MR常用序列

合集下载

最新MR中几个常用序列的简单原理介绍

最新MR中几个常用序列的简单原理介绍

长TR、长TE——T2加权像
T2长的组织,图像为强信号,如脑灰质; T2短的组织,图像为弱信号,如脑白质。 一般讲:组织T1时间长者,其T2时间也较长,所以T1和T2 图像一般互为反像。
质子密度加权像
选取长TR(2000ms)和短TE(30~40ms),减少T1和T2 对图像影响,则信号强度与组织质子密度有关。
MR中几个常用序列的简单原理 介绍
SE 序列
自旋回波序列是一个以90-180-180的脉冲序列, 90脉冲间隔时间——TR(Time of Repetition,重复时间), 90至回波时间——TE(Time of Echo,回波时间)。
回波(Echo)
FID:由90°脉冲作用后直接产生的,Mxy从大到小。 Echo:180°脉冲作用结果,信号(Mxy)是从小到大然后再从 大到小,体现了 M 相聚与相散的变化;由于Mxy是按时间常 数T2指数衰减的,
TE对MRI的作用
在TE期间,信号按 T2*时间常数衰减。TE长,Mxy衰减得多; TE短,Mxy衰减得少。
组织R的T2短,衰减快,L的T2长,衰减慢;用长TE(80100ms),L的衰减慢,L信号强(T2差异) ——T2加权。
TE越短,T2加权越弱;TE越长,T2加权越强。
T1加权像
减少T2对图像的作用,可以使用短TR(400-600 ms),以 增强不同组织的T1对比度
多回波 SE 序列
由于TR长(2000ms),短TE回波与质子密度有关(CSF是 灰色白,灰质为灰白,白质为灰);随TE延长,质子密度作 用逐渐减弱,而T2因素逐渐增大;当TE很长时,图像为很 重的T2加权像(CSF为强信号,灰质为次强信号越强,但信号下降; TE越短,T2影响越小,信号强度越高。

磁共振序列

磁共振序列

磁共振序列磁共振(MR)是一种核磁共振技术,它利用电磁场和磁场来创建出特定模式的能量场,以及特定的时序应用,可以用来检测和显示各种物理特性。

下面是磁共振序列的详细介绍:1. 超声回声(Ultrasound):超声回声是通过传导磁波到体内,引起局部表层组织出现振动,形成体内能量,从而被其他组织反射回来,最后在设备上形成相应的回声,以及显示出组织内部的一些样貌。

2. 频域磁共振(FDMR):频域磁共振也称为时间磁共振,它通过一系列精心设计的“侧向”和“层对层”的磁共振序列,来检测不同的物理特性,比如脂肪含量、细胞结构和病灶的形态变化等。

3. 时间磁共振(TDMR):时间磁共振序列经常是2个及以上的MR序列,这些序列可以在某些情况下叠加使用。

主要目的是改变能够活动的空间尺度,来改变时间分布,从而获得更加清楚的图像。

4. 集成的时间磁共振(ITSSE):集成的时间磁共振技术是一种将多个MR序列结合为一个分析项目的新技术。

它能提供准确的、高分辨率的组织结构信息,使研究人员能够识别和定位病变和异常组织状态。

5. 组合性磁共振(CMRI):组合性磁共振技术是一种应用不同MR序列来更好地提取特定信息的MR技术。

它主要是将更多的数据集收集在一起,利用互补信息来提取隐藏的结构信息。

6. 动态磁共振(DMR):动态磁共振技术主要用于在一定时期内检测病灶形态变化或病灶内重要部位的状态变化。

这项技术可以帮助诊断师和治疗师更准确地识别和确定病变,并帮助实施最佳的治疗方案。

7. 温度磁共振(TMR):温度磁共振技术可以帮助诊断师测量体内组织的温度变化,以及病变灶的形态变化,为诊断师提供成像的基础信息,识别特殊疾病的风险。

8. 受控MR(CMR):受控MR技术能够检测重要部位内活动的病变,比如动脉粥样硬化和血管痉挛病变等,它可以帮助诊断师更准确地识别和定位病变,并选择最佳治疗方案。

