四年级奥数讲义教学之:容斥原理
小学奥数容斥原理教案
小学奥数容斥原理教案【篇一:四年级奥数讲义:容斥原理(1)】四年级数学讲义奥数:容斥原理(1)教学目标:1、理解容斥原理,会画图分析其中关系,正确的找出答案。
2、培养学生的逻辑思维和数学思考能力。
3、培养学生良好的书写习惯。
一、教学衔接二、教学内容(一)知识介绍容斥问题涉及到一个重要原理——包含与排除原理,也叫容斥原理。
即当两个计数部分有重复包含时,为了不重复计数,应从它们的和中排除重复部分。
容斥原理:对n个事物,如果采用不同的分类标准,按性质a分类与性质b分类(如图),那么具有性质a或性质b的事物的个数=na+nb-nab。
(二)例题精讲 nanb例1、一个班有48人,班主任在班会上问:“谁做完语文作业?请举手!”有37人举手。
又问:“谁做完数学作业?请举手!”有42人举手。
最后问:“谁语文、数学作业都没有做完?”没有人举手。
求这个班语文、数学作业都完成的人数。
【思路导航】完成语文作业的有37人,完成数学作业的有42人,一共有37+42=79人,多于全班人数。
这是因为语文、数学作业都完成的人数在统计做完语文作业的人数时算过一次,在统计做完数学作业的人数时又算了一次,这样就多算了一次。
所以,这个班语文、数作业都完成的有:79-48=31人。
例2、某班有36个同学在一项测试中,答对第一题的有25人,答对第二题的有23人,两题都答对的有15人。
问多少个同学两题都答得不对?【分析与解答】已知答对第一题的有25人,两题都答对的有15人,可以求出只答对第一题的有25-15=10人。
又已知答对第二题的有23人,用只答对第一题的人数,加上答对第二题的人数就得到至少有一题答对的人数:10+23=33人。
所以,两题都答得不对的有36-33=3人。
例3、某班有56人,参加语文竞赛的有28人,参加数学竞赛的有27人,如果两科都没有参加的有25人,那么同时参加语文、数学两科竞赛的有多少人?【分析与解答】要求两科竞赛同时参加的人数,应先求出至少参加一科竞赛的人数:56-25=31人,再求两科竞赛同时参加的人数:28+27-31=24人。
奥数容斥原理
雪
4
6+6+4-(3+1)-(0+1)-(1+1)+1=10人
?人
❖ 例3. 某校六年级二班有49
人参加了数学、英语、语文
学习小组,其中数学有30
人参加,英语有20人参加,
语文小组有10人。老师告 诉同学既参加数学小组又参
数
英
加语文小组的有3人,既参
30 质 20
加数学又参加英语和既参加 英语又参加语文的人数均为 质数,而三种全参加的只有
69+52-30=91人 91+12=103人
❖ 5、全班有50人,不会骑车的有23人,不会 滑旱冰的有35人,两样都会的有5人。问: 两样都不会的有多少人?
50-5=45人 23+35-45=15人
❖ 6、六年级(2)班有48名学生,其中会骑自 行车的有27个,会游泳的有18人,既会骑自 行车又会游泳的有10人。问两样都不会的有 多少人?
不能被3或5整除的个数: 1000-467=533个
试一试:
❖ 某校选出50名学生参加区作文比赛和 数学竞赛,作文比赛获奖的有16人, 数学比赛获奖的有12人,有5人两项比 赛都获奖了。
❖ (1)共有多少人获奖? ❖ 16+12-5=23人 ❖ (2)两项比赛都没获奖的有多少人? ❖ 50-23=27人
1
3
质
1人,求既参加英语又参加 数学小组的人数。
语
10
❖ 分析与解:根据已知条 件画出图。
49人
❖ 三圆盖住的总体为49人,假设既参加数学又 参加英语的有x人,既参加语文又参加英语的 有y人,可以列出这样的方程:30 20 10 x y 31 49 整理后得:x y 9 由于x、y均为质数,因而 这两个质数中必有一个偶质数2,另一个质数 为7。
四年级奥数讲义之:容斥原理(2)
四年级数学讲义奥数:容斥原理(2)教学目标:1、理解容斥原理,会画图分析其中关系,正确的找出答案。
2、培养学生的逻辑思维和数学思考能力。
3、培养学生良好的书写习惯。
一、教学衔接1、五年级有122名学生参加语文、数学考试,每人至少有一门功课取得优秀成绩。
其中语文成绩优秀的有65人,数学优秀的有87人。
语文、数学都优秀的有多少人?2、某班有40名学生,其中有15人参加数学小组,18人参加航模小组,有10人两个小组都参加.那么有多少人两个小组都不参加?3、一个旅行社有36人,其中会英语的有24人,会法语的有18人,两样都不会的有4人。
两样都会的有多少人?二、教学内容例1.五(1)班的全体学生进行了短跑、游泳、篮球三个项目的测试,有4名学生在这三个项目上都没有达到优秀,其余每人至少有一个项目达到优秀,这部分学生达到优秀的项目和人数如下表:短跑游泳篮球短跑、游泳游泳、篮球篮球、短跑短跑、游泳、篮球17人18人15人6人6人6人2人求全班人数。
例2.某班有学生50人,参加无线电小组,航模小组和生物小组的人数分别是20人、20人和12人,其中既参加无线电小组又参加航模小组的有4人,既参加航模小组又参加生物小组的有5人,既参加生物小组又参加无线电小组的有3人。
已知全班每人都至少参加了以上三个小组中的某一个,那么,三个小组参加的学生有多少人?例3.一个体育锻炼小组有35名男生,规定他们至少参加篮球、排球、足球三个球队中的一个。
结果参加篮球队的有16人,参加排球队的有11人,参加足球队的有20人,其中有4人既参加了排球队又参加了篮球队,有3人既参加了排球队又参加了足球队,没有人三个球队都参加。
既参加篮球队又参加足球队的有多少人?三、教学练习1.第三小队的学生有20人,手中分别拿有红、黄蓝三种颜色的球,已知手中有红球、黄球、蓝球折学生人数分别为10人、10人、6人,其中手中既有红球又有黄球的有3人,既有黄球又有蓝球的有2人,既有蓝球又有红球的有4人。
小学奥数教程之容斥原理
学习奥数的优点1、激发学生对数学学习的兴趣,更容易让学生体验成功,树立自信。
2、训练学生良好的数学思维习惯和思维品质。
要使经过奥数训练的学生,思维更敏捷,考虑问题比别人更深层次。
3、锻炼学生优良的意志品质。
可以培养持之以恒的耐心和克服困难的信心,以及战胜难题的勇气。
