第二章均相反应动力学基础2要点
湘潭大学化学反应工程专业课考研复习课件 第2章均相反应动力学2
三、化学反应速率 r 的定义
定义:单位时间、单位反应体积、关键组分A的摩尔数变化量称 为A组分的反应速率。
反应
rA
dnA Vdt
AABB SS PP
rB
dnB Vdt
rS
dnS Vdt
rP
dnP Vdt
式中:t为时间,nA、nB、nR和nS分别为反应时间t时候组分A、B、 R和S的摩尔数;V为反应体积;rA、rB、rR、rS分别为组分A、B、 R和S的反应速率。
2NO+H2 k1 N2+H2O2 (控制步骤) (3)
H2O2+H2 k2 2H2O(快速)
(4)
将(3)、(4)式相加即可得式(1),即按该机理的最终反应
结果,各组分之间量的变化关系仍满足计量方程。同时,
反应机理假定反应(3)为速率控制步骤,∴
rN2
r
1
k1C
2 NO
C
H
2
(5)
上式与实验结果是相一致的。所以,机理(Ⅰ)可以用来解 析实验现象。
机理(Ⅱ):设反应(1)由下述三个基元反应所构成,即
2NO
N2O2 (快速)
N2O2+H2 k5 N2+H2O2 (控制步骤)
H2O2+H2 k6 2H2O (快速)
上述三式之和满足计量关系,
(6) (7) (8)
式(7)为速率控制步骤,得:
rN2 r5 k5C N2O2 CH2
(9)
式(3)达“拟平衡态”,得
ⅱ.对CA0=CB0情况, rA
dCA dt
k CA2
,积分式同于③
ⅲ.对B过量CA0<<CB0情况,在整个反应过程CB≈CB0,
rA
dCA dt
第二章 均相反应动力学基础
2.2 等温恒容过程
2.2.1 单一反应动力学方程的建立
2.2.1.1 积分法 (1)不可逆反应
A
P
恒容系统中:
(rA)ddctA kcA
设:α =1,分离变量积分,代入初始条件t=0,C=CA0 可得:
ln
C A0 CA
kt
2.2 等温恒容过程
以
ln
C A0 CA
1
CA0CA
dC CA
CA0
A
2.2 等温恒容过程
(2) 瞬时选择性和总选择性
瞬时 选择性:
单 位 时 间 生 成 目 的 产 物 的 物 质 的 量 SP单 位 时 间 生 成 副 产 物 的 物 质 的 量
选择性:
生 成 的 全 部 目 的 产 物 的 物 质 的 量 S 0 生 成 全 部 副 产 物 的 物 质 的 量
Rg 气体常数,8.314J/(mol.K)
2.1 概述
1 反应速率的量纲
反应速率常数的量纲与反应速率和f(Ci)的量纲有关:
kcri fCi
ri的量纲为M.t-1.L-3。 f(Ci)的量纲取决于反应速率方程。例如,反应速率方程为:
ri kcCAaCBb
浓度Ci的量纲为M.L-3,则浓度函数的量纲为(M.L-3)a+b。
① 反应速率与温度、压力、浓度均有关,但三者中只有 两个为独立变量。 ② 有某些未出现在反应的化学计量关系中的物质会显著 影响该反应的反应速率。能加快反应速率的物质称为催 化剂,而能减慢反应速率的物质称为阻抑剂。 ③ 恒温下,反应速率是时间的单调下降函数。
2.1 概述
2 反应速率方程
反应速率方程的一般式为:
第二章 均相反应动力学基础
dp A 2 3.709 p A dt
解:(1)k的单位是
MPa/h
MPa 1 1 [k ] [ MPa h ] h ( MPa) 2
RT p A nA c A RT V
(2)设气体服从理想气体状态方程,则
dp A dn RT A 3.709 (c A RT ) 2 dt dt V dn A 2 3.709 RTc A Vdt
由定义式可得:
nk nk 0 (1 xk )
则组分A的反应速率可用转化率表示为: n dx dn (rA ) A A0 A Vdt V dt dx A ( r ) c 恒容条件下 A A0 dt 讨论:转化率是衡量反应物转化程度的量,若存在多种反应物
时,不同反应物的转化率可能不相同。为什么?
