高二第二学期期末数学考试试题(含答案)

合集下载

西城区2023-2024学年第二学期期末高二数学试题及答案

西城区2023-2024学年第二学期期末高二数学试题及答案

北京市西城区2023—2024学年度第二学期期末试卷高二数学第1页(共5页)北京市西城区2023—2024学年度第二学期期末试卷高二数学2024.7本试卷共5页,共150分。

考试时长120分钟。

考生务必将答案写在答题卡上,在试卷上作答无效。

第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1)在等差数列{}n a 中,13a =,35a =,则10a =(A )8(B )10(C )12(D )14(2)设函数()sin f x x =的导函数为()g x ,则()g x 为(A )奇函数(B )偶函数(C )既是奇函数又是偶函数(D )非奇非偶函数(3)袋中有5个形状相同的乒乓球,其中3个黄色2个白色,现从袋中随机取出3个球,则恰好有2个黄色乒乓球的概率是(A )110(B )310(C )15(D )35(4)在等比数列{}n a 中,若11a =,44a =,则23a a =(A )4(B )6(C )2(D )6±(5)投掷2枚均匀的骰子,记其中所得点数为1的骰子的个数为X ,则方差()D X =(A )518(B )13(C )53(D )536北京市西城区2023—2024学年度第二学期期末试卷高二数学第2页(共5页)(6)设等比数列{}n a 的前n 项和为n S ,若11a =-,1053231S S =,则6a =(A )132-(B )164-(C )132(D )164(7)设函数()ln f x x =的导函数为()f x ',则(A )(3)(2)(3)(2)f f f f ''<<-(B )(3)(3)(2)(2)f f f f ''<-<(C )(2)(3)(3)(2)f f f f ''<<-(D )(2)(3)(2)(3)f f f f ''<-<(8)设等比数列{}n a 的前n 项和为n S ,则“{}n a 是递增数列”是“{}n S 是递增数列”的(A )充分而不必要条件(B )必要而不充分条件(C )充分必要条件(D )既不充分也不必要条件(9)如果()e x f x ax =-在区间(1,0)-上是单调函数,那么实数a 的取值范围为(A )1(,][1,)e -∞+∞ (B )1[,1]e(C )1(,]e-∞(D )[1,)+∞(10)在数列{}n a 中,12a =,若存在常数(0)c c ≠,使得对于任意的正整数,m n 等式m n m n a a ca +=+成立,则(A )符合条件的数列{}n a 有无数个(B )存在符合条件的递减数列{}n a (C )存在符合条件的等比数列{}n a (D )存在正整数N ,当n N >时,2024n a >北京市西城区2023—2024学年度第二学期期末试卷高二数学第3页(共5页)第二部分(非选择题共110分)二、填空题共5小题,每小题5分,共25分。

北京市海淀区2023-2024学年高二下学期期末数学试卷(含答案)

北京市海淀区2023-2024学年高二下学期期末数学试卷(含答案)

北京市海淀区2023-2024学年高二下学期期末考试数学试卷本试卷共6页,共两部分。

19道题,共100分。

考试时长90分钟。

试题答案一律填涂或书写在答题卡上,在试卷上作答无效。

考试结束后,请将答题卡交回。

第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

1.5(1)x -的展开式中,所有二项式的系数和为A.0B.52C.1D.622.已知函数sin (),cos xf x x=则(0)f '的值为A.0B.1C.1- D.π3.若等比数列{}n a 的前n 项和21n n S =-,则公比q =A.12B.12-C.2D.2-4.下列函数中,在区间[]1,0-上的平均变化率最大的时A.2y x = B.3y x = C.12xy ⎛⎫= ⎪⎝⎭D.2xy =5.将分别写有2,0,2,4的四章卡片,按一定次序排成一行组成一个四位数(首位不为0),则组成的不同四位数的个数为A.9B.12C.18D.246.小明投篮3次,每次投中的概率为0.8,且每次投篮互不影响,若投中一次的2分,没投中得0分,总得分为X ,则A.() 2.4E X = B.() 4.8E X = C.()0.48D X = D.()0.96D X =7.已知一批产品中,A 项指标合格的比例为80%,B 项指标合格的比例为90%,A 、B 两项指标都合格的比例为60%,从这批产品中随机抽取一个产品,若A 项指标合格,则该产品的B 项指标也合格的概率是A.37B.23C.34D.568.已知等差数列n a 的前n 项和为n S ,若10a <、则“n S 有最大值”是“公差0d <”的A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件9.设函数()()ln 1sin f x x a x =-+.若()()0f x f ≤在()1,1-上恒成立,则A.0a =B.1a ≥C.01a <≤ D.1a =10.在经济学中,将产品销量为x 件时的总收益称为收益函数,记为()R x ,相应地把()R x '称为边际收益函数,它可以帮助企业决定最优的生产或销售水平.假设一个企业的边际收益函数()1000R x x '=-(注:经济学中涉及的函数有时是离散型函数,但仍将其看成连续函数来分析).给出下列三个结论:①当销量为1000件时,总收益最大;②若销量为800件时,总收益为T ,则当销量增加400件时,总收益仍为T ;③当销量从500件增加到501件时,总收益改变量的近似值为500.其中正确结论的个数为A.0B.1C.2D.3第二部分(非选择题共60分)二、填空题共5小题,每小题4分,共20分。

山东省菏泽市2023-2024学年高二下学期7月期末考试 数学含答案

山东省菏泽市2023-2024学年高二下学期7月期末考试 数学含答案

2023—2024学年高二下学期教学质量检测数学试题(答案在最后)2024.07注意事项:1.本试卷分选择题和非选择题两部分.满分150分,考试时间120分钟.2.答题前,考生务必将姓名、班级等个人信息填写在答题卡指定位置.3.考生作答时,请将答案答在答题卡上.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径05毫米黑色墨水签字笔在答题卡上各题的答题区域内作答.超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效.一、选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合要求的.1.一质点A 沿直线运动,位移s (单位:米)与时间t (单位:秒)之间的关系为221s t =+,当位移大小为9时,质点A 运动的速度大小为()A.2B.4C.6D.82.若X 服从两点分布,()()100.32P X P X =-==,则()0P X =为()A.0.32B.0.34C.0.66D.0.683.下列说法正确的是()A.线性回归分析中决定系数2R 用来刻画回归的效果,若2R 值越小,则模型的拟合效果越好B.残差平方和越小的模型,拟合的效果越好C.正态分布()2,N μσ的图象越瘦高,σ越大D.两个随机变量的线性相关性越强,则相关系数r 的值越接近于14.已知函数()23f x ax x=+的单调递增区间为[)1,+∞,则a 的值为()A.6B.3C.32D.345.若()465nn a n ⨯+-∈N 能被25整除,则正整数a 的最小值为()A.2B.3C.4D.56.从标有1,2,3,4,5,6的6张卡片中任取4张卡片放入如下表格中,使得表中数字满足,a b c d >>,则满足条件的排法种数为()abcdA.45B.60C.90D.1807.在()21*(2n n +∈N 的展开式中,x 的幂指数是整数的各项系数之和为()A .2131n +- B.2131n ++ C.21312n +- D.21312n ++8.已知函数()3213f x x x =-,若()e n f m n =-,则m 与n 的大小关系为()A.m n >B.m n=C.m n< D.不能确定二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知随机变量()4,2X N ~,若(6),(46)P X a P X b >=<<=,则()A .12a b +=B.(2)P X a <=C.()218E X += D.()218D X +=10.已知曲线()y f x =在原点处的切线与曲线()y xf x =在()2,8处的切线重合,则()A.()24f =B.()23f '=C.()04f '= D.曲线()y f x =在()2,a 处的切线方程为y a=11.假设变量x 与变量Y 的n 对观测数据为()()()1122,,,,,,n n x y x y x y ,两个变量满足一元线性回归模型()()2,0,.Y bx e E e D e σ=+⎧⎨==⎩要利用成对样本数据求参数b 的最小二乘估计ˆb ,即求使()21()ni i i Q b y bx ==-∑取最小值时的b 的值,若某汽车品牌从2020~2024年的年销量为w (万辆),其中年份对应的代码t 为15~,如表,年份代码t12345销量w (万辆)49141825根据散点图和相关系数判断,它们之间具有较强的线性相关关系,可以用线性回归模型描述令变量x t t Y w w =-=-,且变量x 与变量Y 满足一元线性回归模型2()0,()Y bx eE e D e σ=+⎧⎨==⎩则下列结论正确的有()A .51521ˆiii ii x ybx===∑∑ B.51521ˆiii ii x yby===∑∑C.ˆ 5.1 1.3wt =- D.2025年的年销售量约为34.4万辆三、填空题:本题共3小题,每小题5分,共15分.12.A 、B 、C 、D 共4名同学参加演讲比赛,决出第一至第四的名次.A 和B 去询问成绩,回答者对A 说:“很遗憾,你和B 都没有得到冠军.”对B 说:“你当然不会是最差的.”从这两个回答分析,这4人的名次排列有__________.种(用数字作答).13.函数()()e 211x x f x x -=-的极小值为__________.14.定义:设,X Y 是离散型随机变量,则X 在给定事件Y y =条件下的期望为()()11,()()n ni i i i i i P X x Y y E X Y y x P X x Y y x P Y y ======⋅===⋅=∑∑∣∣,其中{}12,,,n x x x 为X 的所有可能取值集合,(),P X x Y y ==表示事件“X x =”与事件“Y y =”都发生的概率.某射击手进行射击训练,每次射击击中目标的概率均为(01)p p <<,击中目标两次时停止射击.设ξ表示第一次击中目标时的射击次数,η表示第二次击中目标时的射击次数.则()2,5P ξη===__________,()E n ξη==∣__________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.某学校有南、北两家餐厅,各餐厅菜品丰富多样,可以满足学生的不同口味和需求.某个就餐时间对在两个餐厅内就餐的100名学生分性别进行了统计,得到如下的22⨯列联表.性别就餐人数合计南餐厅北餐厅男252550女203050合计4555100(1)对学生性别与在南北两个餐厅就餐的相关性进行分析,依据0.100α=的独立性检验,能否认为在不同餐厅就餐与学生性别有关联?(2)若从这100名学生中选出2人参加某项志愿者活动,求在抽出2名学生的性别为一男一女的条件下,这2名学生均在“南餐厅”就餐的概率.附:()()()()22(),n ad bc n a b c d a b c d a c b d χ-==+++++++;α0.1000.0500.0250.010x α2.7063.8415.0246.63516.由0,1,2,3这四个数组成无重复数字的四位数中.(1)求两个奇数相邻的四位数的个数(结果用数字作答);(2)记夹在两个奇数之间的偶数个数为X ,求X 的分布列与期望.17.已知函数()()1ln f x x x ax =--.(1)若2a =,求()f x 在()()1,1f 处的切线方程;(2)若()f x 的图象恒在x 轴的上方,求a 的取值范围.18.已知离散型随机变量X 服从二项分布(),B n p .(1)求证:11C C ,(kk n n k n n k --=≥,且n 为大于1的正整数);(2)求证:()E X np =;(3)一个车间有12台完全相同的车床,它们各自独立工作,且发生故障的概率都是20%,设同时发生故障的车床数为X ,记X k =时的概率为()P X k =.试比较()P X k =最大时k 的值与()E X 的大小.19.已知函数()()()2()e ,xf x x a x b a b =--∈R .(1)当1,2a b ==时,求函数()f x 的单调区间;(2)若x a =是()f x 的一个极大值点,求b 的取值范围;(3)令()()exg x f x -=且12(),,a b x x <是()g x 的两个极值点,3x 是()g x 的一个零点,且123,,x x x 互不相等.问是否存在实数4x ,使得1234,,,x x x x 按照某种顺序排列后构成等差数列,若存在求出4x ,若不存在说明理由.2023—2024学年高二下学期教学质量检测数学试题2024.07注意事项:1.本试卷分选择题和非选择题两部分.满分150分,考试时间120分钟.2.答题前,考生务必将姓名、班级等个人信息填写在答题卡指定位置.3.考生作答时,请将答案答在答题卡上.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径05毫米黑色墨水签字笔在答题卡上各题的答题区域内作答.超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效.一、选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合要求的.1.一质点A 沿直线运动,位移s (单位:米)与时间t (单位:秒)之间的关系为221s t =+,当位移大小为9时,质点A 运动的速度大小为()A.2B.4C.6D.8【答案】D 【解析】【分析】令9s =求出t ,再求出函数的导函数,代入计算可得.【详解】因为221s t =+,令2219s t +==,解得2t =(负值已舍去),又4s t '=,所以2|428t s ='=⨯=,所以当位移大小为9时,质点A 运动的速度大小为8m /s .故选:D2.若X 服从两点分布,()()100.32P X P X =-==,则()0P X =为()A.0.32 B.0.34C.0.66D.0.68【答案】B 【解析】【分析】利用两点分布的性质可得答案.【详解】依题意可得()()101P X P X =+==,()()100.32P X P X =-==,所以()10.3210.34.2P X -===故选:B.3.下列说法正确的是()A.线性回归分析中决定系数2R 用来刻画回归的效果,若2R 值越小,则模型的拟合效果越好B.残差平方和越小的模型,拟合的效果越好C.正态分布()2,N μσ的图象越瘦高,σ越大D.两个随机变量的线性相关性越强,则相关系数r 的值越接近于1【答案】B 【解析】【分析】2R 值越大,模型的拟合效果越好可判断A ;残差平方和越小的模型,拟合的效果越好,判断B ;正态分布()2,N μσ的图象越瘦高,σ越小可判断C ;两个随机变量的线性相关性越强,则相关系数r 的绝对值越接近于1,可判断D .【详解】对于A :2R 值越大,模型的拟合效果越好,故A 错误;对于B ,残差平方和越小的模型,拟合的效果越好,故B 正确.对于C ,正态分布()2,N μσ的图象越瘦高,σ越小,故C 错误;对于D ,两个随机变量的线性相关性越强,则相关系数r 的绝对值越接近于1,故D 错误.故选:B .4.已知函数()23f x ax x=+的单调递增区间为[)1,+∞,则a 的值为()A.6B.3C.32D.34【答案】C 【解析】【分析】求出函数的定义域与导函数,分0a ≤、0a >两种情况讨论,求出函数的单调递增区间,从而得到方程,解得即可.【详解】函数()23f x ax x=+的定义域为{}|0x x ≠,又()3223232ax f x ax x x -'=-=,当0a ≤时()0f x '<恒成立,所以()f x 没有单调递增区间,不符合题意;当0a >时,323y ax =-单调递增,令()0f x ¢>,解得1332x a ⎛⎫> ⎪⎝⎭,所以()f x 的单调递增区间为133,2a ⎡⎫⎛⎫⎪⎢+∞ ⎪⎪⎢⎝⎭⎣⎭(或133,2a ⎛⎫⎛⎫⎪+∞ ⎪ ⎪⎝⎭⎝⎭),依题意可得13312a ⎛⎫= ⎪⎝⎭,解得32a =.故选:C5.若()465nn a n ⨯+-∈N 能被25整除,则正整数a 的最小值为()A.2B.3C.4D.5【答案】C 【解析】【分析】利用二项式定理展开,并对n 讨论即可得到答案【详解】因为()465nn a n ⨯+-∈N 能被25整除,所以当1n =时,46529a a ⨯+-=-,此时2925(Z)a k k =-∈,0a >,当1k =时,4a =;当2n ≥时,11224(51)54(5C 5C 5n n n n n n n a --⨯++-=⨯+⨯++⨯ 1C 51)5n n n a -+⨯++-112214(5C 5C 54()C 51)5n n n n n n n n a---=⨯+⨯++⨯+⨯⨯++- 2132425(5C 5C 25)4n n n n n n a ---=⨯+⨯++++- 213225(454C 54C )4n n n n na n ---=⨯+⨯++++- ,因此只需4a -能够被25整除即可,可知最小正整数a 的值为4,综上所述,正整数a 的最小值为4,故选:C6.从标有1,2,3,4,5,6的6张卡片中任取4张卡片放入如下表格中,使得表中数字满足,a b c d >>,则满足条件的排法种数为()abcdA.45B.60C.90D.180【答案】C 【解析】【分析】分两步完成,第一步从6张卡片中任取2张卡片放入a 、b ,第二步从剩下的4张卡片中任取2张卡片放入c 、d ,按照分步乘法计数原理计算可得.【详解】首先从6张卡片中任取2张卡片放入a 、b (较大的数放入a )有26C 种方法;再从剩下的4张卡片中任取2张卡片放入c 、d (较大的数放入c )有24C 种方法;综上可得一共有2264C C 90=种不同的排法.故选:C7.在()21*(2n n +∈N 的展开式中,x 的幂指数是整数的各项系数之和为()A.2131n +- B.2131n ++ C.21312n +- D.21312n ++【答案】D 【解析】【分析】设((21212,2n n A B ++==,由二项式定理知A 与B 中的x 的整数次幂项之和相同,再利用赋值法求解.【详解】设((21212,2n n A B ++==,由二项式定理知A 与B 中的x 的整数次幂项之和相同,记作()f x ,非整数次幂项之和互为相反数,相加后相互抵消.故有())()2121222n n f x ++=++.令1x =,则所求的系数之和为()()2111312n f +=+.故选:D.8.已知函数()3213f x x x =-,若()e n f m n =-,则m 与n 的大小关系为()A.m n >B.m n=C.m n< D.不能确定【答案】A 【解析】【分析】设()e x g x x =-,利用导数先研究函数()f x 和()g x 图象性质,并得到在R 上()()g x f x >恒成立,若()e ()nf m ng n =-=,可知3m >,若0n <,则显然m n >,若0n ≥,由()()()g m f m g n >=,所以m n >,综上所述,m n >.【详解】由()3213f x x x =-,()2()22f x x x x x =-=-',当0x <或2x >时,()0f x '>,则函数()f x 单调递增,当02x <<时,()0f x '<,则函数()f x 单调递减,4()(0)0,()(2)3f x f f x f ====-极大值极小值,且(3)0f =,设()e x g x x =-,则()e 1x g x '=-,当0x <时,()0g x '<,则函数()g x 单调递减,当0x >时,()0g x '>,则函数()g x 单调递增,()(0)1g x g ==极小值,设()321()()()e 33xF x g x f x x x x x ⎛⎫=-=---> ⎪⎝⎭,则2()e 12x F x x x'=--+设()2()e 123xm x x x x =--+>,则()e 22x m x x '=-+,设()()e 223xv x x x =-+>,则()e 20x v x '=->恒成立,所以()v x 在()3,∞+单调递增,3()e 2320v x >-⨯+>,即()0m x '>恒成立,所以()m x 在()3,∞+单调递增,则33()(3)e 196e 40m x m >=--+=->,即()0F x '>恒成立,所以()F x 在()3,∞+单调递增,则3()(3)e 30F x F >=->,所以在()3,∞+上()()g x f x >恒成立,在(],3-∞显然也成立,如图,若()e ()nf m ng n =-=,可知3m >,若0n <,则显然m n >,若0n ≥,由()()()g m f m g n >=,所以m n >,综上所述,m n >故选:A【点睛】关键点点睛:设()e x g x x =-,利用导数得到在R 上()()g x f x >恒成立,若()e ()nf m ng n =-=,可知3m >;若0n <,则显然m n >,若0n ≥,由()()()g m f m g n >=,所以m n >,综上所述,m n >.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知随机变量()4,2X N ~,若(6),(46)P X a P X b >=<<=,则()A.12a b +=B.(2)P X a <=C.()218E X +=D.()218D X +=【答案】ABD 【解析】【分析】根据正态分布的对称性可判断A 、B ,根据正态分布定义及期望与方差的性质可判断C 、D.【详解】对于A ,因为4μ=,()()6,46>=<<=P X a P X b ,所以()()()44660.5>=<<+>=+=P X P X P X a b ,故A 正确;对于B ,因为4μ=,()()26P X P X a <=>=,故B 正确;对于C ,因为()4E X =,所以()()21219+=+=E X E X ,故C 错误;对于D ,因为()2D X =,所以()()2148D X D X +==,故D 正确.故选:ABD.10.已知曲线()y f x =在原点处的切线与曲线()y xf x =在()2,8处的切线重合,则()A.()24f =B.()23f '=C.()04f '= D.曲线()y f x =在()2,a 处的切线方程为y a=【答案】ACD 【解析】【分析】令()()g x xf x =,求出()g x 的导函数,依题意()28=g ,即可判断A ,又曲线()y f x =在原点处的切线过点()2,8,即可得到()0f ',即可判断C ,再由()()02g f '='求出()2f ',即可判断B 、D.【详解】令()()g x xf x =,则()()()g x f x xf x ''=+,依题意()()2228g f ==,解得()24f =,故A 正确;依题意可得曲线()y f x =在原点处的切线过点()2,8,所以()480200f '--==,故C 正确;又()()()()222204f fg f '='=+=',所以()20f '=,则曲线()y f x =在()2,a 处的切线方程为y a =,故B 错误,D 正确.故选:ACD11.假设变量x 与变量Y 的n 对观测数据为()()()1122,,,,,,n n x y x y x y ,两个变量满足一元线性回归模型()()2,0,.Y bx e E e D e σ=+⎧⎨==⎩要利用成对样本数据求参数b 的最小二乘估计ˆb ,即求使()21()ni i i Q b y bx ==-∑取最小值时的b 的值,若某汽车品牌从2020~2024年的年销量为w (万辆),其中年份对应的代码t 为15~,如表,年份代码t12345销量w (万辆)49141825根据散点图和相关系数判断,它们之间具有较强的线性相关关系,可以用线性回归模型描述令变量x t t Y w w =-=-,且变量x 与变量Y 满足一元线性回归模型2()0,()Y bx eE e D e σ=+⎧⎨==⎩则下列结论正确的有()A.51521ˆi ii i i x ybx ===∑∑ B.51521ˆi ii i i x yby ===∑∑C.ˆ 5.1 1.3wt =- D.2025年的年销售量约为34.4万辆【答案】AC 【解析】【分析】利用线性回归方程待定系数公式()()()51521ˆiii ii x x y y bx x ==--=-∑∑,再由变量的线性代换关系进行计算,最后恒过样本点(),x y ,就可得到线性回归方程.【详解】由i i x t t =-可得:()551111055i i i i x t t t t ===-=-=∑∑,同理由i i y ωω=-,可得()551111055i i i i y ωωωω===-=-=∑∑,根据公式()()()55511155522221115ˆ5iii ii ii i i iii i i i x x y y x y x y x ybx x xxx======---===--∑∑∑∑∑∑,故A 正确;B 错误;由表格中数据可得:3,14t ω==,()()5551115i iii i i i i i x y tt t t ωωωω====--=-⋅∑∑∑1429314418525531451=⨯+⨯+⨯+⨯+⨯-⨯⨯=,()5552222111514916255910ii ii i i xt ttt ====-=-=++++-⨯=∑∑∑,所以5152151ˆ 5.110iii ii x ybx=====∑∑,由于0,0x y ==,所以y 与x 的回归方程必过原点,ˆ 5.1yx =,又由于3x t t t =-=-,14y ωωω=-=-代入得:()ˆ14 5.13t ω-=-,整理得:ˆ 5.1 1.3t ω=-,故C 正确;当6t =,即表示2025年,此时ˆ 5.16 1.329.3ω=⨯-=,所以2025年的年销售量约为29.3万辆,故D 错误;故选:AC.三、填空题:本题共3小题,每小题5分,共15分.12.A 、B 、C 、D 共4名同学参加演讲比赛,决出第一至第四的名次.A 和B 去询问成绩,回答者对A 说:“很遗憾,你和B 都没有得到冠军.”对B 说:“你当然不会是最差的.”从这两个回答分析,这4人的名次排列有__________.种(用数字作答).【答案】8【解析】【分析】依题意A 、B 不在第一名且B 不在第四名,分A 在第四名与不在第四名两种情况讨论.【详解】依题意A 、B 不在第一名且B 不在第四名,若A 在第四名,先排B 到第二、三名中的一个位置,另外两个人全排列,所以有1222A A 4=种排列;若A 不在第四名,则先排A 、B 到第二、三名两个位置,另外两个人全排列,所以有2222A A 4=种排列;综上可得这4人的名次排列有448+=种.故答案为:813.函数()()e 211x x f x x -=-的极小值为__________.【答案】324e【解析】【分析】求出函数的定义域与导函数,从而求出函数的单调区间,即可求出函数的极小值.【详解】函数()()e 211x x f x x -=-的定义域为{}|1x x ≠,又()()()2e 231x x xf x x -'=-,所以当0x <或32x >时()0f x ¢>,当01x <<或312x <<时()0f x '<,所以()f x 在(),0∞-,3,2⎛⎫+∞⎪⎝⎭上单调递增,在()0,1,31,2⎛⎫⎪⎝⎭上单调递减,所以()f x 在32x =处取得极小值,即极小值为32323e 21324e 3212f ⎛⎫⨯- ⎪⎛⎫⎝⎭== ⎪⎝⎭-.故答案为:324e14.定义:设,X Y 是离散型随机变量,则X 在给定事件Y y =条件下的期望为()()11,()()n ni i i i i i P X x Y y E X Y y x P X x Y y x P Y y ======⋅===⋅=∑∑∣∣,其中{}12,,,n x x x 为X 的所有可能取值集合,(),P X x Y y ==表示事件“X x =”与事件“Y y =”都发生的概率.某射击手进行射击训练,每次射击击中目标的概率均为(01)p p <<,击中目标两次时停止射击.设ξ表示第一次击中目标时的射击次数,η表示第二次击中目标时的射击次数.则()2,5P ξη===__________,()E n ξη==∣__________.【答案】①.32(1)p p -②.2n ##12n 【解析】【分析】根据相互独立事件的乘法公式求()2,5P ξη==,求出()P n η=、(),P i n ξη==,即可求(|)E n ξη=.【详解】由题意,事件“2,5ξη==”表示该射击手进行5次射击且在第二次、第五次击中目标,所以()322,5(1)(1)(1)(1)P p p p p p p p ξη===-⋅⋅-⋅-⋅=-,又122221()C (1)(1)(1)n n n P n p p n p p η---==-=--,()()221n P i n p p ξη-===-,()1,2,,1i n =- ,所以()()()()()222211121(1)(11,)|n n i n n p p P i n E p n i P n p n ξηξηη-=--⎡⎤+++--⎡⎤==⎣⎦==⨯=⎢⎥=⎢⎥⎣--⎦∑ 122 (1111)n n n n -=++++---1(1)1122n n n ⎛⎫-+ ⎪-⎝⎭==.故答案为:32(1)p p -;2n【点睛】关键点点睛:本题解答的关键是对题干所给公式理解并准确的应用.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.某学校有南、北两家餐厅,各餐厅菜品丰富多样,可以满足学生的不同口味和需求.某个就餐时间对在两个餐厅内就餐的100名学生分性别进行了统计,得到如下的22⨯列联表.性别就餐人数合计南餐厅北餐厅男252550女203050合计4555100(1)对学生性别与在南北两个餐厅就餐的相关性进行分析,依据0.100α=的独立性检验,能否认为在不同餐厅就餐与学生性别有关联?(2)若从这100名学生中选出2人参加某项志愿者活动,求在抽出2名学生的性别为一男一女的条件下,这2名学生均在“南餐厅”就餐的概率.附:()()()()22(),n ad bc n a b c d a b c d a c b d χ-==+++++++;α0.1000.0500.0250.010x α2.7063.8415.0246.635【答案】(1)答案见解析(2)15【解析】【分析】(1)求出2χ值,与2.706比较大小,得出结论即可;(2)运用古典概型和条件概率公式求解即可.【小问1详解】零假设为0H :分类变量X 与Y 相互独立,即不同区域就餐与学生性别没有关联.222()100(25302025)1002.706()()()()4555505099n ad bc a b c d a c b d χ-⨯-⨯===<++++⨯⨯⨯.依据0.100α=的独立性检验,没有充分证据推断0H 不成立,因此可以认为0H 成立,即认为在不同区域就餐与学生性别没有关联.【小问2详解】设事件A 为“从这100名参赛学生中抽出2人,其性别为一男一女”,事件B 为“这2名学生均在南餐厅就餐”,则()11252021110025201111505050502100C C C C C ()25201C C ()C C 50505C P AB P B A P A ⨯=====⨯.故在抽出2名学生性别为一男一女的条件下,这2名学生的成绩均在“南餐厅”就餐概率为15.16.由0,1,2,3这四个数组成无重复数字的四位数中.(1)求两个奇数相邻的四位数的个数(结果用数字作答);(2)记夹在两个奇数之间的偶数个数为X ,求X 的分布列与期望.【答案】(1)8(2)分布列见解析;7()9E X =【解析】【分析】(1)分0在个位、0在十位和0在百位三类求解;(2)由题意知夹在两个奇数之间的偶数个数X 可能的取值分别为0,1,2,求出其分布列,并利用期望公式求解.【小问1详解】两个奇数相邻的无重复数字的四位数有如下三种情况:①0在个位上时有2222A A 4=个四位数,②0在十位上时有22A 2=个四位数,③0在百位上时有22A 2=个四位数,所以满足条件的四位数的个数共有4228++=个.【小问2详解】由题意知夹在两个奇数之间的偶数个数X 可能的取值分别为0,1,2,则1333884(0)C A 189P X ====,133361(1)C A 3P X ===,333142(2)C A 9P X ===,X ∴的分布列为X 012P491329期望为4127()0129399E X =⨯+⨯+⨯=.17.已知函数()()1ln f x x x ax =--.(1)若2a =,求()f x 在()()1,1f 处的切线方程;(2)若()f x 的图象恒在x 轴的上方,求a 的取值范围.【答案】(1)20x y +=(2)a<0【解析】【分析】(1)利用导数的几何意义求解即可;(2)将问题转化为()(1)ln 0f x x x ax =-->恒成立,则(1)ln x xa x-<在,()0x ∈+∞上恒成立,构造函数(1)ln ()x xF x x-=,利用导数求出其最小值即可.【小问1详解】由2a =,则()(1)ln 2f x x x x =--,,()0x ∈+∞,(1)2f =-,()1ln 1f x x x'=--,代入1x =得(1)2f '=-,所以()f x 在(1,1)处的切线方程为20x y +=.【小问2详解】由()f x 图象恒在x 轴上方,则()(1)ln 0f x x x ax =-->恒成立,即(1)ln x xa x-<在,()0x ∈+∞上恒成立,令(1)ln ()x xF x x-=,即min ()a F x <,21ln ()x xF x x -+'=,令()1ln g x x x =-+,则1()10(0)g x x x'=+>>,所以()g x 在(0,)+∞上为单调递增函数且(1)0g =.所以当(0,1)x ∈时,()0F x '<,()F x 在(0,1)单调递减;当(1,)x ∈+∞时,()0F x '>,()F x 在(1,)+∞单调递增;所以(1)0F =为函数()F x 的最小值,即()(1)F x F ≥.所以综上可知a<0.18.已知离散型随机变量X 服从二项分布(),B n p .(1)求证:11C C ,(kk n n k n n k --=≥,且n 为大于1的正整数);(2)求证:()E X np =;(3)一个车间有12台完全相同的车床,它们各自独立工作,且发生故障的概率都是20%,设同时发生故障的车床数为X ,记X k =时的概率为()P X k =.试比较()P X k =最大时k 的值与()E X 的大小.【答案】(1)证明见解析(2)证明见解析(3)()P X k =最大时k 的值小于()E X 的大小【解析】【分析】(1)根据组合数公式分析证明;(2)根据二项分布结合二项式定理分析证明;(3)分析可知随机变量~(12,0.2)X B ,结合二项分布概率公式可得2k =概率最大,进而与期望对比分析.【小问1详解】左边!!C !()!(1)!()!kn n n k k k n k k n k ==⋅=---,右边11(1)!!C (1)!()!(1)!()!k n n n n n k n k k n k ---==⋅=----,所以左边=右边,即11C C k k n n k n --=;【小问2详解】由~(,)X B n p 知()C (1)k k n k n P X k p p -==-,令1q p =-由(1)知11C C k k n n k n --=可得,1111(1)11011()CC nnnk kn kk k n kk k n k nn n k k k E X kC p qn p qnp pq ----------======∑∑∑,令1k m -=,则1111()C()n mm n m n n m E X npp q np p q -----===+∑,()E X np ∴=;【小问3详解】由题意知~(12,0.2)X B ,所以()120.2 2.4E X =⨯=,要使()P X k =最大,则必有()(1)P X k P X k =≥=+,()(1)P X k P X k =≥=-,即12111312121211111212C 0.2(10.2)C 0.2(10.2)C 0.2(10.2)C 0.2(10.2)k k k k k k kk k k k k -----++-⎧-≥-⎨-≥-⎩即141341121k k k k ⎧≥⎪⎪-⎨⎪≥⎪-+⎩解得81355k ≤≤,又因为*N k ∈,所以2 2.4()k E X =<=.()P X k ∴=最大时k 的值小于()E X .19.已知函数()()()2()e ,xf x x a x b a b =--∈R .(1)当1,2a b ==时,求函数()f x 的单调区间;(2)若x a =是()f x 的一个极大值点,求b 的取值范围;(3)令()()exg x f x -=且12(),,a b x x <是()g x 的两个极值点,3x 是()g x 的一个零点,且123,,x x x 互不相等.问是否存在实数4x ,使得1234,,,x x x x 按照某种顺序排列后构成等差数列,若存在求出4x ,若不存在说明理由.【答案】(1)单调递减区间为(,-∞,,单调递增区间为(,)+∞(2)(,)a +∞(3)存在,423a bx +=【解析】【分析】(1)求出函数的导函数,再解关于导函数的不等式,即可求出函数的单调区间;(2)令2()(3)2h x x a b x ab b a =+--+--,即可判断()h x 有两个不等实根1x ,2x ,不妨设12x x <,再对1x 、2x 、a 的大小关系分类讨论,即可得到()0h a <,从而求出b 的范围;(3)求出函数的导函数,即可得到1x a =,223a b x +=,再确定3x b =,根据等差数列的定义求出4x 即可.【小问1详解】由2()()()e x f x x a x b =--得()()2(3)2e x f x x a x a b x ab b a '⎡⎤=-+--+--⎣⎦,当1a =,2b =时,()(1)(xx x f x x =--+',令()0f x '=,解得1x =21x =,3x =所以当(,x ∈-∞或x ∈时()0f x '<,当(x ∈或)x ∈+∞时()0f x ¢>,所以()f x 的单调递减区间为(,-∞,,单调递增区间为(,)+∞.【小问2详解】函数()f x 的定义域为R ,且()()2(3)2e xf x x a x a b x ab b a '⎡⎤=-+--+--⎣⎦,令2()(3)2h x x a b x ab b a =+--+--,则22 (3)4(2)(1)80a b ab b a a b ∆=-----=-++>.所以()h x 有两个不等实根1x ,2x ,不妨设12x x <.①当1x a =或2x a =时,x a =不是()f x 的极值点,此时不合题意;②当1x a >时,则x a <或12x x x <<时()0f x '<,当1a x x <<或2x x >时()0f x ¢>,所以()f x 在(),a -∞,()12,x x 上单调递减,在()1,a x ,()2,x +∞上单调递增,所以x a =不是()f x 的极大值点,③当2x a <时,则x a >或12x x x <<时()0f x ¢>,当2x x a <<或1x x <时()0f x '<,所以()f x 在(),a +∞,()12,x x 上单调递增,在()2,x a ,()1,x -∞上单调递减,所以x a =不是()f x 的极大值点,④当12x a x <<时,则2x x >或1x x a <<时()0f x ¢>,当2a x x <<或1x x <时()0f x '<,所以()f x 在()2,x +∞,()1,x a 上单调递增,在()2,a x ,()1,x -∞上单调递减,所以x a =是()f x 的极大值点.所以()0h a <,即2(3)20a a b a ab b a +--+--<,所以b a >,所以b 的取值范围(,)a +∞.【小问3详解】由2()e ()()()x g x f x x a x b -==--,知()23()3a b g x x a x +⎛⎫'=--⎪⎝⎭,由a b <,故23a b a +<,所以当x a <或23a b x +>时()0g x '>,当23a b a x +<<时()0g x '<,所以()g x 在(),a -∞,2,3a b +⎛⎫+∞ ⎪⎝⎭上单调递增,在2,3a b a +⎛⎫ ⎪⎝⎭上单调递减,不妨设()g x 的两个极值点分别为1x a =,223a b x +=.因为123,,x x x 互不相等,3x 是()g x 的一个零点,所以3x b =,所以2222223333a b b a b a a b a b +--+⎛⎫-==⨯=- ⎪⎝⎭,所以存在124242232263a b a x x a b a b x +++++====,使1423,,,x x x x 成等差数列,即存在实数4x ,使得1234,,,x x x x 按照某种顺序排列后构成等差数列,且423a b x +=.【点睛】方法点睛:导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理.。

