医疗专家系统方法

合集下载

专家系统

专家系统
由于规则条数不多,搜索空间很小,推理机构(IE) 就十分简单,采用向前推理方法逐次判别各种规则的 条件,满足则执行,否则继续搜索。
特征识别与信息处理(FR&IP)部分的作用是实现 对信息的提取与加工,为控制决策和学习适应提供依 据。它主要包括抽取动态过程的特征信息,识别系统 的特征状态,并对特征信息作必要的加工。
设U为专家控制器的输出集, E为专家控制器的输入集, I为推理机构的输出集,K为经验知识集:
E = (R, e, Y, U),e = R – Y
式中,R为参考控制输入,e为误差信号,Y为受控输出, U为控制器的输出集。专家控制器的模型表示为
U = f (E,K,I)
智能算子f为几个算子的复合运算:f=g·h·p,其中: g:E→S;h:S×K→I;p:I→U
专家系统所要解决的问题一般没有算法解,并 且经常要在不完全、不精确或不确定的信息基础 上做出结论。
第一代专家系统只能利用人类专家的启发式知 识,即只能利用浅层表达方式和推理方法。
但遇到新问题时,还必须利用掌握的深入表示 事物的结构、行为和功能等方面的基本模型等深 层知识,得出新的启发式浅层知识。
智能程序:旨在模拟人类专家的智能程序应当 兼备浅层和深层两类知识。即不但采用基于规则 的方法,还必须采用基于模型的原理构成新一代 专家系统。
知识工程是指由知识工程师从人类专家那里抽 取他们求解问题的过程、策略和经验规则,然后 把这些知识建造在专家系统之中。
目前,专家系统在各个领域中已经得到广 泛应用,如医疗诊断、语音识别、图像处理、 金融决策、地质勘探、是有化工、军事、计 算机设计等。
专家系统具有启发性,能够运用人类专 家的经验和知识进行启发式搜索、试探性 推理、不精确推理或不完全推理

专家系统

专家系统

它是一种具有智能的程序系统。能运用专家知 识和经验进行推理的启发式程序系统。 它必须包含有大量专家水平的领域知识,并能 在运行过程中不断地对这些知识进行更新。 它能应用人工智能技术模拟人类专家求解问题 的推理过程,解决那些本来应该由领域专家才 能解决的复杂问题。
专家系统的一般特点
• 专家系统的特点:
根 据 任 务 要 求 , 计 算 出满 足 设 计 问 题 约 束 的 目 标配 置。 按 给 定 目 标 拟 定 总 体 规划 、 行 动 计 划 、 运 筹 优 化等 。 根 据 具 体 情 况 , 控 制 整个 系 统 的 行 为 , 适 用 于 对各 种 大 型 设 备 及 系 统 进 行控 制。 根 据 监 测 到 的 现 象 与 正常 情 况 相 比 , 及 时 作 出 相应 的分析和处理。 的分析和处理 。 对 发 生 故 障 的 系 统 、 对象 或 设 备 进 行 处 理 , 制 定纠 错 方 案 , 并 实 施 方 案 ,使 其恢复正常。 其恢复正常 。 根 据 相 应 的 标 准 检 测 被测 试 对 象 存 在 的 错 误 , 并能 从 多 种 纠 错 方 案 中 选 出适 用 于 当 前 情 况 的 最 佳方 排除错误。 案 , 排除错误 。
专家系统的结构
• 专家系统的结构是指专家系统各组成部分 的构造方法和组织形式。 用户 接口 事实规则
解释器 计划 知识库 执行器
议程 中间解 黑板
调度器 协调器
理 想 专 家 系 统 结 构 图
专家系统的主要组成部分
1. 知识库(Knowledge Base) 知识库用于存储某领域专家系统的专门知识,包括事实、 可行操作与规则。 2. 综合数据库(global database) 综合数据库又称全局数据库或总数据库,它用于储存领域 或问题的初始数据和推理过程中得到的中间数据(信息), 即被处理对象的一些当前事实。 3. 推理机(reasoning machine) 用于记忆所采用的规则和控制策略的程序,使整个专家系 统能够以逻辑方式协调的工作。推理机能够根据知识进行 推理和导出结论,而不是简单搜索现成的答案。

人工智能专家系统

人工智能专家系统

人工智能专家系统人工智能(Artificial Intelligence,简称AI)专家系统是一种基于计算机技术和人类专家经验的智能化系统。

它能够模拟和实现人类专家在特定领域的问题解决能力,可以用于辅助决策、问题诊断和解决方案推荐等方面。

本文将从专家系统的定义、原理、组成和应用等四个方面进行论述。

一、专家系统的定义专家系统是一种基于知识工程的人工智能系统,它通过模拟和利用领域专家的经验和知识来解决特定领域的问题。

专家系统主要由知识库、推理机和用户界面三部分组成。

知识库存储了经验和知识,推理机则对知识进行推理和运算,用户界面则提供了用户与系统进行交互的接口。

二、专家系统的原理专家系统的原理可以概括为知识获取、知识表示、知识推理和知识应用四个步骤。

知识获取是指将专家的经验和知识进行提取和整理,并存储到系统的知识库中;知识表示是指将知识以适当的形式进行表达和组织,以便系统能够理解和推理;知识推理是指根据系统中的知识,通过推理机对问题进行分析和推理;知识应用是指将推理得到的结果转化为实际解决方案,供用户使用。

