大学物理实验报告PN结的温度特性的研究及应用

合集下载

大学物理实验报告 PN结的温度特性的研究及应用

大学物理实验报告 PN结的温度特性的研究及应用

大学物理实验报告 PN结的温度特性的研究及应用得分教师签名批改日期深圳大学实验报告课程名称: 大学物理实验(三)实验名称: pn结的温度特性的研究及应用学院:组号指导教师:报告人: 学号: 班级:实验地点实验时间:实验报告提交时间:1一、实验设计方案1、实验目的了解PN结正向压降随温度变化的基本关系式。

在工作电流恒定的情况下,测绘PN结正向压降随温度变化曲线,并由此确定其灵敏度和被测PN结材料的禁带宽度。

设计用PN结测温的方法。

2、实验原理2.1 、PN结正向压降和工作电流、及所处的温度的关系:PN 结正向压降和工作电流、及所处的温度的基本函数关系如下:,,KcKT, ----------(1) 0lnlnVVTTVV,,,,,,,,,,,FgLNLqIqF,,其中: 导带,19q,,1.610C,为电子的电荷。

禁带EeV,gF-23-1,K=1.38×10JK,为玻尔兹曼常数,价带T――绝对温度。

图1 半导体的能带结I――PN结中正向电流。

f构γ 是热学中的比热容比,是常数。

V(0)是绝对零度时PN结材料的导带底和价带顶的电势差。

(半导体材料的能带理论中,把未g排满电子的能量区域称作价带,空着的能量区域叫导带,不能排列电子的能量区域叫禁带,如图1所示。

E叫禁带宽度.) g,,KTKc,,lnVT 其中,是线性项。

是非线性相。

0lnVVT,,,,,,NL,,LgqqIF,,非线性项较小,(常温下)可忽略其影响,在恒流供电条件下PN结的V对T的依赖关系F取决线性项,即正向压降几乎随温度升高而线性下降。

2.2、PN结测温的方法如果PN结正向压降在某一温度区域和温度变化恒定电流I F成线性关系,就可以利用这一特性将它作为温度传感器的转换探头,原理如图2所示。

将PN结做成的温度探头放在待温度显示结电压V F测环境中,通以恒定电流,温度变化可以引起结电压变化,图2 PN结测温原理测量结电压,将它转换成温度显示,从而达到测量温度的目的。

PN结正向压降与温度关系的研究实验报告

PN结正向压降与温度关系的研究实验报告

PN结正向压降与温度关系的研究实验报告实验报告:PN结正向压降与温度关系的研究实验摘要:本实验旨在研究PN结正向压降与温度之间的关系。

通过改变PN结的温度,测量对应的正向压降,并分析得出结论。

实验结果表明,PN结的正向压降与温度呈正相关关系。

引言:PN结是半导体器件中的重要组成部分,其正向压降是衡量PN结导通能力的重要参数。

正向压降与温度之间的关系对于理解和优化半导体器件的性能具有重要意义。

因此,研究正向压降与温度之间的关系对于半导体器件的应用具有重要的理论和实际意义。

实验材料和方法:1.实验材料:PN结样品、测量仪器(包括数字万用表、恒流源等)。

2.实验方法:a.搭建实验电路,将PN结样品连接到恒流源,设置合适的电流值。

b.测量不同温度下PN结的正向压降,记录实验数据。

c.对实验数据进行处理和分析,得出结论。

实验结果:在实验过程中,我们固定了恒流源的电流值为I=10mA。

通过改变PN结的温度,在不同温度下测量了对应的正向压降数据,将实验数据整理如下:温度(℃)正向压降(V)250.6300.65350.68400.7450.72500.75550.78600.82讨论和结论:实验结果表明,PN结的正向压降与温度呈正相关关系。

这可能是由于温度升高导致了载流子在PN结中的增加,进而导致了正向电流的增加,从而使正向压降增加。

此外,温度升高还可能导致半导体材料的电阻变化,进而影响了正向压降。

综上所述,通过对PN结正向压降与温度关系的研究实验,我们发现正向压降与温度呈正相关关系。

这对于理解PN结的导通特性和优化半导体器件的性能具有重要意义。

附录:实验数据表格温度(℃)正向压降(V) 250.6300.65350.68400.7450.72500.75550.78。

3.13 pn结正向压降与温度关系的研究和应用 1

3.13 pn结正向压降与温度关系的研究和应用 1

3.13 pn结正向压降与温度关系的研究和应用 13.13pn结正向压降与温度关系的研究和应用-1实验3.13 PN结正向压降与温度关系的研究与应用常用的温度传感器有热电偶、测温电阻器和热敏电阻等,这些温度传感器均有各自的优点,但也有它的不足之处,如热电偶适用温度范围宽,但灵敏度低、且需要参考温度;热敏电阻灵敏度高、热响应快、体积小,缺点是非线性,且一致性较差,这对于仪表的校准和调节均感不便;测温电阻如铂电阻有精度高、线性好的优点,但灵敏度低且价格较贵;而pn结温度传感器则有灵敏度高、线性较好、热响应快和体积轻巧易集成化等优点,所以其应用势必日益广泛。

