)+ (3-1)= 2 + 2+∙∙∙+2 + 210个2=20例 3. 444 × 25分析与解:25是个特殊数,它与4相乘可以得到100,因此25与一个数相乘时,就要想办法从这个数中分离出4o方法一:444 × 25= (400 + 40 + 4)×25= 400×25 + 40×25 + 4×25=10000+1000+100= 11100方法二:444 × 25= (111×4)×25= 111×(4×25)= 11100方法三:444 × 25=(444 ÷4)× (25 × 4)= lll×100= 11100例 4. 375×480 + 6250×48分析与解:观察题目的特点发现:“乘、力∏,乘”的形式符合乘法分配律的符号特征,另外480比48末尾多了一个0,如果去掉6250末尾的0就与375凑成1000o 375 × 480 + 6250 × 48=375 × 480 + 625 × 480=480 × (375 ÷ 625)= 480×1000=480000例 5.计算:333333×333333分析与解:如果把一个因数改变成连续几个9的形式,就可以把它看成一个整十(整百、整千,整万……)数-1的形式,从而利用乘法分配律简算,我们知道333333 × 3 = 999999 ,因此根据积不变的规律,把一个因数扩大3倍,变成999999,另 一个因数缩小3倍,变成111111。
分数小数速算与巧算
速算与巧算一级运算:加法、减法二级运算:乘法、除法三级运算:乘方、开方带符号搬家:在同级运算中,每个数可以带着它前面的符号搬家。
这里的同级运算是指同为一级运算(即只包含加法和减法)或同为二级运算(即只包含乘法和除法)。
加减法中,第一个数的前面相当于是“+”,乘除法中,第一个数的前面相当于是“ ”运算顺序:在同级运算中,从左至右依次计算在混合运算中,先算三级、再算二级、最后算一级在任何运算中,有括号要先算括号里的。
同时有小括号和中括号,要先算小括号里的,再算中括号里的。
加法凑整特点:两个加数的尾数互补,即和为整十、整百、整千......减法凑整特点:被减数和减数尾数相同,即差为整十、整百、整千......例1、9+99+999+9999+99999=例2、1÷2÷3÷4÷5÷6×720=例3、计算:6.11+9.22+8.33+7.44+5.55+4.56+3.67+2.78+1.89例4、计算4.75-9.64-(1.36-8.25)例5、计算:5×64×25×125×2006例6、(56789+67895+78956+89567+95678)÷7 例7、计算:l-2+3-4+5-6+…+2005-2006+2007 例8、计算:34.5×8.23-34.5+2.77×34.5例9、计算:3.1415×252-3.1415×152例10、计算:8.88×0.15+265×0.0888+5.2×8.88+0.888×20例11、计算:6.25 × 0.16+264×0.0625+5.2×6.25+0.625×20 例12、计算:147.75×8.4+4.792+409×2.1+0.9521×479例13、计算:2003×2001÷111+2003×73÷37例14、=⨯-1999199819971999例15、例16、例17、例18、作业1、计算:85.42×7903.29-286.5×790.329+79032.9×4.3234444499999999999999955555++++2007200720072008÷152002771(297)9620038200384⨯+⨯÷111111762353235353762376⎛⎫⎛⎫⎛⎫⨯-+⨯+-⨯-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2、计算:6.25×8.27×16+3.75×0.827×83、计算7.816×1.45+3.14×2.184+1.69×7.8164、计算:20.08×37+200.8×2.3+1.004×8005、18.9×24.16+1.89×758.4=6、1997 199719971998。
王敏行:第1讲:分数的速算与巧算