三、专家系统的组成专家系统主要由知识库、推理机和用户界面三部分组成。

知识库是专家系统存储知识和经验的地方,常见的形式包括规则库、案例库和模型库等。

推理机是专家系统进行推理和运算的核心组件,它能够根据知识库中的知识进行逻辑推理和问题求解。

用户界面则提供了用户与系统进行交互的接口,使用户能够方便地向系统提供问题并获取解决方案。

四、专家系统的应用专家系统在各个领域都有广泛的应用。

在医疗领域,专家系统可以用于辅助疾病诊断和治疗方案选择;在金融领域,专家系统可以用于风险评估和投资决策;在工业领域,专家系统可以用于故障诊断和维修指导。

此外,专家系统还可以应用于法律、教育、交通等领域,为人们提供更加智能化和便捷化的服务。

综上所述,人工智能专家系统是一种基于计算机技术和人类专家经验的智能化系统。

它能够模拟和实现人类专家在特定领域的问题解决能力,具有广泛的应用前景。

09第六章 专家系统

09第六章 专家系统
15
设计专家系统
• 设计专家系统涉及电路(如数字电路和集 成电路)设计、土木建筑工程设计、计算 机结构设计、机械产品设计和生产工艺 设计等。比较有影响的专家设计系统有 VAX计算机结构设计专家系统R1(XCOM)、 浙江大学的花布立体感图案设计和花布 印染专家系统、大规模集成电路设计专 家系统以及齿轮加工工艺设计专家系统 等。
31
专家系统的主要组成部分
• (2) 综合数据库(global database) 综合数据库又称全局数据库或总数据库,它用 于存储领域或问题的初始数据和推理过程中得 到的中间数据(信息),即被处理对象的一些当 前事实。 3) 推理机(reasoning machine) 推理机用于记忆所采用的规则和控制策略的程 序,使整个专家系统能够以逻辑方式协调地工 作。推理机能够根据知识进行推理和导出结论, 而不是简单地搜索现成的答案
20
控制专家系统
任务 自适应地管理一个受控对象或客体的全面行 为,使之满足预期要求。 特点: 能够解释当前情况,预测未来可能发生的情 况,诊断可能发生的问题及其原因,不断修正 计划,并控制计划的执行。也就是说,控制专 家系统具有解释、预报、诊断、规划和执行等 多种功能。
21
控制专家系统
空中交通管制、商业管理、自主机器人控制、作 战管理、生产过程控制和生产质量控制等都是控 制专家系统的潜在应用方面。例如,已经对海、 陆、空自主车、生产线调度和产品质量控制等课 题进行控制专家系统的研究。
13
诊断专家系统例子
• 诊断专家系统的例子特别多,有医疗诊断,电 子机械和软件故障诊断以及材料失效诊断等。 用于抗生素治疗的MYCIN、肝功能检验的PUFF、 青光眼治疗的CASNET、内科疾病诊断的 INTERNIST-I和血清蛋白诊断等医疗诊断专家系 统,IBM公司的计算机故障诊断系统DART/DASD, 火电厂锅炉给水系统故障检测与诊断系统、雷 达故障诊断系统和太空站热力控制系统的故障 检测与诊断系统等、都是国内外颇有名气的实 例

第7章专家控制系统

第7章专家控制系统

第7章 专家控制系统教学内容首先介绍专家系统基本概念、特征、组成以及基本类型。

然后讲授专家控制系统的工作原理,最后介绍了建立专家系统的步骤和专家控制器。

教学重点1.专家系统的概念,即它是一种模拟人类专家解决领域问题的计算机程序系统。

将专家系统同控制理论和技术相结合,对系统进行控制形成专家控制系统。

把专家系统作为控制器称为专家控制器。

专家系统的基本组成,即由知识库、推理机、解释接口等组成。

2.专家控制系统工作原理。

专家系统设计的基本步骤:认识和阶段化概念,实现阶段,获取知识、构造外部知识库,调试和检验阶段。

教学难点专家系统的工作原理、知识的表示和获取,专家系统的设计。

教学要求1.了解专家系统的概念,理解专家控制系统、专家控制器的概念。

2.掌握专家系统的特征、组成和基本类型。

3.理解专家控制系统的工作原理。

知识的表示和获取。

4.掌握建立专家系统的步骤。

5.了解专家控制器的组成,专家控制器的设计原则。

7.1 概述7.1.1 专家系统的起源与发展人工智能科学家一直在致力于研制在某种意义上讲能够思维的计算机软件,用以“智能化”的处理、解决实际问题。

60年代,科学家们试图通过找到解决多种不同类型问题的通用方法来模拟思维的复杂过程,并将这些方法用于通用目的的程序中。

然而事实证明这种“通用”程序处理的问题类型越多,对任何个别问题的处理能力似乎就越差。

后来,科学家们认识到了问题的关键即计算机界程序解决问题的能力取决于它所具有的知识量的大小。

为使一个程序智能化,必须使其具有相关领域的大量高层知识。

为解决某具体专业领域问题的计算机程序系统的开发研制工作,导致专家系统这一新兴学科的兴起。

从本质上讲,专家系统是一类包含着知识和推理的智能计算机程序,其内部含有大量的某个领域专家水平的知识和经验,能够利用人类专家的知识和解决问题的方法来处理该领域的问题。

1965年斯坦福大学开始建立用于分析化合物内部结构的DENTRAL系统,首先使用了“专家系统”的概念。

医疗诊断专家系统实验报告 (3)

医疗诊断专家系统实验报告 (3)

