传热学答案 第十章 传热和换热器

合集下载

传热学第十章

传热学第十章

(2) 管壳式换热器 由管子和外壳构成。
(2) 管壳式换热器 由管子和外壳构成。
2壳程、4管程换热器
管壳式换热器结构牢固可靠、耐高温高压。
列管式冷凝器实例
波纹管换热器
波纹换热管
(3) 肋片管式换热器 由带肋片的管束构成的换热装置。
肋片管式换热器适用于管内液体和管外气体之间 的换热,且两侧表面传热系数相差较大的场合。
(4) 板翅式换热器 由金属板和波纹板形翅片层叠、交错焊接而成。
板翅式换热器结构紧凑、传热系数高。
(5) 板式换热器 由若干片压制成型的波纹状金属板叠加而成。
(5) 板式换热器
1 ,2 介质 3 环行孔道
垫圈 4 板片密封
垫圈 5 激光切焊
焊缝 6 焊接密封
流道
特点:结构紧凑 ,占用空间小;传热系数高 ;端部温差小(可达1℃); 热损失小 ,热效率高(≥98%); 适应性面式,在工程中最常用 混合式—适用于冷热流体为同类介质的场合 回热式(蓄热式) —适用于气体与气体间的换热,
为非稳态过程
2. 按表面的紧凑程度分: 紧凑式与非紧凑式 紧凑程度用当量直径d e (d h) 或传热面积密度 β来衡量 (β---单位体积中的传热面积)
kAo hi Ai 2 l di ho Ao
ri r0
通过肋壁的传热系数
10-2 换热器的类型
换热器:换热器也称热交换器,是把热量从一种 介质传给另一种介质的设备
换热器广泛应用于广泛应用于化工、能源、机械、 交通、制冷空调、航空航天以及日常生活等各个领 域。
换热器不仅是保证某些工艺流程和条件而广泛采用 的设备,也是开发利用工业二次能源,实现余热回 收和节能利用的主要设备。
紧凑式—β≥700m2/m3, 或dh≤6mm 层流换热器—β>3000m2/m3, 或100μm ≤dh≤1mm 微型换热器–β>15000m2/m3, 或100μm≤dh≤1mm

传热学思考题参考答案

传热学思考题参考答案

传热学思考题参考答案第一章:1、用铝制水壶烧开水时,尽管炉火很旺,但水壶仍安然无恙。

而一旦壶内的水烧干后水壶很快就被烧坏。

试从传热学的观点分析这一现象。

答:当壶内有水时,可以对壶底进行很好的冷却(水对壶底的对流换热系数大),壶底的热量被很快传走而不至于温度升得很高;当没有水时,和壶底发生对流换热的是气体,因为气体发生对流换热的表面换热系数小,壶底的热量不能很快被传走,故此壶底升温很快,容易被烧坏。

2、什么是串联热阻叠加原则,它在什么前提下成立?以固体中的导热为例,试讨论有哪些情况可能使热量传递方向上不同截面的热流量不相等。

答:在一个串联的热量传递过程中,如果通过每个环节的热流量都相同,则各串联环节的总热阻等于各串联环节热阻的和。

例如:三块无限大平板叠加构成的平壁。

例如通过圆筒壁,对于各个传热环节的传热面积不相等,可能造成热量传递方向上不同截面的热流量不相等。

第二章:1、扩展表面中的导热问题可以按一维问题处理的条件是什么?有人认为,只要扩展表面细长,就可按一维问题处理,你同意这种观点吗?答:条件:(1)材料的导热系数,表面传热系数以及沿肋高方向的横截面积均各自为常数(2)肋片温度在垂直纸面方向(即长度方向)不发生变化,因此可取一个截面(即单位长度)来分析(3)表面上的换热热阻远远大于肋片中的导热热阻,因而在任一截面上肋片温度可认为是均匀的(4)肋片顶端可视为绝热。

并不是扩展表面细长就可以按一维问题处理,必须满足上述四个假设才可视为一维问题。

2、肋片高度增加引起两种效果:肋效率下降及散热表面积增加。

因而有人认为随着肋片高度的增加会出现一个临界高度,超过这个高度后,肋片导热热流量会下降,试分析该观点的正确性。

答:的确肋片高度增加会导致肋效率下降及散热表面积增加,但是总的导热量是增加的,只是增加的部分的效率有所减低,所以我们要选择经济的肋片高度。

第三章:1、由导热微分方程可知,非稳态导热只与热扩散率有关,而与导热系数无关。

热工基础第十章张学学思考题答案

热工基础第十章张学学思考题答案

热工基础第十章思考题答案1 何谓表面传热系数?写出其定义式并说明其物理意义。

答:q=h(t w-t f),牛顿冷却公式中的h为表面传热系数。

表面传热系数的大小反映对流换热的强弱。

2 用实例简要说明对流换热的主要影响因素。

答:(1)流动起因室内暖气片周围空气的流动是自然对流。

而风机中的流体由于受到外力的作用属于强迫对流。

强迫对流和自然对流的换热效果是不同的。

(2)流动的状态流动状态有层流和湍流,层流和湍流的对流换热强度不同,输水管路,水流速度不同,会导致水的流动状态由层流到湍流,那么这两种流动状态对流换热效果是不同的。

(3)流体有无相变水在对流换热过程中被加热变成水蒸气,蒸气在对流换热过程中被冷却变成水,这个过程会吸收和放出汽化潜热,两个换热过程的换热量不同。

(4)流体的物理性质流体的物理性质对对流换热影响很大,对流换热是导热和对流两种基本导热共同作用的结果。

因此,比如水和油,金属和非金属对流换热效果不同。

(5)换热表面的几何因素换热器管路叉排和顺排换热效果不同,换热管线直径大小对换热效果也有影响。

3 对流换热微分方程组有几个方程组组成,各自到处的理论依据是什么?答:(1)连续性微分方程(2)热量平衡方程(1)ρ∂u∂τ+u∂u∂x+v∂u∂y=Fx-∂p∂x+η(∂2u∂x2+∂2u∂y2)动量平衡方程连续性微分程的依据是根据质量守恒导出的热量平衡方程是根据能量守恒导出的动量平衡方程是根据动量守恒导出的4 何谓流动边界层和热边界层?它们的厚度是如何规定的。