(2-2-31)
xA
1 exp(cM 0 kt ) c 1 A0 exp(cM 0 kt ) cM 0
(2-2-32)
将式(2-2-33)代入式(2-2-31)得最大反应速率时的反应时间
tmax 1 cM 0 k ln c A0 cM 0 c A 0
(2-2-34)
2.3 复合反应
可利用气体状态方程对k值进行换算,这时k的量纲也相应改变。
例:在反应温度为400K时,某气相反应的速率方程为 dp A 2 3.709 p A MPa/h dt 问:(1)速率常数的单位是什么?
(2)如速率表达式为
dn A 2 (rA ) kc A Vdt
速率常数等于多少?
mol/l h
ln(cA / cA0 ) ln(1 xA ) kt
即
∵ cA cA0 (1 xA )
化学反应工程第二章均相反应动力学基础
A
A+P
P
P+P
(2-8)
(2-9)
2.1.3 反应的转化率、选择性和收率
⑴转化率 转化率一般用关键组分来表示。所谓关键组分必须是反 应物,生产上选择的关键组分一般是反应物料中的主要
组分,即价值较高且不应是过量的,因此转化率的高低,
会一定程度上反映过程的经济效果,对反应过程的评价 提供直观的信息。
2.1.3 反应的转化率、选择性和收率
对于选择率一般有平均选择率和瞬时选择率之分,以平 行反应(2-5)、(2-6)为例,
两种选择率的定义为: 平均选择率 瞬时选择率 (2-2)
2.1.3 反应的转化率、选择性和收率
⑶收率Y 收率的定义为:
Y 生成目的产物所消耗的 A摩尔数 A的起始摩尔数
(2-3)
COCl2
3 2 2 CO CO Cl 2
(2-12)
该反应的速率方程为:
(rCO ) k c c
(2-18)
则对于氯气的反应级数是分数。
2.1.5 反应动力学方程
⑵反应速率常数kA 由式(2-13)知,当A、B组分的浓度等于1
(rA )k A ,说明kA就是浓度为1时的速率。 时,
温度是影响反应速率的主要因素,随着温度的升高速
三级反应常见。例如下面的气相反应(2-11):
2NO+O2 动力学速率方程为:
2 (rNO ) k NO cNO cO2
2NO2
(2-11)
(2-17)
2.1.5 反应动力学方程
级数在一定温度范围内保持不变,它的绝对值不会超过3, 但可以是分数,也可以是负数。例如下面的光气合成反 应:
CO+Cl2
生产上还经常遇到循环反应器,如合成氨或合成甲醇的 合成塔等,由于化学平衡或其他原因的限制,原料一次 通过反应器后,转化率一般很低,需要把出口的反应混
均相反应动力学基础
齐齐哈尔大学化学反应工程教案第二章均相反应的动力学基础2.1 基本概念与术语均相反应:是指在均一的液相或气相中进行的反应。
均相反应动力学是研究各种因素如温度、催化剂、反应物组成和压力等对反应速率反应产物分布的影响,并确定表达这些因素与反应速率间定量关系的速率方程。
2.1- 1化学计量方程它是表示各反应物、生成物在反应过程的变化关系的方程。
如N2+3H2===2NH3一般形式为:2NH3- N2-3H2== 0有S个组分参与反应,计量方程::人g2A2亠亠:s A s =0SZ ctjAi =0或i生式中:A i表示i组分a i为i组分的计量系数反应物a i为负数,产物为正值。
注意:1.化学计量方程仅是表示由于反应而引起的各个参与反应的物质之间量的变化关系,计量方程本身与反应的实际历程无关。
2. 乘以一非零的系数入i后,可得一个计量系数不同的新的计量方程S ■- .p r- i A i =0i 13. 只用一个计量方程即可唯一的给出各反应组分之间的变化关系的反应体系——单一反应;必须用两个(或多个)计量方程方能确定各反应组分在反应时量的变化关系的反应,成为复合反应。
CO+2H2=CH3OH CO+ 3H2=CH4+ H2O2.1- 2化学反应速率的定义化学反应速率是以单位时间,单位反应容积内着眼(或称关键)组分K的物质量摩尔数变化来定义K组分的反应速率。
