数值分析5.1
《数值分析》第五章实验报告
1.900 11.7479965 2.000 15.3982357 则有 i 1 5 6 9 10 ti 1.1 1.5 1.6 1.9 2.0 wi 0.2718282 3.1874451 4.6208178 11.7479965 15.3982357 y(ti) 0.345920 3.96767 5.70296 14.3231 18.6831
b)c)d)类似进行即可
EXERCISE SET 5.9 P322 2、方程组的 Runge-Kutta 算法 a) y' '2 y' y te t ,0 t 1, y(0) y' (0) 0, h 0.1
t
设 u1 (t ) y(t ), u2 (t ) y (t ) ,则将方程转换为方程组
'
-5-
u1' (t ) u2 (t )
' u2 (t ) 2u2 (t ) u1 (t ) t (et 1)
初始条件为
u1 (0) 0, u2 (0) 0
编写 MATLAB 程序 function[t,y] = Runge_Kutta4s(ydot_fun,t0,y0,h,N) %标准四阶Runge_Kutta公式,其中, %ydot_fun为一阶微分方程的函数; %t0为初始点; %y0为初始向量(列向量) ; %h为区间步长; %N为区间的个数; %t为Tn构成的向量; %y为Yn构成的矩阵。 t = zeros(1,N+1);y = zeros(length(y0),N+1); t(1) = t0;y(:,1) = y0; for n = 1 :N t(n+1) = t(n) + h; k1 = h * feval(ydot_fun,t(n),y(:,n)); k2 = h * feval(ydot_fun,t(n)+1/2 * h,y(:,n)+1/2 * k1); k3 = h * feval(ydot_fun,t(n)+1/2 * h,y(:,n)+1/2 * k2); k4 = h * feval(ydot_fun,t(n)+h,y(:,n)+k3); y(:,n+1) = y(:,n) + 1/6 * (k1 + k2 + k3 + k4); end 运行后有 >> odefun = inline('[y(2);2*y(2)-y(1)+t*(exp(t)-1)]','t','y'); >> [t,y] = Runge_Kutta4s(odefun,0,[0;0],0.1,10) t= Columns 1 through 9 0 0.8000 Columns 10 through 11 0.9000 1.0000 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000
数值分析习题
1.1 求下列各数的具有四位有效数字的近似值, 并指出其绝对误差限和相对误差限)1.0ln(,121,1011,1014321====x x x x1.2 下列各数都是对准确值进行四舍五入得到的近似值, 指出它们的绝对误差限、相对误差限和有效数字的位数。
3*5*4*3*2*1100.5,5000,50.31,3015.0,0315.0⨯=====x x x x x1.3 为了使31的近似值的相对误差不超过0.1%, 问应取几位有效数字?1.4 怎样计算下列各题才能使得结果比较精确?(1) x x sin )sin(-+ε,其中ε充分小 (2) ⎰++121N Nx dx,其中N 是充分大的正数(3)xxsin cos 1-,其中x 充分小(4) o 1cos 1- (5) 1001.0-e(6) )11010ln(84--1.5 求方程01562=+-x x 的两个根, 使至少具有四位有效数字。
2.1 证明方程043=-+x x 在区间[1,2]内有且仅有一个根。
如果用二分法求它具有五位有效数字的根,试问需对分多少次?(不必求根)2.2 用二分法求方程0134=+-x x 在[0.3, 0.4]内的一个根, 精度要求21021-⨯=ε。
2.3 找出下列方程的有根区间,选择适当的初始点用二分法求方程的根,精度要求210-=ε。
(1) 02=--x x ;(2) 06cos 2=-++-x e x x ; (3) 01tan =--x x ; (4) 0sin 2=--x e x 。
2.4 考虑方程032=-x e x ,将其改写为3xex ±=,取00=x ,用两种迭代公式迭代,分别收敛到1.0和-0.5附近的两个根(取精度要求310-=ε)。
2.5 为求方程0123=--x x 在5.1=x 附近的一个根,建立下列形式的迭代公式:(1) 2121111kk x x xx +=⇒+=+,;(2) 3212311k k x x x x +=⇒+=+,;(3) 111112-=⇒-=+k k x x x x ,。
数值分析简明教程课后习题答案(第二版)
0.1算法1、 (p.11,题1)用二分法求方程013=--x x 在[1,2]内的近似根,要求误差不超过10-3.【解】 由二分法的误差估计式311*10212||-++=≤=-≤-εk k k a b x x ,得到100021≥+k .两端取自然对数得96.812ln 10ln 3≈-≥k ,因此取9=k ,即至少需2、(p.11,题2) 证明方程210)(-+=x e x f x在区间[0,1]内有唯一个实根;使用二分法求这一实根,要求误差不超过21021-⨯。
【解】 由于210)(-+=x e x f x,则)(x f 在区间[0,1]上连续,且012010)0(0<-=-⨯+=e f ,082110)1(1>+=-⨯+=e e f ,即0)1()0(<⋅f f ,由连续函数的介值定理知,)(x f 在区间[0,1]上至少有一个零点.又010)('>+=x e x f ,即)(x f 在区间[0,1]上是单调的,故)(x f 在区间[0,1]内有唯一实根.由二分法的误差估计式211*1021212||-++⨯=≤=-≤-εk k k a b x x ,得到1002≥k .两端取自然对数得6438.63219.322ln 10ln 2=⨯≈≥k ,因此取7=k ,即至少需二分0.2误差1.(p.12,题8)已知e=2.71828…,试问其近似值7.21=x ,71.22=x ,x 2=2.71,718.23=x 各有几位有效数字?并给出它们的相对误差限。
【解】有效数字:因为11102105.001828.0||-⨯=<=- x e ,所以7.21=x 有两位有效数字; 因为12102105.000828.0||-⨯=<=- x e ,所以71.22=x 亦有两位有效数字;因为3310210005.000028.0||-⨯=<=- x e ,所以718.23=x 有四位有效数字;%85.17.205.0||111=<-=x x e r ε; %85.171.205.0||222=<-=x x e r ε; %0184.0718.20005.0||333=<-=x x e r ε。
数值分析Ch5.1
单位向量
k
定义2 u lk 0 0 mk1 mn ,v ek 0 1 0 0 ,
1,称E
(
l
k
,
e
k
,1)
k
I
lk
e
T k
Lk (lk )
指标为k初等下三角阵。
0
1
k
Lk (lk )
I
lk ekT
I
0
mk
1
0
k 1
0
0
1 mk1
1
k行,
mn
mn
1
1
0
1
I ij
。
1
0 Leabharlann 1 2.3 初等反射阵(称为境面反射阵或Householder变换)
1、定义
定义4 设向量 w Rn,且wT w 1(模或范数等于1), 2,
称矩阵 E(w, w,2) I 2wwT H (w) 为初等反射阵。 2、性质 定理2 设H (w) I 2wwT ,其中wT w 1 ,为初等反射阵,则
(1)H是对称阵,即 H T H;
(2)H是正交阵,即 H 1 H T ;
(3)设A为对称矩阵,那么A1 H 1 AH HAH 亦是对称阵。 证明:(1)H T (I 2ww T )T I 2(wT )T wT I 2wwT H;
(2)H T H HHT H 2 (I 2wwT )( I 2wwT )
1)
||2 ,
于是由定理3
存在H变换:
记
u
x
e1
w (u1 ,
|| u2
x e1 ,使 x e1 ||2
,, un )T,于 是
HxHyI12||2u||u||ue22u1|, T|22
数值分析题库1
第一章 绪论 2 第二章 函数插值 3 第三章 函数逼近 6 第四章 数值积分与数值微分 10 第五章 解线性方程组的直接解法 13 第六章 解线性方程组的迭代解法 14 第七章 非线性方程求根 16 第九章 常微分方程初值问题的数值解法 19
第一章 绪论
1.1 要使的相对误差不超过0.1%,应取几位有效
解 对y=f(x)的反函数进行三次插值,插值多项式为
+ + + =, 于是有
。
第三章 函数逼近
3.1证明定义于内积空间H上的函数是一种范数。
证明: 正定性当且仅当时; 齐次性 设为数域K上任一数 三角不等式 ;
于是有 故是H上的一种范数。
3.2求,在空间上的最佳平方逼近多项式,并给出 误差。
解: 第一步:构造内积空间上的一组正交基,其中内积: 第二步:计算的二次最佳平方逼近多项式 从第一步已经知道,利用公式得: 误差为:
数字?
