《平行线》相交线与平行线课件
合集下载
《平行线》相交线与平行线PPT课件
第五章 相交线与平行线
平行线
-.
学习目标
1 了解并掌握平行线的概念
2 掌握“经过直线外一点,有且只有一条直线与 已知直线平行”的公理
3 掌握平行的传递性并且在证明题中运用
观察生活
铁轨
跑道
游泳池
各国国旗
俄罗斯
马来西亚
泰国
探究新知
如图,将木条a、b与木条c钉在一起,并把它们想象成两端可以无限延 伸的三条直。转动a,直线a从在c的左侧与直线b相交逐步变为在右侧 与b相交。
线平行。
A
B
P
注意: 人们在长期实践中总结出来的结论叫基本事实,也称为公理; 它可以作为以后推理的依据.
平行公理
如图:三条直线AB、CD、EF。
如果AB//EF ,CD//EF,那么直线AB与CD可能相交
吗?
A
B
P
C
D
E
F
因为AB//EF,CD//EF于是过点P就有两条直线AB和直线CD都与EF平行; 根据平行公理,这是不可能的 也就是说,AB与CD不能相交,只能平行。
【公理推论】
如果两条直线都和第三条直线平行,那么这两条直线也互相平行
c
a
b
c a
b
c a b
过程中,有没有直线a与直线b不相交的位置呢?
探究新知
在木条转动过程中,存在一个直线a与直线b不相交的位置; 直线a与b互相平行,记作a∥b。
c a
b
平行线概念
定义:同一平面内,不相交的两条直线叫做平行线
概念剖析:
同一平面内(前提条件) 不相交(没有交点) 两条直线(不是射线或线段)
平行公理推论
如果两条直线都和第三条直线平行,那么这两条直线 也互相平行 (平行线的传递性)
平行线
-.
学习目标
1 了解并掌握平行线的概念
2 掌握“经过直线外一点,有且只有一条直线与 已知直线平行”的公理
3 掌握平行的传递性并且在证明题中运用
观察生活
铁轨
跑道
游泳池
各国国旗
俄罗斯
马来西亚
泰国
探究新知
如图,将木条a、b与木条c钉在一起,并把它们想象成两端可以无限延 伸的三条直。转动a,直线a从在c的左侧与直线b相交逐步变为在右侧 与b相交。
线平行。
A
B
P
注意: 人们在长期实践中总结出来的结论叫基本事实,也称为公理; 它可以作为以后推理的依据.
平行公理
如图:三条直线AB、CD、EF。
如果AB//EF ,CD//EF,那么直线AB与CD可能相交
吗?
A
B
P
C
D
E
F
因为AB//EF,CD//EF于是过点P就有两条直线AB和直线CD都与EF平行; 根据平行公理,这是不可能的 也就是说,AB与CD不能相交,只能平行。
【公理推论】
如果两条直线都和第三条直线平行,那么这两条直线也互相平行
c
a
b
c a
b
c a b
过程中,有没有直线a与直线b不相交的位置呢?
探究新知
在木条转动过程中,存在一个直线a与直线b不相交的位置; 直线a与b互相平行,记作a∥b。
c a
b
平行线概念
定义:同一平面内,不相交的两条直线叫做平行线
概念剖析:
同一平面内(前提条件) 不相交(没有交点) 两条直线(不是射线或线段)
平行公理推论
如果两条直线都和第三条直线平行,那么这两条直线 也互相平行 (平行线的传递性)
平行线的性质 课件(共22张PPT)
3
∴∠2=∠3(两直线平行,同位角相等),
∵∠1=∠3(对顶角相等),
∴∠1=∠2(等量代换).
你发现了什么?
两条平行直线被第三条直线所截,内错角相等. 简写成:两直线平行,内错角相等. 表达方式:如图,
∵a∥b(已知),
∴∠1=∠2(两直线平行,内错角相等).
如图,直线a∥b,直线a、b被直线c所截
试一试
翻开你的数学练习横格本,每一页上都有许多如图所示的互 相平行的横线条,随意画一条斜线与这些横线条相交, 找出其中 任意一对同位角.观察或用量角器度量这对同位角,你有什么发现?
∠1=∠2
那么,一般情况下,如图,如果直线a与直线b平行,直线l与 直线a、b分别交于点O和点P,其中的同位角∠1与∠2也必定相等吗?
A.65°
B.55°
C.45°
D.35°
课堂小结
知识点 平行线的性质
1.两直线平行,同位角 相等 . 2.两直线平行,内错角 相等 . 3.两直线平行,同旁内角 互补 .
已知
同位角相等 内错角相等 同旁内角互补
得到
判定 性质
得到 两直线平行
已知
(2)从∠1=110o可以知道 ∠3是多少度?为什么?
(3)从 ∠1=110 o可以知道∠4 是多少度?为什么?B
D
解:(1)∠2=110o 理由:两直线平行,内错角相等;
(2)∠3=110o 理由:两直线平行,同位角相等;
(3)∠4=70o 理由:两直线平行,同旁内角互补.
C 2E 43
2.如图,直线a∥b,∠1=50°,∠2=40°,则∠3的度数为 ( B )
例3 将如左图所示的方格图中的图形向右平行移动4格,再向上 平行移动3格,画出平行移动后的图形.
《相交线》相交线与平行线PPT优秀课件
所以∠BOD=12∠DOE=35°.
探 (2)若∠DOE∶∠EOC=2∶3,求∠AOC的度数.
究
与 解:因为∠DOE∶∠EOC=2∶3,
应 用
∠DOE+∠EOC=180°,
所以∠DOE=180°×25=72°.
又因为OB平分∠DOE,
所以∠BOD=1∠DOE=36°,
2
图5-1-7
所以∠AOC=∠BOD=36°.
检 所以∠AOC=∠BOD=40°.
测
因为OA平分∠EOC,
所以∠EOC=2∠AOC=80°, 所以∠EOD=180°-∠EOC=180°-80°=100°. 图5-1-12
应
用 互为邻补角.图中的邻补角 有: ∠3和∠4
∠1和∠2,∠1和∠Hale Waihona Puke ,∠; 2和∠3,图5-1-1
探 ②有一个公共顶点,并且一个角的两边分别是另一个角的两
究
与 边的反向延长线,具有这种位置关系的两个角,互为对顶角.
应 用
图中的对顶角有: ∠1和∠3,∠2和∠4
.
图5-1-1
探 例1 (教材补充例题)如图5-1-2,直线AB,CD,EF相交于点O.
究
与 ∠4的度数.
应
用 解:由邻补角的定义,
得∠2=180°-∠1=180°-40°=140°;
由对顶角相等,
得∠3=∠1=40°,∠4=∠2=140°.
图5-1-5
探 变式1 如图5-1-6,直线AB,CD相交于点O,射线OE把∠BOD
究
与 分成两部分.
应 用
(1)图中∠AOC的对顶角为 ∠BOD
相交线与平行线
相交线
探 究
理解邻补角和对顶角的概念,会识别邻补角和对顶角
探 (2)若∠DOE∶∠EOC=2∶3,求∠AOC的度数.
究
与 解:因为∠DOE∶∠EOC=2∶3,
应 用
∠DOE+∠EOC=180°,
所以∠DOE=180°×25=72°.