:A A :B B=、s S :R R_ dnA (由于反应而消耗的A的摩尔数)Vdt (单位体积)(单位时间)1 dn A 1 dn B 1 dn s 1 dn Rr B r s r R二V dt V dt V dt V dt齐齐哈尔大学化学反应工程教案4.n 0 yK 0KnK0 - n KnK0 K当V 恒定时,组分K 反应掉的摩尔数 n K0 - n K反应程度是用个组分在反应前后的摩尔数变化与计量系数的比值来定义的,用Z 表示。
n i - ng n K 卞。
化学反应工程第二章解析
第二章 均相反应动力学基础均相反应 均相反应是指参予反应的各物质均处同一个相内进行化学反应。
在一个相中的反应物料是以分子尺度混合的,要求:①必须是均相体系 (微观条件) ②强烈的混合手段 (宏观条件) ③反应速率远小于分子扩散速度一、计量方程反应物计量系数为负,生成物计量系数为正。
计量方程表示物质量之间关系,与实际反应历程无关; 计量系数只有一个公因子;用一个计量方程表示物质量之间关系的体系称为单一反应,反之称为复合反应。
二、化学反应速率单位时间、单位反应容积内组分的物质的量(摩尔数)的变化称之为该组分的反应速率。
反应物:生成物:对于反应三、化学反应速率方程r 是反应物系的组成、温度和压力的函数。
32223NH H N =+032223=--N H NH A A Adn r Vd d t C dt=-=-R R Rdn r Vdt dC dt==A B S R A B S Rαααα+=+SABRABSRr r r r αααα===AA AB r [k (T)][f(C ,C ,)]=有两类;双曲函数型和幂函数型。
k -化学反应速率常数; a(b)-反应级数。
(1)反应级数(i) 反应级数与反应机理无直接的关系,也不等于各组份的计量系数; (ii) 反应级数表明反应速率对各组分浓度的敏感程度;(iii) 反应级数是由实验获得的经验值,只能在获得其值的实验条件范围内加以应用。
(2)反应速率常数k[k]: s -1·(mol/m 3)1-nE :是活化能,把反应分子“激发”到可进行反应的“活化状态”时所需的能量。
E 愈大,通常所需的反应温度亦愈高,反应速率对温度就愈敏感。
k 0 —指前因子,其单位与 反应速率常数相同;E— 化学反应的活化能,J/mol ; R — 气体常数,8.314J/(mol .K)。
a b A A B r kC C=2220.512H Br HBrHBrBr k c c r c k c =+0exp[]E k k RT=-01ln ln E k k R T=-⨯ln klnk 0 slop=-E/R1/T⏹ 反应速率的温度函数关系● 活化能越高,斜率越大,该反应对温度越敏感; ● 对于一定反应,低温时反应速率对温度变化更敏感。
第二章+均相反应动力学基础
3.各反应组分的反应速率之间关系:
1
1
1
1
•
A
rA
B
rB
R
rR
S
rS
rA rB rR rS r
A B R S
r 1 dni
iVR dt
1 d
r VR dt
• 4.当反应过程中反应物系体积恒定时,各组分的反应速率可简 化为:
•
rA
dCA dt
• 当反应速率采用kmol·m-3·h-1为单位时,k的 因次应为 (kmol·m-3)[1-(a+b)]·h-1;
• 对于气相反应,常用组分的分压来代替速率 方程中的浓度项,上式可写成
•
rA k P PAa PBb
• 式中PA和PB分别为组分A和B的分压,此时kP 的因次为kmol·m-3·h-1 Pa-(a+b) 。
25
• 2.3复合反应
• 用两个或两个以上独立的计量方程来描 述的反应即为复合反应。
• 在复合反应中将同时产生许多产物,而 往往只有其中某个产物才是我们所需的 目标产物,其它产物均是称副产物。
• 生成目的产物的反应称为主反应,其它 的称为副反应。
26
2.3.1反应组分的转化速率和生成速率
• 把单位时间内单位体积反应混合物中某一 组分i的反应量叫做该组分的转化速率(i 为反应物)或生成速率(i是反应产物), 并以符号Ri表示。
• 各个反应都可按单一反应来处理而得到相 应的速率方程。
