2014年高考(北京市)真题数学(理)试题及答案解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014年北京高考数学(理科)试题
一.选择题(共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项)
1.已知集合2{|20},{0,1,2}A x x x B =-==,则A B =( )
.{0}A .{0,1}B .{0,2}C .{0,1,2}
D 2.下列函数中,在区间(0,)+∞上为增函 数的是( )
.1A y x =+ 2.(1)B y x
=- .2x C y -= 0.5.l o g (1)D y x =+ 3.曲线1cos 2sin x y θθ
=-+⎧⎨=+⎩(θ为参数)的对称中心( )
.A 在直线2y x =上 .B 在直线2y x =-上
.C 在直线1y x =-上 .D 在直线1y x =+上
4.当7,3m n ==时,执行如图所示的程序框图,输出的S 值为( )
.7A .42B .210C .840D
5.设{}n a 是公比为q 的等比数列,则"1"q >是"{}"n a 为递增数列的( )
.A 充分且不必要条件 .B 必要且不充分条件
.C 充分必要条件 .D 既不充分也不必要条件
6.若,x y 满足20200x y kx y y +-≥⎧⎪-+≥⎨⎪≥⎩
且z y x =-的 最小值为-4,则k 的值为( )
.2A .2B - 1.2C 1.2
D -
7.在空间直角坐标系Oxyz 中,已知()2,0,0A ,()2,2,0B ,()0,2,0C ,()
1,1,2D ,若 1S ,2S ,3S 分别表示三棱锥D ABC -在xOy ,yOz ,zOx 坐标 平面上的正投影图形的
面积,则( )
(A )123S S S == (B )12S S =且 31S S ≠
(C )13S S =且 32S S ≠ (D )23S S =且 13S S ≠
8.有语文、数学两学科,成绩评定为“优秀”“合格”“不合格”三种.若A 同学每科成绩不
低于B 同学,且至少有一科成绩比B 高,则称“A 同学比B 同学成绩好.”现有若干同学,
他们之间没有一个人比另一个成绩好,学科 网且没有任意两个人语文成绩一样,数学成绩也一样 的.问满足条件的最多有多少学生( )
(A )2 (B )3 (C )4 (D )5
二、填空题(共6小题,每小题5分,共30分)
9.复数211i i +⎛⎫= ⎪-⎝⎭
________. 10.已知向量a 、b 满足1a =,()2,1b =,且()0a b R λλ+=∈,则λ=________.
11.设双曲线C 经过点()2,2,且与2
214
y x -=具有相同渐近线,则C 的方程为________; 渐近线方程为________.
12.若等差数列{}n a 满足7890a a a ++>,7100a a +<,则当n =________时{}n a 的前n 项和最大.
13. 把5件不同产品摆成一排,若产品A 与产品C 不相邻,则不同的摆法有_______种.
14. 设函数)sin()(ϕω+=x x f ,0,0>>ωA ,若)(x f 在 区间]2,6[
ππ上具有单调性,且
⎪⎭
⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛6322πππf f f ,则)(x f 的最小正周期为________. 三.解答题(共6题,满分80分)
15. (本小题13分)如图,在ABC ∆中,
8,3==∠AB B π,点D 在BC 边上,且7
1cos ,2=∠=ADC CD (1)求BAD ∠sin
(2)求AC BD ,的长
16. (本小题13分).
李明在10场篮球比赛中的投篮情况如下(假设各场比赛互相独立):