总之,磁共振序列技术在可视化、诊断和治疗领域都发挥着重要作用,精确的MR特性可以帮助科学家更准确地描绘和识别人体内各种病症和结构,为医疗领域提供了重要支持。

MR常用序列成像基本原理

MR常用序列成像基本原理

3 重建算法
使用先进的重建算法抑制 或减少运动伪影的影响。
梯度磁场在空间中创建线性磁场梯度,用于定 位信号的来源位置。
磁共振信号识别原理
通过检测原子核释放的信号,得到组织的磁共 振信号。
原子核磁矩和自旋共振
原子核磁矩的作用
原子核磁矩对外磁场具有自旋力矩,使其与外磁场 相互作用。
自旋共振与磁共振
自旋共振是原子核磁矩在外磁场作用下产生共振现 象,而磁共振是检测这种共振现象并形成图像。
脉冲序列的构成
1
激发脉冲
发射短脉冲使原子核翻转。
梯度脉冲
2
在特定时间和特定梯度条件下,产生空
间编码。
3
回波信号
接收原子核释放信号。
快速成像技术
探测阵列
使用多通道同步采集技术, 提高图像的时间分辨率和空 间分辨率。
平行成像技术
以加速成像为目标,减少扫 描时间,提高成像效率。
并行成像技术
在多通道中同时激励和接收 信号,实现多条同时成像。
T1加权成像和T2加权成像
1 T1加权成像原理
T1加权成像利用不同组织 T1弛豫时间的差异产生对 比,从而揭示组织的解剖 信息。
2 T2加权成像原理
T2加权成像利用不同组织 T2弛豫时间的差异产生对 比,突出病变区域和水分 布。
3 T1加权与T2加权的区

T1加权成像在脑脊液中呈 现暗信号,而T2加权成像 中呈现亮信号。
平扫与增强扫描的原理
平扫成像
通过选择不同的脉冲序列参数,获取ຫໍສະໝຸດ 织的基本信 号信息。增强扫描
通过注射对比剂,改变组织信号强度,增强病变显 示。
MR成像图像的格式
1 矢状面(Sagittal) 2 冠状面(Coronal) 3 轴状面(Axial)

头颅MR检查方法及各序列的应用

头颅MR检查方法及各序列的应用

头颅MR检查方法及各序列的应用一、基本序列1.2DSET1WIFSET2WI基本扫描序列,常规采集。

2.GRET1WI,评价血管与神经病变与血管的关系,用于评价三叉神经痛、面肌痉挛病人。

3.GRET2WI,评价微小出血的病变,如弥散性轴索损伤,脑梗死后出血、海绵状血管瘤等病变。

4.FLAIR,抑制脑室及蛛网膜下腔的CSF,主要评价脑膜病变,如脑膜炎、脑膜癌病,脑白质病变,如脱髓鞘、脑白质病等。

5.MRA及MRV,评价颅内动脉系统及经脉系统,如动脉瘤、动静脉畸形、静脉闭塞、发育性静脉畸形等。

6.SWI,评价发育性静脉畸形、出血等。

二、DWI和ADC信号异常的病变表1-1DWI和ADC信号异常的病变DWI高信号ADC低信号DWI、ADC高信号急性/亚急性梗死ADEMDWI等、ADC高信号慢性梗死肿瘤坏死颅咽管瘤蛛网膜囊肿血管性水肿脓肿、MS、表皮样囊肿静脉性梗死CJD、病毒性脑炎星形细胞瘤CPM/EPM、弥散性轴索损伤淋巴瘤、脑膜瘤三、DTI在CNS的应用脑梗死;发育和老化;AD;MS;脑肿瘤与邻近纤维束的关系。