∞处的y值作为边界层的厚度,用δ表示。

当温度均匀的流体与它所流过的固体壁面温度不同时,在壁面附近会形成一层温度变化较大的流体层,称为热边界层。

过于温度t-tw=0.99(t∞-tw)处到壁面的距离为热边界层的厚度。

5 简述边界层理论的基本内容。

答:(1)边界层的厚度与壁面特征长度L相比是很小的量。

(2)流场划分为边界层区和主流区。

流动边界层内存在较大的速度梯度,是发生动量扩散的主要区域。

传热学第十章传热过程和换热器计算

传热学第十章传热过程和换热器计算
第十章 传热过程分析与换热器热计算
1
10.1 传热过程的分析和计算
传热过程:热量由壁面一侧的流体通过壁面传到另一侧流 体中去的过程。(两个流体通过壁面的换热过程。) 【传热过程是传热学中特指的概念】
传热方程式: Φ = K A Δt
式中:K为传热系数(总传热系数)。对于不同的传热过程,
K的计算公式不同。
25
(1)加大传热温差 tm
在冷、热流体进、出口温度相同的情况下,逆流的平均温 差最大,顺流的平均温差最小,因此从强化传热的角度出 发,换热器应当尽量布置成逆流。
(2)减小传热热阻 Rk
1)多布置换热面,增加总传热面积A,可降低总传热热阻, 加大传热量。
2)降低污垢热阻。
3)减小对流换热热阻Rh1、Rh2。如果两个热阻相差较大,应 抓住主要矛盾,设法减小其中最大的热阻。
Φ Ko Ao (t fi t fo )
说明: 也可以以内表面为基准。
ho
4
3. 带保温层的金属圆管传热 —— 临界热绝缘直径
圆管外敷保温层后:
Φ
1
l(t fi t fo ) 1 ln( di 2 )
1
hidi 2
di
ho (di 2 )
可见,保温层使得导热热阻增加,换热削弱;降低对流 换热热阻,使得换热增强,那么,综合效果到底是增强 还是削弱呢?
传热工程技术的两个方向:强化传热技术与削弱传热技术 (又称隔热保温技术)。
24
无论是强化传热还是削弱传热,一般都是从改变传热温差和 改变传热热阻两方面入手。
以换热器内的传热过程为例:
kAtm
tm 1
tm Rk
tm Rh1 R Rh2
kA
传热强化途径: (1)加大传热温差 tm; (2)减小传热热阻 Rk 。

传热课后问答题答案

传热课后问答题答案

绪论1.冰雹落地后,即慢慢融化,试分析一下,它融化所需的热量是由哪些途径得到的?答:冰雹融化所需热量主要由三种途径得到:a 、地面向冰雹导热所得热量;b 、冰雹与周围的空气对流换热所得到的热量;c 、冰雹周围的物体对冰雹辐射所得的热量。

2.秋天地上草叶在夜间向外界放出热量,温度降低,叶面有露珠生成,请分析这部分热量是通过什么途径放出的?放到哪里去了?到了白天,叶面的露水又会慢慢蒸发掉,试分析蒸发所需的热量又是通过哪些途径获得的?答:通过对流换热,草叶把热量散发到空气中;通过辐射,草叶把热量散发到周围的物体上。

白天,通过辐射,太阳和草叶周围的物体把热量传给露水;通过对流换热,空气把热量传给露水。

3.现在冬季室内供暖可以采用多种方法。

就你所知试分析每一种供暖方法为人们提供热量的主要传热方式是什么?填写在各箭头上。

答:暖气片内的蒸汽或热水对流换热暖气片内壁导热暖气片外壁对流换热和辐射室内空气对流换热和辐射人体;暖气片外壁辐射墙壁辐射人体电热暖气片:电加热后的油对流换热暖气片内壁导热暖气片外壁对流换热和辐射室内空气对流换热和辐射人体红外电热器:红外电热元件辐射人体;红外电热元件辐射墙壁辐射人体 电热暖机:电加热器对流换热和辐射加热风对流换热和辐射人体 冷暖两用空调机(供热时):加热风对流换热和辐射人体太阳照射:阳光辐射人体4.自然界和日常生活中存在大量传热现象,如加热、冷却、冷凝、沸腾、升华、凝固、融熔等,试各举一例说明这些现象中热量的传递方式?答:加热:用炭火对锅进行加热——辐射换热冷却:烙铁在水中冷却——对流换热和辐射换热凝固:冬天湖水结冰——对流换热和辐射换热沸腾:水在容器中沸腾——对流换热和辐射换热升华:结冰的衣物变干——对流换热和辐射换热冷凝:制冷剂在冷凝器中冷凝——对流换热和导热融熔:冰在空气中熔化——对流换热和辐射换热5.夏季在维持20℃的室内,穿单衣感到舒服,而冬季在保持同样温度的室内却必须穿绒衣,试从传热的观点分析其原因?冬季挂上窗帘布后顿觉暖和,原因又何在?答:夏季室内温度低,室外温度高,室外物体向室内辐射热量,故在20℃的环境中穿单衣感到舒服;而冬季室外温度低于室内,室内向室外辐射散热,所以需要穿绒衣。

10传热学-传热过程和换热器

10传热学-传热过程和换热器
Ah2 1 1 h1 h2 1
tf1 tf 2

K
For steady heat transfer through a series composite wall
K
1 1 n i 1 h1 i 1 i h2
二、通过圆筒壁的传热 (heat transfer through a cylinder)
二、对保温隔热材料的要求 1. 有最佳密度:使用时,应尽量使其使用密 度接近最佳密度; 2. 热导率小:选用热导率小的材料; 3. 温度稳定性好:在一定温度范围内,物性 值稳定 4. 有一定的机械强度; 5. 吸水、吸湿性小:水分会使材料导热系数 大大增加。 三、最佳保温隔热厚度
四、保温结构 为防止水或湿气进入,外加保护层。 为减少对环境的辐射散热,外加铝箔或聚酯镀铝薄膜。 五、保温隔热效率 设备和管道保温隔热前后的散热量(或冷损失量)之差 与保温隔热前散热量0(或冷损失量)之比,即:
Heat transfer rate:
KAt KA(t f 1 t f 2 )
where A—surface area, m2 t—temperature difference, C K—overall heat transfer coefficient, W/m2· C
一、通过平壁的传热 (heat transfer through a plane wall)
注意:对于低温、超低温管道和设备的保冷,一般的 保温隔热材料不能满足要求,须采用多层镀铝薄膜和 网状玻璃纤维布并抽真空。
0 0
§3 换热器(Heat exchangers)
一、换热器的种类(Heat exchanger types) 1. 按原理分 间壁式换热器:冷热流体被固体壁隔开,如蒸发 器、冷凝器等。 混合式换热器:在这种换热器中,两种流体相互 混合,依靠直接接触交换热量。如水和空气直接 接触的冷却水塔。 回热式(或蓄热式、再生式)换热器:在这种换热 器中,冷热流体交替地与固体壁接触,使固体壁 周期地吸热和放热,从而将热流体的热量传给冷 流体。如锅炉的再生式空气预热器和燃气轮机的 空气预热器。