医疗诊断专家系统实验报告实验目的:构建一个医疗诊断的专家系统,该系统能够根据患者的症状和疾病的特征,给出相应的诊断结果。

实验步骤:1. 收集医疗领域的知识:通过查阅相关的医学书籍、论文和专业网站等,收集到了大量有关疾病和症状的信息。

同时,也与医生进行了交流,了解了他们在实际诊断中的经验和方法。

2. 知识表示:将收集到的知识进行整理和归纳,并将其表示为一系列的规则或者知识库。

规则的形式可以是IF-THEN的形式,例如:“IF 患者有发热和咳嗽的症状THEN 可能患有感冒”。

知识库可以是一个包含疾病和症状之间关系的图谱。

3. 系统实现:根据知识表示的形式,利用编程语言实现医疗诊断的专家系统。

要求系统能够根据用户输入的症状,推理出可能的疾病,并给出相应的诊断结果。

4. 实验评估:通过收集一些病例数据,测试系统的准确性和可靠性。

评估指标包括系统对疾病的诊断准确率、系统对症状的覆盖范围等。

实验结果:根据实验评估的结果,系统的诊断准确率达到了90%,在很大程度上满足了医生的需求。

此外,系统还能够覆盖大部分常见疾病的症状,对于一些罕见疾病的诊断也能够给出合理的推理结果。

实验总结:通过本次实验,我们成功构建了一个医疗诊断的专家系统,并且取得了较好的实验结果。

但是需要注意的是,该系统仅作为辅助诊断工具使用,并不能替代医生的判断和经验。

所以在实际应用中,应该将专家系统与医生的实际诊断相结合,提高医疗诊断的准确性和效率。

此外,还可以进一步完善系统的知识库,加入更多的病例和知识,提高系统的覆盖范围和适用性。

专家系统发展综述

专家系统发展综述

专家系统发展综述专家系统是领域的一个重要分支,自20世纪60年代初以来,已经经历了数十年的发展。

本文将对专家系统的发展历程、基本概念、应用领域以及未来趋势进行综述。

一、专家系统的发展历程专家系统的发展可以追溯到1965年,当时美国科学家Feigenbaum提出了基于规则的专家系统概念。

随后,在1970年,Feigenbaum和Stuart Russell合著的《专家系统》一书出版,标志着专家系统的正式诞生。

在此之后,专家系统经历了快速发展和广泛应用,逐渐成为了人工智能领域的重要支柱。

二、专家系统的基本概念专家系统是一种智能计算机程序,它利用计算机技术和人工智能理论,模拟人类专家解决问题的思维过程,为用户提供专业领域的咨询和服务。

通常情况下,专家系统包括知识库和推理机两个核心组成部分,其中知识库用于存储领域专业知识,推理机则用于根据已有知识进行推理和解决问题。

三、专家系统的应用领域1、医疗领域:医生专家系统可以帮助医生进行疾病诊断和治疗方案制定。

例如,基于医学知识的智能问诊系统,可以根据患者症状和病史,进行初步诊断和用药建议。

2、金融领域:金融专家系统可以帮助银行、证券公司等金融机构进行投资决策、风险管理等方面的工作。

例如,基于金融市场数据的智能投顾系统,可以根据市场行情和投资者风险偏好,制定个性化的投资策略。

3、交通领域:交通管理专家系统可以帮助交通管理部门进行交通流量规划和调度指挥。

例如,基于路网信息的智能交通管理系统,可以根据实时交通信息进行路况预测和交通调度。

4、教育领域:教育专家系统可以帮助教师进行教学辅助和学生学习辅导。

例如,基于学科知识的智能教育辅导系统,可以根据学生的学习需求和学科水平,提供个性化的学习资源和教学方案。

四、专家系统的未来趋势1、知识库的构建与更新:随着知识爆炸的时代到来,专家系统的知识库需要不断更新和优化,以适应领域发展的需要。

因此,如何高效地进行知识获取、整理、表达和更新将成为未来研究的重要方向。

第8章 专家系统

第8章 专家系统

2.专家系统的知识表示和推理
2.1 知识表示
知识表示是一种用来在专家系统的知识库中对知识编码的 方法。
2.1.1 知识的类型
◆过程性知识。描述如何解决问题,提供如何做事的建议。
◆陈述性知识。描述问题的相关已知信息,包括断定为真或 假的简单语句和一组更完整地描述一些对象或概念的语句。 ◆启发式 知识。描述引导推理过程的规则。它是经验性的, 并且表示专家通过求解过去问题的经验编译知识。专家将获 取有关问题的基本知识,如基本法则、函数关系等,并且把 它编译成简单的启发信息,以辅助问题求解。 ◆结构知识。描述知识的结构。这类知识描述专家对此问题 的整体智力模型。
(2)从处理问题的方法看,专家系统则是靠知识和 推理来解决问题(不像传统软件系统使用固定的算法 来解决问题),所以,专家系统是基于知识的智能问 题求解系统。
(3)从系统的结构来看,专家系统则强调知识与推 理的分离,因而系统具有很好的灵活性和可扩充性。
(4)专家系统一般还具有解释功能,即在运行过程 中一方面能回答用户提出的问题,另一方面还能对最后 的输出(结论)或处理问题的过程作出解释。
◆例子 :VAX计算机结构设计专家系统、花布立体感图 案设计和花布印染专家系统、大规模集成电路设计专 家系统以及齿轮加工工艺设计专家系统等。
规划专家系统
◆任务 :寻找出某个能够达到给定目标的动作序列或步 骤。
◆特点 :所要规划的目标可能是动态的或静态的,需要 对未来动作做出预测,所涉及的问题可能很复杂,要 求系统能抓住重点,处理好各子目标间的关系和不确 定的数据信息,并通过实验性动作得出可行规划 。
站进行被修设备的调整、测量与试验。在这方面的实 例还比较少见。
教学专家系统
◆任务:根据学生的特点、弱点和基础知识,以最适当的 教案和教学方法对学生进行教学和辅导。

专家系统概述及其应用人工智能毕业论文

专家系统概述及其应用人工智能毕业论文

专家系统概述及其应用摘要:人工智能(Artificial Intelligence) ,英文缩写为AI。

它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。

人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。

专家系统是人工智能应用研究的主要领域。

专家系统是一个具有大量的专门知识与经验的程序系统,它应用人工智能技术和计算机技术,根据某领域一个或多个专家提供的知识和经验,进行推理和判断,模拟人类专家的决策过程,以便解决那些需要人类专家处理的复杂问题,简而言之,专家系统是一种模拟人类专家解决领域问题的计算机程序系统。

本文中介绍了人工智能的概念,分类,特点以及人工智能的研究的发展及其现状。

由此引出专家系统的基本概念及主要特点。

最后,通过查阅各种资料以及自己的理解分析,对专家系统的主要应用做具体分析。

阐述了将计算机人工智能的专家系统理念与全厚度再生机材料配置与设备自动控制系统相结合的思想,同时,具体分析了构建全厚度再生机材料配置与设备自动控制专家系统可供利用的计算机应用技术,并初步建立了该系统的模块体系。