2021-2022学年高二下学期期末考试数学试题含答案

2021-2022学年高二下学期期末考试数学试题含答案

一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.78915⨯⨯⨯⋅⋅⋅⨯可表示为( ) A .915AB .815AC .915CD .815C2.从1~7这七个数字中选3个数字,组成无重复数字的三位数,其中偶数的个数为( ) A .210B .120C .90D .453.()91x -的展开式的第6项的系数为( ) A .69CB .69C -C .59CD .59C -4.日常生活中的饮用水是经过净化的,随着水的纯净度的提高,所需净化费用不断增加.已知将1t 水净化到纯净度为x %时所需费用(单位:元)为()()528480100100c x x x=<<-,则净化到纯净度为98%左右时净化费用的变化率,大约是净化到纯净度为90%左右时净化费用变化率的( ) A .30倍B .25倍C .20倍D .15倍5.根据分类变量X 与Y 的成对样本数据,计算得到26.147χ=.根据小概率值0.01α=的独立性检验(0.016.635x =),结论为( )A .变量X 与Y 不独立B .变量X 与Y 不独立,这个结论犯错误的概率不超过0.01 C .变量X 与Y 独立 D .变量X 与Y 独立,这个结论犯错误的概率不超过0.016.已知6件产品中有2件次品,4件正品,检验员从中随机抽取3件进行检测,记取到的正品数为X ,则()E X =( )A .2B .1C .43D .237.某人在11次射击中击中目标的次数为X ,若()~11,0.8X B ,若()P X k =最大,则k=( ) A .7 B .8C .9D .108.已知函数()()1e x f x x =+,过点M (1,t )可作3条与曲线()y f x =相切的直线,则实数t 的取值范围是( ) A .24,0e ⎛⎫-⎪⎝⎭B .242,e e ⎛⎫-⎪⎝⎭ C .36,2e e ⎛⎫-⎪⎝⎭D .36,0e ⎛⎫-⎪⎝⎭二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分. 9.对经验回归方程,下列正确的有( ) A .决定系数2R 越小,模型的拟合效果越好 B .经验回归方程只适用于所研究的样本的总体C .不能期望经验回归方程得到的预报值就是响应变量的精确值D .残差平方和越小,模型的拟合效果越好10.甲、乙两地举行数学联考,统计发现:甲地学生的成绩()()2111~,0X N μσσ>,乙地学生的成绩()()2222~,0Y N μσσ>.下图分别是其正态分布的密度曲线,则( )A .甲地数学的平均成绩比乙地的低B .甲地数学成绩的离散程度比乙地的小C .()()90948290PX P X ≤<>≤< D .若28σ=,则()921240.84P Y ≤<≈(附:若随机变量()()2~,0X N μσσ>,则()0.6827P X μσμσ-<≤+≈,()220.9545P X μσμσ-<≤+≈,()330.9973P X μσμσ-<≤+≈)11.下列命题正确的有( )A .现有1、3、7、13四个数,从中任取两个相加得到m 个不相等的和;从中任取两个相减得到n 个不相等的差,则m +n =18B .在()()()567111x x x +++++的展开式中,含3x 的项的系数为65 C .若(5122a b =-(a ,b 为有理数),则b =-29D .02420202022202020222022202220222022C C C C C 2+++⋅⋅⋅++= 12.已知函数()()()ln 2f x x x ax a a =-+∈R 有两个极值点1x ,()212x x x <,则( )A .104a <<B .122x x +>C .()112f x >D .()20f x >三、填空题:本题共4小题,每小题5分,共20分. 13.已知函数()3f x x =,则曲线()y f x =在点(1,1)处的切线的方程为______.14.将4名博士分配到3个不同的实验室,每名博士只分配到一个实验室,每个实验室至少分配一名博士,则不同的分配方案有______种.15.某小微企业制造并出售球形瓶装的某种饮料,瓶子的制造成本是21.6r π分,其中r (单位:cm )是瓶子的半径,已知每出售1mL 的饮料,可获利0.4分,且能制作的瓶子的最大半径为6cm ,当每瓶饮料的利润最大时,瓶子的半径为______cm . 16.已知离散型随机变量X 的取值为有限个,()72E X =,()3512D X =,则()2E X =______. 四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)两批同种规格的产品,第一批占40%,次品率为5%;第二批占60%,次品率为4%.将两批产品混合,从混合产品中任取一件. (Ⅰ)求这件产品是次品的概率;(Ⅱ)已知取到的是次品,求它取自第一批产品的概率. 18.(本小题满分12分)若()*,0,na x a a n x ⎛⎫-∈≠∈ ⎪⎝⎭R N 的展开式中只有第4项的二项式系数最大,且展开式中的常数项为-20. (Ⅰ)求n ,a 的值; (Ⅱ)若()()()()220212022202220212020012202120221111a x a x x a x x a x x a x a +-+-+⋅⋅⋅+-+-=,求1232022a a a a +++⋅⋅⋅+.19.(本小题满分12分)某校组织数学知识竞赛活动,比赛共4道必答题,答对一题得4分,答错一题扣2分.学生甲参加了这次活动,假设每道题甲能答对的概率都是34,且各题答对与否互不影响.设甲答对的题数为Y ,甲做完4道题后的总得分为X . (Ⅰ)试建立X 关于Y 的函数关系式,并求()0P X <;(Ⅱ)求X 的分布列及()E X .20.(本小题满分12分) 已知函数()e ln x m f x x +=-.(Ⅰ)若()f x 在[)1,+∞上单调递增,求实数m 的取值范围;(Ⅱ)求证:2m ≥-时,()0f x >.21.(本小题满分12分)某公司对其产品研发的年投资额x (单位:百万元)与其年销售量y (单位:千件)的数据进行统计,整理后得到如下统计表:(Ⅰ)求变量x 和y 的样本相关系数r (精确到0.01),并推断变量x 和y 的线性相关程度(参考:若0.75r ≥,则线性相关程度很强;若0.300.75r ≤<,则线性相关程度一般;如果0.25r ≤,则线性相关程度较弱);(Ⅱ)求年销售量y 关于年投资额x 的线性回归方程;(Ⅲ)当公司对其产品研发的年投资额为600万元时,估计产品的年销售量. 参考公式:对于变量x 和变量y ,设经过随机抽样获得的成对样本数据为()11,x y ,()22,x y ,…,(),n n x y ,其中1x ,2x ,…,n x 和1y ,2y ,…,n y 的均值分别为x 和y .称()()niix x y y r --=∑x 和y 的样本相关系数.线性回归方程ˆˆˆybxa =+中,()()()121ˆniii n i i x x yy b x x ==--=-∑∑,ˆˆay bx=-. 7.14≈.22.(本小题满分12分) 已知函数()()()sin ln 1f x a x x a =-+∈R 在区间(-1,0)内存在极值点.(Ⅰ)求a 的取值范围; (Ⅱ)判断关于x 的方程()0f x =在()1,π-内实数解的个数,并说明理由.参考答案一、单项选择题(每小题5分,共40分)1.A 2.C 3.D 4.B 5.C 6.A 7.C 8.D 二、多项选择题(每小题5分,共20分) 9.BCD10.AD11.BC12.BD三、填空题(每小题5分,共20分)13.y =3x -2 14.36 15.6 16.916四、解答题(共70分) 17.(本小题满分10分)解:设事件B 为“取到的产品是次品”,()1,2A i =为“取到的产品来自第i 批”.(Ⅰ)由全概率公式,所求概率为()()()()()1122||P B P A P B A P A P B A =+40%5%60%4%0.044=⨯+⨯=.(Ⅱ)所求概率为()()()()()()1111||P BA P A P B A P A B P B P B ==40%5%50.04411⨯==.18.(本小题满分12分) (Ⅰ)解:由题意,n =6. 展开式的通项()662166C C kk kkkk k a T x a x x --+⎛⎫=-=- ⎪⎝⎭,k =0,1,…,6. 令6-2k =0,得k =3.由题意,得()336C 20a -=-,即32020a -=-.解得a =1.(Ⅱ)解法1:()202211x x ⎡⎤=+-⎣⎦()()()()2202120220202212021220202021202220222022202220222022C C 1C 1C 1C 1x x x x x x x x =+-+-+⋅⋅⋅+-+-又()()()2202220222021202001220221111a x a x x a x x a x +-+-+⋅⋅⋅+-=,所以202201220212022202220222022202220222022C C C C C 2ii a==+++++=∑. 解法2:由(Ⅰ),知()()()2202220222021202001220221111a x a x x a x x a x +-+-+⋅⋅⋅+-=.令12x =,得2022202120202202201220221111111111222222a a a a ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+⨯-+⨯-+⋅⋅⋅+-= ⎪ ⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,即20222022202220220122022111112222a a a a ⎛⎫⎛⎫⎛⎫⎛⎫+++⋅⋅⋅+= ⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭.上式两边同乘以20222,得202220222i i a ==∑.由()()()2202220222021202001220221111a x a x x a x x a x +-+-+⋅⋅⋅+-=,令1x =,得01a =.所以2022202220220121i ii i a a a===-=-∑∑.19.(本小题满分12分)(Ⅰ)由题意,X =4Y -2(4-Y )=6Y -8. 由X =6Y -8<0,得43Y <.所以Y =0,1. 所以()()()431413113001C 444256P X P Y P Y ⎛⎫⎛⎫<==+==+⨯⨯= ⎪ ⎪⎝⎭⎝⎭. (Ⅱ)由题意,知3~4,4Y B ⎛⎫ ⎪⎝⎭. X 与Y 的对应值表为:于是,()()4318014256P X P Y ⎛⎫=-===-= ⎪⎝⎭;()()31433321C 14464P X P Y ⎛⎫=-===⨯-⨯=⎪⎝⎭; ()()2224332742C 144128P X P Y ⎛⎫⎛⎫====⨯-⨯= ⎪ ⎪⎝⎭⎝⎭; ()()3343327103C 14464P X P Y ⎛⎫⎛⎫====⨯-⨯=⎪ ⎪⎝⎭⎝⎭; ()()43811644256P X P Y ⎛⎫===== ⎪⎝⎭. 法1:()()()132727818241016102566412864256E X =-⨯+-⨯+⨯+⨯+⨯=.法2:()()()36868648104E X E Y E Y ⎛⎫=-=-=⨯⨯-= ⎪⎝⎭.20.(本小题满分12分) (Ⅰ)因为()f x 在[)1,+∞单调递增,所以()1e 0x m f x x +'=-≥在[)1,+∞恒成立,即1ln x m x+≥. 所以1ln ln m x x x x≥-=--. 令()ln gx x x =--,显然()g x 在[)1,+∞上单调递减,所以()g x 在[)1,+∞上的最大值为()()max 11g x g ==-.因此,1m ≥-. (Ⅱ)当2m ≥-时,()2e ln e ln x m x f x x x +-=-≥-.只需证明2e ln 0x x -->.证法1:令()2e ln x gx x -=-,则函数()g x 的定义域为()0,+∞.()21e x g x x -'=-.因为2e x y -=是增函数,1y x=-在()0,+∞上单调递增, 所以()21e x g x x -'=-在()0,+∞上单调递增.又因为()101e e 0g -'=-<,()e 211e e 10e eg -'=->->,由零点存在性定理,存在唯一的()01,e x ∈,使得()02001e 0x g x x-'=-=.当()00,x x ∈时,()()00g x g x ''<=,()g x 单调递减;当()0,x x ∈+∞时,()()00g x g x ''>=,()g x 单调递增. 所以,()()0200min e ln x gx g x x -==-.由()02001e 0x g x x -'=-=,得0201e x x -=,002ln x x -=-. 于是()()00min01220g x g x x x ==+->=. 所以,()2e ln 0x gx x -=->.证法2:要证2e ln 0x x -->,即证2e ln x x x x -->-.设()21e x h x x -=-,则()21e1x h x -='-.()210e 12x h x x ->⇔>⇔>';()102h x x '<⇔<,所以()1h x 在(0,2)上单调递减,在()2,+∞上单调递增. 所以()()11min 21h x h ==-.设()2ln h x x x =-,则()2111x h x xx-'=-=.()2001h x x '>⇔<<;()201h x x '<⇔>,所以()2h x 在(0,1)上单调递增,在()1,+∞上单调递减. 所以()()22max 11h x h ==-.可见,()()12h x h x >.所以原结论成立.证法3:要证明2e ln 0x x -->,而()2e121x x x -≥+-=-,当且仅当2x =时取等号;1ln x x -≥,当且仅当1x =时取等号.所以2e ln x x ->,即2e ln 0x x -->.注:证明2e 1x x -≥-,1ln x x -≥各得3分,给出取等的条件各得1分. 21.(本小题满分12分)解:(Ⅰ)由题意,3x =,6y =,52155ii x==∑,51123i i i x y ==∑,521307.5i i y ==∑.()()nniii i x x y y x y nxyr ---==∑∑=0.92=≈.因为0.75r ≥,所以变量x 和y 的线性相关程度很强.(Ⅱ)()()()1122211ˆnniii ii i nniii i x x yy x ynxybx x xnx ====---==--∑∑∑∑21235363.35553-⨯⨯==-⨯. ˆ6 3.33 3.9a=-⨯=-. 所以年销售量y 关于年投资额x 的线性回归方程为ˆ 3.3 3.9y x =-. (Ⅲ)当x =6时,由(Ⅱ),ˆ 3.36 3.915.9y =⨯-=.所以研发的年投资额为600万元时,产品的年销售量约为15.9千件. 22.(本小题满分12分) (Ⅰ)解:()()1cos 101f x a x x x'=--<<+. ①当1a ≤时,因为0cos 1x <<,所以()11011x f x x x'<-=<++. 所以()f x 在(-1,0)上单调递减,所以()f x 在(-1,0)上无极值点.故1a ≤不符合题意.②当a >1时,因为cos y a x =在(-1,0)上单调递增,11y x=-+在(-1,0)上单调递增, 所以()f x '在(-1,0)上单调递增.又()111,0a -∈-,111cos 10f a a a a ⎛⎫⎛⎫'-=--< ⎪ ⎪⎝⎭⎝⎭,()010f a '=->, 所以存在唯一的111,0x a ⎛⎫∈- ⎪⎝⎭,使得()10f x '=.当()11,x x ∈-时,()0f x '<,()f x 单调递减;当()1,0x x ∈时,()0f x '>,()f x 单调递增.所以()f x 在(-1,0)内存在极小值点1x .满足题意.综上,a 的取值范围是()1,+∞.(Ⅱ)当02x π<<时,()()2sin 11x f x a x ''=-++单调递减.又()010f ''=>,()24022f a ππ⎛⎫''=--< ⎪⎝⎭+,所以存在唯一的00,2x π⎛⎫∈ ⎪⎝⎭,使得()00f x ''=.当00x x <<时,()0f x ''>,()f x '单调递增;当02x x π<<时,()0f x ''<,()f x '单调递减,又()()0010f x f a ''>=->,2022f ππ⎛⎫'=-< ⎪+⎝⎭,所以存在唯一的0,2x πα⎛⎫∈ ⎪⎝⎭,使得()0f α'=.当()0,x α∈时,()0f x '>;当,2x πα⎛⎫∈ ⎪⎝⎭时,()0f x '<.又当2x ππ≤<时,()0f x '<恒成立,。

吉林长春东北师大附中2022-2023学年高二下学期期末数学试题(解析版)

吉林长春东北师大附中2022-2023学年高二下学期期末数学试题(解析版)

2022-2023学年东北师大附中(高二)年级(数学)科试卷下学期期末考试第I 卷(选择题)一、单项选择题:本大题共8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知某质点运动的位移y (单位;cm )与时间t (单位;s )之间的关系为()()ln 21y t t =+,则该质点在2s =t 时的瞬时速度为( ) A.15B.25C. 2D. 4【答案】B 【解析】【分析】对()()ln 21y t t =+求导得()221y t t ′=+,从而可求质点在2s =t 时的瞬时速度()2y ′. 【详解】因为()()ln 21y t t =+,所以()221y t t ′=+, 所以该质点在2s =t 时的瞬时速度为()2222125y ′==×+. 故选:B.2. 某中学课外活动小组为了研究经济走势,根据该市1999-2021年的GDP (国内生产总值)数据绘制出下面的散点图:该小组选择了如下2个模型来拟合GDP 值y 随年份x 的变化情况,模型一:(0,0)y kx b k x =+>>;模型二:e (0,0)x y k b k x =+>>,下列说法正确的是( ) A. 变量y 与x 负相关B. 根据散点图的特征,模型一能更好地拟合GDP 值随年份的变化情况C. 若选择模型二,e x y k b =+的图象一定经过点(),x yD. 当13x =时,通过模型计算得GDP 值为70,实际GDP 的值为71,则残差为1 【答案】D 【解析】【分析】对于AB ,由散点图的变化趋势分析判断,对于C ,由线性回归方程的性判断,对于D ,结合残差的定义判断.【详解】对于A ,由散点图可知y 随年份x 的增大而增大,所以变量y 与x 正相关,所以A 错误, 对于B ,由散点图可知变量y 与x 的变化趋向于一条曲线,所以模型二能更好地拟合GDP 值随年份的变化情况,所以B 错误,对于C ,若选择模型二:e (0,0)x y k b k x =+>>,令e x t =,则ykt b =+的图象经过点(),t y ,所以C 错误,对于D ,当13x =时,通过模型计算得GDP 值为70,实际GDP 的值为71,则残差为71701−=,所以D 正确, 故选:D 3. 函数21()ln 2f x x x =−的减区间为( ) A. (1,1)− B. (,1)−∞C. (0,1)D. (0,)+∞【答案】C 【解析】【分析】对函数求导,然后通分,进而令导函数小于0,最后求得单调递减区间. 【详解】函数()21ln 2f x x x =−的定义域为()0,∞+, 求导得()211x f x x x x =′−=−, 令()210x f x x−′=<,0x ,01x ∴<<,因此函数()21ln 2f x x x =−的减区间为()0,1. 故选:C.4. 已知随机变量X 的分布列为设23Y X =+,则()D Y 等于( )A.83B.53C.43D.173【答案】A 【解析】【分析】根据分布列求出()E X ,()D X ,再根据条件得()()4D Y D x =,计算答案即可. 【详解】由X 的分布列得()1110121333E X =×+×+×=, ()()()()22211120111213333D X =−×+−×+−×=,因为23Y X =+,则()()843D Y D X ==. 故选:A.5. 某教育局为振兴乡村教育,将5名教师安排到3所乡村学校支教,若每名教师仅去一所学校,每所学校至少安排1名教师,则不同的安排情况有( ) A. 300种 B. 210种 C. 180种 D. 150种【答案】D 【解析】【分析】根据部分均匀分组分配求解即可.【详解】由于每所学校至少安排1名教师,则不同的安排情况有2233535322C C C A 150A +=种. 故选:D .6. 已知数列{}n a ,{}n b ,其中11a =,且n a ,1n a +是方程220nn x b x −+=的实数根,则10b 等于( ) A. 24 B. 32C. 48D. 64【答案】D 【解析】【分析】根据题意,得到1n n n a a b ++=,12nn n a a +=,求得22a =,推出112n n a a +−=,进而可求出10a ,11a ,从而可求出结果.【详解】因为n a ,1n a +是方程220nn x b x −+=的实数根, 所以1n n n a a b ++=,12n n n a a +=, 又11a =,所以22a =; 当2n ≥时,112n n n a a −−=,所以11112n n n n n na a a a a a ++−−==, 因此4102232a a =⋅=,5111232a a =⋅= 所以101011323264b a a =+=+=. 故选:D.【点睛】本题主要考查由数列的递推关系求数列中的项,属于常考题型.7. 已知函数e ()xf x ax x=−,,()0x ∈+∞,当210x x >>时,不等式()()1221f x f x x x <恒成立,则实数a 的取值范围为( ) A. (,e]−∞ B. (,e)−∞C. e ,2−∞D. e ,2−∞【答案】D 【解析】【分析】根据不等式,构造函数并明确其单调性,进而可得导数的不等式,利用参数分离整理不等式,构造函数,利用导数求其最值,可得答案. 【详解】 当210x x >>时,不等式()()1221f x f x x x <恒成立,则()()1122f x x f x x <, 即函数()()2e xg x xf x ax ==−在()0,∞+上单调递增,则()e 20xg x ax ′=−≥, 整理可得2x e a x ≤,令()e x m x x =,则()()21e x x m x x−′=. 当()0,1x ∈时,()0m x ′<,()m x 单调递减,当()1,x ∈+∞时,()0m x ′>,()m x 单调递增,()()min 21e a m x m ∴≤==,e2a ∴≤. 故选:D.8. 设甲袋中有3个红球和4个白球,乙袋中有1个红球和2个白球,现从甲袋中任取1球放入乙袋,再从乙袋中任取2球,记事件A =“从甲袋中任取1球是红球”,事件B =“从乙袋中任取2球全是白球”,则下列说法正确的是( )A. 9()14=P BB. 6()7P AB =C. ()15P A B =D. 事件A 与事件B 相互独立【答案】C 【解析】分析】由古典概型概率计算公式,以及条件概率公式分项求解判断即可.【详解】现从甲袋中任取1球放入乙袋,再从乙袋中任取2球可知,从甲袋中任取1球对乙袋中任取2球有影响,事件A 与事件B 不是相互独立关系, 故D 错误; 从甲袋中任取1球是红球的概率为:()37P A =, 从甲袋中任取1球是白球的概率为:47, 所以乙袋中任取2球全是白球的概率为:()1212324312127474C C C C 125+C C C C 14714==+=P B ,故A 错误;()12321274C C 1C C 14==P AB ,故B 错误; ()()()11411455P AB P A B P B ==×=,故C 正确; 故选:C二、多项选择题:本大题共4小题,每小题4分,共16分.在每小题给出的四个选项中,有多项符合题目要求。

2021-2022学年福建省福州第二中学高二下学期期末考试数学试题(解析版)

2021-2022学年福建省福州第二中学高二下学期期末考试数学试题(解析版)