• 若干个这样的反应同时进行时,任一个反 应的反应速率不受其他反应的反应组分浓 度的影响;
• 如果是变容过程,一个反应进行的速率会 受到另一个反应速率的影响 。
化学反应工程 第二章 均相反应动力学基础
2 等温恒容过程
3 等温变容过程
化学反应工程
2.1 概述
1
化学反应速率及其表示
2
反应速率常数k
化学反应工程
2.1 概述
均相反应是指在均一的液相或气相中进行的反应,这 一类反应包含很广泛的范围。 研究均相反应过程,首先要掌握均相反应的动力学。
它是不计过程物理因素的影响,仅仅研究化学反应本身的
反应速率规律,也就是研究物料的浓度、温度以及催化剂 等因素对化学反应速率的影响。
2.2.1单一反应动力学方程的建立
(3)将步骤(2)所得到的各 对 作图,若得到的
为一条通过原点的直线,说明所假定的机理与实验数据相符合
。否则,需重新假定动力学方程并加以检验,此步骤如图2-6 (b)所示。
化学反应工程
2.2.1单一反应动力学方程的建立
例2-1 在恒容下的液相反应, ,实验测得
如下的数据,试用微分法和积分法建立动力学方程。
化学反应工程
2.1.1 化学反应速率及其表示
对于气相反应,由于分压与浓度成正比,也常常使用分 压来表示:
双曲线型动力学方程型式,如合成溴化氢的反应是一 个链反应,其动力学方程为:
化学反应工程
2.1.1 化学反应速率及其表示
化学反应工程
2.1.1 化学反应速率及其表示
常见的复合反应有:
连串反应
平行反应 平行-连串反应
化学反应工程
2.1.1 化学反应速率及其表示
化学反应速率的定义,是以在单位空间(体积)、单
位时间内物料(反应物或产物)数量的变化来表达的,用
数学形式表示即为:
化学反应工程
2.1.1 化学反应速率及其表示
化学反应工程
反应动力学基础复习
第二章反应动力学基础一、化学反应速率的定义1、均相反应单位时间内单位体积反应物系中某一组分的反应量。
恒容反应:连续流动过程:2、多相反应单位时间内单位相界面积或单位固体质量反应物系中某一组分的反应量。
二、反应速率方程1、速率方程(动力学方程):在溶剂及催化剂和压力一定的情况下,定量描述反应速率和温度及浓度的关系。
即:2、反应速率方程的形式主要有两类:双曲函数型和幂级数型。
3、反应级数:速率方程中各浓度项上方的指数分别代表反应对组分的反应级数,而这些指数的代数和称为总反应级数。
反应级数仅表示反应速率对各组分浓度的敏感程度,不能独立地预示反应速率的大小。
4、反应速率常数:方程中的k称为速率常数或比反应速率,在数值上等于是各组分浓度为1时的反应速度。
它和除反应组分浓度以外的其它因素有关,如温度、压力、催化剂、溶剂等。
当催化剂、溶剂等因素固定时,k就仅为反应温度的函数,并遵循阿累尼乌斯Arrhenius方程:可分别用分压、浓度和摩尔分率来表示反应物的组成,则相应的反应速率常数分别用kp,kc,ky来表示;相互之间的关系为:5、化学平衡常数与反应速率常数之间的关系说明:常数称为化学计量数,表示速率控制步骤出现的次数。
(注意不要和化学计量系数相混淆)三、温度对反应速率的影响1、不可逆反应由阿累尼乌斯方程,温度升高,反应速率也升高(例外的极少),而且为非线性关系,即温度稍有变化,反应速率将剧烈改变。
也就是说,反应温度是影响化学反应速率的一个最敏感因素。
2、可逆反应(1)可逆吸热反应反应速率将总是随反应温度的升高而增加(2)可逆放热反应反应速率在低温时将随反应温度的升高而增加,到达某一极大值后,温度再继续升高,反应速率反而下降。
再升高温度,则可能到达平衡点,总反应速率为零。
最优温度与平衡温度关系:四、复合反应1、反应组分的转化速率和生成速率我们把单位之间内单位体积反应混合物中某组分i的反应量叫做该组分的转化速率或生成速率。
化学反应工程-复习(二三四章)
k1 k1 − k 2
第二章 均相反应动力学基础 3 膨胀因子 膨胀因子是指每转化掉 摩尔反应物A时所引起的反应物料 是指每转化掉1 膨胀因子是指每转化掉1摩尔反应物 时所引起的反应物料 总摩尔数的变化量, 总摩尔数的变化量,即:
