2014年高考(北京市)真题数学(理)试题及答案解析

合集下载

2014年北京高考数学理科试题及答案

2014年北京高考数学理科试题及答案

场次 投篮次数 命中次数 场次 投篮次数 命中次数
主场 1
22
12
客场 1
18
8
主场 2
15
12
客场 2
13
12
主场 3
12
8
客场 3
21
7
主场 4
23
8
客场 4
18
15
主场 5
24
20
客场 5
25
12
(Ⅰ)从上述比赛中随机选择一场,求李明在该场比赛中投篮命中率超过 0.6 的概率;
(Ⅱ)从上述比赛中随机选择一个主场和一个客场,求李明的投篮命中率一场超过 0.6,另一场不超过
x2 y2 2 的位置关系,并证明你的结论.
(20)(本小题 13 分)对于数对序列 P(a1, b1) , (a2 , b2 ) ,…, (a , b ) , nn
记T1(P) a1 b T (P) b max{T (P), a a
a } (2
,
其中 max{Tk1 1(Pk ), a1 ak2
akk }1表示T1k 1(P2 ) 和 a1 ka2
绝密★启封并使用完毕前
2014年普通高等学校招生全国统一考试
数学(理)(北京卷)
本试卷共 5 页,150 分。考试时长 120 分钟,考生务必将答案答在答题卡上,在试卷上作答无效。考 试结束后,将本试卷和答题卡一并收回。
第一部分(选择题 共 40 分)
一、选择题共 8 小题,每小题 5 分,共 40分。在每小题列出的四个选项中,选出符合题目要求的一项。
(Ⅱ)当 x
0 时,“sinx x
a ”等价于“sin x
ax
0 ”“ sin x x

2014全国统一高考数学真题及逐题详细解析(理科)—北京卷

2014全国统一高考数学真题及逐题详细解析(理科)—北京卷

2014年北京高考数学(理科)试题一.选择题(共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项) 1.已知集合2{|20},{0,1,2}A x x x B =-==,则AB =( ).{0}A .{0,1}B .{0,2}C .{0,1,2}D2.下列函数中,在区间(0,)+∞上为增函数的是( ).A y =2.(1)B y x =- .2x C y -= 0.5.log (1)D y x =+3.曲线1cos 2sin x y θθ=-+⎧⎨=+⎩(θ为参数)的对称中心( ).A 在直线2y x =上 .B 在直线2y x =-上 .C 在直线1y x =-上 .D 在直线1y x =+上4.当7,3m n ==时,执行如图所示的程序框图,输出的S 值为( )5.设n 是公比为的等比数列,则是"{}"n a 为递增数列的( ).A 充分且不必要条件 .B 必要且不充分条件 .C 充分必要条件 .D 既不充分也不必要条件6.若,x y 满足20200x y kx y y +-≥⎧⎪-+≥⎨⎪≥⎩且z y x =-的最小值为-4,则k 的值为( ).2A .2B - 1.2C 1.2D -7.在空间直角坐标系Oxyz 中,已知()2,0,0A ,()2,2,0B ,()0,2,0C ,(D ,若 1S ,2S ,3S 分别表示三棱锥D ABC -在xOy ,yOz ,zOx 坐标平面上的正投影图形的 面积,则( )(A )123S S S == (B )12S S =且 31S S ≠ (C )13S S =且 32S S ≠ (D )23S S =且 13S S ≠8.有语文、数学两学科,成绩评定为“优秀”“合格”“不合格”三种.若A 同学每科成绩不低于B 同学,且至少有一科成绩比B 高,则称“A 同学比B 同学成绩好.”现有若干同学,他们之间没有一个人比另一个成绩好,且没有任意两个人语文成绩一样,数学成绩也一样的.问满足条件的最多有多少学生( )(A )2 (B )3 (C )4 (D )5 二、填空题(共6小题,每小题5分,共30分)9.复数211i i +⎛⎫= ⎪-⎝⎭________.10.已知向量a 、b 满足1a =,()2,1b =,且()0a b R λλ+=∈,则λ=________.11.设双曲线C 经过点()2,2,且与2214y x -=具有相同渐近线,则C 的方程为________; 渐近线方程为________.12.若等差数列{}n a 满足7890a a a ++>,7100a a +<,则当n =________时{}n a 的前n 项和最大. 13. 把5件不同产品摆成一排,若产品A 与产品C 不相邻,则不同的摆法有_______种. 14. 设函数)sin()(ϕω+=x x f ,0,0>>ωA ,若)(x f 在区间]2,6[ππ上具有单调性,且 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛6322πππf f f ,则)(x f 的最小正周期为________. 三.解答题(共6题,满分80分)15. (本小题13分)如图,在ABC ∆中,8,3==∠AB B π,点D 在BC 边上,且71cos ,2=∠=ADC CD (1)求BAD ∠sin (2)求AC BD ,的长16. (本小题13分).李明在10场篮球比赛中的投篮情况如下(假设各场比赛互相独立):(1)从上述比赛中随机选择一场,求李明在该场比赛中投篮命中率超过6.0的概率. (2)从上述比赛中选择一个主场和一个客场,求李明的投篮命中率一场超过6.0,一 场不超过6.0的概率.(3)记x 是表中10个命中次数的平均数,从上述比赛中随机选择一场,记X 为李明在这比赛中的命中次数,比较)(X E 与x 的大小(只需写出结论). 17.(本小题14分)如图,正方形AMDE 的边长为2,C B ,分别为MD AM ,的中点,在五棱锥ABCDE P - 中,F 为棱PE 的中点,平面ABF 与棱PC PD ,分别交于点H G ,. (1)求证:FG AB //;(2)若⊥PA 底面ABCDE ,且PE AF ⊥,求直线BC 与平面ABF 所成角的大小,并求线段PH 的长.已知函数()cos sin ,[0,]2f x x x x x π=-∈,(1)求证:()0f x ≤;(2)若sin x a b x<<在(0,)2π上恒成立,求a 的最大值与b 的最小值. 19.(本小题14分) 已知椭圆22:24C xy +=,(1)求椭圆C 的离心率.(2)设O 为原点,若点A 在椭圆C 上,点B 在直线2y =上,且OA OB ⊥,求直线AB 与圆222x y +=的位置关系,并证明你的结论.20.(本小题13分)对于数对序列1122(,),(,),,(,)n n P a b a b a b ,记111()T P a b =+,112()max{(),}(2)k k k k T P b T P a a a k n -=++++≤≤,其中112max{(),}k k T P a a a -+++表示1()k T P -和12k a a a +++两个数中最大的数, (1)对于数对序列(2,5),(4,1)P P ,求12(),()T P T P 的值.(2)记m 为,,,a b c d 四个数中最小值,对于由两个数对(,),(,)a b c d 组成的数对序列(,),(,)P a b c d 和'(,),(,)P c d a b ,试分别对m a =和m d =的两种情况比较2()T P 和2(')T P 的大小. (3)在由5个数对(11,8),(5,2),(16,11),(11,11),(4,6)组成的所有数对序列中,写出一个数对序列P 使5()T P 最小,并写出5()T P 的值.(只需写出结论).参考答案一、选择题(8小题,每小题5分,共40分,在每小题列出的四个选项中,选出符合题目要求的一项). 1.C 【命题意图】本小题主要考查了一元二次方程的求解和集合的交集运算.【解析】∵2{|2}={0,2}A x x -x =,{0,1,2}B =,∴{0,2}A B =,故选C. 2.A 【命题意图】本小题主要考查了函数单调性的判定.【解析】对于选项A ,在[0,)+∞上为增函数,显然在(0,)+∞为增函数;对于选项B ,只在[1,)+∞上为增函数;对于选项C ,在R 上为减函数;对于选项D ,在(1,)-+∞上为减函数.故选A.3. B 【命题意图】本小题主要考查了图像的对称性、参数方程与普通方程相互转化及直线与曲线相交问题.【解析】由1cos 2sin x y θθ=-+⎧⎨=+⎩(θ为参数)可得22(1)(2)1x y ++-=,则表示圆心为(1,2)-,半径为1的圆,所以对称中心为(1,2)-,易知它在直线2y x =-上,故选B.4. C 【命题意图】本小题主要考查了算法程序框图的读取及其相关的运算.【解析】当输入7m =,3n =时,判断框内的判断条件是5k <,故能进入循环的k 值依次为7,6,5,顺次执行S S k =⋅,则有765210S =⨯⨯=,故选C.5. D 【命题意图】本小题主要考查了等比数列的单调性的判定以及充分、必要条件的理解. 【解析】对于等比数列{}n a ,若1q >,且0n a <时,有{}n a 为递减数列,∴1q >⇒/ {}n a 为递增数列;若等比数列{}n a 为递增数列,则{}n a 中,满足10a <且01q <<,或者10a >且1q >.综上,“1q >”为“{}n a 为递增数列”的既不充分也不必要条件.故选D.6. D 【命题意图】本小题主要考查了二元不等式组的求解及性规划问题.z y x =-在点2(,0)k-处取最小值, ,故选D.. 平面上的正投影为OBC∆,则12S =,设D 在yoz 平面平面上的正投影图形2D AC ∆,设D 在xoz 平面上的正投影为xoz 平面上的正投影图形3D AE ∆,显然23S S == D8. B 【命题意图】本小题主要考查了计数原理中的新定义,重在考查创新能力和逻辑应用能力. 【解析】用ABC 分别表示优秀、及格和不及格.显然语文成绩的A 的学生最多只有1个,语文成绩的B 的学生最多只有1个,语文成绩的C 的学生最多只有1个,因此学生最多只有3个.如(AC ),(BB ),(CA )满足条件,故学生最多3个.故选B.二、填空题(共6小题,每小题5分,共30分)9.-1【命题意图】本小题主要考查了复数的四则运算. 【解析】212()112i ii i+==---..【解析】∵0a b λ+=,∴b a λ=-,于是||||||b a λ=,又∵(2,1)b =,可得||5b =,又∵||1a =,则||λ=11.221312x y -=,2y x =±【命题意图】本小题主要考查了双曲线方程的求解及其几何性质.【解析】双曲线2214y x -=的渐近线方程为2y x =±,故曲线C 的渐近线方程为2y x =±,设曲线C 的方程为224y x m -=,又因双曲线C 经过点(2,2),∴22224m =-=3-,∴2234y x -=-,故双曲线C 的方程为221312x y -=. 12.8 【命题意图】本小题主要考查了等差数列的性质及其前n 项和最大的求解.【解析】由等差数列的性质得:789830a a a a ++=>,∴80a >,710890a a a a +=+<,∴90a <,∴87S S >,89S S >,故8S 为数列{}n a 前n 项和n S 的最大值. 13.36【命题意图】本小题主要考查了排列组合的应用.【解析】由题意得:42324232A A A A -=4812-=36.14.π 【命题意图】本小题主要考查了三角函数的单调性以及最小正周期的求解. 【解析】由()f x 在区间[,]62ππ上具有单调性,且()()26f f ππ=-,知()f x 有对称中心(,0)3π,由2()()23f f ππ=知()f x 有对称轴127()22312x πππ=+=,设T 为最小正周期,则1226T ππ≥-,∴23T π≥,从而71234T ππ-=,故T π=. 三、解答题(共6小题,共80分) 15.(共13分)【命题意图】本题主要考查了同角三角函数关系、诱导公式、两角和与差的正弦公式以及正弦定理和余弦定理.解:(I )在ADC ∆中,因为17COS ADC ∠=,所以sin ADC ∠=。

2014年北京高考数学理科试题及答案

2014年北京高考数学理科试题及答案
绝密★启封并使用完毕前
2014年普通高等学校招生全国统一考试
数学(理)(北京卷)
本试卷共 5 页,150 分。考试时长 120 分钟,考生务必将答案答在答题卡上,在试卷上作答无效。考 试结束后,将本试卷和答题卡一并收回。
第一部分(选择题 共 40 分)
一、选择题共 8 小题,每小题 5 分,共 40分。在每小题列出的四个选项中,选出符合题目要求的一项。
场次 投篮次数 命中次数 场次 投篮次数 命中次数
主场 1
22
12
客场 1
18
8
主场 2
15
12
客场 2
13
12
主场 3
12
8
客场 3
21
7
主场 4
23
8
客场 4
18
15
主场 5
24
20
客场 5
25
12
(Ⅰ)从上述比赛中随机选择一场,求李明在该场比赛中投篮命中率超过 0.6 的概率;
(Ⅱ)从上述比赛中随机选择一个主场和一个客场,求李明的投篮命中率一场超过 0.6,另一场不超过
(1) 已知集合 A {x | x2 2x 0}, B {0, 1, 2},若 A B
(A) {0}
(B) {0, 1}
(C) {0, 2}
(D) {0, 1, 2}
(2) 下列函数中,在区间 (0, }上为增函数的是
(A) y x 1
(B) y=(x 1)2
(C) y 2 x
(D) y log (x 1) 0.5
P
F
G
E
H
D A
B
C
M
(18)(本小题 13 分)已知函数 f (x) x cos x (Ⅰ)求证: f (x) 0 ;(Ⅱ)若 a sin x

2014年高考理科数学北京卷(含详细答案)

2014年高考理科数学北京卷(含详细答案)
如图建立空间直角坐标系 ,则 , , , , ,
.
设平面ABF的法向量为 ,则 ,即 .
令 ,则 .所以 ,设直线BC与平面ABF所成角为 ,
则 .
设点H的坐标为
因为点H在棱PC上,所以可设 ,即 ,
所以 .
因为 是平面ABF的法向量,所以 ,即 .
解得 ,所以点H的坐标为ቤተ መጻሕፍቲ ባይዱ
所以 .
【提示】由线面平行推出线线平行,利用线面垂直、线线垂直这个条件,作出有关辅助线,建立空间直角坐标系求解.
圆心 到直线AB的距离 .此时直线AB与圆 相切.
当 时,直线AB的方程为 ,即 ,
圆心 到直线AB的距离 .
又 , ,故 ,
此时直线AB与圆 相切.
【提示】根据给出的椭圆方程找出离心率,然后利用椭圆方程与直线的关系及两线垂直,求出直线与圆的位置关系.
【考点】圆与圆锥曲线的综合,椭圆的简单性质
20.【答案】(1)
A.2人
B.3人
C.4人
D.5人
第Ⅱ卷(非选择题共110分)
二、填空题:本大题共6小题,每小题5分.共30分,把答案填写在题中的横线上.
9.复数 .
10.已知向量a,b满足 a ,b ,且 a b 0 ,则 .
11.设双曲线 经过点 ,且与 具有相同渐近线,则 的方程为;渐近线方程为.
12.若等差数列 满足 , ,则当 时, 的前 项和最大.
【提示】由循环语句、条件语句执行程序,直至结束.
【考点】循环结构
5.【答案】D
【解析】当 时,数列 递减;当 ,数列 递增时, ,故选D.
【提示】根据等比数列的性质,结合充分条件和必要条件的定义进行判断即可得到结论.
【考点】充分、必要条件,等比数列的性质

2014年北京高考数学理科(含答案)

2014年北京高考数学理科(含答案)