四、MRP1.脑缺血,脑梗死。

2.MTT延长,CBF下降,CBV正常,缺血前期改变。

3.CBV下降区与DWI高信号的差别,即缺血半暗带,为治疗最有效的区域。

4.区分肿瘤组织的良恶性。

5.区分肿瘤的大小和范围。

6.鉴别放射性坏死和肿瘤复发。

7.指导穿刺活检。

五、MRS1.NAA:波峰2.0ppm神经元的标志。

2.Cho:波峰3.2ppm,细胞膜增生代谢有关。

示无氧代谢、坏死。

4.Cr:波峰3.0ppm,位于神经元和胶质细胞中,代谢稳定,常用来作参考值。

5.Gl某:(谷氨酸和谷氨酰胺复合物):波峰为 2.2-2.4ppm,Gl某升高提示非肿瘤性病变。

6.mI:(肌醇),波峰为3.5ppm,升高提示非肿瘤性病变。

7.Lip:波峰1.4ppm,短TE时间明显,Lip峰尖提示组织坏死。

8.Ala(丙氨酸):1.47ppm,Ala升高提示脑膜瘤。

磁共振序列缩写常考

磁共振序列缩写常考

磁共振序列缩写常考
磁共振序列的缩写经常出现在医学影像学的考试中,以下是其中一些常见的磁共振序列缩写:
1. SE(自旋回波):最常用的磁共振序列,用于产生T1和T2加权的图像。

2. GRE(梯度回波):用于显示血流和出血,常用于显示脑微出血和脑动脉瘤。

3. FSE(快速自旋回波):一种快速序列,用于产生T2加权的图像。

4. FFE(快速梯度回波):一种快速序列,用于产生T1加权的图像。

5. STIR(短时反转恢复):用于产生脂肪抑制的T2加权图像,常用于显示骨髓水肿和炎症。

6. DWI(扩散加权成像):用于显示组织中的水分子扩散情况,常用于诊断急性脑卒中和脑肿瘤。

7. MRA(磁共振血管造影):用于显示血管结构和血流情况。

8. MRS(磁共振波谱):用于分析组织代谢和生化变化。

以上是一些常见的磁共振序列缩写,不同医院和不同医生可能使用不同的缩写,建议根据具体情况判断。

MR常用序列

MR常用序列
肾上腺 腺瘤中常含有脂质,在反相位图像上信号强度常 有明显降低,利用化学位移成像技术判断肾上腺结节是 否为腺瘤的敏感性约为70-80%,特异性高达90%-95 %。
MRCP/MRU水成像
• BH T2W fs FSE --常规腹部T2呼吸门控压脂扫描,用于整体 观察腹腔脏器情况,检出病变。
• RT/BH3D FRFSE fs MRCP/MRU --呼吸门控/屏气的3D MRCP扫 描,包绕整个胆系/泌尿系统扫描,原始图像可同时显示胰胆 管/输尿管内外结构;可进行多角度重建,观察梗阻部位及梗 阻情况、梗阻分型。如果是恶性,还可以进一步观察周围组织 有无侵润或转移。
女性盆腔
• AX T1W FSE --显示解剖结构及病变情况。
• AX T2W FSE--能清晰显示子宫外膜、肌层以及 内膜结构,更好显示解剖结构及病变情况。(T2 显示女性盆腔最佳)
• AX T2W fs FRFSE --显示病灶、肿大的淋巴结以 及骨质病变,以及对肿瘤进行分级。
• .DWI 选择b=800
MR常用序列
头颅常规序列
1 .OAx T1 Flair——信噪比高,灰白质对比强,对解 剖结构的显示好。对病变,尤其是邻近皮层的小病 变的检出率优于T1W SE。对发育畸形、结构异常、 脑白质病变以及脂肪瘤等的检出具有重要意义。
2.OAx T2W FRFSE--常规T2像,用于一般病变的检出, 如梗塞灶、肿瘤等。
• 5.SWAN主要用于脑出血 ,肿瘤出血 、肿瘤内有丰富 的血管,显示侧枝循环。异常静脉形成。脑代谢疾病 (异常铁蛋白形成):Parkinsons 病 Huntington病 Alzheimer病
垂体
• FSE T1W:矢状位、冠状位为主,观察垂体解剖结 构及信号的变化、与周围结构的关系,以及垂体 柄有无偏斜。