可以养成坚韧不拔的毅力4、获得扎实的数学基本功,发挥创新精神和创造力的最大空间。
容斥原理学生姓名授课日期教师姓名授课时长知识定位容斥原理中的知识点比较简单,是计数问题中比较浅的一支。
这个知识点经常和数论知识结合出综合型题目。
这个原理本身并不是很难理解,不过经常和数论知识结合出题,所以对学生的理解层次要求较高,学生必须充分理解、吃透。
1.充分理解和掌握容斥原理的基本概念2.利用图形分析解决容斥原理问题知识梳理授课批注:本讲的知识点必须让学生充分理解、吃透,这个原理本身并不是很难理解,不过经常和数论知识结合出题所以对学生的理解层次要求较高。
一. 容斥原理的概念定义在一些计数问题中,经常遇到有关集合元素个数的计算。
我们用|A|表示有限集A 的元素个数。
求两个集合并集的元素的个数,不能简单地把两个集合的元素个数相加,而要从两个集合个数之和中减去重复计算的元素个数,即减去交集的元素个数,用式子可表示成:|A∪B| = |A| + |B| - |A∩B|,我们称这一公式为包含与排除原理,简称容斥原理。
图示如右:A表示小圆部分,B表示大圆部分,C表示大圆与小圆的公共部分,记为:A∩B,即阴影面积。
用法:包含与排除原理告诉我们,要计算两个集合A、B的并集A∪B的元素的个数,可分以下两步进行:第一步:分别计算集合A、B的元素个数,然后加起来,即先求|A|+|B|(意思是把A、B的一切元素都“包含”进来,加在一起);第二步:从上面的和中减去交集的元素个数,即减去C=|A∩B|(意思是“排除”了重复计算的元素个数)二.竞赛考点1.容斥原理的基本概念2.与数论相结合的综合型题目例题精讲【试题来源】【题目】在一个炎热的夏日,10个小学生去冷饮店每人都买了冷饮。
小学四年级奥数 容斥原理
容斥原理在一些计数问题中,经常遇到有关集合元素个数的计算。
求两个集合并集的元素的个数,不能简单地把两个集合的元素个数相加,而要从两个集合个数之和中减去重复计算的元素个数,即减去交集的元素个数,用式子可表示成:A∪B=A+B-A∩B (其中符号“∪”读作“并”,相当于中文“和”或者“或”的意思;符号“∩”读作“交”,相当于中文“且”的意思。
),则称这一公式为包含与排除原理,简称容斥原理。
图示如下:A表示小圆部分,B表示大圆部分,C表示大圆与小圆的公共部分,记为:A∩B,即阴影面积。
1.先包含——A+B重叠部分A∩B计算了2次,多加了1次;2.再排除——A+B-A∩B把多加了1次的重叠部分A∩B减去。
A类、B类与C类元素个数的总和=A类元素的个数+B类元素个数+C类元素个数-既是A类又是B 类的元素个数-既是B类又是C类的元素个数-既是A类又是C类的元素个数+同时是A类、B类、C类的元素个数。
用符号表示为:A∪B∪C=A+B+C-A∩B-B∩C-A∩C+A∩B∩C图示如下:图中小圆表示A的元素的个数,中圆表示B的元素的个数,大圆表示C的元素的个数。
1.先包含——A+B+CA∩B、B∩C、C∩A重叠了2次,多加了1次。
2.再排除——A+B+C-A∩B-B∩C-A∩C重叠部分A∩B∩C重叠了3次,但是在进行A+B+C-A∩B-B∩C-A∩C计算时都被减掉了。
3.再包含——A+B+C-A∩B-B∩C-A∩C+A∩B∩C例1一个长方形长12厘米,宽8厘米,另一个长方形长10厘米,宽6厘米,它们中间重叠的部分是一个边长4厘米的正方形,求这个组合图形的面积。
例250名同学面向老师站成一行。
老师先让大家从左至右按1、2、3、…、49、50依次报数;再让报数是4的倍数的同学向后转,接着又让报数是6的倍数的同学向后转。
问:现在面向老师的同学还有多少名?求1~2009这2009个自然数既不能被7整除又不能被41整除的自然数有多少个?例3在1到2004所有自然数中,既不是2的倍数又不是3和5的倍数的数有多少个?例4如图,已知甲乙丙三个圆的面积都是30,甲与乙、乙与丙、甲与丙重合部分的面积分别为6,8,5,三个圆覆盖的总面积为73,求空白部分的面积。
趣味奥数之容斥原理
趣味奥数之容斥原理一、专题简析:容斥问题涉及到一个重要原理——包含与排除原理,也叫容斥原理。
即当两个计数部分有重复包含时,为了不重复计数,应从它们的和中排除重复部分。
容斥原理:对n个事物,如果采用不同的分类标准,按性质a分类与性质b分类(如图),那么具有性质a或性质b 的事物的个数=Na+Nb-Nab。
例1:一个班有48人,班主任在班会上问:“谁做完语文作业?请举手!”有37人举手。
又问:“谁做完数学作业?请举手!”有42人举手。
最后问:“谁语文、数学作业都没有做完?”没有人举手。
求这个班语文、数学作业都完成的人数。
分析与解答:完成语文作业的有37人,完成数学作业的有42人,一共有37+42=79人,多于全班人数。
这是因为语文、数学作业都完成的人数在统计做完语文作业的人数时算过一次,在统计做完数学作业的人数时又算了一次,这样就多算了一次。
所以,这个班语文、数作业都完成的有:79-48=31人。
二、练习练习一1,五年级有122名学生参加语文、数学考试,每人至少有一门功课取得优秀成绩。
其中语文成绩优秀的有65人,数学优秀的有87人。
语文、数学都优秀的有多少人?2,四年级一班有54人,订阅《小学生优秀作文》和《数学大世界》两种读物的有13人,订《小学生优秀作文》的有45人,每人至少订一种读物,订《数学大世界》的有多少人?3,学校文艺组每人至少会演奏一种乐器,已知会拉手风琴的有24人,会弹电子琴的有17人,其中两种乐器都会演奏的有8人。
这个文艺组一共有多少人?【答案】1.65+87-122=30(人)2.54-45+13=22(人)3.24-8+17=33(人)例2:某班有36个同学在一项测试中,答对第一题的有25人,答对第二题的有23人,两题都答对的有15人。
问多少个同学两题都答得不对?分析与解答:已知答对第一题的有25人,两题都答对的有15人,可以求出只答对第一题的有25-15=10人。
又已知答对第二题的有23人,用只答对第一题的人数,加上答对第二题的人数就得到至少有一题答对的人数:10+23=33人。
奥数四年级--容斥问题(一)
经 例2、有62名学生,其中会弹钢琴的有11人,会吹竖笛的有56人,
典 两样都不会的有4人,两样都会的有多少人?