2021-2022学年福建省福州第二中学高二下学期期末考试数学试题一、单选题 1.设1i2i 1iz -=++,则||z =A .0B .12C .1 D【答案】C【详解】分析:利用复数的除法运算法则:分子、分母同乘以分母的共轭复数,化简复数z ,然后求解复数的模. 详解:()()()()1i 1i 1i2i 2i 1i 1i 1i z ---=+=++-+ i 2i i =-+=, 则1z =,故选c.点睛:复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.2.已知集合{}|22U x x =-≤≤,集合{}220A x x x =--<,则UA ( )A .{}21x x -≤<-B .{}21x x -≤≤-C .{}{}212x x -≤<-⋃D .{}{}212x x -≤≤-⋃【答案】D【分析】解出A 集合,通过补集运算算出UA 即可【详解】解:{}{}22012A x x x x x =--<=-<<所以UA{}{}212x x -≤≤-⋃故选:D3.记n S 为等差数列{}n a 的前n 项和.已知4505S a ==,,则 A .25n a n =- B .310n a n =- C .228n S n n =-D .2122n S n n =-【答案】A【分析】等差数列通项公式与前n 项和公式.本题还可用排除,对B ,55a =,44(72)1002S -+==-≠,排除B ,对C ,245540,25850105S a S S ==-=⨯-⨯-=≠,排除C .对D ,24554150,5250522S a S S ==-=⨯-⨯-=≠,排除D ,故选A .【详解】由题知,41514430245d S a a a d ⎧=+⨯⨯=⎪⎨⎪=+=⎩,解得132a d =-⎧⎨=⎩,∴25n a n =-,故选A .【点睛】本题主要考查等差数列通项公式与前n 项和公式,渗透方程思想与数学计算等素养.利用等差数列通项公式与前n 项公式即可列出关于首项与公差的方程,解出首项与公差,在适当计算即可做了判断.4.已知直线()100,0ax by a b +-=>>平分圆C :222420170x y x y +---=,则aba b+的最大值为( ) A.3+B.3-CD .16【答案】B【分析】由题意知直线过圆C 的圆心得到21a b +=,求aba b+的最大值可转化为11a b ab a b +=+的最小值的倒数,利用基本不等式1“”的妙用求最值即可. 【详解】圆C :222420170x y x y +---=,∴圆心(1,2)C ,直线()100,0ax by a b +-=>>平分圆C :222420170x y x y +---=, ∴直线()100,0ax by a b +-=>>过圆心(1,2)C ,即()210,0a b a b +=>>,11112()(2)33a b b aa b ab a b a b a b+∴=+=++=++≥,3ab a b ∴≤=-+当且仅当2b a a b =,即212b a ==,ab a b +的最大值为3-故选:B5.已知圆锥SO 的底面半径为2,若其底面上存在两点A ,B ,使得90ASB ∠=︒,则该圆锥侧面积的最大值为( ) A. B .2πC.D .4π【答案】C【分析】根据OA OB AB +≥可确定l ≤. 【详解】设圆锥的母线长为l ,90ASB ∠=,AB ∴=,又OA OB AB +≥(当且仅当AB 为底面圆直径时取等号),4AB ∴≤,即l ≤,∴圆锥侧面积22S l l ππ=⨯⨯=≤,即所求最大值为.故选:C6.设()f x 是定义域为R 的偶函数,且在()0,+∞上单调递减,则( )A .()()()0.250.5log 0.5log 0.20.5f f f >> B .()()()0.250.5log 0.50.5log 0.2f f f >> C .()()()0.20.55log 0.20.5log 0.5f f f >> D .()()()0.20.550.5log 0.2log 0.5f f f >>【答案】B【分析】由于()f x 是()0,+∞上递减的偶函数,故只需要比较选项中自变量的绝对值的大小,结合指数函数,对数函数的单调性即可比较.【详解】由110.5222log 0.2log 5log 5log 42--==>=,即0.5log 0.22>,注意到()()52ln 2ln 5log 2log 51ln 5ln 2⨯=⨯=,由155550log 1log 0.5log 2log 2-=<==,故50log 20.5<<,即50log 0.50.5<<,又根据指数函数性质,0.5x y =是R 上的减函数,故10.200.50.50.5<<,即0.20.50.51<<,于是0.250.5log 0.50.5log 0.2<<,又()f x 是()0,+∞上递减的偶函数,则()()()0.250.5log 0.50.5log 0.2f f f >>.故选:B7.若双曲线C:22221x y a b -=(0a >,0b >)的一条渐近线被圆()2224x y -+=所截得的弦长为2,则C 的离心率为A .2 BC D 【答案】A【详解】由几何关系可得,双曲线()222210,0x y a b a b-=>>的渐近线方程为0bx ay ±=,圆心()2,0到渐近线距离为d ==()2,0到直线0bx ay +=的距离为2bd c===即2224()3c a c -=,整理可得224c a =,双曲线的离心率2242c e a===.故选A . 点睛:双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出a ,c ,代入公式ce a=;②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=c 2-a 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围). 8.函数()sin ln 23f x x x π=--的所有零点之和为( ) A .9 B .6 C .4.5 D .3【答案】A【分析】根据给定条件,构造函数sin y x =π,ln 23y x =-,作出这两个函数的部分图像,确定两个图像的交点个数,再结合性质计算作答.【详解】由()0sin ln |23|x x f x π=⇔=-,令 sin y x =π , ln 23y x =- , 显然sin y x =π与ln 23y x =-的图像都关于直线32x =对称, 在同一坐标系内作出函数sin y x =π,ln 23y x =-的图像,如图,观察图像知,函数sin y x =π,ln 23y x =-的图像有6个公共点,其横坐标依次为123456,,,,,x x x x x x ,这6个点两两关于直线32x =对称,有1625343x x x x x x +=+=+=, 所以,1234569x x x x x x +++++=,所以函数()sin ln 23f x x x π=--的所有零点之和为9.故选:A二、多选题9.某人有6把钥匙,其中n 把能打开门.如果随机地取一把钥匙试着开门,把不能开门的钥匙扔掉,设第二次才能打开门的概率为p ,则下列结论正确的是( ) A .当1n =时,16p = B .当2n =时,13p = C .当3n =时,310p = D .当4n =时,45p =【答案】AC【分析】根据n 不同的取值,分别计算对应概率求解. 【详解】当1n =时,511656p ⨯==⨯,选项A 正确; 当2n =时,4246515p ⨯==⨯,选项B 错误; 当3n =时,3336510p ⨯==⨯,选项C 正确; 当4n =时,2446515p ⨯==⨯,选项D 错误. 故选:AC10.函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,则下列结论正确的是( )A .()f x 的最小正周期为2πB .,06π⎛⎫⎪⎝⎭是()y f x =图象的一个对称中心C .()f x 在区间11,212ππ⎡⎤⎢⎥⎣⎦上单调递减D .把()y f x =图象上所有点向右平移12π个单位长度后得到函数()2cos2g x x =-的图象 【答案】BCD【分析】根据正弦型函数的性质、图象的变换性质,结合已知图象逐一判断即可.【详解】由题意知,2A =,35341234T πππ⎛⎫=--= ⎪⎝⎭,所以周期T π=,22πωπ==, 又552sin 221212f ππϕ⎛⎫⎛⎫=⨯+= ⎪ ⎪⎝⎭⎝⎭,所以52,,2,623k k Z k k Z πππϕπϕπ+=+∈⇒=-∈, 因为2πϕ<,所以令0k =,即3πϕ=-,故()2sin 23f x x π⎛⎫=- ⎪⎝⎭,所以A 错误;又2sin 20663f πππ⎛⎫⎛⎫=⨯-= ⎪ ⎪⎝⎭⎝⎭,故B 正确;因为11,212x ππ⎡⎤∈⎢⎥⎣⎦,所以232,332x πππ⎡⎤-∈⎢⎥⎣⎦,由于正弦函数在其上单调递减,所以函数()f x 在11,212ππ⎡⎤⎢⎥⎣⎦上单调递减,故C 正确;将()y f x =图象上所有点向右平移12π个单位长度后得到2sin 22cos2122y f x x x ππ⎛⎫⎛⎫=-=-=- ⎪ ⎪⎝⎭⎝⎭的图象,故D 正确.故选:BCD .11.已知函数()()R f x x ∈满足()()()492f x f x f =-+,又()9f x +的图象关于点()9,0-对称,且()12022f =,则( ) A .()20f =B .()()()4445462022f f f ++=-C .1133f x ⎛⎫-+ ⎪⎝⎭关于点()3,3对称D .1133f x ⎛⎫-+ ⎪⎝⎭关于点()1,3对称【答案】ABC【分析】将2代入()()()492f x f x f =-+可算出()20f =,故A 正确;将()20f =代入可得()f x 关于2x =对称,又因为()9f x +的图象关于点()9,0-对称,可得()f x 关于点()0,0对称,利用()f x 的双对称可以得到()f x 的周期,然后通过()f x 的周期和对称算出()()()44,45,46f f f ,故B 正确;先研究1133f x ⎛⎫-+ ⎪⎝⎭是由()f x 经过各种图像变换,就可求出1133f x ⎛⎫-+ ⎪⎝⎭的对称中心,故C 正确,D 错误【详解】解:将2x =代入()()()492f x f x f =-+得()()()2292f f f =+, 所以()20f =,故A 正确;将()20f =代入()()()492f x f x f =-+得()()4f x f x =-, 所以()f x 关于2x =对称,()9f x +是()f x 向左平移9个单位长度得到,因为()9f x +的图象关于点()9,0-对称,所以()f x 关于点()0,0对称 所以()()()()4,f x f x f x f x =-=--所以()()()44,f x f x f x =-=--()()()4448f x f x f x -=---=-- 所以()()8f x f x =-,所以()f x 的周期为8, 所以()()()()44485400f f f f =+⨯===,()()()()()453863312022f f f f f =-+⨯=-=-=-=- ()()()()46286220f f f f =-+⨯=-=-=所以()()()4445462022f f f ++=-,故B 正确;1133f x ⎛⎫-+ ⎪⎝⎭是由()f x 先向右平移一个单位得到()1f x -,再保持纵坐标不变,横坐标变为原来的三倍得到113f x ⎛-⎫⎪⎝⎭,最后向上平移3个单位长度得到1133f x ⎛⎫-+ ⎪⎝⎭,所以1133f x ⎛⎫-+ ⎪⎝⎭关于点()3,3对称,故C 正确,D 错误;故选:ABC12.已知正三棱柱111ABC A B C -中,2AB =,11AA =,M 为AB 的中点,点P 在线段1BC 上,则下列结论正确的是( ) A .直线1//BC 平面1A MC B .A 和P 到平面1A MC 的距离相等C .三棱锥1P A MC -D .不存在点P ,使得1AP A C ⊥【答案】ABD【分析】连接11,A C AC 交于点O ,连接OM ,证得1//OM BC ,进而得到1//BC 平面1A MC ,可判定A 正确;证得AN NP =,结合斜线与平面所成的角相等,可判断B 正确;先证明CM AB ⊥,并求出CM 的长度,1//BC 平面1A MC ,所以,B P 到平面1A MC 的距离是一样的,所以11P A MC B A MC V V --=,继而算出答案,可得C 是错误的;假设存在点P ,使得1AP A C ⊥,令[]1(1),0,1AP AB AC λλλ=+-∈,结合10AC AP ⋅>,可判定D 正确.【详解】对于A 中,如图所示,连接11,A C AC 交于点O ,连接OM , 因为111ABC A B C -为正三棱柱,所以其侧面都是矩形,所以O 为1AC 的中点,又因为M 是AB 的中点,所以1//OM BC ,由OM ⊂平面1A MC ,且1BC ⊄平面1A MC ,所以1//BC 平面1A MC ,所以A 正确;对于B 中,在1ABC ,因为AP 交OM 于点N ,1//OM BC ,AM MB =,所以AN NP =, 因为AN 与PN 与平面1A MC 成角相等,所以A 和P 到平面1A MC 的距离相等, 所以B 正确;对于C 中,因为底面是正三角形,且M 为AB 的中点,所以CM AB ⊥, 所以22213CM -因为1//BC 平面1A MC ,且P 在1BC 上, 所以11111113131332P A MC B A MC A BMC BMC V V V SAA ---===⋅=⨯⨯=C 错误 对于D 中,假设存在点P ,使得1AP A C ⊥,令[]1(1),0,1AP AB AC λλλ=+-∈,可得1111(1)AC AP AC AB AC AC λλ⋅=⋅+-⋅, 易得1AC 和AB 所成角为锐角,1AC 和1AC 所成角为锐角,所以1110,0AC AB AC AC ⋅>⋅>,所以1111(1)0AC AP AC AB AC AC λλ⋅=⋅+-⋅>, ,所以不存在点P ,使得1AP A C ⊥,所以D 正确. 故选:ABD三、填空题13.若平面向量()()1,1,2,a b m ==满足()a ab ⊥-,则m =___________. 【答案】0【分析】由题意得()0-⋅=a b a ,代入坐标进行计算即可. 【详解】∵()a a b ⊥-,∴()0-⋅=a b a , 又()()1,1,2,a b m ==,()1,1-=--a b m , ∴110m -+-=,即0m =, 故答案为:0.14.8(1)()yx y x-+的展开式中35x y 的系数为___________.【答案】14-【分析】把8(1)()y x y x -+化为88()()y x y x y x -++,根据8()x y +展开式的通项,讨论求出k 的值,进行运算即可得到答案.【详解】8()x y +展开式的通项为:()818C 0,1,2,8k kk k T xy k -+==由于888(1)()()()y y x y x y x y x x=-+-++,所以当5k =当时,53568C T x y =,当4k =当时,44458C T x y =,所以8(1)()y x y x-+的展开式中35x y 的项为,()()535444543535358888C C =C C 567014y x y x y x y x y x y x--=-=-, 所以8(1)()y x y x-+的展开式中35x y 的系数为14-.故答案为:14-.15.写出一个使等式sin cos 2sin cos 66ααππαα+=⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭成立的α的值为_____________. 【答案】8π(答案不唯一,只要满足()2148k k Z παπ+=-∈即可). 【分析】利用二倍角和两角和差正弦公式化简已知等式得到sin 2sin 263ππαα⎛⎫⎛⎫+=+ ⎪ ⎪⎝⎭⎝⎭,由正弦函数性质可确定()()222136k k Z ππααπ+++=+∈,由此可解得结果. 【详解】sin cos cos sin sin cos 66sin cos sin cos 6666ππααααααππππαααα⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭+=⎛⎫⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭sin 2621sin 223παπα⎛⎫+ ⎪⎝⎭==⎛⎫+ ⎪⎝⎭,sin 2sin 263ππαα⎛⎫⎛⎫∴+=+ ⎪ ⎪⎝⎭⎝⎭,()()222136k k Z ππααπ∴+++=+∈,解得:()2148k k Z παπ+=-∈, 当0k =时,8πα=,∴使得等式成立的一个α的值为8π(答案不唯一). 故答案为:8π(答案不唯一,只要满足()2148k k Z παπ+=-∈即可). 16.有一凸透镜其剂面图(如图所示)是由椭圆221259x y +=和双曲线22188x y -=的实线部分组成,已知两曲线有共同焦点M ,N ,动点A ,B 分别在左右两部分实线上运动,则△ANB 周长的最小值为______________【答案】1042-【分析】根据已知条件,结合双曲线和椭圆的定义,将原问题转化为,,A B M 三点共线时,ANB 周长取得最小值,即可求解.【详解】由题意,双曲线22188x y -=,可得22a =, 根据双曲线的定义可得42AM AN -=,即42AN AM =-, 又由椭圆221259x y +=,可得5a =, 根据椭圆的定义可得10BM BN +=,所以10BN BM =-,所以ANB 周长为1042()10421042BM AM AB AB AB ---+≥--+=-, 故ANB 周长的最小值为1042-,其中,,A B M 三点共线时,等号成立. 故答案为:1042-.四、解答题17.甲、乙两名同学与同一台智能机器人进行象棋比赛,计分规则如下:在一轮比赛中,如果甲赢而乙输,则甲得1分;如果甲输而乙赢,则甲得1-分;如果甲和乙同时赢或同时输,则甲得0分.设甲赢机器人的概率为0.6,乙赢机器人的概率为0.5.求:(1)在一轮比赛中,甲的得分X的分布列;(2)在两轮比赛中,甲的得分Y的分布列及期望.【答案】(1)分布列见解析E Y=(2)分布列见解析,()0.2【分析】(1)依题意可得X的可能取值为1-,0,1,利用相互独立事件的概率公式求出所对应的概率,即可得到分布列;(2)依题意可得Y的可能取值为2-,1-,0,1,2,利用相互独立事件的概率公式求出所对应的概率,即可得到分布列及数学期望;【详解】(1)解:依题意可得X的可能取值为1-,0,1,P X=-=-⨯=,所以(1)(10.6)0.50.2(0)0.60.5(10.6)(10.5)0.5P X==⨯+-⨯-=,P X==⨯-=,(1)0.6(10.5)0.3所以X的分布列为(2)解:依题意可得Y的可能取值为2-,1-,0,1,2,所以2P Y P X P X=-==-⨯=-==,(2)(1)(1)0.20.04=-==-⨯=⨯=⨯⨯=,P Y P X P X(1)(1)(0)220.20.50.22===-⨯=⨯+=⨯==⨯⨯+=,(0)(1)(1)2(0)(0)20.30.20.50.37P Y P X P X P X P X===⨯=⨯=⨯⨯=,(1)(0)(1)20.30.520.3P Y P X P X2(2)(1)(1)0.30.09===⨯===,P Y P X P X所以Y的分布列为所以()20.0410.200.3710.320.090.2E Y =-⨯-⨯+⨯+⨯+⨯=.18.如图,四棱锥P ABCD -的底面是矩形,PD ⊥底面ABCD ,1PD DC ==,M 为BC 的中点,且PB AM ⊥.(1)求BC ;(2)求二面角A PM B --的正弦值. 【答案】(12;(270【分析】(1)以点D 为坐标原点,DA 、DC 、DP 所在直线分别为x 、y 、z 轴建立空间直角坐标系,设2BC a =,由已知条件得出0PB AM ⋅=,求出a 的值,即可得出BC 的长;(2)求出平面PAM 、PBM 的法向量,利用空间向量法结合同角三角函数的基本关系可求得结果.【详解】(1)[方法一]:空间坐标系+空间向量法PD ⊥平面ABCD ,四边形ABCD 为矩形,不妨以点D 为坐标原点,DA 、DC 、DP所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系D xyz -,设2BC a =,则()0,0,0D 、()0,0,1P 、()2,1,0B a 、(),1,0M a 、()2,0,0A a , 则()2,1,1PB a =-,(),1,0AM a =-,PB AM ⊥,则2210PB AM a ⋅=-+=,解得22a =,故22BC a ==; [方法二]【最优解】:几何法+相似三角形法如图,连结BD .因为PD ⊥底面ABCD ,且AM ⊂底面ABCD ,所以PD AM ⊥. 又因为PB AM ⊥,PBPD P =,所以AM ⊥平面PBD .又BD ⊂平面PBD ,所以AM BD ⊥.从而90ADB DAM ∠+∠=︒.因为90∠+∠=︒MAB DAM ,所以∠=∠MAB ADB . 所以∽ADB BAM ,于是=AD BAAB BM.所以2112BC =.所以2BC =. [方法三]:几何法+三角形面积法 如图,联结BD 交AM 于点N .由[方法二]知⊥AM DB .在矩形ABCD 中,有∽DAN BMN ,所以2==AN DA MN BM,即23AN AM =.令2(0)=>BC t t ,因为M 为BC 的中点,则BM t =,241=+DB t 21+AM t 由1122=⋅=⋅DABSDA AB DB AN ,得221241123=++t t t 212t =,所以22==BC t(2)[方法一]【最优解】:空间坐标系+空间向量法设平面PAM 的法向量为()111,,m x y z =,则2AM ⎛⎫= ⎪ ⎪⎝⎭,()2,0,1AP =-, 由111120220m AM x y m AP x z ⎧⋅=-+=⎪⎨⎪⋅=-+=⎩,取12x ()2,1,2m =,设平面PBM 的法向量为()222,,n x y z =,2BM ⎛⎫=- ⎪ ⎪⎝⎭,()2,1,1BP =--, 由222220220n BM x n BP x y z ⎧⋅=-=⎪⎨⎪⋅=--+=⎩,取21y =,可得()0,1,1n =,3314cos ,72m n m n m n ⋅===⋅⨯所以,270sin ,1cos ,14m n m n =-=, 因此,二面角A PM B --的正弦值为7014. [方法二]:构造长方体法+等体积法如图,构造长方体1111ABCD A B C D -,联结11,AB A B ,交点记为H ,由于11AB A B ⊥,1AB BC ⊥,所以AH ⊥平面11A BCD .过H 作1D M 的垂线,垂足记为G .联结AG ,由三垂线定理可知1⊥AG D M , 故AGH ∠为二面角A PM B --的平面角.易证四边形11A BCD 2的正方形,联结1D H ,HM . 111111111,2D HMD HMD A HHBMMCD A BCD SD M HG S S SSS=⋅=---正方形,由等积法解得310=HG 在Rt AHG 中,2310==AH HG ,由勾股定理求得35=AG . 所以,70sin AH AGH AG ∠==A PMB --70【整体点评】(1)方法一利用空坐标系和空间向量的坐标运算求解;方法二利用线面垂直的判定定理,结合三角形相似进行计算求解,运算简洁,为最优解;方法三主要是在几何证明的基础上,利用三角形等面积方法求得.(2)方法一,利用空间坐标系和空间向量方法计算求解二面角问题是常用的方法,思路清晰,运算简洁,为最优解;方法二采用构造长方体方法+等体积转化法,技巧性较强,需注意进行严格的论证.19.已知数列{}n a 的各项均不为零,n S 为其前n 项和,且121n n n a a S +=-.(1)证明:22n n a a +-=;(2)若11a =-,数列{}n b 为等比数列,11b a =,23b a =.求数列{}n n a b 的前2022项和2022T . 【答案】(1)证明见解析; (2)4044.【分析】(1)由题设递推式可得()1212n n n n a a a a +++-=,结合已知条件即可证结论.(2)由(1)及等比数列定义写出{}n b 通项公式,进而有(1)nn n n a b a =-,根据奇偶项的正负性,应用分组求和法及(1)的结论求2022T 即可. 【详解】(1)因为121n n n a a S +=-①,则12121n n n a a S +++=-②, ②-①得:()1212n n n n a a a a +++-=,又10n a +≠, 所以22n n a a +-=.(2)由11a =-得:31a =,于是231b a ==, 由11b =-得:{}n b 的公比1q =-.所以(1)n n b =-,(1)nn n n a b a =-.由12121a a a =-得:23a =由22n n a a +-=得:2022202120202019214a a a a a a -=-=⋅⋅⋅=-=, 因此2022123420212022T a a a a a a =-+-+-+⋅⋅⋅()()()214320222021a a a a a a =-+-+⋅⋅⋅+-()211011a a =⨯-10114=⨯4044=.20.在ABC 中,cos2cos2cos22sin sin 1A C B A C +-=-+. (1)求角B ;(2)设锐角ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且1c =,求ABC 面积的取值范围. 【答案】(1)π3.(2).【分析】(1)将已知条件按二倍角展开化简得222a c ac b+-=,再结合余弦定理即可求得角B;(2)结合题意可得有ππ62A<<,由正弦定理可得sin2πsin()3AaA=-,再由面积公式可得S,代入a并化简可得1311tan2SA=+,根据A的范围即可求出S的范围. 【详解】(1)解:因为cos2cos2cos22sin sin1A CB A C+-=-+.所以cos2cos22sin sin1cos2A C A C B++=+,即有22212sin12sin2sin sin112sinA C A C B-+-+=+-,即222sin sin sin sin sinA C A C B+-=,即222a c ac b+-=,由余弦定理可得:2222cosb ac ac B=+-,所以2cos1B=,即1cos2B=,又因为(0,π)B∈,所以π3B=.(2)解:由(1)可得:π3B=,所以2π3A C+=,所以2π3C A=-,又因为ABC为锐角三角形,所以π22ππ32AA⎧<<⎪⎪⎨⎪<-<⎪⎩,即有ππ62A<<;又因为1c=,12πsin sin sin()3a cA C A==-,所以sin2πsin()3AaA=-,又因为1sin2Sac B==sin2πsin()3AA-sin3cosA+1311tan2A+. 因为有ππ62A<<,所以有tan A1tan A<<所以13tan2A<<,所以以11122tan2A<+<,所以122311tan 2A <+,1311tan 2A <+即S ∈. 21.已知椭圆C :()222210x y a b a b +=>>的左、右焦点分别为1F 、2F ,焦距为2,点⎭在椭圆C 上. (1)求椭圆C 的方程;(2)若点()()000,0P x y y >是椭圆C 上一点,Q 为y 轴上一点,22PF PQ =,设直线l 与椭圆C 交于M ,N 两点,若直线PM ,PN 关于直线0x x =对称,求直线l 的斜率. 【答案】(1)22143x y += (2)12-【分析】(1)依题意列出几何量方程组,直接求解可得;(2)先求点P 坐标,然后可得直线PM 、PN 的斜率关系,设直线方程联立椭圆方程,利用韦达定理代入斜率关系,化简可得直线的斜率k .【详解】(1)解:依题意可得22223314c a b =⎧⎪⎨+=⎪⎩,又222b a c =-, 所以24a =,23b =,1c =. 所以22143x y +=; (2)解:因为22PF PQ =,所以Q 是2PF 的中点. 结合QO x ⊥轴,所以1PF x ⊥轴,所以01x =-,则2201314y +=,解得032y =±,因为00y >,所以032=y ,所以31,2P ⎛⎫- ⎪⎝⎭.因为直线PM 、PN 关于直线01x x ==-对称. 所以PM 、PN 的倾斜角互补,所以0PM PN k k +=,显然直线l 的斜率存在,设l :y kx m =+,由22143y kx m x y =+⎧⎪⎨+=⎪⎩,得()2224384120k x kmx m +++-=,由0∆>得2243m k <+.设()11,M x y , ()22,N x y ,则1228+43km x x k -=+,212241243m x x k -=+,由12123322011PMPNy y kk x x --+=+=++, 整理得()1212322302kx x k m x x m ⎛⎫++-++-= ⎪⎝⎭,所以2483420k k km m ++--=,即()()212320k k m ++-= 若232k m +-0=,则32m k =+, 所以直线MN 的方程为()312y k x -=+,此时,直线MN 过P 点,舍去. 所以21k +0=,即12k =-,所以直线l 的斜率为12-.22.已知函数()sin ln(1)f x x x =-+,()'f x 为()f x 的导数.证明: (1)()'f x 在区间(1,)2π-存在唯一极大值点;(2)()f x 有且仅有2个零点. 【答案】(1)见解析;(2)见解析【分析】(1)求得导函数后,可判断出导函数在1,2π⎛⎫- ⎪⎝⎭上单调递减,根据零点存在定理可判断出00,2x π⎛⎫∃∈ ⎪⎝⎭,使得()00g x '=,进而得到导函数在1,2π⎛⎫- ⎪⎝⎭上的单调性,从而可证得结论;(2)由(1)的结论可知0x =为()f x 在(]1,0-上的唯一零点;当0,2x π⎛⎫∈ ⎪⎝⎭时,首先可判断出在()00,x 上无零点,再利用零点存在定理得到()f x 在0,2x π⎛⎫⎪⎝⎭上的单调性,可知()0f x >,不存在零点;当,2x ππ⎡⎤∈⎢⎥⎣⎦时,利用零点存在定理和()f x 单调性可判断出存在唯一一个零点;当(),x π∈+∞,可证得()0f x <;综合上述情况可证得结论. 【详解】(1)由题意知:()f x 定义域为:()1,-+∞且()1cos 1f x x x '=-+ 令()1cos 1g x x x =-+,1,2x π⎛⎫∈- ⎪⎝⎭ ()()21sin 1g x x x '∴=-++,1,2x π⎛⎫∈- ⎪⎝⎭()211x +在1,2π⎛⎫- ⎪⎝⎭上单调递减,sin x -,在1,2π⎛⎫- ⎪⎝⎭上单调递减()g x '∴在1,2π⎛⎫- ⎪⎝⎭上单调递减又()0sin0110g '=-+=>,()()2244sin 102222g ππππ⎛⎫'=-+=-< ⎪⎝⎭++00,2x π⎛⎫∴∃∈ ⎪⎝⎭,使得()00g x '=∴当()01,x x ∈-时,()0g x '>;0,2x x π⎛⎫∈ ⎪⎝⎭时,()0g x '<即()g x 在()01,x -上单调递增;在0,2x π⎛⎫⎪⎝⎭上单调递减则0x x =为()g x 唯一的极大值点即:()f x '在区间1,2π⎛⎫- ⎪⎝⎭上存在唯一的极大值点0x .(2)由(1)知:()1cos 1f x x x '=-+,()1,x ∈-+∞ ①当(]1,0x ∈-时,由(1)可知()f x '在(]1,0-上单调递增()()00f x f ''∴≤= ()f x ∴在(]1,0-上单调递减又()00f =0x ∴=为()f x 在(]1,0-上的唯一零点②当0,2x π⎛⎤∈ ⎥⎝⎦时,()f x '在()00,x 上单调递增,在0,2x π⎛⎫ ⎪⎝⎭上单调递减又()00f '= ()00f x '∴>()f x ∴在()00,x 上单调递增,此时()()00f x f >=,不存在零点又22cos 02222f ππππ⎛⎫'=-=-< ⎪++⎝⎭10,2x x π⎛⎫∴∃∈ ⎪⎝⎭,使得()10f x '=()f x ∴在()01,x x 上单调递增,在1,2x π⎛⎫ ⎪⎝⎭上单调递减又()()000f x f >=,2sin ln 1ln ln102222e f ππππ⎛⎫⎛⎫=-+=>=⎪ ⎪+⎝⎭⎝⎭()0f x ∴>在0,2x π⎛⎫⎪⎝⎭上恒成立,此时不存在零点第 21 页 共 21 页 ③当,2x ππ⎡⎤∈⎢⎥⎣⎦时,sin x 单调递减,()ln 1x -+单调递减 ()f x ∴在,2ππ⎡⎤⎢⎥⎣⎦上单调递减 又02f π⎛⎫> ⎪⎝⎭,()()()sin ln 1ln 10f ππππ=-+=-+< 即()02f f ππ⎛⎫⋅< ⎪⎝⎭,又()f x 在,2ππ⎡⎤⎢⎥⎣⎦上单调递减 ∴()f x 在,2ππ⎡⎤⎢⎥⎣⎦上存在唯一零点 ④当(),x π∈+∞时,[]sin 1,1x ∈-,()()ln 1ln 1ln 1x e π+>+>=()sin ln 10x x ∴-+<即()f x 在(),π+∞上不存在零点综上所述:()f x 有且仅有2个零点【点睛】本题考查导数与函数极值之间的关系、利用导数解决函数零点个数的问题.解决零点问题的关键一方面是利用零点存在定理或最值点来说明存在零点,另一方面是利用函数的单调性说明在区间内零点的唯一性,二者缺一不可.。

潍坊市高二数学下学期期末考试试题含解析

潍坊市高二数学下学期期末考试试题含解析
5。 老师想要了解全班50位同学的成绩状况,为此随机抽查了10位学生某次考试的数学与物理成绩,结果列表如下:
学生










平均
标准差
数学
88
62
物理
75
63
若这10位同学的成绩能反映全班的成绩状况,且全班成绩服从正态分布,用实线表示全班数学成绩分布曲线,虚线表示全班物理成绩分布曲线,则下列正确的是( )
∴ 面 ,又 面 ,即有 ,故B正确
选项C中,点 运动到 中点时,即在△ 中 、 均为中位线
∴Q为中位线的交点
∴根据中位线的性质有: ,故C错误
选项D中,由于 ,直线 与 所成角即为 与 所成角:
结合下图分析知:点 在 上运动时
当 在 或 上时, 最大为45°
当 在 中点上时, 最小为
∴ 不可能是30°,故D正确
故选:B
【点睛】本题主要考查利用棱柱侧面展开图求解距离最值问题,意在考查学生对该知识的理解掌握水平.
8. 在桌面上有一个正四面体 .任意选取和桌面接触的平面的三边的其中一条边,以此边为轴将正四面体翻转至另一个平面,称为一次操作.如图,现底面为 ,且每次翻转后正四面体均在桌面上,则操作3次后,平面 再度与桌面接触的概率为( )
二、多项选择题:
9。 已知复数 的共轭复数为 ,且 ,则下列结论正确的是( )
A。 B。 虚部为 C。 D.
【答案】ACD
【解析】
【分析】
先利用题目条件可求得 ,再根据复数的模的计算公式,以及复数的有关概念和复数的四则运算法则即可判断各选项的真假.
【详解】由 可得, ,所以 , 虚部为 ;

2023-2024学年山东省淄博市高二下学期期末考试数学试题(含解析)

2023-2024学年山东省淄博市高二下学期期末考试数学试题(含解析)

2023-2024学年山东省淄博市高二下学期期末考试数学试题一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.设等差数列{a n },a 2=3,d =5,则a 5=( )A. −5B. 18C. 23D. 282.若函数f(x)满足lim Δx→0f(1−Δx)−f(1)Δx =18,则f′(1)=( )A. −18B. −14C. 18D. 143.设{a n }是等比数列,且a 2+a 3=2,a 5+a 6=−16,则公比q =( )A. −2B. 2C. −8D. 84.在(2− x )7的展开式中,含x 2的项的系数为( )A. −280B. 280C. −560D. 5605.某志愿者小组有5人,从中选3人到A 、B 两个社区开展活动,其中1人到A 社区,则不同的选法有( )A. 12种B. 24种C. 30种D. 60种6.直线y =kx 与曲线y =ln 2x 相切,则实数k 的值为( )A. 1B. 12C. 2e D. 2e 27.若P(B|A)=13,P(A)=34,P(B)=12,则P(A|B)=( )A. 14 B. 34 C. 13 D. 128.不等式2ln x > x ln2的解集是( )A. (1,2)B. (4,+∞)C. (2,+∞)D. (2,4)二、多选题:本题共3小题,共15分。

在每小题给出的选项中,有多项符合题目要求。

9.已知随机变量X ~N (3,1),则下列说法正确的是( )A. 若Y =X +3,则E (Y )=6B. 若Y =3X +1,则D (Y )=3C. P (X ≤2)=P (X ≥4)D. P (0≤X ≤4)=1-2P (X ≥4)10.若函数f(x)的定义域为(−4,3),其导函数f′(x)的图象如图所示,则( )A. f(x)有两个极大值点B. f(x)有一个极小值点C. f(0)>f(1)D. f(−2)>f(−3)11.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列.如数列1,3,6,10,它的前后两项之差组成新数列2,3,4,新数列2,3,4为等差数列,则数列1,3,6,10被称为二阶等差数列,现有二阶等差数列{c n},其前6项分别为4,8,10,10,8,4,设其通项公式c n=g(n).则下列结论中正确的是( )A. 数列{c n+1−c n}的公差为2B. ∑20(c i+1−c i)=−300i=1C. 数列{c n}的前7项和最大D. c21=−296三、填空题:本题共3小题,每小题5分,共15分。

江苏省宿迁市2023-2024学年高二下学期6月期末考试数学试题(解析版)

江苏省宿迁市2023-2024学年高二下学期6月期末考试数学试题(解析版)