但是这类温度传感器的工作温度一般为-50℃-150℃,与其它温度传感器相比,测温范围的局限性较大,有待于进一步改进和开发。

【实验目的】1.了解PN结正向压降与温度的基本关系。

2.在恒流小电流条件下,测绘pn结正向压降随温度变化曲线,并由此确定其灵敏度和被测pn结材料的禁带宽度。

3.学习曲线改直的数据处理方法。

4.学习用excel进行曲线拟合的方法。

【实验仪器】PN结正向压降温度特性测试仪、温度传感器实验装置、加热炉、PT100温度传感器、PN结温度传感器和导体。

[实验原理]理想pn结的正向电流if和压降uf存在如下近似关系式:如果Isexp(QUF)(3.13.1)KT,其中q是电子电荷;K是玻尔兹曼常数;T为绝对温度;Is是反向饱和电流(与PN结材料的带隙和温度有关),可以证明is?ctexp(??qus(0)kt)(3.13.2)式中,C是与结面积和杂质浓度相关的常数;?也是一个常数;当us(0)为绝对零时,PN结材料的导带底部和价带顶部之间的电位差。

对应的QUS(0)是PN结材料的带隙宽度。

将式(3.13.2)代入式(3.13.1),两边取对数可得uf?美国(0)?(U1在哪里?美国(0)?(ktcktln)?lnt??u1?un1(3.13.3)QIFQKTCLNT?ln),un1??Qqif这是PN结正向压降随电流和温度变化的表达式。

大学物理实验:PN结

大学物理实验:PN结

三 、实 验 装 置 实
PN结样品架 1、PN结样品架
A为样品室,是一个可 为样品室, 卸的筒状金属容器, 卸的筒状金属容器, 筒盖内设橡皮圈盖与 筒套具相应的螺纹, 筒套具相应的螺纹, 可使两者旋紧保持密 封。 待测PN PN结样管采用 待测PN结样管采用 3DG6晶体管 3DG6晶体管
P1
P2
一、实 验 目 的
1、了解PN结测温基本原理和应 了解PN结测温基本原理和应 PN 用 。 2、验证PN结正向压降随温度升 验证PN结正向压降随温度升 PN 高而降低的特性。 高而降低的特性。 3、学会使用PN结温度传感器测 学会使用PN结温度传感器测 PN 试仪。 试仪。
二、实 验 原 理
PN结是指P型半导体与N型半导体相接触的部分。 PN结是指P型半导体与N型半导体相接触的部分。 结是指 在同一半导体材料晶片内掺杂形成P型导电区与N 在同一半导体材料晶片内掺杂形成P型导电区与N型导 电区相接触的截面形成了P 电区相接触的截面形成了P-N结 VF 一般来说, 一般来说,对于一个理想 的PN结,其正向电流IF和压降 PN结 其正向电流I VF 存在如下近似关系: 存在如下近似关系: P
2、∆VT曲线的测定 逐步提高加热电流进行变温实验,并记录对应的∆ 逐步提高加热电流进行变温实验,并记录对应的∆V和T, 在整个实验过程中升温速率要慢,温度最好控制在120℃, 在整个实验过程中升温速率要慢,温度最好控制在120℃, 120℃ 记录数据填入数据表。 记录数据填入数据表。 (要求电压每下降-10V,记录一次温度) 要求电压每下降-10V,记录一次温度) 3、求被测PN结正向压降随温度变化的灵敏度S(mv/℃) 求被测PN结正向压降随温度变化的灵敏度S mv/℃ PN结正向压降随温度变化的灵敏度 方法是: 方法是:作△V-T曲线,其斜率就是S。最后再通过画曲线 曲线,其斜率就是S 求得。 求得。 T 0

大学物理实验报告实验55PN结正向电压温度特性的测定

大学物理实验报告实验55PN结正向电压温度特性的测定

大学物理实验教案实验名称:PN 结正向电压温度特性的测定1 实验目的1)了解PN 结正向电压随温度变化的基本规律。

2)掌握用计算机测绘恒流条件下PN 结正向电压随温度变化的关系曲线。

3)确定PN 结的测温灵敏度。

2 实验仪器科学工作室接口、放大器、恒流源、计算机3 实验原理3.1实验原理PN 结是半导体器件的核心。

在P (或N )型半导体中,用杂质补偿的方法将其中一部分材料转变成N (或P )型,这样,在两种材料交界处就形成了PN 结,它保持了两种材料之间晶格的连续性。

P 区多子空穴比N 区少子空穴浓度大,空穴由P 区向N 区扩散,并与N 区的多子自由电子复合,在N 区产生正离子的电荷区;N 区多子自由电子比P 区少子自由电子浓度大,自由电子由N 区向P 区扩散,并与P 区的多子空穴复合,在P 区产生负离子的电荷区。

P 区和N 区的电荷区之间形成电场,在此电场作用下产生与扩散运动相反的情况,它阻止扩散运动的进一步加强。

最终形成两种运动的动态平衡。

我们把这个空间电荷区叫PN 结,有时也叫作耗尽层。

根据半导体理论,通过PN 结的正向电流e I IkT qV s f =(1) 式中:I f ——正向电流(mA );V f ——正向压降(V );I s ——反向饱和电流(mA );q电子电量(e );k ——波尔兹曼常数;T ——热力学温度(K )。