磁共振基础序列

磁共振基础序列

磁共振基础序列
磁共振基础序列包括自旋回波(SE)序列、快速自旋回波(FSE)序列、梯度回波(GRE)序列和反转恢复(IR)序列等。

这些序列在磁共振成像中扮演着重要角色,它们可以通过不同的参数调节来获取不同的图像信息,从而为临床诊断和治疗提供重要的影像学依据。

自旋回波(SE)序列是最常用的磁共振序列之一,它利用射频脉冲激发组织中的氢原子核,然后使用不同的回波时间(TE)和重复时间(TR)来获取不同的图像信息。

SE序列可以产生高分辨率和高对比度的图像,适用于多种疾病的诊断。

快速自旋回波(FSE)序列是一种改进的SE序列,它通过减少扫描时间提高了成像效率。

FSE序列适用于快速动态成像和实时成像,例如在心血管和腹部成像中广泛应用。

梯度回波(GRE)序列利用磁场梯度来产生图像对比,因此不需要等待自旋回波的形成。

GRE序列可以产生快速的图像,适用于血流成像和功能成像。

反转恢复(IR)序列是一种特殊类型的IR序列,它通过在射频脉冲之前和之后施加反向磁场来增加组织对比度。

IR 序列常用于脑部、脊柱和肝脏等器官的成像。

除了以上基础序列外,还有一些更复杂的磁共振序列,如弥散加权成像(DWI)、灌注加权成像(PWI)和波谱成像(MRS)等。

这些序列可以提供更多的组织生理信息和代谢信息,对于疾病的早期诊断和治疗具有重要意义。

MR检查操作规范

MR检查操作规范

MR检查操作规范本规范以检查部位为依据,兼顾部分有MRI鉴别意义的疾病类型,提出各部位检查的基本原则,适用于各级医院及各种不同类型的MR检查设备。

本规范采用相同的写作结构,包括线圈类型、体位、定位像、成像范围、检查方位、检查序列、扫描基准、层厚/层间距、FOV、患者准备与配合和优化选项,旨在为同行提供清楚的各部位MRI检查方法。

MRI检查适用于罹患各系统疾病者和要求健康体检者。

检查前应去除患者体内及体表的磁性金属物。

对于儿童、烦躁不安及有幽闭恐惧症者,应镇静后进行检查。

实施检查前,应先除外检查禁忌症。

本规范适用于成人MRI检查,儿童MRI检查原则相同,具体参数请根据情况适当调整。

第一节MRI检查规范总体要求1 •线圈选用合适。

2 •患者体位标准。

3 .检查方位准确。

4 •扫描基准线符合要求5 •序列选择得当、齐全。

6. FOV适当。

7 •层厚/层间距适当。

8 . TR、TE、扫描时间与机型有关,主要参数范围见表1。

9 •其他优化选项应用合理,如呼吸门控、心电门控、流动补偿等。

10 .每个检查部位,个检查方位(其中一个为基本检查方位)。

11 .每个基本检查方位上,个基本检查序列。

12 •合理控制运动、呼吸、血管/脑脊液搏动、异物/金属等伪影,无卷褶伪影。

13 •图像重建规范。

表2主要MR厂家常见脉冲序列对照表第二节头颅五官一.颅脑线圈:头线圈,或头颈联合相控阵线圈。

体位:仰卧位、头先进。

定位像:3平面定位像,或矢状位定位像。

成像范围:颅底到颅顶。

(一)MR平扫1 .检查方位(1)基本检查方位:横轴位(Axi)0(2)辅助检查方位:冠状位(Cor)、矢状位(Sag)2 .检查序列(1 )基本检查序列:TWI、TW、T2 FLAIR、DWI。

(2)辅助检查序列:疑脂肪性病变者,加扫脂肪抑制序列(疑出血性病变者,加扫T2*WI,或SWI o3 •层厚/层间距:层厚<6mm,层间距<2mm4 •扫描基准:Axi—平行于额叶底面或蝶骨平台或前-后联合连线(Sag定位)。

