调谐小信号放大器分析设计方案与仿真

合集下载

高频小信号调谐放大器的电路设计与仿真

高频小信号调谐放大器的电路设计与仿真

一、高频小信号调谐放大器的电路设计与仿真1.主要技术指标:谐振频率:=10.7MHz,谐振电压放大倍数:,通频带:,矩形系数:。

要求:放大器电路工作稳定,采用自耦变压器谐振输出回路。

2.给定条件回路电感L=4μH, ,,,晶体管用9018,β=50。

查手册可知,9018在、时,,,,,,。

负载电阻。

电源供电。

3.设计过程高频小信号放大器一般用于放大微弱的高频信号,此类放大器应具备如下基本特性:只允许所需的信号通过,即应具有较高的选择性。

放大器的增益要足够大。

放大器工作状态应稳定且产生的噪声要小。

放大器应具有一定的通频带宽度。

除此之外,虽然还有许多其它必须考虑的特性,但在初级设计时,大致以此特性作考虑即可. 基本步骤是:① 选定电路形式依设计技术指标要求,考虑高频放大器应具有的基本特性,可采用共射晶体管单调谐回路谐振放大器,设计参考电路见图1-1所示。

图1-1 单调谐高频小信号放大器电原理图图中放大管选用9018,该电路静态工作点Q主要由R b1和Rw1、R b2、Re与Vcc确定。

利用和、的分压固定基极偏置电位,如满足条件:当温度变化↑→↑→↓→↓→↓,抑制了变化,从而获得稳定的工作点。

由此可知,只有当时,才能获得恒定,故硅管应用时, 。

只有当负反馈越强时,电路稳定性越好,故要求,一般硅管取:。

② 设置静态工作点由于放大器是工作在小信号放大状态,放大器工作电流一般在0.8-2mA之间选取为宜,设计电路中取 ,设。

因为:而所以:因为:(硅管的发射结电压为0.7V)所以:因为: 所以:因为: 而 取则: 取标称电阻8.2KΏ因为:则:,考虑调整静态电流的方便,用22KΏ电位器与15KΏ电阻串联。

③谐振回路参数计算1)回路中的总电容C∑因为:则:2)回路电容C因有所以取C为标称值30pf,与5-20Pf微调电容并联。

3)求电感线圈N2与N1的匝数:根据理论推导,当线圈的尺寸及所选用的磁心确定后,则其相应的参数就可以认为是一个确定值,可以把它看成是一个常数。

调谐小信号放大器分析报告设计与仿真

调谐小信号放大器分析报告设计与仿真

实验室时间段座位号实验报告实验课程实验名称班级姓名学号指导老师小信号调谐放大器预习报告一.实验目的1.熟悉电子元器件和高频电子线路实验系统;2.掌握单调谐和双调谐放大器的基本工作原理;3.掌握测量放大器幅频特性的方法;4.熟悉放大器集电极负载对单调谐和双调谐放大器幅频特性的影响;5.了解放大器动态范围的概念和测量方法。

二.实验内容调谐放大器的频率特性如图所示。

图1-1 调谐放大器的频率特性调谐放大器主要由放大器和调谐回路两部分组成。

因此,调谐放大器不仅有放大作用,而且还有选频作用。

本章讨论的小信号调谐放大器,一般工作在甲类状态,多用在接收机中做高频和中频放大,对它的主要指标要求是:有足够的增益,满足通频带和选择性要求,工作稳定等。

二.单调谐放大器共发射极单调谐放大器原理电路如图1-2所示。

放大倍数fo f 1f K 0.7o K o K 2of ∆通频带f ∆2o f ∆2o f ∆图1-2图中晶体管T 起放大信号的作用,R B1、R B2、R E 为直流偏置电阻,用以保证晶体管工作于放大区域,从而放大器工作于甲类。

C E 是R E 的旁路电容,C B 、C C 是输入、输出耦合电容,L 、C 是谐振回路作为放大器的集电极负载起选频作用,它采用抽头接入法,以减轻晶体管输出电阻对谐振回路Q 值的影响,R C 是集电极(交流)电阻,它决定了回路Q 值、带宽。