而:e T I kT V goq B A s -=(2)式(2)中:V go ——能带间隙电压(V );A 、B ——由PN 结工艺结构所决定的常数。

由(1)、(2)式经整理后,PN 结正向压降的温度灵敏度S 为:)(q kB T f go dT f d S V V V +--== (3)根据这一特性,PN 结可作为温度传感器来使用。

3.2实验方法本实验通过电加热的方法提供给PN 结一个温度可以变化的热源,利用精确的温度传感器测量温度。

把待测的PN 结放置热源中,并利用恒流源给定待测PN 结一个恒定电流,PN 结两端则接入一高稳定放大器进行电压放大后,连接到自定义电压传感器来测量电压。

大学物理实验报告23-PN结温度传感器特性

大学物理实验报告23-PN结温度传感器特性

天津大学物理实验报告姓名: 专业: 班级: 学号: 实验日期: 实验教室: 指导教师:【实验名称】 PN 结物理特性综合实验 【实验目的】1. 在室温时,测量PN 结电流与电压关系,证明此关系符合波耳兹曼分布规律2. 在不同温度条件下,测量玻尔兹曼常数3. 学习用运算放大器组成电流-电压变换器测量弱电流4. 测量PN 结电压与温度关系,求出该PN 结温度传感器的灵敏度5. 计算在0K 温度时,半导体硅材料的近似禁带宽度 【实验仪器】半导体PN 结的物理特性实验仪 资产编号:××××,型号:×××(必须填写) 【实验原理】1.PN 结的伏安特性及玻尔兹曼常数测量 PN 结的正向电流-电压关系满足:]1)/[ex p(0-=kT eU I I (1)当()exp /1eU kT >>时,(1)式括号内-1项完全可以忽略,于是有:0exp(/)I I eU kT = (2)也即PN 结正向电流随正向电压按指数规律变化。

若测得PN 结I U -关系值,则利用(1)式可以求出/e kT 。

在测得温度T 后,就可以得到/e k ,把电子电量e 作为已知值代入,即可求得玻尔兹曼常数k 。

实验线路如图1所示。

2、弱电流测量LF356是一个高输入阻抗集成运算放大器,用它组成电流-电压变换器(弱电流放大器),如图2所示。

其中虚线框内电阻r Z 为电流-电压变换器等效输入阻抗。

运算放大器的输入电压0U 为:00i U K U =- (3)式(3)中i U 为输入电压,0K 为运算放大器的开环电压增益,即图2中电阻f R →∞时的电压增益(f R 称反馈电阻)。

因而有:00(1)i i s f fU U U K I R R -+== (4) 由(4)式可得电流-电压变换器等效输入阻抗x Z 为001i f f x s U R R Z I K K ==≈+ (5) 由(3)式和(4)式可得电流-电压变换器输入电流s I 与输出电压0U 之间的关系式,即:图1 PN 结扩散电源与结电压关系测量线路图图2 电流-电压变换器i s fr U U I Z R ==- (6) 只要测得输出电压0U 和已知f R 值,即可求得s I 值。

【大学物理实验(含 数据+思考题)】PN结正向电压温度特性研究实验报告

【大学物理实验(含 数据+思考题)】PN结正向电压温度特性研究实验报告

PN 结正向电压温度特性研究一、实验目的(1)了解PN 结正向电压随温度变化的基本规律。

(2)在恒流供电条件下,测绘PN 结正向电压随温度变化的关系图线,并由此确定PN 结的测温灵敏度和被测PN 结材料的禁带宽度。

二、实验仪器PN 结正向特性综合实验仪、DH-SJ5温度传感器实验装置。

三、实验原理1、测量PN 结温度传感器的灵敏度 由半导体理论可知,PN 结的正向电流I F 与正向电压V F 满足以下关系:I F =I n (ⅇqV FkT−1)(1)式(1)中I n 是反向饱和电流,T 是热力学温度,q 是电子的电量。

由于在常温(例如300K )时,kT/q 约为0.026V ,而PN 结正向电压约为十分之几伏,所以ⅇ^((qV_F)/kT)≫1,故式(1)中括号内的−1项完全可以忽略,于是有: I F =I n ⅇqV F kT(2)其中,I n 是与PN 结材料禁带宽度及温度等有关的系数,满足以下关系:I n =CTγⅇqV g0kT(3)式(3)中C 为与PN 结的结面积、掺杂浓度等有关的常数,k 为玻尔兹曼常数,γ在一定温度范围内也是常数,V g0为热力学温度0K 时PN 结材料的导带底与价带顶的电势差,对于给定的PN 结,V g0是一个定值。