解:
的首位数字。 设有 n位有效数字,由定理知相对误差限 令, 解得,即需取四位有效数字.
1.2 序列满足关系式,若,计算到,误差有多
大?这个算法稳定吗?
解:,于是 ,一般地,因此计算到其误差限为,可见这个计算过程是不稳定的。
1.3 计算球的体积,要使相对误差限为1%,问测 量半径R时允许的相对误差限是多少?
4.1、计算积分,若用复化梯公式,问区间应分多 少等份才能使截断误差不超过?若改用复化辛普 森公式,要达到同样的精度,区间应分多少等 份?
解:由于,,,故对复化梯公式,要求 ,
即,.取,即将区间分为等份时,用复化梯公式计算,截断误差不超过. 用复化辛普森公式,要求 ,
即,.取,即将区间等分为8等份时,复化辛普森公式可达精度.
数值分析教案
数值分析教案一、引言数值分析是一门研究利用计算机进行数值计算的学科,通过数值方法求解数学问题的近似解。
本教案以数值分析为主题,旨在帮助学生理解数值分析的基本概念和方法,并培养其数值计算与问题解决的能力。
二、教学目标1. 理解数值分析的基本定义和应用领域;2. 掌握数值分析的常用技术和算法;3. 能够利用数值方法解决实际问题,如数值积分、方程求根等;4. 培养学生的编程思维和解决实际问题的能力。
三、教学内容1. 数值分析的概述1.1 数值分析的定义和发展历程1.2 数值分析的应用领域2. 数值逼近与插值2.1 插值多项式的定义和性质2.2 插值方法的选择与应用2.3 最小二乘逼近的原理和方法3. 数值微积分3.1 数值求导的基本原理和方法3.2 数值积分的基本原理和方法3.3 数值微分方程的初值问题求解4. 数值线性代数4.1 线性方程组的直接解法4.2 线性方程组的迭代解法4.3 线性最小二乘问题及其解法5. 非线性方程求解5.1 非线性方程求解的基本概念5.2 数值解法的选择与比较5.3 牛顿法与割线法的原理和应用四、教学方法1. 理论授课:通过讲解数值分析的基本概念和方法,帮助学生建立起基本的数值计算思维;2. 计算机实验:利用数值分析软件或编程语言,进行相应的数值计算实验,加深学生对数值方法的理解和应用;3. 课堂讨论:引导学生结合实际问题,讨论并解决数值计算过程中的困难和挑战;4. 课后作业:布置相关的数值计算作业,加强学生对数值分析的巩固和应用能力。
五、教学评价1. 平时表现:包括课堂参与、实验报告完成情况等;2. 课堂小测:针对教学内容进行的小型测试,检验学生对数值分析知识的理解;3. 期末考试:综合考察学生对数值分析知识和应用的掌握程度。
六、教学资源1. 教材:《数值分析导论》(教师自备教材);2. 计算机实验室:配备数值分析软件和编程环境。
七、教学进度安排1. 第一周:数值分析的概述;2. 第二周:数值逼近与插值;3. 第三周:数值微积分;4. 第四周:数值线性代数;5. 第五周:非线性方程求解;6. 第六周:综合复习和考试。
数值分析第三版课本知识题及答案解析
数值分析第三版课本知识题及答案解析第⼀章绪论1. 设x >0,x 的相对误差为δ,求ln x 的误差.2. 设x 的相对误差为2%,求nx 的相对误差.3. 下列各数都是经过四舍五⼊得到的近似数,即误差限不超过最后⼀位的半个单位,试指出它们是⼏位有效数字:*****123451.1021,0.031,385.6,56.430,7 1.0.x x x x x =====?4. 利⽤公式(3.3)求下列各近似值的误差限:********12412324(),(),()/,i x x x ii x x x iii x x ++其中****1234,,,x x x x 均为第3题所给的数.5. 计算球体积要使相对误差限为1%,问度量半径R 时允许的相对误差限是多少?6. 设028,Y =按递推公式1n n Y Y -=-( n=1,2,…)计算到100Y .27.982(五位有效数字),试问计算100Y 将有多⼤误差?7. 求⽅程25610x x -+=的两个根,使它⾄少具有四位有效数字27.982).8. 当N 充分⼤时,怎样求211Ndx x +∞+?9. 正⽅形的边长⼤约为100㎝,应怎样测量才能使其⾯积误差不超过1㎝210. 设212S gt =假定g 是准确的,⽽对t 的测量有±0.1秒的误差,证明当t 增加时S 的绝对误差增加,⽽相对误差却减⼩.11. 序列{}n y 满⾜递推关系1101n n y y -=-(n=1,2,…),若0 1.41y =≈(三位有效数字),计算到10y 时误差有多⼤?这个计算过程稳定吗?12. 计算61)f =, 1.4≈,利⽤下列等式计算,哪⼀个得到的结果最好?3--()ln(f x x =,求f (30)的值.若开平⽅⽤六位函数表,问求对数时误差有多⼤?若改⽤另⼀等价公式ln(ln(x x =-计算,求对数时误差有多⼤?14. 试⽤消元法解⽅程组{101012121010;2.x x x x +=+=假定只⽤三位数计算,问结果是否可靠?15. 已知三⾓形⾯积1sin ,2s ab c =其中c 为弧度,02c π<<,且测量a ,b ,c 的误差分别为,,.a b c 证明⾯积的误差s ?满⾜.s a b cs a b c ≤++第⼆章插值法1. 根据(2.2)定义的范德蒙⾏列式,令2000011211121()(,,,,)11n n n n n n n n n x x x V x V x x x x x x x xxx ----==证明()n V x 是n 次多项式,它的根是01,,n x x -,且101101()(,,,)()()n n n n V x V x x x x x x x ---=--.2. 当x = 1 , -1 , 2 时, f (x)= 0 , -3 , 4 ,求f (x )的⼆次插值多项式.3. 给出f (x )=ln x 的数值表⽤线性插值及⼆次插值计算ln 0.54 的近似值.4. 给出cos x ,0°≤x ≤90°的函数表,步长h =1′=(1/60)°,若函数表具有5位有效数字,研究⽤线性插值求cos x 近似值时的总误差界.5. 设0k x x kh =+,k =0,1,2,3,求032max ()x x x l x ≤≤.6. 设j x 为互异节点(j =0,1,…,n ),求证:i)0()(0,1,,);j j j x l x xk n =≡=∑ii)()()1,2,,).nk jj j xx l x k n =-≡0(=∑7. 设[]2(),f x C a b ∈且()()0f a f b ==,求证21()()().8max max a x ba xb f x b a f x ≤≤≤≤≤-"8. 在44x -≤≤上给出()xf x e =的等距节点函数表,若⽤⼆次插值求xe 的近似值,要使截断误差不超过610-,问使⽤函数表的步长h 应取多少?9. 若2n n y =,求4n y ?及4n y δ.10. 