题 依题意,画圈框图。
总人数62人
型 依图可知,会弹钢琴+会竖笛
=11+56=67人, 67 > 总人数62人
会弹钢琴的 会两样 会吹竖笛
有11人
?人
既不是5的倍数,也不是7的倍数??。
(3)求既是5的倍数又是7的倍数的数量: 1000÷35 = 28...20
总1--1000的自然数
(4)根据容斥原理: 是5或7的倍数的数有: 200+142-28=314
(5)既不是5,也不是7的倍数的: 1000-314=686
5的倍数 有200
5和7的 公倍数
容斥问题(一)
容斥问题就是包含与排除原理。当两个计数 部分有重复包含时,为了不重复计数,应从他们 的和中排除重复部分。
这一讲我们先介绍容斥原理1: 对n个事物,如果采用两种不同的分类标准:按性 质a分类与性质b分类,那么具有性质a或性质b的 事物的总数= Na+Nb-Nab
Na Nab Nb
画圈圈图: 分析包含和排除关系,是解决这类问题的捷径 !
48名
练 9、有一根36cm长的绳子,从一端开始每隔3 习 厘米做一个记号,每隔4厘米也做一个记号,
然后把标有记号的地方剪断。绳子共被剪成 了多少段?
18段
练 10、科技节那天,学校的科技室里展出了每 习 个年级学生的科技作品,其中有114件不是
一年级的,有96件不是二年级的,一、二年 级参展的作品共32件。其他年级参展的作品 共有多少件?
分析搞清数量关系,是解决数学问题的不二法门。
【小学四年级奥数讲义】 容斥原理
【小学四年级奥数讲义】容斥原理一、专题简析:容斥问题涉及到一个重要原理——包含与排除原理,也叫容斥原理。
即当两个计数部分有重复包含时,为了不重复计数,应从它们的和中排除重复部分。
容斥原理:对n个事物,如果采用不同的分类标准,按性质a分类与性质b 分类(如图),那么具有性质a或性质b的事物的个数=N a+N b-N ab。
Nab NbNa二、精讲精练:例1:一个班有48人,班主任在班会上问:“谁做完语文作业?请举手!”有37人举手。
又问:“谁做完数学作业?请举手!”有42人举手。
最后问:“谁语文、数学作业都没有做完?”没有人举手。
求这个班语文、数学作业都完成的人数。
练习一1、五年级有122名学生参加语文、数学考试,每人至少有一门功课取得优秀成绩。
其中语文成绩优秀的有65人,数学优秀的有87人。
语文、数学都优秀的有多少人?2、四年级一班有54人,订阅《小学生优秀作文》和《数学大世界》两种读物的有13人,订《小学生优秀作文》的有45人,每人至少订一种读物,订《数学大世界》的有多少人?例2:某班有36个同学在一项测试中,答对第一题的有25人,答对第二题的有23人,两题都答对的有15人。
问多少个同学两题都答得不对?练习二1、五(1)班有40个学生,其中25人参加数学小组,23人参加科技小组,有19人两个小组都参加了。
那么,有多少人两个小组都没有参加?2、一个班有55名学生,订阅《小学生数学报》的有32人,订阅《中国少年报》的有29人,两种报纸都订阅的有25人。
两种报纸都没有订阅的有多少人?例3:某班有56人,参加语文竞赛的有28人,参加数学竞赛的有27人,如果两科都没有参加的有25人,那么同时参加语文、数学两科竞赛的有多少人?练习三1、一个旅行社有36人,其中会英语的有24人,会法语的有18人,两样都不会的有4人。
两样都会的有多少人?2、一个俱乐部有103人,其中会下中国象棋的有69人,会下国际象棋的有52人,这两种棋都不会下的有12人。
四年级奥数第29讲容斥问题(教师版)
四年级奥数第29讲容斥问题(wèntí)(教师版)教学目标λ了解容斥原理二量重叠(chóngdié)和三量重叠的内容λ掌握容斥原理(yuánlǐ)在组合计数等各个方面的应用知识梳理一、两量重叠(chóngdié)问题在一些(yīxiē)计数问题中,经常遇到有关集合元素个数的计算.求两个集合并集的元素的个数,不能简单地把两个集合的元素个数相加,而要从两个集合个数之和中减去重复计算的元素个数,即减去交集的元素个数,用式子可表示成:,则称这一公式为包含与排除原理,简称容斥原理.图示如下:表示小圆部分,表示大圆部分,表示大圆与小圆的公共部分,记为:,即阴影面积.图示如下:A表示小圆部分,B表示大圆部分,C表示大圆与小圆的公共部分,记为:A B,即阴影面积.1.先包含——重叠部分A B计算了次,多加了次;包含与排除原理告诉我们,要计算两个集合的并集的元素的个数,可分以下两步进行:第一步:分别计算集合A B、的元素个数,然后加起来,即先求A B+(意思是把、的一切元素都“包含”进来,加在一起);A B第二步:从上面(shàng miɑn)的和中减去交集的元素个数,即减去(意思是“排除”了重复(chóngfù)计算的元素个数).二、三量重叠(chóngdié)问题A类、B类与C类元素(yuán sù)个数的总和类元素(yuán sù)的个数类元素个数类元素个数既是A类又是B类的元素个数-既是B类又是C类的元素个数-既是A类又是C类的元素个数同时是A类、B类、C类的元素个数.用符号表示为:.图示如下:图中小圆表示A 的元素的个数,中圆表示B 的元素的个数,大圆表示C的元素的个数.1.先包含:重叠部分A B、、重叠了2次,多加了1次.2.再排除:在解答有关包含排除问题时,我们常常利用圆圈图(韦恩图)来帮助分析思考.典例分析考点一:两量重叠问题、1实验小学四年级二班例参加语文兴趣小组的有参加数学兴趣小组的有,人,人,人两个小组都参加.这个班有多少人参加了语文或数学兴趣小组有?【解析(jiě xī)】如图所示,A圆表示(biǎoshì)参加语文兴趣小组的人,B圆表示参加(cānjiā)数学兴趣小组的人,A与B重合(chónghé)的部分C(阴影(yīnyǐng)部分)表示同时参加两个小组的人.