又因为OB平分∠DOE,
所以∠BOD=1∠DOE=36°,
2
图5-1-7
所以∠AOC=∠BOD=36°.
检 所以∠AOC=∠BOD=40°.
测
因为OA平分∠EOC,
所以∠EOC=2∠AOC=80°, 所以∠EOD=180°-∠EOC=180°-80°=100°. 图5-1-12
应
用 互为邻补角.图中的邻补角 有: ∠3和∠4
∠1和∠2,∠1和∠Hale Waihona Puke ,∠; 2和∠3,图5-1-1
探 ②有一个公共顶点,并且一个角的两边分别是另一个角的两
究
与 边的反向延长线,具有这种位置关系的两个角,互为对顶角.
应 用
图中的对顶角有: ∠1和∠3,∠2和∠4
.
图5-1-1
探 例1 (教材补充例题)如图5-1-2,直线AB,CD,EF相交于点O.
究
与 ∠4的度数.
应
用 解:由邻补角的定义,
得∠2=180°-∠1=180°-40°=140°;
由对顶角相等,
得∠3=∠1=40°,∠4=∠2=140°.
图5-1-5
探 变式1 如图5-1-6,直线AB,CD相交于点O,射线OE把∠BOD
究
与 分成两部分.
应 用
(1)图中∠AOC的对顶角为 ∠BOD
相交线与平行线
相交线
探 究
理解邻补角和对顶角的概念,会识别邻补角和对顶角
《平行线》相交线与平行线PPT课件
④行。过一×点有且只有一条直线与己知直线平
(A)1 (B) 2 (C)3 (D)4
• 课本13页 练习
问题探究
问题1:如下图,AD∥BC,在AB上取 一点M,过M画MN∥BC交CD于N, 并说明MN与AD的位置关系,为什么?
A M B
D N C
问题探究
2、
经过直线外一点,有且只有一条直线与这条直线平行。
如图:AB∥EF, CD∥EF, 直线AB与CD相交吗?为什么?
A
B
P
C
D
E
F
平行公理推论: 如果两条直线都和第三条直线平行,那 么这两条直线也互相平行。
∵ b∥a b ∥ c
∴ a ∥c
a
c
b
平行线具有传递性。
练习一下:
1.判断正错(正打“√”,错打“×” ) 1.两条不相交的直线叫平行线. 2.在同一平面内的两条直线不平行就相交 3.一条直线的平行线有且只有一条 4.过一点,有且只有一条直线与这条直线平行 5.a,b,c是三条直线,如果a∥b且b∥c则a∥c 6.有且只有一个公共点的两直线是相交直线。
0 1 2 3 4 5 6 7 8 9 10
议一议 你能用移动三角尺的方法画
两条平行线吗?
过已知直线外一点画它的平行线.
一、帖(线)
二、靠(尺)
●
三、移(点)
四、画(线)
经过点P能画出一条直线与已知直线a平行 P●
a
经过点P你还能画出一条直线与直线a平行吗? (不能)
平行公理:经过直线外一点,有且只有 一条直线与这条直线平行。
2.在同一平面内,直线a与b满足下列条件
1、a与b没有公共点,则a与b的位置关 系__平_行__。
(A)1 (B) 2 (C)3 (D)4
• 课本13页 练习
问题探究
问题1:如下图,AD∥BC,在AB上取 一点M,过M画MN∥BC交CD于N, 并说明MN与AD的位置关系,为什么?
A M B
D N C
问题探究
2、
经过直线外一点,有且只有一条直线与这条直线平行。
如图:AB∥EF, CD∥EF, 直线AB与CD相交吗?为什么?
A
B
P
C
D
E
F
平行公理推论: 如果两条直线都和第三条直线平行,那 么这两条直线也互相平行。
∵ b∥a b ∥ c
∴ a ∥c
a
c
b
平行线具有传递性。
练习一下:
1.判断正错(正打“√”,错打“×” ) 1.两条不相交的直线叫平行线. 2.在同一平面内的两条直线不平行就相交 3.一条直线的平行线有且只有一条 4.过一点,有且只有一条直线与这条直线平行 5.a,b,c是三条直线,如果a∥b且b∥c则a∥c 6.有且只有一个公共点的两直线是相交直线。
0 1 2 3 4 5 6 7 8 9 10
议一议 你能用移动三角尺的方法画
两条平行线吗?
过已知直线外一点画它的平行线.
一、帖(线)
二、靠(尺)
●
三、移(点)
四、画(线)
经过点P能画出一条直线与已知直线a平行 P●
a
经过点P你还能画出一条直线与直线a平行吗? (不能)
平行公理:经过直线外一点,有且只有 一条直线与这条直线平行。
2.在同一平面内,直线a与b满足下列条件
1、a与b没有公共点,则a与b的位置关 系__平_行__。
初一数学《平行线与相交线》PPT课件
第五章 平行线与相交线
---
相 余角 同角或等角的余角相等:同角 交 补角 或等角的补角相等
线 对顶角: 对顶角相等
同位角相等,两直线平行
相
线平
探索直线平行 内错角相等,两直线平行 的条件
交
同旁内角互补,两直线平行
线
行
两直线平行,同位角相等
与
平行线的性质 两直线平行,内错角相等
平 行
两直线平行,同旁内角互补
C
∵ ∠1= ∠4 ﹙已知﹚
∴ AB ∥CD﹙同位角相等,两直线平行﹚ ∴ ∠1 = ∠2 ﹙两直线平行,内错角相等﹚
∠1+ ∠3=180°﹙两直线平行, 同旁内角互补﹚
---
❖ 7、已知:如图,直线EF与AB、CD分别 相交于点G、H,∠1=∠2。 求证:AB∥CD。
---
❖ 8、已知:如图,AB∥CD,EF分别 交于AB、CD于E、F,EG平分 ∠AEF,FH平分∠EFD。
---
Байду номын сангаас
3.如图,在A,B两地之间要修一条笔直的 公路,从B测得公路的走向是北偏东50度, 那么从A点测得公路的走向是南偏西多少度? 为什么?
北
北
答:南偏西50度.因 为两直线平行,内错角 相等.
A
50度
B 南
---
4.一辆汽车在笔直的公路上行驶,两次拐 弯后,仍在原来的方向上平行前进,那么 两次拐弯的角度是( B ) A.第一次右拐50°,第二次左拐130°。 B.第一次左拐50°,第二次右拐50°。 C.第一次左拐50°,第二次左拐130°。 D.第一次右拐50°,第二次右拐50°
线
图尺 规
基本作图
作
作一条线段等于已知线段 作一个角等于已知角
---
相 余角 同角或等角的余角相等:同角 交 补角 或等角的补角相等
线 对顶角: 对顶角相等
同位角相等,两直线平行
相
线平
探索直线平行 内错角相等,两直线平行 的条件
交
同旁内角互补,两直线平行
线
行
两直线平行,同位角相等
与
平行线的性质 两直线平行,内错角相等
平 行
两直线平行,同旁内角互补
C
∵ ∠1= ∠4 ﹙已知﹚
∴ AB ∥CD﹙同位角相等,两直线平行﹚ ∴ ∠1 = ∠2 ﹙两直线平行,内错角相等﹚
∠1+ ∠3=180°﹙两直线平行, 同旁内角互补﹚
---
❖ 7、已知:如图,直线EF与AB、CD分别 相交于点G、H,∠1=∠2。 求证:AB∥CD。
---
❖ 8、已知:如图,AB∥CD,EF分别 交于AB、CD于E、F,EG平分 ∠AEF,FH平分∠EFD。
---
Байду номын сангаас
3.如图,在A,B两地之间要修一条笔直的 公路,从B测得公路的走向是北偏东50度, 那么从A点测得公路的走向是南偏西多少度? 为什么?