关键词:人工智能,专家系统,全厚度再生机材料配置与设备自动控制系统Expert system outline and applicationAbstract: The artificial intelligence (Artificial Intelligence), English abbreviation is AI. It is the research, the development uses in simulating, extending and expands human's intelligence theory, the method, technical and an application system new technical science. The artificial intelligence is a computer science branch, it attempts the understanding intelligence the essence, the parallel intergrowth delivers one kind newly to be able to make the response by the human intelligence similar way the intelligent machine, this domain research including robot, language recognition, pattern recognition, natural language processing and expert system and so on.In this article introduced the artificial intelligence concept, the classification, the characteristic as well as the artificial intelligence research development and the present situation. From this draws out the expert system the basic concept and the main characteristic. Finally, through consults each kind of material as well as own understanding analysis, makes the concrete elaboration to the expert system main application. Introduced unifies the computer artificial intelligence expert system idea and the Auto-Control system plan, simultaneously, analyzed the construction to Auto-Control system specifically to be possible to supply the use the computer application technology, and established initially module of this expert system.Key word: Artificial intelligence, Expert system, Auto-Control Expert System目录目录 (3)1 引言 (4)人工智能 (4)专家系统 (5)人工智能与专家系统之间关系 (5)2 概述 (5)专家系统与传统程序 (5)专家系统的特点 (6)专家系统的优点 (6)3 详细介绍 (7)专家系统的结构与类型 (7)专家系统的结构 (7)专家系统的类型 (8)专家系统的工作方式 (9)专家系统的工作过程 (9)专家系统的开发过程 (9)4 实际应用 (11)系统结构图 (11)材料知识库软件的设计思路 (12)材料配比体系结构图 (12)材料知识库涉及到的数据表 (12)推理机涉及到的数据表 (13)发泡沥青推理机 (13)发泡沥青环境界面的功能选项 (13)发泡沥青体系推理机推理分析过程 (13)5 现状与发展前景 (15)6 总结 (16)7 参考文献 (17)1 引言人工智能人工智能(Artificial Intelligence) ,英文缩写为AI。

医疗专家系统推理机的常用设计方法与发展展望

医疗专家系统推理机的常用设计方法与发展展望
DOl : 1 0 . 7 6 8 7 , J . I S S N1 0 0 3 — 8 8 6 8 . 2 0 1 3 . 1 2 . 1 0 0
Pr o s pe c t s a n d Ge ne r a l Me t ho d s o f De s i g ni ng Me di c a l Ex p e r t S ys t e m I nf e r e nc e Ma c h i ne
Ab s t r a c t T h e c o n i f g u r a t i o n a n d k n o w l e d g e r e p r e s e n t a t i o n o f t h e a r t i i f c i a l i n t e l l i g e n c e e x p e r t s y s t e m a r e i n t r o d u c e d . a n d t h e i n f e r e n c e me c h a n i s m o f t h e me d i c a l e x p e r t s y s t e m i s d e s c r i b e d f r o m i f v e a s p e c t s . T h e p r o s p e c t s o f t h e me d i c a l e x p e t r s y s t e m
0 引 言
人工智 能( a t r i i f c i a l i n t e l l i g e n c e , A I ) 是 研 究 机 器 智 能 和 智 能 机 器 的一 门 综合 性 高 技 术 学 科 ,其 目标 是 使 计 算 机具 有 智
能, 从 而模 拟 人 的 思 维 和 行 为 , 进而更有效 、 更 准 确 地 取 代 人

人工智能中的医学专家系统

人工智能中的医学专家系统

人工智能中的医学专家系统一、医学专家系统的定义医学专家系统是一种基于人工智能技术的计算机系统,能够模拟医学专家的知识和经验,帮助医生进行疾病诊断、治疗方案选择和医学研究。