图中A圆不含阴影的部分表示只参加语文兴趣小组未参加数学兴趣小组的人,有(人);图中B圆不含阴影的部分表示只参加数学兴趣小组未参加语文兴趣小组的人,有(人).方法一:由此得到参加语文或数学兴趣小组的有:(人).方法二:根据包含排除法,直接可得:参加语文或数学兴趣小组的人参加语文兴趣小组的人+参加数学兴趣小组的人-两个小组都参加的人,即:(人).例2、对全班同学调查发现,会游泳的有人,会打篮球的有人.两项都会的有人,两项都不会的有人.这个班一共有多少人?【解析】如图,用长方形表示全班人数,A圆表示会游泳的人数,B圆表示会打篮球的人数,长方形中阴影部分表示两项都不会的人数.由图中可以看出,全班人数=至少会一项的人数+两项都不会的人数,至少会一项的人数为:(人),全班人数为: (人).例3、在人参加的采摘活动中,只采了樱桃的有人,既采了樱桃又采了杏的有人,既没采樱桃又没采杏的有人,问:只采了杏的有多少人?【解析(jiě xī)】如图,用长方形表示全体(quántǐ)采摘人员46人,A圆表示采了樱桃(yīng táo)的人数,B圆表示(biǎoshì)采了杏的人数.长方形中阴影(yīnyǐng)部分表示既没采樱桃又没采杏的人数.由图中可以看出,全体人员是至少采了一种的人数与两种都没采的人数之和,则至少采了一种的人数为:(人),而至少采了一种的人数=只采了樱桃的人数+两种都采了的人数+只采了杏的人数,所以,只采了杏的人数为:(人).例4、育才小学画展上展出了许多幅画,其中有16幅画不是六年级的,有15幅画不是五年级的,五、六年级共展出25幅画,其他年级的画共有多少幅?【解析】通过16幅画不是六年级的可以知道,五年级和其他年级的画作数量之和是16,通过15幅画不是五年级的可以知道六年级和其他年级的画作数量之和是15,那也就是说五年级的画比六年级多1幅,我们还知道五、六年级共展出25幅画, 进而可以求出五年级画作有13幅,六年级画作有12幅,那么就可以求出其他年级的画作共有3幅.考点二:三量重叠问题例1、全班有25个学生(xuésheng),其中(qízhōng)人会骑自行车,人会游泳(yóuyǒng),人会滑冰(huá bīng),这三个运动(yùndòng)项目没有人全会,至少会这三项运动之一的学生数学成绩都及格了,但又都不是优秀.若全班有6个人数学不及格,那么, (1)数学成绩优秀的有几个学生?(2)有几个人既会游泳,又会滑冰?【解析】(1)有6个数学不及格,那么及格的有:(人),即最多不会超过人会这三项运动之一.而又因为没人全会这三项运动,那么,最少也会有:(人)至少会这三项运动之一.于是,至少会三项运动之一的只能是19人,而这19人又不是优秀,说明全班25人中除了19人外,剩下的6名不及格,所以没有数学成绩优秀的.(2)上面分析可知,及格的19人中,每人都会两项运动;会骑车的一定有一部分会游泳,一部分会滑冰;会游泳的人中若不会骑车就一定会滑冰,而会滑冰的人中若不会骑车就一定会游泳,但既会游泳又会滑冰的人一定不会骑自行车.所以,全班有(人)既会游泳又会滑冰.考点三:图形中的重叠问题例1、把长厘米和厘米的两根铁条焊接成一根铁条.已知焊接部分长厘米,焊接后这根铁条有多长?【解析】因为焊接部分为两根铁条的重合部分,所以,由包含排除法知,焊接后这根铁条长(厘米).例2、两张长4厘米,宽2厘米的长方形纸摆放成如图所示形状.把它放在桌面上,覆盖面积有多少平方厘米?【解析(jiě xī)】两个长方形如图摆放(bǎi fànɡ)时出现了重叠(见图中的阴影部分), 重叠部分(bù fen)恰好是边长为2厘米(lí mǐ)的正方形,如果(rúguǒ)利用两个的长方形面积之和来计算被覆盖桌面的面积,那么重叠部分在两个长方形面积中各被计算了一次,而实际上这部分只需计算一次就可以了.所以,被覆盖面积=长方形面积之和-重叠部分.于是,被覆盖面积(平方厘米).例3、三个面积均为平方厘米的圆纸片放在桌面上(如图),三个纸片共同重叠的面积是10平方厘米.三个纸片盖住桌面的总面积是厘米.问:图中阴影部分面积之和是多少?【解析】将图中的三个圆标上A、B、C.根据包含排除法,三个纸片盖住桌面的总面积=(A圆面积B+圆面积A与B重合部分+圆面积C面积与C重合部分面积B+与C重合部分面积三个纸片共同重叠的面积, 得:与B重合部分面积A+与C重合部+与C重合部分面积B分面积,得到A、B、C三个圆两两重合面积之和为:平方厘米,而这个面积对应于圆上的那三个纸片共同重叠的面积的三倍与阴影部分面积的和,即:阴影部分面积,则阴影(yīnyǐng)部分面积为:(平方厘米).考点(kǎo diǎn)四:容斥原理在数论(shùlùn)问题中的应用例1、在的全部(quánbù)自然数中,不是(bùshi)3的倍数也不是的倍数的数有多少个?【解析】如图,用长方形表示1~100的全部自然数,圆表示1~100中3的倍数,B圆表示1~100中5的倍数,长方形内两圆外的部分表示既不是3的倍数也不是5的倍数的数.由可知,1~100中3的倍数有个;由可知,1~100中5的倍数有20个;由可知,1~100既是3的倍数又是5的倍数的数有6个.由包含排除法,3或5的倍数有:(个).从而不是3的倍数也不是5的倍数的数有(个).考点五:容斥原理中的最值问题例1、将1~13这13个数字分别填入如图所示的由四个大小相同的圆分割成的13个区域中,然后把每个圆内的7个数相加,最后把四个圆的和相加,问:和最大?是多少最中心的区域被重复计算四次,将数字按从大到小依次填写于被重复计算多的区格中,最大和为:13×4+(12+11+10+9)×3+(8+7+6+5)×2+(4+3+2+1)=240.实战演练➢课堂(kètáng)狙击1、一个班有48人,班主任在班会上(huìshànɡ)问:“谁做完语文(yǔwén)作业?请举手!”有37人举手。