北
北
答:南偏西50度.因 为两直线平行,内错角 相等.
A
50度
B 南
---
4.一辆汽车在笔直的公路上行驶,两次拐 弯后,仍在原来的方向上平行前进,那么 两次拐弯的角度是( B ) A.第一次右拐50°,第二次左拐130°。 B.第一次左拐50°,第二次右拐50°。 C.第一次左拐50°,第二次左拐130°。 D.第一次右拐50°,第二次右拐50°
线
图尺 规
基本作图
作
作一条线段等于已知线段 作一个角等于已知角
《相交线与平行线》课件
《相交线与平行线》PPT 课件
本课程将介绍相交线和平行线的定义、性质以及实际应用。通过本课程的学 习,您将对这些几何概念有更深入的了解。
相交线的定义和性质
什么是相交线
相交线是在平面上有一个 公共点的两条线段。
相交线的性质
相交线的两条直线之间会 形成一对垂直的角。
如何判断两条线是否 相交
可以通过检查线段是否有 公共点、检查线段的斜率 是否相等或使用交叉乘积 判断线段关系。
总结和回顾
相交线和平 行线的定义 和性质
如何判断两 条线是否相 交
相交线和平 行线的实际 应用
重要概念
如果两条线段的斜率相 等,它们就可能相交。
3 使用交叉乘积
通过计算线段的交叉乘 积可以判断线段之间的 关系。
相交线和平行线的实际应用
1
几何构图中的应用
平行线和相交线在绘制和构图几何图形时起到重要作用。Βιβλιοθήκη 2建筑设计中的应用
平行线和相交线在建筑设计中用于布局、平面图和立面图。
3
数学问题中的应用
平行线和相交线在解决数学问题时提供了一些有用的工具和线索。
平行线的定义和性质
什么是平行线
两条直线在平面上没有任何公 共点的线段被称为平行线。
平行线的性质
平行线之间的直线拓展无限延 伸,永远不会相交。
平行线的实际应用
平行线在几何构图、建筑设计 和数学问题中都有重要应用。
如何判断两条线是否相交
1 检查线段的公共点 2 检查线段的斜率
如果两条线段有公共点, 它们就相交。
本课程将介绍相交线和平行线的定义、性质以及实际应用。通过本课程的学 习,您将对这些几何概念有更深入的了解。
相交线的定义和性质
什么是相交线
相交线是在平面上有一个 公共点的两条线段。
相交线的性质
相交线的两条直线之间会 形成一对垂直的角。
如何判断两条线是否 相交
可以通过检查线段是否有 公共点、检查线段的斜率 是否相等或使用交叉乘积 判断线段关系。
总结和回顾
相交线和平 行线的定义 和性质
如何判断两 条线是否相 交
相交线和平 行线的实际 应用
重要概念
如果两条线段的斜率相 等,它们就可能相交。
3 使用交叉乘积
通过计算线段的交叉乘 积可以判断线段之间的 关系。
相交线和平行线的实际应用
1
几何构图中的应用
平行线和相交线在绘制和构图几何图形时起到重要作用。Βιβλιοθήκη 2建筑设计中的应用
平行线和相交线在建筑设计中用于布局、平面图和立面图。
3
数学问题中的应用
平行线和相交线在解决数学问题时提供了一些有用的工具和线索。
平行线的定义和性质
什么是平行线
两条直线在平面上没有任何公 共点的线段被称为平行线。
平行线的性质
平行线之间的直线拓展无限延 伸,永远不会相交。
平行线的实际应用
平行线在几何构图、建筑设计 和数学问题中都有重要应用。
如何判断两条线是否相交
1 检查线段的公共点 2 检查线段的斜率
如果两条线段有公共点, 它们就相交。
《相交线》相交线与平行线PPT课件
例如,如图,m、n互相垂直, 垂足为O,则记为:
m⊥n或n⊥m.
若要强调垂足,则记为:a⊥b, 垂足为O.
书写形式1:
如图,当直线AB与CD相交于O点,∠AOD=90°时,AB⊥CD,垂足为O.
因为∠AOD=90°(已知)所以AB⊥CD(垂直的定义)
书写形式2:
反之,若直线AB与CD垂直,垂足为O,那么,∠AOD=90°.
若有n条直线相交于一点呢?
角的名称
邻补角
对顶角
位置关系
性质
邻补角互补
对顶角相等
相同点
都有一个公共顶点,它们都是成对出现的
不同点
对顶角没有公共边而邻补角有一条公共边;两条直线相交时,一个角的对顶角只有一个,而一个角的邻补角有两个
知识回顾:
努力 努力 再努力!
生活中的相交直线
例1:如图,三条直线相交于一点O,说出图中所有对顶角。
做 一 做
图中共有几组对顶角?
A
B
C
2
1
猜 一 猜
对顶角相等
说一说
想一想:
图中这种测量工具,可以量出图中零件AB,CD这两条轮廓线的延长线所成的角,你能说出其中的道理吗?
A
B
C
D
例2、如图,已知直线AD和BE相交于点O, ∠ DOE与∠ COE互余, ∠ COE =520,求∠ AOB和∠ BOD的度数。
1.有一条公共边
2.角的另一边互为反向延长线.
邻补角
邻补角与补角的区别与联系
1.邻补角与补角都是针对两个角而言的,而且数量关系都是两角之和为180°2.互为邻补角的两个角一定互补,但是互为补角的两个角不一定是邻补角即:互补的两个角只注重数量关系而不谈位置,而互为邻补角的两个角既要满足数量关系又要满足位置关系。
m⊥n或n⊥m.
若要强调垂足,则记为:a⊥b, 垂足为O.
书写形式1:
如图,当直线AB与CD相交于O点,∠AOD=90°时,AB⊥CD,垂足为O.
因为∠AOD=90°(已知)所以AB⊥CD(垂直的定义)
书写形式2:
反之,若直线AB与CD垂直,垂足为O,那么,∠AOD=90°.
若有n条直线相交于一点呢?
角的名称
邻补角
对顶角
位置关系
性质
邻补角互补
对顶角相等
相同点
都有一个公共顶点,它们都是成对出现的
不同点
对顶角没有公共边而邻补角有一条公共边;两条直线相交时,一个角的对顶角只有一个,而一个角的邻补角有两个
知识回顾:
努力 努力 再努力!
生活中的相交直线
例1:如图,三条直线相交于一点O,说出图中所有对顶角。
做 一 做
图中共有几组对顶角?
A
B
C
2
1
猜 一 猜
对顶角相等
说一说
想一想:
图中这种测量工具,可以量出图中零件AB,CD这两条轮廓线的延长线所成的角,你能说出其中的道理吗?