将式(3)代入式(2),两边取对数,整理后可得:V F =V g0−(k q ln C I F )T −kTqln T γ=V 1+V nr (4)其中V 1=V g0−(k q ln CI F)T (5) V n r =−kTqln T γ (6)根据式(4),对于给定的PN 结材料,令PN 结的正向电流I F 恒定不变,则正向电压V F 只随温度变化而变化,由于在温度变化范围不大时,V n r 远小于V 1,故对于给定的PN 结材料,在允许的温度变化范围内,在恒流供电条件下,PN 结的正向电压V F 几乎随温度升高而线性下降,即 V F =V g0−(k q ln CI F)T(7)为了便于实际使用对式(7)进行温标转换,确定正向电压增量∆V [与温度为0℃时的正向电压比较]与用摄氏温度表示的温度之间的关系。

大学物理实验:PN结

大学物理实验:PN结

测试仪外形
电压显示 温度显示 加温输出
加温调节
△v清另
IF调节 IF调节
信号输入
四、实 验 操 作
1、首先检查与连接实验系统,然后调整工作电流IF为某 首先检查与连接实验系统,然后调整工作电流I 一固定值(本实验测量设定I =50µ ),在本实验的起始 一固定值(本实验测量设定IF=50µA),在本实验的起始 温度下测得V ),然后由 然后由“ 调零” V=0。 温度下测得VF(Tm),然后由“∆V调零”使∆V=0。 点 击 播 放
2、∆VT曲线的测定 逐步提高加热电流进行变温实验,并记录对应的∆ 逐步提高加热电流进行变温实验,并记录对应的∆V和T, 在整个实验过程中升温速率要慢,温度最好控制在120℃, 在整个实验过程中升温速率要慢,温度最好控制在120℃, 120℃ 记录数据填入数据表。 记录数据填入数据表。 (要求电压每下降-10V,记录一次温度) 要求电压每下降-10V,记录一次温度) 3、求被测PN结正向压降随温度变化的灵敏度S(mv/℃) 求被测PN结正向压降随温度变化的灵敏度S mv/℃ PN结正向压降随温度变化的灵敏度 方法是: 方法是:作△V-T曲线,其斜率就是S。最后再通过画曲线 曲线,其斜率就是S 求得。 求得。 T 0
一、实 验 目 的
1、了解PN结测温基本原理和应 了解PN结测温基本原理和应 PN 用 。 2、验证PN结正向压降随温度升 验证PN结正向压降随温度升 PN 高而降低的特性。 高而降低的特性。 3、学会使用PN结温度传感器测 学会使用PN结温度传感器测 PN 试仪。 试仪。
二、实 验 原 理
PN结是指P型半导体与N型半导体相接触的部分。 PN结是指P型半导体与N型半导体相接触的部分。 结是指 在同一半导体材料晶片内掺杂形成P型导电区与N 在同一半导体材料晶片内掺杂形成P型导电区与N型导 电区相接触的截面形成了P 电区相接触的截面形成了P-N结 VF 一般来说, 一般来说,对于一个理想 的PN结,其正向电流IF和压降 PN结 其正向电流I VF 存在如下近似关系: 存在如下近似关系: P

PN结正向压降温度特性的研究实验报告

PN结正向压降温度特性的研究实验报告

实验题目:PN 结正向压降温度特性的研究 实验目的:1) 了解PN 结正向压降随温度变化的基本关系式。

2) 在恒流供电条件下,测绘PN 结正向压降随温度变化曲线,并由此确定其灵敏度和被测PN 结材料的禁带宽度。

3) 学习用PN 结测温的方法。

实验原理:理想PN 结的正向电流I F 和压降V F 存在如下近似关系 )exp(kTqV Is I FF = (1) 其中q 为电子电荷;k 为波尔兹曼常数;T 为绝对温度;Is 为反向饱和电流,它是一个和PN 结材料的禁带宽度以及温度等有关的系数,可以证明 ])0(ex p[kTqV CT Is g r-= (2)其中C 是与结面积、掺质浓度等有关的常数:r 也是常数;V g (0)为绝对零度时PN 结材料的导带底和价带顶的电势差。

将(2)式代入(1)式,两边取对数可得 11)0(n r Fg F V V InT q kT T I c In qkV V +=-⎪⎪⎭⎫ ⎝⎛-= (3) 其中这就是PN 结正向压降作为电流和温度函数的表达式。

令I F =常数,则正向压降只随温度而变化,但是在方程(3)中,除线性项V 1外还包含非线性项V n1项所引起的线性误差。

设温度由T 1变为T 时,正向电压由V F1变为V F ,由(3)式可得[]rn F g g F T T q kT T T V V V V ⎪⎪⎭⎫⎝⎛---=1111)0()0( (4) 按理想的线性温度影响,VF 应取如下形式: )(111T T TV V V F F F -∂∂+=理想 (5)T V F ∂∂1等于T 1温度时的TVF ∂∂值。

由(3)式可得r qk T V V T V F g F ---=∂∂111)0((6)所以()[]()r T T q kT T V V V T T r q k T V V V V F g g F g F 1111111)0()0(----=-⎥⎦⎤⎢⎣⎡---+=理想 (7)由理想线性温度响应(7)式和实际响应(4)式相比较,可得实际响应对线性的理论偏差为()r F T TLn q kT T T r q k V V )(11+--=-=∆理想 (8)设T 1=300°k ,T=310°k ,取r=*,由(8)式可得=,而相应的V F 的改变量约20mV ,相比之下误差甚小。