《传热学》杨世铭-陶文铨-第十章传热分析与计算

《传热学》杨世铭-陶文铨-第十章传热分析与计算


t x
t
Ax dt k dA 0 t
t x ln kAx t
t x texp(kAx )
可见,当地温差随换热面呈指数变化,则沿整个换热面的平 均温差为: 1 A 1 A
t m
A
0
t x dA x
A
0
t exp( kAx )dA x
l (t fi t fo ) Φ (d o 2 )
d 0 dd o 2 do2
d l (t fi t fo ) 1 1 2 2 dd o 2 (do 2 ) 22 do 2 h2 do 2
22 d cr or h2
Bi
t h th R tc tc
式中:下标1、2分别表示两种流体,上角标 ` 表示进口, `` 表示出口,图表中均以P为横坐标,R为参量。
(2)P的物理意义:流体2的实际温升与理论上所能达到
的最大温升之比,所以只能小于1 (3)R的物理意义:两种流体的热容量之比
t h t h qmc cc R tc tc qmh ch
Φ
l (t fi t fo )
d 1 1 1 ln( o ) hi d i 2 di ho d o
圆管外敷保温层后:
Φ
l (t fi t fo )
d o1 do2 1 1 1 1 ln( ) ln( ) hi d i 21 di 22 d o1 ho d o 2
TB,out TA,in (tube side)
增加管程
TB,in (shell side) TA,in (tube side) TA,out TB,out
TB,in (shell side)

传热学课后答案(完整版)

传热学课后答案(完整版)

绪论思考题与习题(89P -)答案:1.冰雹落体后溶化所需热量主要是由以下途径得到: Q λ—— 与地面的导热量 f Q ——与空气的对流换热热量注:若直接暴露于阳光下可考虑辐射换热,否则可忽略不计。

2.略 3.略 4.略 5.略6.夏季:在维持20℃的室内,人体通过与空气的对流换热失去热量,但同时又与外界和内墙面通过辐射换热得到热量,最终的总失热量减少。

(T T 〉外内)冬季:在与夏季相似的条件下,一方面人体通过对流换热失去部分热量,另一方面又与外界和内墙通过辐射换热失去部分热量,最终的总失热量增加。

(T T 〈外内)挂上窗帘布阻断了与外界的辐射换热,减少了人体的失热量。

7.热对流不等于对流换热,对流换热 = 热对流 + 热传导 热对流为基本传热方式,对流换热为非基本传热方式 8.门窗、墙壁、楼板等等。

以热传导和热对流的方式。

9.因内、外两间为真空,故其间无导热和对流传热,热量仅能通过胆壁传到外界,但夹层两侧均镀锌,其间的系统辐射系数降低,故能较长时间地保持热水的温度。

当真空被破坏掉后,1、2两侧将存在对流换热,使其保温性能变得很差。

10.t R R A λλ=⇒ 1t R R A λλ==2218.331012m --=⨯11.q t λσ=∆ const λ=→直线 const λ≠ 而为λλ=(t )时→曲线 12、略13.解:1211t q h h σλ∆=++=18(10)45.9210.361870.61124--=++2W m111()f w q h t t =-⇒ 11137.541817.5787w f q t t h =-=-=℃ 222()w f q h t t =-⇒ 22237.54109.7124w f q t t h =+=-+=-℃ 45.92 2.83385.73q A W φ=⨯=⨯⨯= 14. 解:40.27.407104532t K R W A HL λσσλλ-====⨯⨯⨯30.24.4441045t R λσλ-===⨯2m K W • 3232851501030.44.44410t KW q m R λ--∆-==⨯=⨯ 3428515010182.37.40710t t KW R λφ--∆-==⨯=⨯ 15.()i w f q h t h t t =∆=-⇒i w f qt t h=+51108515573=+=℃0.05 2.551102006.7i Aq d lq W φππ===⨯⨯=16.解:12441.2 1.2()()100100w w t t q c ⎡⎤=-⎢⎥⎣⎦44227350273203.96()()139.2100100W m ++⎡⎤=⨯-=⎢⎥⎣⎦12''441.21.2()()100100w w t t qc ⎡⎤=-⎢⎥⎢⎥⎣⎦442273200273203.96()()1690.3100100W m ++⎡⎤=⨯-=⎢⎥⎣⎦'21.2 1.2 1.21690.3139.21551.1Wq q q m ∆=-=-=17.已知:224A m =、215000()Wh m K =•、2285()Wh m K =•、145t =℃2500t =℃、'2285()Wk h m K ==•、1mm σ=、398λ=()W m K •求:k 、φ、∆解:由于管壁相对直径而言较小,故可将此圆管壁近似为平壁 即:12111k h h σλ=++=3183.5611101500039085-=⨯++2()W m k • 383.5624(50045)10912.5kA t KW φ-=∆=⨯⨯-⨯= 若k ≈2h'100k k k -∆=⨯%8583.561.7283.56-==% 因为:1211h h ,21h σλ 即:水侧对流换热热阻及管壁导热热阻远小于燃气侧对流换热热阻,此时前两个热阻均可以忽略不记。

第十章传热和换热器

第十章传热和换热器

tw,
q qc qr (hc hr ) tw t f
qr , tam
h tw t f
qc , hc , t f
§ 10-3 换热器的型式和基本构造
一、分类
1.按结构型式分: 1)间壁式: 冷、热流体被固体壁面隔开。
如:暖风机、冷凝器、蒸发器等。
暖风机
风冷冷凝器
2)混合式: 冷、热流体互相混合。 如:喷淋式冷却塔、蒸汽喷射器。
以管壳式换热器为例,说明方法的要点.
总传热系数可表示为:
1 k
1 ho
Rw
Rf
1 hi
do di
(a)
Rw 管壁导热热阻
R f 污垢热阻
工业换热器中的管内流体的流动一般都是处于 旺盛湍流状态,hi 与流速u的0.8次方成正比.则
two
ho A1 two t fo ho f A2 two t fo
h0A0 (tw0 t f 0 )
为肋面总效率:
A1 A2 f
A0
1
tf1 tf2
1
hi Ai Ai ho A0
则以光壁为基准的传热系数:
ki
1
1
1
hi ho
定义肋化系数: Ao Ai
1, 1
(3)根据结构,算出传热系数K。(带有假设性)
(4)由传热方程(换热面积A已定),得到 。
(5)由热平衡方程得出’(出口温度均是未知量,也 带假设性.) (6)与’的误差<5%,则满足计算要求. 否则重新假设t,重复上述步骤.
2. 传热单元数法
1)换热器的效能定义:
实际传热量 最大可能传热量
实际传热量: M1c1(t'1t"1 ) M 2c2 (t"2 t'2 )