A
B
C
D
例2、如图,已知直线AD和BE相交于点O, ∠ DOE与∠ COE互余, ∠ COE =520,求∠ AOB和∠ BOD的度数。
1.有一条公共边
2.角的另一边互为反向延长线.
邻补角
邻补角与补角的区别与联系
1.邻补角与补角都是针对两个角而言的,而且数量关系都是两角之和为180°2.互为邻补角的两个角一定互补,但是互为补角的两个角不一定是邻补角即:互补的两个角只注重数量关系而不谈位置,而互为邻补角的两个角既要满足数量关系又要满足位置关系。
人教数学七下《平行线》相交线与平行线PPT优质教学课件
解:(1)(2)如图所示.
图5-2-2
探 理解平行公理,了解其推论
究 与
问题1 如何画平行线呢?给定一条直线a(如图5-2-3),你能画
应 出直线a的平行线吗?能画几条呢?
用
解:用平推三角尺的方法画平行线;给定
一条直线a,能画出直线a的平行线.可以
图5-2-3
画出直线a的无数条平行线.
探 问题2 在图5-2-1转动木条a的过程中,有几个位置使得直线
究
与 左 侧,顺时针转动a,直线a与直线b的交点逐渐向 左 移
应
用 动,当转动到某个位置时,直线a与直线b没有交点,此时直线a 与直线b 不相交 .再继续转动a,直线 a与直线b又相交,交点出现在直线c的
右 侧.
图5-2-1
探 定义 在同一平面内,不 相交 的两条直线叫做平行线.
究
与 直线a与b是平行线,记作a∥b.
究
与 a与b平行?如图5-2-4,过点B画直线a的平行线,能画出几条?
应
用 再过点C画直线a的平行线,它和前面过点B画出的直线平
行吗? 图5-2-3
图5-2-4
探 探究 (1)在转动木条a的过程中,有 一 个位置使得直线a与b
究
与 平行.
应 用
(2)如图5-2-5,过点B画直线a的平行线b,能画出 1
条;再
过点C画直线a的平行线c,能画出
1 条,由作图可知,直线c
与直线b 互相平行 .
图5-2-5
探
究 基本事实(平行公理):经过直线外一点,有且只有 一 条直
与
应 线与这条直线平行.
用
探 例3 (教材补充例题)如图5-2-6,AB,CD是一条河的两岸,并且
图5-2-2
探 理解平行公理,了解其推论
究 与
问题1 如何画平行线呢?给定一条直线a(如图5-2-3),你能画
应 出直线a的平行线吗?能画几条呢?
用
解:用平推三角尺的方法画平行线;给定
一条直线a,能画出直线a的平行线.可以
图5-2-3
画出直线a的无数条平行线.
探 问题2 在图5-2-1转动木条a的过程中,有几个位置使得直线
究
与 左 侧,顺时针转动a,直线a与直线b的交点逐渐向 左 移
应
用 动,当转动到某个位置时,直线a与直线b没有交点,此时直线a 与直线b 不相交 .再继续转动a,直线 a与直线b又相交,交点出现在直线c的
右 侧.
图5-2-1
探 定义 在同一平面内,不 相交 的两条直线叫做平行线.
究
与 直线a与b是平行线,记作a∥b.
究
与 a与b平行?如图5-2-4,过点B画直线a的平行线,能画出几条?
应
用 再过点C画直线a的平行线,它和前面过点B画出的直线平
行吗? 图5-2-3
图5-2-4
探 探究 (1)在转动木条a的过程中,有 一 个位置使得直线a与b
究
与 平行.
应 用
(2)如图5-2-5,过点B画直线a的平行线b,能画出 1
条;再
过点C画直线a的平行线c,能画出
1 条,由作图可知,直线c
与直线b 互相平行 .
图5-2-5
探
究 基本事实(平行公理):经过直线外一点,有且只有 一 条直
与
应 线与这条直线平行.
用
探 例3 (教材补充例题)如图5-2-6,AB,CD是一条河的两岸,并且
《平行线》相交线与平行线PPT精品课件
人教版 数学 七年级 下册
5.2 平行线及其判定 5.2.1 平行线
导入新知 生活中好多事物给我们线的感觉,那么下列这些线给我们
什么印象呢? 如图,电梯的扶手给我们
什么印象?
电梯扶手所在直线会相交吗?
导入新知
那么铁轨给我们什么印象?
还有什么地方给我们相同的印
象呢?
铁轨所在直线会相交吗?
导入新知
课堂检测
2.在同一平面内,下列说法:
①过两点有且只有一条直线;②两条不相同的直线有且只有一个
公共点;③经过直线外一点有且只有一条直线与已知直线垂直;
④经过直线外一点有且只有一条直线与已知直线平行,其中正确
的个数为( C )
A.1个
B.2个
C.3个
D.4个
课堂检测
3.完成下列推理,并在括号内注明理由.
因为 AD∥BC,PQ∥AD,所以PQ∥BC(如果两条直线都与第
三条直线平行,那么这两条直线也互相平行);
(3)经测量DQ=CQ,AD+BC=2PQ成立.
课堂检测 拓广探索题
如图,直线a ∥b,b∥c,c∥d,那么a ∥d吗?为什么? a bc d
解: a ∥d ,理由如下: 因为 a ∥b,b∥c,所以 a ∥c (如果两条直线都与第三条直线平行,那么这两条直线互相平行) 因为 c∥d,所以 a ∥d (如果两条直线都与第三条直线平行,那么这两条直线互相平行)
下列说法正确的是( B ) A.两条不相交的直线一定相互平行 B.在同一平面内,两条不平行的直线一定相交 C.在同一平面内,两条不相交的线段一定平行 D.在同一平面内,两条不相交的射线互相平行
巩固练习
下列说法中,正确的个数有( B) (1)在同一平面内不相交的两条线段必平行 × (2)在同一平面内不相交的两条直线必平行 √ (3)在同一平面内不平行的两条线段必相交 × (4)在同一平面内不平行的两条直线必相交 √
5.2 平行线及其判定 5.2.1 平行线
导入新知 生活中好多事物给我们线的感觉,那么下列这些线给我们
什么印象呢? 如图,电梯的扶手给我们
什么印象?
电梯扶手所在直线会相交吗?
导入新知
那么铁轨给我们什么印象?
还有什么地方给我们相同的印
象呢?
铁轨所在直线会相交吗?
导入新知
课堂检测
2.在同一平面内,下列说法:
①过两点有且只有一条直线;②两条不相同的直线有且只有一个
公共点;③经过直线外一点有且只有一条直线与已知直线垂直;
④经过直线外一点有且只有一条直线与已知直线平行,其中正确
的个数为( C )
A.1个
B.2个
C.3个
D.4个
课堂检测
3.完成下列推理,并在括号内注明理由.
因为 AD∥BC,PQ∥AD,所以PQ∥BC(如果两条直线都与第
三条直线平行,那么这两条直线也互相平行);
(3)经测量DQ=CQ,AD+BC=2PQ成立.