如果()f x 是m 次多项式,记()()()f x f x h f x ?=+-,证明()f x 的k 阶差分()(0)kf x k m ?≤≤是m k -次多项式,并且()0(m lf x l +?=为正整数).11. 证明1()k k k k k k f g f g g f +?=?+?.12. 证明110010.n n kkn n k k k k f gf g f g g f --+==?=--?∑∑13. 证明1200.n j n j y y y -=?=?-?∑14. 若1011()n n n n f x a a x a x a x --=++++有n 个不同实根12,,,n x x x ,证明{1()n k njk n a k n j jx f x -≤≤-=-=='∑15. 证明n 阶均差有下列性质: i)若()()F x cf x =,则[][]0101,,,,,,n n F x x x cf x x x =;ii) 若()()()F x f x g x =+,则[][][]010101,,,,,,,,,n n n F x x x f x x x g x x x =+.16. 74()31f x x x x =+++,求0172,2,,2f及0182,2,,2f.17. 证明两点三次埃尔⽶特插值余项是(4)22311()()()()/4!,(,)k k k k R x f x x x x x x ++=ξ--ξ∈并由此求出分段三次埃尔⽶特插值的误差限.18. 求⼀个次数不⾼于4次的多项式()P x ,使它满⾜(0)(1)P P k =-+并由此求出分段三次埃尔⽶特插值的误差限.19. 试求出⼀个最⾼次数不⾼于4次的函数多项式()P x ,以便使它能够满⾜以下边界条件(0)(0)0P P ='=,(1)(1)1P P ='=,(2)1P =.20. 设[](),f x C a b ∈,把[],a b 分为n 等分,试构造⼀个台阶形的零次分段插值函数()n x ?并证明当n →∞时,()n x ?在[],a b 上⼀致收敛到()f x .21. 设2()1/(1)f x x =+,在55x -≤≤上取10n =,按等距节点求分段线性插值函数()h I x ,计算各节点间中点处的()h I x 与()f x 的值,并估计误差.22. 求2()f x x =在[],a b 上的分段线性插值函数()h I x ,并估计误差.23. 求4()f x x =在[],a b 上的分段埃尔⽶特插值,并估计误差.24. 给定数据表如下:试求三次样条插值并满⾜条件 i) (0.25) 1.0000,(0.53)0.6868;S S '='=(0.25)(0.53)0.S S "="=25. 若[]2(),f x C a b ∈,()S x 是三次样条函数,证明 i)[][][][]222()()()()2()()()bbbbaaaaf x dx S x dx f x S x dx S x f x S x dx"-"="-"+""-"?;ii) 若()()(0,1,,)i i f x S x i n ==,式中i x 为插值节点,且01n a x x x b =<<<=,则[][][]()()()()()()()()()baS x f x S x dx S b f b S b S a f a S a ""-"="'-'-"'-'?.26. 编出计算三次样条函数()S x 系数及其在插值节点中点的值的程序框图(()S x 可⽤(8.7)式的表达式).第三章函数逼近与计算1. (a)利⽤区间变换推出区间为[],a b 的伯恩斯坦多项式.(b)对()sin f x x =在[]0,/2π上求1次和三次伯恩斯坦多项式并画出图形,并与相应的马克劳林级数部分和误差做⽐较. 2. 求证:(a)当()m f x M ≤≤时,(,)n m B f x M ≤≤. (b)当()f x x =时,(,)n B f x x =.3. 在次数不超过6的多项式中,求()sin 4f x x =在[]0,2π的最佳⼀致逼近多项式.4. 假设()f x 在[],a b 上连续,求()f x 的零次最佳⼀致逼近多项式.5. 选取常数a ,使301max x x ax≤≤-达到极⼩,⼜问这个解是否唯⼀?6. 求()sin f x x =在[]0,/2π上的最佳⼀次逼近多项式,并估计误差.7. 求()xf x e =在[]0,1上的最佳⼀次逼近多项式.8. 如何选取r ,使2()p x x r =+在[]1,1-上与零偏差最⼩?r 是否唯⼀? 9. 设43()31f x x x =+-,在[]0,1上求三次最佳逼近多项式. 10. 令[]()(21),0,1n n T x T x x =-∈,求***0123(),(),(),()T x T x T x T x .11. 试证{}*()nT x 是在[]0,1上带权ρ=的正交多项式.12. 在[]1,1-上利⽤插值极⼩化求11()f x tg x -=的三次近似最佳逼近多项式.13. 设()xf x e =在[]1,1-上的插值极⼩化近似最佳逼近多项式为()n L x ,若n f L ∞-有界,证明对任何1n ≥,存在常数n α、n β,使11()()()()(11).n n n n n T x f x L x T x x ++α≤-≤β-≤≤14. 设在[]1,1-上234511315165()128243843840x x x x x x ?=-----,试将()x ?降低到3次多项式并估计误差. 15. 在[ ]1,1-上利⽤幂级数项数求()sin f x x =的3次逼近多项式,使误差不超过0.005.16. ()f x 是[],a a -上的连续奇(偶)函数,证明不管n 是奇数或偶数,()f x 的最佳逼近多项式*()n nF x H ∈也是奇(偶)函数.17. 求a 、b 使[]220sin ax b x dx π+-?为最⼩.并与1题及6题的⼀次逼近多项式误差作⽐较.18. ()f x 、[]1(),g x C a b ∈,定义 ()(,)()();()(,)()()()();b baaa f g f x g x dxb f g f x g x dx f a g a =''=''+??问它们是否构成内积?19. ⽤许⽡兹不等式(4.5)估计6101x dx x +?的上界,并⽤积分中值定理估计同⼀积分的上下界,并⽐较其结果.20. 选择a ,使下列积分取得最⼩值:1122211(),x ax dx x ax dx----??.21. 设空间{}{}10010121,,,span x span x x 1?=?=,分别在1?、2?上求出⼀个元素,使得其为[]20,1x C ∈的最佳平⽅逼近,并⽐较其结果.22. ()f x x =在[]1,1-上,求在{}2411,,span x x ?