中国建筑工业出版社_传热学课后答案答案传热答案

中国建筑工业出版社_传热学课后答案答案传热答案

Q
tw1 tw 2 1 1 1 ( ) 空心球壁的导热量为 1 1 1 ,导热热阻为 r r2 4 1 ( ) r1 r2 4
6. 同上题, 若已知边界条件改为第三类边界条件, 即已知 tf1,h1 和 tf2,h2 试推导通过空心球壁传热量的计算公式和球壁的传热热阻。 Q 4 r12 h1 (tw1 t f 1 ) 答:
第二层材料导热阻: R 2 0.517k m 2 / W 第三层材料导热阻: R 3 0.2796k m 2 / W (2)每米蒸汽管热损失 q1=314.0(W/m) (3)tw2=299.95℃ tw3=137.61℃ 18. 解:调换后是调换前的 79 % 19.电流是 6.935(A) 20.解:保温层材料厚度 71.5mm 21.解:取保温材料外表面温度为室温 25℃时,蒸发量 m=1.85 kg/h 22. 解:有,
dc 42 h2
23. 根据现有知识,试对肋壁可以使传热增强的道理作一初步分析。 答:肋壁加大了表面积,降低了对流换热的热阻,直到了增强传热的 作用。 24. 一直径为 d,长度为 l 的细长圆杆,两端分别与温度为 t1 和 t2 的 表面紧密接触,杆的侧面与周围流体间有对流换热,已知流体的温度 为 tf,而 tf<t1 或 t2,杆侧面与流体间的表面传热系数为 h,杆材料的 导热系数为λ,试写出表示细长杆内温度场的完整数学描述,并求解 其温度分布。 答:把细长圆杆看作肋片来对待,那么单位时间单位体积的对流散热
答:
t 1 2 t [ (r )], 0, 0 r R c r 2 r r 0, 0 r R, t t0
0, r R,
t r
rR
h(t r R t f )

传热学10.3 换热器中传热过程平均温差的计算

传热学10.3 换热器中传热过程平均温差的计算

1210.3.1 顺流及逆流换热器的对数平均温差的计算传热方程的一般形式:mt kA ∆=Φ以顺流情况为例,并作如下假设:(1)冷热流体的质量流量q m2、q m1以及比热容c 2,c 1是常数;(2) 传热系数k 是常数;(3)换热器无散热损失;(4)换热面沿流动方向的导热量可以忽略不计。

)(x x A f t =∆3d d t A k ∆=Φ1111111d d d d m m Φq c t t Φq c =-⇒=-2222221d d d d m m Φq c t t Φq c =⇒=1212d d d Δt t t Δt t t =-⇒=-12112211d d d d d m m Δt t t ΦμΦq c q c ⎛⎫=-=-+=- ⎪⎝⎭112211m m μq c q c =+tdA d d ∆-=Φ-=∆k t μμ4tdA d d ∆-=Φ-=∆k t μμdA td k tμ-=∆∆⎰⎰-=∆∆∆'∆x xA t t k t0dAtd μxxkA t μ-='∆∆t ln )exp(t x x kA t μ-'∆=∆xx x 0)dA exp(t 1dA t 1x AAm kA A A t μ-'∆=∆=∆⎰⎰整个换热面的平均温差()1-)exp(t )dA exp(t 1x0kA kAkA A t x Am μμμ-'∆-=-'∆=∆⎰当地温差xx kA t μ-='∆∆t ln kA t μ-='∆''∆t ln A A x =)exp(t kA t μ-='∆''∆t t t t t t t m ''∆'∆''∆-'∆='∆''∆'∆-''∆=⎪⎭⎫⎝⎛'∆''∆'∆''∆'∆=∆t ln t t ln t 1-t t ln t (1)(2)(3)5t t t m ''∆'∆''∆-'∆=∆t ln t 顺流:逆流:d d t A k ∆=Φch c h t t t t t t d d d -=∆⇒-=∆Φ-=⇒-=Φd 1d d d hmh h h h mh c q t t c q Φ-=⇒=Φd 1d d d cmc c c c mc c q t t c q Φ-=Φ⎪⎪⎭⎫⎝⎛--=∆d d 11d μc mc hmh c q c q t cmc h mh c q c q 11-=μt t t m ''∆'∆''∆-'∆=∆t lnt ,逆流6顺流和逆流的区别在于:顺流:逆流:1212Δt t t Δt t t '''''''''=-=-1212Δt t t Δt t t '''''''''=-=-minmax min max t lnt t t t m ∆∆∆-∆=∆或者我们也可以将对数平均温差写成如下统一形式(顺流和逆流都适用)7算术平均与对数平均平均温差的另一种更为简单的形式是算术平均温差,即2min max ,t t t m ∆+∆=∆算术minmax min max ,t lnt t t t m ∆∆∆-∆=∆对数算术平均温差相当于温度呈直线变化的情况,因此,总是大于相同进出口温度下的对数平均温差,当时,两者的差别小于4%;当时,两者的差别小于2.3%。

传热学课后答案(完整版)

传热学课后答案(完整版)

绪论思考题与习题(89P -)答案:1.冰雹落体后溶化所需热量主要是由以下途径得到: Q λ—— 与地面的导热量 f Q ——与空气的对流换热热量注:若直接暴露于阳光下可考虑辐射换热,否则可忽略不计。