n − n0 n − n0 δA = = n0 y A0 x A n A0 x A
第二章 均相反应动力学基础 得率和收率为: 得率和收率为: Χ
Φ
P
= =
k k
1
k1 − k k1 − k
[e
2
− k
2
t
− e
− k1t
]
e
2
− k
P
1
− e − k1t 1 − e − k1t
2
t
对这种反应,中间物P存在一最高浓度,对应时间为 对这种反应,中间物P存在一最高浓度,对应时间为topt。以CP对topt 求导: 求导:
C A0
εA =
Vx A =1 − Vx A =0 Vx A = 0
它既与反应的化学计量关系有关, 它既与反应的化学计量关系有关,也与系统的惰性物量有 关。
第二章 均相反应动力学基础
它与膨胀因子的关系: 它与膨胀因子的关系:
ε A = y A0δ A
对物系体积随转化率为线性变化的过程, 对物系体积随转化率为线性变化的过程,有:
2.2 等温恒容过程 瞬时收率: 瞬时收率:
第二章 均相反应动力学基础
ϕP
目的产物的生成速率 = 关键反应物的消耗速率
rP dC P = =− rA dC A
瞬时选择性: 瞬时选择性:
目的产物的生成速率 sP = 某一副产物的生成速率 rP dC P = = rS dC S
第2章 均相反应动力学基础
13:34:32
反 对于基元反应:aA+bB=rR+sS 应 工 A A A B 程
( r ) k c c
第 二 章 均 相 反 应 动 力 学 基 础
• 分子数:基元反应中反应物分子或离子的个数。 对于基元反应来讲α,β必须是正整数,α+β是基 元反应的分子数,不能大于3(根据碰撞理论, α+β的取值不能大于3,必须是一个小于等于3的 正整数)。 • 反应级数――基元反应级数等于反应式计量系数 值,即α=a和β=b,α和β分别称作组分A和组分B
k k0 e
E / RT
(2-7)
式中 k0――频率因子或指前因子 E――活化能,J或J/mol R――通用气体常数,(国际单位)8.314J/mol· K T――绝对温度K,呈指数变化
指前因子K0视作与温度无关的常数
13:34:34
反 应 工 程
第 二 章 均 相 反 应 动 力 学 基 础
13:34:32
反 应 工 程
第 二 章 均 相 反 应 动 力 学 基 础
dc A mol (rA ) ,( 3 ) dt m s
前提是恒容反应
对于反应:aA+bB=rR+sS,若无副反应,则反应物与
产物的浓度变化应符合化学计量式的计量系数关系,可 写成:
a a a (rA ) (rB ) (rr ) (rS ) b r s
,
mol ( 3 ) m s
式中kA称作反应速率常数;α 、β 是反应级数。
13:34:32
反 应 工 程
第 二 章 均 相 反 应 动 力 学 基 础
对于(恒容)气相反应,由于分压与浓度成正比,也可 用分压来表示。
化学反应工程 第二章 均相反应动力学基础
for the volume of the person in
question
V person
75kg 1000kg / m3
0.075m 3
Next, noting that each mole of glucose
consumed uses 6moles of oxygen and
release 2816kJ of energy, we see that
T RT 2
ln
k
ln
k0
E RT
Temperature Rise Needed to Double the Rate of Reaction for Activation Energies and Average Temperatures Shown
Average
Activation Energy E
按反应工程观点:ri =f (P, T, C, Catalyst, 三传)
----宏观动力学方程
本征动力学
只研究化学因素而排除物理因素对反应速率的影 响的学科
宏观动力学
研究物理因素与化学因素共同影响化学反应速率 的学科