=上的最佳平⽅逼近.23.sin (1)arccos ()n n x u x +=是第⼆类切⽐雪夫多项式,证明它有递推关系()()()112n n n u x xu x u x +-=-.24. 将1()sin 2f x x=在[]1,1-上按勒让德多项式及切⽐雪夫多项式展开,求三次最佳平⽅逼近多项式并画出误差图形,再计算均⽅误差.25. 把()arccos f x x =在[]1,1-上展成切⽐雪夫级数.26. ⽤最⼩⼆乘法求⼀个形如2y a bx =+的经验公式,使它与下列数据拟合,并求均⽅误差.27.28. 在某化学反应⾥,根据实验所得分解物的浓度与时间关系如下:⽤最⼩⼆乘拟合求.29. 编出⽤正交多项式做最⼩⼆乘拟合的程序框图. 30. 编出改进FFT 算法的程序框图. 31. 现给出⼀张记录{}{}4,3,2,1,0,1,2,3k x =,试⽤改进FFT 算法求出序列{}k x 的离散频谱{}k C (0,1,,7).k =第四章数值积分与数值微分1. 确定下列求积公式中的待定参数,使其代数精度尽量⾼,并指明所构造出的求积公式所具有的代数精度: (1)101()()(0)()hhf x dx A f h A f A f h --≈-++?; (2)21012()()(0)()hh f x dx A f hA f A f h --≈-++?;(3)[]1121()(1)2()3()/3f x dxf f x f x -≈-++?;(4)[][]20()(0)()/1(0)()hf x dx h f f h ah f f h ≈++'-'?.2. 分别⽤梯形公式和⾟普森公式计算下列积分: (1)120,84xdx n x =+?; (2)1210(1),10x e dx n x --=?;(3)1,4n =?; (4),6n =.3. 直接验证柯特斯公式(2.4)具有5次代数精度.4. ⽤⾟普森公式求积分1x e dx-?并计算误差.5. 推导下列三种矩形求积公式:(1)2()()()()()2baf f x dx b a f a b a 'η=-+-?; (2)2()()()()()2baf f x dx b a f b b a 'η=---?;(3)3()()()()()224baa b f f x dx b a f b a +"η=-+-?.6. 证明梯形公式(2.9)和⾟普森公式(2.11)当n →∞时收敛到积分()baf x dx.7. ⽤复化梯形公式求积分()baf x dx,问要将积分区间[],a b 分成多少等分,才能保证误差不超过ε(设不计舍⼊误差)?8. 1xedx-,要求误差不超过510-.9. 卫星轨道是⼀个椭圆,椭圆周长的计算公式是S a =θ,这⾥a 是椭圆的半长轴,c是地球中⼼与轨道中⼼(椭圆中⼼)的距离,记h 为近地点距离,H 为远地点距离,6371R =公⾥为地球半径,则(2)/2,()/2a R H h c H h =++=-.我国第⼀颗⼈造卫星近地点距离439h =公⾥,远地点距离2384H =公⾥,试求卫星轨道的周长.10. 证明等式3524sin3!5!n nn n ππππ=-+-试依据sin(/)(3,6,12)n n n π=的值,⽤外推算法求π的近似值.11. ⽤下列⽅法计算积分31dyy ?并⽐较结果.(1) 龙贝格⽅法;(2) 三点及五点⾼斯公式;(3) 将积分区间分为四等分,⽤复化两点⾼斯公式.12. ⽤三点公式和五点公式分别求21()(1)f x x =+在x =1.0,1.1和1.2处的导数值,并估计误差.()f x 的值由下表给出:第五章常微分⽅程数值解法1. 就初值问题0)0(,=+='y b ax y 分别导出尤拉⽅法和改进的尤拉⽅法的近似解的表达式,并与准确解bx ax y +=221相⽐较。
高等数值分析第二章答案
第二章习题参考答案1.解: 由于20Ax b−≥,极小化2b Ax −与极小化22Ax b −是等价的。
令22()(,)(,)2(,)x Ax b Ax Ax b b Ax b ϕ=−=+−,对于任意的n R y x ∈,和实数α,)()(),()()(,*222*2****x Ay a x Ay Ay a x ay x b Ax x ϕϕϕϕ≥+=+=+=则有满足若这表示处达到极小值。
在*)(x x ϕ反之,若必有处达到极小,则对任意在nR y x ay x ∈+*)(ϕ0),(2),(2),(20)(**0*=−=+−=+=Ay b Ax Ay Ay a Ay b Ax daay x d a 即ϕ故有 b Ax =*成立。
以上证明了求解,22b Ax b Ax −=等价于极小化即。
等价于极小化2b Ax b Ax −= 推导最速下降法过程如下:),/(),(0),(),(,0),,2)(222)()(11k T k T k T k k T k T k T k k T k k k T k k kT k T k T T x x k r AA r AA r AA r a r AA r AA a r AA r r aA x da dx a r aA x x r A Ax b A Ax A b A x grad x x k==+−=++==−=−=−++=最终得到得出(由取得极小值。
使求出取的负梯度方向,且下降最快的方向是该点在ϕϕϕ给出的算法如下:1))(000Ax b A r A R x T T n −=∈,计算给定; 2)L ,2,1,0=k 对于)转到否则数。
为一事先给定的停机常则停止;其中若2),/(),(10,11kT k k k k T k k k k k k k k k r A p Ax b r r A a x x Ap Ap p p a k k r =−=+==+=>≤−−εε2.证明 1) 正定性由对称正定矩阵的性质,(),0x Ax ≥(当且仅当x =0时取等号),所以 ()12,0Axx Ax =≥(当且仅当x =0时取等号)2) 齐次性()()()121122,(),,AA xx A x x Ax x Ax x αααααα⎡⎤====⎣⎦3)o1方法(一)A 是对称正定矩阵,得到(,())0x y A x y λλ++≥,把它展开如下2(,)(,)(,)(,)0y Ay x Ay y Ax x Ax λλλ+++≥考虑到(,)(,)(,)x Ay Ax y y Ax ==,把上式看成关于λ的一元二次方程,则式子等价于24(,)4(,)(,)0x Ay x Ax y Ay ∆=−≤因此1/21/2(,)(,)(,)x Ay x Ax y Ay ≤所以1/21/221/21/2((,)(,))(,)(,)2(,)(,)(,)(,)2(,)(,)(,)(,)(,)((),())x Ax y Ay x Ax y Ay x Ax y Ay x Ax y Ay x Ay x Ax y Ay x Ay y Ax x y A x y +=++≥++=+++=++两边开平方即可得到AA A x yx y +≤+因此,1/2(,)A x Ax x =是一种向量范数。