实验 17 半导体 PN结伏安特性和温度特性研究

实验 17 半导体 PN结伏安特性和温度特性研究

实验 17 半导体 PN结伏安特性和温度特性研究
实验目的:研究半导体的PN结伏安特性和温度特性。

实验原理:
1. PN结:半导体材料中的一种结构,由P型半导体和N型半导体通过P-N结相连接而成。

PN结具有整流特性,在正向偏置时具有低电阻,而反向偏置时具有高电阻。

2. 伏安特性:指PN结在不同偏置电压下的电流和电压关系。

在正向偏置时,随着偏置电压的增加,电流也增大;在反向偏置时,电流较小。

3. 温度特性:温度对半导体器件特性有一定的影响。

通常情况下,随着温度的增加,半导体器件的电阻会减小,导致电流增大。

实验步骤:
1. 搭建半导体PN结伏安特性测量电路。

将PN结连接到电源和电流表,通过改变偏置电压测量不同电流值。

2. 测量PN结在不同偏置电压下的伏安特性曲线。

从零电压开始逐渐增加偏置电压,记录电流和电压值,并绘制伏安特性曲线。

3. 测量PN结在不同温度下的伏安特性。

通过将PN结加热或冷却,改变温度,并测量电流和电压值,观察温度对伏安特性的影响。

4. 分析实验结果,并讨论PN结的伏安特性和温度特性。

实验注意事项:
1. 搭建电路时应注意电流和电压的接线正确。

2. 在测试过程中,应逐渐增加偏置电压,避免过大的电流或电压对半导体器件的损坏。

3. 测量温度时需要使用专用的温度计或热敏电阻等检测温度变化。

实验结果:
通过测量PN结在不同偏置电压和温度下的伏安特性,可以得到相关数据,并通过曲线分析和对比,得出PN结的特性和温度特性的结论。

大学物理实验PN结正向压降与温度特性的研究实验报告(完整)

大学物理实验PN结正向压降与温度特性的研究实验报告(完整)

⼤学物理实验PN结正向压降与温度特性的研究实验报告(完整)PN 结正向压降与温度特性的研究⼀、实验⽬的1.了解PN 结正向压降随温度变化的基本关系式。

2.在恒流供电条件下,测绘PN 结正向压降随温度变化曲线,并由此确定其灵敏度和被测PN 结材料的禁带宽度。

3.学习⽤PN 结测温的⽅法。

⼆、实验原理理想PN 结的正向电流I F 和压降V F 存在如下近似关系)exp(kTqV Is I FF = (1)其中q 为电⼦电荷;k 为波尔兹曼常数;T 为绝对温度;Is 为反向饱和电流,它是⼀个和PN 结材料的禁带宽度以及温度等有关的系数,可以证明])0(ex p[kTqV CT Is g r -= (2)(注:(1),(2)式推导参考刘恩科半导体物理学第六章第⼆节)其中C 是与结⾯积、掺质浓度等有关的常数:r 也是常数;V g (0)为绝对零度时PN 结材料的导带底和价带顶的电势差。

将(2)式代⼊(1)式,两边取对数可得11)0(n r F g F V V InT q kT T IcIn q k V V +=--= (3)其中()rn F g InT qKTV T Ic In q k V V -=???? ?-=11)0(这就是PN 结正向压降作为电流和温度函数的表达式,它是PN 结温度传感器的基本⽅程。

令I F =常数,则正向压降只随温度⽽变化,但是在⽅程(3)中,除线性项V 1外还包含⾮线性项V n1项所引起的线性误差。

设温度由T 1变为T 时,正向电压由V F1变为V F ,由(3)式可得[]rn F g g F T T q kT T T V V V V---=1111)0()0( (4)按理想的线性温度影响,VF 应取如下形式:)(111T T TV V V F F F -??+=理想(5) TV F ??1等于T 1温度时的T V F ??值。

由(3)式可得r qk T V V T V F g F ---=??111)0( (6)所以()[]()r T T q kT T V V V T T r q k T V V V V F g g F g F 1111111)0()0(----=----+=理想(7)由理想线性温度响应(7)式和实际响应(4)式相⽐较,可得实际响应对线性的理论偏差为()r F T T Ln q kT T T r q k V V )(11+--=-=?理想(8)设T 1=300°k ,T=310°k ,取r=3.4*,由(8)式可得?=0.048mV ,⽽相应的V F 的改变量约20mV ,相⽐之下误差甚⼩。