动力学方程有两大类:
幂函数型
经验型 由质量作用定律导出 多用于均相反应
第二章 均相反应的动力学基础
基本概念 简单反应 复合反应 连锁反应
2.1 基本概念和术语
化学计量方程 化学反应速率 反应转化率和反应程度 反应速率方程
化学计量方程
表示各反应物、生成物在反应过程中量的变化 关系的方程。
一个由S 个组分参与的反应体系,其计量方程写
为: α1A1+α2A2+…+αsAs=0
1 V
化学反应工程2(第二章-均相反应动力学基础)
◆自催化反应:
特点:反应产物中某一产物对反应有催化作用,同时,为了使反应进
行 , 常 事 先 加 入 一 定 浓 度 的 催 化 剂 C , 设 浓 度 为 CC0 。
A+C2C+R……
设对各组分均为一级,则: rA
dCA dt
kCCCA
t=0, CA=CA0 CC=CC0 CR=CR0=0
continue
非等分子反应的膨胀因子及相关计算
膨胀因子:
K
1 K
s i1
i
n n0 n0yK0xK
K 的定义:
s
i Ai 0
i 1
的情况
每反应1mol的组分K所引起反应物系总摩尔数的变化量。
(举例:如合成氨的反应,求膨胀因子)
设关键组分K的转化率为xK,则:
yK
反应开始时总mol数(单位体积):CM0= CA0+ CC0
两参数是无法积 分的,设法变为 单参数微分形式
任何时刻:CC=CC0+(CA0-CA)=CM0- CA
rA
dCA dt
kCA CM 0
CA
积分得C
MO
k
t
ln
C C
A CM 0 A0 CM
C A0 0 CA
●幂函数型
对反应:AA+BB
kC
LL+MM
l CMm
kC'
Ca' A
Cb' B
Cl' L
C m' M
若为不可逆反应,则:
rA
k
c
均相反应动力学基础
试求反应的速率方程。
38 化学反应工程
第2章 均相反应动力学基础
• 解:由于题目中给的数据均是醋酸转化率较低时的
当反应达到平衡时,反应物与产物浓度不再随时间
而变,反应的净速率为零,相应于此时的浓度称为平衡
浓度,根据反应的计量关系:
故有 即
35 化学反应工程
第2章 均相反应动力学基础
将实验测定的
得一直线,其斜率即为 后再结合式
数据,按
对t作图,可
,如图2-5所示,求得
便可分别求得
和 。
图2-2 可逆反应的cA-t关系
化学反应工程
36
第2章 均相反应动力学基础
表2-2 等温恒容可逆反应的速率方程及其积分式(产物起始浓度为零)
37 化学反应工程
第2章 均相反应动力学基础
例2-1 等温条件下进行醋酸 (A)和丁醇(B)的醋化反应:
CH3COOH+C4H9OH=CH3COOC4H9+H2O
醋酸和丁醇的初始浓度分别为 0.2332 和 1.16kmolm-3 。 测得不同时间下醋酸转化量如表所示。
转化了的A组分量 n A0 n A xA A组分的起始量 n A0
9 化学反应工程
第2章 均相反应动力学基础
组分A的选取原则
• A必须是反应物,它在原料中的量按照化学 计量方程计算应当可以完全反应掉(与化 学平衡无关),即转化率的最大值应当可 以达到100%,如果体系中有多于一个组份 满足上述要求,通常选取重点关注的、经 济价值相对高的组分定义转化率。
第二章 均相反应动力学
k2
c
[1-e
A0
(
k1
k2
)
t
]
由此图得:若各处的cP/cS=k1/k2,说明所考察的反应为平行反应。
2.2 等温恒容过程
2.2-2 复合反应
(1)平行反应
k1 P A k2 S
平行反应的产物分布
由 rP
dcP dt
k1cAa1 ,
rS
dcS dt
k2cAa2
得:rP rS
dcP dcS
dcP dcS
/ /
dt dt
k1cA k2cA
总选择性S0
生成的P的总物质的量 生成的S的总物质的量
cP cS
xP xS
2.2 等温恒容过程
2.2-2 复合反应
(2)串联反应
A k1 P k2 S
(等温、恒容均相一级反应)
(rA)
dcA dt
k1cA积分得:cA
ln
cA cA0
1 cA
1 cA0
0
233.2
0
0
0
1