一、裂项综合(一)、“裂差”型运算(1)对于分母可以写作两个因数乘积的分数,即1a b⨯形式的,这里我们把较小的数写在前面,即a b <,那么有1111()a bb a ab =-⨯-本讲知识点属于计算大板块内容,分为三个方面系统复习和学习小升初常考计算题型. 1、 裂项是计算中需要发现规律、利用公式的过程,裂项与通项归纳是密不可分的,本讲要求学生掌握裂项技巧及寻找通项进行解题的能力 2、 换元让学生能够掌握等量代换的概念,通过等量代换讲复杂算式变成简单算式。
3、 循环小数与分数拆分掌握循环小数与分数的互化,循环小数之间简单的加、减运算,涉及循环小数与分数的主要利用运算定律进行简算的问题. 4、通项归纳法通项归纳法也要借助于代数,将算式化简,但换元法只是将“形同”的算式用字母代替并参与计算,使计算过程更加简便,而通项归纳法能将“形似”的复杂算式,用字母表示后化简为常见的一般形式.第一讲分数的速算与巧算教学目标知识点拨(2)对于分母上为3个或4个连续自然数乘积形式的分数,即:1(1)(2)n n n ⨯+⨯+,1(1)(2)(3)n n n n ⨯+⨯+⨯+形式的,我们有:1111[](1)(2)2(1)(1)(2)n n n n n n n =-⨯+⨯+⨯+++ 1111[](1)(2)(3)3(1)(2)(1)(2)(3)n n n n n n n n n n =-⨯+⨯+⨯+⨯+⨯++⨯+⨯+裂差型裂项的三大关键特征:(1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x 为任意自然数)的,但是只要将x 提取出来即可转化为分子都是1的运算。
(2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接” (3)分母上几个因数间的差是一个定值。
(二)、“裂和”型运算:常见的裂和型运算主要有以下两种形式: (1)11a b a b a ba ba bb a+=+=+⨯⨯⨯ (2)2222a b aba b a ba ba bba+=+=+⨯⨯⨯裂和型运算与裂差型运算的对比:裂差型运算的核心环节是“两两抵消达到简化的目的”,裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。
整数分数小数 四则运算的速算与巧算(小升初)
第1讲 整数、小数四则运算的速算与巧算1、四则运算基础知识一、解题的四大步骤:看陷阱、找相似、定技巧、查错误1、看陷阱:减法、除法、括号中陷阱最多。
计算次序(优先级)、去(添)括号(负号变号,有乘积因数要遍乘)。
2、看相似:发现数据特点,找到相似的数据,确定解题技巧。
3、定技巧:活用公式、提公因数、组合配对、拆解凑整、裂项消项。
(1))11(1)(1k n n k k n n +-=+ (2)nm n m n m 11+=⨯+ 4、查错误:每一步都要检查一下,上下比对、检查,有没有明显错误。
二、四则运算的常见问题1、计算错误。
书写不规范;数字次序错误;加法或乘法计算错误,约分未完;对位、进位、借位时错误。
2、错用公式。
,加法或乘法的交换律、结合律、分配律不熟悉,出现乱用、错用引起错误。
3、观察不周。
计算时没有找到简便、合理的方法导致计算过程复杂,出现错误。
4、去括号、计算次序错误。
括号前有负号,打开后没变号;添括号,前面有负号没有变号;括号前有乘积因数,没有将乘积因数乘以所有项;漏写某些项;漏写括号,导致计算次序错误。
在减法、除法和乘除与加减的混合题中。
优先级从高到低:括号(小、中、大)、乘方、乘除、加减。
同级时按次序。
三、注意事项:1、有一定规律且运算的项多时,必有简便方法。
2、尽可能化小数为分数。
3、小数和分数混合,先看小数和分数的分母能否先约分。
4、数序复杂的可先不计算,以便后面统一消项或约分。
5、有多个乘除项时,把分母或分子放在一起,并分别放在分数线的上边和下边,避免约分未完或出现遗漏。
6、带分数乘法时,有时可不通分或化为假分数,直接将带分数表示为整数+分数,用乘法分配律计算。
7、注意题目有意设置的简便运算的陷阱。
如3.46 + 5.64,很多人很容易得到10或9的结论。
8、计算结果应是不可再约分的真分数、带分数,小数或不能化为小数的假分数。
9、计算题要求过程,有过程得分,而填空只要结果。
幼儿奥数之小数、分数四则运算中的巧算
幼儿奥数之小数、分数四则运算中的巧算一、小数四则运算小数指的是整数之后的数,它包含小数点和小数位。