头部磁共振常用序列临床应用简介

头部磁共振常用序列临床应用简介
9
孤立病灶
DTI
孤立病灶DTI显示局部纤维中断 DTI显示双侧放射冠及 胼胝体的纤维走行
10
常规头部MR序列
T1W-信噪比高,灰白质对比强,对解剖结构的 显示好
T2W FSE(TSE)-常规T2像,用于一般病变的检 出,如梗塞灶、肿瘤等
T2W Flair-水抑制技术,显示被CSF高信号掩 盖的脑和脊髓的稍高或高信号病
消除伪影来源 显示被脂肪信号掩盖的病灶 与MHb、含蛋白液体鉴别
5
• CNS相关的成像技术 反转恢复(IR) 序列(3) FLAIR序列—衰减液体信号的反转恢复 (fluid attenuated inversion recovery,FLAIR) 序列—黑水序列 有效抑制CSF(游离水)信号—水抑制技术 F和L脊AI髓R序的列稍T高2W或I,高显信示号被病C灶SF高信号掩盖的脑 病变相对较小且靠近CSF 如大脑皮层病变、脑室旁病变
16
几种组织或成分的MR信号特点
钙化:因其内氢质子含量通常非常少,在T1WI及 T2WI上均表现为低信号
脂肪:有较高的质子密度,在T1WI及T2WI上均表现 为高信号。STIR
铁质沉积:MRI对铁含量的变化非常敏感 • 生理性沉积:苍白球、红核、黑质、壳核、尾状核和
丘脑部位可见明显的低信号(T2WI) • 病理性沉积:早老性痴呆(大脑皮质铁沉积增多)、
7
பைடு நூலகம்
CNS相关的成像技术(功能成像) MR扩散加权成像(2) DWI的临床应用 DWI主要用于超急性期缺血性脑梗死的诊断 和鉴别诊断 该期脑梗死主要引起细胞毒性水肿,与常规 T号1W异I常和,可T2提W早I相到比病,D后W2小I能时更之早内发现梗死区信
8
CNS相关的成像技术 MR扩散加权成像(3) DWI的临床应用、影像学表现 超急性/急性期缺血性脑梗死表现为高 信号 MS的活动病灶、部分肿瘤、血肿及 脓肿等也可能表现为高信号 利用DTI技术进行脑白质束成像,显示 肿瘤对周围白质束的影响

MR常用脉冲序列及其临床应用

MR常用脉冲序列及其临床应用

FIR T1WI (T1 FLAIR)
液体抑制反转恢复
用于脂肪抑制
脂肪组织T1值为200-250ms,宏观纵向磁化矢 量从反向最大到0需要时间为其T1的70%
STIR序列的TI=脂肪T1 X 70%=140-175ms TR>2000ms
临床应用
偏中心部位 形态不规则部位
COR T2 FS
50%
长TR(>2000ms)
长TE(>50ms)Mxy(横向磁化矢量)
100%
50%
TR(ms) TE(ms)
选择合适长的TE获得最好的T2对比
Mxy
100%
合适长的TE
一般TE选择两种组织T2值的平均 值附近可获得最好的T2对比
T2对比
TE(ms)
100%
Mz(纵向磁化矢量)
50%
短TR(200-600ms)
三维容积内插快速扰相GRE T1WI序列
西门子:容积内插体部检查(VIBE) GE:肝脏容积加速采集(LAVA) 飞利浦:T1高分辨力各向同性容积激发(THRIVE)
优点:
① 在层面较薄时可以保持较高的信噪比 ② 没有层间距,有利于小病灶的显示 ③ 可同时兼顾脏器实质成像和三维血管成像的需要
缺点:
长回波链FSE T2WI
优点
扫描速度快,可屏气扫描
缺点
ETL较长,图像模糊更明显 屏气不好者仍有伪影
主要用途
体部屏气T2WI 3D水成像
FSE的衍生序列
快速恢复FSE(FRFSE) 单次激发FSE序列(SS- FSE ) 半傅里叶采集单次激发FSE序列( HASTE )
FSE T1WI
优点
采集时间缩短,甚至可以进行屏气扫描