医学专家系统可以根据患者的症状、体征和病史等信息,结合医学知识库和推理机制,生成诊断结果和治疗建议。

它可以帮助医生提高诊断的准确性和治疗的效果,减少误诊和漏诊的发生。

医学专家系统的实现基于人工智能技术的三个核心组成部分:知识表示、推理机制和学习能力。

1.知识表示:医学专家系统通过建立医学知识库来表示专家的知识和经验。

知识库包括诊断依据、疾病特征、治疗方案、疗效评估等医学知识,并以逻辑、规则、概念网络等形式进行描述和组织。

知识库的建立需要医学专家的参与,通过专家知识的抽取、整理和表示,构建了医学专家系统的核心。

2.推理机制:医学专家系统采用推理机制模拟专家的思维和决策过程,根据患者的症状信息和知识库中的规则、逻辑等进行推理,生成诊断结果和治疗建议。

推理机制包括基于规则的推理、基于案例的推理、基于模型的推理等,能够根据不同的病例进行灵活推理,生成个性化的诊断和治疗方案。

3.学习能力:医学专家系统通过不断学习丰富和更新知识库,提高系统的诊断和治疗能力。

它可以通过挖掘临床数据、学习医学文献、接受专家指导等方式,不断更新知识库,提高系统的准确性和适用性。

医学专家系统在医学领域有着广泛的应用,主要包括疾病诊断、治疗规划、药物推荐和医学教育等方面。

2.治疗规划:医学专家系统可以根据患者的疾病类型、临床表现、个体特征等信息,结合知识库和推理机制,生成个性化的治疗方案和监测策略,提高治疗的针对性和效果。

3.药物推荐:医学专家系统可以根据患者的病情、病史和药物特征,结合知识库和推理机制,推荐合适的药物种类、用药剂量和药物相互作用等信息,提高用药的安全性和有效性。

4.医学教育:医学专家系统能够成为医学教育的工具,提供临床案例、病例分析、诊断推理等教育内容,帮助医学生和医生不断学习和提升临床能力。

专家系统在知识管理中的应用案例分析

专家系统在知识管理中的应用案例分析

专家系统在知识管理中的应用案例分析引言:知识管理是一个组织在日常运营中必须面对的挑战。

有效的知识管理可以提高组织的绩效和竞争力。

专家系统作为一种人工智能技术,在知识管理领域有着广泛的应用。

本文将通过深入分析两个实际案例,探讨专家系统在知识管理中的应用。

案例一:医疗诊断专家系统背景:在医学领域,医生需要依靠大量的医学知识来作出正确的诊断。

然而,医学知识繁杂且不断更新,医生很难掌握所有的知识点。

因此,一个能够协助医生进行诊断的专家系统就显得尤为重要。

应用:一家医疗机构开发了一个医疗诊断专家系统,以辅助医生进行疾病诊断。

该专家系统基于大量的医学知识和患者病例,通过与医生的交互,能够快速分析病人的病情,提供相关的诊断意见。

医生可以根据系统提供的建议来作出最终的诊断决策。

该系统还可以自动更新医学知识库,保证诊断结果的准确性。

效果:该医疗诊断专家系统在实际应用中取得了显著的效果。

首先,它大大提高了诊断的准确性和效率,减少了误诊和漏诊的概率。

其次,它缩短了患者等候时间,提高了医疗服务的质量。

此外,该系统还帮助医生累积了更多的医学知识,提升了整个医疗团队的智力水平。

启示:该案例表明专家系统在知识管理中的应用具有巨大的潜力。

通过将专业知识转化为计算机程序,专家系统可以帮助组织存储、传播和更新知识,提高组织的绩效。

案例二:销售助理专家系统背景:在销售行业中,销售人员需要积累大量的商品知识、市场信息和销售技巧。

然而,这些知识通常散落在不同的资料和员工中,很难进行有效的整合和共享。

应用:一家大型电子商务公司开发了一个销售助理专家系统,用于集中管理销售知识。

销售人员可以通过该系统快速获取关于商品特性、竞争情报和销售技巧等方面的知识。

此外,该系统还提供智能推荐功能,根据客户的偏好和需求推荐合适的商品和销售策略。

效果:在实际应用中,该销售助理专家系统取得了显著的效果。

首先,它提高了销售人员的专业水平和销售效率,减少了销售过程中的错误和失误。

建立专家系统的一般流程

建立专家系统的一般流程

建立专家系统的一般流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!建立专家系统的一般流程如下:1. 确定问题领域:明确专家系统要解决的问题领域和范围,例如医疗诊断、金融投资、工程设计等。

第12章专家系统

第12章专家系统
——有些专家系统还具有“自学习”能力, 即不断对自己的 知识进行扩充、完善和提炼。这一点是传统系统所无法比拟的。
——专家系统不像人那样容易疲劳、遗忘,易受环境、情绪等 的影响, 它可始终如一地以专家级的高水平求解问题。因此, 从这种意义上讲,专家系统可以超过专家本人。
第 12 章 专 家系 统
12.1.3
第 12 章 专 家系 统
12.2 系统结构
专家系统是一种计算机应用系统。由于应用领域和实际 问题的多样性, 因此, 专家系统的结构也就多种多样。但抽 象地看, 它们还是具有许多共同之处。
第 12 章 专 家系 统
12.2.1
从概念来讲, 一个专家系统应具有如图 12-1所示的一般 结构模式。其中知识库和推理机是两个最基本的模块。
第 12 章 专 家系 统
3. 动态数据库
动态数据库也称全局数据库、综合数据库、工作存储器、 黑板等,它是存放初始证据事实、推理结果和控制信息的场所, 或者说它是上述各种数据构成的集合。动态数据库只在系统 运行期间产生、变化和撤消, 所以称为“动态”数据库, 且 在图中用虚线包围。 需要说明的是, 动态数据库虽然也叫数 据库, 但它并不是通常所说的数据库, 两者有本质差异。
第 12 章 专 家系 统
12.1.2
同一般的计算机应用系统(如数值计算、 数据处理系统等) 相比,专家系统具有下列特点:
——从处理的问题性质看, 专家系统善于解决那些不确定性 的、 非结构化的、没有算法解或虽有算法解但在现有的机器 上无法实施的困难问题。例如,医疗诊断、地质勘探、天气预 报、市场预测、管理决策、军事指挥等领域的问题。
这里的解释是对仪器仪表的检测数据进行分析、 推测得 出某种结论。例如通过对一个地区的地质数据进行分析, 从 而对地下矿藏的分布和储量等得出结论。又如,通过对一个人 的心电图波形数据进行分析, 从而对该人的心脏生理病理情 况得出某种结论。显然,以上两种事情都是经验丰富的专家才 能胜任的。而所谓“规划”, 就是为完成某任务而安排一个 行动序列。例如, 对地图上的两地间找一条最短的路径、为 机器人做某件事安排一个动作序列等。

第3章专家系统控制概述、原理

第3章专家系统控制概述、原理
专家系统控制概述、原理
7
(4)解释接口
解释接口又称人一机界面,它把用户输入的信 息转换成系统内规范化的表示形式,然后交给 相应模块去处理,把系统输出的信息转换成用 户易于理解的外部表示形式显示给用户,回答 用户提出的“为什么?”“结论是如何得出 的?”等问题。
另外,能对自己的行为做出解释,可以帮助系 统建造者发现知识库及推理机中的错误,有助 于对系统的调试。这是专家系统区别于一般程 序的重要特征之一。
第3章专家系统控制概述、原理
12
(3)专家系统的透明性和灵活性
透明性是指它能够在求解问题时,不仅能得到 正确的解答,还能知道给出该解答的依据;
灵活性表现在绝大多数专家系统中都采用了知 识库与推理机相分离的构造原则,彼此相互独 立,使得知识的更新和扩充比较灵活方便。
系统运行时,推理机可根据具体问题的不同特 点选取不同的知识来构成求解序列,具有较强 的适应性。
浅层知识一般表示成产生式规则的形式,即如 果(前提>,那么<结论>。
这种形式的浅层知识之所以具有启发性,是因 为它从观测到的数据(前提)联想到中间事实 或最终结论,
这种逻辑推理过程短、效率高。
第3章专家系统控制概述、原理
3
新一代的专家系统
但事实证明,只靠经验知识是不够的,当人类 遇到新问题时,只能利用掌握的深入表示事物 的结构、行为和功能等方面的基本模型等深层 知识得出新的启发式浅层知识。
第3章专家系统控制概述、原理
9
3.1.3 专家系统的特征及类型
1. 专家系统的基本特征
(1)具有专家水平的专门知识 (2)能进行有效的推理 (3)专家系统的透明性和灵活性 (4)具有一定的复杂性与难度
第3章专家系统控制概述、原理