2.略 3.略 4.略 5.略6.夏季:在维持20℃的室内,人体通过与空气的对流换热失去热量,但同时又与外界和内墙面通过辐射换热得到热量,最终的总失热量减少。

(T T 〉外内)冬季:在与夏季相似的条件下,一方面人体通过对流换热失去部分热量,另一方面又与外界和内墙通过辐射换热失去部分热量,最终的总失热量增加。

(T T 〈外内)挂上窗帘布阻断了与外界的辐射换热,减少了人体的失热量。

7.热对流不等于对流换热,对流换热 = 热对流 + 热传导 热对流为基本传热方式,对流换热为非基本传热方式 8.门窗、墙壁、楼板等等。

以热传导和热对流的方式。

9.因内、外两间为真空,故其间无导热和对流传热,热量仅能通过胆壁传到外界,但夹层两侧均镀锌,其间的系统辐射系数降低,故能较长时间地保持热水的温度。

当真空被破坏掉后,1、2两侧将存在对流换热,使其保温性能变得很差。

10.t R R A λλ= ⇒ 1t R R A λλ== 2218.331012m --=⨯11.q t λσ=∆ const λ=→直线 const λ≠ 而为λλ=(t )时→曲线12、略13.解:1211t q h h σλ∆=++=18(10)45.9210.361870.61124--=++2W m111()f w q h t t =-⇒ 11137.541817.5787w f q t t h =-=-=℃222()w f q h t t =-⇒ 22237.54109.7124w f q t t h =+=-+=-℃ 45.92 2.83385.73q A W φ=⨯=⨯⨯= 14. 解:40.27.407104532t K R W A HL λσσλλ-====⨯⨯⨯30.2 4.4441045t R λσλ-===⨯2m K W • 3232851501030.44.44410t KW q m R λ--∆-==⨯=⨯ 3428515010182.37.40710t t KW R λφ--∆-==⨯=⨯ 15.()i w f q h t h t t =∆=-⇒i w f qt t h=+51108515573=+=℃0.05 2.551102006.7i Aq d lq W φππ===⨯⨯=16.解:12441.2 1.2()()100100w w t t q c ⎡⎤=-⎢⎥⎣⎦ 44227350273203.96()()139.2100100W m ++⎡⎤=⨯-=⎢⎥⎣⎦12''441.21.2()()100100w w t t qc ⎡⎤=-⎢⎥⎢⎥⎣⎦442273200273203.96()()1690.3100100W m ++⎡⎤=⨯-=⎢⎥⎣⎦'21.2 1.2 1.21690.3139.21551.1Wq q q m ∆=-=-=17.已知:224A m =、215000()Wh m K =•、2285()Wh m K =•、145t =℃2500t =℃、'2285()Wk h m K ==•、1mm σ=、398λ=()W m K •求:k 、φ、∆解:由于管壁相对直径而言较小,故可将此圆管壁近似为平壁即:12111k h h σλ=++=3183.5611101500039085-=⨯++2()W m k • 383.5624(50045)10912.5kA t KW φ-=∆=⨯⨯-⨯= 若k ≈2h'100k k k -∆=⨯%8583.561.7283.56-==% 因为:1211h h =,21h σλ= 即:水侧对流换热热阻及管壁导热热阻远小于燃气侧对流换热热阻,此时前两个热阻均可以忽略不记。

《传热学》2版 辅导资料 思考题参考答案

《传热学》2版 辅导资料 思考题参考答案
2.参见附图,圆筒壁内侧t1<t2,请判断壁内温度分布应该是两图中哪一个?并说明理由,设导热系数等于常数。
回答:导热系数等于常数的一维导热方程是(3-1-15),于是温度梯度可以写作(dt/dr) =c/r。可见,温度梯度与径向坐标成反比,即半径小的圆筒壁内侧的温度梯度一定大于外侧的温度梯度。所以附图(b)是正确的。
回答:非稳态导热问题遵循两个基本规律,一个是能量守恒定律,一个是傅里叶定律。在对物体内的任意微元体积做热平衡分析时,切记傅里叶定律中的热流密度和温度梯度均代表瞬时值,傅里叶定律的规律仍成立。
3.应用傅里叶定律时有哪些限制?
回答:限制条件是:(1)纯导热物体(非纯导热物体以当量或表观导热系数描述之);(2)各向同性(各向异性物体须在导热主轴坐标系中运用傅里叶定律);(3)非超短时间、超大热流密度或超低温度的导热问题。
3.凸状轴呈对称图形,如果侧面绝热且导热系数为常数,其一维稳态温度分布呈什么?
回答:在一维、稳态、无内热源且常物性条件下,热流量为常数,即A(x)dt/dx=常数。这表明导热的截面积A与温度梯度成反比。只有在等截面情况下,温度梯度才是常量。
回答:导热系数随温度变化时,函数关系一般是写作=0(1+b t)的形式。但是一般来说0却并不代表0℃时该材料的导热系数。参见附图,这是因为0实际上是该式适用温度区间内近似线性关系的延长线与纵轴的交点。它一般不会正好与=f(t)曲线在0℃时的数值相等。
写为=0+bt时,0未变,而b相当于原式中的0b。
8.已知某个确定的热流场q=f(x, y),能否由此唯一地确定物体的温度场?或者还需要补充什么条件?反过来,从温度场能否唯一地确定热流场?
回答:导热问题中若全部边界条件都是第二类(包括绝热),将无法唯一地得到温度场的确定解。而对给定的温度场,却可以根据傅里叶定律唯一地确定热流场。因为一个物体若均匀地提升相同温度,其热流场将不会发生任何改变。即一个热流场可以对应无穷多个温度场。所以,导热问题必须至少具有一个温度参考点,才能唯一地确定其解。