高二年级调研测试数学本试卷共4页,19小题,满分150分,考试用时120分钟.注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.将条形码横贴在答题卡上“条形码粘贴处”.2.回答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上.如需改动,先划掉原来的答案,然后再写上新答案.不准使用铅笔和涂改液.不按以上要求作答无效.4.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 计算012456C C C ++=( )A. 20B. 21C. 35D. 36【答案】B 【解析】【分析】利用组合数计算公式计算可得结果.【详解】由组合数计算公式可得01245665C C C 152112×++=++=×. 故选:B2. 已知样本数据121x +,221x +,…,21n x +的平均数为5,则131x +,231x +,…,31n x +的平均数为( ) A. 6 B. 7C. 15D. 16【答案】B 【解析】【分析】根据平均数的性质即可得12,,,n x x x …的平均数为2,则可得到新的一组数据的平均数. 【详解】由题意,样本数据121x +,221x +,…,21n x +的平均数为5,设12,,,n x x x …的平均数为x , 即215+=x ,解得2x =,根据平均数性质知131x +,231x +,…,31n x +的平均数为317x +=. 故选:B3. 下表是大合唱比赛24个班级的得分情况,则80百分位数是( ) 得分 7 8 9 10 11 13 14 频数 4246242A. 13.5B. 10.5C. 12D. 13【答案】D 【解析】【分析】根据百分位数的定义求解即可.【详解】因为00248019.2×=,24个班级的得分按照从小到大排序, 可得80百分位数是第20个数为13. 故选:D4. 已知a ,b 为两条不同直线,α,β,γ为三个不同平面,则下列说法正确的是( ) A. 若a b ∥,b α⊂,则//a α B. 若//a α,b α⊂,则//a b C. //αγ,//βγ,则//αβ D. 若αγ⊥,βγ⊥,则//αβ【答案】C 【解析】【分析】由线线、线面、面面的位置关系即可求得本题. 【详解】若//a b ,b α⊂,则//a α或a α⊂,则A 错; 若//a α,b α⊂,则//a b 或a 与b 异面,则B 错;//αγ,//βγ,由平行的传递性可知,//αβ,则C 对;若αγ⊥,βγ⊥,则//αβ或相交.,D 错, 故选:C.5. 已知,,A B C 三点不共线,O 为平面ABC 外一点,下列条件中能确定,,,M A B C 四点共面的是( )的.A. OM OA OB OC =++B. 3OM OA OB BC =−−C. 1123OM OA OB OC =++D. 32OM OA OB BC =−−【答案】D 【解析】【分析】根据空间向量基本定理对选项逐个进行验证即可得出结论.【详解】由空间向量基本定理可知,若,,,M A B C 四点共面,则需满足存在实数,,x y z 使得OM xOA yOB zOC =++,且1x y z ++=, 显然选项A ,C 不成立;对于选项B ,由3OM OA OB BC =−−可得()33OM OA OB OC OB OA OC =−−−=− ,不合题意,即B 错误;对于D ,化简32OM OA OB BC =−−可得()323OM OA OB OC OB OA OB OC =−−−=−− ,满足()()3111+−+−=,可得D 正确; 故选:D6. 已知随机事件A ,B ,3()10P A =,1()2P B =,1(|)3P B A =,则(|)P A B =( ) A.15B.16 C.320D.110【答案】A 【解析】【分析】根据题意,由乘法公式代入计算可得()P AB ,再由条件概率公式,代入计算,即可得到结果. 【详解】因为3()10P A =,1()2P B =,1(|)3P B A =, 则()()131(|)31010P B A P A P AB ×=×==, 则()()1110(|)152P AB P A BP B ===. 故选:A7. 已知9290129(21)x a a x a x a x +=+++⋅⋅⋅+,则682424682222a a a a +++的值为( )A. 255B. 256C. 511D. 512【答案】A 【解析】【分析】利用二项式定理写出展开式的通项,令0x =求出0=1a ,分别令12x =、12x =−,再两式相加可得8202825622a a a +++=,再减去0a 即可. 【详解】令0x =,得0=1a , 令12x =,得93891202389251222222a a a a a a ++++++== , 令12x =−,得38912023********a a a a a a −+−++−= , 两式相加得82028251222a a a+++=, 得8202825622a a a +++= , 则682424682552222a a a a +++=. 故选:A.8. 某工厂有甲、乙、丙3个车间生产同一种产品,其中甲车间的产量占总产量的20%,乙车间占35%,丙车间占45%.已知这3个车间的次品率依次为5%,4%,2%,若从该厂生产的这种产品中取出1件为次 ) A.331000B.1033C.1433D.311【答案】C 【解析】【分析】根据题意,由全概率公式可得抽取到次品的概率,再由条件概率公式代入计算,即可求解. 【详解】记事件A 表示甲车间生产的产品, 记事件B 表示乙车间生产的产品, 记事件C 表示丙车间生产的产品, 记事件D 表示抽取到次品,则()()()0.2,0.35,0.45P A P B P C ===, ()()()0.05,0.04,0.02P D A P D B P D C ===,取到次品的概率为()()()()()()()P D P A P D A P B P D B P C P D C =++0.20.050.350.040.450.020.033=×+×+×=,若取到的是次品,此次品由乙车间生产的概率为:()()()()()()0.350.040.014140.0330.03333P B P D B P BD P B D P D P D ×=====.故选:C二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 下列选项中叙述正确有( )A. 在施肥量不过量的情况下,施肥量与粮食产量之间具有正相关关系B. 在公式1xy=中,变量y 与x 之间不具有相关关系C. 相关系数10.6r =时变量间的相关程度弱于20.8r =−时变量间的相关程度D. 某小区所有家庭年收入x (万元)与年支出y (万元)具有相关关系,其线性回归方程为ˆˆ0.8ybx =+.若20x =,16y =,则ˆ0.76b =. 【答案】ACD 【解析】【分析】AB 的正误,根据相关系数的性质可判断C 的正误,根据回归方程的性质可判断D 的正误.【详解】对于A ,在施肥量不过量的情况下,施肥量越大,粮食产量越高, 故两者之间具有正相关关系,故A 正确.对于B ,变量y 与x 之间函数关系,不是相关关系,故B 错误. 对于C ,因为210.80.6r r =>=,故相关系数10.6r =时变量间的相关程度弱于20.8r =−时变量间的相关程度,故C 正确.对于D ,因为回归直线过(),x y ,故ˆ16200.8b=×+,故ˆ0.76b =,故D 正确. 故选:ACD.10. 已知点(2,3,3)A −−,(2,5,1)B ,(1,4,0)C ,平面α经过线段AB 的中点D ,且与直线AB 垂直,下列选项中叙述正确的有( ) A. 线段AB 的长为36的是B. 点(1,2,1)P −在平面α内C. 线段AB 的中点D 的坐标为(0,4,1)−D. 直线CD 与平面α【答案】BCD 【解析】【分析】由空间两点间的距离公式即可得到线段AB 的长,判断A ;由AB ⊥平面α,垂足为点D ,PD AB ⊥,即可判断B ;由中点坐标公式可得点D 的坐标,判断C ;设直线CD 与平面α所成的角为β,sin cos ,AB CD AB CD AB CDβ⋅==,通过坐标运算可得,判断D.【详解】因为点(2,3,3)A −−,(2,5,1)B , 所以6AB =,故A 错误;设D 点的坐标为(),,x y z ,因为D 为线段AB 的中点,所以2235310,4,1222x y z −++−+======−, 则D 的坐标为(0,4,1)−,故C 正确;因为点(1,2,1)P −,则()1,2,0PD =− ,又()4,2,4AB =,则()()1,2,04,2,40PD AB ⋅=−⋅=,所以PD AB ⊥,即PD AB ⊥, 又AB ⊥平面α,垂足为点D ,即D ∈平面α,所以PD ⊂平面α,故B 正确;由(1,4,0)C ,(0,4,1)D −,得()1,0,1CD =−−,设直线CD 与平面α所成的角为β,则sin cos ,ABβ= ,故D 正确.故选:BCD.11. 甲袋中有2个红球、3个黄球,乙袋中有3个红球、2个黄球,同时从甲、乙两袋中取出2个球交换,分别记交换后甲、乙两个袋子中红球个数的数学期望为()E X 、()E Y ,方差为()D X 、()D Y ,则下列结论正确的是( )A. ()()5E X E Y +=B. ()()E X E Y <C. ()()D X D Y <D. ()()D X D Y =【答案】ABD 【解析】【分析】依题意可知不管如何交换红球个数始终只有5个,易知5X Y +=,利用期望值和方差性质可得A ,D 正确,C 错误;易知随机变量X 的所有可能取值为0,1,2,3,4,写出对应的概率并得出分布列,可得() 2.4E X =,()()5 2.6E Y E X =−=,可得B 正确.【详解】根据题意,记甲、乙两个袋子中红球个数分别为,X Y , 不管如何交换红球个数始终只有5个,易知5X Y +=,对于A ,由期望值性质可得()()()55E X E Y E Y =−=−,即()()5E X E Y +=,所以A 正确; 对于B ,易知随机变量X 的所有可能取值为0,1,2,3,4; 当从甲袋中取出2个红球,乙袋中取出2个黄球后交换,可得()()22222255C C 105C C 100P X P Y ====×=, 当从甲袋中取出1个红球,1个黄球,乙袋中取出2个黄球后交换,或者从甲袋中2个红球,乙袋中取出1个红球,1个黄球后交换,可得()()1111223232222555C C C C C 12314C C C 10025P X P Y ====+×==;当从甲袋中取出1个红球,1个黄球,乙袋中取出1个红球,1个黄球;或者从甲袋中取出2个红球,乙袋中取出取出2个红球;或者从甲袋中取出2个黄球,乙袋中取出取出2个黄球后交换,可得()()1111222223233322222222555555C C C C C C C C 422123C C C C C C 10050P X P Y ====×+×+×==; 当从甲袋中取出2个黄球,乙袋中取出1个红球,1个黄球;或者从甲袋中取出1个红球,1个黄球,乙袋中取出取出2个红球后交换,可得()()21111232323322225555C C C C C C 36932C C C C 10025P X P Y ====×+×==;当从甲袋中取出2个黄球,乙袋中取出2个红球后交换,可得()()22332255C C 941C C 100P X P Y ====×=,随机变量X 的分布列为所以期望值()132******** 2.4100255025100E X =×+×+×+×+×=, 可得()()5 2.6E Y E X =−=,即()()E X E Y <,可得B 正确; 对于C ,D ,由方差性质可得()()()()()251D Y D X D X D X =−=−=,即可得()()D X D Y =,所以C 错误,D 正确. 故选:ABD【点睛】关键点点睛:根据题意可得随机变量满足5X Y +=,利用期望值和方差性质可判断出AD 选项,再求出随机变量X 的分布列可得结论.三、填空题:本题共3小题,每小题5分,共15分.12. 已知随机变量X 服从正态分布()295,N σ,若(80)0.3P X <=,则(95110)P X ≤<=______. 【答案】0.2##15【解析】【分析】根据正态分布的对称性结合已知条件求解即可. 【详解】因为随机变量X 服从正态分布()295,N σ,(80)0.3P X <=, 所以(95110)(8095)0.5(80)0.2P X P X P X ≤<=<<=−<=, 故答案为:0.213. 如图,用四种不同颜色给图中的,,,,A B C D E 五个点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同颜色.则不同的涂色方法共有______种.【答案】72 【解析】【分析】由图形可知点E 比较特殊,所以按照分类分步计数原理从点E 开始涂色计算可得结果.【详解】根据题意按照,,,,A B C D E 的顺序分5步进行涂色,第一步,点E 的涂色有14C 种,第二步,点A 的颜色与E 不同,其涂色有13C 种, 第三步,点B 的颜色与,A E 都不同,其涂色有12C 种,第四步,对点C 涂色,当,A C 同色时,点C 有1种选择;当,A C 不同色时,点C 有1种选择; 第五步,对点D 涂色,当,A C 同色时,点D 有2种选择;当,A C 不同色时,点D 有1种选择;根据分类分步计数原理可得,不同的涂色方法共有()111432C C C 121172×+×=种. 故答案为:7214. 如图,已知三棱锥−P ABC 的底面是边长为2的等边三角形,60APB ∠=°,D 为AB 中点,PA CD ⊥,则三棱锥−P ABC 的外接球表面积为______.【答案】20π3##20π3【解析】【分析】设PAB 外接圆的圆心为E ,三棱锥−P ABC 的外接球的球心为O ,连接OE , ABC 的外接圆的圆心为G ,连接OG ,OB ,可证四边形OGDE 为矩形,利用解直角三角形可求外接球半径,故可求其表面积.【详解】因为ABC 为等边三角形,D 为AB 中点,故CD AB ⊥, 而PA CD ⊥,PA AB A = ,,PA AB ⊂平面PAB ,所以CD ⊥平面PAB . 设PAB 外接圆的圆心为E ,三棱锥−P ABC 的外接球的球心为O ,连接,OE BE , 设ABC 的外接圆的圆心为G ,连接OG ,OB , 则OE ⊥平面PAB ,OG CD ⊥故//OE CD ,故,,,O G D E 共面,而DE ⊂平面PAB , 故CD DE ⊥,故四边形OGDE 为矩形.又12sinABBEAPB=×∠13OE DG CD===,故外接球半径为OB=,故外接球的表面积为1520π4π93×=,故答案为:20π3四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步聚.15.在()*23,Nnx n n≥∈的展开式中,第2,3,4项的二项式系数依次成等差数列.(1)证明展开式中不存在常数项;(2)求展开式中所有的有理项.【答案】(1)证明见解析;(2)7128x,4672x,280x,214x.【解析】【分析】(1)根据题意可求得7n=,利用二项展开式的通项可得展开式中不存在常数项;(2)由二项展开式的通项令x的指数为整数即可解得合适的k值,求出所有的有理项.【小问1详解】易知第2,3,4项的二项式系数依次为123C,C,Cn n n,可得132C+C2Cn n n=,即()()()121262n n n n nn−−−+=×,整理得()()270n n−−=,解得7n=或2n=(舍);所以二项式为72x,假设第1k+项为常数项,其中Nk∈,即可得()1777277C 22C kk k kkk k x x −−−−=为常数项,所以1702k k −−=, 解得14N 3k =∉,不合题意; 即假设不成立,所以展开式中不存在常数项; 【小问2详解】由(1)可知,二项展开式的通项()1777277C22C kk k kk k k x x−−−−=可得, 其中的有理项需满足17Z 2k k −−∈,即37Z 2k −∈,且7k ≤;当30,77Z 2k k =−=∈,此时有理项为707772C 128x x =; 当32,74Z 2k k =−=∈,此时有理项为524472C 672x x =; 当34,71Z 2k k =−=∈,此时有理项为3472C 280x x =; 当36,72Z 2k k =−=−∈,此时有理项为16272142C x x−=; 综上可知,展开式中所有的有理项为7128x ,4672x ,280x ,214x . 16. 某校天文社团将2名男生和4名女生分成两组,每组3人,分配到A ,B 两个班级招募新社员. (1)求到A 班招募新社员的3名学生中有2名女生的概率;(2)设到A ,B 两班招募新社员的男生人数分别为a ,b ,记X a b =−,求X 的分布列和方差. 【答案】(1)35(2)85【解析】【分析】(1)由古典概型的概率求解122436C C 3C 5P ==; (2)由题意,X 的可能取值为2,0,2−,算出对应概率()2P X =−,()0P X =,()2P X =,即可列出X 的分布列,再求出()E X ,进而由公式求出方差.【小问1详解】到A 班招募新社员的3名学生中有2名女生的概率为122436C C 3C 5P ==. 【小问2详解】由题意,X 的可能取值为2,0,2−,则()032436C C 12C 5P X =−==,()122436C C 30C 5P X ===,()212436C C 12C 5P X ===, 所以X 的分布列为则()1312020555E X =−×+×+×=, 所以()()()()22213182000205555D X =−−×+−×+−×=. 17. 如图,正三棱柱111ABC A B C 中,D 为AB 的中点.(1)求证:1BC ∥平面1ACD ; (2)当1AA AB的值为多少时,1AB ⊥平面1ACD ?请给出证明. 【答案】(1)证明见答案. (2 【解析】【分析】(1)连接1AC ,交1AC 于点O ,连接DO ,能证出1//BC DO ,则能证出1BC ∥平面1ACD.(2)先把1AB ⊥平面1ACD 当做条件,得出11AB A D ⊥,得出1AA AB的值,过程要正面分析. 【小问1详解】连接1AC ,交1AC 于点O ,连接DO , 因为O 是1AC 的中点,D 为AB 的中点, 所以DO 是1ABC 的中位线,即1//BC DO ,1BC ⊄平面1ACD ,DO ⊂平面1ACD , 所以1BC ∥平面1ACD . 【小问2详解】1AA AB =时,1AB ⊥平面1ACD ,证明如下:因为1AA AB =,11tan A AB ∴∠,111tan AA DA B AD ∠= 1111A AB DA B ∴∠=∠,1112DA B AA D π∠+∠= ,1112A AB AA D π∴∠+∠=,即11AB A D ⊥.因为三棱柱111ABC A B C 为正三棱柱,ABC ∴ 为正三角形,且1AA ⊥平面ABC ,1,CD AB CD AA ∴⊥⊥,1AB AA A ∩=,AB ⊂平面11ABB A ,1AA ⊂平面11ABB A ,CD 平面11ABB A ,因为1AB ⊂平面11ABB A ,所以1AB CD ⊥,1A D CD D = ,1,A D CD ⊂平面1ACD , 1AB ∴⊥平面1ACD .1AA AB∴18. 会员足够多的某知名户外健身俱乐部,为研究不高于40岁和高于40岁两类会员对服务质量的满意度.现随机抽取100名会员进行服务满意度调查,结果如下:年龄段满意度合计满意不满意 不高于40岁 50 20 70 高于40岁 25 5 30 合计7525100(1)问:能否认为,会员不高于40岁和高于40岁年龄结构对服务满意度有关;(2)用随机抽取的100名会员中的满意度频率代表俱乐部所有会员的满意度概率.从所有会员中随机抽取3人,记抽取的3人中,对服务满意的人数为X ,求X 的分布列和数学期望.参考公式:22()()()()()n ad bc a b c d a c b d χ−=++++(其中n a b c d =+++).参考数据:()20P x χ≥ 0.150.10 0.05 0.025 0.010 0.005 0.0010x2.072 2.7063.841 5.024 6.635 7.879 10.828【答案】(1)不能认为会员不高于40岁和高于40岁年龄结构对服务满意度有关. (2)分布列见解析;94. 【解析】【分析】(1)首先根据列联表中的数据结合公式计算2χ值,然后对照表格得到结论;(2)由表格可知,对服务满意的人的概率为34,且33,4X B∼,根据二项分布公式即可求解. 【小问1详解】 由列联表可知:2217100(5052520)100.587255 2.072730630χ××−×<××==≈, 所以不能认为会员不高于40岁和高于40岁年龄结构对服务满意度有关. 【小问2详解】由表格可知,对服务满意人的概率为34,且33,4X B∼, 则0,1,2,3X =,可得:()303110C 464P X ===,()2133191C 4464P X  ===   , ()22331272C 4464P X ===,()3333273C 464P X === , 故X 的分布列如图:可得()39344EX =×=. 19. 如图,在三棱台ABC DEF −中,2AB BC AC ===,1AD DF FC ===,N 为DF 的中点,二面角D AC B −−的大小为θ.(1)求证:AC BN ⊥; (2)若π2θ=,求三棱台ABC DEF −的体积; (3)若A 到平面BCFE cos θ的值. 【答案】(1)证明见解析; (2)78(3)3cos 5θ=−的【解析】【分析】(1)利用三棱柱性质,根据线面垂直的判定定理可得AC ⊥平面BMN ,可证明结论; (2)由二面角定义并利用棱台的体积公式代入计算可得结果;(3)建立空间坐标系,求出平面BCFE 的法向量,利用点到平面距离的向量求法即可得出cos θ的值. 【小问1详解】取AC 的中点为M ,连接,NM BM ;如下图所示:易知平面//ABC 平面DEF ,且平面ABC ∩平面DACF AC =,平面DEF ∩平面DACF DF =; 所以//AC DF ,又因为1AD FC ==, 可得四边形DACF 为等腰梯形,且,M N 分别为,AC DF 的中点,所以MN AC ⊥, 因为2AB BC AC ===,所以BM AC ⊥, 易知BM MN M = ,且,BM MN ⊂平面BMN , 所以AC ⊥平面BMN ,又BN ⊂平面BMN ,所以AC BN ⊥; 【小问2详解】由二面角定义可得,二面角D AC B −−的平面角即为BMN ∠, 当π2θ=时,即π2BMN ∠=,因此可得MN ⊥平面ABC ,可知MN 即为三棱台的高,由1,2ADDF FC AC ====可得MN =;易知三棱台的上、下底面面积分别为DEFABC S S =因此三棱台ABC DEF −的体积为1738V =【小问3详解】由(1)知,BM AC ⊥,MN AC ⊥,二面角D AC B −−的平面角即为()0,πBMN θ∠=∈; 以M 为坐标原点,分别以,MA MB 所在直线为,x y 轴,过点M 作垂直于平面ABC 的垂线为z 轴建立如图所示的空间直角坐标系:可得()()()()1,0,0,1,0,0,,,0,0,0A C B N M θθ −,易知11,0,022NF MC==−,可得12F θθ − ;则()1,cos 2CBCF θθ =设平面BCFE 的一个法向量为(),,n x y z =,所以01cos sin 02n CB x n CF x y z θθ ⋅==⋅=++=, 令1y =,则1cos sin x z θθ−=,可得1cos sin n θθ−=; 显然()2,0,0AC =− ,由A 到平面BCFE,可得AC n n ⋅==,可得21cos 4sin θθ− =;整理得25cos 2cos 30θθ−−=,解得3cos 5θ=−或cos 1θ=; 又()0,πθ∈,可得3cos 5θ=−.【点睛】方法点睛:求解点到平面距离常用方法:(1)等体积法:通过转换顶点,利用体积相等可得点到面的距离;(2)向量法:求出平面的法向量,并利用点到平面距离的向量求法公式计算可得结果;。

山西省运城市20232024学年高二下学期期末考试数学含答案(可编辑)

山西省运城市20232024学年高二下学期期末考试数学含答案(可编辑)

运城市2023-2024学年第二学期期末调研测试高二数学试题2024 7本试题满分150分,考试时间120分钟。

答案一律写在答题卡上。

注意事项:1 答题前,考生务必先将自己的姓名、准考证号填写在答题卡上,认真核对条形码上的姓名、准考证号,并将条形码粘贴在答题卡的指定位置上。

2 答题时使用0 5毫米的黑色中性(签字)笔或碳素笔书写,字体工整、笔迹清楚。

3 请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效。

4 保持卡面清洁,不折叠,不破损。

一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中只有一项是符合题目要求的.1.设全集U=R,集合A={x│y=2槡-x},B={y│y=2x,x∈A},则A∩B=A.(-∞,2]B.[2,+∞)C.(0,2]D.[2,4]2.函数f(x)=│x│(x-1)的单调递减区间是A.(-∞,0)B.(0,12)C.(12,1)D.(1,+∞)3.函数y=sinxex+e-x(x∈[-2,2])的图象大致为4.已知p:3x+2>1,q:-2≤x<1,则p是q的( )条件.A.充分不必要B.必要不充分C.充要D.既不充分也不必要5.已知函数f(x)=(13)x,x>11x,0<x<{1,则f(f(log槡32))=A.14B.4C.12D.26.若(x+mx)(x-1x)5的展开式中常数项是20,则m=A.-2B.-3C.2D.37.根据气象灾害风险提示,5月12日~14日某市进入持续性暴雨模式,城乡积涝和地质灾害风险极高,全市范围内降雨天气易涝点新增至36处.已知有包括甲乙在内的5个排水施工队前往3个指定易涝路口强排水(且每个易涝路口至少安排一个排水施工队),其中甲、乙施工队不在同一个易涝路口,则不同的安排方法有A.86B.100C.114D.1368.已知函数f(x)=│lnx│,x>0-x2-4x+1,x≤{0若关于x的方程[f(x)]2-2af(x)+a2-1=0有k(k∈N)个不等的实根x1,x2,…xk,且x1<x2<…<xk,则下列结论正确的是A.当a=0时,k=4B.当k=2时,a的取值范围为a<1C.当k=8时,x1+x4+x6x7=-3D.当k=7时,a的取值范围为(1,2)二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中有多项符合题目要求,全部选对得6分,部分选对的得部分分,有选错的得0分.9.已知全集U={x│x<10,x∈N},A U,B U,A∩(瓓UB)={1,9},A∩B={3},(瓓UA)∩(瓓UB)={4,6,7},则下列选项正确的为A.2∈BB.A的不同子集的个数为8C.{1} AD.6 瓓U(A∪B)10.已知由样本数据(xi,yi)(i=1,2,3,…,10)组成的一个样本,得到经验回归方程为^y=2x-0.4,且x=2,去除两个样本点(-2,1)和(2,-1)后,得到新的经验回归方程为^y=3x+b^.在余下的8个样本数据和新的经验回归方程中A.相关变量x,y具有正相关关系B.新的经验回归方程为^y=3x-3C.随着自变量x值增加,因变量y值增加速度变小D.样本(4,8 9)的残差为0.111.已知f(x)是定义在实数集R上的偶函数,当x≥0时,f(x)=2x4x+1.则下列结论正确的是A.对于x∈R,f(x)=2x4x+1B.f(x)在(0,+∞)上为减函数C.f(x)的值域为(-∞,12]D.f(0.30.4)>f(-0.40.3)>f(log237)三、填空题:本题共3小题,每小题5分,共15分.12.已知函数f(x)=x3-sinx(ax-1)(3x+2)为奇函数,则实数a的值为.13.一个袋子中有n(n∈N)个红球和5个白球,每次从袋子中随机摸出2个球.若“摸出的两个球颜色不相同”发生的概率记为p(n),则p(n)的最大值为.14.已知函数f(x),g(x)的定义域均为R,f(x)为奇函数,g(x+1)为偶函数,f(-1)=2,g(x+2)-f(x)=1,则∑61i=1g(i)=.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知集合A={x│x2-5x-6<0},集合B={x│[x-(1-a)][x-(1+a)]>0},其中a>0.(1)若a=2,求A∩(瓓RB);(2)设命题p:x∈A,命题q:x∈B,若p是瓙q的必要而不充分条件,求实数a的取值范围.16.已知函数f(x)=log2(4x+a·2x+16),其中a∈R.(1)若a=-10,求函数f(x)的定义域;(2)当x∈[1,+∞)时,f(x)>x恒成立,求实数a的取值范围.17.某疾病可分为A,B两种类型,为了解该疾病的类型与患者性别是否相关,在某地区随机抽取了1800名该疾病的患者进行调查,发现女性患者人数是男性患者人数的12,男性患A型疾病的人数为男性患者人数的23,女性患A型疾病的人数是女性患者人数的34.(1)根据所给信息完成下列2×2列联表:性别疾病类型A型B型合计男女合计(2)基于(1)中完成的2×2列联表,依据小概率值α=0.001的 2独立性检验,分析所患疾病的类型与性别是否有关?(3)某团队进行预防A型疾病的疫苗的研发试验,试验期间至多安排2个周期接种疫苗,每人每个周期接种3次,每次接种费用为9元.该团队研发的疫苗每次接种后产生抗体的概率为23,如果第一个周期内至少2次出现抗体,则该周期结束后终止试验,否则进入第二个周期,记该试验中1人用于接种疫苗的费用为ξ,求E(ξ).附: 2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),n=a+b+c+dα0.1000.0500.0100.0050.001α2.7063.8416.6357.87910.82818.基础学科招生改革试点,也称强基计划,是教育部开展的招生改革工作,主要是为了选拔培养有志于服务国家重大战略需求且综合素质优秀或基础学科拔尖的学生.强基计划的校考由试点高校自主命题,某试点高校校考过程中笔试通过后才能进入面试环节.2022年报考该试点高校的学生的笔试成绩X近似服从正态分布N(μ,σ2).其中,μ近似为样本平均数,σ2近似为样本方差s2.已知μ的近似值为76.5,s的近似值为5.5,以样本估计总体.(1)假设有84.135%的学生的笔试成绩高于该校预期的平均成绩,求该校预期的平均成绩大约是多少?(2)若笔试成绩高于76.5分进入面试,若从报考该试点高校的学生中随机抽取10人,设其中进入面试学生数为ξ,求随机变量ξ的期望.(3)现有甲、乙、丙、丁四名学生进入了面试,且他们通过面试的概率分别为13、13、12、12.设这4名学生中通过面试的人数为X,求随机变量X的分布列和数学期望.参考数据:若X~N(μ,σ2),则:P(μ-σ<X≤μ+σ)≈0.6827;P(μ-2σ<X≤μ+2σ)≈0.9545;P(μ-3σ<X≤μ+3σ)≈0.9973.19.定义一种新的运算“ ”: x,y∈R,都有x y=lg(10x+10y).(1)对于任意实数a,b,c,试判断(a b)-c与(a-c) (b-c)的大小关系;(2)若关于x的不等式(x-1)2>[(a2x2) (a2x2)]-lg2的解集中的整数恰有2个,求实数a的取值范围;(3)已知函数f(x)=lg(x+4-2x+槡3),g(x)=(1 x) (-x),若对任意的x1∈R,总存在x2∈[-32,+∞),使得g(x1)=lg│3m-2│+f(x2),求实数m的取值范围.命题人:康杰中学 张阳朋运城中学 吕莹高二数学期末答案一、1-8 C B BA B DCC 二、9.ABC 10.AB 11.ABD 三、12.3213.59 14.63四 、15.(1)15.2{|650}{|16}A x x x x x =+->=-<<, …………1分 ){{|[(1)][(1]0}|1x x a B x x a x a =---+<>=-或1}x a >+. ………… 2分若2a =,则{|1B x x =<-或3}x >,{}31|≤≤-=x x B C R , ………… 4分{}31|)(≤<-=∴x x B C A R ………… 6分(2)若的必要而不充分条件是q p ⌝,{}a x a x B C A B C U U +≤≤-=⊆∴11 , ………… 8分∴01116a a a >⎧⎪->-⎨⎪+<⎩,解得02a <<. ………… 12分 a ∴的取值范围是(0,2). ………… 13分16.(1)当10a =-时,()()2log 410216xxf x =-⨯+,由4102160x x -⨯+>得()()22028xx-->, ………… 2分故22x <或28x >,得1x <或3x >, ………… 4分 故函数()()2log 410216xxf x =-⨯+的定义域为()(),13,-∞⋃+∞,………… 6分(2)解一:由()f x x >得()22log 4216log 2xxxa x +⋅+>=, ………… 7分得42216x x x a +⋅+>,即()041216xxa +-⋅+>, ………… 8分22116122 9所以当[)+∞∈,1x 时,()f x x >恒成立,即为()()2116g t t a t =+-⋅+在[)+∞∈,2t 上最小值大于0, ………… 10分函数()()2116g t t a t =+-⋅+的对称轴为12at -=, 当221<-a即3->a 时,函数()g t 在[)+∞,2上单调递增, 此时0218)2(>+=a g ,得9->a ,a <-∴3 ………… 12分 当221≥-a,即3-≤a 时,函数()g t 在对称轴取得最小值, 此时()21112211602g a a a a ⎪⎛⎫=⎝---⎛⎫⎛⎫ ⎪⎝⎭+-+ ⎭>⎪⎭⎝,得79a -<<,37-≤<-∴a ………… 14分 故a 的取值范围为()7,-+∞ ………… 15分 解二:由()f x x >得()22log 4216log 2xxxa x +⋅+>=, ………… 7分得42216x x x a +⋅+>,即()041216xxa +-⋅+>, ………… 8分设2x t =,因[)+∞∈,1x ,故22≥=x t , ………… 9分 所以当[)+∞∈,1x 时,()f x x >恒成立,即)(21)16(162≥++-=-+->t tt t t t a ………… 11分 令1)16()(++-=t t t g 则”成立时“当且仅当==-≤++-=4,71)16()(t tt t g ………… 14分故a 的取值范围为()7,-+∞ ………… 15分 17. (1)设男性患者人数为m ,则女性患者人数为12m ,由118002m m +=12001200600 2 21200800336004504322⨯列联表如下:疾病类型性别A 型B 型 合计男 800 400 1200 女 450 150 600 合计12505501800………… 5分(2)零假设0H :所患疾病的类型与性别无关, ………… 6分 根据列联表中的数据,经计算得到()2218008001504504001441200600125055011χ⨯⨯-⨯==⨯⨯⨯,…… 8分 由于20.00114413.09110.82811χχ=≈>=, ………… 9分 依据小概率值0.001α=的2χ独立性检验,可以认为所患疾病的类型与性别有关.… 10分 (3)接种疫苗的费用ξ可能的取值为27,54, ………… 11分223322220(27)C ()(1()33327P ξ==-+=, ………… 12分207(54)12727P ξ==-=, ………… 13分则ξ的分布列为ξ27 54P2027 727期望为()2072754342727E ξ=⨯+⨯= .………… 15分 18.解:(1)由()()0.50.841352P X P X μσμσμσ-<≤+>-=+=,………2分76.5 5.576.5 5.571 4(2)由76.5μ=得,()176.52P ξ>=, 即从所有参加笔试的学生中随机抽取1名学生,该生笔试成绩76.5以上的概率为12…5分 所以随机变量ξ服从二项分布110,2X B ⎛⎫~ ⎪⎝⎭, ………6分 所以()11052E ξ=⨯=. ………8分 (3)X 的可能取值为0,1,2,3,4. ………9分()220022111011329P X C C ⎛⎫⎛⎫==⨯-⨯⨯-= ⎪ ⎪⎝⎭⎝⎭, ………10分 ()22100122221111111111113323223P X C C C C ⎛⎫⎛⎫⎛⎫⎛⎫==⨯⨯-⨯⨯-+⨯-⨯⨯⨯-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,…11分()22201122221111112111323322P X C C C C ⎛⎫⎛⎫⎛⎫⎛⎫==⨯⨯⨯-+⨯⨯-⨯⨯⨯- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭220222111313236C C ⎛⎫⎛⎫+⨯-⨯⨯= ⎪ ⎪⎝⎭⎝⎭, ………12分 6121311312112131)3(2221212222=⎪⎭⎫ ⎝⎛⨯⨯⎪⎭⎫ ⎝⎛-⨯⨯+⎪⎭⎫ ⎝⎛-⨯⨯+⎪⎭⎫⎝⎛⨯==C C C C X p , ……13分()22222211143236P X C C ⎛⎫⎛⎫==⨯⨯⨯=⎪ ⎪⎝⎭⎝⎭, ………14分 X 0 1 2 3 4()P X19 13 1336 16 136………15分 ∴()11131150123493366363E X =⨯+⨯+⨯+⨯+⨯=. ………17分 19. (1) ,x y ∀∈R ,()lg 1010xyx y ⊕=+∴()()lg 1010a b a b c c ⊕-=+-, ………2分10101010101010 45(2)()()()()222222222222lg 1010lg 210lg 2a x a xa xa x a x a x⊕=+=⨯=+∴原不等式可化为:()2221x a x ->,即()221210a x x --+>, ………6分满足题意,必有210a -<,即1a <-或1a >① ………7分令()()22121h x axx =--+,由于()010h =>,()21h a =-,结合①可得:()10h <, ………8分∴()h x 的一个零点在区间()0,1,另一个零点在区间[)1,2--, ………9分从而⎩⎨⎧>-≤-0)1(0)2(h h ,即⎩⎨⎧>+-⨯--⨯-≤+-⨯--⨯-01)1(2)1(101)2(2)2(12222)()(a a ② ………10分 由①②可得:223232<≤-≤<-a a 或 ………11分 (3)()(lg 4f x x =+,()()lg 101010xxg x -=++ ………12分设4t x =+3,2x ⎡⎫∈-+∞⎪⎢⎣⎭r =,[)0,r ∈+∞,则()2132x r =-, ∴()()2221151*********t r r r r r =-+-=-+=-+≥, ………14分∴()lg 2f x ≥,()1()lg 32g x m f x =-+的值域为)lg 32lg 2,A m ⎡=-++∞⎣ ………15分1010101012x x -++≥=,∴()lg12g x ≥()g x 的值域为[)lg12,B =+∞ ………16分根据题意可知:B A ⊆,∴lg 32lg 2lg12m -+≤解之得:4833m -≤≤且23m ≠ ………17分为。

浙江省杭州市2022-2023学年高二下学期期末数学试题(解析版)

浙江省杭州市2022-2023学年高二下学期期末数学试题(解析版)