四年级奥数-容斥原理初步(一)
【例3】(★★★) 网校老师组织理财培训,报名股票培训的有23人,报名基金培训的有 32人,两项都报名的有 都报名的有8人,两项都没有报名的有 都 有报名的有5人,那么网校老师 校老师 有多少人?
(★★★) 【改编】 网校组织40名老师参加趣味运动会,参加两人三脚项目的有26人,参 加拔河项目的有 有18人,两个项目都没参加的有 都 参 有6人,两个项目都参加 都参 的有多少人?
【例1】(★★) 网校老师共50人报名参加了羽毛球或乒乓球的训练,其中参加羽毛球 训练的有30人,参加乒乓球训练的有35人,请问:两个项目都参加的 有多少人?
容斥原理(一)
【例2】(★★★) 一个班 个班30人,完成作业的情况有三种:一种是完成语文作业没完成数 人 完成作业的情况有三种 种是完成语文作业没完成数 学作业;一种是完成数学作业没完成语文作业;一种是语文、数学作 业都完成了 已知做完语文作业的有20人;做完数学作业的有23人。 业都完成了。已知做完语文作业的有 人 这些人只完成一种作业的有多少人?
1
【例4】(★★★) 【例5】(★★★) 网校老师60人组织春游。报名去香山的有37人,报名去鸟巢的有42人, 1~100中是2或5的倍数的数有多少个? 两个地点都没有报名的有 个地点都 有报名的有8人,那么只报名其中一个地点的有多少人? 报名其中 个地点的有多少
(★★★) 【改编】 1~100中既不是3的倍数,也不是4的倍数的数有多少个?
2
【例6】(★★★★) 写有1到100编号的灯100盏,亮着排成一排,第一次把编号是3的倍数 的灯拉 次 关 第 次把编号是5的倍数的灯拉一次开关,那么亮着 的灯拉一次开关,第二次把编号是 的倍数的灯拉 次 关 亮着 的灯还有多少盏?
【例7】(★★★) 在游艺会上,有100名同学抽到了标签分别为1至100的奖券。按奖券标 签号发放奖 的规则如 签号发放奖品的规则如下:①标签号为 ①标签号为2的倍数,奖 的倍数 奖2支铅笔;②标签 支铅笔 ②标签 号为3的倍数,奖3只铅笔;③标签号既是2的倍数,又是3的倍数可重 复领奖;④其他标签号均奖1支铅笔。那么游艺会为该项活动准备的奖 支铅笔 那么游艺会为该项活动准备的奖 品铅笔共有多少支?
四升五暑期奥数培优讲义——5-09-容斥原理4-讲义-教师
第9讲 容斥原理【学习目标】1、理解容斥原理的研究的范围;2、掌握容斥原理的分析方法;3、学会利用相关分析方法解题。
【知识梳理】1、容斥原理:对n 个事物,如果采用不同的分类标准,按性质a 分类与性质b 分类(如图),那么具有性质a 或性质b 的事物的个数=N a +N b -N ab 。
2、常用工具:韦恩图,线段图,方程,高斯记号3、常见题型:数论,几何。
【典例精析】【例1】五年级的学生一共有42人,参加奥数补习的有30人,参加语文补习的有25人,所有五年级学生都至少补习奥数和语文中的一门。
请问五年级中两门都补习的学生有多少人?30+25-42=13(人)【趁热打铁-1】实验小学五年级一班共有40名同学采集标本,每个同学至少要采集一种标本。
采集昆虫标本的有28人,采集植物标本的有19人,两种都采集的有多少人?28+19-40=7(人)【例2】星星艺术团有32名同学,其中有14人会拉小提琴,有21人会弹钢琴,小提琴和钢Nab NbNa琴都会的8人,既不会小提琴又不会弹钢琴的有多少人?32-(14+21-8)=5(人)【趁热打铁-2】学校组织100名家长去香港旅游,其中有10人既不懂英语又不懂粤语,有75人懂英语,83人懂粤语。
既懂英语又懂粤语的有多少人?(75+83)-(100-10)=68(人)【例3】在1到100的自然数中,既不是5的倍数也不是6的倍数的数有多少个?5的倍数:100÷5=20(个)6的倍数:100÷6≈16(个).5和6的倍数:100÷30≈3(个)100-(20+16-3)=67(个)【趁热打铁-3】在1到200的全部自然数中,既不是5的倍数又不是8的倍数的数有多少个?5的倍数:200÷5=40(个)8的倍数:200÷8=25(个)5和8的倍数:200÷40=5(个)200-(40+25-5)=140(个)【例4】奥斑马、小美、欧欧给100盆花浇水.奥斑马浇了78盆,小美浇了68盆,欧欧浇了85盆.那么,至少有______盆花被浇了三次水。
小学奥数之容斥原理知识点
小学奥数之容斥原理知识点容斥原理容斥问题涉及到一个重要原理——包含与排除原理,也叫容斥原理。
即当两个计数部分有重复包含时,为了不重复计数,应从它们的和中排除重复部分。
容斥原理:对n个事物,如果采用不同的分类标准,按性质a分类与性质b分类(如图),那么具有性质a或性质b 的事物的个数=Na+Nb-Nab。
例1:一个班有48人,班主任在班会上问:“谁做完语文作业?请举手!”有37人举手。
又问:“谁做完数学作业?请举手!”有42人举手。
最后问:“谁语文、数学作业都没有做完?”没有人举手。
求这个班语文、数学作业都完成的人数。
分析与解答:完成语文作业的有37人,完成数学作业的有42人,一共有37+42=79人,多于全班人数。
这是因为语文、数学作业都完成的人数在统计做完语文作业的人数时算过一次,在统计做完数学作业的人数时又算了一次,这样就多算了一次。
所以,这个班语文、数作业都完成的有:79-48=31人。
例2:某班有36个同学在一项测试中,答对第一题的有25人,答对第二题的有23人,两题都答对的有15人。