2014年北京高考数学(理科)试题一.选择题(共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项) 1.已知集合2{|20},{0,1,2}A x x x B =-==,则A B =I ( ).{0}A .{0,1}B .{0,2}C .{0,1,2}D2.下列函数中,在区间(0,)+∞上为增函数的是( ).1A y x =+ 2.(1)B y x =- .2xC y -= 0.5.log (1)D y x =+3.曲线1cos 2sin x y θθ=-+⎧⎨=+⎩(θ为参数)的对称中心( ).A 在直线2y x =上 .B 在直线2y x =-上 .C 在直线1y x =-上 .D 在直线1y x =+上4.当7,3m n ==时,执行如图所示的程序框图,输出的S 值为( ).7A .42B .210C .840D5.设{}n a 是公比为q 的等比数列,则"1"q >是"{}"n a 为递增数列的( ).A 充分且不必要条件 .B 必要且不充分条件.C 充分必要条件 .D 既不充分也不必要条件6.若,x y 满足20200x y kx y y +-≥⎧⎪-+≥⎨⎪≥⎩且z y x =-的最小值为-4,则k 的值为( ).2A .2B - 1.C 1.D -7.在空间直角坐标系Oxyz 中,已知()2,0,0A ,()2,2,0B ,()0,2,0C ,(D ,若 1S ,2S ,3S 分别表示三棱锥D ABC -在xOy ,yOz ,zOx 坐标平面上的正投影图形的 面积,则( )(A )123S S S == (B )12S S =且 31S S ≠ (C )13S S =且 32S S ≠ (D )23S S =且 13S S ≠8.有语文、数学两学科,成绩评定为“优秀”“合格”“不合格”三种.若A 同学每科成绩不 低于B 同学,且至少有一科成绩比B 高,则称“A 同学比B 同学成绩好.”现有若干同学, 他们之间没有一个人比另一个成绩好,且没有任意两个人语文成绩一样,数学成绩也一样 的.问满足条件的最多有多少学生( )(A )2 (B )3 (C )4 (D )5二、填空题(共6小题,每小题5分,共30分)9.复数211i i +⎛⎫= ⎪-⎝⎭________.10.已知向量a r 、b r 满足1a =r ,()2,1b =r ,且()0a b R λλ+=∈r r,则λ=________.11.设双曲线C 经过点()2,2,且与2214y x -=具有相同渐近线,则C 的方程为________; 渐近线方程为________.12.若等差数列{}n a 满足7890a a a ++>,7100a a +<,则当n =________时{}n a 的前n 项和最大.13. 把5件不同产品摆成一排,若产品A 与产品C 不相邻,则不同的摆法有_______种.14. 设函数)sin()(ϕω+=x x f ,0,0>>ωA ,若)(x f 在学科网区间]2,6[ππ上具有单调性,且 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛6322πππf f f ,则)(x f 的最小正周期为________.三.解答题(共6题,满分80分)15. (本小题13分)如图,在ABC ∆中,8,3==∠AB B π,点D 在BC 边上,且71cos ,2=∠=ADC CD (1)求BAD ∠sin (2)求AC BD ,的长16. (本小题13分).李明在10场篮球比赛中的投篮情况如下(假设各场比赛互相独立):(1)从上述比赛中随机选择一场,求李明在该场比赛中投篮命中率超过6.0的概率. (2)从上述比赛中选择一个主场和一个客场,求李明的投篮命中率一场超过6.0,一 场不超过6.0的概率.(3)记x 是表中10个命中次数的平均数,从上述比赛中随机选择一场,记X 为李明 在这比赛中的命中次数,比较)(X E 与x 的大小学科网(只需写出结论)17.(本小题14分)如图,正方形AMDE 的边长为2,C B ,分别为MD AM ,的中点,在五棱锥ABCDE P - 中,F 为棱PE 的中点,平面ABF 与棱PC PD ,分别交于点H G ,. (1)求证:FG AB //;(2)若⊥PA 底面ABCDE ,且PE AF ⊥,求直线BC 与平面ABF 所成角的大小,并 求线段PH 的长.已知函数()cos sin ,[0,]2f x x x x x π=-∈,(1)求证:()0f x ≤;(2)若sin x a b x <<在(0,)2π上恒成立,求a 的最大值与b 的最小值.已知椭圆22:24C xy +=,(1)求椭圆C 的离心率.(2)设O 为原点,若点A 在椭圆C 上,点B 在直线2y =上,且OA OB ⊥,求直线AB 与圆222x y +=的位置关系,并证明你的结论.对于数对序列1122(,),(,),,(,)n n P a b a b a b L,记111()T P a b =+,112()max{(),}(2)k k k k T P b T P a a a k n -=++++≤≤L ,其中112max{(),}k k T P a a a -+++L 表示1()k T P -和12k a a a +++L 两个数中最大的数,(1)对于数对序列(2,5),(4,1)P P ,求12(),()T P T P 的值.(2)记m 为,,,a b c d 四个数中最小值,对于由两个数对(,),(,)a b c d 组成的数对序列(,),(,)P a b c d 和'(,),(,)P a b c d ,试分别对m a =和m d =的两种情况比较2()T P 和2(')T P 的大小.(3)在由5个数对(11,8),(5,2),(16,11),(11,11),(4,6)组成的所有数对序列中,写出一个数对序列P 使5()T P 最小,并写出5()T P 的值.(只需写出结论).2014年普通高等学校招生全国统一考试数学(理)(北京卷)参考答案一、选择题(共8小题,每小题5分,共40分) (1)C (2)A (3)B (4)C (5)D (6)D (7)D (8)B二、填空题(共6小题,每小题5分,共30分) (9)-1 (10(11)221312x y -= 2y x =± (12)8(13)36 (14)π三、解答题(共6小题,共80分) (15)(共13分)解:(I )在ADC ∆中,因为17COS ADC∠=,所以sin ADC ∠=。

2014年北京理科数学试卷及答案

2014年北京理科数学试卷及答案

2014年北京高考数学(理科)试题一.选择题(共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项)1.已知集合,则( )2.下列函数中,在区间上为增函数的是()3.曲线(为参数)的对称中心()在直线上在直线上在直线上在直线上4.当时,执行如图所示的程序框图,输出的值为()5.设是公比为的等比数列,则是为递增数列的()充分且不必要条件必要且不充分条件充分必要条件既不充分也不必要条件6.若满足且的最小值为-4,则的值为()在空间直角坐标系中,已知,,,,若,,分别表示三棱锥在,,坐标平面上的正投影图形的面积,则()(A)(B)且(C)且(D)且有语文、数学两学科,成绩评定为“优秀”“合格”“不合格”三种.若同学每科成绩不低于同学,且至少有一科成绩比高,则称“同学比同学成绩好.”现有若干同学,他们之间没有一个人比另一个成绩好,学科网且没有任意两个人语文成绩一样,数学成绩也一样的.问满足条件的最多有多少学生()(A)(B)(C)(D)填空题(共6小题,每小题5分,共30分)复数________.已知向量、满足,,且,则________.设双曲线经过点,且与具有相同渐近线,则的方程为________;渐近线方程为________.若等差数列满足,,则当________时的前项和最大.13. 把5件不同产品摆成一排,若产品与产品不相邻,则不同的摆法有_______种.14. 设函数,,若在区间上具有单调性,且,则的最小正周期为________.三.解答题(共6题,满分80分)15. (本小题13分)如图,在中,,点在边上,且(1)求(2)求的长16. (本小题13分).李明在10场篮球比赛中的投篮情况如下(假设各场比赛互相独立):(1)从上述比赛中随机选择一场,求李明在该场比赛中投篮命中率超过的概率.(2)从上述比赛中选择一个主场和一个客场,学科网求李明的投篮命中率一场超过,一场不超过的概率.记是表中10个命中次数的平均数,从上述比赛中随机选择一场,记为李明在这比赛中的命中次数,比较与的大小(只需写出结论)17.(本小题14分)如图,正方形的边长为2,分别为的中点,在五棱锥中,为棱的中点,平面与棱分别交于点.(1)求证:;(2)若底面,且,求直线与平面所成角的大小,并求线段的长.(本小题13分)已知函数,求证:;若在上恒成立,求的最大值与的最小值. (本小题14分)已知椭圆,求椭圆的离心率.设为原点,若点在椭圆上,点在直线上,且,求直线与圆的位置关系,并证明你的结论.20.(本小题13分)对于数对序列,记,,其中表示和两个数中最大的数,对于数对序列,求的值.记为四个数中最小值,学科网对于由两个数对组成的数对序列和,试分别对和的两种情况比较和的大小.(3)在由5个数对组成的所有数对序列中,写出一个数对序列使最小,并写出的值.(只需写出结论).数学(理)(北京卷)参考答案一、选择题(共8小题,每小题5分,共40分)(1)C (2)A(3)B (4)C(5)D(6)D(7)D(8)B二、填空题(共6小题,每小题5分,共30分)(9) 1 (10)(11)(12)8(13)36 (14)三、解答题(共6小题,共80分)(15)(共13分)解:(I)在中,因为,所以。

2014年高考理科数学北京卷(含答案解析)

2014年高考理科数学北京卷(含答案解析)