MR常用序列成像基本原理

MR常用序列成像基本原理

MR常用序列成像基本原理MR(Magnetic Resonance,磁共振)成像是一种非侵入性的医学成像技术,通过利用磁共振现象对人体进行断层成像。

下面将介绍MR常用序列成像的基本原理,主要包括磁共振现象、脉冲序列和图像重建方法。

1.磁共振现象:MR成像利用了原子核的磁共振现象。

在磁场中,原子核具有自旋,一部分原子核的自旋朝向与磁场方向一致,另一部分原子核的自旋朝向与磁场方向相反。

当外加一个RF脉冲磁场时,自旋的朝向会发生偏离,并且当RF脉冲作用结束后,自旋会重新回到平衡状态。

在这个过程中,原子核会产生瞬态电流,这个电流会在接收线圈中被检测出来,从而生成信号。

2.脉冲序列:为了获取高质量的MR图像,需要设计一系列脉冲序列,这些序列分别用于激发、改变自旋状况和接收信号。

常用的脉冲序列包括激发序列、脉冲重复时间(TR)和回波时间(TE)。

激发序列:激发序列用于改变自旋的朝向,一般使用90°或180°的RF脉冲。

当自旋被激发后,它们会开始预处理并自发地发出信号。

TR时间:TR时间是指两次激发脉冲之间的时间间隔。

较长的TR时间可以增加信号强度,但同时会使成像时间延长。

TE时间:TE时间是指激发脉冲到回波信号的时间间隔。

不同的组织具有不同的T1和T2弛豫时间,通过调整TE时间可以使不同组织在图像中有不同的对比度。

3.图像重建方法:在脉冲序列激发后,接收到的信号会经过放大、滤波和数字化处理,然后进行图像重建。

K空间:在图像重建之前,信号会先经过傅里叶变换,转换到K空间。

K空间是频域中的一个空间,其中信号是由一系列频率组成。

傅里叶变换将信号由时间域转换到频域,从而可以将信号表示为K空间中的一系列频率成分。

图像重建:图像重建是将K空间转换为空间域的过程。

常见的图像重建方法有基于筛选技术的回波图像和基于逆傅里叶变换的图像重建。

基于筛选技术的回波图像是通过选择特定频率分量的信号并进行加权平均来构建图像。

MR中几个常用序列的简单原理介绍

MR中几个常用序列的简单原理介绍
TR越短,T1加权比重越大;TR越长,T1加权越弱。
TE对MRI的作用
在TE期间,信号按 T2*时间常数衰减。TE长,Mxy衰减得 多;TE短,Mxy衰减得少。
组织R的T2短,衰减快,L的T2长,衰减慢;用长TE(80100ms),L的衰减慢,L信号强(T2差异) ——T2加权。
TE越短,T2加权越弱;TE越长,T2加权越强。
STIR序列
STIR序列
STIR
T2
STIR序列
常规
膝盖矢状像(FSE脂肪抑制, 小FOV,层厚3.4mm)
STIR序列
Fat suppressed FSPGR liver on the 1.5T.
FLAIR序列
当T1非常长时,几乎所有组织的Mz都已恢复,只有 T1非常长的组织的 Mz 接近于0,如水,液体信号被抑制, 从而特出其他组织。
T2加权像: TR越长,T1影响越小; TE越长,则T2加权越重,但信号下降。
反转恢复序列(Inverse Recovery,IR)
由于TE有限,SE序列的 T1像质量不理想。IR序列是用 来得到最佳T1像的成像序列。
IR序列是由一个180°反 转脉冲使 Mz0 反转,此后脉 冲同SE序列。
180- 90-{180-Echo}n
IR序列特点
IR序列具有强T1对比特性; 可设定TI,饱和特定组织产生具有特征性对比图像 (STIR、FLAIR); 短 TI 对比常用于新生儿脑部成像; 采集时间长,层面相对较少。
SE 与 IR 序列比较
SE序列TR/TE=2000/30, 60,90,120
IR序列TR/TE=1500/15, TI=100,200,300,400, 500
T2加权像

MR常用技术及相关概念总结

MR常用技术及相关概念总结

快速采集--- 并行采集技术GE公司ASSET技术;飞利浦的SENSE技术:在成像脉冲扫描前先行参考扫描(reference scan),获得相控阵线圈敏感度信息,然后进行成像脉冲序列SENSE扫描(在调整扫描参数时,在Resolution 栏目中选择AENSE选项并设置SENSE因子),扫描结束后计算机将利用参考扫描得到的相控阵线圈敏感度信息自动进行去除卷褶的运算,重建出来的即为去除卷褶的图像。