幼儿在研究小数四则运算时,可以通过一些巧妙的方法来简化计算,提高计算速度和准确性。
1. 相同小数位的小数相加或相减当两个小数具有相同的小数位数时,可以直接将小数位对齐,然后按照整数的相加或相减规则进行计算。
最终的结果的小数位数与原小数的小数位数相同。
2. 小数与整数相加或相减小数与整数相加或相减时,可以将整数看作小数,将小数点后补足零,然后按照小数的加减法规则进行计算。
最终的结果的小数位数与原小数的小数位数相同。
3. 小数乘以整数小数乘以整数时,可以先将整数部分与小数部分分别相乘,再将结果相加。
最终的结果的小数位数与原小数的小数位数相同。
4. 小数除以整数小数除以整数时,可以先将小数的分子与整数相除,再将结果保留与原小数相同的小数位数。
二、分数四则运算分数是数的比,包含分子和分母,分子表示比较的部分,分母表示比较的基准。
幼儿在研究分数四则运算时,可以通过以下的巧算方法来简化计算。
1. 相同分母的分数相加或相减当两个分数的分母相同时,可以直接将分数的分子相加或相减,分母保持不变。
最终的结果为分子之和或差,分母不变。
2. 分数与整数相加或相减分数与整数相加或相减时,可以将整数看作分数,分母为1,然后按照分数的加减法规则进行计算。
最终的结果为分子之和或差,分母不变。
3. 分数乘以整数分数乘以整数时,可以将整数视为分子,分母为1,然后按照分数的乘法规则进行计算。
最终的结果为整数乘以分子,分母不变。
4. 分数除以整数分数除以整数时,可以将分数的分子与整数相除,分母保持不变。
最终的结果为分子除以整数,分母不变。
通过掌握这些巧算方法,幼儿可以在小数、分数四则运算中更加灵活和高效地进行计算,提升数学能力。
分数的巧算和速算
分数的速算与巧算【专题解析】在分数的简便计算中,掌握一些常用的简算方法,可以提高我们的计算能力,达到速算、巧算的目的。
(1)约分法:在分数乘除法运算中,如果先约分再计算,可以使计算过程更简便。
两个整数相除(后一个不为0)可以直接写成分数的形式。
两个分数相除,可以根据分数的运算性质,将其写成一个分数乘另一个分数的倒数的形式。
(2)错位相减法:根据算式的特点,将原算式扩大一个整数倍(0除外),用扩大后的算式同原算式相减,可以使复杂的计算变得简便。
【典型例题】例1. 计算:(1)5698÷8 (2)166201÷41分析与解:(1)直接把5698拆写成(56+98),除以一个数变成乘以这个数的倒数,再利用乘法分配率计算。
(2)把题中的166201分成41的倍数与另一个较小的数相加的形式,再利用除法的运算性质使计算简便。
(1)5698÷8=(56+98)÷8=(56+98)×81=56×81+98×81=7+91=791(2)166201÷41 = (164 +2041)×411= 164×411+2041×411= 4201 【举一反三】计算:(1)64178÷8 (2)14575÷12 (3)5452÷17(4)170121÷13例2. 计算:200412004200420052006÷+分析与解:数太大了,不妨用常规方法计算一下,先把带分数化成假分数。
分母200420052004⨯÷,这算式可以运用乘法分配律等于20042006⨯,又可以约分。
聪明的同学们,如果你的数感很强的话,不难看出÷2004200420052005的被除数与除数都含有2004,把他们同时除于2004得到11÷12005也是很好算的,这一方法就留给你们吧!12006⨯÷+20042006原式=20042005 1200620051200620061⨯+⨯=+=2005=200420042006 【举一反三】计算:(5)2000÷200020012000+20021(6)238÷238239238+2401例3. 计算:199419921993119941993⨯+-⨯分析与解:仔细观察分子和分母中各数的特点,可以考虑将分子变形。
第一讲:速算与巧算(一)
第一讲:小数的简便运算知识结构:简便运算,就是用比较简捷、巧妙的方法计算出算式的得数。
一道计算题的简便算法常常不止一种。
解题技巧:小数的简便运算一般分为两个方面:(1)利用加、减、乘、除法的运算性质巧算;(2)巧用特殊数之间四则运算时表现的一些特性巧算。
计算时,仔细观察算式的特点,观察算式中数与数之间的关系,确定正确的简便运算方法,简捷、巧妙地计算出算式的得数。