问多少个同学两题都答得不对?分析与解答:已知答对第一题的有25人,两题都答对的有15人,可以求出只答对第一题的有25-15=10人。
又已知答对第二题的有23人,用只答对第一题的人数,加上答对第二题的人数就得到至少有一题答对的人数:10+23=33人。
所以,两题都答得不对的有36-33=3人。
例3:某班有56人,参加语文竞赛的有28人,参加数学竞赛的有27人,如果两科都没有参加的有25人,那么同时参加语文、数学两科竞赛的有多少人?分析与解答:要求两科竞赛同时参加的人数,应先求出至少参加一科竞赛的人数:56-25=31人,再求两科竞赛同时参加的人数:28+27-31=24人。
例4:在1到100的自然数中,既不是5的倍数也不是6的倍数的数有多少个?分析与解答:从1到100的自然数中,减去5或6的倍数的个数。
从1到100的自然数中,5的倍数有100÷5=20个,6的倍数有16个(100÷6=16……4),其中既是5的倍数又是6的倍数(即5和6的公倍数)的数有3个(100÷30=3……10)。
四年级奥数专题-容斥原理
四年级奥数专题-容斥原理专题简析:容斥问题涉及到一个重要原理——包含与排除原理,也叫容斥原理.即当两个计数部分有重复包含时,为了不重复计数,应从它们的和中排除重复部分.容斥原理:对n 个事物,如果采用不同的分类标准,按性质a 分类与性质b 分类(如图),那么具有性质a 或性质b 的事物的个数=N a +N b -N ab .例1:一个班有48人,班主任在班会上问:“谁做完语文作业?请举手!”有37人举手.又问:“谁做完数学作业?请举手!”有42人举手.最后问:“谁语文、数学作业都没有做完?”没有人举手.求这个班语文、数学作业都完成的人数.分析 完成语文作业的有37人,完成数学作业的有42人,一共有37+42=79人,多于全班人数.这是因为语文、数学作业都完成的人数在统计做完语文作业的人数时算过一次,在统计做完数学作业的人数时又算了一次,这样就多算了一次.所以,这个班语文、数作业都完成的有:79-48=31人.练 习 一1,五年级有122名学生参加语文、数学考试,每人至少有一门功课取得优秀成绩.其中语文成绩优秀的有65人,数学优秀的有87人.语文、数学都优秀的有多少人?Nab NbNa2,四年级一班有54人,订阅《小学生优秀作文》和《数学大世界》两种读物的有13人,订《小学生优秀作文》的有45人,每人至少订一种读物,订《数学大世界》的有多少人?3,学校文艺组每人至少会演奏一种乐器,已知会拉手风琴的有24人,会弹电子琴的有17人,其中两种乐器都会演奏的有8人.这个文艺组一共有多少人?例2:某班有36个同学在一项测试中,答对第一题的有25人,答对第二题的有23人,两题都答对的有15人.问多少个同学两题都答得不对?分析与解答:已知答对第一题的有25人,两题都答对的有15人,可以求出只答对第一题的有25-15=10人.又已知答对第二题的有23人,用只答对第一题的人数,加上答对第二题的人数就得到至少有一题答对的人数:10+23=33人.所以,两题都答得不对的有36-33=3人.练习二1,五(1)班有40个学生,其中25人参加数学小组,23人参加科技小组,有19人两个小组都参加了.那么,有多少人两个小组都没有参加?2,一个班有55名学生,订阅《小学生数学报》的有32人,订阅《中国少年报》的有29人,两种报纸都订阅的有25人.两种报纸都没有订阅的有多少人?3,某校选出50名学生参加区作文比赛和数学比赛,结果3人两项比赛都获奖了,有27人两项比赛都没有获奖.已知作文比赛获奖的有14人,问数学比赛获奖的有多少人?例3:某班有56人,参加语文竞赛的有28人,参加数学竞赛的有27人,如果两科都没有参加的有25人,那么同时参加语文、数学两科竞赛的有多少人?分析与解答:要求两科竞赛同时参加的人数,应先求出至少参加一科竞赛的人数:56-25=31人,再求两科竞赛同时参加的人数:28+27-31=24人.练习三1,一个旅行社有36人,其中会英语的有24人,会法语的有18人,两样都不会的有4人.两样都会的有多少人?2,一个俱乐部有103人,其中会下中国象棋的有69人,会下国际象棋的有52人,这两种棋都不会下的有12人.问这两种棋都会下的有多少人?3,三年级一班参加合唱队的有40人,参加舞蹈队的有20人,既参加合唱队又参加舞蹈队的有14人.这两队都没有参加的有10人.请算一算,这个班共有多少人?例4:在1到100的自然数中,既不是5的倍数也不是6的倍数的数有多少个?分析与解答:从1到100的自然数中,减去5或6的倍数的个数.从1到100的自然数中,5的倍数有100÷5=20个,6的倍数有16个(100÷6=16……4),其中既是5的倍数又是6的倍数(即5和6的公倍数)的数有3个(100÷30=3……10).因此,是6或5的倍数的个数是16+20-3=33个,既不是5的倍数又不是6的倍数的数的个数是:100-33=67个.练习四1,在1到200的全部自然数中,既不是5的倍数又不是8的倍数的数有多少个?2,在1到130的全部自然数中,既不是6的倍数又不是5的倍数的数有多少个?3,五(1)班做广播操,全班排成4行,每行的人数相等.小华排的位置是:从前面数第5个,从后面数第8个.这个班共有多少个学生?例5:光明小学举办学生书法展览.学校的橱窗里展出了每个年级学生的书法作品,其中有24幅不是五年级的,有22幅不是六年级的,五、六年级参展的书法作品共有10幅,其他年级参展的书法作品共有多少幅?分析与解答:由题意知,24幅作品是一、二、三、四、六年级参展作品的总数,22幅是一、二、三、四、五年级参展作品的总数.24+22=46幅,这是一个五、六年级和两个一、二、三、四年级参展的作品数,从其中去掉五、六两个年级共参展的10幅作品,即得到两个一、二、三、四年级参展作品的总数,再除以2,即可求出其他年级参展作品的总数.(24+22-10)÷2=18幅.练习五1,科技节那天,学校的科技室里展出了每个年级学生的科技作品,其中有110件不是一年级的,有100件不是二年级的,一、二年级参展的作品共有32件.其他年级参展的作品共有多少件?2,六(1)儿童节那天,学校的画廊里展出了每个年级学生的图画作品,其中有25幅画不是三年级的,有19幅画不是四年级的,三、四两个年级参展的画共有8幅.其他年级参展的画共有多少幅?3,实验小学举办学生书法展,学校的橱窗里展出每个年级学生的书法作品,其中有28幅不是五年级的,有24幅不是六年级的,五、六年级参展的书法作品共有20幅.一、二年级参展的作品总数比三、四年级参展作品的总数少4幅.一、二年级参展的书法作品共有多少幅?。