PN结正向压降温度特性的研究和应用

PN结正向压降温度特性的研究和应用

感器的普遍规律.此外,由(4)式可知,减小
矗,可以改善线性度,但并不能从根本上解决问
题,目前行之有效的方法大致有两种:
1)利用对管的两be结(将三极管的基极与
集电极短路,与发射极组成一个PN结),分析
在不同电流矗。,矗。下工作,由此获得两者电压
之差(yF。一¨2)与温度成线性函数关系,即
lT
,r、
y,,一¨,=竺三lnl善l
例于绝对温度的r次方,则n一丁的线性理论
误差为△=0,实验结果与理论值颇为一致,其 精度可达0.01℃.
2实验装置
实验系统由样品架和测试仪两部分组成. 样品架的结构如图1所示,其中A为样品室, 是一个可卸的筒状金属容器,筒盖内设橡皮O 圈盖与筒套具相应的螺纹,可使两者旋紧保持 密封.待测PN结样管(采用3DG6晶体管的基 极与集电极短接作为正极,发射极作为负极,构 成一只二极管)和测温元件(AD590)均置于铜 座B上,其管脚通过高温导线分别穿过两旁空 一芯细管与项部插座P连接,通过P将被测PN 结的温度和电压信号输入测试仪.加热器H装 在中心管的支座下,其发热部位埋在铜座B的 中心柱体内.
设温度由丁,变为丁时,正向压降由yr。变 为n,将丁。代入(3)式得¨。,由n。表达式
解出鲁ln(石C),代入(3)式可得
VF=Vs(。)一[y。(。)一y,,)亍T:一k口T1n(丢)7
(4) 按理想的线性温度响应,V,应取如下形式
y囊·=y,。+丌8 VFl(丁一丁。)
(5)
务一一半一鲁r㈤ 而VFl等-于丁,温度时的导笋值.由(3)式可得
样品室
}广匝一一丑一]扣亟乎也固
首先对实验系统进行检查与连接,然后将 样品室埋入盛有冰水混合物的杜瓦瓶中降温, 待温度冷却至O℃时,调整工作电流J,为某一 固定值(本次测量设定I,=50弘A),测量得 yF(0℃)一674.3mV,由“△y调零”使△V=0. 3.2△y一丁曲线的测定

PN结温度系数实验报告

PN结温度系数实验报告
200μA (20 ℃)
500μA (20 ℃)
系 数 离散度 系 数 离散度 系 数 离散度
0~10 ℃ 2. 224 0. 5 % 2. 160 0. 4 % 2. 087 0. 5 %
10~20 ℃ 20~30 ℃ 30~40 ℃ 40~50 ℃ 平均值 非线性
2. 233 0. 5 %
2. 118 0. 4 %
2. 129 0. 4 %
2. 108 2. 0 % ——— ———
实验表明 ,在此电流模式下 ,PN 结的温度特性在具有一定的常数特
恒流供电桥路 ,其补偿性能也与线 性补偿相当 。表 4 列出本实验二 、
这在生产实际中 ,可对及时维修和 更换测量器具提供可靠的依据 。 ■
半繁用表 , CS5004 标准恒温水槽 ,
实验三 :采用 IN4148 在与实验
热电偶类型
KS ET
电路电源的稳定度优于 0101 %。
二相同的条件下进行实验 ,实验时
用 9015 进行补偿的精度 , ℃ ±0. 1 ±0. 8 ±0. 2 ±0. 3 用 1N4148 进行补偿的精度 , ℃ ±0. 2 ±1. 0 ±0. 4 ±0. 5
另外 ,如 1N4148 的温度特性的理论
据如下表 1 :
常用的热电偶 ,其热电特性是
表 1 稳压 215198V ,表格内温度系数的单位为 - mV/ ℃
精度虽然稍差 ,然而 ,对自身内部发 热较大的仪表 , 因为 1N4148 体积
温度范围 样品 1 # 2 # 3 #
0~10 ℃ 1. 896 1. 887 1. 902
11 问题的提出
温度测量无处不有 ,温度测量 仪表各式各样 ,在当今仪表技术水 平下 ,对配热电偶的温度测量仪表 , 影响其精度的最大问题是热电偶的 冷端补偿问题 。目前广泛用作冷端 补偿的元件有 :集成温度传感器 、铜 电阻 、PN 结 。相比较而言 , PN 结灵 敏度高 、热响应快 、价格低 、体积小 , 正成为一种新兴的测温元件 。一般 资料显示 ,需要特制的 PN 结温度传 感器才能用于较精密的测温 。而热 电偶的冷端补偿 ,其补偿范围一般 在 0~50 ℃,能否用普通的 PN 结来 作为补偿元件 ? 普通的 PN 结的温 度系数的离散度有多大 ? PN 结作 为补偿元件有没有优越性 ? 本文就 这些方面与大家进行实验探讨 。

大学物理实验PN结正向压降与温度特性的研究实验报告(完整)

大学物理实验PN结正向压降与温度特性的研究实验报告(完整)

PN 结正向压降与温度特性的研究一、实验目的1. 了解PN 结正向压降随温度变化的基本关系式。

2. 在恒流供电条件下,测绘PN 结正向压降随温度变化曲线,并由此确定其灵敏度和被测PN 结材料的禁带宽度。

3. 学习用PN 结测温的方法。

二、实验原理理想PN 结的正向电流I F 和压降V F 存在如下近似关系)exp(kTqV Is I FF = (1) 其中q 为电子电荷;k 为波尔兹曼常数;T 为绝对温度;Is 为反向饱和电流,它是一个和PN 结材料的禁带宽度以及温度等有关的系数,可以证明])0(ex p[kTqV CT Is g r -= (2)(注:(1),(2)式推导参考 刘恩科 半导体物理学第六章第二节)其中C 是与结面积、掺质浓度等有关的常数:r 也是常数;V g (0)为绝对零度时PN 结材料的导带底和价带顶的电势差。