绝密★启用前2014年普通高等学校招生全国统一考试(北京卷)数学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟.第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合2{|20}A x x x =-=,{0,1,2}B =,则A B = ( )A .{0}B .{0,1}C .{0,2}D .{0,1,2}2.下列函数中,在区间(0,)+∞上为增函数的是( )A.y B .2(1)y x =- C .2x y -=D .0.5log (1)y x =+3.曲线1cos ,2sin ,x y θθ=-+⎧⎨=+⎩(..为参数)的对称中心( )A .在直线2y x =上B .在直线2y x =-上C .在直线1y x =-上D .在直线1y x =+上4.当7m =,3n =时,执行如图所示的程序框图,输出的S 值为( )A .7B .42C .210D .840 5.设{}n a 是公比为q 的等比数列,则“1q >”是“{}n a 为递增数列”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件6.若x ,y 满足20,20,0,x y kx y y +-⎧⎪-+⎨⎪⎩≥≥≥且z y x =-的最小值为4-,则k 的值为( )A .2B .2-C .12D .12-7.在空间直角坐标系O xyz -中,已知()2,0,0A ,()2,2,0B ,(0),2,0C,(D .若1S ,2S ,3S 分别是三棱锥D ABC -在xOy ,yOz ,zOx 坐标平面上的正投影图形的面积,则( ) A .123S S S ==B .21S S =且23S S ≠C .31S S =且32S S ≠D .32S S =且31S S ≠8.学生的语文、数学成绩均被评定为三个等级,依次为“优秀”“合格”“不合格”.若学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好”.如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两位学生,那么这组学生最多有( )A .2 人B .3 人C .4 人D .5 人第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分.共30分,把答案填写在题中的横线上.9.复数21i ()1i+=- . 10.已知向量a ,b 满足|a |1=,b (2,1)=,且λa +b =0()λ∈R ,则||λ= .11.设双曲线C 经过点(2,2),且与2214y x =-具有相同渐近线,则C 的方程为 ;渐近线方程为 .12.若等差数列{}n a 满足7890a a a ++>,7100a a +<,则当n = 时,{}n a 的前n 项和最大.13.把5件不同产品摆成一排.若产品A 与产品B 相邻,且产品A 与产品C 不相邻,则不同的摆法有 种.14.设函数()sin()f x A x ωϕ=+(,,A ωϕ是常数,0A >,0)ω>.若()f x 在区间ππ,62⎡⎤⎢⎥⎣⎦上具有单调性,且π2ππ()()()236f f f ==-,则()f x 的最小正周期为 . 三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤.15.(本小题满分13分)如图,在ABC △中,π3B ∠=,8AB =,点D 在BC 边上,且2CD =,1cos 7ADC ∠=.(Ⅰ)求sin BAD ∠; (Ⅱ)求BD ,AC 的长.-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无------------------------------------姓名________________ 准考证号_____________16.(本小题满分13分)(Ⅰ)从上述比赛中随机选择一场,求李明在该场比赛中投篮命中率超过0.6的概率;(Ⅱ)从上述比赛中随机选择一个主场和一个客场,求李明的投篮命中率一场超过0.6,一场不超过0.6的概率;(Ⅲ)记x为表中10个命中次数的平均数.从上述比赛中随机选择一场,记X为李明在这场比赛中的命中次数.比较EX与x的大小.(只需写出结论)17.(本小题满分14分)如图,正方形AMDE的边长为2,B,C分别为AM,MD的中点.在五棱锥P ABCDE-中,F为棱PE的中点,平面ABF与棱PD,PC分别交于点G,H.(Ⅰ)求证:AB FG;(Ⅱ)若PA⊥底面ABCDE,且PA AE=,求直线BC与平面ABF所成角的大小,并求线段PH的长. 18.(本小题满分13分)已知函数()cos sinf x x x x=-,π0,2x⎡⎤∈⎢⎥⎣⎦.(Ⅰ)求证:()0f x≤;(Ⅱ)若sin xa bx<<对π(0,)2x∈恒成立,求a的最大值与b的最小值.19.(本小题满分13分)已知椭圆C:2224x y+=.(Ⅰ)求椭圆C的离心率;(Ⅱ)设O为原点.若点A在椭圆C上,点B在直线2y=上,且OA OB⊥,试判断直线AB与圆222x y+=的位置关系,并证明你的结论.20.(本小题满分13分)对于数对序列P:11(,)a b,22(,)a b,⋅⋅⋅,(),n na b,记111()T P a b=+,()k kT P b=+ 112max{(),}k kT P a a a-+⋅⋅⋅++(2)k n≤≤,其中112(ma}x{),k kT P a a a-++⋅⋅⋅+表示1()kT P-和12ka a a++⋅⋅⋅+两个数中最大的数.(Ⅰ)对于数对序列P:(2,5),(4,1),求1()T P,2()T P的值;(Ⅱ)记m为a,b,c,d四个数中最小的数,对于由两个数对(,)a b,(,)c d组成的数对序列P:(,)a b,(,)c d和P':(,)c d,(,)a b,试分别对m a=和m d=两种情况比较2()T P和2()T P'的大小;(Ⅲ)在由五个数对(11,8),(5,2),(16,11),(11,11),(4,6)组成的所有数对序列中,写出一个数对序列P使5()T P最小,并写出5()T P的值.(只需写出结论)2014年普通高等学校招生全国统一考试(北京卷)数学(理科)答案解析第Ⅰ卷一、选择题 1.【答案】C 【解析】{}0,2A =,{0,2}{0,1,2}{0,2}AB ∴==,故选C.【提示】用描述法、列举法写出集合,求其交集. 【考点】交集及其运算 2.【答案】A【解析】由基本初等函数的性质得,选项B 中的函数在(0,1)上递减,选项C ,D 中的函数在(0,)+∞上为减函数,所以排除B ,C ,D ,故选A.【提示】根据基本初等函数的单调性,判断各个选项中函数的单调性,从而得出结论. 【考点】对数函数的单调性与特殊点 3.【答案】B【解析】曲线方程消去参数化为22(1)(2)=1x y ++-,其对称中心点为(1,2)-,验证知其在直线2y x =-上,故选B.【提示】曲线方程消去参数化为普通方程,求经过对称中心的一条直线. 【考点】曲线的参数方程 4.【答案】C【解析】=1765=210S ⨯⨯⨯,故选C.【提示】由循环语句、条件语句执行程序,直至结束. 【考点】循环结构 5.【答案】D【解析】当101a q <>,时,数列{}n a 递减;当10a <,数列{}n a 递增时,01q <<,故选D.【提示】根据等比数列的性质,结合充分条件和必要条件的定义进行判断即可得到结论. 【考点】充分、必要条件,等比数列的性质 6.【答案】D【解析】可行域如图所示,当0k >时,知z y x =-无最小值,当0k <时,目标函数线过可行域内A 点时z 有最小值.联立020y kx y =⎧⎨-+=⎩解得2,0A k ⎛⎫⎪⎝⎭,故min 2=0+=4z k 即1=2k -,故选D.【提示】给出约束条件和目标函数在此区域的最小值,求未知参数. 【考点】简单线性规划 7.【答案】D【解析】设顶点D 在三个坐标平面xOy 、yOz 、zOx 上的正投影分别为1D 、2D 、3D ,则11AD BD ==2AB =, ∴11S 22=22=⨯⨯,22122OCD S S ==⨯=△,33122OAD S S ==⨯△,故选D.【提示】分别求出三棱锥在各个面上的投影坐标即可得到结论. 【考点】空间直角坐标系 8.【答案】B【解析】假设A 、B 两位学生的数学成绩一样,由题意知他们语文成绩不一样,这样他们的语文成绩总有人比另一个人高,语文成绩较高的学生比另一个学生“成绩好”,与已知条件“他们之中没有一个比另一个成绩好”相矛盾.因此,没有任意两位学生数学成绩是相同的.因为数学成绩只有3种,因而学生数量最大为3,即3位学生的成绩分别为(优秀,不合格)、(合格,合格)、(不合格,优秀)时满足条件,故选B. 【提示】分别用ABC 分别表示优秀、及格和不及格,根据题干中的内容推出成绩得A ,B ,C 的学生各最多只有1个,继而推得学生的人数. 【考点】排列组合数的应用第Ⅱ卷二、填空题 9.【答案】1-【解析】22221i (1i)2i 11i (1i)(1i)2⎡⎤+-⎛⎫⎛⎫==-⎢⎥ ⎪ ⎪--+⎝⎭⎝⎭=⎣⎦. 【提示】复数的乘、除运算,直接计算出结果. 【考点】复数代数形式的四则运算 10.【解析】0a b λ+=,a b λ∴=-,||5||||b a λ∴===. 【提示】已知向量和向量的模,及两向量之间的关系,求||λ的值. 【考点】向量的线性运算11.【答案】22=1312x y -2y x ±=【解析】设双曲线C 的方程为224y x λ-=,将(2,2)代入得2222=3=4λ--, ∴双曲线C 的方程为22=1312x y -.令22=04y x -得渐近线方程为2y x =±.【提示】利用双曲线简单的几何性质,求经过一点,与已知曲线有相同渐近线的双曲线. 【考点】双曲线的简单几何性质 12.【答案】8 【解析】7898=30a a a a ++>,710890a a a a +=+<,8900a a ∴><,,∴8n =时,数列{}n a 的前n 项和最大.【提示】可得等差数列{}n a 的前8项为正数,从第9项开始为负数,进而可得结论. 【考点】等差数列性质 13.【答案】36【解析】32132362336A A A =⨯⨯=.【提示】根据题目的要求,利用分步乘法计数原理与排列与组合,求出其中的不同摆法. 【考点】乘法原理,排列数的应用 14.【答案】π【解析】结合图像得π2πππ2326+=422T +-,即πT =.【提示】结合二次函数的图象与单调性,求最小正周期T. 【考点】二次函数的图象与周期性 三、解答题 15.【答案】(1)14(2)37BD AC ==,【解析】(1)在ADC △中,因为1cos 7ADC ∠=,所以sin ADC ∠=. 所以sin sin()BAD ADC B ∠=∠-∠sin cos cos sin ADC B ADC B =∠-∠1127=-=(2)在ABD △中,由正弦定理得sin 3sin AB BAD BD ADB ∠===∠,在ABC △中,由余弦定理得2222cos AC AB BC AB BC B =+-22185285492=+-⨯⨯⨯=,所以7AC =.【提示】根据三角形边角之间的关系,结合正弦定理和余弦定理即可得到结论.【考点】三角函数的基本关系式,正弦定理,余弦定理 16.【答案】(1)0.5 (2)1325(3)EX x =【解析】(1)根据投篮统计数据,在10场比赛中,李明投篮命中率超过0.6的有5场,分别是主场2,主场3,主场5,客场2,客场4.所以在随机选择的一场比赛中,李明的投篮命中率超过0.6的概率是0.5.(2)设事件A 为“在随机选择的一场主场比赛中李明的投篮命中率超过0.6”,事件B 为“在随机选择的一场客场比赛中李明的投篮命中率超过0.6”,事件C 为“在随机选择的一个主场和一个客场中,李明的投篮命中率一场超过0.6,一场不超过0.6”.则C ABAB =,A B ,独立根据投篮统计数据,32()()55P A P B ==,.()()()P C P AB P AB =+33225555=⨯+⨯1325=所以在随机选择的一个主场和一个客场中,李明的投篮命中率一场超过0.6,一场不超过0.6的概率为1325. (3)EX x =.【提示】由互斥事件与独立事件的概率,设出基本事件,并求出概率. 【考点】离散型随机变量的期望与方差,相互独立事件的概率乘法公式 17.【答案】(1)在正方形中,因为B 是AM 的中点,所以AB DE ∥.又因为AB ⊄平面PDE ,所以AB PDE ∥平面,因为AB ⊂平面ABF ,且平面ABF平面PDE FG =,所以AB FG ∥.(2)因为PA ⊥底面ABCDE ,所以PA AB ⊥,PA AE ⊥.如图建立空间直角坐标系Axyz ,则(0,0,0)A ,(1,0,0)B ,(2,1,0)C ,(0,0,2)P ,(0,1,1)F ,(1,1,0)BC =.设平面ABF 的法向量为(,,)n x y z =,则0n AB n AF ⎧=⎪⎨=⎪⎩,即00x y z =⎧⎨+=⎩. 令1,z =,则1y =-.所以(0,1,1)n =-,设直线BC 与平面ABF 所成角为α, 则1sin |cos ,|2|||n BC n BC n BC α===|.设点H 的坐标为(,,).u v w因为点H 在棱PC 上,所以可设(01)PH PC λλ=<<,即(,,2)(2,1,2)u v w λ-=-, 所以2,,22u v w λλλ===-.因为n 是平面ABF 的法向量,所以0n AH =,即(0,1,1)(2,,22)0λλλ--=.解得23λ=,所以点H 的坐标为422,,333⎛⎫⎪⎝⎭所以2PH =.【提示】由线面平行推出线线平行,利用线面垂直、线线垂直这个条件,作出有关辅助线,建立空间直角坐标系求解. 【考点】直线与平面所成的角18.【答案】(1)由()cos sin f x x x x =-得()cos sin cos sin f x x x x x x x '=--=-.因为在区间π0,2⎛⎫ ⎪⎝⎭上()sin 0f x x x '=-<,所以()f x 在区间π0,2⎡⎤⎢⎥⎣⎦上单调递减,从而()(0)0f x f ≤=.(2)当0x >时,“sin xa x>”等价于“sin 0x ax ->”,“sin x b x <”等价于“sin 0x bx -<”. 令()g x sin x cx =-,则()cos g x x c '=-.当0c ≤时,()0g x >对任意π0,2x ⎛⎫∈ ⎪⎝⎭恒成立.当1c ≥时,因为对任意π0,2x ⎛⎫∈ ⎪⎝⎭,()cos 0g x x c '=-<,所以()g x 在区间π0,2⎡⎤⎢⎥⎣⎦上单调递减.从而()(0)0g x g <=对任意π0,2x ⎛⎫∈ ⎪⎝⎭恒成立.当01c <<时,存在唯一的0π0,2x ⎛⎫∈ ⎪⎝⎭,使得00()cos 0g x x c '=-=.()g x 与()g x '在区间π0,⎛⎫⎪上的情况如下:因为()g x 在区间[]00,x 上是增函数,所以0()(0)0g x g >=.进一步,“()0g x >对任意π0,2x ⎛⎫∈ ⎪⎝⎭恒成立”当且仅当ππ1022g ⎛⎫=-≥ ⎪⎝⎭,即20πc <≤.综上所述,当且仅当2πc ≤时,()0g x >对任意π0,2x ⎛⎫∈ ⎪⎝⎭恒成立;当且仅当1c≥时,()<0g x 对任意π0,2x ⎛⎫∈⎪⎝⎭恒成立.所以,若sin x a b x <<对任意π0,2x ⎛⎫∈ ⎪⎝⎭恒成立,则a 最大值为2π,b 的最小值为1 【提示】直接利用导数的几何意义,证明函数.第(2)问是求解未知参量的最值,函数求导,由函数值变化判断单调区间,进而求解最值. 【考点】导数的几何意义,利用导数判断参数的范围19.【答案】(1)由题意,椭圆C 的标准方程为22142x y +=.所以224,2a b ==,从而2222c a b =-=.因此2,a c ==故椭圆C 的离心率2c e a ==(2)直线AB 与圆222x y +=相切.证明如下:设点A ,B 的坐标分别为00(,)x y ,(,2)t ,其中00x ≠. 因为OA OB ⊥,所以0OA OB =,即0020tx y +=,解得02y t x =-. 当0x t =时,202t y =,代入椭圆C 的方程,得t =AB 的方程为x =.圆心O 到直线AB 的距离d .此时直线AB 与圆222x y +=相切.当0x t ≠时,直线AB 的方程为0022()y y x t x t--=--,即0000(2)()20y x x ty x t y ---+-=,圆心O 到直线AB的距离d =.又220024x y +=,02y t x =-,故d ===此时直线AB 与圆222x y +=相切.【提示】根据给出的椭圆方程找出离心率,然后利用椭圆方程与直线的关系及两线垂直,求出直线与圆的位置关系.【考点】圆与圆锥曲线的综合,椭圆的简单性质 20.【答案】(1)12()7()8T P T P ==, (2)22()()T P T P '≤(3)1()10T P =,2()26T P =,3()42T P =,4()50T P =,5()52T P =【解析】(1)1()257T P =+=,21()1max{(),24}T P T P =++1max{7,6}=+=8. (2)2()T P {}max ,a b d a c d =++++,2()T P '={}max ,c d b c a b ++++. 当m =a 时,2()T P '={}max ,c d b c a b ++++=c d b ++,因为c d b c b d ++≤++,且a c d c b d ++≤++,所以2()T P ≤2()T P '. 当m =d 时,2()T P '{}max ,c d b c a b =++++c a b =++,因为a b d ++≤c a b ++,且a c d c a b ++≤++所以2()T P ≤2()T P '. 所以无论m a =还是m d =,22()()T P T P '≤都成立.(3)数对序列P :(4,6),(11,11),(16,11),(11,8),(5,2)的5()T P 值最小, 1()10T P =,2()26T P =,3()42T P =,4()50T P =,5()52T P =【提示】给出数学概念的新定义,根据新定义,求值比较大小. 【考点】分析法和综合法。

2014年全国普通高等学校招生统一考试理科数学(北京卷带解析)试题

2014年全国普通高等学校招生统一考试理科数学(北京卷带解析)试题

2014年全国普通高等学校招生统一考试理科(北京卷)数学试题1、【题文】已知集合,,则()A.B.C.D.2、【题文】下列函数中,在区间上为增函数的是()A.B.C.D.3、【题文】曲线,(为参数)的对称中心()A.在直线上B.在直线上C.在直线上D.在直线上4、【题文】当时,执行如图所示的程序框图,输出的值为()A.7 B.42 C.210 D.8405、【题文】设是公比为的等比数列,则“”是“为递增数列”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件6、【题文】若、满足,且的最小值为,则的值为()A.2 B.C.D.7、【题文】在空间直角坐标系中,已知.若分别是三棱锥在坐标平面上的正投影图形的面积,则()A.B.且C.且D.且8、【题文】学生的语文、数学成绩均被评为三个等级,依次为“优秀”“合格”“不合格”.若学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好”.如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两位学生,那么这组学生最多有()A.2人B.3人C.4人D.5人9、【题文】复数 .10、【题文】已知向量、满足,,且(),则 .11、【题文】设双曲线经过点(2,2),且与具有相同渐近线,则的方程为;渐近线方程为 .12、【题文】若等差数列满足,则当时,的前项和最大.13、【题文】把5件不同产品摆成一排,若产品与产品相邻,且产品与产品不相邻,则不同的摆法有种.14、【题文】设函数(是常数,).若在区间上具有单调性,且,则的最小正周期为 .15、【题文】如图,在中,,点在边上,且,.(1)求;(2)求,的长.(1)从上述比赛中随机选择一场,求李明在该场比赛中投篮命中率超过0.6的概率;(2)从上述比赛中随机选择一个主场和一个客场,求李明的投篮命中率一场超过0.6,一场不超过0.6的概率;(3)记为表中10个命中次数的平均数,从上述比赛中随机选择一场,记为李明在这场比赛中的命中次数,比较与的大小(只需写出结论)17、【题文】如图,正方体的边长为2,,分别为,的中点,在五棱锥中,为棱的中点,平面与棱,分别交于,. (1)求证:;(2)若底面,且,求直线与平面所成角的大小,并求线段的长.18、【题文】已知函数.(1)求证:;(2)若对恒成立,求的最大值与的最小值.19、【题文】已知椭圆:.(1)求椭圆的离心率;(2)设为原点,若点在椭圆上,点在直线上,且,试判断直线与圆的位置关系,并证明你的结论.20、【题文】对于数对序列,记,,其中表示和两个数中最大的数.(1)对于数对序列,求的值;(2)记为,,,四个数中最小的数,对于由两个数对组成的数对序列和,试分别对和两种情况比较和的大小;(3)在由五个数对组成的所有数对序列中,写出一个数对序列使最小,并写出的值.(只需写出结论).。

2014年高考北京理科数学试题及答案(word解析版)

2014年高考北京理科数学试题及答案(word解析版)