容斥问题讲解方法
容斥问题讲解方法一、容斥原理容斥原理是组合数学中的一种重要原理,主要用于解决包含与排斥的问题。
当两个或多个集合存在重叠时,我们不能简单地将这些集合的元素数目相加,因为重叠部分的元素被重复计算了。
容斥原理提供了解决这类问题的方法,通过将各个集合的元素数目两两相减,得到不重叠部分的元素数目。
二、基本形式两个集合的容斥问题:设A和B是两个集合,则A和B 的并集的元素数目可以通过|A∪B| = |A| + |B| - |A∩B| 来计算。
三个集合的容斥问题:设A、B和C是三个集合,则A、B和C的并集的元素数目可以通过|A∪B∪C| = |A| + |B| + |C| - |A∩B| - |B∩C| - |C∩A| + |A∩B∩C| 来计算。
三、复杂形式当集合的数量增加时,容斥原理可以扩展到更复杂的形式。
通过递归或归纳的方法,可以将多个集合的并集的元素数目表示为各个集合元素数目的函数。
四、解题技巧明确问题的条件和目标:首先需要明确问题的条件和目标,确定涉及的集合以及它们之间的关系。
画出文氏图:在理解问题时,可以通过画出文氏图来直观地表示各个集合以及它们的重叠部分。
文氏图是一种用封闭曲线表示集合及其关系的图形。
应用容斥原理:根据问题的具体情况,选择适当的容斥原理公式来解决问题。
如果涉及多个集合,需要仔细分析它们的重叠关系。
简化计算:在应用容斥原理时,需要注意简化计算,避免出现大量的重复计算和复杂运算。
可以采取提取公因式、使用对称性等方法来简化计算。
检查答案:在解决问题后,需要检查答案是否符合实际情况和逻辑,确保答案的正确性。
五、注意事项理解问题的背景和要求:在解决容斥问题时,需要注意理解问题的背景和要求,弄清各个集合的含义和关系。
避免重复计数:在应用容斥原理时,需要注意避免重复计数。
特别是当集合之间存在多重重叠时,需要仔细分析重叠部分的关系。
分情况讨论:当问题涉及多种情况时,需要注意分情况讨论。
不同情况下的集合关系可能会有所不同,需要分别进行分析和计算。
四年级奥数 第35讲 容斥问题
第35周容斥问题专题简析:容斥问题涉及一个重要原理一一包含与排除原理,也叫容斥原理。
当两个计数部分有重复包含时,为了不重复地计数,应从它们的和中排除重复部分。
容斥原理:对n个事物,如果采用两种不同的分类标准,按性质a分类与性质b分类(如右图所示),那么具有性质a或性质b的事物的个数是Na 十Nb- Nab。
例1:一个班有48人,班主任在班会上问“谁做完语文作业了?请举手!”有37人举手。
又问:“谁做完数学作业了?请举手!”有42人举手。
最后问“谁语文、数学作业都没有做完?“没有人举手。
求这个班语文、数学作业都完成的人数。
练习一:1、五年级有122 名学生参加语文、数学考试,每人至少有一门功课取得优秀成绩。
其中语文成绩优秀的有65 人,数学成绩优秀的有87 人。
语文、数学成绩都优秀的有多少人?2、四(1)班有54 人,订阅<小学生优秀作文》和(数学大世界)两种读物的有13 人,订《小学生优秀作文》的有45 人,每人至少订种读物。
订《数学大世界》》的有多少人?3、学校文艺组每人至少会演奏一种乐器,已知会拉手风琴的有24人,会弹电子琴的有17人,其中两种乐器都会演奏的有8人。
这个文艺组一共有多少人?例2:城中小学选出10名学生参加区作文和数学比赛,结果每人都获奖。
其中有3人两项比赛都获奖,作文比赛获奖的有5 人,求数学比赛获奖的有多少人?练习:1、一个班有55 名学生,他们分别订阅了《小学生数学报》和《中国少年报》。
其中订阅《小学生数学报》的有32 人,两种报纸都订阅的有15 人,求订阅《中国少年报》的有多少人?2、四(1)班有40 个学生,有19 人参加了数学和科技两个兴趣小组。
其中有11人两个小组都没参加,有25人参加数学小组,求有多少人参加了科技小组?3、在四年级96 个学生中调查会下中国象棋和围棋的人数。
调查结果显示:有78人会下中国象棋,有24 人两样都会,还有12人两样都不会。
求会下围棋的有多少人?例3:某班有56人,参加语文竞赛的有28人,参加数学竞赛的有27人,如果两科都没有参加的有25人,那么同时参加语文、数学两科竞赛的有多少人?练习:1、一个旅行社有36 人,其中会英语的有24 人,会法语的有18 人,两样都不会的有4 人。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四年级数学讲义
奥数:容斥原理(2)
教学目标:1、理解容斥原理,会画图分析其中关系,正确的找出答案。
2、培养学生的逻辑思维和数学思考能力。
3、培养学生良好的书写习惯。
一、教学衔接
1、五年级有122名学生参加语文、数学考试,每人至少有一门功课取得优秀成绩。
其中语文成绩优秀的有65人,数学优秀的有87人。
语文、数学都优秀的有多少人?