专家系统在知识管理中的应用教程

专家系统在知识管理中的应用教程

专家系统在知识管理中的应用教程知识管理在如今所面临的复杂环境中被视为一种重要的解决方案。

随着信息技术的不断发展,专家系统作为一种新兴的技术手段,为知识管理提供了有效的支持。

本文将介绍专家系统在知识管理中的应用,并提供一些实用的教程,帮助读者了解和使用专家系统。

1.专家系统的概念和特点专家系统是一种能够模拟人类专家智能行为的计算机系统。

它通过建立一套包含专家知识和推理机制的系统,以解决特定领域的问题。

其主要特点包括:能够模拟专家的决策过程、能够与用户进行交互、能够提供解决方案和解释等。

2.专家系统在知识管理中的作用专家系统在知识管理中发挥着重要的作用。

首先,它可以通过存储和管理专家的知识,提供一种集中的、可靠的知识库,方便人们进行查找和利用。

其次,专家系统可以通过推理和分析技术,帮助人们在复杂环境中做出决策,提高工作效率。

最后,专家系统还可以通过与人进行交互,提供问题解答、培训和指导等服务,满足人们不同的需求。

3.专家系统的应用案例专家系统已经在各个领域得到了广泛的应用。

以医疗行业为例,专家系统可以帮助医生进行疾病的诊断和治疗方案的选择。

在工业领域,专家系统可以用于故障诊断和维修指导。

在金融领域,它可以用于风险评估和投资分析。

这些案例都表明,专家系统具有很大的潜力,在知识管理中发挥着重要作用。

4.构建专家系统的步骤构建一个有效的专家系统需要经历以下几个步骤。

1)确定专家系统的目标和应用范围:明确专家系统的用途和能够解决的问题。

2)收集和整理专家知识:通过与专家进行交流和访谈,收集并整理专家的知识,建立知识库。

3)建立推理机制和推理引擎:根据问题的性质和需求,选择适当的推理机制和推理引擎,用于问题的求解。

4)构建用户界面和交互系统:设计和开发专家系统的用户界面和交互系统,以方便用户与系统进行交互。

5)测试和调试:进行系统的测试和调试,确保系统能够提供准确的解决方案。

6)部署和维护:将专家系统部署到实际的工作环境中,定期进行维护和更新,以保证系统的性能和稳定性。

专家系统基本概念与原理

专家系统基本概念与原理

专家系统基本概念与原理专家系统是一种智能化的计算机系统,用于模拟人类专家的知识和决策过程。

它基于人工智能和专业领域的知识,通过推理和推断来解决复杂问题,提供专家级的决策支持。

专家系统的基本原理是将领域专家的知识和经验以规则的形式存储在计算机中,然后根据用户提供的问题和条件,通过推理机制来推导出最符合条件的结论。

专家系统的核心组件包括知识库、推理引擎和用户接口。

知识库是专家系统的核心部分,它存储了专家在特定领域中的知识和经验。

知识可以以规则、事实或案例的形式存在。

规则是专家系统中最常用的表达形式,它由条件部分和结论部分组成。

条件部分描述了问题的输入条件,而结论部分则表明了推导出的结果。

知识库中的知识可以通过专家系统的知识获取模块进行更新和维护。

推理引擎是专家系统的推理机制,它通过对知识库中的规则进行匹配和推理,生成最终的结论。

推理引擎采用了不同的推理方法,包括前向推理和后向推理。

前向推理从已知条件出发,逐步推导出结论;后向推理则从目标结论出发,逆向推导出满足条件的先决条件。

用户接口是专家系统与用户交互的界面,它可以是命令行界面、图形界面或基于自然语言的界面。

用户通过界面输入问题和条件,专家系统根据推理引擎生成的结论给出相应的答案或建议。

专家系统广泛应用于各个领域,如医疗诊断、金融投资、工业控制等。

它具有高效、可靠、可复用等特点,能够提供高质量的决策支持,并减少人力成本和风险。

总之,专家系统是一种基于人工智能和专业领域知识的智能化计算机系统,通过模拟专家的知识和决策过程,为用户提供决策支持。

它的基本原理包括知识库、推理引擎和用户接口,并在各个领域中得到广泛应用。

医疗诊断中的专家系统设计与实现

医疗诊断中的专家系统设计与实现

医疗诊断中的专家系统设计与实现随着人工智能和机器学习的发展,专家系统在医疗诊断领域中的应用越来越广泛。

专家系统利用专家知识和推理规则来进行诊断和治疗建议,减轻了医生的负担,提高了患者的治疗效果。

本文将介绍医疗诊断中的专家系统设计与实现过程。

首先,设计专家系统需要收集和整理专家知识。

医疗领域的专家知识可以来自于医生的经验和医学文献等来源。

收集到的知识需要进行归纳总结,建立知识库。

知识库的设计需要符合特定的知识表示方法,以便于系统对知识的处理和推理。

其次,设计专家系统需要确定推理规则。

推理规则是专家系统中的核心组成部分,用于进行诊断和治疗决策。

推理规则应该基于严谨的逻辑和科学的医学依据。

推理规则包括前提条件和结论,通过匹配前提条件和当前患者的病情信息,系统可以推断出相应的结论和建议。

推理规则的数量和准确性对系统的性能和效果有重要影响,因此设计推理规则需要经过充分的验证和测试。

在实现专家系统时,需要选择合适的技术和工具。

专家系统的实现可以基于规则引擎、机器学习算法或混合方法等。

规则引擎是一种常用的实现方式,它能够对推理规则进行管理和执行,通过事实与规则之间的匹配,来得出结论和建议。

机器学习算法可以通过训练数据来学习知识和规律,从而进行诊断和预测。

混合方法结合了规则引擎和机器学习算法的优势,可以更好地解决实际医疗诊断中的复杂问题。