数值分析简明教程课后习题答案
;
。
【解】(1)令时等式精确成立,可列出如下方程组:
解得:,即:,可以验证,对公式亦成立,而对不成立,故公式(1)具有3次代数精度。
(2)令时等式精确成立,可列出如下方程组:
解得:,即:,可以验证,对公式亦成立,而对不成立,故公式(2)具有3次代数精度。
(3)令时等式精确成立,可解得:
即: ,可以验证,对公式亦成立,而对不成立,故公式(3)具有2次代数精度。
由三点公式(51)、(52)和(53)可知,,则
2、(p.96,习题25)设已给出的数据表,
x
1.0
1.1
1.2
f(x)
0.2500
0.2268
0.2066
试用三点公式计算的值,并估计误差。
【解】已知,用三点公式计算微商:
,
用余项表达式计算误差
3、(p.96,习题26)设,分别取步长,用中点公式(52)计算的值,令中间数据保留小数点后第6位。
;
(2),而,实际误差为:。
由,可知,则余项表达式
1.4 曲线拟合
1、(p.57,习题35)用最小二乘法解下列超定方程组:
【解】构造残差xx函数如下:
,
分别就Q对x和y求偏导数,并令其为零:
:,
:,
解方程组(1)和(2),得
2、(p.57,习题37)用最小二乘法求形如 的多项式,使之与下列数据相拟合。
,,取;
,,取;
【解】(1);
(2)。
2、(p.124,题2)取,用xx方法求解初值问题,。
【解】xx格式:;化简后,,计算结果见下表。
n
0
1
2
3
xn
0.0
0.2
5.1常微分方程的数值解法
5.1常微分⽅程的数值解法第五章常微分⽅程的差分⽅法⼀、教学⽬标及基本要求通过对本节课的学习,使学⽣掌握常微分⽅程、常微分⽅程⽅程组的数值解法。
⼆、教学内容及学时分配本节课主要介绍常微分⽅程的数值解法。
具体内容如下:讲授内容:欧拉公式、改进的欧拉公式。
三、教学重点难点1.教学重点:改进的欧拉公式、龙格库塔⽅法、收敛性与稳定性。
2. 教学难点:收敛性与稳定性。
四、教学中应注意的问题多媒体课堂教学为主。
适当提问,加深学⽣对概念的理解。
五、正⽂基于数值积分的求解公式:欧拉公式、改进的欧拉公式引⾔1.主要考虑如下的⼀阶常微分⽅程初值问题的求解:00()(,)()y x f x y y x y '=??=?微分⽅程的解就是求⼀个函数y=y(x),该函数满⾜微分⽅程并且符合初值条件。
2. 例如微分⽅程:xy'-2y=4x ;初始条件: y(1)=-3。
于是可得⼀阶常微分⽅程的初始问题24(1)3y y x y ?'=+=-?。
显然函数y(x)=x 2-4x 满⾜以上条件,因⽽是该初始问题的微分⽅程的解。
3. 但是,只有⼀些特殊类型的微分⽅程问题能够得到⽤解析表达式表⽰的函数解,⽽⼤量的微分⽅程问题很难得到其解析解,有的甚⾄⽆法⽤解析表达式来表⽰。
因此,只能依赖于数值⽅法去获得微分⽅程的数值解。
4.微分⽅程的数值解:设微分⽅程问题的解y(x)的存在区间是[a,b],初始点x 0=a ,将[a,b]进⾏划分得⼀系列节点x 0 , x 1 ,...,x n ,其中a= x 0< x 1<…< x n =b 。
y(x)的解析表达式不容易得到或根本⽆法得到,我们⽤数值⽅法求得y(x)在每个节点x k 的近似值y(x k ),即 y≈y(x k ),这样y 0 , y 1 ,...,y n 称为微分⽅程的数值解。
如果计算y n 时,只利⽤y n-1,称这种⽅法为单步法;如果在计算y n 时不仅利⽤y n-1,⽽且还要利⽤y n-2, y n-3,…, y n-r ,则称这种⽅法为r 步⽅法,也称多步法。
《数值分析》上机实验报告
数值分析上机实验报告《数值分析》上机实验报告1.用Newton 法求方程 X 7-X 4+14=0在(0.1,1.9)中的近似根(初始近似值取为区间端点,迭代6次或误差小于0.00001)。
1.1 理论依据:设函数在有限区间[a ,b]上二阶导数存在,且满足条件{}αϕ上的惟一解在区间平方收敛于方程所生的迭代序列迭代过程由则对任意初始近似值达到的一个中使是其中上不变号在区间],[0)(3,2,1,0,)(')()(],,[x |))(),((|,|,)(||)(|.4;0)(.3],[)(.20)()(.110......b a x f x k x f x f x x x Newton b a b f a f mir b a c x f ab c f x f b a x f b f x f k k k k k k ==-==∈≤-≠>+令)9.1()9.1(0)8(4233642)(0)16(71127)(0)9.1(,0)1.0(,1428)(3225333647>⋅''<-=-=''<-=-='<>+-=f f x x x x x f x x x x x f f f x x x f故以1.9为起点⎪⎩⎪⎨⎧='-=+9.1)()(01x x f x f x x k k k k 如此一次一次的迭代,逼近x 的真实根。
当前后两个的差<=ε时,就认为求出了近似的根。
本程序用Newton 法求代数方程(最高次数不大于10)在(a,b )区间的根。
1.2 C语言程序原代码:#include<stdio.h>#include<math.h>main(){double x2,f,f1;double x1=1.9; //取初值为1.9do{x2=x1;f=pow(x2,7)-28*pow(x2,4)+14;f1=7*pow(x2,6)-4*28*pow(x2,3);x1=x2-f/f1;}while(fabs(x1-x2)>=0.00001||x1<0.1); //限制循环次数printf("计算结果:x=%f\n",x1);}1.3 运行结果:1.4 MATLAB上机程序function y=Newton(f,df,x0,eps,M)d=0;for k=1:Mif feval(df,x0)==0d=2;breakelsex1=x0-feval(f,x0)/feval(df,x0);ende=abs(x1-x0);x0=x1;if e<=eps&&abs(feval(f,x1))<=epsd=1;breakendendif d==1y=x1;elseif d==0y='迭代M次失败';elsey= '奇异'endfunction y=df(x)y=7*x^6-28*4*x^3;Endfunction y=f(x)y=x^7-28*x^4+14;End>> x0=1.9;>> eps=0.00001;>> M=100;>> x=Newton('f','df',x0,eps,M);>> vpa(x,7)1.5 问题讨论:1.使用此方法求方解,用误差来控制循环迭代次数,可以在误差允许的范围内得到比较理想的计算结果。