传热学第十章传热过程和换热器计算

传热学第十章传热过程和换热器计算

传热学第十章传热过程和换热器计算热力学是研究能量转换和能量传递的学科,传热学是热力学的一个重要分支。

传热过程是指热量从一个物体传递到另一个物体的过程,它是通过传导、对流和辐射三种方式进行的。

换热器则是用来实现热量传递的设备。

一、传热过程1.传导:传导是指热量通过物质内部的微观振动和相互碰撞传递的过程。

物体的导热性质取决于其热导率和导热面积。

传导的热流量可用傅里叶传热定律表示。

2.对流:对流是指液体或气体中的分子通过传递热量的方式。

对流的热流量可用牛顿冷却定律表示。

3.辐射:辐射是指热能以电磁波的形式传递的过程。

辐射热量的传递与物体的温度和表面特性有关,可以用斯特藩—玻尔兹曼定律表示。

换热器是用来实现热量传递的设备,广泛应用于工业生产和能源系统中。

换热器的设计和计算需要考虑换热面积、传热系数、传热温差等参数。

1.换热面积:换热面积是换热器的一个重要参数,它表示传热过程中热量通过的表面积。

换热面积可以通过传热方程计算得出。

2.传热系数:传热系数是指在单位时间内,单位面积上的热量传递量与温度差之比。

传热系数的大小与换热器的结构、工作条件及流体性质等有关。

3.传热温差:传热温差是指热量在换热过程中的温度差异。

传热温差越大,热量传递越快。

换热器的计算包括两个方面:换热面积计算和传热系数计算。

换热面积计算一般根据传热方程进行。

传热方程可以写成Q=UAΔT,其中Q为热量传递量,U为总传热系数,A为换热面积,ΔT为温度差。

通过已知的换热量和温度差,可以计算出换热面积。

传热系数计算一般需要参考实验数据或者经验公式。

传热系数与换热器的结构和工作条件有关,一般通过实验或者估算得到。

在进行换热器计算时,还需要注意换热器的热损失问题。

热损失会影响换热器的热效率,因此需要进行热损失的计算和控制。

总之,传热过程和换热器计算是传热学中重要的内容,它们在工程实践中有着广泛的应用。

通过对传热过程和换热器的深入理解和计算,可以提高工程设备的热效率,实现能源的节约和利用。

传热学8-10章总结问答题及答案

传热学8-10章总结问答题及答案

第八章 热辐射基本定律和辐射特性一、名词解释黑体:指能吸收投入到其表面上的所有热辐射能量的物体。

其吸收比1=α灰体:在热辐射分析中,把光谱吸收比与波长无关的物体称为灰体漫射体:辐射能按空间分布满足兰贝特定律的物体投入辐射:单位时间内投入到单位表面积上的总辐射能吸收比:投入辐射中被吸收能量的百分比。

穿透比:投入辐射中穿透过物体能量的百分比。

反射比:投入辐射中被反射能量的百分比。

发射率: 物体的辐射力与同温度下黑体辐射力之比,为ε辐射力:单位辐射面积向半球空间辐射出去的各种波长能量的总和,E ,单位是2/m W 。

光谱辐射力:单位辐射面积向半球空间辐射出去的包括波长λ在内的单位波长间隔内的辐射能λE 定向辐射强度:单位可见辐射面积向半球空间θ方向的单位立体角中辐射出去的各种波长能量的总和。

二、解答题和分析题1、四次方定律、普朗克定律、兰贝特定律及维恩位移定律和基尔霍夫定律分别描述了什么内容? 答案: 看书362页公式8-16下面有详细的总结。

2、影响实际物体吸收比和发射率的因素各有哪些?答:实际物体的吸收比取决于两方面的因素:1)吸收物体本身的情况。

系指物质的种类、物体的温度以及表面状况。

2)投入辐射的特性。

实际物体表面的发射率取决于物质的种类、表面温度和表面状况。

只与发射辐射的物体本身有关,而不涉及外界条件第九章 辐射传热的计算一、名词解释角系数:表面1发出的辐射能中落到表面2的百分数称为表面1对表面2 的角系数,记为2,1X 。

有效辐射:是指单位时间内离开表面单位面积的总辐射能。

二、解答题和分析题1、简述角系数的定义及其性质。

答:表面1发出的辐射能中落到表面2的百分数称为表面1对表面2 的角系数,记为X。

2,11)角系数的相对性 2)角系数的完整性 3)角系数的可加性2、分析气体辐射的基本特点?(1) 气体辐射对波长具有选择性。

它只在某些波长区段内具有发射和吸收辐射的本领,而对于其他光带则呈现透明状态。

传热学第十章答案

传热学第十章答案

----------------好好学习----------天天向上--------------- QQ :356129556第十章思考题1、 所谓双侧强化管是指管内侧与管外侧均为强化换热表面得管子。

设一双侧强化管用内径为d i 、外径为d 0的光管加工而成,试给出其总传热系数的表达式,并说明管内、外表面传热系数的计算面积。

01100001101111000010111112)/l n (1112)/l n (1βπβπηβληβηβππληβπo d d d h d d d d h k d h d d d h t算面积为管外表面传热系数得计算面积为管内表面传热系数得计传热系数:得以管内表面为基准得=答:由传热量公式:++=++∆Θ 2、 在圆管外敷设保温层与在圆管外侧设置肋片从热阻分析的角度有什么异同?在什么情况下加保温层反而会强化其传热而肋片反而会削弱其传热?答:在圆管外敷设保温层和设置肋片都使表面换热热阻降低而导热热阻增加,而一般情况下保温使导热热阻增加较多,使换热热阻降低较少,使总热阻增加,起到削弱传热的效果;设置肋片使导热热阻增加较少,而换热热阻降低较多,使总热阻下降,起到强化传热的作用。

但当外径小于临界直径时,增加保温层厚度反而会强化传热。

理论上只有当肋化系数与肋面总效率的乘积小于1时,肋化才会削弱传热。

3、 重新讨论传热壁面为平壁时第二题中提出的问题。

答:传热壁面为平壁时,保温总是起削弱传热的作用,加肋是否起强化传热的作用还是取决于肋化系数与肋面总效率的乘积是否人于1。

4、推导顺流或逆流换热器的对数平均温差计算式时做了一些什么假设,这些假设在推导的哪些环节中加以应用?讨论对大多数间壁式换热器这些假设的适用情形。

5、对于22112211221m1q c q c q c q c q c c q m m m m m =<≥及、三种情形,画出顺流与逆流时冷、热流体温度沿流动方向的变化曲线,注意曲线的凹向与c q m 相对大小的关系。

传热学考研题库【章节题库】(传热过程分析与换热器)【圣才出品】

传热学考研题库【章节题库】(传热过程分析与换热器)【圣才出品】

热系数为 40 W (m K) ,污垢热阻总共为 0.0007m2 K/W 。若盘管的直径为 0.4m,管的
外径×壁厚为 57 mm 3.5 mm 。求螺旋盘管的最小长度、盘数与水的质量流量。
解:传热量为 水的质量流量
2 000 2 09380 30 58 139 W
面的温度变化,以及壁面温度的变化。 解:变化曲线如图 10-2 所示。
图 10-2
4 / 31
圣才电子书 十万种考研考证电子书、题库视频学习平台