2022学年第二学期杭州市高二年级教学质量检测数学试题卷考生须知:1.本试卷分试题卷和答题卷两部分.满分150分,考试时间120分钟.2.请用黑色字迹的钢笔或签字笔在答题卡指定的区域(黑色边框)内作答,超出答题区域的作答无效!3.考试结束,只需上交答题卡.选择题部分(共60分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,有一项是符合题目要求的.1. 直线3210x y +−=的一个方向向量是( ) A. ()2,3− B. ()2,3C. ()3,2−D. ()3,2【答案】A 【解析】 【分析】根据直线的斜率先得到直线的一个方向向量,然后根据方向向量均共线,求解出结果.【详解】因为直线3210x y +−=的斜率为32−,所以直线的一个方向向量为31,2−,又因为()2,3−与31,2−共线,所以3210x y +−=的一个方向向量可以是()2,3−, 故选:A.2. 若{},,a b c是空间的一个基底,则也可以作为该空间基底的是( )A. ,,b c b b c +−−B. a ,a b + ,a b −C. a b + ,a b − ,cD. ,,a b a b c c +++【答案】C 【解析】【分析】根据空间基底的概念逐项判断,可得出合适的选项.【详解】对选项A :()b c b c −−=−+,因此向量,,b c b b c +−−共面,故不能构成基底,错误;对选项B :()()12a a b a b =++−,因此向量a ,a b + ,a b −共面,故不能构成基底,错误; 对选项C :假设()()c a b a b λµ=++− ,即()()c a b λµλµ=++− ,这与题设矛盾,假设不成立,可以构成基底,正确;对于选项D :()a b c a b c ++=++,因此向量,,a b a b c c +++共面,故不能构成基底,错误; 故选:C3. “巴赫十二平均律”是世界上通用的音乐律制,它与五度相生律、纯律并称三大律制.“十二平均律”将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.而早在16世纪,明代朱载最早用精湛的数学方法近似计算出这个比例,为这个理论的发展做出了重要贡献.若第一个单音的频率为f ,则第四个单音的频率为( ) A. 5f B. 142fC. 4fD. 132f【答案】B 【解析】【分析】先将所要解决的问题转化为:求首项为f ,公比为的等比数列的第4项,再利用等比数列的通项公式求得结果即可.【详解】由题设可得:依次得到的十三个单音构成首项为f ,公比为的等比数列{}n a , 第四个单音的频率为31442a f f =×=. 故选:B.4. “点(),a b 在圆221x y +=外”是“直线20ax by ++=与圆221x y +=相交”的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】B 【解析】【分析】求出给定的两个命题的充要条件,再分析即可判断得解. 【详解】命题p :点(),a b 在圆221x y +=外等价于221a b +>,命题q :直线20ax by ++=与圆221x y +=2214a b <⇔+>,从而有,p q q p ⇒ ,所以p 是q 必要不充分条件. 故选:B5. 第19届亚运会将于2023年9月23日在杭州开幕,因工作需要,还需招募少量志愿者.甲、乙等4人报名参加了“莲花”、“泳镜”、“玉琮”三个场馆的各一个项目的志愿者工作,每个项目仅需1名志愿者,每人至多参加一个项目.若甲不能参加“莲花”场馆的项目,则不同的选择方案共有( ) A. 6种 B. 12种 C. 18种 D. 24种【答案】C 【解析】【分析】先从除甲外的3人中选1人参加“莲花”场馆的项目,再安排另外两个项目,利用排列、组合知识计算求解.【详解】先从除甲外的3人中选1人参加“莲花”场馆的项目,再安排另外两个项目, 若甲不能参加“莲花”场馆的项目,则不同的选择方案共有122332C C A 18=种. 故选:C.6. A ,B 两个学科兴趣小组在实验室研究某粒子的运动轨迹,共同记录到粒子的一组坐标信息(),i i x y .A小组根据表中数据,直接对(),x y 作线性回归分析,得到:回归方程ˆ0.46990.235yx +,决定系数20.8732R =.B 小组先将数据按照变换2u x =,2v y =进行整理,再对u ,v 作线性回归分析,得到:回归方程ˆ0.50060.4922v u =−+,决定系数20.9375R =.根据统计学知识,下列方程中,最有可能是该粒子运动轨迹方程的是( )A. 0.46990.2350x y −+=B. 0.50060.49220x y +−=C. 220.500610.49220.4922x y +=D. 220.500610.49220.4922x y +=【答案】C 【解析】【分析】由统计学知识可知,2R 越大,拟合效果越好,由此可得回归方程,整理得结论. 【详解】由统计学知识可知,2R 越大,拟合效果越好,又A 小组的决定系数20.8732R =,B 小组的决定系数20.9375R =,B ∴小组的拟合效果好,则回归方程为ˆ0.50060.4922vu =−+, 的又2222,,0.50060.4922u x v y y x ==∴=−+,即220.500610.49220.4922x y +=.故选:C .7. 设A ,B ,C ,D 是半径为1的球O 的球面上的四个点.设0OA OB OC ++=,则AD BD CD ++不可能等于( )A. 3B.72C. 4D. 【答案】A 【解析】【分析】根据条件,得到3AD BD CD ++=,利用AD BD CD AD BD CD AD BD CD →→→→→→++≤++=++判断等号成立条件,确定AD BD CD ++不可能取的值.【详解】因为()()()3()3AD BD CD OD OA OD OB OD OC OD OA OB OC OD →→→→→→→→→→→→→→++=−+−+−=−++=,且1OD =,所以3AD BD CD ++=, 而AD BD CD AD BD CD AD BD CD →→→→→→++≤+=++,当且仅当,,AD BD CD →→→同向时,等号成立,而A ,B ,C ,D 在球面上,不可能共线,即,,AD BD CD →→→不同向,所以3AD BD CD AD BD CD ++>++=且,,AD BD CD 均小于直径长2,即6AD BD CD ++<, 综上,36AD BD CD <++<. 根据选项可知A 不符合. 故选:A8. 设椭圆2222:1(0)x y C a b a b +=>>的左右焦点分别为1F ,2F ,P 是椭圆上不与顶点重合的一点,记I 为12PF F △的内心.直线PI 交x 轴于A 点,14OA c =,且212116PF PF a ⋅= ,则椭圆C 的离心率为( )A.12B.C.34D.【答案】B 【解析】【分析】先利用角平分线性质得到112253PF F A PF AF ==,设15PF t =,则23PF t =,根据椭圆定义得到4at =,然后利用平面向量的数量积和余弦定理即可求解. 【详解】不妨设点P 位于第一象限,如图所示,因为I 为12PF F △的内心,所以PA 为12F PF ∠的角平分线,所以1122PF F APF AF =,因为14OA c = ,所以112253PF F A PF AF ==, 设15PF t =,则23PF t =,由椭圆的定义可知,1282PF PF t a +==, 可得4at =,所以154a PF =,234a PF =,又因为11221122253cos c 41o 1s 46F P P a F PF PF PF F a F a F P ∠=×⋅∠=⋅=⋅ ,所以121cos 15F PF ∠=,在12PF F △中,由余弦定理可得, 222212121221217418cos 152158a c PF PF F F PF F a PF PF −+−∠===, 所以222a c =,则e =, 故选:B.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9. 若函数()f x 导函数的部分图像如图所示,则( )A. 1x 是()f x 的一个极大值点B. 2x 是()f x 的一个极小值点C. 3x 是()f x 的一个极大值点D. 4x 是()f x 的一个极小值点 【答案】AB 【解析】【分析】根据导函数值正负,与原函数单调性之间的关系,进行逐一判断.【详解】对于A 选项,由图可知,在1x 左右两侧,函数()f x 左增右减,1x 是()f x 的一个极大值点,A 正确.对于B 选项,由图可知,在2x 左右两侧,函数()f x 左减右增,2x 是()f x 的一个极小值点,B 正确. 对于C 选项,由图可知,在3x 左右两侧,函数()f x 单调递增,3x 不是()f x 的一个极值点,C 错误. 对于D 选项,由图可知,在4x 左右两侧,函数()f x 左增右减,4x 是()f x 的一个极大值点,D 错误. 故选:AB.10. 抛掷一枚质地均匀的骰子(六个面上的数字是1、2、3、4、5、6),抛掷两次.设事件:A “两次向上的点数之和大于7”,事件:B “两次向上的点数之积大于20”,事件:C “两次向上的点数之和小于10”,则( )A. 事件B 与事件C 互斥B. ()572P AB =C. ()25P B A = D. 事件A 与事件C 相互独立【答案】AC 【解析】【分析】列举出事件A 、B 、C 所包含的基本事件,利用互斥事件的定义可判断A 选项;利用古典概型的概率公式可判断B 选项;利用条件概率公式可判断C 选项;利用独立事件的定义可判断D 选项.【详解】抛掷一枚质地均匀的骰子(六个面上的数字是1、2、3、4、5、6),抛掷两次, 设第一次、第二次抛掷骰子正面朝上的点数分别为m 、n , 以(),m n 为一个基本事件,则基本事件的总数为2636=,事件A 包含的基本事件有:()2,6、()3,5、()3,6、()4,4、()4,5、()4,6、()5,3、()5,4、()5,5、()5,6、()6,2、()6,3、()6,4、()6,5、()6,6,共15种,事件B 包含的基本事件有:()4,6、()5,5、()5,6、()6,4、()6,5、()6,6,共6种, 事件C 包含的基本事件有:()1,1、()1,2、()1,3、()1,4、()1,5、()1,6、()2,1、()2,2、()2,3、()2,4、()2,5、()2,6、()3,1、()3,2、()3,3、()3,4、()3,5、 ()3,6、()4,1、()4,2、()4,3、()4,4、()4,5、()5,1、()5,2、()5,3、()5,4、()6,1、()6,2、()6,3,共30种,对于A 选项,事件B 与事件C 互斥,A 对;对于B 选项,事件AB 包含的基本事件有:()4,6、()5,5、()5,6、()6,4、()6,5、()6,6,共6种,所以,()61366P AB ==,B 错;对于C 选项,()()()25n AB P B An A ==,C 对; 对于D 选项,()1553612P A ==,()305366P C ==,事件AC 包含的基本事件有:()2,6、()3,5、()3,6、()4,4、()4,5、()5,3、()5,4、()6,2、()6,3,共9种,所以,()()()91364P AC P A P C ==≠⋅,D 错. 故选:AC.11. 设双曲线222:1(0)4x y C a a a a −=>−+,直线l 与双曲线C 的右支交于点A ,B ,则下列说法中正确的是( )A. 双曲线C 离心率的最小值为4B. 离心率最小时双曲线C 0y ±=C. 若直线l 同时与两条渐近线交于点C ,D ,则AC BD =D. 若1a =,点A 处的切线与两条渐近线交于点E ,F ,则EOF S △为定值 【答案】BCD 【解析】【分析】由离心率公式,结合基本不等式可判断A ;根据2a =可得双曲线方程,然后可得渐近线方程,可判断B ;将问题转化为AB 的中点与CD 的中点是否重合的问题,设直线方程,联立渐近线方程求C ,D 坐标,再由点差法求AB 的中点坐标,然后可判断C ;结合图形可知EOFOEP OFQ EFQP S S S S =−− 梯形,利用导数求切线方程,联立渐近线方程求E ,F 的横坐标,代入化简可判断D.【详解】由题知,22444a a a e a a a+−+==+≥,当且仅当2a =时等号成立,所以2e 的最小值为4,e的最小值为2,故A 错误;当2a =时,双曲线方程为22126x y −=,此时渐近线方程为y x =0y ±=,B 正确; 若直线l 的斜率不存在,由对称性可知AC BD =;当斜率存在时,设直线方程为y kx m =+,1122(,),(,)A x y B x y ,AB 的中点为00(,)M x y ,CD 的中点为33(,)N x y则22112222221414x y a a a x y a a a −= −+ −=−+,由点差法可得2004y a a k x a −+⋅=,所以2004kx m a a k x a +−+⋅=, 所以0224amkx a a ak=−+−,又双曲线渐近线方程为y =,联立y kx m =+分别求解可得CD x x ,所以3022124amk x x a a ak =+==−+−, 所以M ,N 重合,则AC MC MA MD MB BD =−=−=,或AC MC MA MD MB BD =+=+=,故C 正确;若1a =,则双曲线方程为2214y x −=,渐近线方程为2y x =±,不妨设点A在第一象限,双曲线在第一象限的方程为y ,y ′=1)y x x −−,设点E ,F 坐标分别为(,),(,)E E F F x y x y ,分别作,EP FQ 垂直于y 轴,垂足分别为P ,Q ,E 在第一象限,F 在第四象限,则EOFOEP OFQ EFQP S S S S =−− 梯形 1111()()()2222E F E F E E F F F E E F x x y y x y x y x y x y =+−−+=− 又2,2E E F F y x y x ==−,所以1(22)22EOF F E E F E F S x x x x x x =+= ,联立渐近线方程和切线方程可解得112)2)E EF F x x x x x x −−−−− ,整理得(2(2E F x x −=−=,两式相乘得22112211(4)411E F x x x x x x −−=−−−,所以1E F x x =, 所以22EOFE F S x x == ,D 正确 故选:BCD【点睛】本题考察圆锥曲线的综合运用,C 选项需要灵活处理,将问题转化为AB 的中点与CD 的中点是否重合的问题,利用点差法和直接计算可解;D 选项需结合图象将面积灵活转化,在求解E F x x 时,要结合式子的结构特征灵活处理. 12. 已知曲线()exx f x =,()ln xg x x =,及直线y a =,下列说法中正确的是( ) A. 曲线()f x 在0x =处的切线与曲线()g x 在1x =处的切线平行 B. 若直线y a =与曲线()f x 仅有一个公共点,则1ea = C. 曲线()f x 与()g x 有且仅有一个公共点D. 若直线y a =与曲线()f x 交于点()11,A x y ,()22,B x y ,与曲线()g x 交于点()22,B x y ,()33,C x y ,则2132x x x =【答案】ACD 【解析】【分析】对与A 选项,分别求出()f x 在0x =处的切线与()g x 在1x =处的切线即可判断; 对于B 选项,求出()f x ′,即可判断出曲线()f x 的单调性,画出草图则可判断; 对于C 选项,画出曲线()f x 与()g x 的草图,即可判断;对于D 选项,借助图像可知直线y a =过曲线()f x 与()g x 的交点B ,由此即可得出12312223ln ln x x x x x x e e x x ===,则可得12ln x x =,23e x x =,2222ln e ⋅=x x x ,则可得出2132x x x =..【详解】对于A 选项:()0=0f ,()()2(e e 1e )e ′⋅−′⋅==′−x x x x x x xf x ,()01f ′=, 所以曲线()f x 在0x =处的切线为:y x =; 同理()10g =,()21ln xg x x−′=,()11g ′=,曲线()g x 在1x =处的切线为1y x =−, 即曲线()f x 在0x =处的切线与曲线()g x 在1x =处的切线平行,正确; 对于B 选项:()1ex xf x −′=,令()0f x ′=,解得1x =, 所以曲线()f x 在(,1)−∞上单调递增,在(1,)+∞上单调递减,()11=ef , 又当x →−∞时()f x →−∞,当x →+∞时()0f x →, 若直线y a =与曲线()f x 仅有一个公共点,则1ea =或0a ≤,错误; 对于C 选项:曲线()g x 的定义域为:(0,)+∞,()21ln xg x x−′=, 令()0g x ′=,解得e x =,所以()g x 在(0,e)上单调递增,在(e,)+∞上单调递减,且()110,(e)e==g g , 所以曲线()f x 与曲线()g x 的大致图像为:易知当(0,1)x ∈时,()0f x >,()0g x <,即曲线()f x 与曲线()g x 在区间(0,1)上无交点;当[1,e]x ∈时,()f x 单调递减,()g x 单调递增,且1(1)(1)0e=>=f g , 1e 1(e)e ()e −−=<=f g e ,即曲线()f x 与曲线()g x 在区间(1,e)上有一个交点;当(e,)x ∈+∞时,记()ln h x x x =−,1()1h x x′=−,当e x >时()0h x ′>恒成立, 即()h x 在(e,)+∞上单调递增,即()(e)e 10>=−>h x h ,即ln 1>>xx ,又曲线()f x 在(1,)+∞上单调递减,所以()(ln )<f x f x ,即ln ln ln e e <=x x x x x x, 即()()f x g x <恒成立,即曲线()f x 与曲线()g x 在区间(e,)+∞上没有交点; 所以曲线()f x 与()g x 有且仅有一个公共点,正确;对于D 选项:当直线y a =经过曲线()f x 与()g x 的交点时,恰好有3个公共点,且12301e x x x <<<<<,12312223ln ln x x x xx x ee x x ===, 由122()()(ln )==f x f x f x ,所以12ln x x =,由223()()(e )==xgx g x g ,所以23e xx =, 即221322ln e ⋅=⋅=xx x x x ,正确. 故选:ACD【点睛】方法点睛:判断两个函数的交点个数常用的方法:(1)直接法:直接求解方程得到方程的根,根的个数即为交点个数;(2)数形结合法:在同一平面直角坐标系中画出两个函数的图象,直接得出答案.三、填空题:本大题共4小题,每小题5分,共20分.13. ()8()x y x y −+的展开式中36x y 的系数为________.【答案】28− 【解析】【分析】利用8()x y +的展开式通项公式求3526,x y x y 项,然后可得()8()x y x y −+的展开式中36x y 项,可得答案.【详解】8()x y +的展开式通项公式818C r rr r T xy −+=,令5,6r =得5356266878C ,C T x y T x y ==, 所以()8()x y x y −+的展开式中36x y 项为()5356263688C C 28x y y x y x x y ⋅−+⋅=−,所以36x y 的系数为28−. 故答案为:28−14. 曲率是衡量曲线弯曲程度的重要指标.定义:若()f x ′是()f x 的导函数,()f x ′′是()f x ′的导函数,则曲线()y f x =在点()(),x f x 处的曲率()()()3221f x K f x =+ ′′′.已知()()cos 1ln f x x x =−−,则曲线()y f x =在点()()1,1f 处的曲率为________.【答案】0 【解析】【分析】求出原函数的导函数()f x ′与导函数的导函数()f x ′′,然后代入题中公式即可求出答案.【详解】因为()()cos 1ln f x x x =−−, 所以()()1sin 1f x x x ′=−−−,()()21cos 1f x x x′′=−−, 则()11sin011f ′=−−=−,()11cos001f ′′=−=, 所以曲线()y f x =在点()()1,1f 处的曲率为()()()()()()3322221001111f Kf ′′===+−′+.故答案为:0.15. 已知数列{}n a 满足28a =,()()1*122,nn n a n a n n −− =+≥∈ N ,数列{}n b 的前n 项和为n S ,且()()222212221log log n n n n n b a a a a +−+=⋅−⋅,则满足50n S −>的正整数n 的最小值为________.【答案】63 【解析】【分析】根据对数运算和递推公式可得数列{}n b 的通项公式,然后对数运算结合累乘法可得n S ,解不等式可得答案.【详解】因为()()1*122,nn n a n a n n −− =+≥∈ N ,280a =>, 所以()110,2n nn n a a n a −−>=+, 所以()()222212221log log n n n n n b a a a a +−+=⋅−⋅ 22212222222212121log log log n n n n n n n n a a a a a a a a +−+++−⋅=−⋅()()()()2221122log 222log 22n nn n +−−++−+()()22log 24log 22n n +−+所以()()222222224log 6log 4log 8log 6log 24log 22log 4n n S n n +=−+−+⋅⋅⋅++−+=, 因为50n S −>,所以2224log 5log 324n +>=,即2322n +>,解得62n >, 因为*n ∈N ,所以正整数n 的最小值为63. 故答案为:63 16. 设函数()2π2cos 2x f x x +=+,则使得()()12f x f x +>成立的x 的取值范围是________.【答案】5,13−【解析】【分析】利用函数的平移变换及偶函数的性质的应用,再利用导函数的正负与函数单调性的关系及绝对值不等式的解法即可求解. 【详解】由()2π2cos 2x f x x + =+ 向右平移2个单位,得()ππ2cos π2cos 22x xg x x x =+−=−为偶函数,所以()g x 关于y 轴对称, 所以()f x 关于2x =−对称, 当0x ≥时,()n ln ππ2si 222x g x x ′+=, 当[]0,2x ∈时,因为πsin 02x≥,所以()0g x ′>, 当()2,x ∈+∞时,()20ln π222g x ′>>−, 所以()g x 在上单调[)0,∞+递增,在(),0∞−上单调递减, 所以()f x 在(),2−∞−上单调递减,在()2,−+∞上单调递增,由()()12f x f x +>得1222x x ++>+,即()()22322x x +>+,解得531x <−<,所以使得()()12f x f x +>成立x 的取值范围是5,13 −.的故答案为:5,13 −.【点睛】关键点睛:解决本题的关键是利用函数的平移变换及偶函数的性质应用,再利用导数法求出函数的单调性及绝对值的解法即可.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. 如图,在四面体ABCD 中,AE AB λ= ,AH AD λ= ,()1CF CB λ=−,()1CG CD λ=− ,()0,1λ∈.(1)求证:E 、F 、G 、H 四点共面. (2)若13λ=,设M 是EG 和FH 的交点,O 是空间任意一点,用OA 、OB 、OC 、OD 表示OM . 【答案】(1)证明见解析(2)42129999OM OA OB OC OD =+++【解析】【分析】(1)证明出//EH FG,即可证得结论成立;(2)由(1)可得出12EH FG = ,可得出//EH FG ,则12EM EH MG FG ==,由此可得出12EM MG = ,再结合空间向量的线性运算可得出OM 关于OA 、OB、OC 、OD 的表达式.【小问1详解】证明:因为EH AH AE AD AB BD λλλ=−=−=,()()()111FG CG CF CD CB BD λλλ=−=−−−=− ,所以1EH FG λλ=−,则//EH FG ,因此E 、F 、G 、H 四点共面. 【小问2详解】解:当13λ=时,13AE AB = ,即()13OE OAOB OA −=− ,可得2133OE OA OB =+ , 因为23CG CD =,即()23OG OC OD OC −=− ,可得1233OG OC OD =+ ,由(1)知,13EH BD = ,23FG BD =,因此12EH FG = ,又因为EH 、FG 不在同一条直线上,所以,//EH FG ,则12EM EH MG FG ==,则12EM MG = ,即()12OM OE OG OM −=− , 所以,2122111233333333OM OE OG OA OB OC OD=+=+++42129999OA OB OC OD =+++. 18. 已知等差数列{}n a 的前n 项和为n S ,且424S S =,()*221N n n a a n =+∈.(1)求数列{}n a 的通项公式.(2)若{}n a 中的部分项n b a 组成的数列{}1n b a +是以11a +为首项,2为公比的等比数列,求数列{}n b 的前n 项和n T .【答案】(1)()*21Nn a n n =−∈(2)21nnT =− 【解析】【分析】(1)利用等差数列的前n 项和及通项公式基本量计算即可;(2)利用等比数列概念及通项公式求出{}n b 的通项公式,再利用等比数列求和公式求解即可. 【小问1详解】设差数列{}n a 公差为d ,则由424S S =,()*221Nn n a a n =+∈可得()()11114684212211a d a d a n d a n d +=+ +−=+−+ ,解得112a d = = ,因此()*21N n a n n =−∈.【小问2详解】由21na n =−,得21nb n a b =−, 又由{}1n b a +是以11a +为首项,2为公比的等比数列,得12n nb a +=,因此22n n b =, 所以12n n b −=,所以122112nn nT −==−−. 19. 如图,在三棱柱111ABC A B C 中,所有棱长均为2,160A AC ∠=,1A B =.的(1)证明:平面11A ACC ⊥平面ABC .(2)求平面11BA B 与平面111A B C 的夹角的正弦值. 【答案】(1)证明见解析;(2. 【解析】【分析】(1)取AC 中点M ,证明1A M BM ⊥,再利用线面垂直、面面垂直的判定推理作答. (2)利用(1)中信息作出平面11BA B 与平面ABC 所成二面角的平面角,再借助直角三角形求解作答. 【小问1详解】三棱柱111ABC A B C -的所有棱长均为2,取AC 中点M ,连接1A M ,BM ,则BM AC ⊥,由1AA AC =,160A AC ∠=,得1A AC △为等边三角形,则1A M AC ⊥,显然1A MBM ==1A B =,则22211A M BM A B +=,有1A M BM ⊥, 又AC BM M = ,,AC BM ⊂平面ABC ,于是1A M ⊥平面ABC ,而1A M ⊂平面11A ACC , 所以平面11A ACC ⊥平面ABC .【小问2详解】在三棱柱111ABC A B C -中,平面111//A B C 平面ABC ,因此平面11BA B 与平面111A B C 的夹角的正弦值与平面11BA B 与平面ABC 的夹角的正弦值相等, 由(1)知1A M ⊥平面ABC ,AB ⊂平面ABC ,则1A M AB ⊥,过M 作MN AB ⊥于点N ,连接1A N ,有1A M MN ⊥,11,,MN A M M MN A M =⊂ 平面1A MN ,于是AB ⊥平面1A MN ,而1A N ⊂平面1A MN ,则1A N AB ⊥,因此1A NM ∠为平面11BA B 与平面ABC 所成二面角的平面角, 显然sin 60MN AM =⋅ ,而1A M =,则1A N ===,从而111sin A M A NM A N∠=所以平面11BA B 与平面111A B C. 20. 第19届亚运会将于2023年9月23日在杭州拉开帷幕,为了更好地迎接亚运会,杭州市政府大举加强了城市交通基础设施的建设.至2023年地铁运行的里程数达到516公里,排位全国第六.同时,一张总长464公里、“四纵五横”为骨架、通达“东西南北中”十城区的快速路网也顺利完工准备接待世界各地的来宾.现杭州公共出行的主流方式为地铁、公交、打车、共享单车这四种,基本可以覆盖大众的出行需求. (1)一个兴趣小组发现,来自不同的城市的游客选择出行的习惯会有很大差异,为了验证这一猜想该小组进行了研究.请完成下列22×列联表,并根据小概率值0.010α=的独立性检验,分析城市规模是否与出行偏好地铁有关?(精确到0.001) 单位:人(2)国际友人David 来杭游玩,每日的行程分成()*M M ∈N段,为了更好的体验文化,相邻两段的出行方式不能相同,且选择地铁、公交、打车、共享单车的概率是等可能的.已知他每日从酒店出行的方式一定是从地铁开始,记第n 段行程上David 坐地铁的概率为n p ,易知11p =,20p = ①试证明14n p−为等比数列;②设第n 次David 选择共享单车的概率为n q ,比较5p 与5q 的大小.附:()()()()22()n ad bc a b c d a c b d χ−=++++,n a b c d =+++.α 0.050 0.010 0.001x α 3.841 6.635 10.828【答案】(1)表格见解析,有关系 (2)①证明见解析;②55p q >. 【解析】【分析】(1)根据题意即可完成列联表,再根据公式求出2χ,再对照临界值表即可得出结论; (2)①根据全概率公式结合等比数列的定义即可得出结论; ②先求出n p 的表达式,进而可求出55,p q ,即可得解. 【小问1详解】 列联表如下:零假设为0H :城市规模与出行偏好地铁无关,()22200804020609.524 6.63510010014060χ×−×≈>×××,根据小概率值0.010α=的独立性检验,我们推断0H 不成立,即认为城市规模与出行偏好地铁有关,此推断犯错误的概率不大于0.010; 【小问2详解】①证明:第n 段行程上David 坐地铁的概率为n p ,则当2n ≥时,第1n −段行程上David 坐地铁的概率为1n p −,不坐地铁的概率为11n p −−,则()11111101333n n n n p p p p −−−=⋅+−⋅=−+, 从而1111434n n p p −−=−−, 又11344p −=,所以14n p−是首项为34,公比为13−的等比数列;②由①可知1311434n n p −=−+, 则4531114344p =−+> ,又()5511134q p =−<,故55p q >. 21. 设抛物线2:2(0)C y py p =>,过焦点F 的直线与抛物线C 交于点()11,A x y ,()22,B x y .当直线AB 垂直于x 轴时,2AB =.(1)求抛物线C 的标准方程.(2)已知点()1,0P ,直线AP ,BP 分别与抛物线C 交于点C ,D . ①求证:直线CD 过定点;②求PAB 与PCD 面积之和的最小值. 【答案】(1)2:2C y x = (2)①证明见解析;②52. 【解析】【分析】(1)利用弦长求解p ,即可求解抛物线方程;(2)(i )设直线方程,与抛物线联立,韦达定理找到坐标关系,表示出直线方程,即可求出定点; (ii )利用面积分割法求出两个三角形面积表达式,然后利用二次函数求最值即可. 【小问1详解】由题意,当直线AB 垂直于x 轴时,12p x =,代入抛物线方程得1y p =±,则2AB p =,所以22p =,即1p =,所以抛物线2:2C y x =.【小问2详解】 (i )设()33,C x y ,()44,D x y ,直线1:2AB x my =+, 与抛物线2:2C y x =联立,得2210y my −−=,因此122y y m +=,121y y =−. 设直线:1AC x ny =+,与抛物线2:2C y x =联立,得2220y ny −−=,因此132y y n +=,132y y =−,则312y y −=.同理可得422y y −=. 所以34341222343434121222122222CD y y y y y y k y y x x y y y y m y y −−=====−=−−−+++−. 因此直线()33:2CD xm y y x =−+,由对称性知,定点在x 轴上, 令0y =得,223333211112124222222y m x my x my m y y y y −−=−+=−+=−+=+ ()1221222211111212122222y y y y y y y y y y + +=+=++=+⋅=, 所以直线CD 过定点()2,0Q .(ii )因为12121124PAB S PF y y y y =⋅−=− , 12341212121211221122PCD y y S PQ y y y y y y y y y y −−−=⋅−=−=−==− ,所以125542PAB PCDS S y y +=−=≥ , 当且仅当0m =时取到最小值52. 22. 设函数()2(1)e xf x x ax =−−,若曲线()f x 在0x =处的切线方程为2y x b =−+. (1)求实数,a b 的值.(2)证明:函数()f x 有两个零点.(3)记()f x ′是函数()f x 的导数,1x ,2x 为()f x 的两个零点,证明:122x x f a + >−′. 【答案】(1)11a b = =(2)证明见解析 (3)证明见解析【解析】【分析】(1)利用导数的几何意义代入()02f ′=−即可得,a b 的值; (2)根据导函数判断出函数单调性,由零点存在性定理即可证明结论; (3)利用(1)(2)中的结论,结合()f x 单调性并构造函数并求其单调性,即可实现不等式证明.【小问1详解】由题意可得()()21e x f x x a ′=−−, 由切线方程可知其斜率为2−,所以()()02,0,f f b =−=′,解得11a b = = . 【小问2详解】由()0f x =可得2(1)e 0x x x −−=,所以2(1)0e xx x −−=; 函数()f x 有两个零点即函数()2(1)ex x g x x =−−有两个零点. ()()112e x g x x =−+′, 当1x <时,()0g x ′<,()g x 单调递减;当1x >时,()0g x ′>,()g x 单调递增.又()010g =>,()110e g =−<,()22210e g =−>, 所以()()010g g <,()()120g g <,由零点存在定理可得()10,1x ∃∈使得()10g x =,()21,2x ∃∈使得()20g x =,所以函数()f x 有两个零点.【小问3详解】由(1)(2)知2()(1)e x f x x x =−−,可得()()21e 1x f x x ′=−−且12012x x <<<<. 要证明122x x f a + >− ′,即证明1221221e 112x x x x + + −−>−, 即证明122x x +>.令()()()2(01)h xg x g x x =−−<<,则 ()()()()()()()2221e e 11212120e e e x x x x x h x g x g x x x −−−− =+−=−++−′+=< ′′ ,因此()h x 单调递减,则()()10h x h >=.因此()10h x >, 即()()112g x g x >−,又12012x x <<<<,所以()()21g x g x >; 即()()212g x g x >−,又2x ,()121,2x −∈,且()g x ()1,2上单调递增, 因此212x x >−,即122x x +>.命题得证.【点睛】关键点点睛:本题第(3)问证明的关键在于将不等式122x x f a + >− ′转化成求证122x x +>,然后再利用构造函数利用函数单调性证明.在。

四川省泸州市龙马潭区2023-2024学年高二下学期6月期末考试 数学含答案

四川省泸州市龙马潭区2023-2024学年高二下学期6月期末考试 数学含答案

2024年春期高2022级高二期末考试数学试题(答案在最后)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