方法探究:例1.用简便方法计算下面各题。
(1)0.9+9.9+99.9+999.9(2)0.8+9.8+99.8+999.8+9999.8例2.用简便方法计算下面各题。
(1)53.4+56+(26.648-19.7)(2)14.48-(9.55+0.48)(3)57.3-(24.2-12.7)例3.用简便方法计算下面各题。
(1)6.4×1.25 (2)28.3×0.4×2.5例4. 用简便方法计算下面各题。
(1)7.5÷(2.5÷4)(2)5.25÷13.125÷4×85.2例5. 计算199.7×19.98-199.8×19.96举一反三:1.用简便方法计算下面各题。
(1)9.8+13.7+10.2 (2)20.36-7.98-5.02-4.36 (3)18.6-9.3+1.4-1.7 (4)9.7+9.8+9.9+10+10.1+10.2+10.3(5)3.9+0.39+0.039+0.0039+0.000392.用简便方法计算下面各题。
(1)42.1+(27.9-12.5)(2)7.85-(2.31+2.85)(3)3.28-(1.98-1.72)(4)4.87+(2.28+5.13)3.用简便方法计算下面各题。
(1)4.5×4×0.5 (2)42.7×4×0.25(3)20×12.5×0.8×0.5 (4)0.125×0.25×0.5×644.用简便方法计算下面各题。
分数加减法速算与巧算1
分数加减法速算与巧算1引言本文档将介绍分数加减法的速算技巧和巧算方法,旨在帮助学生提高解题效率和准确性。
速算技巧速算整数和带分数的加法- 当两个分数的分母相同,直接将分子相加,分母保持不变。
- 当两个分数的分母不同,需要找到它们的最小公倍数,然后按照最小公倍数分别进行乘法,再将结果相加。
速算整数和带分数的减法- 当两个分数的分母相同,直接将分子相减,分母保持不变。
- 当两个分数的分母不同,需要找到它们的最小公倍数,然后按照最小公倍数分别进行乘法,再将结果相减。
速算带分数的加减法- 首先将带分数转化为假分数,即分子大于分母的分数形式。
- 采用速算整数和带分数的加减法计算。
- 若最终结果为假分数,可以将其化简为带分数形式。
巧算方法近似计算- 对于掌握了速算技巧的学生,可以使用近似计算法简化问题。
- 先用速算方法得到近似的结果,然后对结果进行调整,使其更接近准确答案。
利用简化法则- 对于分数加减法,可以尝试将分子约分或分母约分,以简化计算过程。
- 若分子和分母有公因数,可以先约分,再进行计算。
利用数学性质- 利用分数的性质,如倒数、相反数、相等关系等,可以在计算过程中得到更简化的结果。
结论通过掌握分数加减法的速算技巧和巧算方法,学生可以提高解题效率和准确性。
同时,应该确保自己的计算结果无误,并在必要时进行核对和验证。
> 注意:本文档提供的加减法速算与巧算方法仅供参考,并不适用于复杂的分数问题。
在应用这些方法时,请保持独立思考,并避免引用无法确认的内容。
【四升五】小学数学奥数第1讲:速算与巧算(一)-教案
的和。现在同学们能不能试着做一下?
生:可以。(老师引导,这里很容易数错或漏数还有符号怎么去变)
(1)18.47-17.36+5.36-1.54-0.46
=18.47-(17.36-5.36)-(1.54+0.46)
=18.47-12-2
(1)0.1+0.2+0.3+……+1.8+1.9+2
(2)0.4+0.6+0.8+1+……+3.2+3.4+3.6
师:仔细观察题目,你有什么发现?
生:题目中的数字都是小数。
师:对,还有什么发现没有?
生:每个小数往后越来越大。第一题都是增加0.1,第二题增加0.2。
师:这位同学很不错,很敏锐也很仔细。那这样的题目,你会不会做呢?
(3)61.7+27.1-4.3+8.3-15.7-7.1
分析:
运用小数加减法运算定律去解题,注意观察题目,数字很多的试着用“分组凑整”去做。
(1)26.4+45.1-21.6+13.6-18.4+14.9
=(26.4+13.6)+(45.1+14.9)-(21.6+18.4)
=40+60-40
=60
做一做?
生:好。
师(边巡视边提示):首先我们要观察下式子中有几个算式?我们做题要的是又
准又快,在小数里面怎样才能算得快呢?
生:把它们凑成整数。
师:这个思路非常好。那你们在观察下,怎样能凑成整数呢?