临床应用:1、加快采集速度,缩短采集时间,多用于耐受性较差不能坚持坚持的病例;2、高分辨力扫描;3、年老体弱的屏气体部成像;4、心脏成像;5、用于单次激发EPI,减少磁敏感伪影并提高图像质量;6、用于单次激发的FSE序列,提高回波链的质量;7、用于 3.0T高场机,大大减少SAR值。

快速采集--- 部分回波技术类似半K空间技术,需要采集每个回波的一半多一点(一般60%),这种技术称为部分回波(partial echo或fractional echo)技术或半回波(half echo)技术。

MRI 脂肪抑制技术1、MRI检查使用脂肪抑制技术的意义:脂肪组织的特性会降低MR图像的质量,从而影响病变的检出。

具体表现在:(1)脂肪组织引起的运动伪影。

MRI扫描过程中,如果被检组织出现宏观运动,则图像上将出现不同程度的运动伪影,而且组织的信号强度越高,运动伪影将越明显。

如腹部部检查时,无论在T1WI还是在T2WI上,皮下脂肪均呈现高信号,表面线圈的应用更增高了脂肪组织的信号强度,由于呼吸运动腹壁的皮下脂肪将出现严重的运动伪影,明显降低图像的质量。

(2)水脂肪界面上的化学位移伪影。

(3)脂肪组织的存在降低了图像的对比。

如骨髓腔中的病变在T2WI 上呈现高信号,而骨髓由于富含脂肪组织也呈现高信号,两者之间因此缺乏对比,从而掩盖了病变。

又如肝细胞癌通常发生在慢性肝病的基础上,慢性肝病一般都存在不同程度的脂肪变性,这些脂肪变性在FSET 2WI上将使肝脏背景信号偏高,而肝细胞癌特别是小肝癌在T2WI上也往往表现为略高信号,肝脏脂肪变性的存在势必降低病灶与背景肝脏之间的对比,影响小病灶的检出。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

核磁共振检查常用序列简介
核磁共振扫描(即)的序列是指,具有一定带宽、一定幅度的射频脉冲与梯度脉冲的有机组合。

而射频脉冲与梯度脉冲不同的组合方式构成不同的序列,不同的序列获得的图像有各自的特点,也有其对应的应用范围。

序列主要有以下几种类型:
自旋回波序列(SE),这是最为传统、最为稳定的序列。

它对磁场均匀性的要求很低,提供可靠的高对比图像,但是扫描速度慢,实际工作中多只用于T1加权成像。

(什么是加权成像,详见《》。


快速自旋回波序列(TSE),这是在自旋回波序列基础上发展起来的快速成像序列,其速度是SE序列的数倍到数十倍。

TSE的图像质量略差于SE,多用于T2加权成像。

梯度回波序列(也叫场回波,FE),梯度回波的扫描速度明显快于SE,其优势是对出血非常敏感,局限性在于对磁场均匀性要求较高。

反转恢复序列(IR),反转恢复序列主要有两种类型:第一,水抑制(FLAIR)常用于脑的多发性硬化和脑梗塞等病变的鉴别诊断,尤其是当这些病变与富含脑脊液的结构邻近时,优势更为明显;第二,脂肪抑制(STIR),STIR主要抑制影像中的脂肪信号,用于更好的显示被脂肪信号遮蔽的病变,还可鉴别病变组织中的脂肪与非脂肪结构。

平面回波序列(EPI),这是一种超快速成像序列,可在不到1秒的时间内获得一幅完整的图像,但相对的,图像的质量较低。

EPI主要用于弥散、灌注、脑皮质功能成像。

血管造影序列(MRA),MRA采用时间飞逝法(TOF)或相位对比法(PC)使流动的血液成像。

对MRA体层图像进行MIP重建,可以从不同角度观察血管分支及其走行。

不太了解核磁共振成像的网友有时候会把MRI和MRA混淆起来,其实两者的区别还是比较大的,MRI指的就是核磁共振成像,而MRA只是核磁共振扫描序列的一种,在此顺便做一个特别的解释。

水成像序列(MRCP、MRU、MRM),水成像序列对体内含水管道系统成像,经MIP(MIP 表示最大信号强度投影,在《》一文中有过简单介绍)重建后可以获得管道系统的整体评价。

相关文档
最新文档