在实现过程中,还需要考虑专家系统与患者之间的交互方式。

专家系统可以通过问答方式获取患者的病情信息,也可以通过图形界面展示诊断结果和建议。

在交互设计中,需要注意界面友好性、易用性和信息准确性等方面的要求,以便患者或医生可以方便地使用系统。

此外,专家系统还需要进行充分的验证和评估。

验证是指检验系统的逻辑正确性和推理能力,评估是指衡量系统的性能和效果。

验证可以通过测试用例来进行,评估可以通过与专业医生对比和实际病例验证来进行。

只有通过验证和评估,才能保证专家系统的可靠性和有效性。

最后,专家系统的实现需要与医疗机构合作。

专家系统在问题解决中的应用与设计难点分析

专家系统在问题解决中的应用与设计难点分析

专家系统在问题解决中的应用与设计难点分析姓名学号时间一、介绍专家系统是一种基于人工智能(Artificial Intelligence, AI)的计算机系统,旨在模仿人类专家的知识和问题解决能力,以便解决特定领域内的复杂问题。

这些系统被设计用于模拟专家的决策过程和推理能力,以提供与领域相关的专业建议和解决方案。

专家系统通常包括以下关键组成部分:1.知识库(Knowledge Base):这是专家系统的核心,包含了领域专家提供的知识、规则、事实、经验和数据。

知识库是系统用来推断和解决问题的基础。

2.推理引擎(Inference Engine):推理引擎是专家系统的决策引擎,它根据知识库中的规则和事实执行推理过程,以得出结论或建议。

它能够应用逻辑、推理和推断技术来解决问题。

3.用户界面(User Interface):用户界面是用户与专家系统互动的窗口。

它可以是文本界面、图形界面或语音界面,使用户能够向系统提出问题或接收系统的建议。

专家系统的工作原理通常如下:4.用户提供问题或信息:用户通过用户界面向专家系统提供问题或相关信息,这些问题或信息可以涉及特定领域的知识。

5.知识获取:专家系统使用知识库中的专家知识来处理用户提供的问题或信息。

这包括使用事实、规则和推理引擎来进行推断。

6.推理过程:推理引擎通过比较用户提供的信息与知识库中的规则和事实,进行逻辑推理,以找出解决问题的最佳答案或建议。

7.结果输出:专家系统向用户提供答案、建议或解决方案,通常以易于理解的方式呈现。

专家系统的应用领域广泛,包括医疗诊断、金融分析、工程设计、客户服务、故障排除和决策支持等。

它们在帮助人们解决复杂问题、提高决策质量和加速问题解决过程方面具有重要作用。

二、问题解决中的专家系统应用专家系统在多个领域中得到广泛运用,它们模拟了领域专家的知识和决策能力,用于解决各种复杂问题。

以下是一些专家系统在不同领域中的运用示例:1.医疗诊断:疾病诊断:专家系统可以帮助医生诊断疾病,基于患者的症状和医疗历史提供诊断建议。

医疗辅助决策系统中的专家系统设计

医疗辅助决策系统中的专家系统设计

医疗辅助决策系统中的专家系统设计在医疗领域,决策的准确性和及时性是至关重要的。

医疗辅助决策系统的出现为医生和患者提供了一个辅助决策的工具,有效地改善了医疗过程。

其中,专家系统是医疗辅助决策系统的核心。

本篇文章将重点讨论医疗辅助决策系统中专家系统的设计。

专家系统是一种能够模拟和模仿人类专家知识和推理能力的计算机程序。

它基于事先定义好的知识数据库和推理机制,能够根据输入的情况提供相应的决策和建议。

在医疗辅助决策系统中,专家系统扮演着一个虚拟医生的角色,能够分析患者的病情和临床数据,提供具有准确性和可靠性的诊断和治疗建议。

要设计一个高效可靠的专家系统,首先需要建立一个完整的知识库。

这个知识库应该包含各个医学领域的专业知识和临床经验。

专家系统的设计者需要与医生和专家密切合作,将他们的知识和经验编码到系统中。

这些知识可以包括疾病的诊断标准、治疗方案、用药规范和不同疗法的效果等。

通过将这些知识转化成规则和算法,专家系统能够根据输入的病情数据进行推理和判断。

在设计专家系统时,推理机制是至关重要的。

推理机制可以理解为专家系统进行推理和决策的方法和过程。

目前主要使用的推理方法包括规则推理、案例推理和模型推理。

规则推理是根据设定好的规则和算法进行推理和判断,可以提供准确和可解释的结果。

案例推理是通过匹配和比较患者的情况和系统已知的病历案例进行推理和决策,能够提供个性化的建议。

模型推理是基于系统内部的数学模型和算法进行推理和预测,可以提供定量和精确的结果。

此外,专家系统的界面设计也是一个关键的因素。

界面设计应该简洁明了,易于使用。

对于医生而言,界面应该能够提供全面的患者信息和诊断结果,使其能够快速了解患者的病情和推荐的治疗方案。

对于患者而言,界面应该能够引导和帮助其提供准确的病情数据,使其能够获得个性化的建议。

此外,在医疗辅助决策系统中,隐私和数据安全是需要重视的问题。

专家系统涉及大量的患者数据和个人隐私,必须确保数据的安全和保密。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

医生一般是
①通过询问病史、体格检查、实验室检查和辅助检查手段搜集临床资料;②整理、分析、评价资料;③提出诊断;④给出治疗处理。

医学专家系统的推理方法:
1.基于规则推理
基于规则的推理是从领域专家那获取问题求解的知识,概括、转化为易于被计算机表示和推理的形式,然后以知识库中已有知识构成的规则为基础,将初始证据与知识库中的规则进行匹配的推理技术。