生:可以把某两个数字放在一块加、减。
小升初数学课程【第一讲:速算与巧算】
第一讲:速算与巧算学习目标:1、根据算式的结构和数的特征,灵活运用法则、定律、性质,可以把复杂的四则混合运算化繁为简,化难为易。
2、进一步提高分析、综合、抽象、概括的能力。
知识概要:1、整体分析算式特点,创造条件运用乘法分配律简算,进行转化。
2、根据运算符号和数字特点,合理地把数拆开或者合并进行重新组合,使其变成符合运算定律的模式,以便简化运算。
常用方法:1、拆项法:灵活运用分数拆分的方法使复杂的分数求和计算简便。
常用的拆项形式有:111(11a a a a =−×++1111((b a a b b a a b=×−>×−2、约分法:灵活地将分子、分母转化变形,找出其公有的约数,分子和分母同时了除以此公约数(1除外,使计算简便。
经典例题:【例1】612319.213.51920209125025×−×+×【例2】23157156×【例3】987987987988÷【例4】1111111112612203042567290++++++++【例5】111111...... 3153563399483 ++++++【例6】(10.230.34(0.230.340.65(10.230.340.65(0.230.34 ++×++−+++×+【例7】267123894894124627+××−【例8】1303707071818181829292929292929292929+++【例9】1511109 ......2612110++++【例10】1791113151 31220304256−+−+−课堂练习:【练习1】1113.84.2333×++×【练习2】33333 ........2612989999100+++++××【练习3】1111111111 113434534534⎛⎞⎛⎞⎛⎞⎛⎞++×++−+++×+⎜⎟⎜⎟⎜⎟⎜⎟⎝⎠⎝⎠⎝⎠⎝⎠【练习4】1534.85 3.6 6.153 4185⎛⎞×÷−+×⎜⎟⎝⎠【练习5】836354197111179⎛⎞⎛⎞++÷++⎜⎟⎜⎟⎝⎠⎝⎠【练习6】81.515.881.551.867.618.5×+×+×课后作业:【作业1】1111 ....... 144771097100 ++++××××【作业2】4444 (1220304950)++++×【作业3】2000 20002000 2001÷【作业4】276543275 276543267+××−【作业5】11 235122354213554.3 105×+×−×【作业6】71251031111131113⎛⎞⎛⎞+÷+⎜⎟⎜⎟⎝⎠⎝⎠【作业7】15776÷【作业8】19111315 1 420304256 +−+−+。
小数的速算与巧算基本方法
⼩数的速算与巧算基本⽅法⼩数的速算与巧算基本⽅法【知识概述】⼩数的简便计算出了可以灵活运⽤整数四则运算中我们已经学过的许多速算与巧算的⽅法外,还可以运⽤⼩数本⾝的特点,如⼩数的意义、⼩数的数位顺序、⼩数的性质、⼩数点位置移动引起⼩数⼤⼩的变化等。
很多计算题,如果我们根据运算法则按部就班地计算,将会觉得很繁,也很耗费时间,有的甚⾄算不出结果,如果我们能够发现其中数据的特点、正确运⽤数的组成、运算规律,把复杂的计算转化为简便的计算将会节约很多时间。
学会巧算的⼀些基本⽅法,将有助于我们提⾼计算能⼒、发展思维能⼒、增强注意⼒与记忆⼒。
1、凑整法简算:例1 计算:0.125×0.25×0.5×64练习:(1)1.31×12.5×8×2 (2)1.25×32×0.25 (3)1.25×882、拆拼法简算:例2 计算:(1)1.25×1.08 (2)7.5×9.9练习:(1)2.5×10.4 (2)3.8×0.99(3)1991+199.1+19.91+1.9914、转化法简算:例4 5.7×9.9+0.1×5.7练习:(1)4.6×99+4.6 (2)7.5×101-7.55、运⽤定律不⽤计算,根据已知条件直接写出下⾯题的结果。
已知0.26×4.5=1.17计算:2.6×4.5=() 0.26×45=() 0.026×0.45=() 2.6×0.45=() 260×45=()例5 1240×3.4+1.24×2300+12.4×430练习:4.65×32-2.5×46.5-70×0.4655.7×10.1-0.575、设数法简算:例6(2+3.15+5.87) ×(3.15+5.87+7.32)-(2+3.15+5.87+7.32) ×(3.15+5.87)练习:(1+0.23+0.34)×(0.23+0.34+0.65)-(1+0.23+0.34+0.65)×(0.23+0.34)例6 计算:1.999×2003-1.998×2004练习:19.94×2010-19.93×2011训练A⽤简便⽅法计算下⾯各题(1)1.9×2×0.2×2.5 (2)0.8×0.04×12.5×25(3)16.08×0.125 (4)99×73.2+73.2(5)0.25×4.73×0.125×320 (6)99.6+99.8+99.9+100+100.1 (7)100×7.9+184×2.1+84×2.9训练B(1)4.7×2.8+3.6×9.4 (2)6.3×27+1.9×21(3)3.75×4.8+62.5×0.48 (4)1250×0.037+0.125×160+12.5×2.7(5)3.6×232-36×13.2-360 (6)3.42×76.3+7.63×57.6+9.18×23.7训练C(1)1.23×2.45-1.22×2.46(2)(0.1+0.12+0.123+0.1234)×(0.12+0.123+0.1234+0.12345)-(0.1+0.12+0.123+0.1234+0.12345)×(0.12+0.123+0.1234)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
21992131991121990131121
3
=⨯=1
16
9971163
16
说说这个题的计算技巧。
例7.计算:
96891993110324
251993. ⨯+
⨯⨯
原式=⨯+⨯9689
1993242511031993
.