4.质量流量为 2000kg/h 的变压器油在螺旋盘管中流过,油温从 t1 80 ℃ 被冷却至 t1 30 ℃ ,其比定压热容 cp1=2.093kJ/(kg K) 。进口温度为 t2 20℃ 的冷水在盘管外 流动用来冷却变压器油。出口处水温 t2 25℃ ,水的比定压热容 cp2 4.174W / (m2 K) 。 水侧表面传热系数为 580W/(m2 K) ,油侧表面传热系数为150W/(m2 K) 。钢盘管的导
1 h1
A A
1 B
B
1 h2
A | (t1 t2) (t1 t2 )
ln

t1 t1

t2 t2

3.画出如下热量传递过程中物理参数的变化曲线:(1)逆流式换热器( qm1cp1 qm2cp2 ) 冷、热流体沿换热面的温度变化;(2)顺流式换热器( qm1cp1 qm2cp2 )冷、热流体沿换热
2.有一平壁传热过程,左侧的对流换热系数 h左=2000W / (m2 ℃),右侧的对流换热 系数 h右=10W / (m2 ℃),平壁厚 δ=2mm,导热系数 λ=10W/(m·℃),要想增强传热 过程应从何处着手?( )

传热学-第十章

传热学-第十章
(c) 板翅式交叉流换热器
把单位体积内所包含的换热面积作为衡量换热器紧凑程度的 衡量指标,一般将大于700m2/m3的换热器称为紧凑式换热器, 板翅式换热器多属于紧凑式,因此,日益受到重视。
(4) 板式换热器:由一组几何结构相同的平行薄平板叠加所 组成,冷热流体间隔地在每个通道中流动,其特点是拆卸清 洗方便,故适用于含有易结垢物的流体。
1 通过平壁的传热
k K的计算1
1

1
公式?h1 h2
说明: (1) h1和h2的计算;(2)如果计及辐射时对流 换热系数应该采用等效换热系数(总表面传热系数)
单相对流:ht hc hr
(8-24)
膜态沸腾:ht43hc43hr43 (6-23)
hr
(T14 T24)
T1 T2
由于平壁两侧的面积是相等的,因此传热系数的数值无论 对哪一侧来说都是相等的。
2 通过圆管的传热
园管内外侧表面积不等,所以对内侧
而言和对外侧而言的传热系数在数值上不同的。先分析管长为L
的一段园管:见图(9-1)
传热过程包括管内流体到管内侧壁面, 管内侧壁面到管外侧壁面,管外侧壁面 到管外流体三个环节。
)dAx
t exp(kA)-1
(1)
k A
lntx t
kAx
Ax A
lnt kA
t
(2)
t exp(kA)
(3)
t
(1)+(2)+(3)
在固体微元面dA内,两种流体的换热量为:
d kd A t
对于热流体和冷流体:
dqmch hdth dthqm 1ch hd
dqmcccdtc dtcqm 1cccd

上海理工大学802传热学2007-2017年真题答案和重点

上海理工大学802传热学2007-2017年真题答案和重点
【不二研】上海理工大学802传热学
目录
纸质版: 1.802 传热学 2001-2017 年真题汇总(33 页) 2.802 传热学 2001-2017 年真题答案汇总(52 页) 3.传热学重要知识点(68 页) 电子版: 传热学 杨世铭 4 版 课后习题答案解析 传热学思考题答案(杨世铭)
(电子版资料请收到货后请联系客服获取) 某宝店铺:不二研教育 公众号:不二研
1
【不二研】上海理工大学802传热学
1.802传热学2001-2017年真题汇总
2
【不二研】上海理工大学802传热学
上海理工大学 2009 年硕士研究生入学考试试题 考生须知: 1. 所有答案必须写在答题纸上,做在试题纸或草稿纸上的一律无效 2. 考试时间 180 分钟 3. 本试卷不可带出考场,违反者作零分处理 一、 简答题(每题 6 分,共 48 分)
5.67 3.534
1.54
620.22
168.95W
1,2
J1 J2 R12
5.67 3.534 5.67 2.934
7.406
62.45W
2,3
J2 J3 R23
5.67 2.934
1.54
620.22
131.39W
70
【不二研】上海理工大学802传热学
8、管壁的温度会影响流体的物理性质;以液体为例,当液体被加热时,液体的粘度降低, 此时近壁处液体速度增大,对管内对流换热具有强化作用,对流换热系数增大,液体冷却时 与之相反 9、纵向放置相当于外掠平板的流动,热边界层较厚,而横向放置时热边界层较薄且存在边 界层分层而产生绕流、脱体,产生旋涡,增加流体的扰动,强化换热。
3.29 106
1
N
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《传 热 学》
9
⑤ 除垢 在换热器运行过程 4、对流换热的强化一般都带来流动阻力的增加
《传 热 学》
10
三、隔热保温技术 1、工业应用 • 热力设备、工程管路 • 建筑节能 • 低温液化气体的储存和运输 • 航天器返回
《传 热 学》
11
2、分类 • 高于环境温度的热力设备 保温:防止热量散失
• 低于环境温度的工质和容器 隔热:防止热量传入
《传 热 学》
4
二、换热器热计算的平均温差法
1、设计计算 一般给定冷热流体的水当量和进出口温度中 的三个,需要确定换热面积 A ①初步选定冷热流体的流动方向及换热表面型式
k
《传 热 学》
5
②由热平衡式求出冷热流体进出口温度中的那 个未知的温度 ③确定平均温差 Δtm = (Δtmax − Δtmin ) ④计算所需的换热面积A
t1 '
t2 ''
t1 ' '
t2 '
t2 '
t1 '
t1 ' ' t2 '' t2 '
《传 热 学》
14
t1 '
t2 '' t1 ' ' t2 '
三、其它复杂流动布置时平均温差的计算
Δ t m = ψ (Δ t m ) ctf
• 是给定的冷热流体的进出口温度布 置成逆流时的LMTD
(Δ t m ) ctf
Δt min = min (Δt ' , Δt ' ')
《传 热 学》
12
3、算术平均温差
Δt max + Δt min Δt m = 2
Δt max Δt min ≤ 2
≤ 4%
Δt max Δt min ≤ 1.7
《传 热 学》
13
≤ 2 .3 %
4、温度曲线
t1 '
t1 ' ' t2 ''
( − μkAx )
(
)
《传 热 学》
7
Δt − μkA Δt m = − e −1 μkA
'
(
)
Δt x = Δt ′ ⋅ e
( − μkAx )
1 '' ' Δt m = − Δt − Δt μkA
《传 热 学》
8
(
)
1 (Δt ' '−Δt ') Δt m = − μkA
Δt x = − μkAx ln Δt ′
《传 热 学》
17
2、其中一种流体发生相变
这时候没有顺流和逆流之分
《传 热 学》
18
第十章 传热和换热器
《传 热 学》
1
§10-6 换热器计算 一、目的、依据和方法
1、目的 • 设计一个新的换热器,以确定所需的换热面积 设计计算 design calculation • 对已有或已选定了换热面积的换热器,在非设 计工况条件下,核算它传递多少热量 校核计算 performance calculation
《传 热 学》
10

