医疗专家系统方法

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

医生一般是

①通过询问病史、体格检查、实验室检查和辅助检查手段搜集临床资料;②整理、分析、评价资料;③提出诊断;④给出治疗处理。

医学专家系统的推理方法:

1.基于规则推理

基于规则的推理是从领域专家那获取问题求解的知识,概括、转化为易于被计算机表示和推理的形式,然后以知识库中已有知识构成的规则为基础,将初始证据与知识库中的规则进行匹配的推理技术。而当知识库中的规则太多时会导致系统推理前后产生矛盾,另外,自学习能力很弱。

2.基于案例推理

基于案例的推理是通过查找知识库中过去同类问题的解决方案从而获得当前问题解决的一种推理模式,这一过程与医生看病采取的方法很相似。然而这种系统也有局限性:怎样有效地表示病例以及如何在大型病例库中快速有效地检索相似病例等问题。

3.模糊数学推理

模糊推理是运用模糊数学的理论建立模型,对不明确的信息进行分类,解决用一般数学模型难以描述的高度复杂和非线性的问题。

4.基于规则的神经网络推理

在许多疾病的诊断中,由于获得的临床信息可能不完整又含有假象,经常遇到不确定性信息,决策规则可能相互矛盾,有时表现无明显的规律可循,这给传统推理方法的专家系统应用造成极大困难。人工神经网络(artificial neural network,ANN)能突破这些障碍。但也存在缺点:①仅适用于解决一些规模较小的问题;②系统的性能在很大程度上受训练数据集的限制,难以解决异类数据源的融合和共享;③知识提取过程繁杂而低效。④得出结论的“黑箱”特征也限制了系统对诊断结果的解释功能。

医学专家系统的发展趋势

医学专家系统可借鉴数据库关于信息存贮、共享、并发控制和故障恢复技术,对知识库的管理、设计以及大型知识库、共享知识库和分布式知识库提供帮助,改善专家系统的特性,扩大规模。

将多媒体技术应用于医学专家系统,可集多种知识表达形式为一体(文字、图形、图像、影像及声音);能够充分发挥其高速处理综合问题的特点,提高系统识别速度,有效地模拟医生在临床诊断中用的直觉和模拟诊断功能;并具有友好的用户界面,系统将能以类似人类专家的方式来传播信息,与用户深入沟通,用户可向系统寻求解释、咨询、谈话;利用多媒体专家系统的知识获取模块,采用图像扫描器,可直接将医学图像及精确的解剖位置转化为系统内部知识表示,也可由人类专家用话筒直接向系统传授知识,从而使知识获取更方便。

将网络技术用于医学专家系统,一是可采用分布式知识库结构,将知识按其专业和特点分为若干个相关的知识库,提高数据的安全性,方便用户访问数据;二是可采用分布式推理机制,改善应用环境的系统运行能力,提高专家系统推理的速度和灵活性;三是可采用分布式结构,在一个网络运行多个专家系统,为疑难杂症诊断提供多种途径;四是远程医疗的蓬勃发展和网上医疗站的出现。

⑴医学专家系统应以解决一些特殊的问题为目的。这些特殊的问题在计算机视觉和人工智能方面没有被研究过。人类对可视图案的认识不同于常规的推理, 并且代表明确的领域知识常常在视觉认识过程中下意识地忽略了被用到的那些因素。

⑵医学专家系统的模型可能会是以多种智能技术为基础, 以并行处理方式、自学能力、记忆功能、预测事件发展能力为目的。目前发展起来的遗传算法、模糊算法、粗糙集理论等非线性数学方法, 有可能会跟人工神经网络技术、人工智能技术综合起来构造成新的医学专家系统模型。

应用领域:

(1)疾病诊断:正确的诊断对于指导病人的用药及康复显然是重要的,在临床中有些疾病错综复杂,数据挖掘的有关分类分析可以应用于疾病的诊断。粗糙集理论、人T神经网络、模糊逻辑分析在疾病诊断方面是有效的。国内有学者将粗糙集理论应用于中医类风湿的诊断,取得了满意的效果,大大提高了诊断准确率,国外A.Kusiak等将基于粗糙集理论的两种算法应用于实体性肺结节的诊断,诊断准确率达100%,Roshawrma Scales等基于人工神经网络理论及模糊逻辑开发的对心血管疾病诊断的工具对疾病诊断的正确率达到92%。

(2)疾病相关因素分析:在病案信息库中有大量的关于病人的病情和病人的个人信息,包括年龄、性别、居住地、职业、生活情况等,对数据库中的信息进行关联规则分析可以发现有意义的关系及模式,某种疾病的相关发病危险因素分析可以指导患者如何预防该疾病。Jonathan C.Prather等成功地应用数据挖掘的有关理论对Duke大学医学中心的产科病人早产的3个危险因素进行了分析。

(3)疾病预测:确定某些疾病的发展模式,根据病人的病史预测病情的发展趋势,从而有针对性的预防疾病的发生。应用粗糙集理论根据以往病例归纳出诊断规则,用来预测新的疾病的发生,现有的人工预测早产的准确率只有17%~38%,应用粗糙集理论则可提高到68%~90%。

(4)在医疗质量管理中的应用:医疗保健领域的改革使得费用压力增加,另外一方面对医院医疗质量的需求也增高,以及其他医疗服务机构的增多,使得医院管理者比以往更关心医疗及管理的质量以及费用一效益比率。医疗质量管理的核心是数据、标准、计划以及治疗的质量,这些质量可以用不同的指数来衡量,数据挖掘可以帮助质量管理者解决下列任务:发现新的关于数据、标准、计划以及治疗的质量指数的假说;检验现有的关于数据、标准、计划以及治疗的质量指数是否有效;提炼,粗糙化及调整关于数据、标准、计划以及治疗的质量指数。常见的问题有:什么原因导致违背标准?个人信息、年龄、性别是怎样影响对标准的违背的?比如:若年龄因素和某种治疗导致住院时间比标准住院时间长,是否考虑修改治疗方案?数据挖掘可以帮助发现有关提高临床服务效率及质量潜力的证据。

(5)在医学图像中的应用:医学领域中越来越多地应用图像作为疾病诊断的工具,如SPECT、CT、MRI、PET等,数据挖掘可以应用于医学图像的分析。Sacha等成功地运用基于贝叶斯分类的数据挖掘模式对心肌SPECT图像进行分类诊断。

(6)在医学其他方面的应用:数据挖掘还应用于毒理学方面,药物的新的副作用发现。

相关文档
最新文档