《数值分析》课程设计—16题
《数值分析》课程设计—作业实验一1.1水手、猴子和椰子问题:五个水手带了一只猴子来到南太平洋的一个荒岛上,发现那里有一大堆椰子。
由于旅途的颠簸,大家都很疲惫,很快就入睡了。
第一个水手醒来后,把椰子平分成五堆,将多余的一只给了猴子,他私藏了一堆后便又去睡了。
第二、第三、第四、第五个水手也陆续起来,和第一个水手一样,把椰子分成五堆,恰多一只猴子,私藏一堆,再去入睡,天亮以后,大家把余下的椰子重新等分成五堆,每人分一堆,正好余一只再给猴子,试问原先共有几只椰子?试分析椰子数目的变化规律,利用逆向递推的方法求解这一问题。
解:一、问题分析:对于本题,比较简单,我们只需要判断原来椰子的个数及每个人私藏了一份之后剩下的是否能被5除余1,直到最后分完。
对于第一个程序,n取2000;对于第二个程序,n取20001,就能得到我们想要的结果,即原先一共有15621个椰子,最终平均每人得4092个椰子。
1.2 当0,1,2,,100n =时,选择稳定的算法计算积分10d 10nxn xe I x e --=+⎰. 解:一、问题分析:由10d 10nxn xe I x e --=+⎰知: 1101001==+⎰dx I I 以及: )1(11010101010)1(1nnx x nx x n n n e ndx e dx e e e I I ----+-+-==++=+⎰⎰ 得递推关系: ⎪⎩⎪⎨⎧--=-=-+n nn I e n I I I 10)1(1101101, 但是通过仔细观察就能知道上述递推公式每一步都将误差放大十倍,即使初始误差很小,但是误差的传播会逐步扩大,也就是说用它构造的算法是不稳定的,因此我们改进上述递推公式(算法)如下:⎪⎪⎩⎪⎪⎨⎧--=-=+-))1(1(101)1(101110n n n I e n I I I通过比较不难得出该误差是逐步缩小的,即算法是稳定的。
二、问题求解:为了利用上面稳定的算法,需要我们估计初值100I 的值。
数值分析 第五章学习小结
第五章 插值与逼近--------学习小节一. 本章学习体会本章学习了插值与逼近,经过本章的学习我对插值法有了进一步的认识。
插值与逼近就是寻找一个简单的函数来代替表达式复杂甚至无法写出表达式的函数。
可以说我们现在学习推导出来的方法公式等都是前人的辛苦钻研的结果,本章除了学到了许多的插值与逼近方法,更重要的是了解了许多科学前辈的故事以及他们许多做研究的态度与方法。
我感觉了解一下数学家的人生故事对我们学习数值分析或别的数学知识有很大的帮助。
上课时王老师给我们讲了数学奇才Hermite 的传奇故事,一个不会考试,基本上每次考数学都不及格的‘笨学生’,后来成为了伟大的数学家。
不是每个数学家都特别聪明,他们所具有的是作为一名科学家的品质,想别人没有想过的问题,在研究中创新,我们应该学习他们那种做研究的态度与精神。
学习这章时有一个小小的困惑,在曲线拟合的求法时,求多元函数的极小值*2200[()()]min [()()]im nm njj i i j j i i c i j i j cx f x c x f x φφ====-=-∑∑∑∑2010(,,,)[()()]mnn j j i i i j F c c c c x f x φ===-∑∑ 老师讲时说用0kFc ∂=∂求得,那万一求出的是极大值呢? 二.本章知识梳理数值分析中的插值是一种有力的工具,它最终得出的曲线图像都是过节点的,我们的目的使用它得出的图像来近似估计插值点的函数值。
我们首先学了代数插值中的一元函数插值,一元函数插值中学了拉格朗日插值但其插值公式没有延续性,后来学了牛顿插值,其优点是插值公式具有延续性,但前两者都有缺点,就是插值节点一般不超过三个,否则会有很大误差。
但实际工程中我们会测的许多的数据,也就有许多的节点,这样前两种差值方法就不能用了,后来我们又引进了分段线性插值,就是将这许多的节点进行分段,在每段中应用拉格朗日插值或牛顿差值。
数值分析(颜庆津)第5章 学习小结
第5章 插值与逼近--------学习小结一、 本章学习体会插值法是一种很常见的方法,在一些工具书中,经常使用插值法来读取一些表的数据,但是经过本章的学习我对插值法有了进一步的认识。
插值与逼近就是寻找一个简单的函数来代替表达式复杂甚至无法写出表达式的函数。
而如何寻找这样的一个插值函数,以及怎样尽可能的寻找截段误差小的函数就是本章解决的问题。
本章内容繁多,但插值函数其实就是由N 个线性无关的多项式组组成。
在理解时,可以按向量来理解。
在梳理本章内容时,也可以按照这样的思路来理解:从插值方法,到插值条件,到插值多项式,到截断误差,再到如何控制截断误差,再思考有没有更好的方法?以样条函数为例,样条函数已经在AutoCAD 、UG 、origin 等软件中广泛应用,也有一些学者,编写程序改进现有的样条函数,以减小误差。
本章的内容很多,插值与逼近的方法更是不胜枚举。
最重要的是,我们要理解每种方法的思路,以期将其用的得心应手。
二、 本章知识梳理本章主要介绍插值与逼近,是指用某个简单的函数在满足一定的条件下,在某个范围内近似代替某个复杂或者解析表达式未知的函数,以便简化对后者的各种计算或者揭示后者某些性质。
函数插值是对函数的离散数据建立简单的数学模型。
5.1代数插值代数插值就是插值函数为多项式的插值问题。
本章介绍代数插值有二个方法:Lagrange (拉格朗日)插值多项式、Newton (牛顿)插值多项式。
1、插值的相关定义(1)、在次数不高于n 的多项式集合},...,{D 10n n Span ϕϕϕ=中寻找多项式k nk k n c x p ϕ∑==0)(使其满足条件),...,1,0)(()(n i x f x p i i n ==,此问题为一元函数的代数插值问题。
n x x x ,...,,10成为插值节点;)(x f 为被插值函数;),...,1,0)((n k x k =ϕ称为插值基函数;),...,1,0)(()(n i x f x p i i n ==为插值条件;k nk k n c x p ϕ∑==0)(为n 次插值多项式。
(完整版)高等数值分析48课时教案
高等数值分析48课时教案
南华大学教案
2010 ~ 2011 学年第 1 学期
课程:高等数值分析授课教师(职称):王礼广(副教授)班级: 2010级理工科研究生
南华大学教案
2010 ~ 2011 学年第 1 学期
课程:高等数值分析授课教师(职称):王礼广(副教授)班级: 2010级理工科研究生
南华大学教案
2010 ~ 2011 学年第 1 学期
课程:高等数值分析授课教师(职称):王礼广(副教授)班级: 2010级理工科研究生
南华大学教案
2010 ~ 2011 学年第 1 学期
课程:高等数值分析授课教师(职称):王礼广(副教授)班级: 2010级理工科研究生
南华大学教案
2010 ~ 2011 学年第 1 学期