′ ′ Δt ′ = t1 − t 2
《传 热 学》
′ ′ Δt ′′ = t1′ − t 2′
11
′ ′ ′ ′ Δt ′ = t1 − t 2′ Δt ′′ = t1′ − t 2
Δtmax − Δtmin Δtm = Δtmax ln Δtmin
Δt max = max(Δt ' , Δt ' ')
5
dΔt = − μdΦ = − μk ⋅ dA ⋅ Δt
dΔt = − μkdA Δt

Δt x
Δt ′
Ax dΔt = − μk ∫ dA 0 Δt
Δt x ln = − μkAx Δt ′
《传 热 学》
6
Δt x = Δt ′ ⋅ e 1 A Δt m = ∫ Δt x dA x A 0
1 A − μkAx Δt m = ∫ Δt ′e dA x A 0 A ' ⎛ Δt ⎜ 1 − μkAx ⎞ ⎟ = − e ⎟ A ⎜ μk 0 ⎠ ⎝ Δt ' − μkA =− e −1 μkA
有相变
{
凝结: 减薄液膜、形成珠状凝结 沸腾:增加汽化核心数
《传 热 学》
4
② 从对流换热的实验规律来分析 无相变:
Nuf = 0.023Ref Prf
0.8 n
n
hd
⎛ ρud ⎞ = 0.023⎜ ⎟ ⎜ η ⎟ λ ⎠ ⎝
0.8
⎛ ηc p ⎞ ⎜ ⎟ ⎜ λ ⎟ ⎠ ⎝
提高流速 减小管径 改变物性
《传 热 学》
5
间壁式换热器有以下几种形式 管壳式换热器 板式换热器 肋片管式换热器
《传 热 学》
6
管程 壳程
管壳式换热器
《传 热 学》
7
管程(Tube Pass):由管子组成的通道 壳程(Shell Pass):管外壳内通道 管程数:流体在管内流动方向数 壳程数:流体在壳内流动方向数 壳管式换热器的命名 壳程数-管程数 1-2型:壳程为1,管称为2; 2-4型:壳程为2,管称为4。
《传 热 学》
8
管壳式换热器
《传 热 学》
9
板式换热器
《传 热 学》
10
肋片管(翅片管)式换热器
《传 热 学》
11
第十章 传热和换热器
《传 热 学》
1
§10-5 平均温差 一、简单顺、逆流换热器平均温差的计算
传热方程的一般形式
Φ = kA Δ t m
注意
《传 热 学》
2
1、简化模型 以顺流情况为例 假设: • 冷热流体的质量流量qm2、qm1以及比热容c2、 c1是常数; • 传热系数是常数; • 换热器无散热损失; • 换热面沿流动方向的导热量可以忽略不计。
Δt ' ' = − μkA ln Δt ′
Δt ′′ − Δt′ Δtm = Δt ′′ ln Δt′
《传 热 学》
9
对数平均温差 LMTD
热流体
逆流时(课后作业)
冷流体
Δt = t1 − t 2
dΦ = k ⋅ dA ⋅ Δt
dΦ = −qm1c1 ⋅ dt 1
dΦ = − qm 2 c2 ⋅ dt 2
7
三、换热器热计算的效能-传热单元数法
1、换热器的效能
ε=
t' − t'' max t1' − t 2'
• 分子为冷流体或热流体在换热器中的进出 口温差的最大值 • 分母为换热器中可能发生的最大温差
Δtmax ln Δtmin
Φ A= k ⋅ Δtm
⑤核算冷热流体的流动阻力,如过大则需要改 变方案重新设计。
《传 热 学》
6
2、校核计算 一般给定换热器的结构、面积、冷热流体的 进口温度和水当量,校核该换热器能否达到 要求: • 能否把热流体冷却到给定温度 • 或能否把冷流体加热到给定温度
《传 热 学》
Δti = Const. Ri
• 壁温靠近热阻最小的一侧流体的平均温度 纸杯烧开水 • 金属壁导热热阻小,温差小,所以可认为 金属内外壁温度一致
《传 热 学》
6
强化传热的突破口 在一定的温差下,强化传热应从热阻最大 的环节入手。 肋片要加装在表面传热系数较低的一侧,以 降低加肋侧的热阻。 • 有一台采暖用的散热器,用管内的热水 来加热管外的空气。为了提高散热器的散 热效果,如何加装肋片?
《传 热 学》
2
2、基本方程 • 传热方程式
Φ
Φ = kAΔt m
• 热平衡方程式
k A
qm1c1 q m 2 c2
′ ′ Φ = qm1c1 (t1 − t1′) ′ ′ = qm 2 c2 (t 2′ − t 2 )
《传 热 学》
3
′ ′ t1 t1′ ′ ′ t 2 t 2′
}
其中 三个
3、方法 • 平均温差法 直接应用传热方程式和热平衡方程式进行热 计算的方法 重点掌握 • 效能-传热单元数(ε-NTU)法 掌握有关概念
第十章 传热和换热器
《传 热 学》
1
• 传热过程 热量从壁面一侧的流体通过壁面传到另一侧 流体中去的过程 • 传热方程式
Φ = k ⋅ A ⋅ Δt
关键 关键
《传 热 学》
2
光滑壁面的总传热系数 通过平壁的传热
k = 1
h1 t f1
λ
h2 tf2
1 δ 1 + + h1 λ h 2
δ
说明:(1)h1和h2为复合换热表面传热系数 (2)两侧面积相等
• ψ 是小于1的修正系数
《传 热 学》
15
1、ψ 值取决于无量纲参数 P和 R
′ ′ t 2′ − t 2 , P= ′ ′ t1 − t 2
2、P的物理意义
′ ′ t1 − t1′ R= ′ ′ t 2′ − t 2
流体2的实际温升与理论上所能达到的最大温升 之比,所以只能小于1 3、R的物理意义 两种流体的热容量之比
1 ⇒ dt 1= − dΦ qm1c1
1 ⇒ dt 2 = dΦ q m 2 c2
d Δt = d ( t1 − t2 ) =dt1 − dt2
⎛ 1 1 ⎞ ⎟dΦ = − μdΦ dΔt = −⎜ + ⎜q c q c ⎟ mc c ⎠ ⎝ mh h
dΦ = k ⋅ dA ⋅ Δt
《传 热 学》
《传 热 学》
相关文档
最新文档