课堂检测 拓广探索题
如图,直线a ∥b,b∥c,c∥d,那么a ∥d吗?为什么? a bc d
解: a ∥d ,理由如下: 因为 a ∥b,b∥c,所以 a ∥c (如果两条直线都与第三条直线平行,那么这两条直线互相平行) 因为 c∥d,所以 a ∥d (如果两条直线都与第三条直线平行,那么这两条直线互相平行)
下列说法正确的是( B ) A.两条不相交的直线一定相互平行 B.在同一平面内,两条不平行的直线一定相交 C.在同一平面内,两条不相交的线段一定平行 D.在同一平面内,两条不相交的射线互相平行
巩固练习
下列说法中,正确的个数有( B) (1)在同一平面内不相交的两条线段必平行 × (2)在同一平面内不相交的两条直线必平行 √ (3)在同一平面内不平行的两条线段必相交 × (4)在同一平面内不平行的两条直线必相交 √
平行线的性质ppt课件
如图1,若AB∥DE , AC∥DF,请说出∠A和∠D之间的数量关系,
并说明理由.
F
解: ∠A =∠D.理由:
C
∵ AB∥DE( 已知 )
∴∠A=_∠_C__P_E__ ( 两直线平行,同位角相等)
∵AC∥DF( 已知 )
P
D
E
∴∠D=_∠_C_P_E__ ( 两直线平行,同位角相等 )
A
B
∴∠A=∠D (等量代换 )
1.如图,已知平行线AB、CD被直线AE所截 (1)从∠1=110o可以知道∠2 是多少度?为什么? (2)从∠1=110o可以知道∠3是多少度?为什么? (3)从∠1=110o可以知道∠4 是多少度?为什么?
A
2C E
1
43
B D
2. 如图,一条公路两次拐弯前后两条路互相平行.第一次拐的 角∠B是142o,第二次拐的角∠C是多少度?为什么?
∠3,∠4的度数吗?为什么?
解:∵DE∥BC(已知),
∴∠4=∠1=65°(两直线平行,内错角相等), ∠2+∠1=180°(两直线平行,同旁内角互 补). ∴∠2=180°-∠1=180°-65°=115°.
又∵DF∥AB(已知),
∴∠3=∠2(两直线平行,同位角相等). ∴∠3=115°(等量代换).
E P
∴∠A+∠D=180o( 等量代换
)
B
A
图2
归纳小结
两直线平行
性质 判定
同位角相等 内错角相等 同旁内角互补
1
3 2
c
探究三
三、平行线的基本性质3 思考:类似的,已知两直线平行,能否可以得到同旁内角之间的数 量关系?
如图,已知a//b,那么∠2与∠4有什么关系呢?为什么?
人教版七年级数学下册《平行线的性质》相交线与平行线PPT优秀课件
置关系,而平行线的性质是根据两条直线的位置关系得 到两角的数量关系; (2)平行线的判定的条件是平行线的性质的结论,而平行线 的判定的结论是平行线的性质的条件.
感悟新知
特别警示 ●两条直线平行是前提,只有在这个前提下才有同
位角相等; ●格式书写时,顺序不能颠倒,与判定不能混淆.
感悟新知
例 1 如图5.3-2,把三角尺的直角顶点放在直尺的一边上, 若∠ 1=30°,则∠ 2 的度数为( A ) A.60° B.50° C.40° D.30°
感悟新知
1-1.[中考·柳州] 如图,直线a,b 被直线c 所截,若a ∥ b, ∠ 1=70 °,则∠ 2 的度数是( C ) A. 50° B. 60° C. 70° D. 110°
感悟新知
知识点 2 平行线的性质2
1. 性质2:两条平行线被第三条直线所截,内错角相等. 简单说成:两直线平行,内错角相等.
2. 表达方式:如图5.3-3,因为a ∥ b(已知), 所以∠ 1= ∠ 2(两直线平行,内错角相等).
感悟新知
特别警示 并不是所有的内错角都相等,只有在“两直线平
行”的前提下,才有内错角相等.
感悟新知
例2 如图5.3-4,AB ∥ CD,BE 平分∠ ABC,CF 平分 ∠ BCD,你能发现BE 和CF 有何特殊的位置关系吗? 说说你的理由. 解题秘方:由两直线平行得到 内错角相等,再由内错角相等 得到两直线平行.
感悟新知
解:BE∥CF.理由如下:∵ AB∥CD(已知),
∴∠ ABC= ∠ BCD (两直线平行,内错角相等).
∵ BE 平分∠ ABC,CF 平分∠ BCD (已知),
∴∠ 2=
1 2
∠ ABC,∠ 1=Fra bibliotek1 2
感悟新知
特别警示 ●两条直线平行是前提,只有在这个前提下才有同
位角相等; ●格式书写时,顺序不能颠倒,与判定不能混淆.
感悟新知
例 1 如图5.3-2,把三角尺的直角顶点放在直尺的一边上, 若∠ 1=30°,则∠ 2 的度数为( A ) A.60° B.50° C.40° D.30°
感悟新知
1-1.[中考·柳州] 如图,直线a,b 被直线c 所截,若a ∥ b, ∠ 1=70 °,则∠ 2 的度数是( C ) A. 50° B. 60° C. 70° D. 110°
感悟新知
知识点 2 平行线的性质2
1. 性质2:两条平行线被第三条直线所截,内错角相等. 简单说成:两直线平行,内错角相等.
2. 表达方式:如图5.3-3,因为a ∥ b(已知), 所以∠ 1= ∠ 2(两直线平行,内错角相等).
感悟新知
特别警示 并不是所有的内错角都相等,只有在“两直线平
行”的前提下,才有内错角相等.
感悟新知
例2 如图5.3-4,AB ∥ CD,BE 平分∠ ABC,CF 平分 ∠ BCD,你能发现BE 和CF 有何特殊的位置关系吗? 说说你的理由. 解题秘方:由两直线平行得到 内错角相等,再由内错角相等 得到两直线平行.
感悟新知
解:BE∥CF.理由如下:∵ AB∥CD(已知),
∴∠ ABC= ∠ BCD (两直线平行,内错角相等).
∵ BE 平分∠ ABC,CF 平分∠ BCD (已知),
∴∠ 2=
1 2
∠ ABC,∠ 1=Fra bibliotek1 2
《认识平行》平行和相交PPT课件 (共9张PPT)
相交
路灯
不相交
跑道线
高压电线架线塔
相交
A B
同一平面内,不相交的两条直 线互相平行,其中一条直线是另一 条直线的平行线。
下面哪几组的两条直线互相 平行?
(1)
(2)
(3)
(4)Leabharlann 心生活 你能说出一些互相平行 的例子吗?
下面每个图形中哪些线段是互相 平行的?各有几组平行的线段?
2组
1组
2组
3组
你能用下面的方法画出一组 平行线吗?