2014年普通高等学校招生全国统一考试(北京卷)数学(理科)第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,选出符合题目要求的一项. (1)【2014年北京,理1,5分】已知集合2{|20}A x x x =-=,{0,1,2}B =,则A B =( )(A ){0} (B ){0,1} (C){0,2} (D ){0,1,2} 【答案】C【解析】集合{}{}2|2002A x x x =-==,.故{}02AB =,,故选C .(2)【2014年北京,理2,5分】下列函数中,在区间(0,)+∞上为增函数的是( )(A )1y x =+ (B )2(1)y x =- (C )2x y -= (D )0.5log (1)y x =+ 【答案】A【解析】对于A ,1y x =+在[)1-+∞,上为增函数,符合题意,对于B ,2(1)y x =-在(01),上为减函数,不合题意,对于C,2x y -=为()-∞+∞,上的减函数,不合题意,对于D ,0.5log (1)y x =+为(1)-+∞,上的减函数,不合题意,故选A .(3)【2014年北京,理3,5分】曲线1cos 2sin x y θθ=-+⎧⎨=+⎩(θ为参数)的对称中心( )(A )在直线2y x =上 (B)在直线2y x =-上 (C)在直线1y x =-上 (D )在直线1y x =+上【答案】B【解析】参数方程1cos 2sin x y θθ=-+⎧⎨=+⎩,所表示的曲线为圆心在(12)-,,半径为1的圆.其对称中心为圆心(12)-,.逐个代入选项可知,(12)-,在直线2y x =-上,故选B .(4)【2014年北京,理4,5分】当7,3m n ==时,执行如图所示的程序框图,输出的S 值为( )(A )7 (B)42 (C )210 (D )840 【答案】C【解析】当m 输入的7m =,3n =时,判断框内的判断条件为5k <.故能进入循环的k 依次为7,6,5.顺次执行S S k =⋅,则有765210S =⋅⋅=,故选C .(5)【2014年北京,理5,5分】设{}n a 是公比为q 的等比数列,则“1q >”是“{}n a ”为递增数列的( )(A )充分且不必要条件 (B )必要且不充分条件(C )充分必要条件 (D )既不充分也不必要条件 【答案】D【解析】对于等比数列{}n a ,若1q >,则当10a <时有{}n a 为递减数列.故“1q >”不能推出“{}n a 为递增数列”.若{}n a 为递增数列,则{}n a 有可能满足10a <且01q <<,推不出1q >.综上,“1q >”为“{}n a 为递增数列”的既不充分也不必要条件,故选D .(6)【2014年北京,理6,5分】若,x y 满足20200x y kx y y +-≥⎧⎪-+≥⎨⎪≥⎩且z y x =-的最小值为4-,则k 的值为( )(A )2 (B )2- (C)12 (D )12- 【答案】D【解析】若0k ≥,z y x =-没有最小值,不合题意.若0k <,则不等式组所表示的平面区x +y -2=0kx -y +2=022Oy x域如图所示.由图可知,z y x =-在点20k ⎛⎫- ⎪⎝⎭,处取最小值.故204k ⎛⎫--=- ⎪⎝⎭,解得12k =-,故选D .(7)【2014年北京,理7,5分】在空间直角坐标系Oxyz 中,已知()2,0,0A ,()2,2,0B ,()0,2,0C,(D ,若1S ,2S ,2S 分别表示三棱锥D ABC -在xOy ,yOz ,zOx 坐标平面上的正投影图形的面积,则( )(A)123S S S == (B )12S S =且31S S ≠ (C )13S S =且32S S ≠ (D)23S S =且13S S ≠【答案】D【解析】D ABC -在xOy 平面上的投影为ABC △,故12S =,设D 在yOz 和zOx 平面上的投影分别为2D 和3D ,则D ABC -在yOz 和zOx 平面上的投影分别为2OCD △和3OAD △.∵(201D ,,(310D ,,故23S S ==D .(8)【2014年北京,理8,5分】有语文、数学两学科,成绩评定为“优秀"“合格”“不合格"三种.若A 同学每科成绩不低于B 同学,且至少有一科成绩比B 高,则称“A 同学比B 同学成绩好”,现有若干同学,他们之间没有一个人比另一个成绩好,且没有任意两个人语文成绩一样,数学成绩也一样的.问满足条件的最多有多少学生( )(A )2 (B)3 (C)4 (D)5 【答案】B【解析】用ABC 分别表示优秀、及格和不及格.显然语文成绩得A 的学生最多只有1个,语文成绩得B 的也最多只有1个,得C 的也最多只有1个,因此学生最多只有3个.显然,(AC )(BB )(CA )满足条件,故学生最多3个,故选B .第二部分(非选择题 共110分)二、填空题:共6小题,每小题5分,共30分.(9)【2014年北京,理9,5分】复数21i 1i +⎛⎫= ⎪-⎝⎭.【答案】1-【解析】复数21i (1i)2i i 1i (1i)(1i)2++===--+,故221i ()i 11i+==--.(10)【2014年北京,理10】已知向量a 、b 满足1a =,()2,1b =,且()0a b R λλ+=∈,则λ= .【解析】由0a b λ+=,有b a λ=-,于是||||||b a λ=⋅,由(21)b =,,可得5b =,又||1a =,故||λ= (11)【2014年北京,理11,5分】设双曲线C 经过点()2,2,且与2214y x -=具有相同渐近线,则C 的方程为________;渐近线方程为______. 【答案】221312x y -=,2y x =±【解析】双曲线2214y x -=的渐近线为2y x =±,故C 的渐近线为2y x =±,设C :224y x m -= 并将点(22),代入C 的方程,解得3m =-,故C 的方程为2234y x -=-,即221312x y -=.(12)【2014年北京,理12,5分】若等差数列{}n a 满足7890a a a ++>,7100a a +<,则当n =________时,{}n a 的前n 项和最大. 【答案】8【解析】由等差数列的性质,78983a a a a ++=,71089a a a a +=+,于是有80a >,890a a +<,故90a <.故87S S >,98S S <,8S 为{}n a 的前n 项和n S 中的最大值.(13)【2014年北京,理13,5分】把5件不同产品摆成一排,若产品A 与产品C 不相邻,则不同的摆法有_______种. 【答案】36【解析】先只考虑A 与产品B 相邻.此时用捆绑法,将A 和B 作为一个元素考虑,共有4424A =种方法.而A 和B 有2种摆放顺序,故总计242=48⨯种方法.再排除既满足A 与B 相邻,又满足A 与C 相邻的情况,此时用捆绑法,将A B C ,,作为一个元素考虑,共有33A 6=种方法,而A B C ,,有2种可能的摆放顺序,故总计62=12⨯种方法.综上,符合题意的摆放共有481236-=种.(14)【2014年北京,理14,5分】设函数()sin()f x x ωφ=+,0A >,0ω>若()f x 在学科网区间,62ππ⎡⎤⎢⎥⎣⎦上具有单调性,且2236f f f πππ⎛⎫⎛⎫⎛⎫==- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则()f x 的最小正周期为________. 【答案】π【解析】由()f x 在区间ππ62⎡⎤,⎢⎥⎣⎦上具有单调性,且ππ26f f ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭知,()f x 有对称中心π03⎛⎫, ⎪⎝⎭,由π2π23f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭知()f x 有对称轴1π27ππ22312x ⎛⎫=+= ⎪⎝⎭,记T 为最小正周期,则1ππ2π2263T T -⇒≥≥,从而7πππ1234TT -=⇒=. 三、解答题:共6题,共80分.解答应写出文字说明,演算步骤或证明过程.(15)【2014年北京,理15,13分】如图,在ABC ∆中,3B π∠=,8AB =,点D 在BC 边上,且2CD =,1cos 7ADC ∠=. (1)求sin BAD ∠; (2)求BD ,AC 的长. 解:(1)在ADC ∆中,因为17COS ADC ∠=,所以43sin 7ADC ∠=.所以4311333sin sin()sin cos cos sin 727214BAD ADC B ADC B ADC B ∠=∠-∠=∠-∠=⨯-⨯=. (2)在ABD ∆中,由正弦定理得338sin 143sin 437AB BADBD ADB⨯⋅∠===∠, 在ABC ∆中,由余弦定理得2222212cos 85285492AC AB BC AB BC B =+-⋅⋅=+-⨯⨯⨯=,所以7AC =.(16)【2014年北京,理16,13分】李明在10场篮球比赛中的投篮情况如下(假设各场比赛互相独立):场次 投篮次数 命中次数 场次 投篮次数 命中次数主场1 22 12 客场1 18 8 主场2 15 12 客场2 13 12 主场3 12 8 客场3 21 7 主场4238客场41815主场5 24 20 客场5 25 12(1)从上述比赛中随机选择一场,求李明在该场比赛中投篮命中率超过0.6的概率; (2)从上述比赛中选择一个主场和一个客场,学科网求李明的投篮命中率一场超过0.6,一场不超过0.6概率;(3)记x 是表中10个命中次数的平均数,从上述比赛中随机选择一场,记X 为李明在这比赛中的命中次数,比较()E X 与x 的大小(只需写出结论)解:(1)李明在该场比赛中命中率超过0.6的概率有:主场2 主场3 主场5 客场2 客场4所以李明在该场比赛中投篮命中超过0.6的概率51102P ==.(2)李明主场命中率超过0.6概率135P =,命中率不超过0.6的概率为1215P -=,客场中命中率超过0.6概率 225P =,命中率不超过0.6的概率为2315P -=.332213555525P =⨯+⨯=.(3)()E X x =.(17)【2014年北京,理17,14分】如图,正方形AMDE 的边长为2,,B C 分别为,AM MD 的中点,在五棱锥P ABCDE -中,F 为棱PE 的中点,平面ABF 与棱,PD PC 分别交于点,G H . (1)求证://AB FG ;(2)若PA ⊥底面ABCDE ,且AF PE ⊥,求直线BC 与平面ABF 所成角的大小,求线段PH 的长. 解:(1)AM ED //,AM ⊄面PED ,ED ⊂面PED .∴AM ∥面PED .AM ⊂面ABF ,即AB ⊂面ABF ,面ABF 面PDE FG =∴AB FG ∥.(2)如图建立空间直角坐标系A xyz -,各点坐标如下()0,0,0A ,()0,2,0E ,()1,0,0B ,()2,1,0C ,()0,1,1F ,()0,0,2P ,设面ABF 的法向量为()000,,n x y z =,()1,0,0AB =,()0,1,1AF =,00n AB n AF ⎧⋅=⎪⎨⋅=⎪⎩,即00x y z =⎧⎨+=⎩,令1y =,∴()0,1,1n =-,又()1,1,0BC =,∴11sin ,222BC n ==⨯,直线BC 与平面ABF 所成的角为π6.设()111,,H x y z ,由PH tPC =,则()()111,,22,1,2x y z t -=-∴111222x t y tz t =⎧⎪=⎨⎪=-⎩∴()2,,22H t t t -,又H ∈面ABF ,()21,,22BH t t t =--,∴0n BH ⋅=,∴220t t +-=,∴23t =,∴422,,333H ⎛⎫ ⎪⎝⎭,∴424,,333PH ⎛⎫=- ⎪⎝⎭ ∴2224242333PH ⎛⎫⎛⎫⎛⎫=++-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.(18)【2014年北京,理18,13分】已知函数()cos sin ,[0,]2f x x x x x π=-∈.(1)求证:()0f x ≤;(2)若sin x a b x <<在(0,)2π上恒成立,求a 的最大值与b 的最小值.解:(1)()()cos sin cos sin f x x x x x x x '=+--=-,π02x ⎡⎤∈,⎢⎥⎣⎦时,()0f x '≤,从而()f x 在π02⎡⎤,⎢⎥⎣⎦上单调递减,所以()f x 在π02⎡⎤,⎢⎥⎣⎦上的最大值为()00f =,所以()()00f x f =≤.(2)解法一:当0x >时,“sin x a x >”等价于“sin 0x ax ->”;“sin xb x<”等价于“sin 0x bx -<”,令()sin g x x cx =-,则()cos g x x c '=-.当0c ≤时,()0g x >对任意π02x ⎛⎫∈, ⎪⎝⎭恒成立.当1c ≥时,因为对任意π02x ⎛⎫∈, ⎪⎝⎭,()cos 0g x x c '=-<,所以()g x 在区间π02⎡⎤,⎢⎥⎣⎦上单调递减.从而()()00g x g <=对任意π02x ⎛⎫∈, ⎪⎝⎭恒成立.当01c <<时,存在唯一的0π02x ⎛⎫∈, ⎪⎝⎭,使得()00cos 0g x x c '=-=,且当()00x x ∈,时,()0g x '>,z yx ABCDEFG PMH()g x 单调递增;当0π2x x ⎛⎫∈, ⎪⎝⎭时,()0g x '<,()g x 单调递减.所以()()000g x g >=.进一步,“()0g x >对任意π02x ⎛⎫∈, ⎪⎝⎭恒成立”当且仅当ππ1022g c ⎛⎫=- ⎪⎝⎭≥,即20πc <≤.综上所述,当且仅当2πc ≤时,()0g x >对任意π02x ⎛⎫∈, ⎪⎝⎭恒成立;当且仅当1c ≥时,()0g x <对任意π02x ⎛⎫∈, ⎪⎝⎭恒成立.所以若sin x a b x <<对任意π02x ⎛⎫∈, ⎪⎝⎭恒成立,则a 最大值为2π,b 最小值为1.解法二:令()sin π02x g x x x ⎛⎤=,∈, ⎥⎝⎦,则()2cos sin x x x g x x ⋅-'=,由⑴知,()0g x '≤,故()g x 在π02⎛⎤, ⎥⎝⎦上单调递减,从而()g x 的最小值为π22πg ⎛⎫= ⎪⎝⎭,故2πa ≤,a 最大值为2π,b 最小值为1,下面进行证明:()sin h x x bx =-,π02x ⎡⎫∈,⎪⎢⎣⎭,则()cos h x x b '=-,当1b =时,()0h x '≤,()h x 在π02⎡⎫,⎪⎢⎣⎭上单调递减,从而()()max 00h x h ==,所以sin 0x x -≤,当且仅当0x =时取等号.从而当π02x ⎛⎫∈, ⎪⎝⎭时,sin 1x x <.故b 的最小值小于等于1.若1b <,则()cos 0h x x b '=-=在π02⎛⎫, ⎪⎝⎭上有唯一解0x ,且()00x x ∈,时,()0h x '>,故()h x 在()00x ,上单调递增,此时()()00h x h >=,sin sin 0xx bx b x->⇒>与恒成立矛盾,故1b ≥,综上知:b 的最小值为1.(19)【2014年北京,理19,14分】已知椭圆22:24C x y +=.(1)求椭圆C 的离心率;(2)设O 为原点,若点A 在椭圆C 上,点B 在直线2y =上,且OA OB ⊥,求直线AB 与圆222x y +=的位置关系,并证明你的结论.解:(1)由题意,椭圆C 的标准方程为2212x y +=.所以24a =,22b =,从而2222c a b =-=.因此2a =,c 故椭圆C 的离心率c e a ==.(2)直线AB 与圆222x y +=相切.证明如下:解法一:设点A B ,的坐标分别为()()002x y t ,,,,其中00x ≠.因为OA OB⊥,所以0OA OB ⋅=,即0020tx y +=,解得002y t x=-.当0x t =时,202t y =-,代入椭圆C 的方程,得t =故直线AB 的方程为x =圆心O 到直线AB 的距离d =.此时直线AB 与圆222x y +=相切.当0x t ≠时,直线AB 的方程为()0022y y x t x t --=--,即()()0000220y x x t y x ty ---+-=.圆心O 到直线AB 的距离d=.又220024x y +=,02y t x =-, 故d ===AB 与圆222x y +=相切.解法二:由题意知,直线OA 的斜率存在,设为k ,则直线OA 的方程为y kx =,OA OB ⊥,①当0k =时,()20A ±,,易知()02B ,,此时直线AB 的方程为2x y +=或2x y -+=, 原点到直线AB此时直线AB 与圆222x y +=相切;②当0k ≠时,直线OB 的方程为1y x k =-,联立2224y kx x y =⎧⎨+=⎩得点A的坐标⎛⎫,或⎛⎫ ⎝;联立12y xk y ⎧=-⎪⎨⎪=⎩得点B 的坐标()22k -,,由点A 的坐标的对称性知,取点A ⎛⎫计算,直线AB的方程为:))2222y x k x k k -=+=++,即((21220k x y k -+++=, 原点到直线AB 距离d ==,此时直线AB 与圆222x y +=相切.综上知,直线AB 一定与圆222x y +=相切.解法三:①当0k =时,()20A ±,,易知()02B ,,此时22OA OB =,=,AB =原点到直线AB的距离OA OB d AB⋅===AB 与圆222x y +=相切;②当0k ≠时,直线OB 的方程为1y x k=-,设()()1122A x yB x y ,,,,则1OA,2OB ==,联立2224y kx x y =⎧⎨+=⎩得点A的坐标⎛⎫或⎛⎫⎝;于是A OA=,OB =21k AB +=OA OBd AB⋅===直线AB 与圆222x y +=相切;综上知,直线AB 一定与圆222x y +=相切.(20)【2014年北京,理20,13分】对于数对序列1122(,),(,),,(,)n n P a b a b a b ,记111()T P a b =+,112()max{(),}(2)k k k k T P b T P a a a k n -=++++≤≤,其中112max{(),}k k T P a a a -+++表示1()k T P -和12k a a a +++两个数中最大的数.(1)对于数对序列(2,5),(4,1)P P ,求12(),()T P T P 的值;(2)记m 为,,,a b c d 四个数中最小值,对于由两个数对(,),(,)a b c d 组成的数对序列(,),(,)P a b c d 和'(,),(,)P a b c d ,试分别对m a =和m d =的两种情况比较2()T P 和2(')T P 的大小;(3)在由5个数对(11,8),(5,2),(16,11),(11,11),(4,6)组成的所有数对序列中,写出一个数对序列P 使5()T P 最 小,并写出5()T P 的值.(只需写出结论).解:(1)()1257T P =+=,()(){}{}211max 241max 768T P T P =+,+=+,=. (2)当m a =时:()1T P a b =+,(){}{}2max max T P d a b a c a d b c =++,+=++,;()1T P c d '=+,(){}{}2max max T P b c d c a b c a d b c d '=++,+=++,=++;因为a 是a b c d ,,,中最小的数,所以{}max a b c b c +,+≤,从而()()22T P T P '≤; 当m d =时,()1T P a b =+,(){}{}2max max T P d a b a c a d b c =++,+=++,;()1T P c d '=+,(){}{}2max max T P b c d c a b c a d a b c '=++,+=++,=++;因为d 是a b c d ,,,中最小的数,所以{}max d b c b c +,+≤,从而()()22T P T P '≤. 综上,这两种情况下都有()()22T P T P '≤.(3)数列序列:P ()4,6,()11,11,()16,11,()11,8,()5,2的()5T P 的值最小;()110T P =,()226T P =,()342T P =,()450T P =,()552T P =.。