216.8
16.4
0.07298
0.3244x10-3
2
205.9
27.3
0.1245
0.5686 x10-3
3
196.6
36.6
0.1707
0.7983 x10-3
4
187.9
45.3
0.2160
1.03375 x10-3
5
179.2
54.0
0.2630
第二章均相反应动力学基础
第二章均相反应动力学基础§2 均相反应的动力学基础§2.1 基本概念和术语若参于反应的各物质均处同一个相内进行化学反应则称为均相反应。
均相反应动力学:研究各种因素如温度、催化剂、反应物组成和压力等对反应速率、反应产物分布的影响,并确定表达这些影响因素与反应速率之间定量关系的速率方程。
§2.1.1 化学计量方程化学计量方程:表示各反应物、生成物在反应过程中量的变化关系的方程。
一个由S 个组分参予的反应体系,其计量方程可写成:∑==Si ii A10α式中:Ai 表示i 组分,i α为i 组分的计量系数。
通常反应物的计量系数为负数,反应产物的计量系数为正值。
注意:1.计量方程本身与反应的实际历程无关,仅表示由于反应引起的各个参予反应的物质之间量的变化关系。
2.规定在计量方程的计量系数之间不应含有除1以外的任何公因子。
这是为了消除计量系数在数值上的不确定性。
单一反应:只用一个计量方程即可唯一给出各反应组分之间量的变化关系的反应体系。
复杂反应:必须用两个或多个计量方程方能确定各反应组分之间量的变化关系的反应体系例如,合成氨反应的计量方程通常写成:32223NH H N ?+ 写成一般化的形式为:023322=+--NH H N 而错误的形式有:0462322=+--NH H N§2.1.2 反应程度和转化率反应程度是各组分在反应前后的摩尔数变化与其计量系数的比值,用符号ξ来表示,即:kk k ii i n n n n n n αααξ01101-=-==-=或写成:i i i i n n ξα=-01.不论哪一个组分,其反应程度均是一致的,且恒为正值。
2.如果在一个反应体系中同时进行数个反应,各个反应各自有自己的反应程度,则任一反应组分i 的反应量应等于各个反应所作贡献的代数和,即:∑==-Mj j ij i i n n 10ξα其中:M 为化学反应数,ij α为第j 个反应中组分I 的化学计量系数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
的程度。
依据能量分布规律,
exp(-E/RT) 就表示有效碰撞占总碰撞数的分率。 反应速率常数表示发生反应的有效碰撞数。 在理解活化能E时,应当注意: ⑴活化能的大小是表征化学反应进行难易程度的标志。 E愈大,所需 T 愈高,反应难于进行;活化能低,则容
(1)反应速率常数k与温度斯(Arrhenius)经验方程表示。
k k 0e
E/RT
(2-7)
由于温度 T 在指数项,所以它的微小 变化就会引起速率常数的较大变化。
影响速率常数的因素
k:速率常数;
k0:频率因子或指前因子 ,对确定的化学反应是一常数, k0 与 k 同一量纲;与温度无关的常数。
温度和体积流率都在变化,采用分压或摩尔分率表示较 方便; 加压下气相反应,采用逸度表示。 f就是逸度, 它的单位与压力单位相同,逸度的物理意义是它代表了
体系在所处的状态下,分子逃逸的趋势,也就是物质迁
移时的推动力或逸散能力。 针对非理想气体而提出
的。
若是非基元均相反应,动力学方程,常用幂函 数形式,通式为: a A + b B → p P + sS
压代替浓度时,其单位为 h 1 kmol m3 Pa n 零级反应; k 的量纲为 kmol· m-3 · h-1 一级反应; k 的量纲为 h-1
[浓度]1-n [时间 ]-1
二级反应; k 的量纲为 kmol-1 · m3 · h-1
三级反应; k 的量纲为 kmol-2 · m6 · h-1
2.2.2.2 温度对反应速率的影响
幂函数型:
dc A rA kcAcB dt
k = f (T)。 注意: ① k 可理解为当反应物浓度都为单位浓度CA = CB = 1.0时的反应速率;