画(线)
靠(直尺)
平移
分别画出已知直线的平行线。
经过A点画出已知直线的平行线。
A
·
A ·
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
挫折的名言 1、 我觉得坦途在前,人又何必因为一点小障碍而不走路呢?——鲁迅 2、 “不耻最后”。即使慢,弛而不息,纵会落后,纵会失败,但一定可以达到他所向的目标。——鲁迅 3、 故天将降大任于是人也,必先苦其心志,劳其筋骨,饿其体肤,空乏其身,行拂乱其所为,所以动心忍性,曾益其所不能。 战胜挫折的名言 1、卓越的人一大优点是:在不利与艰难的遭遇里百折不饶。——贝多芬 2、每一种挫折或不利的突变,是带着同样或较大的有利的种子。——爱默生 3、我以为挫折、磨难是锻炼意志、增强能力的好机会。——邹韬奋 4、斗争是掌握本领的学校,挫折是通向真理的桥梁。——歌德 激励自己的座右铭 1、 请记得,好朋友的定义是:你混的好,她打心眼里为你开心;你混的不好,她由衷的为你着急。 2、 要有梦想,即使遥远。 3、 努力爱一个人。付出,不一定会有收获;不付出,却一定不会有收获,不要奢望出现奇迹。 4、 承诺是一件美好的事情,但美好的东西往往不会变为现实。 工作座右铭 1、 不积跬步,无以至千里;不积小流,无以成江海。——《荀子劝学》 2、 反省不是去后悔,是为前进铺路。 3、 哭着流泪是怯懦的宣泄,笑着流泪是勇敢的宣言。 4、 路漫漫其修远兮,吾将上下而求索。——屈原《离骚》 5、 每一个成功者都有一个开始。勇于开始,才能找到成功的路。 国学经典名句 1、知我者,谓我心忧,不知我者,谓我何求。(诗经王风黍离) 2、人而无仪,不死何为。 (诗经风相鼠) 3、言者无罪,闻者足戒。 (诗经大序) 4、他山之石,可以攻玉。 (诗经小雅鹤鸣) 5、投我以桃,报之以李。 (诗经大雅抑) 6、天作孽,犹可违,自作孽,不可活。(尚书) 7、满招损,谦受益。 (尚书大禹谟) 青春座右铭 1、爱的力量大到可以使人忘记一切,却又小到连一粒嫉妒的沙石也不能容纳。 2、把手握紧,什么也没有;把手伸开,你就拥有了一切。 3、不在打击面前退缩,不在困难面前屈服,不在挫折面前低头,不在失败面前却步。勇敢前进! 4、当你能飞的时候就不要放弃飞。 5、当你能梦的时候就不要放弃梦。 激励向上人生格言 1、实现自己既定的目标,必须能耐得住寂寞单干。 2、世界会向那些有目标和远见的人让路。 3、为了不让生活留下遗憾和后悔,我们应该尽可能抓住一切改变生活的机会。 4、无论你觉得自己多么的不幸,永远有人比你更加不幸。 5、无论你觉得自己多么的了不起,也永远有人比你更强。 6、打击与挫败是成功的踏脚石,而不是绊脚石。 激励自己的名言 1、忍别人所不能忍的痛,吃别人所别人所不能吃的苦,是为了收获得不到的收获。 2、销售是从被别人拒绝开始的。 3、好咖啡要和朋友一起品尝,好机会也要和朋友一起分享。 4、生命之灯因热情而点燃,生命之舟因拼搏而前行。 5、拥有梦想只是一种智力,实现梦想才是一种能力。 6、有识有胆,有胆有识,知识与胆量是互相促进的。 7、体育锻炼可以(有时可以迅速)使人乐观(科学实验证明)。 8、勤奋,机会,乐观是成功的三要素。(注意:传统观念认为勤奋和机会是成功的要素,但是经过统计学和成功人士的分析得出,乐观是成功的第三要素) 9、自信是人格的核心。 10、获得的成功越大,就越令人高兴。
路灯
不相交
跑道线
高压电线架线塔
相交
A B
同一平面内,不相交的两条直 线互相平行,其中一条直线是另一 条直线的平行线。
下面哪几组的两条直线互相 平行?
(1)
(2)
(3)
(4)Leabharlann 心生活 你能说出一些互相平行 的例子吗?
下面每个图形中哪些线段是互相 平行的?各有几组平行的线段?
2组
1组
2组
3组
你能用下面的方法画出一组 平行线吗?
画(线)
靠(直尺)
平移
分别画出已知直线的平行线。
经过A点画出已知直线的平行线。
A
·
A ·
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
挫折的名言 1、 我觉得坦途在前,人又何必因为一点小障碍而不走路呢?——鲁迅 2、 “不耻最后”。即使慢,弛而不息,纵会落后,纵会失败,但一定可以达到他所向的目标。——鲁迅 3、 故天将降大任于是人也,必先苦其心志,劳其筋骨,饿其体肤,空乏其身,行拂乱其所为,所以动心忍性,曾益其所不能。 战胜挫折的名言 1、卓越的人一大优点是:在不利与艰难的遭遇里百折不饶。——贝多芬 2、每一种挫折或不利的突变,是带着同样或较大的有利的种子。——爱默生 3、我以为挫折、磨难是锻炼意志、增强能力的好机会。——邹韬奋 4、斗争是掌握本领的学校,挫折是通向真理的桥梁。——歌德 激励自己的座右铭 1、 请记得,好朋友的定义是:你混的好,她打心眼里为你开心;你混的不好,她由衷的为你着急。 2、 要有梦想,即使遥远。 3、 努力爱一个人。付出,不一定会有收获;不付出,却一定不会有收获,不要奢望出现奇迹。 4、 承诺是一件美好的事情,但美好的东西往往不会变为现实。 工作座右铭 1、 不积跬步,无以至千里;不积小流,无以成江海。——《荀子劝学》 2、 反省不是去后悔,是为前进铺路。 3、 哭着流泪是怯懦的宣泄,笑着流泪是勇敢的宣言。 4、 路漫漫其修远兮,吾将上下而求索。——屈原《离骚》 5、 每一个成功者都有一个开始。勇于开始,才能找到成功的路。 国学经典名句 1、知我者,谓我心忧,不知我者,谓我何求。(诗经王风黍离) 2、人而无仪,不死何为。 (诗经风相鼠) 3、言者无罪,闻者足戒。 (诗经大序) 4、他山之石,可以攻玉。 (诗经小雅鹤鸣) 5、投我以桃,报之以李。 (诗经大雅抑) 6、天作孽,犹可违,自作孽,不可活。(尚书) 7、满招损,谦受益。 (尚书大禹谟) 青春座右铭 1、爱的力量大到可以使人忘记一切,却又小到连一粒嫉妒的沙石也不能容纳。 2、把手握紧,什么也没有;把手伸开,你就拥有了一切。 3、不在打击面前退缩,不在困难面前屈服,不在挫折面前低头,不在失败面前却步。勇敢前进! 4、当你能飞的时候就不要放弃飞。 5、当你能梦的时候就不要放弃梦。 激励向上人生格言 1、实现自己既定的目标,必须能耐得住寂寞单干。 2、世界会向那些有目标和远见的人让路。 3、为了不让生活留下遗憾和后悔,我们应该尽可能抓住一切改变生活的机会。 4、无论你觉得自己多么的不幸,永远有人比你更加不幸。 5、无论你觉得自己多么的了不起,也永远有人比你更强。 6、打击与挫败是成功的踏脚石,而不是绊脚石。 激励自己的名言 1、忍别人所不能忍的痛,吃别人所别人所不能吃的苦,是为了收获得不到的收获。 2、销售是从被别人拒绝开始的。 3、好咖啡要和朋友一起品尝,好机会也要和朋友一起分享。 4、生命之灯因热情而点燃,生命之舟因拼搏而前行。 5、拥有梦想只是一种智力,实现梦想才是一种能力。 6、有识有胆,有胆有识,知识与胆量是互相促进的。 7、体育锻炼可以(有时可以迅速)使人乐观(科学实验证明)。 8、勤奋,机会,乐观是成功的三要素。(注意:传统观念认为勤奋和机会是成功的要素,但是经过统计学和成功人士的分析得出,乐观是成功的第三要素) 9、自信是人格的核心。 10、获得的成功越大,就越令人高兴。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
④行。过一×点有且只有一条直线与己知直线平
(A)1 (B) 2 (C)3 (D)4
• 课本13页 练习
问题探究
问题1:如下图,AD∥BC,在AB上取 一点M,过M画MN∥BC交CD于N, 并说明MN与AD的位置关系,为什么?