课程:高等数值分析授课教师(职称):王礼广(副教授)班级: 2010级理工科研究生
南华大学教案
2010 ~ 2011 学年第 1 学期
课程:高等数值分析授课教师(职称):王礼广(副教授)班级: 2010级理工科研究生
南华大学教案
2010 ~ 2011 学年第 1 学期
课程:高等数值分析授课教师(职称):王礼广(副教授)班级: 2010级理工科研究生
南华大学教案
2010 ~ 2011 学年第 1 学期
课程:高等数值分析授课教师(职称):王礼广(副教授)班级: 2010级理工科研究生
南华大学教案
2010 ~ 2011 学年第 1 学期
课程:高等数值分析授课教师(职称):王礼广(副教授)班级: 2010级理工科研究生
11。
数值分析实验报告
实验五 解线性方程组的直接方法实验5.1 (主元的选取与算法的稳定性) 问题提出:Gauss 消去法是我们在线性代数中已经熟悉的。
但由于计算机的数值运算是在一个有限的浮点数集合上进行的,如何才能确保Gauss 消去法作为数值算法的稳定性呢?Gauss 消去法从理论算法到数值算法,其关键是主元的选择。
主元的选择从数学理论上看起来平凡,它却是数值分析中十分典型的问题。
实验内容:考虑线性方程组n n n R b R A b Ax ∈∈=⨯,,编制一个能自动选取主元,又能手动选取主元的求解线性方程组的Gauss 消去过程。
实验要求:(1)取矩阵⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=1415157,6816816816 b A ,则方程有解T x )1,,1,1(* =。
取n=10计算矩阵的条件数。
让程序自动选取主元,结果如何?(2)现选择程序中手动选取主元的功能。
每步消去过程总选取按模最小或按模尽可能小的元素作为主元,观察并记录计算结果。
若每步消去过程总选取按模最大的元素作为主元,结果又如何?分析实验的结果。
(3)取矩阵阶数n=20或者更大,重复上述实验过程,观察记录并分析不同的问题及消去过程中选择不同的主元时计算结果的差异,说明主元素的选取在消去过程中的作用。
(4)选取其他你感兴趣的问题或者随机生成矩阵,计算其条件数。
重复上述实验,观察记录并分析实验结果。
思考题一:(Vadermonde 矩阵)设⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=∑∑∑∑====n i i n n i i ni i n i i n n n n n n nx x x x b x x x x x x x x x x x x A 002010022222121102001111 ,, 其中,n k k x k ,,1,0,1.01 =+=,(1)对n=2,5,8,计算A 的条件数;随n 增大,矩阵性态如何变化?(2)对n=5,解方程组Ax=b ;设A 的最后一个元素有扰动10-4,再求解Ax=b(3)计算(2)扰动相对误差与解的相对偏差,分析它们与条件数的关系。
数值分析
数值分析 第一章: 误差估计绝对误差,相对误差,有效数字。
大数吃小数。
(填空)三角分解(大题)杜利脱尔分解,克洛脱分解,乔列斯基分解,平方根法,追赶法, 例 1 用最小刻度为毫米的卡尺测量直杆甲和直杆乙,分别读出长度为 ,问: 各是多少?两直杆的实际长度 在什么范围内? 例2 设 是分别由准确值 经过四舍五入而得到的近似值, 问: 各是多少?例3 下列近似值的绝对误差限都是0.005, 问:各个近似值有几位有效数字?求和时从小到大相加,可使和的误差减小。
1、下列各近似值均有四位有效数字,试指出它们的绝对误差限和相对误差限。
2、下列近似值的绝对误差限都是0.0005,试指出它们有几位有效数字。
3、在四位十进制的限制下,试选择精确度最高的算法,计算下式的值。
答案:1、0.000005,0.03712%;0.005,0.04052%;0.0005,0.04167%.2、4、2、03、1342004、 高斯消去法步骤:(1) 首先将增广阵 [ A, b ] 化为上三角阵; (2) 用三角方程组,回代求解 。
例1在四位十进制的限制下,分别用不选主元高斯消去法与列选主元高斯消去法求解下列方程组。
mm b mm a 24,312==)( ,)( ,)(,)(b a b a r r εεεεm m y m m m m x m m b b b a a a m m b a r r 5.245.23,5.3125.311%,08.2245.0)()( %,16.03125.0)()( ,5.0)()(≤≤≤≤≈==≈====εεεεεε1200.2,18.2=-=b a )( ,)( ,)(,)(b a b a r r εεεε%0024.01200.200005.0)()( %,23.018.2005.0)()( 05000.0)(,005.0)(≈==≈====b b b a a a b a r r εεεεεε41086.0,0312.0,38.1-⨯=-==c b a 200.1,341.12,01347.0-=-==c b a 00032.0,042.0,00031.1-==-=c b a 906050401013402++++⨯=u )1(41,1411---==+n n n n y ny n y y 1231231230.012 0.0100.1670.67810.8334 5.91012.132001200 4.2981x x x x x x x x x ++=⎧⎪++=⎨⎪++=⎩解:用顺序消去法的消元过程:回代后,得列选主元高斯消去法的消元过程:回代后,得杜利脱尔分解:如果方程组 Ax =b 的系数阵 A 能分解为A =LU , 其中,L 是下三角矩阵,U 是上三角矩阵.例1.3 用矩阵的杜利脱尔(Doolittle )分解解方程组解:设 比较两边系数得:3215.546,100.0,104.0x x x ===-3215.546,45.76,17.46x x x ==-=11121212221210010010n n n n nn u u u l u u A l l u ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦0.01200.0100.16700.67811.0000.8334 5.91012.1032001200 4.200981.0⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦320.01200.0100.16700.678100.1000108.01044.4101467445410179810-⎡⎤⎢⎥→⨯--⎢⎥⎢⎥--⨯-⨯⎣⎦3550.01200.0100.16700.678100.1000108.01044.4100117510654710-⎡⎤⎢⎥→⨯--⎢⎥⎢⎥-⨯-⨯⎣⎦0.01200.0100.16700.67811.0000.8334 