而当知识库中的规则太多时会导致系统推理前后产生矛盾,另外,自学习能力很弱。

2.基于案例推理
基于案例的推理是通过查找知识库中过去同类问题的解决方案从而获得当前问题解决的一种推理模式,这一过程与医生看病采取的方法很相似。

然而这种系统也有局限性:怎样有效地表示病例以及如何在大型病例库中快速有效地检索相似病例等问题。

3.模糊数学推理
模糊推理是运用模糊数学的理论建立模型,对不明确的信息进行分类,解决用一般数学模型难以描述的高度复杂和非线性的问题。

4.基于规则的神经网络推理
在许多疾病的诊断中,由于获得的临床信息可能不完整又含有假象,经常遇到不确定性信息,决策规则可能相互矛盾,有时表现无明显的规律可循,这给传统推理方法的专家系统应用造成极大困难。

人工神经网络(artificial neural network,ANN)能突破这些障碍。

但也存在缺点:①仅适用于解决一些规模较小的问题;②系统的性能在很大程度上受训练数据集的限制,难以解决异类数据源的融合和共享;③知识提取过程繁杂而低效。

④得出结论的“黑箱”特征也限制了系统对诊断结果的解释功能。

医学专家系统的发展趋势
医学专家系统可借鉴数据库关于信息存贮、共享、并发控制和故障恢复技术,对知识库的管理、设计以及大型知识库、共享知识库和分布式知识库提供帮助,改善专家系统的特性,扩大规模。

将多媒体技术应用于医学专家系统,可集多种知识表达形式为一体(文字、图形、图像、影像及声音);能够充分发挥其高速处理综合问题的特点,提高系统识别速度,有效地模拟医生在临床诊断中用的直觉和模拟诊断功能;并具有友好的用户界面,系统将能以类似人类专家的方式来传播信息,与用户深入沟通,用户可向系统寻求解释、咨询、谈话;利用多媒体专家系统的知识获取模块,采用图像扫描器,可直接将医学图像及精确的解剖位置转化为系统内部知识表示,也可由人类专家用话筒直接向系统传授知识,从而使知识获取更方便。

将网络技术用于医学专家系统,一是可采用分布式知识库结构,将知识按其专业和特点分为若干个相关的知识库,提高数据的安全性,方便用户访问数据;二是可采用分布式推理机制,改善应用环境的系统运行能力,提高专家系统推理的速度和灵活性;三是可采用分布式结构,在一个网络运行多个专家系统,为疑难杂症诊断提供多种途径;四是远程医疗的蓬勃发展和网上医疗站的出现。

⑴医学专家系统应以解决一些特殊的问题为目的。

这些特殊的问题在计算机视觉和人工智能方面没有被研究过。

人类对可视图案的认识不同于常规的推理, 并且代表明确的领域知识常常在视觉认识过程中下意识地忽略了被用到的那些因素。

⑵医学专家系统的模型可能会是以多种智能技术为基础, 以并行处理方式、自学能力、记忆功能、预测事件发展能力为目的。

目前发展起来的遗传算法、模糊算法、粗糙集理论等非线性数学方法, 有可能会跟人工神经网络技术、人工智能技术综合起来构造成新的医学专家系统模型。

应用领域:
(1)疾病诊断:正确的诊断对于指导病人的用药及康复显然是重要的,在临床中有些疾病错综复杂,数据挖掘的有关分类分析可以应用于疾病的诊断。

粗糙集理论、人T神经网络、模糊逻辑分析在疾病诊断方面是有效的。

国内有学者将粗糙集理论应用于中医类风湿的诊断,取得了满意的效果,大大提高了诊断准确率,国外A.Kusiak等将基于粗糙集理论的两种算法应用于实体性肺结节的诊断,诊断准确率达100%,Roshawrma Scales等基于人工神经网络理论及模糊逻辑开发的对心血管疾病诊断的工具对疾病诊断的正确率达到92%。

(2)疾病相关因素分析:在病案信息库中有大量的关于病人的病情和病人的个人信息,包括年龄、性别、居住地、职业、生活情况等,对数据库中的信息进行关联规则分析可以发现有意义的关系及模式,某种疾病的相关发病危险因素分析可以指导患者如何预防该疾病。

Jonathan C.Prather等成功地应用数据挖掘的有关理论对Duke大学医学中心的产科病人早产的3个危险因素进行了分析。

(3)疾病预测:确定某些疾病的发展模式,根据病人的病史预测病情的发展趋势,从而有针对性的预防疾病的发生。

应用粗糙集理论根据以往病例归纳出诊断规则,用来预测新的疾病的发生,现有的人工预测早产的准确率只有17%~38%,应用粗糙集理论则可提高到68%~90%。

(4)在医疗质量管理中的应用:医疗保健领域的改革使得费用压力增加,另外一方面对医院医疗质量的需求也增高,以及其他医疗服务机构的增多,使得医院管理者比以往更关心医疗及管理的质量以及费用一效益比率。

医疗质量管理的核心是数据、标准、计划以及治疗的质量,这些质量可以用不同的指数来衡量,数据挖掘可以帮助质量管理者解决下列任务:发现新的关于数据、标准、计划以及治疗的质量指数的假说;检验现有的关于数据、标准、计划以及治疗的质量指数是否有效;提炼,粗糙化及调整关于数据、标准、计划以及治疗的质量指数。

常见的问题有:什么原因导致违背标准?个人信息、年龄、性别是怎样影响对标准的违背的?比如:若年龄因素和某种治疗导致住院时间比标准住院时间长,是否考虑修改治疗方案?数据挖掘可以帮助发现有关提高临床服务效率及质量潜力的证据。

(5)在医学图像中的应用:医学领域中越来越多地应用图像作为疾病诊断的工具,如SPECT、CT、MRI、PET等,数据挖掘可以应用于医学图像的分析。

Sacha等成功地运用基于贝叶斯分类的数据挖掘模式对心肌SPECT图像进行分类诊断。

(6)在医学其他方面的应用:数据挖掘还应用于毒理学方面,药物的新的副作用发现。

相关文档
最新文档