2、某班有40名学生,其中有15人参加数学小组,18人参加航模小组,有10人两个小组都参加.那么有多少人两个小组都不参加?
3、一个旅行社有36人,其中会英语的有24人,会法语的有18人,两样都不会的有4人。
两样都会的有多少人?
二、教学内容
例1.五(1)班的全体学生进行了短跑、游泳、篮球三个项目的测试,有4名学生在这三个项目上都没有达到优秀,其余每人至少有一个项目达到优秀,这部分学生达到优秀的项目和人数如下表:
短跑游泳篮球短跑、游泳游泳、篮球篮球、短跑短跑、游泳、篮球
17人18人15人6人6人6人2人
求全班人数。
例2.某班有学生50人,参加无线电小组,航模小组和生物小组的人数分别是20人、20人和12人,其中既参加无线电小组又参加航模小组的有4人,既参加航模小组又参加生物小组的有5人,既参加生物小组又参加无线电小组的有3人。
已知全班每人都至少参加了以上三个小组中的某一个,那么,三个小组参加的学生有多少人?
例3.一个体育锻炼小组有35名男生,规定他们至少参加篮球、排球、足球三个球队中的一个。
结果参加篮球队的有16人,参加排球队的有11人,参加足球队的有20人,其中有4人既参加了排球队又参加了篮球队,有3人既参加了排球队又参加了足球队,没有人三个球队都参加。
既参加篮球队又参加足球队的有多少人?
三、教学练习
1.第三小队的学生有20人,手中分别拿有红、黄蓝三种颜色的球,已知手中有红球、黄球、蓝球折学生人数分别为10人、10人、6人,其中手中既有红球又有黄球的有3人,既有黄球又有蓝球的有2人,既有蓝球又有红球的有4人。
已知全队每人手里都至少有一种颜色的球,那么,手中三种颜色的球都有多少人?
2.某班50名同学全部参加数学、语文、美术三个课外兴趣小组,参加数学小组的有29人,参加语文小组的有21人,参加美术小组的有25人,有17人既参加数学小组又参加美术小组,有15人既参加数学小组又参加语文小组,有10人既参加语文小组又参加美术小组。
三个小组都参加的有多少人?
3.有学生30名,他们中有部分学生参加了乒乓球,羽毛球、排球三个训练小组,各组人数分别为14人、12人、10人,其中既参加羽毛球小组又参加排球小组的有4人,既参加羽毛球小组又参加乒乓球小组的有6人,既参加乒乓球小组又参加排球小组的有5人,三个小组都参加的有1人。
这些学生中这三个小组都没有参加的有几人?
4.某外语学习班有40名学员,规定他们至少学习英语、日语、德语中的一咱。
结果学习英语的有20人,学习日语的有12人,学习德语的有18人,其中有5人既学习了英语又学习了日语,有2人既学习了日语又学习了德语,没有人同时学习三咱语言。
既学习英语又学习德语的有多少人?
四、教学小结
今天我们学习了什么?你都能掌握吗?让我们一起动笔归纳一下吧!
五、教学拓展
例4.松山小学45名学生参加数学、作文、美术竞赛。
有21人参加数学竞赛,15人参加作文竞赛,其中7人既参加作文竞赛又参加数学竞赛,3人既参加作文竞赛又参加美术竞赛,但没有一人既参加数学竞赛又参加美术竞赛。
(1)只参加数学竞赛的有多少人?(2)只参加作文竞赛的有多少人?
(3)只参加美术竞赛的有多少人?
练习:四(1)班有55名学生参加音乐、美术、体育兴趣组。
有22人参加美术组,有21人参加音乐组,其中15人既参加音乐组又参加美术组,3人既参加音乐组又参加体育组,但没有一人既参加美术组又参加体育组。
(1)只参加美术组的有多少人?(2)只参加音乐组的有多少人?
六、课后练习
1.有30名运动员、其中18人会三级跳远,16人会撑杆跳高,10人三级跳远、撑杆跳高都不会。
既会三级跳远又会撑杆跳高的运动员有多少名?
2.操场上的学生排成10路纵队做操,每路纵队的人数同样多,小明站在第4路纵队,从排头数他是第13人,从后往前数他是第8人。
操场上有多少人在做操?
3.一个年级有120人爱好数学,100人爱好语文,85人爱好美术,30人既爱好数学又爱好语文,20人既爱好语文又爱好美术,35人既爱好美术又爱好数学,有18人三个学科都爱好。
请问:这个年级中数学、语文、美术三个学科至少爱好一个学科的学生有多少人?
4.某班全体学生进行了数学、语文、英语三个科目的测试,有8名学生在这三个科目上都没有达到优秀,其余每人至少有一个科目达到优秀,这部分学生达到优秀的科目和人数如下表:
数学语文英语数学、语文语文、英语英语、数学数学、语文、英语
20 16 16 4 4 5 3
全班一共有多少名学生?。