14年高考真题——理科数学(北京卷)

14年高考真题——理科数学(北京卷)

2014年普通高等学校招生全国统一考试(北京)卷数学(理科)一.选择题:共8小题,每小题5分,共40分。

在每个小题给出的四个选项中,只有一项是符合题目要求的一项。

1.已知集合{}2|20A x x x =-=,{}0,1,2B =,则A B =( )(A ){}0(B ){}0,1 (C ){}0,2(D ){}0,1,22.下列函数中,在区间()0,+∞上为增函数的是( ) (A)y =(B )()21y x =-(C )2xy -=(D )()0.5log 1y x =+3.曲线1cos 2sin x y θθ=-+⎧⎨=+⎩(θ为参数)的对称中心( )(A )在直线2y x =上(B )在直线2y x =-上(C )在直线1y x =-上 (D )在直线1y x =+上 4.当7,3m n ==时,执行如图所示的程序框图,输出的S 值为( ) (A )7 (B )42 (C )210 (D )8405.设{}n a 是公比为q 的等比数列,则“1q >”是“{}n a 为递增数列”的( )(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件6.若,x y 满足20200x y kx y y +-≥⎧⎪-+≥⎨⎪≥⎩且z y x =-的最小值为4-,则k 的值为( )(A )2(B )2- (C )12 (D )12- 7.在空间直角坐标系Oxyz 中,已知()2,0,0A ,()2,2,0B ,()0,2,0C,(D ,若1S ,2S ,3S 分别表示三棱锥D ABC -在xOy ,yOz ,zOx 坐标平面上的正投影图形的 面积,则( ) (A )123S S S ==(B )12S S =且31S S ≠(C )13S S =且32S S ≠(D )23S S =且13S S ≠8.有语文、数学两学科,成绩评定为“优秀”“合格”“不合格”三种。

2014年高考真题——理科数学(北京卷)解析版 Word版含解析

2014年高考真题——理科数学(北京卷)解析版 Word版含解析

课标理数【2014·北京理卷】一、选择题1. [2014•北京理卷]1.已知集合2{|20},{0,1,2}A x x x B =-==,则AB =( ).{0}A .{0,1}B .{0,2}C .{0,1,2}D【答案】C【解析】∵{}2,0=A ,∴{}{}{}2,02,1,02,0== B A . 2.[2014•北京理卷]下列函数中,在区间(0,)+∞上为增函数的是( ).A y = 2.(1)B y x =- .2x C y -= 0.5.log (1)D y x =+【答案】A【解析】由初等函数的性质得选项B 在()1,0上递减,选项C 、D 在()+∞,0为减函数,所以排除B 、C 、D. 3.[2014•北京理卷] 曲线1cos 2sin x y θθ=-+⎧⎨=+⎩(θ为参数)的对称中心( ).A 在直线2y x =上 .B 在直线2y x =-上 .C 在直线1y x =-上 .D 在直线1y x =+上【答案】B【解析】曲线方程消参化为()()12122=-++y x ,其对称中心为()2,1-,验证知其满足x y 2-=.4.[2014•北京理卷]当7,3m n ==时,执行如图所示的程序框图,输出的S 值为( ).7A .42B .210C .840D【答案】C【解析】2105671=⨯⨯⨯=S . 5.[2014•北京理卷]设{}n a 是公比为q 的等比数列,则"1"q >是"{}"n a 为递增数列的( ).A 充分且不必要条件 .B 必要且不充分条件 .C 充分必要条件 .D 既不充分也不必要条件【答案】D【解析】当01<a 时,1>q 数列{}n a 递减;01<a 时,数列{}n a 递增,10<<q . 理数6.E5[2014•北京理卷]若,x y 满足20200x y kx y y +-≥⎧⎪-+≥⎨⎪≥⎩且z y x =-的最小值为-4,则k 的值为( ).2A .2B - 1.2C 1.2D -【答案】D【解析】可行域如图所示,当0>k 时,知x y z -=无最小值,当0<k 时,目标函数线过可行域内A 点时z 有最小值,联立⎩⎨⎧=+-=020y kx y ,解之得⎪⎭⎫⎝⎛-0,2k A ,420min -=+=k z ,即21-=k .7.[2014•北京理卷]在空间直角坐标系Oxyz 中,已知()2,0,0A ,()2,2,0B ,()0,2,0C,(D ,若 1S ,2S ,3S 分别表示三棱锥D ABC -在xOy ,yOz ,zOx 坐标平面上的正投影图形的 面积,则( )(A )123S S S == (B )12S S =且 31S S ≠ (C )13S S =且 32S S ≠ (D )23S S =且 13S S ≠ 【答案】D【解析】设顶点D 在三个坐标面xoy 、yoz 、zox 的正投影分为'1D 、'2D 、'3D ,则211='='BD AD ,2=AB ,∴2222211=⨯⨯⨯=S ,2222122=⨯⨯=='OCD S S ,2222133=⨯⨯=='OAD S S .8.[2014•北京理卷]有语文、数学两学科,成绩评定为“优秀”“合格”“不合格”三种.若A 同学每科成绩不低于B 同学,且至少有一科成绩比B 高,则称“A 同学比B 同学成绩好.”现有若干同学, 他们之间没有一个人比另一个成绩好,且没有任意两个人语文成绩一样,数学成绩也一样 的.问满足条件的最多有多少学生( )(A )2 (B )3 (C )4 (D )5 【答案】B【解析】假设AB 两个同学的数学成绩一样,由题意知他们语文成绩不一样,这样他们的语文成绩总有人比另一个人高,语文成绩较高的同学比另一个同学“成绩好”,与已知条件“他们之中没有一个比另一个成绩好”相矛盾.因此,没有任意两个同学数学成绩是相同的.因为数学成绩只有3种,因而同学数量最大为3.即 3位同学成绩分别为(优秀,不合格)、(合格,合格)、(不合格,优秀)时满足条件. 二、填空题9.[2014•北京理卷]2=-+y x 02=+-y kx A=-x y复数211i i +⎛⎫= ⎪-⎝⎭________.【答案】1-【解析】()()()122111112222-=⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛+-+=⎪⎭⎫ ⎝⎛-+i i i i i i . 10.[2014•北京理卷]已知向量a 、b 满足1a =,()2,1b =,且()0a b R λλ+=∈,则λ=________.【答案】5【解析】∵0=+b a λ,∴b a -=λ,∴515||||===a b λ. 11.[2014•北京理卷]设双曲线C 经过点()2,2,且与2214y x -=具有相同渐近线,则C 的方程为________; 渐近线方程为________.【答案】112322=-y x ;x y 2±= 【解析】设双曲线C 的方程为λ=-224x y ,将()2,2代入λ=-=-324222,∴双曲线方程为112322=-y x .令0422=-x y 得渐近线方程为x y 2±=. 12.[2014•北京理卷]若等差数列{}n a 满足7890a a a ++>,7100a a +<,则当n =________时{}n a 的前n 项和最大. 【答案】8【解析】∵038987>=++a a a a ,098107<+=+a a a a ,∴0,098<>a a ,∴8=n 时数列{}n a 前n 和最大. 13.[2014•北京理卷]把5件不同产品摆成一排,若产品A 与产品C 不相邻,则不同的摆法有_______种. 【答案】36【解析】36326132233=⨯⨯=A A A . 14.[2014•北京理卷]设函数)sin()(ϕω+=x x f ,0,0>>ωA ,若)(x f 在区间]2,6[ππ上具有单调性,且 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛6322πππf f f ,则)(x f 的最小正周期为________. 【答案】π【解析】结合图象得26223224ππππ+-+≥T ,即π≥T .15.[2014•北京理卷] 如图,在ABC ∆中,8,3==∠AB B π,点D 在BC 边上,且71cos ,2=∠=ADC CD (1)求BAD ∠sin (2)求AC BD ,的长解:(I )在ADC ∆中,因为17COS ADC ∠=,所以sin ADC ∠=. 所以sin sin()BAD ADC B ∠=∠-∠sin cos cos sin ADC B ADC B =∠-∠=1433237121734=⨯-⨯. (Ⅱ)在ABD ∆中,由正弦定理得AA-6π2π32π8sin 3sin AB BAD BD ADB ⋅∠===∠, 在ABC ∆中,由余弦定理得2222cos AC AB BC AB BC B =+-⋅⋅22185285492=+-⨯⨯⨯=, 所以7AC =.16.[2012•北京理卷]李明在10场篮球比赛中的投篮情况如下(假设各场比赛互相独立):(1)从上述比赛中随机选择一场,求李明在该场比赛中投篮命中率超过6.0的概率. (2)从上述比赛中选择一个主场和一个客场,求李明的投篮命中率一场超过6.0,一 场不超过6.0的概率.(3)记x 是表中10个命中次数的平均数,从上述比赛中随机选择一场,记X 为李明 在这比赛中的命中次数,比较)(X E 与x 的大小(只需写出结论).解:(I)根据投篮统计数据,在10场比赛中,李明投篮命中率超过0.6的场次有5场,分别是主场2,主场3,主场5,客场2,客场4.所以在随机选择的一场比赛中,李明的投篮命中率超过0.6的概率是05.(Ⅱ)设事件A 为“在随机选择的一场主场比赛中李明的投篮命中率超过0.6”,事件B 为“在随机选择的一场客场比赛中李明的投篮命中率超过0.6”,事件C 为“在随机选择的一个主场和一个客场中,李明的投篮命中率一场超过0.6,一场不超过0.6”。