=⨯
+⨯
=⨯+⨯
9689
19930961103
1993
09689019930961103
1317
41221
+÷
++
4.计算:
14
4855
18366153355541
2⨯÷-+⨯+-(. . . (. 5.计算:( ( ( ( (
112
113114115
111998
-
⨯+
⨯-
⨯+
⨯⨯-
6.计算:1
110
2105455
540214
1
5
⨯⨯⨯⨯⨯. . .
【试题答案】
三.认真观察,独立完成。1.计算:99
99100
999999⨯+. =9999 2.计算:[(. ](. 65233
121
815
719510-÷-⨯+=□
□=3
120
3.计算:( 6117665
8
1112199513
1133
1317
41221
+÷
++=133
4.计算:
1
44855
18366153355541
2
⨯÷
-+⨯+-(. . . (. =10
1997
=÷+
÷=+⨯
=1997199719971998
1997
11
199811111998例3.计算1997199719971998
÷
原式转化为=
÷11997
19971998
1997
=
+
÷=
+=
=
119971997199819971111998
119991998
19981999
(
观察比较例2、例3在解题技巧上有什么不同?
065813
2718513
1
713
⨯
+⨯
-⨯+
÷.
解:原式=⨯
-
⨯+⨯
+
⨯1837
27
18065813
513
1320
.
=⨯-
+⨯+
1837
27
0658
135
13
(
. (
=⨯
+⨯=+
=1817
0651
2
47
1320
3
31140
.
例2.计算:1997199719981997÷
原式=+
÷( 199719971998
5.计算:( ( ( ( ( 112113114115111998-⨯+⨯-⨯+⨯⨯- =1
2
6.计算:1
110
2105455
540214
15
⨯⨯⨯⨯⨯. . . =
184
例4.解关于x的方程
x
x x x x x x x 81
31511224531
281151124531813
505155813
505155
+⨯-=⨯++⨯-=⨯++-=+=+( . ( . . . . .
1124
66
661124
144
x x x ==÷=
例5.已知1624
1
770012
781. [( ]. ⨯-⨯÷=□,那么□=________。(第12届初赛题)解:设□为x,于是此题转化为解关于x的方程。
1993
. . . .
=⨯+=⨯=0968901993
11031993
0961
096
. (
. .
二.尝试体验,合作交流
下面是杨迪和韩军合作完成的,你能做出正确计算吗?计算:816
315102251759
33512323632
93⨯
÷⨯÷⨯
数线称之为主分数线。
这道繁分数计算题中只含有乘除法运算,并且分子和分母都含有分数,在计算中需要注
1
5111
12
5
3233
1111
转化为乘法约分
4
=
⨯⨯=323
25
9
35
【模拟试题】[答题时间:30分钟]
三.认真观察,独立完成。1.计算:99
99100
999999⨯+. 2.计算:[(. ](. 65233
121
815
719510-÷-⨯+=□
3.计算:( 6
117665
8
1112199513
1133
意的是不必先分别算出分子和分母各是多少,而是采用整体思考,先约分再计算的方法。这样可以使计算简便。
原式=⨯
⨯⨯⨯⨯←264
517
59
33512236332
93
这一步做了怎样的变换。=
⨯⨯⨯⨯⨯÷
⨯⨯⨯⨯←
264517593110225
3323632512393
根据分数与除法关系变换
=/⨯⨯⨯⨯
⨯/←
1624
1
770012
7
814
17700127811624
17
7001
27
12
. [( ]. ( . . ( ⨯-÷=-÷=÷-÷=x x x
4
17
700914
7003
12
0005
-=
==x x x .
例6.计算1993
121992
131991
121990
131
1213
-+-++-
原式=-+-++-( ( ( 1993
【本讲教育信息】
一.教学内容:
分数、小数四则运算中的巧算(一)
同学们好!今天我们重点和同学们研究分数、小数四则运算中的速算与巧算。在整数运算中有不少巧算的方法。如,利用加法的交换律和结合律,乘法的交换律、结合律和分配律,以及和、差、积、商变化的规律进行巧算,使计算简便。这些简单规律和方法,同样适用于今天研究的内容,下面我们共同研究几例,请石老师指导。例1. 1837