第I 卷(选择题58分)一、选择题(本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若直线过点(1,2)-,(3,2+,则此直线的倾斜角为A .6πB .4πC .3πD .2π2.已知221:202C x y x y ++-+= ,则该圆的圆心坐标和半径分别为A .1,12⎛⎫- ⎪⎝⎭B .()1,2-C .1,12⎛⎫- ⎪⎝⎭D .()1,2,2-3.记n S 为等差数列{}n a 的前n 项和,若375610,35a a a a +==,则6S =A .20B .16C .14D .124.已知双曲线C 经过点()0,1C 的标准方程为A .221x y -=B .2213y x -=C .221y x -=D .2213x y -=5.将8个大小形状完全相同的小球放入3个不同的盒子中,要求每个盒子中至少放2个小球,则不同放法的种数为A .3B .6C .10D .156.衣柜里有灰色,白色,黑色,蓝色四双不同颜色的袜子,从中随机选4只,已知取出两只是同一双,则取出另外两只不是同一双的概率为A .25B .45C .815D .897.已知点M ,N 是抛物线Γ:()220y px p =>和动圆C :()()()222130x y r r -+-=>的两个公共点,点F 是Γ的焦点,当MN 是圆C 的直径时,直线MN 的斜率为2,则当r 变化时,r MF +的最小值为A .3B .4C .5D .68.已知22()log (412)cos f x x x x x =++-,且0.1231(log ),(0.)9),log 43(a f b f c f ===,则a ,b ,c 的大小关系为A .a b c >>B .b a c >>C .c b a>>D .a c b>>二、多项选择题(每小题6分,共3小题,共18分.在每个小题给出的四个选项中,有多项符合题目要求.全对的得6分,部分选对的得部分分,有选错的得0分.)9.已知212nx x ⎛⎫- ⎪⎝⎭的展开式中,各项的二项式系数之和为128,则A .7n =B .只有第4项的二项式系数最大C .各项系数之和为1D .5x 的系数为56010.下列说法中正确的是附:2χ独立性检验中几个常用的概率值与相应的临界值α0.10.050.01a χ 2.7063.841 6.635A .已知离散型随机变量14,3X B ⎛⎫⎪⎝⎭,则()14323D X +=B .一组数据148,149,154,155,155,156,157,158,159,161的第75百分位数为158C .若()()()121,,4312P A P P AB B ===,则事件A 与B 相互独立D .根据分类变量x 与y 的观测数据,计算得到2 3.154χ=,依据0.05α=的独立性检验可得:变量x 与y 独立,这个结论错误的概率不超过0.0511.将两个各棱长均为1的正三棱锥D ABC -和E ABC -的底面重合,得到如图所示的六面体,则A .该几何体的表面积为332B .该几何体的体积为36C .过该多面体任意三个顶点的截面中存在两个平面互相垂直D .直线//AD 平面BCE第二卷非选择题(92分)三、填空题(本大题共3小题,每小题5分,共15分,把答案直接填在答题卡中的横线上.)12.数列{}n a 满足()1432n n a a n -=+≥且10a =,则数列{}n a 的通项公式是.13.过点()1,1-与曲线()()ln 13e 2xf x x =+-+相切的直线方程为.14.已知1F 、2F 为椭圆()222210x y a b a b+=>>的左、右焦点,点P 为该椭圆上一点,且满足1260F PF ∠=︒,若12PF F △的外接圆面积是其内切圆面积的64倍,则该椭圆的离心率为.四、解答题(本大题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.)15.(13分)近几年,随着生活水平的提高,人们对水果的需求量也随之增加,我市精品水果店大街小巷遍地开花,其中中华猕猴桃的口感甜酸、可口,风味较好,广受消费者的喜爱.在某水果店,某种猕猴桃整盒出售,每盒20个.已知各盒含0,1个烂果的概率分别为0.8,0.2.(1)顾客甲任取一盒,随机检查其中4个猕猴桃,若当中没有烂果,则买下这盒猕猴桃,否则不会购买此种猕猴桃.求甲购买一盒猕猴桃的概率;(2)顾客乙第1周网购了一盒这种猕猴桃,若当中没有烂果,则下一周继续网购一盒;若当中有烂果,则隔一周再网购一盒;以此类推,求乙第5周网购一盒猕猴桃的概率16.(15分)已知直三棱柱111ABC A B C -中,侧面11AA B B 为正方形,2AB BC ==,E ,F 分别为AC 和1CC 的中点,D 为棱11A B 上的点.11BF A B ⊥(1)证明:BF DE ⊥;(2)当1B D 为何值时,面11BB C C 与面DFE 所成的二面角的正弦值最小?17.(15分)已知数列{}n a 的通项公式为n a n =,在n a 与1n a +中插入21n n +-个数,使这21n n ++个数组成一个公差为n d 的等差数列,记数列{}n d 的前n 项和为n S ,(1)求{}n d 的通项公式及n S ;(2)设12nn n na b S -=,n T 为数列{}n b 的前n 项和,求n T .18.(17分)已知函数2()22ln f x x ax x =-+.(1)当a =()y f x =的单调减区间;(2)若()y f x =有两个极值点12,x x ,且12x x <,52a ≥,若不等式12()f x mx ≥恒成立,求实数m 的取值范围.19.(17分)已知椭圆()2222:10x y C a b a b+=>>的离心率为12,左、右两个顶点分别为A ,B ,直线b y x a =与直线x a =的交点为D ,且△ABD的面积为(1)求C 的方程;(2)设过C 的右焦点F 的直线1l ,2l 的斜率分别为1k ,2k ,且122k k =-,直线1l 交C 于M ,N 两点,2l 交C 于G ,H 两点,线段MN ,GH 的中点分别为R ,S ,直线RS 与C 交于P ,Q 两点,记△PQA 与△PQB 的面积分别为1S ,2S ,证明:12S S 为定值.2024年春期高2022级高二期末考试数学试题参考答案1.C 2.A 3.D 4.C 5.B 6.D 7.B 8.D9.AD10.BC11.AC12.141n n a -=-13.210x y ++=14.4515.解:(1)由题意可得:甲不购买一盒猕猴桃情况为该盒有1个烂果且随机检查其中4个时抽到这个烂果,甲购买一盒猕猴桃的概率319420C 10.20.96C P =-⨯=.................................................................................6分(2)用“√”表示购买,“╳”表示不购买,乙第5周购买有如下可能:第1周第2周第3周第4周第5周√√√√√√╳√√√√√╳√√√╳√╳√√√√╳√................................................................................................................................................................9分故乙第5周网购一盒猕猴桃的概率:()40.80.20.80.80.80.20.80.20.20.80.80.20.8336P =+⨯⨯+⨯⨯+⨯+⨯⨯=....................................13分16.解:(1)[方法一]:几何法因为1111,//BF AB AB AB ⊥,所以BF AB ⊥.又因为1AB BB ⊥,1BF BB B ⋂=,所以AB ⊥平面11BCC B .又因为2AB BC ==,构造正方体1111ABCG A B C G -,如图所示,过E 作AB 的平行线分别与AG BC ,交于其中点,M N ,连接11,AM BN ,因为E ,F 分别为AC 和1CC 的中点,所以N 是BC 的中点,易证1Rt Rt BCF B BN ≅ ,则1CBF BBN ∠=∠.又因为1190BBN BNB ∠+∠=︒,所以1190CBF BNB BF BN ∠+∠=︒⊥,.又因为111111,BF AB BN AB B ⊥= ,所以BF ⊥平面11A MNB .又因为ED ⊂平面11A MNB ,所以BF DE ⊥....................................................................................................7分[方法二]【最优解】:向量法因为三棱柱111ABC A B C -是直三棱柱,1BB ∴⊥底面ABC ,1B B AB ∴⊥11//A B AB ,11BF A B ⊥,BF AB ∴⊥,又1BB BF B ⋂=,AB ∴⊥平面11BCC B .所以1,,BA BC BB 两两垂直.以B 为坐标原点,分别以1,,BA BC BB 所在直线为,,x y z轴建立空间直角坐标系,如图.()()()0,0,0,2,0,0,0,2,0,B A C ∴()()()1110,0,2,2,0,2,0,2,2B A C ,()()1,1,0,0,2,1E F .由题设(),0,2D a (02a ≤≤).因为()()0,2,1,1,1,2BF DE a ==--,所以()()0121120BF DE a ⋅=⨯-+⨯+⨯-=,所以BF DE ⊥.........................................................................7分[方法三]:因为11BF A B ⊥,11//A B AB ,所以BF AB ⊥,故110BF A B ⋅= ,0BF AB ⋅=,所以()11BF ED BF EB BB B D ⋅=⋅++ ()11=BF B D BF EB BB ⋅+⋅+ 1BF EB BF BB =⋅+⋅ 11122BF BA BC BF BB ⎛⎫=--+⋅ ⎪⎝⎭11122BF BA BF BC BF BB =-⋅-⋅+⋅ 112BF BC BF BB =-⋅+⋅111cos cos 2BF BC FBC BF BB FBB =-⋅∠+⋅∠1=2202-⨯⨯,所以BF ED ⊥........7分(2)[方法一]【最优解】:向量法设平面DFE 的法向量为(),,m x y z =,因为()()1,1,1,1,1,2EF DE a =-=--,所以00m EF m DE ⎧⋅=⎨⋅=⎩,即()0120x y z a x y z -++=⎧⎨-+-=⎩.........................................................................................................9分令2z a =-,则()3,1,2m a a =+-因为平面11BCC B 的法向量为()2,0,0BA =,设平面11BCC B 与平面DEF 的二面角的平面角为θ,则cos m BA m BA θ⋅=⋅==.......................................................................13分当12a =时,22214a a -+取最小值为272,此时cos θ3=.所以()minsin θ=,此时112B D =...................................................................................15分[方法二]:几何法如图所示,延长EF 交11AC 的延长线于点S ,联结DS 交11B C 于点T ,则平面DFE 平面11B BCC FT =.作1BH FT ⊥,垂足为H ,因为1DB ⊥平面11BB C C ,联结DH ,则1D H B ∠为平面11BB C C 与平面DFE 所成二面角的平面角.设1,B D t =[0,2],t ∈1B T s =,过1C 作111//CG AB 交DS 于点G .由111113C S C G SA A D ==得11(2)3C G t =-.又1111B D BT C G C T=,即12(2)3t s s t =--,所以31t s t =+.................................................................................9分又111B H BT C F FT =,即11B H =,所以1B H =所以DH ===..............................................................13分则11sin B D DHB DH∠===...................................................................14分所以,当12t =时,()1min sin 3DHB ∠=......................................................................................................15分[方法三]:投影法如图,联结1,FB FN,DEF 在平面11BB C C 的投影为1BN F ,记面11BB C C 与面DFE 所成的二面角的平面角为θ,则1cos B NF DEFS S θ= .设1(02)BD t t =≤≤,在1Rt DB F中,DF ==在Rt ECF中,EF D 作1B N 的平行线交EN 于点Q .在Rt DEQ △中,DE ==..............................................................................9分在DEF 中,由余弦定理得222cos 2DF EF DE DFE DF EF +-∠=⋅()21)35t t +=+,sin DFE ∠1sin 2DFE S DF EF DFE =⋅∠ =13,2B NF S = ...........................................................................13分1cos B NF DFES S θ==,sin θ=,当12t =,即112B D =,面11BB C C与面DFE .......................15分17.解:(1)因为在n a n =,11n a n +=+之间插入21n n +-项,使这21n n ++个数成公差为n d 的等差数列,所以()()2111n n nd nn +-=++-⇒21111n d n n n n ==-++,..........................................................................................4分所以11111122311n nS n n n =-+-++-++ .......................................................................................................7分(2)易知112n n n -+=,所以012123412222nn n T -+=++++ ,..................................................................................8分123112341222222n n n n n T -+=+++++ ....................................................................................................................10分两式相减得12311111112222222n n n n T -+⎛⎫=+++++- ⎪⎝⎭ ........................................................................................13分111122132312212n n nn n -⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭++⎢⎥⎣⎦=+-=--,...............................................................................................................14分所以1362n n n T -+=-...................................................................................................................................................15分18.解:(1)2222()2(0)x f x x x x x-+'=-=>,..................................................................................2分令()0f x '=得11x,21x =-,由()0f x '<11x <<........................................................4分所以,()f x的单调减区间为)1.......................................................................................................5分(2)()()221x ax f x x-+'=,∵()f x 有两个极值点12,x x ,且12xx <,∴12,x x 是方程210x ax -+=的两正根,则1252x x a +=≥,121=x x ,..............................................................7分不等式()12f x mx ≥恒成立,即()12f x m x ≤恒成立,∴()213211111112222ln 22ln f x x ax x x ax x x x x -+==-+...............................................................................................8分()323112*********ln 22ln x x x x x x x x x x =-++=--+,............................................................................................10分由12x x a +=,121=x x ,得11152x x +≥,∴1102x <≤,.................................................................................12分令()3122ln ,02x x x x x x ϕ=--+<≤,()232ln x x x ϕ'=-+,...............................................................................14分令()232ln h x x x =-+,()()22213620x x h x x x-='-+=>,h (x )在10,2⎛⎤ ⎥⎝⎦上递增,............................................15分则有()1312ln 0242h x h ⎛⎫≤=-+< ⎪⎝⎭即()0x ϕ'<,.................................................................................................16分∴()x ϕ在10,2⎛⎤⎥⎝⎦上是减函数,∴()19ln228x ϕϕ⎛⎫≥=-- ⎪⎝⎭,故9,ln28m ⎛⎤∈-∞-- ⎥⎝⎦.............................................................................................17分19.解:(112=,所以32b =①...........................................................................2分由b y xa x a⎧=⎪⎨⎪=⎩,知(),D a b 由△ABD的面积为122a b ⨯⨯==ab ②.............................................................................4分由①②解得2,a b =⎧⎪⎨=⎪⎩.所以C 的标准方程为22143x y +=.........................................................................................5分(2)由题意知()1,0F ,()11:1k l y x =-,()22:1l y k x =-,联立方程()1221,1,43y k x x y ⎧=-⎪⎨+=⎪⎩消去y 得()22221114384120k x k x k +-+-=,...................................................................6分设()11,M x y ,()22,N x y ,则211221843k x x k +=+,所以2121214243x x k k +=+,.........................................................7分代入直线1l 的方程121213243y y k k +-=+,所以211221143,4343k k R k k ⎛⎫- ⎪++⎝⎭,同理得222222243,4343k k S k k ⎛⎫- ⎪++⎝⎭........................8分①当直线PQ 的斜率存在时,设直线:PQ y mx n =+,将点R ,S 的坐标代入,得()()21122244330,44330,m n k k n m n k k n ⎧+++=⎪⎨+++=⎪⎩......................................................................................10分易知1k ,2k 为方程()244330m n k k n +++=的两个根,则123244n k k m n⋅==-+,得811n m =-,.............................................................................................................12分所以直线88:1111PQ y mx m m x ⎛⎫=-=- ⎪⎝⎭,所以直线PQ 过定点8,011E ⎛⎫ ⎪⎝⎭......................................................13分②当直线PQ 的斜率不存在时,由对称性可知12k k =-,..............................................................................14分因为122k k =-不妨设1k =2k =22122212448434311k k k k ==++........................................................15分即直线8:11PQ x =,满足过定点8,011E ⎛⎫⎪⎝⎭.....................................................................................................16分因为PQA △的面积为112P Q S AE y y =-,PQB △的面积为212P Q S BE y y =-,所以1282151187211AE S S BE +===-,为定值.............................................................................................................17分。

重庆市2024年高二下学期期末考试数学试题+答案(康德卷)

重庆市2024年高二下学期期末考试数学试题+答案(康德卷)

2024年春高二(下)期末联合检测试卷数 学数学测试卷共4页,满分150分。

考试时间120分钟。

注意事项:1.答题前,考生务必将自己的准考证号、姓名、班级填写在答题卡上。

考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。

2.回答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,用0.5毫米的黑色墨水签字笔在答题卡上书写作答。

若在试题卷上作答,答案无效。

3.考试结束,考生必须将试题卷和答题卡一并交回。

一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知()f x'是函数()f x的导函数,则满足()f x'()f x=的函数()f x是A.2()f x x=B.()e xf x=C.()lnf x x=D.()tanf x x=2.如图是学校高二1、2班本期中期考试数学成绩优秀率的等高堆积条形图,如果再从两个班中各随机抽6名学生的中期考试数学成绩统计,那么A.两个班6名学生的数学成绩优秀率可能相等B.1班6名学生的数学成绩优秀率一定高于2班C.2班6名学生中数学成绩不优秀的一定多于优秀的D.“两班学生的数学成绩优秀率存在差异”判断一定正确3.对于函数32()f x x bx cx d=+++,若系数b c d,,可以发生改变,则改变后对函数()f x的单调性没有影响的是A.b B.c C.d D.b c,4.某地根据以往数据,得到当地16岁男性的身高y cm与其父亲身高x cm的经验回归方程为14ˆ2917y x=+,当地人小王16岁时身高167cm,他父亲身高170cm,则小王身高的残差为A.3-cm B.2-cm C.2cm D.3cm5.若函数2()(1)e xf x x bx=++,在1x=-时有极大值16e-,则()f x的极小值为A.0B.3e--C.e-D.32e-6.甲、乙、丙、丁、戊五个人站成一排照相,若甲不站最中间的位置,则不同的排列方式有A.48种B.96种C.108种D.120种不优秀优秀7. 若王阿姨手工制作的工艺品每一件售出后可以获得纯利润4元,她每天能够售出的工艺品(单位:件)均值为50,方差为1.44,则王阿姨每天能够获得纯利润的标准差为A .1.2B .2.4C .2.88D .4.88.若样本空间Ω中的事件123A A A ,,满足1131()()4P A P A A ==,22()3P A =,232()5P A A =,231()6P A A =,则13()P A A = A .114B .17C .27D .528二、选择题:本题共3小题,每小题6分,共18分。

山东济宁2024年高二下学期期末考试数学试题+答案

山东济宁2024年高二下学期期末考试数学试题+答案

2023-2024学年度第二学期质量检高二数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{}{}220,2,1,0,1,2A xx x B =−−=−−∣ ,则A B ∩的元素个数为( ) A.1 B.2 C.3 D.42.命题“230,x x x ∃>>”的否定是( ) A.230,x x x ∀>> B.230,x x x ∀> C.230,x x x ∀ D.230,x x x ∃>3.已知随机变量()21,X N σ∼,若()20.8P X = ,则(01)P X <<=( ) A.0.1 B.0.2 C.0.3 D.0.44.用5种不同的颜色对如图所示的四个区域进行涂色,要求相邻的区域不能使用同一种颜色,则不同的涂色方法有( )III IIIIVA.60种B.120种C.180种D.240种5.已知定义在R 上的偶函数()f x ,若对于任意不等实数[)12,0,x x ∞∈+都满足()()12120f x f x x x −>−,则不等式()()22f x f x >−的解集为( ) A.(),2∞−− B.()2,∞−+ C.22,3− D.()2,2,3∞∞−−∪+6,已知两个变是x 和y 之间存在线性相关关系,某兴趣小组收集了一组样本数据,斥利用最小二乘法求得的回归方程是0.280.16yx +,其相关系数是1r .由于某种原因,其中一个数据丢失,将其记为m ,具体数据如下表所示:x1 2 3 4 5 y0.50.6m1.41.5若去掉数据()3,m 后,剩下的数据也成线性相关关系,其相关系数是2r ,则( ) A.12r r = B.12r r >C.12r r <D.12,r r 的大小关系无法确定7.已知函数()22222,0e ,0xx ax a x f x ax x −+−= −> 在R 上是减函数,则实数a 的取值范围是( ) A.[]0,1 B.[]1,e C.[]0,2e D.[]1,2e 8.若2023ln2ln32023,,232024ab c ==,则( )A.a b c <<B.a c b <<C.b c a <<D.c a b <<二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知0,0a b >>,则下列结论正确的是( ) A.若a b >,则22ac bc > B.若11a b>,则a b < C.若2a b +=,则14a b+的最小值为9D.若221a b +=,则a b + 10.已知函数()f x 的定义域为R ,满足()()()()4,22f x f x f x f x =−+=−.当[]2,0x ∈−时,()243f x x x =++,则下列结论正确的是( ) A.()f x 的图象关于直线2x =对称 B.()f x 是奇函数C.()f x 在[]4,6上单调递减D.20251()1012k f k ==∑11.如图,一个质点在随机外力的作用下,从原点O 出发,每隔1s 等可能地向左或向右移动一个单位.设移动n 次后质点位于位置n X ,则下列结论正确的是( )A.()55116P X =−= B.()50E X = C.()63D X =D.移动6次后质点位于原点O 的概率最大三、填空题:本题共3小题,每小题5分,共15分.12.已知函数()2()1m f x mm x =−−为幂函数,且在区间(0,)+∞上单调递减,则实数m =__________.113.现有6位同学报名参加学校的足球、篮球等5个不同的社团活动,每位同学只能参加一个社团,且每个社团都要有同学参加,在小华报名参加足球社团的条件下,有两名同学参加足球社团的概率为__________.14.已知,P Q 分别是函数()e ln xf x x x x =+−和()23g x x =−图象上的动点,测PQ 的最小值为__________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)为了解高二、1班学生数学建模能力的总体水平,王老师组织该班的50名学生(其中男生24人,女生26人)参加数学建模能力竞赛活动.(1)若将成绩在80分以上的学生定义为“有潜力的学生”,统计得到如下列联表,依据小概率值0.01α=的独立性检验,能否认为该班学生的数学建模能力与性别有关联?没有潜力 有潜力 合计 男生 6 18 24 女生 14 12 26 合计203050(2)现从“有潜力”的学生中按性别采用分层随机抽样的方法抽取5人,再从这5人中随机抽取3人作进一步的调研,记随机变量X 为这3人中男生的人数,求X 的分行列和数学期望.附:()()()()22(),n ad bc n a b c d a b a c c d b d χ−==+++++++. α0.10 0.05 0.01 0.005 0.001 a x2.7063.8416.6357.87910.82816.(15分)在(21)n x −的展开式中,第3项与第10项的二项式系数相等. (1)求12(21)nx x +−的展开式中的常数项; (2)若230123(21)n nn x a a x a x a x a x −=+++++ ,求012323n a a a a na +++++ .17.(15分)已知定义在R 上的函数()f x 满足()()20f x f x +−=,且当(],1x ∞∈−时,()3(1)f x x =−.(1)求()f x 在R 上的解析式;(2)若()()2ln f x x f x a ++ 恒成立,求实数a 的取值范围.18.(17分)已知甲、乙两位同学参加某知识竞赛活动,竞赛规则是:以抢答的形式进行,共有7道题,抢到并回答正确者得1分,答错则对方得1分,当其中一人得分领先另一人3分或7道题全部答完时比赛结束.甲、乙两人抢到每道题的概率都是12,甲正确回答每道题的概率均为89,乙正确回答每道题的概率均为59,且两人每道题是否回答正确均相互独立.(1)求答完前两道题后两人各得1分的概率;(2)设随机变量X 为比赛结束时两人的答题总个数,求X 的分布列和数学期望. 19.(17分)已知函数()()e 1xf x ax a =+−∈R .(1)讨论()f x 的单调性;(2)若()0f x 恒成立,求a 的值; (3)在(2)的条件下,证明:()ln f x x >.2023—2024学年度第二学期质量检测 高二数学试题参考答案及评分标准2024.07一、选择题:本题共8小题,每小题5分,共40分.1.D2.B3.C4.C5.D6.A7.D8.A8.提示:设()ln ,0xf x x x=>,易知()f x 在()0,e 上单调递增,在()e,∞+上单调递减, 因为()()ln2ln4ln34,3243a fb f =====,所以()()()43e f f f <<,即1e a b <<. 因为1ln 1x x− (当且仅当1x =时等号成立)(选择性必修二94页),所以202320241ln1202420232023>−=−,所以2023lnc 2023ln 12024=>−,所以1e c >. 所以1ea b c <<<.故选A二、多选题:本题共3小题,每小题6分,共18分.9.BD 10.ACD 11.ABD10.提示:设随机变量ξ表示“移动n 次后质点向右移动的次数”,则1,2B n ξ∼, 由题意知()n X n ξξ=−−,即2nX n ξ=−. 对于A :()()52551512C 216P X P ξ=−==== ,A 正确; 对于B :()()()51252525502E X E E ξξ=−=−=××−=,B 正确; 对于C :()()()61126446622D X D D ξξ=−==×××=,C 错误;对于D :6626,X X ξ=−的所有可能取值有6,4,2,0,2,4,6−−−,当3i =时,661C 2i最大,()()603P X P ξ===最大,D 正确. 三、填空题:本题共3小题,每小题5分,共15分.12.1− 13.13四、解答题:本题共5小题,共77分.15.解:(1)零假设为0H :该班学生的数学建模能力与性别无关因为2250(6121418)2254.327 6.6352426203052χ×−×==≈<×××,所以,依据小概率值0.01α=的独立性检验,没有充分证据证明推断0H 不成立, 因此可以认为0H 成立,即该班学生的数学建模能力与性别无关.(2)从“有潜力”的学生中按性别采用分层随机抽样的方法抽取5人,其中男生有3人女生有2人,则随机变量X 服从超几何分布,X 可能取1,2,3.()123235C C 31C 10P X ===, ()213235C C 632C 105P X ====, ()303235C C 13C 10P X ===. 则X 的分布列为所以()39355E X =×=. 16.解:(1)因为29C C n n =, 所以11n =. 所以111111112(21)2(21)(21)x x x x x+−=×−+×−所以1112(21)x x +−的展开式中的常数项为 111101112(1)C 2(1)20x x×−+×××−=. (2)因为112311012311(21)x a a x a x a x a x −=+++++ 令0x =得01a =−.因为102101231111(21)22311x a a x a x a x ×−×=++++令1x =得12311231122a a a a ++++=. 所以01232312221n a a a a na +++++=−+= . 17.解:(1)当()1,x ∞∈+时,()2,1x ∞−∈−所以()()3332(21)(1)(1)f x f x x x x =−−=−−−=−−=− 所以当()1,x ∞∈+时,()3(1)f x x =−,又当(],1x ∞∈−时,()3(1)f x x =−,所以()3(1),f x x x =−∈R (2)因为()23(1)0f x x =−′ ,所以()3(1)f x x =−在R 上为增函数.又()()2ln f x x f x a ++ ,所以2ln x x x a ++ ,即2ln x x x a −+ .设()2ln ,0g x x x x x =−+>.则()212112x x g x x x x −++=−+=′ ()()211,0x x x x−+−>,令()0g x ′>得01x <<;令()0g x ′<得1x >.所以()g x 的单调递增区间为(]0,1,单调递减区间为[)1,∞+故()max ()10g x g ==,所以0a ,即实数a 的取值范围为[)0,∞+.18.解:(1)设i A =“第i 道题甲得1分”()1,2,3,4,5,6,7i =,i B =“第i 道题乙得1分”()1,2,3,4,5,6,7i =,C =“答完前两道题后两人各得1分”.则i A 与i B 独立,所以()181********i P A =×+×−= , ()()211133i i P B P A =−=−=, ()()()()()()()()121212121212P C P A B B A P A B P B A P A P B P B P A =∪=+=+ 2112433339=×+×=. (2)随机变量X 的取值为3,5,7.()332113333P X ==+=()2222223321212125C C 3333339P X ==×××+×××= ()()()12471351399P X P X P X ==−=−==−−=所以随机变量X 的分布列为所以()124473573999E X =×+×+×=. 19.解:(1)()e xf x a ′=+①当0a 时,()()0,f x f x ′>在R 上单调递增.②当0a <时,令()0f x ′>得()ln x a >−;令()0f x ′<得()ln x a <−. 所以()f x 在()(,ln a ∞−−)上单调递减,在()()ln ,a ∞−+上单调递增. 综上,当0a 时,()f x 在R 上单调递增; 当0a <时,()f x 在()(),ln a ∞−−上单调递减,在()()ln ,a ∞−+上单调递增.(2)①当0a 时,()f x 在R 上单调递增,又()00f =, 所以当0x <时,()0f x <,所以()0f x 不恒成立.②当0a <时,()f x 在()(,ln a ∞−−)上单调递减,在()()ln ,a ∞−+上单调递增.所以()f x 的最小值为()()()ln ln 1f a a a a −=−+−−. 因为()0f x 恒成立,所以只要()()()ln ln 10f a a a a −=−+−− . 设()()ln 1(0)g a a a a a =−+−−<,则()()()1ln 1ln g a a a =−+−+=−′, 所以当1a <−时,()0g a ′>;当10a −<<时,()0g a ′<. 所以()g a 在(),1∞−−上单调递增,在()1,0−上单调递减.所以()()10g a g −=,即()()ln 10g a a a a =−+−− .(当且仅当1a =−时等号成立) 所以当且仅当1a =−时,()()()ln ln 10f a a a a −=−+−−=. 所以1a =−.(3)由(2)可知,()e 1xf x x =−−.设()()ln e 1ln (0)x h x f x x x x x =−=−−−>,下面证明()0h x >.所以()()211e 1(0),e 0xx h x x h x x x′=−−>=+′>′, 所以()h x ′在()0,∞+上单调递增. 又()11e 20,302h h=−>=−<′′, 所以01,12x ∃∈,使得()00h x ′=,即001e 1xx =+.所以当()00,x x ∈时,()()0,h x h x ′<在()00,x 上单调递减; 当()0,x x ∞∈+时,()()0,h x h x ′>在()0,x ∞+上单调递增.所以()()00000001e 1ln ln xh x h x x x x x x =−−−=−− .因为01,12x∈,所以00010,ln 0x x x −>−>,所以()()00001ln 0h x h x x x x =−−> , 所以()ln f x x >成立.。

常州市2022-2023学年高二下学期期末考试数学试题含答案

常州市2022-2023学年高二下学期期末考试数学试题含答案

常州市教育学会学业水平监测高二数学 2023年6月注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上. 2.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效. 3.考试结束后,将答题卡交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知z 为复数,z 为z 的共轭复数,且||15i z z =−+,则z 的虚部是A .5iB .5i −C .5D .-52.设a ,b 是两条不同的直线,α,β是两个不同的平面,则下列选项中能得出a ⊥b 的是A .a ⊂α,b ⊥β,α∥βB .a ⊥α,b ⊥β,α∥βC .a ⊥α,b ∥β,α⊥βD .a ⊂α,b ∥β,α⊥β3.投掷3枚质地均匀的正方体骰子,观察正面向上的点数,则对于这3个点数,下列说法正确的是A .有且只有1个奇数的概率为18B .事件“都是奇数”和事件“都是偶数”是对立事件C .在已知有奇数的条件下,至少有2个奇数的概率为47D .事件“至少有1个是奇数”和事件“至少有1个是偶数”是互斥事件4.已知平面上的三点A ,B ,C 满足||2||AB BC = =,,向量AB 与BC 的夹角为45°,且()BC AB AB λ−⊥,则实数λ= A .0B .1C .-2D .25.一个不透明的盒子里装有10个大小形状都相同的小球,其中3个黑色、7个白色,现在3个人依次从中随机地各取一个小球,前一个人取出一个小球记录颜色后放回盒子,后一个人接着取球,则这3个人中恰有一人取到黑球的概率为A .310B .21733103A A A ⋅ C .3210C 0.70.3⨯⨯ D .123C 0.70.3⨯⨯6.已知圆锥的高为1,体积为π,则过圆锥顶点作圆锥截面的面积最大值为AB .2C.D .3π7.对一个十位数1234567890,现将其中3个数位上的数字进行调换,使得这3个数字都不在原来的数位上,其他数位上的数字不变,则可以得到不同的十位数(首位不为0)的个数为 A .120B .232C .240D .3608.正四棱锥S ABCD −,各侧棱长为2,各顶点都在同一个球面上,则过球心与底面平行的平面截得的台体体积是 ABCD二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分. 9.已知复数123z z z ,,,则下列说法正确的有 A .123231z z z z z z ⋅⋅=⋅⋅B .11222()(0)z zz z z =≠ C .若1212||||z z z z −=+,则120z z ⋅= D .若1223z z z z ⋅>⋅,则13||||z z >10.下列说法正确的有A .在ABC ∆中,0BC CA ⋅<,则ABC ∆为锐角三角形B .已知O 为ABC ∆的内心,且o o 3060A B = =,,则320OA OB OC ++=C .已知非零向量 ,a b 满足:242⋅= =+ ,a b a c a b ,则||||⋅b c b c 的最小值为12D .已知(12)(11)= = ,,,a b ,且a 与λ+a b 的夹角为钝角,则实数λ的取值范围是5()3−∞−,11.某课外兴趣小组在探究学习活动中,测得()x y ,的10组数据如下表所示:由最小二乘法计算得到线性回归方程为11ˆˆy a b x =+,相关系数为;经过观察散点图,分析残差,把数据(16889) ,去掉后,再用剩下的9组数据计算得到线性回归方程为22ˆˆˆy a b x =+,相关系数为.则 A .12ˆˆaa < B .12ˆˆb b < C .2212r r <D .12ˆˆ00b b > >, 12.已知在棱长为4的正方体1111ABCD A B C D −中,点O 为正方形1111A B C D 的中心,点P 在棱1CC 上,下列说法正确的有 A .BD PO ⊥B .当直线AP 与平面11BCC B 所成角的正切值为45时,3PC =C .当1PC =时,点1C 到平面1APD 的距离是32D .当2PC =时,以O 为球心,OP 为半径的球面与侧面11ABB A 三、填空题:本题共4小题,每小题5分,共20分.13.101(2)2x +的展开式中二项式系数最大的项的系数是 .(用数字作答)14.在平面直角坐标系xOy 中,已知0)(01)A B ,,,以A 为旋转中心,将线段AB 按顺时针方向旋转30°,得到线段AC ,则向量AB 在向量AC 上的投影向量的坐标是 . 15.已知平面四边形ABCD ,o 90ADC ∠=,34AB BC CD AD === =,,则AC BD ⋅= .16.已知在矩形ABCD 中,2AB BC = =,P 为AB 的中点,将ADP ∆沿DP 翻折,得到四棱锥1A BCDP −,则二面角1A DC B −−的余弦值最小是 .12r四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)设z 是虚数,在平面直角坐标系xOy 中,1z z z,,对应的向量分别为OA OB OC ,,.(1)证明:O B C ,,三点共线; (2)若31z =,求向量OA OC +的坐标.18.(12分)如图,在六面体1111ABCD A B C D −中,11AA CC ,平面11AAC C ⊥菱形ABCD .证明:(1)11B B D D ,,,四点共面; (2)1BD DD ⊥.19.(12分)在平面直角坐标系中三点A ,B ,C 满足(12)(23)AB AC = =− ,,,,D E ,分别是线段BC AC ,上的点,满足22BD CD CE AE = =,,AD 与BE 的交点为G . (1)求BGD ∠的余弦值; (2)求向量AG 的坐标.A 1B 1C 1D 1DCBA20.(12分)某种季节性疾病可分为轻症、重症两种类型,为了解该疾病症状轻重与年龄的关系,在某地随机抽取了患该疾病的3s 位病人进行调查,其中年龄不超过50岁的患者人数为s ,轻症占56;年龄超过50岁的患者人数为2s ,轻症占13. (1)完成下面的22⨯列联表.若要有99%以上的把握认为“该疾病症状轻重”与“年龄”有关,则抽取的年龄不超过50岁的患者至少有多少人?附:2()()()()()n ad bc a b c d a c b d χ−=++++(其中n a b c d =+++),2 6.6350.01()P χ=>. (2)某药品研发公司安排甲、乙两个研发团队分别研发预防此疾病的疫苗,两个团队各至多安排2个周期进行疫苗接种试验,每人每次疫苗接种花费t (0t >)元.甲团队研发的药物每次疫苗接种后产生抗体的概率为p (01p <<),根据以往试验统计,甲团队平均花费为236tp t −+.乙团队研发的药物每次疫苗接种后产生抗体的概率为q (01q <<),每个周期必须完成3次疫苗接种,若第一个周期内至少出现2次抗体,则该周期结束后终止试验,否则进入第二个疫苗接种周期.假设两个研发团队每次疫苗接种后产生抗体与否均相互独立.若p q <,从两个团队试验的平均花费考虑,该公司应如何选择团队进行药品研发?21.(12分)记1011()(1)n n n n n n f x x a x a x a x a −−=+=++++,*n ∈N .(1)化简:1(1)ni i i a =+∑;(2)证明:12()2()()()n n n k n f x f x kf x nf x +++2+++++(*n ∈N )的展开式中含项的系数为221(1)C n n n +++.22.(12分)如图,在多面体EF ABCD −中,底面ABCD 是菱形,且CE ⊥底面ABCD ,AFCE ,1AC CD CE AF ====,点M 在线段EF 上.(1)若M 为EF 的中点,求直线AM 和平面BDE 的距离; (2)试确定M 点位置,使二面角D AM B −−的余弦值为3567−.F EDCBA常州市教育学会学业水平监测高二数学(参考答案)一、选择题:本题共8小题,每小题5分,共40分.1.D 2.A 3.C 4.D 5.D 6.B 7.B 8.C 二、选择题:本题共4小题,每小题5分,共20分. 9.AB10.BD11.BCD12.ABD三、填空题:本题共4小题,每小题5分,共20分.13.25214.3()2,15.7216四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.解:(1)设i 0z a b b =+ ≠,,则i z a b =−,a b ∈R ,, 所以()OB a b = −,. ……………………2分 2211i i a b z a b a b −==++,所以222211()OC a b OB a b a b= −=++,. 所以OB OC .……………………4分 又因为O 为公共点,所以O B C ,,三点共线. ……………………5分 (2)因为31z =,则2(1)(1)0z z z −++=,又因为z 是虚数,所以210z z ++=. ……………………8分2111z z z z++==−,所以(10)OA OC +=− ,. ……………………10分 18.证明:(1)由11AA CC ,1AA ⊄平面11BCC B ,1CC ⊂平面11BCC B ,所以1AA 平面11BCC B .……………………2分 又因为1AA ⊂平面11ABB A ,平面11ABB A ⋂平面111BCC B BB =, 所以11AA BB . ……………………4分 同理:11AA DD ,所以11BB DD ,所以11B B D D ,,,四点共面. ……………………6分 (2)菱形ABCD 中AC BD ⊥,又因为平面11AAC C ⊥平面ABCD , 且平面11AAC C平面ABCD AC =,BD ⊂平面ABCD ,所以BD ⊥平面11AA C C .……………………10分因为1AA ⊂平面11AA C C ,所以1BD AA ⊥, 由(1)有11AA DD ,所以1BD DD ⊥. ……………………12分19.解:(1)因为22BD CD BD CD = =,,所以128(1)333AD AB AC =+=− ,. ……………………2分 又125(,1)333BE BC BA =+=−−. ……………………4分5833cos BGD −+∠==.……………………6分 (2)由A G D ,,三点共线,1233AG AD AB AC λλλ==+, 又1(1)(1)3AG AB AE AB AC μμμμ=+−=+−. ……………………8分由平面向量基本定理,得1321(1)33λμλμ⎧= ⎪⎨⎪=−⎩,.……………………10分 所以17μ=,所以1238()7777AG AB AC =+=− ,. ……………………12分 20. (1) 列联表如下:……………………2分要有99%以上的把握认为“该疾病症状轻重”与“年龄”有关,则225423()26363 6.635333222s s s s s s s s s s χ⨯−⨯==>⨯⨯⨯. ……………………4分 解得9.9525s >,由题意知,s 的最小整数值为12.所以抽取的年龄不超过50岁的患者至少有12人. ……………………6分(2)甲研发团队试验总花费为X 元,根据以往试验统计得2()36E X tp t =−+, 设乙研发团队试验总花费为Y 元,则Y 的可能取值为3t ,6t ,所以223323(3)(1)23P Y t C q q q q q ==−+=−+,32(6)123P Y t q q ==+−,所以323232()3(23)6(123)696E Y t q q t q q tq tq t =−+++−=−+. ……………………10分 因为01p q <<<,所以3222()()696(36)6(1)0E Y E X tq tq t tp t tq q −=−+−−+<−<, 所以乙团队试验的平均花费较少,所以该公司应选择乙团队进行研发. ……………………12分21.(1)11(1)(1)nnii n i i i a i C ==+=+∑∑. ……………………2分1211(1)23(1)nin nn n n n n i i CC C nC n C −=+=+++++∑,012111(1)23(1)n i n nn n n n n n i i C C C C nC n C −=++=++++++∑. ……………………4分右侧倒序相加得,012112(1(1))(2)()(2)2ni n nn nn n n n n i i C n C C C C C n −=++=++++++=+∑,所以11(1)(2)21nn i i i a n −=+=+−∑. ……………………6分(2)(1)2(2)()()f x n f x n kf x n k f x n ++ +++ +++ 2,,,,的展开式中含n x 项的系数为123223n n nnn n n n C C C nC +++++++,因为1()!()!()!(1)(1)!!!(1)!(1)!(1)!nn n k n k n k n k n k kC kn n C n k n k n k ++++++===+=+−+−. …………………9分 所以含n x 项的系数为:1111123212322111223223(1)()(1)()n n nn n n n n n n n n n n n n n n n n n n n n C C C nC n C C C C n C C C C +++++++++++++++++++++=+++++ =+++++ 211332221(1)()(1).n n n n n n n n n C C C n C +++++++ =++++ =+……………………12分22.(1)连接BD 交AC 于O ,取EF 中点G ,因为四边形ABCD 为菱形, 所以AC BD ⊥,O 为AC 中点. 因为AFCE ,AF CE =,所以四边形ACEF 为平行四边形. 因为O G ,分别为AC EF ,中点, 所以OG CE .因为CE ⊥平面ABCD ,AC BD ⊂,平面ABCD , 所以CE AC CE BD ⊥ ⊥,, 所以OG AC OG BD ⊥ ⊥,. ……………………3分 以O 为原点,建立如图空间直角坐标系O xyz −, 则3311(00)(001)(00)(00)(01)2222A MB D E − − ,,,,,,,,,,,,,,,所以31(300)(1)22BD BE = = − ,,,,,,设平面BDE 的法向量0000()n x y z = ,,, 0000n BD n BE ⎧=⎪⎨=⎪⎩,,所以00003031022x x y z ⎧=⎪⎨−+=⎪⎩,,所以01(021)(01)2n AM = = − ,,,,,. ……………5分 0102102n AM =−+=,设A 到平面BDE 距离为d ,00||351(0)225||AB n AB d n = ==,,,,所以直线AM 和平面BDE 的距离为55. ………7分(2)设11(01)[]22M m m ∈− ,,,,,31(0)(011)22AD AM m = − = − ,,,,,,31(0)22AB =− − ,,, 设平面ADM ,平面ABM 的法向量分别为11112222()()n x y z n x y z = = ,,,,,, 12120000AD n AB n AM n AM n ⎧⎧= = ⎪⎪⎨⎨= = ⎪⎪⎩⎩,,,,取1233(133)(133)22n m n m = −+ = − −,,,,,.………9分 因为二面角D AM B −−的余弦值为3567−,所以2121221213()2352|cos |||167||||3()42m n n n n n n m −+< >===−+,. 解得1344m = ,(舍),即14FM FE =. ……………………12分OABCDEFxyz G。