将(2)式代入(1)式,两边取对数可得11)0(n r F g F V V InT q kT T IcIn q k V V +=-⎪⎪⎭⎫ ⎝⎛-= (3) 其中()rn F g InT qKTV T Ic In q k V V -=⎪⎪⎭⎫ ⎝⎛-=11)0(这就是PN 结正向压降作为电流和温度函数的表达式,它是PN 结温度传感器的基本方程。

令I F =常数,则正向压降只随温度而变化,但是在方程(3)中,除线性项V 1外还包含非线性项V n1项所引起的线性误差。

设温度由T 1变为T 时,正向电压由V F1变为V F ,由(3)式可得[]rn F g g F T T q kT T T V V V V ⎪⎪⎭⎫⎝⎛---=1111)0()0( (4) 按理想的线性温度影响,VF 应取如下形式:)(111T T TV V V F F F -∂∂+=理想 (5) TV F ∂∂1等于T 1温度时的T V F ∂∂值。

由(3)式可得r qk T V V T V F g F ---=∂∂111)0( (6) 所以()[]()r T T q kT T V V V T T r q k T V V V V F g g F g F 1111111)0()0(----=-⎥⎦⎤⎢⎣⎡---+=理想(7)由理想线性温度响应(7)式和实际响应(4)式相比较,可得实际响应对线性的理论偏差为()r F T T Ln q kT T T r q k V V )(11+--=-=∆理想 (8)设T 1=300°k ,T=310°k ,取r=3.4*,由(8)式可得∆=0.048mV ,而相应的V F 的改变量约20mV ,相比之下误差甚小。

pn结正向压降与温度关系的研究实验报告.doc

pn结正向压降与温度关系的研究实验报告.doc

pn结正向压降与温度关系的研究实验报告.doc
实验原理:p-n结是半导体器件中最基本的一种,其具有单向导电性能,因此在正向
偏置时,电流可流通,反向偏置时电流不能流通。

在实际应用中,p-n结的正向偏置电压
往往是一个重要的参数,因此研究正向压降随着温度的变化规律有着重要的意义。

实验步骤:
1.准备相应的实验材料:p-n结柱、万用表、稳压源、温度计、热电偶、直流电源等。

2.将p-n结柱插入稳压源的输出端,接通电源,并将万用表的正负极分别接在正负极
之间,记录下正向偏置的电压值。

3.将热电偶紧贴p-n结表面,记录下当前的温度值。

4.分别改变p-n结的温度值,并记录正向偏压下的电压值,得到多组数据。

5.根据实验数据,绘制电压-温度曲线图,进行分析。

实验数据记录:
| 温度(℃)| 正向偏压(V)|
| -------- | -------- |
| 20 | 0.35 |
| 30 | 0.32|
| 40| 0.29|
| 50| 0.26|
| 60| 0.23|
数据处理:
将所得数据画成图表,可以看出正向偏压随着温度的升高而逐渐降低。

结论:
从实验结果可以看出,p-n结正向偏压随着温度的升高而逐渐降低,这是由于随着温
度升高,半导体材料中的自由载流子浓度会增加,这会导致势垒高度的减小,从而使正向
偏压下的电压降低。

因此,在半导体器件的实际应用中,需要注意温度变化对其性能的影响,合理的散热设计可以有效提高器件的工作可靠性。

PN结正向压降及温度关系的研究报告实验报告

PN结正向压降及温度关系的研究报告实验报告

PN 结正向压降与温度关系的研究实验报告一、实验目的〔1〕了解PN 结正向压降随温度变化的根本关系,测定PN 结F F V I -特性曲线及玻尔兹曼常数;〔2〕测绘PN 结正向压降随温度变化的关系曲线,确定其灵敏度及PN 结材料的禁带宽度;〔3〕学会用PN 结测量温度的一般方法。

二、实验仪器SQ-J 型PN 结特性测试仪,三极管〔3DG6〕,测温元件,样品支架等。

三、实验原理1.PN 结F F V I -特性及玻尔兹曼常数k 的测量:由半导体物理学中有关PN 结的研究可以得出PN 结的正向电流F I 与正向电压F V 满足以下关系F I =s I 〔e*p kTeV F -1〕⑴ 式中e 为电子电荷量、k 为玻尔兹曼常数,T 为热力学温度,s I 为反向饱和电流,它是一个与PN 结材料禁带宽度及温度等因素有关的系数,是不随电压变化的常数。

由于在常温〔300K 〕下,kT/q=0.026,而PN 结的正向压降一般为零点几伏,所以e*p kTeV F ",1上式括号的第二项可以忽略不计,于是有 kT eV Is I F F exp=⑵ 这就是PN 结正向电流与正向电压按指数规律变化的关系,假设测得半导体PN 结的F F V I -关系值,则可利用上式以求出e/kT.在测得温度T 后,就可得到e/k 常数,将电子电量代入即可求得玻尔兹曼常数k 。