A M B
D N C
问题探究
2、
经过直线外一点,有且只有一条直线与这条直线平行。
AB D
CD 于直线CD
a b 直线a平行
于直线b
生活中有哪些平行的现象?
这些图片中,你能找到哪些平行情况.
很多国家的国旗上都有平行线
荷兰国旗
古巴国旗
俄罗斯国旗
瑞士国旗
阿根廷国旗
比利时国旗
在平面内两条直线不相交的情形
黑板
请你用直尺在本子上任意画出两条直线, 有几种位置关系?
有两种位置关系, 一种是相交, 另一种是平行。
•
战胜挫折的名言
•
1、卓越的人一大优点是:在不利与艰难的遭遇里百折不饶。——贝多芬
•
2、每一种挫折或不利的突变,是带着同样或较大的有利的种子。——爱默生 3、我以为挫折、磨难是锻炼意志、增强能力的好机会。——邹韬奋
•
4、斗争是掌握本领的学校,挫折是通向真理的桥梁。——歌德
•
激励自己的座右铭
•
1、 请记得,好朋友的定义是:你混的好,她打心眼里为你开心;你混的不好,她由衷的为你着急。
•
5、投我以桃,报之以李。 (诗经大雅抑)
•
6、天作孽,犹可违,自作孽,不可活。(尚书)
•
7、满招损,谦受益。 (尚书大禹谟)
•
青春座右铭
•
1、爱的力量大到可以使人忘记一切,却又小到连一粒嫉妒的沙石也不能容纳。 2、把手握紧,什么也没有;把手伸开,你就拥有了一切。
0 1 2 3 4 5 6 7 8 9 10
议一议 你能用移动三角尺的方法画
两条平行线吗?
过已知直线外一点画它的平行线.
一、帖(线)
二、靠(尺)
●
三、移(点)
四、画(线)
经过点P能画出一条直线与已知直线a平行
P●
a
经过点P你还能画出一条直线与直线a平行吗 (不能)
?
平行公理:经过直线外一点,有且只有 一条直线与这条直线平行。
•
2、 要有梦想,即使遥远。
•
3、 努力爱一个人。付出,不一定会有收获;不付出,却一定不会有收获,不要奢望出现奇迹。
•
4、 承诺是一件美好的事情,但美好的东西往往不会变为现实。
•
工作座右铭
•
1、 不积跬步,无以至千里;不积小流,无以成江海。——《荀子劝学》
•
2、 反省不是去后悔,是为前进铺路。
•
3、 哭着流泪是怯懦的宣泄,笑着流泪是勇敢的宣言。
(平行线的传递性) 如果a//c, b//c; 那么a//b
•
挫折的名言
•
1、 我觉得坦途在前,人又何必因为一点小障碍而不走路呢?——鲁迅
•
2、 “不耻最后”。即使慢,弛而不息,纵会落后,纵会失败,但一定可以达到他所向的目标。——鲁迅
•
3、 故天将降大任于是人也,必先苦其心志,劳其筋骨,饿其体肤,空乏其身,行拂乱其所为,所以动心忍性,曾益其所不能。
如图:AB∥EF, CD∥EF, 直线AB与CD相交吗?为什么?
A
B
P
C
D
E
F
平行公理推论: 如果两条直线都和第三条直线平行,那 么这两条直线也互相平行。
∵ b∥a b ∥ c
∴ a ∥c
a
c
b
平行线具有传递性。
练习一下:
1.判断正错(正打“√”,错打“×” ) 1.两条不相交的直线叫平行线. 2.在同一平面内的两条直线不平行就相交 3.一条直线的平行线有且只有一条 4.过一点,有且只有一条直线与这条直线平行 5.a,b,c是三条直线,如果a∥b且b∥c则a∥c 6.有且只有一个公共点的两直线是相交直线。
3、在平面上有三条直线a , b , c , 它们之间可能有哪几种位置关系?请画 图说明。(提示:从交点的个数考虑) 四条呢?
小结:
1、平行线的定义:
同一平面内,不相交的两条直线叫做平行线
2、平行线的表示法:
通常用符号“//”表示平行。AB//CD或a//b
3、平行线的两条性质: ①平行公理:(唯一性) 平面内,经过直线外一点,有且只有一条直线 与这条直线平行。 ②推论:如果两条直线都平行于第三条直线,那 么这两条直线也互相平行.
•
4、 路漫漫其修远兮,吾将上下而求索。——屈原《离骚》
•
Hale Waihona Puke 5、 每一个成功者都有一个开始。勇于开始,才能找到成功的路。
•
国学经典名句
•
1、知我者,谓我心忧,不知我者,谓我何求。(诗经王风黍离)
•
2、人而无仪,不死何为。 (诗经风相鼠)
•
3、言者无罪,闻者足戒。 (诗经大序)
•
4、他山之石,可以攻玉。 (诗经小雅鹤鸣)
2.在同一平面内,直线a与b满足下列条件
1、a与b没有公共点,则a与b的位置关 系__平_行__。
2、a与b有且只有一个公共点,则a与b 的位置关系_相_交_。
3、若AB∥CD且AB∥EF,则 CD EF ____∥_平__行__公,理理由推是论 _______________________;
3、下列说法中正确的是( D ) A、在同一平面内,两条直线的位置 关系有相交、垂直、平行。 B、在同一平面内如果两条线段不相交, 那么这两条线段平行。 C、在同一平面内,不相交的两条射 线是平行线。 D、在同一平面内,不相交的两直线 是平行线。
思考
在活动木条a的过程中, 有几个位置使得a与b平行;
c
b
b
c a b
c a
b
你能画出平行线吗?
已知直线a和直线外的一个已知点P,经 过点P画一条直线与已知直线a平行。
P● a
议一议 你能用移动三角尺的方法画
两条平行线吗?
过已知直线外一点画它的平行线.
一、帖(线)
二、靠(尺)
●
三、移(点)
四、画(线)
ca
思考
b
如图,分别将木条a、b与木条c钉在一
起,并把它们想象成直线。转动a, a与b
有无不相交的情况?
c
c
a
c
b
b
b
a b
平行线的定义:
在同一平面内,不相交的两条 直线叫做平行线。
平行线的表示:
我们通常用符号“//”表示平行。
定义
图形
符号
读法
A
在同一平 面内,不
C
相交的两
条直线。 a
b
B
直线AB平行
4.下列说法中错误的个数是:( C ) ①一条直线的平行线只有一条 ② 过一点与已知直线平行的直线有且只有一条 ③过直线外一点与这条已知直线平行的直线有且 只有一条
A 、0 B 、1 C 、2 D、3
5. 在同一平面内,下列说法中,正确的有(
)个B.