河南省南阳市2023-2024学年高二下学期期末考试 数学试题(含答案)

河南省南阳市2023-2024学年高二下学期期末考试 数学试题(含答案)

南阳市2023-2024学年高二下学期期末考试数学试题注意事项:1、答题前考生务必将自己的姓名、考生号填写在试卷和答题卡上并将考生的条形码贴在答题卡指定位置上2、回答选择题时选出每小题答案之后用铅笔把答题卡对应题目的标号涂黑,如需改动用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3、考试结束之后,将本卷和答题卡一并收回.一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 离散型随机变量X 的分布列中部分数据丢失,丢失数据以x ,代替,分布列如下:则( )1234560.210.200.100.10A. 0.35B. 0.45C. 0.55D. 0.652. 若等比数列各项均为正数,且成等差数列,则( )A. 3B. 6C. 9D. 183. 在空间直角坐标系中,已知,,,,则直线与的位置关系是( )A. 异面 B.平行 C. 垂直 D. 相交但不垂直4. “基础学科拔尖学生培养试验计划”简称“珠峰计划”,是国家为回应“钱学森之问”而推出的一项人才培养计划,旨在培养中国自己的学术大师.已知浙江大学、复旦大学、武汉大学、中山大学均有开设数学学科拔尖学生培养基地,某班级有5位同学从中任选一所学校作为奋斗目标,则每所学校至少有一位同学选择的不同方法数共有( )A. 120种 B. 180种 C. 240种 D. 300种5. 的展开式中的常数项为( )A. B. 240C. D. 1806. 如图,椭圆①,②与双曲线③,④的离心率分别为,,,,其大小关系为( )A B. C. D. 7. 若双曲线C :的渐近线与圆没有公共点,则双曲线C 的离心的.(),N y x y ∈()31123P X <<=X i=()P X i =0.5x 0.1y{}n a 5761322a a a ,,10482a a a a ++()1,2,3A ()2,1,6B --()3,2,1C ()4,3,0D AB CD 63112x x ⎛⎫⎛-+ ⎪ ⎝⎝⎭240-180-1e 2e 3e 4e 1243e e e e <<<2134e e e e <<<3412e e e e <<<4312e e e e <<<()222210,0x y a b a b-=>>()2223x y -+=率的取值范围为( )A. B. C. D. 8 设,,,则( )A. B. C. D. 二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 三棱锥中,平面与平面的法向量分别为,,则二面角的大小可能为( )A. B. C. D.10. 法国著名数学家蒙日首先发现椭圆两条互相垂直的切线的交点轨迹是以椭圆的中心为圆心的圆,后来这个圆被称为蒙日圆.已知椭圆,其蒙日圆为圆,过直线上一点作圆的两条切线,切点分别为,,则下列选项正确的是( )A. 圆的方程为 B. 四边形面积的最小值为4C. 的最小值为 D. 当点为时,直线的方程为11. 已知函数的定义域为,且是的一个极值点,则下列结论正确的是( )A. 方程的判别式B.C. 若,则在区间上单调递增D. 若且,则是的极小值点三、填空题:本题共3小题,每小题5分,共15分.12. 已知数列满足.且,若,则________.13. 已知函数在区间上有定义,且在此区间上有极值点,则实数取值范围是__________.14. 某校课外学习社对“学生性别和喜欢网络游戏是否有关”作了一次调查,其中被调查的男、女生人数相同,男生中有的学生喜欢网络游戏,女生中有的学生喜欢网络游戏,若有超过的把握但没有的把握认为是否喜欢网络游戏和性别有关,则被调查的学生中男生可能有_____________人.附:,其中.0.050.013.8416.635四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤..的∞⎫+⎪⎪⎭()2,+∞()1,2⎛ ⎝ln1.5a =0.5b =ππcos 0.522c ⎛⎫=- ⎪⎝⎭a b c <<b a c <<c<a<b c b a<<A BCD -ABD BCD ()2,1,1n =-()1,1,2m = A BD C --π6π32π35π622:13x C y +=M :40l x y --=P MA B M 223x y +=PAMB PA PB ⋅12-P (1,3)-AB 340x y --=()()23023a b cf x a x x x=---≠()0,∞+x c =()f x 20ax bx c ++=Δ0>1ac b +=-a<0()f x (),c +∞0a >1ac >x c =()f x {}n a 1265n n a a n ++=+13a =()1nn n b a =-1232024b b b b ++++= ()24ln 2x f x x =-()1,4a a -+a 453595%99%()()()()()22n ad bc K a b c d a c b d -=++++n a b c d =+++()20P K k ≥0k15. 已知函数在处有极值36.(1)求实数a ,b 的值;(2)当时,求的单调递增区间.16. 在四棱锥中,底面是边长为6的菱形,,,.(1)证明:平面;(2)若,M 为棱上一点,满足,求点到平面的距离.17. 某商场举行抽奖活动,准备了甲、乙两个箱子,甲箱内有2个黑球、4个白球,乙箱内有4个红球、6个黄球.每位顾客可参与一次抽奖,先从甲箱中摸出一个球,如果是黑球,就可以到乙箱中一次性地摸出两个球;如果是白球,就只能到乙箱中摸出一个球.摸出一个红球可获得90元奖金,摸出两个红球可获得180元奖金.(1)求某顾客摸出红球的概率;(2)设某家庭四人均参与了抽奖,他们获得的奖金总数为元,求随机变量的数学期望.18. 已知椭圆经过点和.(1)求的方程;(2)若点(异于点)是上不同的两点,且,证明直线过定点,并求该定点的坐标.19. 对于项数为有穷数列,设为中的最大值,称数列是的控制数列.例如数列3,5,4,7的控制数列是3,5,5,7.(1)若各项均为正整数的数列的控制数列是2,3,4,6,6,写出所有的;(2)设是的控制数列,满足(为常数,).证明:.(3)考虑正整数的所有排列,将每种排列都视为一个有穷数列.是否存在数列,使它的控制数列为等差数列?若存在,求出满足条件的数列的个数;若不存在,请说明理由.的()322f x x ax bx a =+++3x =-0b >()f x P ABCD -ABCD 60ABC ∠=︒PB PD =PA AC ⊥BD ⊥PAC 3PA =PC 23CM CP =A MBD Y Y ()E Y 2222:1(0)x y E a b a b +=>>P ⎛ ⎝()2,0A -E ,M N A E 0AM AN ⋅=MN m {}n a n b ()12,,,1,2,,n a a a n m ⋅⋅⋅=⋅⋅⋅{}n b {}n a {}n a {}n a {}n b {}n a 1n m n a b C -++=C 1,2,,n m =⋅⋅⋅()1,2,,n n b a n m ==⋅⋅⋅1,2,,m ⋅⋅⋅{}n c {}n c {}n c参考答案1. B2. C.3. B4. C5. C6. A .7. B .8. A9. BC 10. BD 11. ABD 12. 202413. 14. 45,或50,或55,或60,或6515. (1)或 (2),16. (1)证明:在四棱锥中,连接交于,连接,如图,因为底面是菱形,则,又是的中点,,则,而平面,所以平面.(217. (1)(2)192(元).18. (1)(2)(方法一)由 题意可知均有斜率且不为0,设直线的方程为,联立方程组消去得,可得,解得,所以点的坐标为.[)1,339a b =⎧⎨=-⎩69a b =⎧⎨=⎩(),3-∞-()1,-+∞P ABCD -BD AC O PO ABCD BD AC ⊥O BD PB PD =BD PO ⊥,,AC PO O AC PO =⊂ PAC BD ⊥PAC 22452214x y +=,AM AN AM ()2y k x =+()222,1,4y k x x y ⎧=+⎪⎨+=⎪⎩y ()222214161640k x k x k +++-=22164214M k x k--=+()222284,21414M M M k kx y k x k k -==+=++M 222284,1414k k k k ⎛⎫- ⎪++⎝⎭因为,所以直线的斜率为,同理可得点.当时,有,解得,直线的方程为.当时,直线的斜率,则直线的方程为,即,即,直线过定点.又当时,直线也过点.综上,直线过定点.(方法二)当直线不垂直于轴时,设直线的方程为,联立方程组消去得,,即.设,则,.因为,所以,即,,,化简得,解得或,所以直线的方程为或(过点A ,不合题意,舍去),所以直线过定点.0AM AN ⋅= AN 1k -222284,44k k N k k ⎛⎫-- ⎪++⎝⎭M N x x =22222828144k k k k --=++21k =MN 65x =-M N x x ≠MN ()()22222422442011442828161144M N MN M N k k k k y y k k k k k x x k k k ++-++====-----++()2541k k -MN ()N MN N y y k x x -=-()()()2222222252845528444414141k k k k k k y x x k k k k k k⎛⎫--=--=-⋅- ⎪+++---⎝⎭()2245441k k x k k =-+-()()()22225624565415441k k k x k k k --⎛⎫⋅=+ ⎪-+-⎝⎭()256541k y x k ⎛⎫=+ ⎪-⎝⎭MN 6,05⎛⎫- ⎪⎝⎭M N x x =65x =-6,05⎛⎫- ⎪⎝⎭MN 6,05⎛⎫- ⎪⎝⎭MN x MN y kx m =+22,1,4y kx m x y =+⎧⎪⎨+=⎪⎩y ()222148440k x kmx m +++-=()()()222222Δ644144416140k m k m m k =-+-=--->2214m k <+()()1122,,,M x y N x y 2121222844,1414km m x x x x k k--+==++()22121212y y k x x km x x m =+++0AM AN ⋅=()()1212220x x y y +++=()()()2212121240kx x km x x m++++++=()()2222244812401414m km k km m k k --⎛⎫+++++= ⎪++⎝⎭()()()()()2222144824140k mkm km m k +--++++=22516120m km k -+=65m k =2m k =MN 65y k x ⎛⎫=+⎪⎝⎭()2y k x =+MN 6,05⎛⎫- ⎪⎝⎭当直线垂直于轴时,设它的方程为,因为,所以.又,解得或(过点A ,不合题意,舍去),所以此时直线的方程为,也过点.综上,直线过定点.19.(1)由题意,,,,,所以数列有六种可能:;;;;;.(2)证明:因为,,所以,所以控制数列是不减的数列,是的控制数列,满足,是常数,所以,即数列也是不减的数列,,那么若时都有,则,若,则,若,则,又,由数学归纳法思想可得对,都有;(3)因为控制数列为等差数列,故.设的控制数列是,由(2)知是不减的数列,必有一项等于,当是数列中间某项时,不可能是等差数列,所以或,若,则(),是等差数列,此时只要,是的任意排列均可.共个,,而时,数列中必有,否则不可能是等差数列,由此有,即就是,只有一种排列,综上,个数是.的MN x 1x x =0AM AN ⋅= ()221120x y +-=221114x y +=165x =-12x =-MN 65x =-6,05⎛⎫- ⎪⎝⎭MN 6,05⎛⎫- ⎪⎝⎭12a =23a =34a =46a =56a ≤{}n a 2,3,4,6,12,3,4,6,22,3,4,6,32,3,4,6,42,3,4,6,52,3,4,6,612max{,,,}n n b a a a = 1121max{,,,,}n n n b a a a a ++= 1n n b b +≥{}n b {}n b {}n a 1n m n a b C -++=C 1n n a a +≥{}n a 123m a a a a ≤≤≤≤ n k ≤n n b a =1121max{,,,,}k k k b a a a a ++= 1k k a a +>11k k b a ++=11k k a b ++=11k k k k b b a a ++===11b a =1,2,,n m = n n b a =3m ≥{}n c {}n b {}n b {}n b m m {}n b {}n b 1b m =m b m =1b m =n b m =1,2,,n m = {}n b 1c m =23,,,m c c c 1,2,3,,1m - (1)!m -m b m =1b m ≠{}n b n b n =n c n ={}n c 1,2,3,,m {}n c (1)!1m -+。

2022-2023学年北京大兴区高二下学期期末数学试题及答案

2022-2023学年北京大兴区高二下学期期末数学试题及答案

2023北京大兴高二(下)期末数 学本试卷共4页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

第一部分 (选择题 共40分)一、选择题共10小题,每小题4分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1)设2()=(1)f x x +,则(1)=f '(A )2 (B )4 (C )6 (D )8(2)4()a b +的展开式中二项式系数的最大值为(A )1 (B )4 (C )6 (D )12(3)设随机变量X 服从正态分布(01)N ,,则(0)=P X ≤ (A )23 (B )14(C )13 (D )12(4)从7本不同的书中选3本送给3个人,每人1本,不同方法的种数是(A )37C (B )A (C )73 (D )37(5)根据分类变量x 与y 的成对样本数据,计算得到27.52χ=.已知2( 6.635)0.01P χ=,则依据小概率值0.01α=的2χ独立性检验,可以推断变量x 与y (A )独立,此推断犯错误的概率是0.01 (B )不独立,此推断犯错误的概率是0.01 (C )独立,此推断犯错误的概率不超过0.01 (D )不独立,此推断犯错误的概率不超过0.01(6)两批同种规格的产品,第一批占40%,次品率为5%;第二批占60%,次品率为4%.将两批产品混合,从混合产品中任取1件,则这件产品不是次品的概率 (A )0.956 (B )0.966 (C )0.044 (D )0.036(7)设函数32()f x x ax bx c =+++,则“23a b >”是“()f x 有3个零点”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件1X 01P11p −1p 2X 01P21p −2p (8)根据如下样本数据:由最小二乘法得到经验回归方程ˆˆˆyb x a =+,则 (A )ˆˆ00ab <<, (B )ˆˆ00a b >>, (C )ˆˆ00ab ><, (D )ˆˆ00a b <>, (9)设151413131415a b c ===,,,则a b c ,,的大小关系是 (A )c a b << (B )b c a <<(C )a c b << (D )c b a <<(10)已知函数()e 3axf x x =+有大于零的极值点,则实数a 的取值范围是(A )13a >(B )13a <−(C )3a > (D )3a <−第二部分 (非选择题 共110分)二、填空题共5小题,每小题5分,共25分。

河南省郑州市2022-2023学年高二下学期期末数学试题及答案

河南省郑州市2022-2023学年高二下学期期末数学试题及答案

郑州市2022-2023学年下期期末考试高二数学试题卷注意事项:本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.考试时间120分钟,满分150分.考生应首先阅读答题卡上的文字信息,然后在答题卡上作答,在试题卷上作答无效.交卷时只交答题卡.第I 卷(选择题,共60分)一、单选题:本大题共12个小题,每小题5分,共60分.在每小题所给出的四个选项中,只有一项是符合题目要求的.1.已知数列{}n a ,满足12n n a a --=,10a =,则10a =()A .18B .36C .72D .1442.2023年5月10日,第七届全球跨境电子商务大会在郑州举行,小郑同学购买了几件商品,这些商品的价格如果按美元计,则平均数为30,方差为60,如果按人民币计(汇率按1美元=7元人民币),则平均数和方差分别为()A .30,60B .30,420C .210,420D .210,29403.如图,洛书古称龟书,是阴阳五行术数之源.在古代传说中有神龟出于洛水,其甲壳上有此图像,结构是戴九履一,左三右七,二四为肩,六八为足,以五居中,五方白圈皆阳数,四角黑点为阴数.若从四个阴数和五个阳数中随机选取4个数,则选取的4个数之和为奇数的方法数为()A .60B .61C .65D .664.下列四个命题中,正确命题的个数为()①甲乙两组数据分别为:甲:28,31,39,42,45,55,57,58,66;;乙:,29,34,35,48,42,46,55,53,55,67.则甲乙的中位数分别为45和44.②相关系数0.89r =-,表明两个变量的相关性较弱.③若由一个22⨯列联表中的数据计算得2K 的观测值7.103k ≈,那么有99%的把握认为两个变量有关.④用最小二乘法求出一组数据(),i i x y ,()1,,i n = 的回归直线方程ˆy =ˆbxa + 后要进行残差分析,相应于数据(),i i x y ,()1,,i n = 的残差是指ˆi i e y =ˆi bx a ⎛⎫-+ ⎪⎝⎭.()20P K k 0.100.050.0250.0100.0050.001k 2.706 3.841 5.024 6.6357.87910.828A .1B .2C .3D .45.已知(1)nx -的二项展开式中二项式系数和为64,若2012(1)(1)(1)(1)nnn x a a x a x a x -=+++++++ ,则1a 等于()A .192B .448C .-192D .-4486.已知函数()2ln f x ax x =-的图象在点()()1,1f 处的切线与直线3y x =平行,则该切线的方程为()A .350x y -+=B .310x y --=C .310x y -+=D .310x y -+=7.“杨辉三角”是中国古代重要的数学成就,它比西方的“帕斯卡三角形”早了300多年.如图所示的是由“杨辉三角”拓展而成的三角形数阵,图中虚线上的数1,3,6,10…构成数列{}n a ,记n a 为该数列的第n 项,则64a =()A .2016B .2080C .4032D .41608.下列说法中不正确...的是()A .若随机变量()2~1,X N σ,(4)0.79P X <=,则(2)0.21P X <-=B .若随机变量1~10,3X B ⎛⎫ ⎪⎝⎭,则期望10()3E X =C .已知随机变量X 的分布列为()(1,2,3)(1)a P X i i i i ===+,则2(2)3P X ==D .从3名男生,2名女生中选取2人,则其中至少有一名女生的概率为7109.若需要刻画预报变量Y 和解释变量x 的相关关系,且从已知数据中知道预报变量Y 随着解释变量x 的增大而减小,并且随着解释变量x 的增大,预报变量Y 大致趋于一个确定的值,为拟合Y 和x 之间的关系,应使用以下回归方程中的(0,b e >为自然对数的底数)()A .Y bx a =+B .ln Y b x a =-+C.Y a=D .x Y be a-=+10.对于三次函数()()320f x ax bx cx d a =+++≠,现给出定义:设()f x '是函数()f x 的导数,()f x ''是()f x '的导数,若方程()f x ''有实数解0x ,则称点()()00,x f x 为函数()()320f x ax bx cx d a =+++≠的“拐点”.经过探究发现:任何一个三次函数都有“拐点”,任何一个三次函数都有对称中心,且“拐点”就是对称中心.设函数()32533x g x x =-+,则123179999g g g g ⎛⎫⎛⎫⎛⎫⎛⎫++++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()A .173B .172C .17D .3411.已知数列{}n a 满足()*612,7N 2,7,n n a n n a n a n -⎧⎛⎫-+>⎪ ⎪=∈⎝⎭⎨⎪⎩,若对于任意*N n ∈都有1n n a a +>,则实数a 的取值范围是()A .1,12⎛⎫⎪⎝⎭B .12,23⎛⎫⎪⎝⎭C .2,13⎛⎫⎪⎝⎭D .21,3⎛⎫⎪⎝⎭12.若2ln ln b b a a a +=+,则下列式子可能成立的是()A .1a b >>B .1a b>>C .1b a>>D .1b a>>第II 卷(非选择题,共90分)二、填空题:本题共4小题,每小题5分,共20分.13.已知等比数列{}n a 满足:18a =,9132a =,230a a <则公比q =______.14.在甲,乙,丙三个地区爆发了流感,这三个地区分别有7%,6%,5%的人患了流感.若这三个地区的人口数的比为5:3:2,现从这三个地区中任意选取一个人,这个人患流感的概率是______.15.为积极践行劳动教育理念,扎实开展劳动教育活动,某学校开设三门劳动实践选修课,现有五位同学参加劳动实践选修课的学习,每位同学仅报一门,每门至少有一位同学参㕲,则不同的报名方法有______.16.2023年第57届世界乒乓球锦标赛在南非德班拉开帷幕,参赛选手甲、乙进入了半决赛,半决赛采用五局三胜制,当选手甲、乙两位中有一位赢得三局比赛时,就由该选手晋级而比赛结束.每局比赛皆须分出胜负,且每局比赛的胜负不受之前比赛结果影响.假设甲在任一局赢球的概率为()01p p ,比剉局数的期望值记为()f p ,则()f p 的最大值是______.三、解答题:共70分.解答题应写出文字说明、证明过程或验算步骤.17.(10分)一只口袋中装有形状、大小都相同的10个小球,其中有红球1个,白球4个,黑球5个.(I )若每次从袋子中随机摸出1个球,摸出的球不再放回.在第1次摸到白球的条件下,第2饮摸到白球的概率;(II )若从袋子中一次性随机摸出3个球,记黑球的个数为X ,求随机变量X 的概率分布.18.(12分)设数列{}n a 的前n 项和为n S ,已知12a =,142n n S a +=+.(I )设12n n n b a a +=-,证明:数列{}n b 是等比数列;(II )求数列2n n a ⎧⎫⎨⎬⎩⎭的前n 项和n T .19.(12分)黄河是中华民族的母亲河、生命河,也是一条桀骜难驯的忧患之河.小浪底水利枢纽工程位于河南省济源市、洛阳市孟津区边界,是黄河治理开发的关键控制性工程.它控制着黄河92%的流域面积、91%的径流量和近100%的泥沙,以防洪、防淩、减淤为主,兼顾供水、灌溉、发电,不仅是中华民族治黄史上的丰碑,也是世界水利工程史上最具标志性的杰作之一,其大坝为预测渗压值和控制库水位,工程师在水库选取一支编号为并计算得102157457.98ii x==∑,102153190.77ii y ==∑,10155283.20i i i x y ==∑,272.9325319.076624=,275.8015745.791601=15.51≈.(I )求该水库HN1号渗压计管内水位与水库水位的样本相关系数(精确到0.01);(II )某天雨后工程师测量了水库水位,并得到水库的水位为76m .利用以上数据给出此时HN1号渗压计管内水位的估计值.附:相关系数()()niix x y y r --=∑()()()ˆ121nni iii ix x y y b x x ==--=-∑∑,ˆˆy b a x =+.20.(12分)已知函数()()22xx f x aea e x =+--.(I )讨论()f x 的单调性;(II )若()f x 有两个零点,求a 的取值范围.21.(12分)根据长期生产经验,某种零件的一条生产线在设备正常状态下,生产的产品正品率为0.985.为了监控该生产线生产过程,检验员每天从该生产线上随机抽取10个零件,并测量其质量,规定:抽检的10件产品中,若至少出现2件次品,则认为设备出现了异常情况,需对设备进行检测及修理.(I )假设设备正常状态,记X 表示一天内抽取的10件产品中的次品件数,求()2P X ,并说明上述监控生产过程规定的合理性;(II )该设备由甲、乙两个部件构成,若两个部件同时出现故䧐,则设备停止运转;若只有一个部件出现故障,则设备出现异常.已知设备出现异常是由甲部件故障造成的概率为p ,由乙部件故障造成的概率为1p -.若设备出现异常,需先检测其中一个部件,如果确认该部件出现故障,则进行修理,否则,继续对另一部件进行检测及修理.已知甲部件的检测费用2000元,修理费用6000元,乙部件的检测费用3000元,修理费用4000元.当设备出现异常时,仅考虑检测和修理总费用,应先检测甲部件还是乙部件,请说明理由。