(完整版)2014年北京市高考数学试卷(理科)答案与解析

(完整版)2014年北京市高考数学试卷(理科)答案与解析

2014年北京市高考数学试卷(理科)参考答案与试题解析一、选择题(共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项)1.(5分)(2014•北京)已知集合A={x|x2﹣2x=0},B={0,1,2},则A∩B=()A.{0} B.{0,1} C.{0,2} D.{0,1,2}考点:交集及其运算.专题:集合.分析:解出集合A,再由交的定义求出两集合的交集.解答:解:∵A={x|x2﹣2x=0}={0,2},B={0,1,2},∴A∩B={0,2}故选C点评:本题考查交的运算,理解好交的定义是解答的关键.2.(5分)(2014•北京)下列函数中,在区间(0,+∞)上为增函数的是()A.y=B.y=(x﹣1)2C.y=2﹣x D.y=log0.5(x+1)考点:对数函数的单调性与特殊点.专题:函数的性质及应用.分析:根据基本初等函数的单调性,判断各个选项中函数的单调性,从而得出结论.解答:解:由于函数y=在(﹣1,+∞)上是增函数,故满足条件,由于函数y=(x﹣1)2在(0,1)上是减函数,故不满足条件,由于函数y=2﹣x在(0,+∞)上是减函数,故不满足条件,由于函数y=log0.5(x+1)在(﹣1,+∞)上是减函数,故不满足条件,故选:A.点评:本题主要考查函数的单调性的定义和判断,基本初等函数的单调性,属于基础题.3.(5分)(2014•北京)曲线(θ为参数)的对称中心()A.在直线y=2x上B.在直线y=﹣2x上C.在直线y=x﹣1上D.在直线y=x+1上考点:圆的参数方程.专题:选作题;坐标系和参数方程.分析:曲线(θ为参数)表示圆,对称中心为圆心,可得结论.解答:解:曲线(θ为参数)表示圆,圆心为(﹣1,2),在直线y=﹣2x上,点评:本题考查圆的参数方程,考查圆的对称性,属于基础题.4.(5分)(2014•北京)当m=7,n=3时,执行如图所示的程序框图,输出的S的值为()A.7B.42 C.210 D.840考点:循环结构.专题:计算题;算法和程序框图.分析:算法的功能是求S=7×6×…×k的值,根据条件确定跳出循环的k值,计算输出S的值.解答:解:由程序框图知:算法的功能是求S=7×6×…×k的值,当m=7,n=3时,m﹣n+1=7﹣3+1=5,∴跳出循环的k值为4,∴输出S=7×6×5=210.故选:C.点评:本题考查了循环结构的程序框图,根据框图的流程判断算法的功能是解答本题的关键.5.(5分)(2014•北京)设{a n}是公比为q的等比数列,则“q>1”是“{a n}”为递增数列的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断;等比数列.专题:等差数列与等比数列;简易逻辑.分析:根据等比数列的性质,结合充分条件和必要条件的定义进行判断即可得到结论.解答:解:等比数列﹣1,﹣2,﹣4,…,满足公比q=2>1,但“{a n}”不是递增数列,充分性不成立.若a n=﹣1为递增数列,但q=>1不成立,即必要性不成立,故“q>1”是“{a n}”为递增数列的既不充分也不必要条件,点评:本题主要考查充分条件和必要条件的判断,利用等比数列的性质,利用特殊值法是解决本题的关键.6.(5分)(2014•北京)若x,y满足且z=y﹣x的最小值为﹣4,则k的值为()A.2B.﹣2 C.D.﹣考点:简单线性规划.专题:数形结合;不等式的解法及应用.分析:对不等式组中的kx﹣y+2≥0讨论,当k≥0时,可行域内没有使目标函数z=y﹣x取得最小值的最优解,k<0时,若直线kx﹣y+2=0与x轴的交点在x+y﹣2=0与x轴的交点的左边,z=y﹣x的最小值为﹣2,不合题意,由此结合约束条件作出可行域,化目标函数为直线方程的斜截式,由图得到最优解,联立方程组求出最优解的坐标,代入目标函数得答案.解答:解:对不等式组中的kx﹣y+2≥0讨论,可知直线kx﹣y+2=0与x轴的交点在x+y﹣2=0与x轴的交点的右边,故由约束条件作出可行域如图,由kx﹣y+2=0,得x=,∴B(﹣).由z=y﹣x得y=x+z.由图可知,当直线y=x+z过B(﹣)时直线在y轴上的截距最小,即z最小.此时,解得:k=﹣.故选:D.点评:本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.7.(5分)(2014•北京)在空间直角坐标系Oxyz中,已知A(2,0,0),B(2,2,0),C (0,2,0),D(1,1,),若S1,S2,S3分别表示三棱锥D﹣ABC在xOy,yOz,zOx 坐标平面上的正投影图形的面积,则()A.S1=S2=S3B.S2=S1且S2≠S3C.S3=S1且S3≠S2D.S3=S2且S3≠S1考点:空间直角坐标系.专题:空间向量及应用.分析:分别求出三棱锥在各个面上的投影坐标即可得到结论.解答:解:设A(2,0,0),B(2,2,0),C(0,2,0),D(1,1,),则各个面上的射影分别为A',B',C',D',在xOy坐标平面上的正投影A'(2,0,0),B'(2,2,0),C'(0,2,0),D'(1,1,0),S1=.在yOz坐标平面上的正投影A'(0,0,0),B'(0,2,0),C'(0,2,0),D'(0,1,),S2=.在zOx坐标平面上的正投影A'(2,0,0),B'(2,0,0),C'(0,0,0),D'(1,0,),S3=,则S3=S2且S3≠S1,故选:D.点评:本题主要考查空间坐标系的应用,求出点对于的投影坐标是解决本题的关键.8.(5分)(2014•北京)学生的语文、数学成绩均被评定为三个等级,依次为“优秀”“合格”“不合格”.若学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好”.如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两位学生,则这一组学生最多有()A.2人B.3人C.4人D.5人考点:进行简单的合情推理.专题:推理和证明.分析:分别用ABC分别表示优秀、及格和不及格,根据题干中的内容推出文成绩得A,B,C的学生各最多只有1个,继而推得学生的人数.解答:解:用ABC分别表示优秀、及格和不及格,显然语文成绩得A的学生最多只有1个,语文成绩得B得也最多只有一个,得C最多只有一个,因此学生最多只有3人,显然(AC)(BB)(CA)满足条件,故学生最多有3个.故选:B.点评:本题主要考查了合情推理,关键是找到语句中的关键词,培养了推理论证的能力.二、填空题(共6小题,每小题5分,共30分)9.(5分)(2014•北京)复数()2=﹣1.考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:由复数代数形式的除法运算化简括号内部,然后由虚数单位i的运算性质得答案.解答:解:()2=.故答案为:﹣1.点评:本题考查了复数代数形式的除法运算,考查了虚数单位i的运算性质,是基础题.10.(5分)(2014•北京)已知向量,满足||=1,=(2,1),且+=(λ∈R),则|λ|=.考点:平面向量数量积的坐标表示、模、夹角.专题:平面向量及应用.分析:设=(x,y).由于向量,满足||=1,=(2,1),且+=(λ∈R),可得,解出即可.解答:解:设=(x,y).∵向量,满足||=1,=(2,1),且+=(λ∈R),∴=λ(x,y)+(2,1)=(λx+2,λy+1),∴,化为λ2=5.解得.故答案为:.点评:本题考查了向量的坐标运算、向量的模的计算公式、零向量等基础知识与基本技能方法,属于基础题.11.(5分)(2014•北京)设双曲线C经过点(2,2),且与﹣x2=1具有相同渐近线,则C的方程为;渐近线方程为y=±2x.考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:利用双曲线渐近线之间的关系,利用待定系数法即可得到结论.解答:解:与﹣x2=1具有相同渐近线的双曲线方程可设为﹣x2=m,(m≠0),∵双曲线C经过点(2,2),∴m=,即双曲线方程为﹣x2=﹣3,即,对应的渐近线方程为y=±2x,故答案为:,y=±2x.点评:本题主要考查双曲线的性质,利用渐近线之间的关系,利用待定系数法是解决本题的关键,比较基础.12.(5分)(2014•北京)若等差数列{a n}满足a7+a8+a9>0,a7+a10<0,则当n=8时,{a n}的前n项和最大.考点:等差数列的性质.专题:等差数列与等比数列.分析:可得等差数列{a n}的前8项为正数,从第9项开始为负数,进而可得结论.解答:解:由等差数列的性质可得a7+a8+a9=3a8>0,∴a8>0,又a7+a10=a8+a9<0,∴a9<0,∴等差数列{a n}的前8项为正数,从第9项开始为负数,∴等差数列{a n}的前8项和最大,故答案为:8.点评:本题考查等差数列的性质和单调性,属中档题.13.(5分)(2014•北京)把5件不同产品摆成一排,若产品A与产品B相邻,且产品A与产品C不相邻,则不同的摆法有36种.考点:排列、组合的实际应用;排列、组合及简单计数问题.专题:排列组合.分析:分3步进行分析:①用捆绑法分析A、B,②除去A、B相邻又满足A、C相邻的情况.解答:解:先考虑产品A与B相邻,把A、B作为一个元素有种方法,而A、B可交换位置,所以有2=48种摆法,又当A、B相邻又满足A、C相邻,有2=12种摆法,故满足条件的摆法有48﹣12=36种.故答案为:36.点评:本题考查分步计数原理的应用,要优先分析受到限制的元素,如本题的A、B、C.14.(5分)(2014•北京)设函数f(x)=Asin(ωx+φ)(A,ω,φ是常数,A>0,ω>0)若f(x)在区间[,]上具有单调性,且f()=f()=﹣f(),则f(x)的最小正周期为π.考点:由y=Asin(ωx+φ)的部分图象确定其解析式;三角函数的周期性及其求法.专题:三角函数的图像与性质.分析:由f()=f()求出函数的一条对称轴,结合f(x)在区间[,]上具有单调性,且f()=﹣f()可得函数的半周期,则周期可求.解答:解:由f()=f(),可知函数f(x)的一条对称轴为x=,则x=离最近对称轴距离为.又f()=﹣f(),则f(x)有对称中心(,0),由于f(x)在区间[,]上具有单调性,则≤T⇒T≥,从而=⇒T=π.故答案为:π.点评:本题考查f(x)=Asin(ωx+φ)型图象的形状,考查了学生灵活处理问题和解决问题的能力,是中档题.三、解答题(共6小题,共80分,解答应写出文字说明、演算步骤或证明过程)15.(13分)(2014•北京)如图,在△ABC中,∠B=,AB=8,点D在边BC上,且CD=2,cos∠ADC=.(1)求sin∠BAD;(2)求BD,AC的长.考点:余弦定理的应用.专题:解三角形.分析:根据三角形边角之间的关系,结合正弦定理和余弦定理即可得到结论.解答:解:(1)在△ABC中,∵cos∠ADC=,∴sin∠ADC====,则sin∠BAD=sin(∠ADC﹣∠B)=sin∠ADC•cosB﹣cos∠ADC•sinB=×﹣=.(2)在△ABD中,由正弦定理得BD==,在△ABC中,由余弦定理得AC2=AB2+CB2﹣2AB•BCcosB=82+52﹣2×8×=49,即AC=7.点评:本题主要考查解三角形的应用,根据正弦定理和余弦定理是解决本题本题的关键,难度不大.16.(13分)(2014•北京)李明在10场篮球比赛中的投篮情况统计如下(假设各场比赛相互独立);场次投篮次数命中次数场次投篮次数命中次数主场1 22 12 客场1 18 8主场2 15 12 客场2 13 12主场3 12 8 客场3 21 7主场4 23 8 客场4 18 15主场5 24 20 客场5 25 12(1)从上述比赛中随机选择一场,求李明在该场比赛中投篮命中率超过0.6的概率;(2)从上述比赛中随机选择一个主场和一个客场,求李明的投篮命中率一场超过0.6,一场不超过0.6的概率;(3)记是表中10个命中次数的平均数,从上述比赛中随机选择一场,记X为李明在这场比赛中的命中次数,比较EX与的大小(只需写出结论).考点:离散型随机变量的期望与方差;相互独立事件的概率乘法公式.专题:概率与统计.分析:(1)根据概率公式,找到李明在该场比赛中超过0.6的场次,计算即可,(2)根据互斥事件的概率公式,计算即可.(3)求出平均数和EX,比较即可.解答:解:(1)设李明在该场比赛中投篮命中率超过0.6的概率为事件A,由题意知,李明在该场比赛中超过0.6的场次有:主场2,主场3,主场5,客场2,客场4,共计5场所以李明在该场比赛中投篮命中率超过0.6的概率P(A)=,(2)设李明的投篮命中率一场超过0.6,一场不超过0.6的概率为事件B,同理可知,李明主场命中率超过0.6的概率,客场命中率超过0.6的概率,故P(B)=P1×(1﹣P2)+P2×(1﹣P1)=;(3)=(12+8+12+12+8+7+8+15+20+12)=11.4EX=点评:本题主要考查了概率的计算、数学期望,平均数,互斥事件的概率,属于中档题.17.(14分)(2014•北京)如图,正方形AMDE的边长为2,B,C分别为AM,MD的中点,在五棱锥P﹣ABCDE中,F为棱PE的中点,平面ABF与棱PD,PC分别交于点G,H.(1)求证:AB∥FG;(2)若PA⊥底面ABCDE,且PA=AE,求直线BC与平面ABF所成角的大小,并求线段PH的长.考点:直线与平面所成的角.专题:计算题;证明题;空间位置关系与距离;空间角.分析:(1)运用线面平行的判定定理和性质定理即可证得;(2)由于PA⊥底面ABCDE,底面AMDE为正方形,建立如图的空间直角坐标系Axyz,分别求出A,B,C,E,P,F,及向量BC的坐标,设平面ABF的法向量为n=(x,y,z),求出一个值,设直线BC与平面ABF所成的角为α,运用sinα=|cos|,求出角α;设H(u,v,w),再设,用λ表示H的坐标,再由n=0,求出λ和H的坐标,再运用空间两点的距离公式求出PH的长.解答:(1)证明:在正方形AMDE中,∵B是AM的中点,∴AB∥DE,又∵AB⊄平面PDE,∴AB∥平面PDE,∵AB⊂平面ABF,且平面ABF∩平面PDE=FG,∴AB∥FG;(2)解:∵PA⊥底面ABCDE,∴PA⊥AB,PA⊥AE,如图建立空间直角坐标系Axyz,则A(0,0,0),B(1,0,0),C(2,1,0),P(0,0,2),E(0,2,0),F(0,1,1),,设平面ABF的法向量为n=(x,y,z),则即,令z=1,则y=﹣1,∴n=(0,﹣1,1),设直线BC与平面ABF所成的角为α,则sinα=|cos|=||=,∴直线BC与平面ABF所成的角为,设H(u,v,w),∵H在棱PC上,∴可设,即(u,v,w﹣2)=λ(2,1,﹣2),∴u=2λ,v=λ,w=2﹣2λ,∵n是平面ABF的法向量,∴n=0,即(0,﹣1,1)•(2λ,λ,2﹣2λ)=0,解得λ=,∴H(),∴PH==2.点评:本题主要考查空间直线与平面的位置关系,考查直线与平面平行、垂直的判定和性质,同时考查直线与平面所成的角的求法,考查运用空间直角坐标系求角和距离,是一道综合题.18.(13分)(2014•北京)已知函数f(x)=xcosx﹣sinx,x∈[0,](1)求证:f(x)≤0;(2)若a<<b对x∈(0,)上恒成立,求a的最大值与b的最小值.考点:利用导数求闭区间上函数的最值.专题:导数的综合应用.分析:(1)求出f′(x)=cosx﹣xsinx﹣cosx=﹣xsinx,判定出在区间∈(0,)上f′(x)=﹣xsinx<0,得f(x)在区间∈[0,]上单调递减,从而f(x)≤f(0)=0.(2)当x>0时,“>a”等价于“sinx﹣ax>0”,“<b”等价于“sinx﹣bx<0”构造函数g(x)=sinx﹣cx,通过求函数的导数讨论参数c求出函数的最值,进一步求出a,b的最值.解答:解:(1)由f(x)=xcosx﹣sinx得f′(x)=cosx﹣xsinx﹣cosx=﹣xsinx,此在区间∈(0,)上f′(x)=﹣xsinx<0,所以f(x)在区间∈[0,]上单调递减,从而f(x)≤f(0)=0.(2)当x>0时,“>a”等价于“sinx﹣ax>0”,“<b”等价于“sinx﹣bx<0”令g(x)=sinx﹣cx,则g′(x)=cosx﹣c,当c≤0时,g(x)>0对x∈(0,)上恒成立,当c≥1时,因为对任意x∈(0,),g′(x)=cosx﹣c<0,所以g(x)在区间[0,]上单调递减,从而,g(x)<g(0)=0对任意x∈(0,)恒成立,当0<c<1时,存在唯一的x0∈(0,)使得g′(x0)=cosx0﹣c=0,g(x)与g′(x)在区间(0,)上的情况如下:x (0,x0)x0(x0,)g′(x)+ ﹣g(x)↑↓因为g(x)在区间(0,x0)上是增函数,所以g(x0)>g(0)=0进一步g(x)>0对任意x∈(0,)恒成立,当且仅当综上所述当且仅当时,g(x)>0对任意x∈(0,)恒成立,当且仅当c≥1时,g(x)<0对任意x∈(0,)恒成立,所以若a<<b对x∈(0,)上恒成立,则a的最大值为,b的最小值为1 点评:本题考查利用导数求函数的单调区间;利用导数求函数的最值;考查解决不等式问题常通过构造函数解决函数的最值问题,属于一道综合题.19.(14分)(2014•北京)已知椭圆C:x2+2y2=4,(1)求椭圆C的离心率(2)设O为原点,若点A在椭圆C上,点B在直线y=2上,且OA⊥OB,求直线AB与圆x2+y2=2的位置关系,并证明你的结论.考点:圆与圆锥曲线的综合;椭圆的简单性质.专题:圆锥曲线的定义、性质与方程.分析:(1)化椭圆方程为标准式,求出半长轴和短半轴,结合隐含条件求出半焦距,则椭圆的离心率可求;(2)设出点A,B的坐标分别为(x0,y0),(t,2),其中x0≠0,由OA⊥OB得到,用坐标表示后把t用含有A点的坐标表示,然后分A,B的横坐标相等和不相等写出直线AB的方程,然后由圆x2+y2=2的圆心到AB的距离和圆的半径相等说明直线AB 与圆x2+y2=2相切.解答:解:(1)由x2+2y2=4,得椭圆C的标准方程为.∴a2=4,b2=2,从而c2=a2﹣b2=2.因此a=2,c=.故椭圆C的离心率e=;(2)直线AB与圆x2+y2=2相切.证明如下:设点A,B的坐标分别为(x0,y0),(t,2),其中x0≠0.∵OA⊥OB,∴,即tx0+2y0=0,解得.当x0=t时,,代入椭圆C的方程,得.故直线AB的方程为x=,圆心O到直线AB的距离d=.此时直线AB与圆x2+y2=2相切.当x0≠t时,直线AB的方程为,即(y0﹣2)x﹣(x0﹣t)y+2x0﹣ty0=0.圆心O到直线AB的距离d=.又,t=.故=.此时直线AB与圆x2+y2=2相切.点评:本题考查椭圆的简单几何性质,考查了圆与圆锥曲线的综合,训练了由圆心到直线的距离判断直线和圆的位置关系,体现了分类讨论的数学思想方法,考查了计算能力和逻辑思维能力,是压轴题.20.(13分)(2014•北京)对于数对序列P:(a1,b1),(a2,b2),…,(a n,b n),记T1(P)=a1+b1,T k(P)=b k+max{T k﹣1(P),a1+a2+…+a k}(2≤k≤n),其中max{T k﹣1(P),a1+a2+…+a k}表示T k﹣1(P)和a1+a2+…+a k两个数中最大的数,(Ⅰ)对于数对序列P:(2,5),(4,1),求T1(P),T2(P)的值;(Ⅱ)记m为a,b,c,d四个数中最小的数,对于由两个数对(a,b),(c,d)组成的数对序列P:(a,b),(c,d)和P′:(c,d),(a,b),试分别对m=a和m=d两种情况比较T2(P)和T2(P′)的大小;(Ⅲ)在由五个数对(11,8),(5,2),(16,11),(11,11),(4,6)组成的所有数对序列中,写出一个数对序列P使T5(P)最小,并写出T5(P)的值(只需写出结论).考点:分析法和综合法.专题:新定义;分析法.分析:(Ⅰ)利用T1(P)=a1+b1,T k(P)=b k+max{T k﹣1(P),a1+a2+…+a k}(2≤k≤n),可求T1(P),T2(P)的值;(Ⅱ)T2(P)=max{a+b+d,a+c+d},T2(P′)=max{c+d+b,c+a+b},分类讨论,利用新定义,可比较T2(P)和T2(P′)的大小;(Ⅲ)根据新定义,可得结论.解答:解:(Ⅰ)T1(P)=2+5=7,T2(P)=1+max{T1(P),2+4}=1+max{7,6}=8;(Ⅱ)T2(P)=max{a+b+d,a+c+d},T2(P′)=max{c+d+b,c+a+b}.当m=a时,T2(P′)=max{c+d+b,c+a+b}=c+d+b,∵a+b+d≤c+d+b,且a+c+d≤c+b+d,∴T2(P)≤T2(P′);当m=d时,T2(P′)=max{c+d+b,c+a+b}=c+a+b,∵a+b+d≤c+a+b,且a+c+d≤c+a+d,∴T2(P)≤T2(P′);∴无论m=a和m=d,T2(P)≤T2(P′);(Ⅲ)数对(4,6),(11,11),(16,11),(11,8),(5,2),T5(P)最小;T1(P)=10,T2(P)=26;T3(P)42,T4(P)=50,T5(P)=52.点评:本题考查新定义,考查学生分析解决问题的能力,正确理解与运用新定义是解题的关键.。