5.91012.1032001200 4.200981.0⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦232001200 4.200981.000.45845.90911.7900.5500100.16700.6744-⎡⎤⎢⎥→⎢⎥⎢⎥⨯⎣⎦32001200 4.200981.000.4584 5.90911.79000.096090.5329⎡⎤⎢⎥→⎢⎥⎢⎥⎣⎦.201814513252321321⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡x x x LU u u u u u u l l l =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡332322131211323121111513252321⎪⎪⎪⎩⎪⎪⎪⎨⎧-=-=-=======2454132321333223223121131211u l u u l l u u u ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=2441321153121U L 于是练习: 用矩阵的杜利脱尔(Doolittle )分解 A=LU 解方程组。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
湘潭大学数学与计算科学学院
10
定理5.3 矩阵的从属范数具有下列基本性质:
1) A 0 ,当且仅当 A0时, A 0 2) R ,
A | | A
A x A x
n n 3 )A B A B , A , B R ;
4) 5)
x Rn 时
A B A B , A 、B Rnn
T 2
1 3 1 2 1 0 1 4 A A 24 34 1 4 2 0
1 5 2 2 1
A ( A A ) 1 52 2 1 5 . 4 6 2
T
湘潭大学数学与计算科学学院 13
定理5.3中的性质 1), 2) 和 3)是一般范数所满 足的基本性质,性质 4)、5) 被称为相容性条件, 一般矩阵范数并不一定满足该条件.
湘潭大学数学与计算科学学院 11
三种从属范数计算:
(1)矩阵的1-范数(列和范数):
A1 m ax | aij |
j i1 n
i
n
(2)矩阵的 -范数(行和范数): A m ax | aij |
j1
(3)矩阵的2-范数: 其中
1
A 2 1
T A A 的最大特征值 :
湘潭大学数学与计算科学学院
12
例
1 2 求 A , p 1 ,2 , 已知矩阵 A , p 3 4
A1 6
解:பைடு நூலகம்按定义
T
A 7
1 0 1 4 I A A 3 0 4 0 1 4 2 0
第五章 线性代数方程组的解法
5.1 预备知识
湘潭大学数学与计算科学学院
1
x b 求解线性方程组 A
其中
a11 a 21 A an1
a12 a22 an2
T
。
a1n a2n ann
且 | A| 0
x xx ,2 , , x 1 n
b bb ,2 , , b 1 n
例如:
1 x1 x2 x1 n
x x n x 1
x x n x 2
湘潭大学数学与计算科学学院 7
2 向量序列的收敛问题
R , k 1 , 2 ,, 设 x 为R
( k ) n
n
中的一个给定
( k ) ( k ) ( k )T ( x , , x ) 向量序列 x 1 n
矩阵范数的等价定理: 对 A
、A
,存在常数 m 和 M ,使得:
m A A M A
几种常用范数的等价关系:
T
湘潭大学数学与计算科学学院
2
r a m e r 法则求解时存在的困难是:当方程 利用 C
2 组的阶数 n 很大时,计算量为 O ( n ! ) O ( n )
常用计算方法: (1) 直接解法:它是一类精确方法,即若不考虑计
算过程中的舍入误差,那么通过有限步运算可以获得
方程解的精确结果. Gauss 逐步(顺序)消去法、 Gauss主元素法、矩阵分解法等;
湘潭大学数学与计算科学学院 3
(2) 迭代解法:所谓迭代方法,就是构造某种 极限过程去逐步逼近方程组的解. 经典迭代法有: 迭代法、 a u s s S e i d e l J a c o b i 迭代法、G 逐次超松弛(SOR)迭代法等;
湘潭大学数学与计算科学学院
4
5.1.1 向量空间及相关概念和记号
(k ) 有 l i m x x 若对 i 1 , 2 , , n i i k
T 则称向量序列 { x ( k ) } 收敛于向量 x ( x , , x ) 1 n
命题: 当 k 时 ( k ) (k) l i m x x 0 x x
k
( k ) ( k ) ( k ) x x m a x | x x | , , | x x | 这是因为 1 1 n n
湘潭大学数学与计算科学学院
9
5.1.2 矩阵的一些相关概念及记号
1. 矩阵的范数
对于 R n 上的任何向量范数,我们可以定义矩阵范数.
定义 5.1 若 是 Rn 上任意范数,则对任一 A Rnn Ax A max max Ax , x 0 x 1 x 称为 A 的由向量范数 导出的矩阵范数, 简称 A 的从属 范数.
1 向量的范数
设 是 n 维实向量空间 Rn 上的范数,最常用的向量
T x (, x x , , x ) 范数是 p 范数: 12 n
p xp |x [ 1 , ) , i | ,p 1 i
n
1 /p
其中 p 1, 2, 是最重要的,即:
x |x | |x | |x | |x 1 2 n i| 1
从而当 k 时, x ( k ) x 与 x ( k ) x
湘潭大学数学与计算科学学院
0 等价
8
定理 5.2
设 为 Rn 中的任一种范数,则序
列{x ( k ) }收敛于 x R n 的充分必要条件为
x( k ) x 0,
k 时.
利用向量范数的等价性及向量范数的连续性, 容易 得到定理5.2的证明
i1 4
2 x 2 x 5 1 i i1
4
1 /2
x m a x ( | x | ,, | x | ) 5 1 4
湘潭大学数学与计算科学学院
6
范数的等价性
定理 5.1 对于 Rn 中任意两种范数 p 和 q ,总存在常 数 m和 M ,使对一切 x R n 都有 m x q x p M x q. (*)
2 x 2 xi i1 x m a x ( | x | ,, | x | ) 1 n
n
湘潭大学数学与计算科学学院
n
1/ 2
i 1
5
例:
T 1 ,2 , ( 1 ,3 , 5 , 4 ), 设x 求 xp, p
根据定义:
x 1 | xi | 13