南京市金陵中学2022-2023学年高二下学期期末考试数学试卷含解析

南京市金陵中学2022-2023学年高二下学期期末考试数学试卷含解析

2022-2023学年南京市金陵中学高二下学期期末考试一.选择题(共8小题,每题5分,共40分)1.已知集合{|11}A x lnx =-剟,{|(2)0}B x x x =-…,则(A B = )A .1[,2]eB .[0,]eC .1[0,]eD .[2,]e2.已知O 为坐标原点,复数11z i =+,22z mi =+,分别表示向量OA ,OB ,若A B O C ⊥,则(m = ) A .-1B .0C .1D .23.已知函数()f x x =,()22x x g x -=+,则大致图象如图的函数可能是( )A .()()f x g x +B .()()f x g x -C .()()f x g xD .()()f xg x 4.有五名志愿者参加社区服务,共服务星期六、星期天两天,每天从中任选两人参加服务,则两天中恰有1人连续参加两天服务的选择种数为( ) A .120B .60C .40D .305.已知一个圆锥和圆柱的底面半径和高分别相等,若圆锥的轴截面是等边三角形,则这个圆锥和圆柱的侧面积之比为( )A .12B C D 6.已知数列{}n a 的前n 项和为n T ,数列{}n T 是递增数列是20232022a a >的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件7.已知()sin()(0f x x ωϕω=+>,||)ϕπ<同时满足下列三个条件: ①当12|()()|2f x f x -=时,12||x x -的最小值为2π; ②())3f x π+是偶函数;③(0)()6f f π>.若()f x 在[0,)m 上有两个零点,则实数m 的取值范围是( ) A .713(,]1212ππ B .713[,)1212ππ C .75[,)126ππ D .1319(,]1212ππ8.已知中心在原点,焦点在x 轴上的椭圆与双曲线有公共焦点,左、右焦点分别为1F ,2F ,且两条曲线在第一象限的交点为P ,△12PF F 是以1PF 为底边的等腰三角形,若1||8PF =,椭圆与双曲线的离心率分别为1e ,2e ,则12e e 的取值范围是( ) A .1(,)9+∞B .1(,)3+∞C .1(,)2+∞D .5(,)3+∞二.多选题(共4小题,每题5分,共20分) 9.某次测试,经统计发现测试成绩服从正态分布, ()290,10X N 则( )A .这次测试的平均成绩为90B .这次测试的成绩的方差为10C .分数在110分以上的人数与分数在80分以下的人数相同D .分数在120分以上的人数与分数在60分以下的人数大致相同10.抛掷一红一绿两枚质地均匀的骰子,记下骰子朝上面的点数.若用x 表示红色骰子的点数,若用y 表示绿色骰子的点数,用(,)x y 表示一次试验的结果,定义事件:A = “x y +为奇数”, B = “x y =”, C = 4x >”,则下列结论正确的是( ) A .P (A )3P =(B ) B .A 与B 互斥C .A 与B 独立D .B 与C 独立11.若抛物线2:4C y x =,过焦点F 的直线交C 于不同的两点A 、B ,直线l 为抛物线的准线,下列说法正确的是( )A .点B 关于x 轴对称点为C ,当A 、C 不重合时,直线AC ,x 轴,直线交于一点 B .若||||8AF BF ⋅=,则直线AB 斜率为12±C .3||2||AF BF +的最小值为5+D .分别过A 、B 做切线,两条切线交于点M ,则22||||AM BM +的最小值为16 12.已知0a >,1a e lnb +=,则( )A .0a lnb +<B .2a e b +>C .0b lna e +<D .1a b +>三.填空题(共4小题,每题5分,共20分) 13.在361(2)x x-的展开式中,2x 项的系数为 .14.过原点的一条直线与圆22:(2)3C x y ++=相切,交曲线22(0)y px p =>于点P ,若||8OP =,则p 的值为 .15.有一个水平放置的透明无盖的正方体容器,容器高4cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为3cm ,如果不计容器的厚度,则球的表面积为 .16.已知函数()()y f x x R =∈的图象是连续不间断的,函数(1)y f x =-的图象关于点(1,1)对称,在区间(1,)+∞上单调递增.若(cos 4cos 2)(4cos2)2f m f θθθ+-+->对任意[,]42ππθ∈恒成立,则下列选项中m 的取值范围_____ 四.解答题(共6小题,共70分)17.(10分)设n S 为公差不为0的等差数列{}n a 的前n 项和,若1a ,4a ,13a 成等比数列,6333S S -=.(1)求数列{}n a 的通项公式; (2)设12n a n n na b lna +=+,求数列}b 的前n 项和n T . 18(12分).在四棱锥P ABCD -中,PD ⊥底面ABCD ,//CD AB ,1AD DC CB ===,2AB =,DP = (1)证明:BD PA ⊥;(2)求PD 与平面PAB 所成的角的正弦值.19(12分).记ABC ∆的内角A 、B 、C 的对边分别为a ,b ,c ,且1132AC AB AB BC BC CA ==⋅. (1)求b c; (2)已知3B C =,1c =,求ABC ∆的面积.20(12分)..某观影平台为了解观众对最近上映的某部影片的评价情况(评价结果仅有“好评”、“差评” ),从平台所有参与评价的观众中随机抽取216人进行调查,部分数据如表所示(单位:人):(1)请将22⨯列联表补充完整,并判断是否有99%的把握认为“对该部影片的评价与性别有关”?(2)若将频率视为概率,从观影平台的所有给出“好评”的观众中随机抽取3人,用随机变量X 表示被抽到的男性观众的人数,求X 的分布列;(3)在抽出的216人中,从给出“好评”的观众中利用分层抽样的方法抽取10人,从给出“差评”的观众中抽取(*)m m N ∈人.现从这(10)m +人中,随机抽出2人,用随机变量Y 表示被抽到的给出“好评”的女性观众的人数.若随机变量Y 的数学期望不小于1,求m 的最大值.参考公式:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.参考数据:21.(12分)已知双曲线C 中心为坐标原点,左焦点为(-0) (1)求C 的方程;(2)记C 的左、右顶点分别为1A ,2A ,过点(4,0)-的直线与C 的左支交于M ,N 两点,M在第二象限,直线1MA 与2NA 交于P ,证明P 在定直线上. 22.(12分)已知函数()af x ax lnx x=--. (1)若1x >,()0f x >,求实数a 的取值范围;(2)设1x ,2x 是函数()f x 的两个极值点,证明:12|()()|f x f x -<2022-2023学年南京市金陵中学高二下学期期末考试参考答案与试题解析一.选择题(共8小题)1.已知集合{|11}A x lnx =-剟,{|(2)0}B x x x =-…,则(A B = )A .1[,2]eB .[0,]eC .1[0,]eD .[2,]e【解答】解:111lnx ln lnx lne e -⇔剟剟,根据对数函数的单调性可知上述不等式的解集为1[,]e e, 而{|(2)0}{|02}B x x x x x =-=剟?,根据交集的运算,1[,2]A B e=.故选:A .2.已知O 为坐标原点,复数11z i =+,22z mi =+,分别表示向量OA ,OB ,若A B O C ⊥,则(m = ) A .-1B .0C .1D .2【解答】解:复数11z i =+,22z mi =+,分别表示向量OA ,OB , 则(1,1)OA =,(2.)OB m =, AB OC ⊥,20m +=,解得2m =-,故选:D .3.已知函数()f x x =,()22x x g x -=+,则大致图象如图的函数可能是( )A .()()f x g x +B .()()f x g x -C .()()f x g xD .()()f xg x【解答】解:根据题意,设所给的函数为()h x ,由函数的图象,()h x 为奇函数,当x →+∞时,函数值()0h x →, 由此分析选项: 对于A ,()()()22x xh x f x g x x -=+=++,其定义域为R ,有()()()2xxh x f x g x x h x --=-+-=-++≠-,()h x 不是奇函数,不符合题意;对于B ,()()()22x xh x f x g x x -=-=--,其定义域为R ,有()()()2xxh x f x g x x h x --=-+-=--+≠-,()h x 不是奇函数,不符合题意;对于C ,()()()(22)x x h x f x g x x -==+,当x →+∞时,()h x →+∞,不符合题意; 对于D ,()()()22x xf x x h xg x -==+,其定义域为R ,有()()22x x xh x h x --=-=-+,()h x 是奇函数,且当x →+∞时,()0h x →,符合题意. 故选:D .4.有五名志愿者参加社区服务,共服务星期六、星期天两天,每天从中任选两人参加服务,则两天中恰有1人连续参加两天服务的选择种数为( ) A .120B .60C .40D .30【解答】解:先从5人中选1人连续两天参加服务,共有155C =种选法, 然后从剩下4人中选1人参加星期六服务,剩下3人中选取1人参加星期日服务,共有114312C C ⋅=种选法,根据分步乘法计数原理可得共有51260⨯=种选法. 故选:B .5.已知一个圆锥和圆柱的底面半径和高分别相等,若圆锥的轴截面是等边三角形,则这个圆锥和圆柱的侧面积之比为( )A .12B C D 【解答】解:设圆锥和圆柱的底面半径为r , 因为圆锥的轴截面是等边三角形, 所以圆锥的母线长为2l r =,则圆锥和圆柱的高为h , 所以圆锥的侧面积为211222S r l r ππ=⨯⨯=,圆柱的侧面积为222S r h r π=⨯=,所以圆锥和圆柱的侧面积之比为12S S =, 故选:C .6.已知数列{}n a 的前n 项和为n T ,数列{}n T 是递增数列是20232022a a >的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件【解答】解:若{}n a 是等比数列,且10a >,01q <<,则数列{}n T 是递增数列, 但20232022a a <,若20232022a a >,有可能10a >,0q <,则数列{}n T 不是单调数列, 则数列{}n T 是递增数列是20232022a a >的既不充分也不必要条件. 故选:D .7.已知()sin()(0f x x ωϕω=+>,||)ϕπ<同时满足下列三个条件: ①当12|()()|2f x f x -=时,12||x x -的最小值为2π; ②())3f x π+是偶函数;③(0)()6f f π>.若()f x 在[0,)m 上有两个零点,则实数m 的取值范围是( ) A .713(,]1212ππ B .713[,)1212ππ C .75[,)126ππ D .1319(,]1212ππ【解答】解:当12|()()|2f x f x -=时,12||x x -的最小值为2π; ∴当1()1f x =,2()1f x =-时,满足条件,此时,12||x x -的最小值为22T π=, 即T π=,即2ππω=,即2ω=,则()sin(2)f x x ϕ=+,())3f x π+是偶函数,2()sin[2()]sin(2)333f x x x πππϕϕ∴+=++=++, 则232k ππϕπ+=+,k Z ∈, 得6k πϕπ=-+,k Z ∈,||ϕπ<,∴当0k =时,6πϕ=-,当1k =时,56πϕ=. 当6πϕ=-时,()s i n (2)6f x x π=-,此时1(0)2f =-,1()sin 662f ππ==,此时不满足③(0)()6f f π>.故6πϕ=-不成立.当56πϕ=时,5()sin(2)6f x x π=+,此时1(0)2f =,71()sin sin 6662f πππ==-=-,此时满足③(0)()6f f π>.故56πϕ=成立.即5()sin(2)6f x x π=+. 当[0x ∈,)m 时,2[0x ∈,2)m ,552[66x ππ+∈,52)6m π+, 若()f x 在[0,)m 上有两个零点,则 52236m πππ<+…,得7131212m ππ<…, 故选:A .8.已知中心在原点,焦点在x 轴上的椭圆与双曲线有公共焦点,左、右焦点分别为1F ,2F ,且两条曲线在第一象限的交点为P ,△12PF F 是以1PF 为底边的等腰三角形,若1||8PF =,椭圆与双曲线的离心率分别为1e ,2e ,则12e e 的取值范围是( ) A .1(,)9+∞B .1(,)3+∞C .1(,)2+∞D .5(,)3+∞【解答】解:设椭圆和双曲线的半焦距为c ,1||PF m =,2||PF n =,()m n >, 由于△12PF F 是以1PF 为底边的等腰三角形.若1||8PF =, 即有8m =,2n c =,由椭圆的定义可得12m n a +=, 由双曲线的定义可得22m n a -=,即有14a c =+,24a c =-,(4)c <,再由三角形的两边之和大于第三边,可得2248c c c +=>, 则2c >,即有24c <<.由离心率公式可得2122122116161c c c e e a a c c ===--, 由于21614c <<,则有2111631c >-. 则1213e e >.12e e ∴的取值范围为1(3,)+∞.故选:B .二.多选题(共4小题)9.某次测试,经统计发现测试成绩服从正态分布, ()290,10X N 则( )A .这次测试的平均成绩为90B .这次测试的成绩的方差为10C .分数在110分以上的人数与分数在80分以下的人数相同D .分数在120分以上的人数与分数在60分以下的人数大致相同【解答】解:由题意可得:~(90X N ,210),其中90μ=,10σ=,即正态分布的对称轴为90X =,所以A 正确,C 错误,D 正确. 因为10σ=,方差为100,B 错误. 故选:AD .10.抛掷一红一绿两枚质地均匀的骰子,记下骰子朝上面的点数.若用x 表示红色骰子的点数,若用y 表示绿色骰子的点数,用(,)x y 表示一次试验的结果,定义事件:A = “x y +为奇数”, B = “x y =”, C = “4x >”,则下列结论正确的是( ) A .P (A )3P =(B ) B .A 与B 互斥C .A 与B 独立D .B 与C 独立【解答】解:由题意可知,事件A 为(1,2),(1,4),(1,6),(2,1),(2,3),(2,5),(3,2),(3,4),(3,6),(4,1),(4,3),(4,5),(5,2),(5,4),(5,6),(6,1),(6,3),(6,5),共18种情况,事件B 为(1,1),(2,2),(3,3),(4,4),(5,5),(6,6),共6种情况,事件C 为(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),共12种情况, P (A )181662==⨯,P (B )61366==,故P (A )3P =(B ),故A 正确, 事件A 与B 不同时发生,故A 与B 互斥,故B 正确,()0P AB =,P (A )P ⋅(B )1112612=⨯=,故C 错误, P (C )121663==⨯,21()6618P BC ==⨯,P (B )P ⋅(C )1116318=⨯=,故D 正确. 故选:ABD .11.若抛物线2:4C y x =,过焦点F 的直线交C 于不同的两点A 、B ,直线l 为抛物线的准线,下列说法正确的是( )A .点B 关于x 轴对称点为C ,当A 、C 不重合时,直线AC ,x 轴,直线交于一点 B .若||||8AF BF ⋅=,则直线AB 斜率为12±C .3||2||AF BF +的最小值为5+D .分别过A 、B 做切线,两条切线交于点M ,则22||||AM BM +的最小值为16 【解答】解:抛物线2:4C y x = 的焦点(1,0)F ,准线:1l x =-,显然直线AB 不垂直于y 轴,设直线AB 的方程为1x ty =+,1(A x ,1)y ,2(B x ,2)y ,由214x ty y x=+⎧⎨=⎩,消去x 得:2440y ty --=,于是124y y t +=,124y y =-,对于A ,点2(D x ,2)y -,准线l 交x 轴于点(1,0)K -,则1(1KA x =+,1)y ,2(1KD x =+,2)y -,有211221121212(1)(1)(2)(2)22()880x y x y ty y ty y ty y y y t t +++=+++=++=-+=,即得//KD KA ,因此点K ,D ,A 共线,即直线AD ,x 轴,直线l 交于一点,故A 正确;对于B ,2222212121212111||||(1)(1)(1)(1)()144164y y AF BF x x y y y y +⋅=++=++=++ 22121212()2()24844y y y y y y +-+=+=+=,解得124y y +=±,直线AB 的斜率122212124144AB y y k y y y y -===±+-,故B 错误;对于C ,由选项B 知,22221212311||2||3(1)2((1)54442y y AF BF y y +=+++=++1255|5y y +=+=+ (22)12342y y =,即221232y y =时取等号,故C 正确;对于D ,显然抛物线C 在点A 处的切线斜率存在且不为0,设此切线方程为11()y y k x x -=-,由112()4y y k x x y x-=-⎧⎨=⎩,消去x 得:21104ky y y kx -+-=,则△222111111()1(1)042y yk y kx k ky k =--=-+=-=, 解得12k y =,同理抛物线C 在点B 处的切线斜率22k y '=,显然12221kk y y '=⋅=-,于是A⊥,因此2221212||||||(A M B M A B x+==++=…, 当且仅当0t =时取等号,故D 正确. 故选:ACD .12.已知0a >,1a e lnb +=,则( ) A .0a lnb +<B .2a e b +>C .0b lna e +<D .1a b +>【解答】解:由1a e lnb +=,可得1a e lnb =-, 0a >,11lnb ∴->,01b ∴<<,令()1x f x e x =--,则()1x f x e '=-,当0x >时,()0f x '>,()f x 单调递增,当0x <时,()0f x '<,()f x 单调递减,所以()(0)f x f …,即1x e x +…, 由0a >知1a e a >+,11a e lnb a lnb ∴=+>++,0a lnb ∴+<,A 正确;由1x e x +…可得(1)x ln x +…,可得1(1x lnx x -=…时取等号), 因为01b <<,所以1lnb b <-,11a a e lnb e b =+<+-,2a e b ∴+>,B 正确; 1b e =时,11a e -=,则12,2a l n l n e =>,∴1(2)()1ln ln ln e>=-,1110b b lna e e ∴+>-+>-+=,C 错误;1a e e lnb ln b =-=,∴(),()e ea ln ln ab ln ln b b b =+=+,令eln x b=,则1x b e -=,1x >,1x a b lnx e -+=+,设1()x h x lnx e -=+,1x >,则111()0x x x xe e exh x e x x e xe --'=-=-=>, ()h x ∴在(1,)+∞单调递增,()h x h >(1)1=, 1a b ∴+>,故D 正确.故选:ABD .三.填空题(共4小题)13.在361(2)x x-的展开式中,2x 项的系数为 60 .【解答】解:二项式361(2)x x-的展开式的通项为3661841661(2)()2(1)r r r rr r r r T C x C x x---+=⋅-=⋅⋅-⋅,令1842r -=得,4r =,2x ∴项的系数为42462(1)60C ⋅⨯-=. 故答案为:60.14.过原点的一条直线与圆22:(2)3C x y ++=相切,交曲线22(0)y px p =>于点P ,若||8OP =,则p 的值为 6 . 【解答】解:如图,由题意,不妨设直线方程为(0)y kx k =>,即0kx y -=, 由圆22:(2)3C x y ++=的圆心(2,0)C -到0kx y -==0)k k =>,则直线方程为y =,联立22y y px ⎧⎪⎨=⎪⎩,得00x y =⎧⎨=⎩或23p x y ⎧=⎪⎪⎨⎪=⎪⎩,即2(3p P .可得||8OP ==,解得6p =. 故答案为:6.15.有一个水平放置的透明无盖的正方体容器,容器高4cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为3cm ,如果不计容器的厚度,则球的表面积为 25π .【解答】解:由题意得正方体上底面到水面的高为431-=,设球体的半径为R ,由题意如图所示:三角形OAA '为Rt △,A 为球与正方体的交点, 则1OA R '=-,422AA '==,OA R =, 所以:222(1)2R R =-+,解得52R =, 所以球的表面积2425S R ππ==, 故答案为:25π.16.已知函数()()y f x x R =∈的图象是连续不间断的,函数(1)y f x =-的图象关于点(1,1)对称,在区间(1,)+∞上单调递增.若(cos 4cos 2)(4cos2)2f m f θθθ+-+->对任意[,]42ππθ∈恒成立,则下列选项中m 的取值范围_____【解答】解:因为函数(1)y f x =-的图象关于点(1,1)对称且在区间(1,)+∞上单调递增, 所以函数()()y f x x R =∈的图象关于(0,1)对称,函数()f x 在R 上单调递增, 由(cos 4cos 2)(4cos2)2f m f θθθ+-+->,可得(cos 4cos 2)(4cos2)(4cos2)(4cos2)f m f f f θθθθθ+-+->-+, 也即(cos 4cos 2)(4cos2)f m f θθθ+->,则有cos 4cos 24cos2m θθθ+->恒成立,即cos 4cos24cos 2m θθθ>-+,因为[,]42ππθ∈,所以cos θ∈, 当cos 0θ=时,得到02>-恒成立;当cos 0θ≠时,则有24cos224cos 8cos 4cos 228cos 4cos cos cos m θθθθθθθθ+--->==--,令cos t θ=∈,则284y t t=--, 因为函数284y t t=--在(0,)+∞上单调递增,且t ∈,所以4max y =,则4m >四.解答题(共6小题)17.设n S 为公差不为0的等差数列{}n a 的前n 项和,若1a ,4a ,13a 成等比数列,6333S S -=. (1)求数列{}n a 的通项公式; (2)设12n a n n na b lna +=+,求数列{}nb 的前n 项和n T . 【解答】解:(1)设等差数列{}n a 的公差为d ,0d ≠,1a ,4a ,13a 成等比数列,∴24113a a a =,即2111(3)(12)a d a a d +=+, ∴21230a d d -=,0d ≠,1230a d ∴-=①,又6333S S -=,则45633a a a ++=, 1411a d ∴+=②,联立①②解得13a =,2d =,∴数列{}n a 的通项公式*21()n a n n N =+∈;(2)由(1)得*21()n a n n N =+∈, 则2121123222(23)(21)21n a n n n n n a n b lnln ln n ln n a n ++++=+=+=++-++, 123n n T b b b b ∴=++++35212532752(23)(21)n ln ln ln ln ln n ln n +=+-++-++++-+3521222(23)3n ln n ln +=+++++-8(14)23143n n ln -+=+-*8(41)23()33n n ln n N -+=+∈.18.在四棱锥P ABCD -中,PD ⊥底面ABCD ,//CD AB ,1AD DC CB ===,2AB =,DP =(1)证明:BD PA ⊥;(2)求PD 与平面PAB 所成的角的正弦值.【解答】解:(1)证明:PD ⊥底面ABCD ,BD ⊂面ABCD ,PD BD ∴⊥,取AB 中点E ,连接DE , 1AD DC CB ===,2AB =,60DAB ∴∠=︒,又112AE AB AD ===, 1DE ∴=,12DE AB ∴=, ABD ∴∆为直角三角形,且AB 为斜边, BD AD ∴⊥, 又PDAD D =,PD ⊂面PAD ,AD ⊂面PAD ,BD ∴⊥面PAD , 又PA ⊂面PAD ,BD PA ∴⊥;(2)由(1)知,PD ,AD ,BD 两两互相垂直,故建立如图所示的空间直角坐标系,BD则(0,0,0),(1,0,0),D A B P ,∴(0,0,3),(1,0,3),(1,PD PA AB =-=-=-,设平面PAB 的一个法向量为(,,)n x y z =,则00n PA x n AB x ⎧⋅==⎪⎨⋅=-=⎪⎩,则可取(3,1,1)n =,设PD 与平面PAB 所成的角为θ,则5sin |cos ,|||5||||PD n PD n PD n θ⋅=<>==,PD ∴与平面PAB19.记ABC ∆的内角A 、B 、C 的对边分别为a ,b ,c ,且1132AC AB AB BC BC CA ==⋅.(1)求bc; (2)已知3B C =,1c =,求ABC ∆的面积. 【解答】(1)解:因为1132AC AB AB BC BC CA ==⋅, 由平面向量数量积的定义可得3cos 4cos cos cb A ca B ba C +=,即22222222234222b c a a c b a b c bc ac ab bc ac ab +-+-+-⋅+⋅=⋅,整理可得2b c =,可得2bc =.(2)3B C =,1c =,所以2b =, 由正弦定理可得:32122sin sin sin 33sin 4B C C C sin C===-, 解得1sin 2C =,30C =︒,90B =︒,ABC ∆的面积:112⨯. 20.某观影平台为了解观众对最近上映的某部影片的评价情况(评价结果仅有“好评”、“差评” ),从平台所有参与评价的观众中随机抽取216人进行调查,部分数据如表所示(单位:人):(1)请将22⨯列联表补充完整,并判断是否有99%的把握认为“对该部影片的评价与性别有关”?(2)若将频率视为概率,从观影平台的所有给出“好评”的观众中随机抽取3人,用随机变量X 表示被抽到的男性观众的人数,求X 的分布列;(3)在抽出的216人中,从给出“好评”的观众中利用分层抽样的方法抽取10人,从给出“差评”的观众中抽取(*)m m N ∈人.现从这(10)m +人中,随机抽出2人,用随机变量Y 表示被抽到的给出“好评”的女性观众的人数.若随机变量Y 的数学期望不小于1,求m 的最大值.参考公式:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.参考数据:【解答】解:(1)22⨯列联表补充完整如下:2216(60684048)7.448 6.635100116108108K ⨯-⨯=≈>⨯⨯⨯,因此有99%的把握认为“对该部影片的评价与性别有关”.(2)从观影平台的所有给出“好评”的观众中随机抽取1人为男性的概率4021005==,且各次抽取之间互相独立,故2~(3,)5X B ,其概率3323()()()55k k k P X k C -==,0k =,1,2,3.其分布列为:(3)随机变量Y 的取值为0,1,2,则24210(0)m m C P Y C ++==,1146210(1)m m C C P Y C ++==,26210(2)mC P Y C +==,21124466222101010()0121m m m m mC C C C E Y C C C +++++∴=⨯+⨯+⨯…,化为:27180m m +-…,解得92m -剟, 又*m N ∈,12m ∴剟, 故m 的最大值为2.21.已知双曲线C 中心为坐标原点,左焦点为(-0),离心率为(1)求C 的方程;(2)记C 的左、右顶点分别为1A ,2A ,过点(4,0)-的直线与C 的左支交于M,N 两点,M 在第二象限,直线1MA 与2NA 交于P ,证明P 在定直线上.【解答】解:(1)双曲线C 中心为原点,左焦点为(-0), 则222c a b c ce a ⎧=+⎪⎪=⎨⎪⎪==⎩,解得24a b =⎧⎨=⎩,故双曲线C 的方程为221416x y -=; (2)证明:过点(4,0)-的直线与C 的左支交于M ,N 两点, 则可设直线MN 的方程为4x my =-,1(M x ,1)y ,2(N x ,2)y , 记C 的左,右顶点分别为1A ,2A , 则1(2,0)A -,2(2,0)A ,联立224416x my x y =-⎧⎨-=⎩,化简整理可得,22(41)32480m y my --+=, 故△222(32)448(41)2641920m m m =--⨯⨯-=+>且2410m -≠,1223241m y y m +=-,1224841y y m =-, 直线1MA 的方程为11(2)2y y x x =++,直线2NA 方程22(2)2y y x x =--,故21211212(2)(2)22(2)(6)y x y my x x y x y my +-+==--- 121211212()26my y y y y my y y -++=-12212483222414148641mm y m m m y m ⋅-⋅+--=⋅--1212162141483641my m m y m -+-==---, 故2123x x +=--,解得1x =-, 所以1P x =-,故点P 在定直线1x =-上运动. 22.已知函数()af x ax lnx x=--. (1)若1x >,()0f x >,求实数a 的取值范围;(2)设1x ,2x 是函数()f x的两个极值点,证明:12|()()|f x f x -<【解答】解:(1)由于f (1)1101ax ln =⨯--=, 若1x >,()0f x >,则须有()0f x '…, 又21()a f x a x x'=-+,210a ∴-…,解得12a …, 当12a …时,222211111(1)()(1(1)022x f x a x x x x x -'=+-+-=>…, ()f x ∴在(1,)+∞上单调递增,()f x f >(1)0=, 当12a <时,由于f '(1)210a =-<,∴存在0x 使得在0(1,)x 上,()0f x '<, ()f x 单调递减,此时()f x f <(1)0=,()0f x ∴>不成立, 综上所述:实数a 的取值范围为1(2,)+∞;(2)证明:由(1)得221()a ax x af x a x x x-+'=-+=,当0a …时,()0f x '<,()f x 在(0,)+∞上单调递减,不成立, 当0a >时,△214a =-,①当2140a -…,即12a …,()0f x '…,()f x 单调递增,不成立, ②当2140a ->,即102a <<,()0f x '=,解得1x =或2x =在1(0,)x 上()f x 单调递增,在1(x ,2)x 上()f x 单调递减,在2(x ,)+∞上()f x 单调递增, 又121x x a+=,121x x =, 不妨设120x x <<,则12()()f x f x >,要证明:1212|()()|||f x f x x x -<=-, 故只需证11222112()a aax lnx ax lnx x x x x -----<-, 只需证1212212112()()a x x a x x lnx lnx x x x x --++-<-,需证22121112212()2()(1)x x x lnx x x x x x x -<-+=+++, 令21(1)x t t x =>,则只需证2(1)(*)1t lnt t -<++, 由(1)知12a =,1x >时,11()2lnx x x<-, 1t ∴>时,12,则lnt <,又1t >时,2(1)01t t ->+,2(1)1t lnt t -∴<<++, 即(*)成立,故原式得证.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二学期期末教学质量监测高二数学本试卷共4页,22小题,满分150分.考试用时120分钟.第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的 。

1.若i 12i z ⋅=-(i 为虚数单位),则z 的共轭复数是A .22i --B .2i -C .2i +D .2i -+2.抛物线24=-x y 的焦点到准线的距离为A .1B . 2C .3D .4 3.“p 且q 是真命题”是“非p 为假命题”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.用三段论演绎推理:“复数都可以表示成实部与虚部之和的形式,因为复数z 23i =+ 的实部是2,所以复数z 的虚部是3i ”。

对于这段推理,下列说法正确的是 A .大前提错误导致结论错误 B .小前提错误导致结论错误 C .推理形式错误导致结论错误 D .推理没有问题,结论正确 5.函数x e x f xln )(=在点))1(,1(f 处的切线方程是A .)1(2-=x e y B.1-=ex y C.)1(-=x e y D.e x y -= 6.若2παπ<<,则sin cos αα-的值与1的大小关系是A.sin cos 1αα->B.sin cos 1αα-=C.sin cos 1αα-<D.不能确定 7.函数3()34f x x x =- []0,1x ∈的最大值是A .12B . -1C .0D .1 8.甲、乙、丙三人中只有一人去过陈家祠,当他们被问到谁去过时,甲说:“丙没有去”;乙说:“我去过”;丙说:“甲说的是真话”。

若三人中只有一人说的是假话,那么去过陈家祠的人是 A .甲 B .乙 C .丙 D .不能确定9.某宇宙飞船运行的轨道是以地球中心为一焦点的椭圆,测得近地点距地面m 千米,远地点距地面n 千米,地球半径为r 千米,则该飞船运行轨道的短轴长为A .2()()m r n r ++ 千米B .()()m r n r ++千米C .mn 2千米D .mn 千米10.函数31()3=-f x x ax 在R 上是增函数,则实数a 的取值范围是 A .0≥a B. 0≤a C. 0>a D. 0<a11.若椭圆)0(12222>>=+b a b y a x 和圆c c b y x (,)2(222+=+为椭圆的半焦距),有四个不同的交点,则椭圆的离心率e 的取值范围是A. )53,52(B. )55,52(C. )53,55(D. )55,0( 12. 已知定义在R 上的函数()f x 是奇函数,且(2)0f =,当0x >时,有'2()()0⋅-<x f x f x x,则不等式2()0x f x ⋅>的解集是 A .(2,0)(2,)-+∞U B.(,2)(0,2)-∞-U C .(2,0)(0,2)-U D .(2,2)(2,)-+∞U第Ⅱ卷(非选择题 共90分)二、填空题: 本大题共4小题,每小题5分,共20分。

13.函数b x ax x x f +++=23)(在1=x 时取得极值,则实数=a _______.14.下表提供了某厂节能降耗技术改造后,在生产A 产品过程中记录的产量x (吨)与相应的生产能耗y (吨)的几组对应数据:根据表中提供的数据,求出y 关于x 的线性回归方程为=0.7+0.35ˆy x ,那么表中t 的值为______. 15.代数式⋅⋅⋅+++11111中省略号“…”代表以此方式无限重复,因原式是一个固定值,可以用如下方法求得:令原式t =,则11t t +=,则210t t --=,取正值得51t +=,用类似方法可得=⋅⋅⋅+++666_______.16.如图1,1F 、2F 是双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点,过1F 的直线l 与双曲线C 的两支分别交于点,A B ,若2ABF ∆为x3 4 5 6 y2.5t44.5图2BD CA等边三角形,则双曲线C 的离心率为_______.三、解答题:本大题共6个小题,共70分.解答应写出文字说明,证明过程或演算步骤。

17.(本小题满分10分)已知直线l 的参数方程为2(4x a t t y t =-⎧⎨=-⎩为参数),圆C 的参数方程为4cos (4sin x y θθθ=⎧⎨=⎩为参数)(Ⅰ)求直线l 和圆C 的普通方程;(Ⅱ)若直线l 与圆C 有公共点,求实数a 的取值范围. 18.(本小题满分12分)国家实施二孩放开政策后,为了了解人们对此政策持支持态度是否与年龄有关,计生部门将已婚且育有一孩的居民分成中老年组(45岁以上,含45岁)和中青年组(45岁以下,不含45岁)两个组别,每组各随机调查了50人,对各组中持支持态度和不支持态度的人所占的频率绘制成等高条形图,如图所示:(Ⅰ)根据以上信息完成2×2列联表;(Ⅱ)是否有99%以上的把握认为人们对此政策持支持态度与年龄有关?附:))()()(()(22d b c a d c b a bc ad n K ++++-=19.(本小题满分12分)如图2,在ABC ∆中,,83B AB π∠==,点D 在BC 边上,且2CD =,1cos 7∠=ADC . (Ⅰ)求sin BAD ∠; (Ⅱ)求BD ,AC 的长.0.2 0 0.5 1.0 中老年组 中青年组图3A B (2)(1)DGCEF P ⇒DABG CF P 20.(本小题满分12分)如图⑴,在直角梯形ABCP 中,//BC AP ,AB BC ⊥,CD AP ⊥,2AD DC PD ===,,,E F G分别是线段,,PC PD BC 的中点,现将PDC ∆折起,使平面PDC ⊥平面ABCD ,如图⑵. (Ⅰ)求证://AP 平面EFG ; (Ⅱ)求三棱锥P EFG -的体积.21.(本小题满分12分)已知椭圆C :22221(0)x y a b a b +=>>的离心率为3,且经过点()1,3--M .(Ⅰ)求椭圆C 的方程;(Ⅱ)若直线02:=--y x l 与椭圆C 交于,A B 两点,点P 为椭圆C 上一动点,当△PAB 的面积最大时,求点P 的坐标及△PAB 的最大面积.22.(本小题满分12分)已知函数2()ln f x x ax bx =++(其中a ,b 为常数且0a ≠)在1x =处取得极值. (Ⅰ)当1a =时,求()f x 的单调区间;(Ⅱ)若()f x 在(0,e]上的最大值为1,求a 的值.第二学期期末质量监测高二数学参考答案与评分标准二、填空题:13.-2; 14.3 15. 3三、解答题:17.(本小题满分10分)已知直线l 的参数方程为2(t 4x a t y t =-⎧⎨=-⎩为参数),圆C 的参数方程为4cos (4sin x y θθθ=⎧⎨=⎩为参数)(Ⅰ)求直线l 和圆C 的普通方程;(Ⅱ)若直线l 与圆C 有公共点,求实数a 的取值范围.17.解:(Ⅰ) 消去参数t 得直线l 的一般方程:220--=l x y a ……………………2分 消去参数θ得圆C 的一般方程22:16+=x y …………………………5分若直线l 与圆C 有公共点18.(本小题12分)国家实施二孩放开政策后,为了了解人们对此政策持支持态度是否与年龄有关,计生部门将已婚且育有一孩的居民分成中老年组(45岁以上,含45岁)和中青年组(45岁以下,不含45岁)两个组别,每组各随机调查了50人,对各组中持支持态度和不支持态度的人所占的频率绘制成等高条形图,如图所示:0.2 0 0.5 1.0(Ⅰ)根据以上信息完成2×2列联表;(Ⅱ)是否有99%以上的把握认为人们对此政策持支持态度与年龄有关?附:))()()(()(22d b c a d c b a bc ad n K ++++-=18.解:(Ⅰ)由等高条形图可知:中老年组中,持支持态度的有50×0.2=10人,持不支持态度的有50-10=40人;…………………………………………………………………………2分中青年组中,持支持态度的有50×0.5=25人,持不支持态度的有50-25=25人。

…………………………………………………………………………4分故2×2列联表为:…………………………………………………………………………6分(Ⅱ8分10分 9.89≈>6.635……………………………………11分∴有99%以上的把握认为人们对此政策持支持态度支持与年龄有关………12分19.(本小题满分12分) 如图,在ABC ∆中,,83B AB π∠==,点D 在BC 边上,且2CD =,1cos 7∠=ADC . (Ⅰ)求sin BAD ∠; (Ⅱ)求,AC 的长. 19.解:(Ⅰ)在V ABC 中 ,∴()sin sin ∠=∠-∠BAD ADC B ……………………3分=sin cos cos sin∠⋅∠-∠⋅∠ADC B ADC B……………………4分(Ⅱ)在V ABD中=3,……………………9分在V ABC中,由余弦定理得:2222cos=+-⋅AC AB BC AB BC B49=,即7=AC……………………12分20.(本小题满分12分)如图⑴,在直角梯形ABCP中,BC∥AP,A B⊥BC,CD⊥AP,AD=DC=PD=2,E,F,G分别是线段PC、PD,BC的中点,现将ΔPDC折起,使平面PDC⊥平面ABCD,如图⑵.(Ⅰ)求证AP∥平面EFG;(Ⅱ)求三棱锥P EFG-的体积.20.解:(Ⅰ)∵V PDC中,点E,F分别是PC,PD的中点∴EF∥CD 又CD∥AB∴EF∥AB ………………………………………………1分图3A B(2)(1)DGCEFP⇒DA BGCFP∵⊄面PAB EF ⊂面PAB AB 根据线面平行的判定定理EF ∥平面PAB ………………………………………………2分 同理:EG ∥平面PAB ………………………………………………3分⋂=EF EG E ………………………………………………4分∴平面EFG ∥平面PAB ,又AP ⊂面PAB ,…………………………5分 ∴AP ∥平面EFG …………………………………………………………6分 (Ⅱ)由题设可知BC ⊥平面PDC ,故GC 为三棱锥G-PEF 底面上的高G 是BC 的中点,BC =2,所以GC =1……………………………8分 又11111222PEF S PF EF ∆=⋅=⨯⨯=,……………………………9分 所以--=P EFG G PEF V V ……………………………11分1316∆=⋅=PEF S GC ----------------------------------12分21.(本小题满分12分)已知椭圆C :22221(0)x y a b a b +=>>的离心率为3,且经过点()1,3--M .(Ⅰ)求椭圆C 的方程;(Ⅱ)若直线02:=--y x l 与椭圆C 交于,A B 两点,点P 为椭圆C 上一动点,当△PAB 的面积最大时,求点P 的坐标及△PAB 的最大面积. 21.(本小题满分12分)解:(Ⅰ)3c e a ==, ……………………………1分 又222a b c =+,所以,3b a =223a b =, … ……………………2分 ()1,3--M 在椭圆C………………3分联立解得224,12b a ==,故椭圆C 的方程为141222=+y x . ……………………4分(Ⅱ)将直线02=--y x 代入141222=+y x 中消去y 得,032=-x x .解得0=x 或3=x . …………………………5分 所以点()2,0-A ,()1,3B ,所以()()23210322=++-=AB . ………………6分在椭圆C 上求一点P , 使△PAB 的面积最大,则点P 到直线l 的距离最大. 设过点P 且与直线l 平行的直线方程为b x y +=.……………………………………7分将b x y +=代入141222=+y x 整理得,()0436422=-++b bx x .…………………8分令()()22644340b b ∆=-⨯⨯-=,解得4±=b . …………………………………9分将4±=b 代入方程()0436422=-++b bx x ,解得3±=x .易知当点P 的坐标为()1,3-时,△PAB 的面积最大. ………………………………10分 且点P ()1,3-到直线l 的距离为231121322=+---=d . …………………………11分△PAB 的最大面积为=⨯⨯=d AB S 219. …………………………………………12分 22.(本小题满分12分)已知函数2()ln f x x ax bx =++(其中a ,b 为常数且0a ≠)在1x =处取得极值. (Ⅰ)当1a =时,求()f x 的单调区间;(Ⅱ)若()f x 在(0,]e 上的最大值为1,求a 的值. 22.解:(Ⅰ)因为2()ln f x x ax bx =++,所以1'()2f x ax b x=++,……………1分 因为函数2()ln f x x ax bx =++在1x =处取得极值,'(1)120f a b =++= ………………………………………………2分 当1a =时,3b =-,2231'()x x f x x-+=, ……………………3分函数()f x 定义域为(0,)∈+∞x由'()0f x >,得102x <<或1x >;由'()0f x <,得112x <<,…………………5分 即函数()f x 的单调递增区间为1(0,)2,(1,)+∞;单调递减区间为1(,1)2.(Ⅱ)因为(21)(1)'()ax x f x x--=,令'()0f x =,11x =,212x a=, ………………………………………………6分 因为()f x 在1x =处取得极值,所以21112x x a=≠=,①当102a<时,()f x 在(0,1)上单调递增,在(1,]e 上单调递减,所以()f x 在区间(0,]e 上的最大值为(1)f ,令(1)1f =,解得2a =-, ………………………………………………8分②当1012<<a 时, ()f x 在1(0,)2a 上单调递增,1(,1)2a上单调递减,(1,)e 上单调递增, 所以最大值1可能在12x a=或x e =处取得,而21111()ln ()(21)2222f a a a a a a =+-+11ln 124=--a a0< , 所以2()ln (21)1f e e ae a e =+-+=,解得12a e =-; ………………………10分③当112e a ≤<时,()f x 在区间(0,1)上单调递增,1(1,)2a 上单调递减,1(,)2e a上单调递增,所以最大值1可能在1x =或x e =处取得, 而(1)ln1(21)=10=+-+--<f a a a , 所以2()ln (21)1f e e ae a e =+-+=,解得12a e =-,与2112x e a <=<矛盾.………………………………………………11分 ④当212x e a=≥时,()f x 在区间(0,1)上单调递增,在(1,)e 上单调递减,所以最大值1可能在1x =处取得,而(1)ln1(21)=10=+-+--<f a a a ,矛盾. 综上所述,12a e =-或2a =-. ………………………………………………12分11。

相关文档
最新文档