② k 由化学反应本身决定,是化学反应在一定温度时 的 特征常数; ③ 相同条件下, k 值越大,反应速率越快; ④ k 的数值与反应物的浓度无关。
dc A rA kc c A B dt α、β 称为组分A、B的反应级数,即反应对于物质 A
幂函数型:
是 α 级反应,对物质 B 是 β 级反应。 是动力学方程中浓
度项的幂数。α+β 为反应的总级数,表示该反应级数 。 α、β是通过实验确定的常数,分别表示浓度cA和cB对 反应速率影响的程度。 它与反应方程式的计量系数并不 一致,只有基元反应时,α=a,β=b。
活化能E的物理意义 根据碰撞理论, 指前因子k0表示单位浓度的总碰撞数。 •活化能E? 对于基元反应过程,把反应分子“激发”到可进行 反应的“活化状态”时所需的能量。是进行反应客观上
必须越过的能量,是反应进行难易程度的度量,也是反
应速率对温度敏感性高低的标志。
T是体系本身能量高低的标志。 RT就表示反应体系
(本征动力学或化学动力学)
2.2.2 影响反应速率的因素 • 浓度对反应速率的影响 • 温度对反应速率的影响 Temperature`s effet on Reaction rate
2.2.2.1 浓度(组成)对反应速率的影响
一般地,液相反应用浓度表示反应物系的组成;
连续系统气相反应,由于反应器不同位置处气体的
与反应机理无直接关系,也不等于各组份的计
量系数。 只有当化学计量方程与反应实际历程的反 应机理式相一致时(基元反应),反应级数与 计量系数才会相等,它可以直接应用质量作用 定律来列出其反应速率方程。
⑶反应级数是由实验获得的经验值,只能在获得
其值的实验条件范围内加以应用;
在数值上可以是整数、分数,亦可以是负数, 但总反应级数在数值上很少达到 3 ,更不可能大 反而阻抑了反应,使反应速率下降。
易进行。但是活化能E不是决定反应难易程度的唯一因
素,它与频率因子A0共同决定反应速率。
⑵活化能E不能独立预示反应速率的大小,它只表
明反应速率对温度的敏感程度。E愈大,温度对反
应速率的影响愈大。除了个别的反应外,一般反
应速率均随温度的上升而加快。E愈大,反应速率
随温度的上升而增加得愈快。
例:(1)现有某反应活化能为100kj/mol,试估算(a)温
于 3 。如果级数是负值,说明该组分浓度的增加,
返回
2.2.2.2 温度对反应速率的影响
幂函数型:
dc A rA kcAcB dt
k :反应的速率常数(比速率常数),其值显
著地取决于温度的高低。与除浓度外的其他因
素如总压、催化剂、 离子强度、溶剂等有关,
在正常情况下,这些因素比起温度对反应速率 常数的影响要小得多。因此,将假设 k 仅是温 度的函数。k = f (T)。
注意: ⑴ 反应级数不能独立预示反应速率的大小,只表 明反应速率对各组份浓度的敏感程度。α和β值越 大,则A、B浓度对反应速率的影响越大。零级反 应表示了反应速率与反应物浓度无关 。
理解这一点对反应过程的操作设计和分析至
关重要。
复合反应:可利用各反应组份的反应级数的
相对大小来改善产物分布。
⑵
反应级数α和β值是凭藉实验获得的,它既
E :反应的活化能 , J /mol ,一般在 4×104 - 4×105
J/mol ; R:通用气体常数,8.314J· mol-1· K-1, T: 热力学温度
③量纲: k的单位
[浓度]1-n [时间 ]-1
rA k f ( 反应组分浓度)
可见, k的单位与反应速率的表示方式有关,还与反 应组分浓度的表示方式有关。 反应组分的浓度可分别采用物质的量浓度、分压和摩 尔分率表示。 ri的量纲为M· t-1· V-3。 例如,反应速率方程为:
rA kcn
例如,反应速率方程为:
rA kc
n
[浓度]1-n [时间 ]-1 压力: [浓度] [时间 ]-1 [压力 ]-n
速率常数的单位:对n级反应,当反应速度采用
kmol/m h
3
为 单 位 时 , k 的 单 位 应
3 1n
为 h (kmol/m)
1
,对气相反应,当组分采用分