在实际测量中,二极管的正向F F V I -关系虽能较好满足指数关系,但求得的k 值往往偏小,这是因为二极管正向电流F I 中不仅含有扩散电流,还含有其它电流成份。

如耗尽层复合电流.、外表电流等。

在实验中,采用硅三极管来代替硅二极管,复合电流主要在基极出现,三极管接成共基极线路〔集电极与基极短接〕,集电极电流中不包含复合电流。

假设选取性能良好的硅三极管,使它处于较低的正向偏置状态,则外表电流的影响可忽略。

此时集电极电流与发射极—基极电压满足⑵式,可验证该式,求出准确的e/k 常数。

大学物理 PN结温度特性

大学物理 PN结温度特性
样品架结构如右图所示。 其中A为样品室,是一个可卸 的筒状金属容器。待测PN结 样管和测温元件均置于样品座 B上,其管脚通过高温导线分 别穿过两旁空心细管与顶部插 座P1连接。被测PN结的温度 和电压信号通过P1插件的专用 线输入测试仪。
样品架
引线架
TH-J型PN结正向压降温度特性测试仪
3.PN结测温原理和温标转换
对给定的PN结材料,在允许的温度变化区间内,在 恒流供电条件下,PN结的正向电压VF对温度的依赖关 系取决于线性项V1,正向电压VF几乎随温度升高而线 性下降。即
这就是PN结测温的依据。 温度T是热力学温度,在实际使用时会有不变之处, 为此,我们进行温标转换,采用摄氏温度 t 来表示。 即 T=273.2+t 令VF在室温时的值为VF(tR),则在TK时VF的 值为 代入公式(3),有
(2)
式中C是与PN结的结面积、掺杂浓度等有关的常数,k 为玻尔兹曼常数,r在一定范围内也是常数,Vg(0)为热 力学温度0K时PN结材料的导带底与价带顶的电势差,对 于给定的PN结材料,Vg(0)是一个定值。
将公式(2)代入公式(1),两边取对数,整理后可得:
(3)
其中

式(3)是PN结正向电压作为电流和温度函数的表 达式,它是PN结温度传感器的基本方程。
设t=tR 0C时,令
=0,则有
(4)
而对于其它温度t0C有
定义
为PN结温度传感器灵敏度,则有

(5)
这就是PN结温度传感器在摄氏温标下的测温原理公式。
4. 确定PN结材料的禁带宽度
PN结材料的禁带宽度Eg(0)定义为电子的电量q与热力 学温度0K时PN结材料的导带底和价带顶的电势差Vg(0) 的乘积,即 由公式(4),可得

大学物理实验PN结正向压降温度特性的研究实验报告

大学物理实验PN结正向压降温度特性的研究实验报告

实验题目: PN 结正向压降温度特性的研究实验目的:1.了解PN 结正向压降随温度变化的基本关系式。

2.在恒流供电条件下,测绘PN 结正向压降随温度变化曲线,并由此确定其灵敏度和被测PN 结材料的禁带宽度。

3.学习用PN 结测温的方法。

实验原理:理想PN 结的正向电流S I 和压降F V 存在如下近似关系)exp(kTqV I I FS F = (1) 其中q 为电子电荷;k 为波尔兹曼常数;T 为绝对温度;S I 为反向饱和电流,它是一个和PN 结材料的禁带宽度以及温度等有关的系数,可以证明])0(ex p[kTqV CT I g r S -= (2)其中C 是与结面积、掺质浓度等有关的常数;r 也是常数;)0(g V 为绝对零度时PN 结材料的导带底和价带顶的电势差。

将(2)式代入(1)式,两边取对数可得11)0(n r F g F V V InT q kT T IcIn q k V V +=-⎪⎪⎭⎫ ⎝⎛-= (3) 其中()rn F g InT qKT V T IcIn q k V V -=⎪⎪⎭⎫ ⎝⎛-=11)0(这就是PN 结正向压降作为电流和温度函数的表达式,它是PN 结温度传感器的基本方程。

令=F I 常数,则正向压降只随温度而变化,但是在方程(3)中,除线性项1V 外还包含非线性项1n V 项所引起的线性误差。

设温度由1T 变为T 时,正向电压由1F V 变为F V ,由(3)式可得[]rF g g F T T Ln q kT T T V V V V ⎪⎪⎭⎫⎝⎛---=111)0()0( (4) 按理想的线性温度影响,F V 应取如下形式:)(111T T TV V V F F F -∂∂+=理想 (5)TV F ∂∂1等于1T 温度时的T V F ∂∂值。

由(3)式可得r qk T V V T V F g F ---=∂∂111)0( (6) 所以()[]()rT T q kT T V V V T T r q k T V V V V F g g F g F 1111111)0()0(----=-⎥⎦⎤⎢⎣⎡---+=理想(7) 由理想线性温度响应(7)式和实际响应(4)式相比较,可得实际响应对线性的理论偏差为()r F T TLn q kT T T r q k V V )(11+--=-=∆理想 (8)设K T 3001=,K T 310=,取4.3=r ,由(8)式可得mV 048.0=∆,而相应的F V 的改变量约mV 20,相比之下误差甚小。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档