普通高等学校招生全国统一考试数学理试题(北京卷,扫描版,解析版)

普通高等学校招生全国统一考试数学理试题(北京卷,扫描版,解析版)

2014年普通高等学校招生全国统一考试
数学(理)(北京卷)
本试卷共5页,150分。

考试时长120分钟。

考试生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

第一部分(选择题共40分)
一、选择题共8小题。

每小题5分.共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

第二部分(非选择题共110分) 二.填空题共6小题。

每小题5分。

共30分。

三、解答题共6小题,共80分。

解答应写出文字说明,演算步骤或证明过程。

绝密★考试结束前
2014年普通高等学校招生全国统一考试
数学(理)(北京卷)参考答案一、选择题(共8小题。

每小题5分.共40分)
二.填空题(共6小题。

每小题5分。

共30分)
三、解答题(共6小题,共80分)
11
12
13
14。

2014年北京高考理科数学试题含答案(Word版)

2014年北京高考理科数学试题含答案(Word版)

2014 年北京高考数学(理科)试题一 .选择题(共 8小题,每题 5 分,共 40分 .在每题列出的四个选项中,选出切合题目要求的一项)1.已知会合A{ x | x22x0}, B{0,1, 2} ,则A B ()A.{0}B.{ 0, 1}C.{ 0, 2}D.{ 0,1, 2}2.以下函数中,在区间(0,) 上为增函数的是()A.y x1B. y( x12)C.y 2 x D . y l o 0g. 5x( 1 )3.曲线x1cos(为参数)的对称中心()y2sinA. 在直线y2x 上B.在直线y2x 上C. 在直线y x1上D.在直线y x 1上4.当m7, n 3 时,履行以下图的程序框图,输出的S 值为()A.7B.42C.210D.8405.设{ a n}是公比为q的等比数列,则" q1" 是 "{ a n }" 为递加数列的()A. 充足且不用要条件B. 必需且不充足条件C. 充足必需条件D. 既不充足也不用要条件x y206.若x, y知足kx y20 且z y x 的最小值为-4,则 k 的值为()y0A.2B.21D .1 C .2 27.在空间直角坐标系Oxyz 中,已知 A 2,0,0 , B 2,2,0 , C 0,2,0,D 1,1, 2,若S1, S2, S3分别表示三棱锥D ABC 在xOy,yOz, zOx坐标平面上的正投影图形的面积,则()(A)S1S2S3(B)S1S2且 S3S1(C)S1S3且 S3S2(D)S2S3且 S1S38.有语文、数学两,成绩评定为“优异”“合格”“不合格”三种 .若A同学每科成绩不低于 B 同学,且起码有一科成绩比B高,则称“ A 同学比 B 同学成绩好.”现有若干同学,他们之间没有一个人比另一个成绩好,且没有随意两个人语文成绩同样,数学成绩也同样的 .问知足条件的最多有多少学生()(A)2(B)3(C)4(D)5二、填空题(共 6 小题,每题 5 分,共30 分)12i________.9.复数i110.已知向量a、b知足a 1 ,b2,1,且 a b 0R ,则________.11.设双曲线C经过点2,2,且与 y2x21拥有同样渐近线,则 C 的方程为________;4渐近线方程为 ________.12.若等差数列a n知足a7a8 a90 , a7a10 0 ,则当 n________时a n的前n项和最大 .13.把 5 件不一样产品摆成一排,若产品 A 与产品 C 不相邻,则不一样的摆法有_______种.14.设函数 f ( x) sin( x) , A0,0 ,若 f (x) 在区间 [6,] 上拥有单一性,且2f f 2,则 f (x) 的最小正周期为________.f236试题剖析:平等比数列{ a n} ,若 q 1 ,则当 a1 ,0 时数列 { a n} 是递减数列;若数列{ a n } 是递加数列,则二.填空题:本大题共 6 小题,每题 5 分,共 30 分. 请将答案天灾答题卡对应题的位置上,答错地点,书写不清,含糊其词均不得分.9.【答案】 1【分析】试题剖析:1i(1 i )22i i ,因此 (1i )2i 21. 1i(1 i )(1 i )21i10.【答案】 5【分析】三.解答题(共 6 题,满分80 分)15. (本小题 13 分)如图,在ABC 中,B, AB 8,点D在BC边上,且 CD1 2,cos ADC37( 1)求sin BAD(2)求BD, AC的长16.(本小题 13 分) .李明在 10 场篮球竞赛中的投篮状况以下(假定各场竞赛相互独立):(1)从上述竞赛中随机选择一场,求李明在该场竞赛中投篮命中率超出0.6 的概率.(2)从上述竞赛中选择一个主场和一个客场,求李明的投篮命中率一场超出0.6 ,一场不超出0.6 的概率.(3)记x 是表中10 个命中次数的均匀数,从上述竞赛中随机选择一场,记X为李明在这竞赛中的命中次数,比较E(X)与x 的大小(只要写出结论)17.(本小题14 分)如图,正方形AMDE的边长为2,B,C分别为AM ,MD的中点,在五棱锥P ABCDE 中,F为棱PE 的中点,平面ABF与棱PD , PC 分别交于点G, H.( 1)求证:AB // FG;( 2)若PA底面ABCDE,且AF PE ,求直线BC 与平面ABF所成角的大小,并求线段PH的长 .18.(本小题13 分)f (x)xcosxsin,[0, ],已知函数x x2( 1)求证:f ( x)0 ;( 2)若a sin x b在 (0,) 上恒建立,求a的最大值与 b 的最小值.x219.(本小题14 分)已知椭圆 C : x2 2 y2( 1)求椭圆C的离心率( 2)设O为原点,若点.4 ,A 在椭圆C上,点B 在直线y 2 上,且OA OB ,求直线AB与圆x2y2 2 的地点关系,并证明你的结论.20.(本小题13 分)关于数对序列P(a1,b1),( a2,b2 ),,( a n, b n ) ,记T1(P)a1b1,T k ( P)b k max{T k 1(P), a1a2a k }(2k n) ,此中max{T k 1( P), a1a2a k }表示 T k 1(P)和 a1a2a k两个数中最大的数,( 1)关于数对序列P(2,5), P(4,1) ,求 T1 (P),T2 (P) 的值.( 2)记m为a,b,c, d四个数中最小值,对于由两个数对(a, b),( c, d )组成的数对序列P(a,b),( c,d ) 和 P '(a,b),( c, d) ,试分别对m a 和m d 的两种状况比较T2 ( P) 和 T2 (P ') 的大小 .( 3)在由 5 个数对(11,8),(5,2),(16,11),(11,11),(4,6)构成的全部数对序列中,写出一个数对序列P 使 T5( P) 最小,并写出 T5 (P) 的值.(只要写出结论).。

2014年高考真题(北京卷)数学(理科) 答案解析版

2014年高考真题(北京卷)数学(理科) 答案解析版

2014年普通高等学校招生全国统一考试(北京卷)数 学(理科)第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.(2014北京,理1)已知集合A={x|x 2-2x=0},B={0,1,2},则A ∩B=( ).A .{0}B .{0,1}C .{0,2}D .{0,1,2}【答案】C【解析】解x 2-2x=0,得x=0,x=2,故A={0,2},所以A ∩B={0,2},故选C .2.(2014北京,理2)下列函数中,在区间(0,+∞)上为增函数的是( ).A .y=√x +1B .y=(x-1)2C .y=2-xD .y=log 0.5(x+1)【答案】A【解析】A 项,y=√x +1为(-1,+∞)上的增函数,故在(0,+∞)上递增;B 项,y=(x-1)2在(-∞,1)上递减,在(1,+∞)上递增;C 项,y=2-x =(12)x 为R 上的减函数;D 项,y=log 0.5(x+1)为(-1,+∞)上的减函数.故选A .3.(2014北京,理3)曲线{x =-1+cosθ,y =2+sinθ(θ为参数)的对称中心( ). A .在直线y=2x 上 B .在直线y=-2x 上 C .在直线y=x-1上 D .在直线y=x+1上【答案】B【解析】由已知得{cosθ=x +1,sinθ=y -2, 消参得(x+1)2+(y-2)2=1.所以其对称中心为(-1,2).显然该点在直线y=-2x 上.故选B .4.(2014北京,理4)当m=7,n=3时,执行如图所示的程序框图,输出的S 值为( ).A .7B .42C .210D .840【答案】C【解析】开始:m=7,n=3.计算:k=7,S=1.第一次循环,此时m-n+1=7-3+1=5,显然k<5不成立,所以S=1×7=7,k=7-1=6.第二次循环,6<5不成立,所以S=7×6=42,k=6-1=5.第三次循环,5<5不成立,所以S=42×5=210,k=5-1=4.显然4<5成立,输出S 的值,即输出210,故选C .5.(2014北京,理5)设{a n }是公比为q 的等比数列,则“q>1”是“{a n }为递增数列”的( ).A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】D【解析】等比数列{a n }为递增数列的充要条件为{a 1>0,q >1或{a 1<0,0<q <1.故“q>1”是“{a n }为递增数列”的既不充分也不必要条件.故选D .6.(2014北京,理6)若x ,y 满足{x +y -2≥0,kx -y +2≥0,y ≥0,且z=y-x 的最小值为-4,则k 的值为( ).A .2B .-2C .12D .-12【答案】D【解析】如图,作出{x +y -2≥0,y ≥0所表示的平面区域,作出目标函数取得最小值-4时对应的直线y-x=-4,即x-y-4=0.显然z 的几何意义为目标函数对应直线x-y+z=0在x 轴上的截距的相反数,故该直线与x 轴的交点(4,0)必为可行域的顶点,又kx-y+2=0恒过点(0,2),故k=2-00-4=-12.故选D .7.(2014北京,理7)在空间直角坐标系Oxyz 中,已知A (2,0,0),B (2,2,0),C (0,2,0),D (1,1,√2).若S 1,S 2,S 3分别是三棱锥D-ABC 在xOy ,yOz ,zOx 坐标平面上的正投影图形的面积,则( ).A .S 1=S 2=S 3B .S 2=S 1且S 2≠S 3C .S 3=S 1且S 3≠S 2D .S 3=S 2且S 3≠S 1【答案】D【解析】三棱锥的各顶点在xOy 坐标平面上的正投影分别为A 1(2,0,0),B 1(2,2,0),C 1(0,2,0),D 1(1,1,0).显然D 1点为A 1C 1的中点,如图(1),正投影为Rt △A 1B 1C 1,其面积S 1=12×2×2=2.三棱锥的各顶点在yOz 坐标平面上的正投影分别为A 2(0,0,0),B 2(0,2,0),C 2(0,2,0),D 2(0,1,√2).显然B 2,C 2重合,如图(2),正投影为△A 2B 2D 2,其面积S 2=12×2×√2=√2.三棱锥的各顶点在zOx 坐标平面上的正投影分别为A 3(2,0,0),B 3(2,0,0),C 3(0,0,0),D 3(1,0,√2),由图(3)可知,正投影为△A 3D 3C 3,其面积S 3=12×2×√2=√2.综上,S 2=S 3,S 3≠S 1.故选D .图(1) 图(2) 图(3)8.(2014北京,理8)学生的语文、数学成绩均被评定为三个等级,依次为“优秀”“合格”“不合格”.若学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好”.如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两位学生,那么这组学生最多有( ).A .2人B .3人C .4人D .5人【答案】B【解析】用A,B,C 分别表示优秀、及格和不及格.显然,语文成绩得A 的学生最多只有一人,语文成绩得B 的也最多只有1人,得C 的也最多只有1人,所以这组学生的成绩为(AC),(BB),(CA)满足条件,故学生最多为3人.。