②①两过条两不点同有的且直只线有有一且条只直有线一√.个公共点×. 垂③直。过√一点有且只有一条直线与己知直线
(A)1 (B) 2 (C)3 (D)4
• 课本13页 练习
问题探究
问题1:如下图,AD∥BC,在AB上取 一点M,过M画MN∥BC交CD于N, 并说明MN与AD的位置关系,为什么?
A M B
D N C
问题探究
2、
经过直线外一点,有且只有一条直线与这条直线平行。
AB D
CD 于直线CD
a b 直线a平行
于直线b
生活中有哪些平行的现象?
这些图片中,你能找到哪些平行情况.
很多国家的国旗上都有平行线
荷兰国旗
古巴国旗
俄罗斯国旗
瑞士国旗
阿根廷国旗
比利时国旗
在平面内两条直线不相交的情形
黑板
请你用直尺在本子上任意画出两条直线, 有几种位置关系?
有两种位置关系, 一种是相交, 另一种是平行。
•
战胜挫折的名言
•
1、卓越的人一大优点是:在不利与艰难的遭遇里百折不饶。——贝多芬
•
2、每一种挫折或不利的突变,是带着同样或较大的有利的种子。——爱默生 3、我以为挫折、磨难是锻炼意志、增强能力的好机会。——邹韬奋
•
4、斗争是掌握本领的学校,挫折是通向真理的桥梁。——歌德
•
激励自己的座右铭
•
1、 请记得,好朋友的定义是:你混的好,她打心眼里为你开心;你混的不好,她由衷的为你着急。
•
5、投我以桃,报之以李。 (诗经大雅抑)
•
6、天作孽,犹可违,自作孽,不可活。(尚书)
•
7、满招损,谦受益。 (尚书大禹谟)
•
青春座右铭
•
1、爱的力量大到可以使人忘记一切,却又小到连一粒嫉妒的沙石也不能容纳。 2、把手握紧,什么也没有;把手伸开,你就拥有了一切。
0 1 2 3 4 5 6 7 8 9 10
议一议 你能用移动三角尺的方法画
两条平行线吗?
过已知直线外一点画它的平行线.
一、帖(线)
二、靠(尺)
●
三、移(点)
四、画(线)
经过点P能画出一条直线与已知直线a平行
P●
a
经过点P你还能画出一条直线与直线a平行吗 (不能)
?
平行公理:经过直线外一点,有且只有 一条直线与这条直线平行。
•
2、 要有梦想,即使遥远。
•
3、 努力爱一个人。付出,不一定会有收获;不付出,却一定不会有收获,不要奢望出现奇迹。
•
4、 承诺是一件美好的事情,但美好的东西往往不会变为现实。
•
工作座右铭
•
1、 不积跬步,无以至千里;不积小流,无以成江海。——《荀子劝学》
•
2、 反省不是去后悔,是为前进铺路。
•
3、 哭着流泪是怯懦的宣泄,笑着流泪是勇敢的宣言。
(平行线的传递性) 如果a//c, b//c; 那么a//b
•
挫折的名言
•
1、 我觉得坦途在前,人又何必因为一点小障碍而不走路呢?——鲁迅
•
2、 “不耻最后”。即使慢,弛而不息,纵会落后,纵会失败,但一定可以达到他所向的目标。——鲁迅
•
3、 故天将降大任于是人也,必先苦其心志,劳其筋骨,饿其体肤,空乏其身,行拂乱其所为,所以动心忍性,曾益其所不能。
如图:AB∥EF, CD∥EF, 直线AB与CD相交吗?为什么?
A
B
P
C
D
E
F
平行公理推论: 如果两条直线都和第三条直线平行,那 么这两条直线也互相平行。
∵ b∥a b ∥ c
∴ a ∥c
a
c
b
平行线具有传递性。
练习一下:
1.判断正错(正打“√”,错打“×” ) 1.两条不相交的直线叫平行线. 2.在同一平面内的两条直线不平行就相交 3.一条直线的平行线有且只有一条 4.过一点,有且只有一条直线与这条直线平行 5.a,b,c是三条直线,如果a∥b且b∥c则a∥c 6.有且只有一个公共点的两直线是相交直线。
3、在平面上有三条直线a , b , c , 它们之间可能有哪几种位置关系?请画 图说明。(提示:从交点的个数考虑) 四条呢?
小结:
1、平行线的定义:
同一平面内,不相交的两条直线叫做平行线
2、平行线的表示法:
通常用符号“//”表示平行。AB//CD或a//b
3、平行线的两条性质: ①平行公理:(唯一性) 平面内,经过直线外一点,有且只有一条直线 与这条直线平行。 ②推论:如果两条直线都平行于第三条直线,那 么这两条直线也互相平行.
•
4、 路漫漫其修远兮,吾将上下而求索。——屈原《离骚》
•
Hale Waihona Puke 5、 每一个成功者都有一个开始。勇于开始,才能找到成功的路。
•
国学经典名句
•
1、知我者,谓我心忧,不知我者,谓我何求。(诗经王风黍离)
•
2、人而无仪,不死何为。 (诗经风相鼠)
•
3、言者无罪,闻者足戒。 (诗经大序)
•
4、他山之石,可以攻玉。 (诗经小雅鹤鸣)
2.在同一平面内,直线a与b满足下列条件
1、a与b没有公共点,则a与b的位置关 系__平_行__。
2、a与b有且只有一个公共点,则a与b 的位置关系_相_交_。
3、若AB∥CD且AB∥EF,则 CD EF ____∥_平__行__公,理理由推是论 _______________________;
3、下列说法中正确的是( D ) A、在同一平面内,两条直线的位置 关系有相交、垂直、平行。 B、在同一平面内如果两条线段不相交, 那么这两条线段平行。 C、在同一平面内,不相交的两条射 线是平行线。 D、在同一平面内,不相交的两直线 是平行线。
思考
在活动木条a的过程中, 有几个位置使得a与b平行;
c
b
b
c a b
c a
b
你能画出平行线吗?
已知直线a和直线外的一个已知点P,经 过点P画一条直线与已知直线a平行。
P● a
议一议 你能用移动三角尺的方法画
两条平行线吗?
过已知直线外一点画它的平行线.
一、帖(线)
二、靠(尺)
●
三、移(点)
四、画(线)
ca
思考
b
如图,分别将木条a、b与木条c钉在一
起,并把它们想象成直线。转动a, a与b
有无不相交的情况?
c
c
a
c
b
b
b
a b
平行线的定义:
在同一平面内,不相交的两条 直线叫做平行线。
平行线的表示:
我们通常用符号“//”表示平行。
定义
图形
符号
读法
A
在同一平 面内,不
C
相交的两
条直线。 a
b
B
直线AB平行
4.下列说法中错误的个数是:( C ) ①一条直线的平行线只有一条 ② 过一点与已知直线平行的直线有且只有一条 ③过直线外一点与这条已知直线平行的直线有且 只有一条
A 、0 B 、1 C 、2 D、3
5. 在同一平面内,下列说法中,正确的有(
)个B.
②①两过条两不点同有的且直只线有有一且条只直有线一√.个公共点×. 垂③直。过√一点有且只有一条直线与己知直线