2014年北京高考真题-理科数学含答案

2014年北京高考真题-理科数学含答案

2014年北京高考数学(理科)试题一.选择题(共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项)1.已知集合2{|20},{0,1,2}A x x x B =-==,则A B =( ).{0}A .{0,1}B .{0,2}C .{0,1,2}D 2.下列函数中,在区间(0,)+∞上为增函数的是( ).1A y x =+ 2.(1)B y x=- .2x C y -= 0.5.l o g (1)D y x =+ 3.曲线1cos 2sin x y θθ=-+⎧⎨=+⎩(θ为参数)的对称中心( ).A 在直线2y x =上 .B 在直线2y x =-上.C 在直线1y x =-上 .D 在直线1y x =+上4.当7,3m n ==时,执行如图所示的程序框图,输出的S 值为( ).7A .42B .210C .840D5.设{}n a 是公比为q 的等比数列,则"1"q >是"{}"n a 为递增数列的( ).A 充分且不必要条件 .B 必要且不充分条件.C 充分必要条件 .D 既不充分也不必要条件6.若,x y 满足20200x y kx y y +-≥⎧⎪-+≥⎨⎪≥⎩且z y x =-的最小值为-4,则k 的值为( ).2A .2B - 1.2C 1.2D -7.在空间直角坐标系Oxyz 中,已知()2,0,0A ,()2,2,0B ,()0,2,0C ,()1,1,2D ,若 1S ,2S ,3S 分别表示三棱锥D ABC -在xOy ,yOz ,zOx 坐标平面上的正投影图形的 面积,则( )(A )123S S S == (B )12S S =且 31S S ≠(C )13S S =且 32S S ≠ (D )23S S =且 13S S ≠8.有语文、数学两学科,成绩评定为“优秀”“合格”“不合格”三种.若A 同学每科成绩不 低于B 同学,且至少有一科成绩比B 高,则称“A 同学比B 同学成绩好.”现有若干同学,他们之间没有一个人比另一个成绩好,学科 网且没有任意两个人语文成绩一样,数学成绩也一样 的.问满足条件的最多有多少学生( )(A )2 (B )3 (C )4 (D )5二、填空题(共6小题,每小题5分,共30分)9.复数211i i +⎛⎫= ⎪-⎝⎭________. 10.已知向量a 、b 满足1a =,()2,1b =,且()0a b R λλ+=∈,则λ=________.11.设双曲线C 经过点()2,2,且与2214y x -=具有相同渐近线,则C 的方程为________; 渐近线方程为________.12.若等差数列{}n a 满足7890a a a ++>,7100a a +<,则当n =________时{}n a 的前n 项和最大.13. 把5件不同产品摆成一排,若产品A 与产品C 不相邻,则不同的摆法有_______种.14. 设函数)sin()(ϕω+=x x f ,0,0>>ωA ,若)(x f 在区间]2,6[ππ上具有单调性,且 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛6322πππf f f ,则)(x f 的最小正周期为________. 三.解答题(共6题,满分80分)15. (本小题13分)如图,在ABC ∆中,8,3==∠AB B π,点D 在BC 边上,且71cos ,2=∠=ADC CD (1)求BAD ∠sin(2)求AC BD ,的长16. (本小题13分).李明在10场篮球比赛中的投篮情况如下(假设各场比赛互相独立):(1)从上述比赛中随机选择一场,求李明在该场比赛中投篮命中率超过6.0的概率.(2)从上述比赛中选择一个主场和一个客场,学科 网求李明的投篮命中率一场超过6.0,一 场不超过6.0的概率.(3)记x 是表中10个命中次数的平均数,从上述比赛中随机选择一场,记X 为李明在这比赛中的命中次数,比较)(X E 与x 的大小(只需写出结论)17.(本小题14分)如图,正方形AMDE 的边长为2,C B ,分别为MD AM ,的中点,在五棱锥ABCDE P - 中,F 为棱PE 的中点,平面ABF 与棱PC PD ,分别交于点H G ,.(1)求证:FG AB //;(2)若⊥PA 底面ABCDE ,且PE AF ⊥,求直线BC 与平面ABF 所成角的大小,并 求线段PH 的长.18.(本小题13分) 已知函数()cos sin ,[0,]2f x x x x x π=-∈, (1)求证:()0f x ≤;(2)若sin x a b x <<在(0,)2π上恒成立,求a 的最大值与b 的最小值.19.(本小题14分)已知椭圆22:24C x y +=,(1)求椭圆C 的离心率. (2)设O 为原点,若点A 在椭圆C 上,点B 在直线2y =上,且OA OB ⊥,求直线AB 与圆222x y +=的位置关系,并证明你的结论.20.(本小题13分)对于数对序列1122(,),(,),,(,)n n P a b a b a b ,记111()T P a b =+,112()max{(),}(2)k k k k T P b T P a a a k n -=++++≤≤,其中112max{(),}k k T P a a a -+++表示1()k T P -和12k a a a +++两个数中最大的数,(1)对于数对序列(2,5),(4,1)P P ,求12(),()T P T P 的值.(2)记m 为,,,a b c d 四个数中最小值,学科 网对于由两个数对(,),(,)a b c d 组成的数对序列(,),(,)P a b c d 和'(,),(,)P a b c d ,试分别对m a =和m d =的两种情况比较2()T P 和2(')T P 的大小.(3)在由5个数对(11,8),(5,2),(16,11),(11,11),(4,6)组成的所有数对序列中,写出一个数对序列P 使5()T P 最小,并写出5()T P 的值.(只需写出结论).。

2014年北京理科数学试卷及答案

2014年北京理科数学试卷及答案

2014年北京高考数学(理科)试题一.选择题(共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项)1.已知集合2{|20},{0,1,2}A x x x B =-==,则A B =I ( ) .{0}A .{0,1}B .{0,2}C .{0,1,2}D2.下列函数中,在区间(0,)+∞上为增函数的是( ).1A y x =+ 2.(1)B y x =- .2x C y -= 0.5.log (1)D y x =+3.曲线1cos 2sin x y θθ=-+⎧⎨=+⎩(θ为参数)的对称中心( ).A 在直线2y x =上 .B 在直线2y x =-上 .C 在直线1y x =-上 .D 在直线1y x =+上4.当7,3m n ==时,执行如图所示的程序框图,输出的S 值为( ).7A .42B .210C .840D5.设{}n a 是公比为q 的等比数列,则"1"q >是"{}"n a 为递增数列的( ).A 充分且不必要条件.B 必要且不充分条件 .C 充分必要条件.D 既不充分也不必要条件6.若,x y 满足20200x y kx y y +-≥⎧⎪-+≥⎨⎪≥⎩且z y x =-的最小值为-4,则k 的值为( ).2A .2B -1.2C 1.2D -在空间直角坐标系Oxyz 中,已知()2,0,0A ,()2,2,0B ,()0,2,0C,(D ,若1S ,2S ,3S 分别表示三棱锥D ABC -在xOy ,yOz ,zOx 坐标平面上的正投影图形的面积,则( )(A )123S S S == (B )12S S =且31S S ≠ (C )13S S =且32S S ≠ (D )23S S =且13S S ≠有语文、数学两学科,成绩评定为“优秀”“合格”“不合格”三种.若A 同学每科成绩不 低于B 同学,且至少有一科成绩比B 高,则称“A 同学比B 同学成绩好.”现有若干同学, 他们之间没有一个人比另一个成绩好,学科 网且没有任意两个人语文成绩一样,数学成绩也一样的.问满足条件的最多有多少学生( )(A )2 (B )3 (C )4 (D )5 填空题(共6小题,每小题5分,共30分)复数211i i +⎛⎫= ⎪-⎝⎭________.已知向量a r 、b r 满足1a =r ,()2,1b =r ,且()0a b R λλ+=∈r r ,则λ=________.设双曲线C 经过点()2,2,且与2214y x -=具有相同渐近线,则C 的方程为________;渐近线方程为________. 若等差数列{}n a 满足7890a a a ++>,7100a a +<,则当n =________时{}n a 的前n项和最大.13. 把5件不同产品摆成一排,若产品A 与产品C 不相邻,则不同的摆法有_______种.14. 设函数)sin()(ϕω+=x x f ,0,0>>ωA ,若)(x f 在区间]2,6[ππ上具有单调性,且 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛6322πππf f f ,则)(x f 的最小正周期为________.三.解答题(共6题,满分80分)15. (本小题13分)如图,在ABC ∆中,8,3==∠AB B π,点D 在BC 边上,且71cos ,2=∠=ADC CD (1)求BAD ∠sin(2)求AC BD ,的长16. (本小题13分).李明在10场篮球比赛中的投篮情况如下(假设各场比赛互相独立):(1)从上述比赛中随机选择一场,求李明在该场比赛中投篮命中率超过6.0的概率. (2)从上述比赛中选择一个主场和一个客场,学科 网求李明的投篮命中率一场超过6.0,一 场不超过6.0的概率.记x 是表中10个命中次数的平均数,从上述比赛中随机选择一场,记X 为李明 在这比赛中的命中次数,比较)(X E 与x 的大小(只需写出结论) 17.(本小题14分)如图,正方形AMDE 的边长为2,C B ,分别为MD AM ,的中点,在五棱锥ABCDE P -中,F 为棱PE 的中点,平面ABF 与棱PC PD ,分别交于点H G ,. (1)求证:FG AB //;(2)若⊥PA 底面ABCDE ,且PE AF ⊥,求直线BC 与平面ABF 所成角的大小,并 求线段PH 的长.(本小题13分)已知函数()cos sin ,[0,]2f x x x x x π=-∈, 求证:()0f x ≤;若sin x a b x <<在(0,)2π上恒成立,求a 的最大值与b 的最小值.(本小题14分)已知椭圆22:24C x y +=,求椭圆C 的离心率. 设O 为原点,若点A 在椭圆C 上,点B 在直线2y =上,且OA OB ⊥,求直线AB 与圆222x y +=的位置关系,并证明你的结论.20.(本小题13分)对于数对序列1122(,),(,),,(,)n n P a b a b a b L ,记111()T P a b =+,112()max{(),}(2)k k k k T P b T P a a a k n -=++++≤≤L ,其中112max{(),}k k T P a a a -+++L 表示1()k T P -和12k a a a +++L 两个数中最大的数,对于数对序列(2,5),(4,1)P P ,求12(),()T P T P 的值.记m 为,,,a b c d 四个数中最小值,学科 网对于由两个数对(,),(,)a b c d 组成的数对序列(,),(,)P a b c d 和'(,),(,)P a b c d ,试分别对m a =和m d =的两种情况比较2()T P 和2(')T P 的大小.(3)在由5个数对(11,8),(5,2),(16,11),(11,11),(4,6)组成的所有数对序列中,写出一个数对序列P 使5()T P 最小,并写出5()T P 的值.(只需写出结论).数学(理)(北京卷)参考答案一、选择题(共8小题,每小题5分,共40分) (1)C (2)A (3)B (4)C (5)D (6)D (7)D (8)B二、填空题(共6小题,每小题5分,共30分)(9)-1 (10)5(11)221312x y -= 2y x =± (12)8(13)36 (14)π三、解答题(共6小题,共80分)(15)(共13分)解:(I )在ADC ∆中,因为17COS ADC ∠=,所以43sin 7ADC ∠=。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014年北京高考数学(理科)试题
一.选择题(共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项)
1.已知集合2{|20},{0,1,2}A x x x B =-==,则A B =( )
.{0}A .{0,1}B .{0,2}C .{0,1,2}
D 2.下列函数中,在区间(0,)+∞上为增函 数的是( )
.1A y x =+ 2.(1)B y x
=- .2x C y -= 0.5.l o g (1)D y x =+ 3.曲线1cos 2sin x y θθ
=-+⎧⎨=+⎩(θ为参数)的对称中心( )
.A 在直线2y x =上 .B 在直线2y x =-上
.C 在直线1y x =-上 .D 在直线1y x =+上
4.当7,3m n ==时,执行如图所示的程序框图,输出的S 值为( )
.7A .42B .210C .840D
5.设{}n a 是公比为q 的等比数列,则"1"q >是"{}"n a 为递增数列的( )
.A 充分且不必要条件 .B 必要且不充分条件
.C 充分必要条件 .D 既不充分也不必要条件
6.若,x y 满足20200x y kx y y +-≥⎧⎪-+≥⎨⎪≥⎩
且z y x =-的 最小值为-4,则k 的值为( )
.2A .2B - 1.2C 1.2
D -
7.在空间直角坐标系Oxyz 中,已知()2,0,0A ,()2,2,0B ,()0,2,0C ,()
1,1,2D ,若 1S ,2S ,3S 分别表示三棱锥D ABC -在xOy ,yOz ,zOx 坐标 平面上的正投影图形的
面积,则( )
(A )123S S S == (B )12S S =且 31S S ≠
(C )13S S =且 32S S ≠ (D )23S S =且 13S S ≠
8.有语文、数学两学科,成绩评定为“优秀”“合格”“不合格”三种.若A 同学每科成绩不
低于B 同学,且至少有一科成绩比B 高,则称“A 同学比B 同学成绩好.”现有若干同学,
他们之间没有一个人比另一个成绩好,学科 网且没有任意两个人语文成绩一样,数学成绩也一样 的.问满足条件的最多有多少学生( )
(A )2 (B )3 (C )4 (D )5
二、填空题(共6小题,每小题5分,共30分)
9.复数211i i +⎛⎫= ⎪-⎝⎭
________. 10.已知向量a 、b 满足1a =,()2,1b =,且()0a b R λλ+=∈,则λ=________.
11.设双曲线C 经过点()2,2,且与2
214
y x -=具有相同渐近线,则C 的方程为________; 渐近线方程为________.
12.若等差数列{}n a 满足7890a a a ++>,7100a a +<,则当n =________时{}n a 的前n 项和最大.
13. 把5件不同产品摆成一排,若产品A 与产品C 不相邻,则不同的摆法有_______种.
14. 设函数)sin()(ϕω+=x x f ,0,0>>ωA ,若)(x f 在 区间]2,6[
ππ上具有单调性,且
⎪⎭
⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛6322πππf f f ,则)(x f 的最小正周期为________. 三.解答题(共6题,满分80分)
15. (本小题13分)如图,在ABC ∆中,
8,3==∠AB B π,点D 在BC 边上,且7
1cos ,2=∠=ADC CD (1)求BAD ∠sin
(2)求AC BD ,的长
16. (本小题13分).
李明在10场篮球比赛中的投篮情况如下(假设各场比赛互相独立):。

相关文档
最新文档