三.双调谐回路放大器图中,R B1、R B2、R E 为直流偏置电阻,用以保证晶体管工作于放大区域,且放大器工作于甲类状态,E C 为E R 的旁通电容,B C 和C C 为输入、输出耦合电容。

图中两个谐振回路:11L C 、组成了初级回路,22L C 、组成了次级回路。

两者之间并无互感耦合(必要时,可分别对12L L 、加以屏蔽),而是由电容3C 进行耦合,故称为电容耦合。

本次实验需做内容1.采用点测法测量单调谐和双调谐放大器的幅频特性;2.用示波器测量输入、输出信号幅度,并计算放大器的放大倍数;3.用示波器观察耦合电容对双调谐回路放大器幅频特性的影响;4.用示波器观察放大器的动态范围;5.观察集电极负载对放大器幅频特性的影响。

高频双调谐高频小信号放大器设计

高频双调谐高频小信号放大器设计

课程设计(论文)任务及评语院(系):信息科学与工程学院教研室:通信教研室摘要高频电路是通信系统,特别是无线通信系统的基础,是无线通信设备的重要组成部分,其研究对象是通信系统中的发送设备和接受设备的高频“功能”电路功能的基本组成和原理。

“高频”是指讨论的功能电路的工作频率范围在几百千赫兹至几百兆赫兹的高频频段,电路可以用LCR分立元件和有源器件组成,有源器件的级间电容不能忽略,研制电路时必须考虑分布电容对电路的影响。

“功能”是指基本电路能够完成的信号传输和信号变换处理的具体工作任务。

对于同一功能电路,可以用不同的器件和不同的电路形式构成,但功能电路的功能和输入信号,输出信号的频谱关系是不会改变的。

高频电子线路是在科学技术和生产实践中发展起来的,也只有通过实践才能得到深入的了解,本次课程设计正好提供一个实验平台,坚持理论联系实际,在实践中积累丰富的经验关键词:高频电路目录第一章高频小信号放大器设计方案论证 (1)1.1高频小信号放大器的应用意义 (1)1.2高频小信号放大器设计的要求及技术指标 (1)1.3设计方案论证与选择 (2)1.4总体设计方案框图及分析 (3)第二章双调谐高频小信号放大器电路设计 (4)2.1双调谐高频小信号电路设计 (4)2.2 双调谐高频小信号电路参数计算 (4)2.3 EWB仿真结果 (5)2.4电路仿真结果分析 (5)2.5电路性能分析 (6)第三章设计总结 (7)参考文献 (8)附录:器件清单 (9)第一章 高频小信号放大器设计方案论证1.1高频小信号放大器的应用意义高频小信号放大器是通信设备中常用的功能电路,它所放大的信号频率在数百千赫至数百兆赫。

高频小信号放大器的功能是实现对微弱的高频信号进行不失真的放大,从信号所含频谱来看,输入信号频谱与放大后输出信号的频谱是相同的。

其中高频小信号调谐放大器广泛应用于通信系统和其它无线电系统中,特别是在发射机的接收端,从天线上感应的信号是非常微弱的,这就需要用放大器将其放大。

调谐某小信号放大器分析报告设计与仿真

调谐某小信号放大器分析报告设计与仿真

实验室时间段座位号实验报告实验课程实验名称班级姓名学号指导老师小信号调谐放大器预习报告一.实验目的1.熟悉电子元器件和高频电子线路实验系统;2.掌握单调谐和双调谐放大器的基本工作原理;3.掌握测量放大器幅频特性的方法;4.熟悉放大器集电极负载对单调谐和双调谐放大器幅频特性的影响;5.了解放大器动态范围的概念和测量方法。

二.实验内容调谐放大器的频率特性如图所示。

图1-1 调谐放大器的频率特性调谐放大器主要由放大器和调谐回路两部分组成。

因此,调谐放大器不仅有放大作用,而且还有选频作用。

本章讨论的小信号调谐放大器,一般工作在甲类状态,多用在接收机中做高频和中频放大,对它的主要指标要求是:有足够的增益,满足通频带和选择性要求,工作稳定等。

二.单调谐放大器共发射极单调谐放大器原理电路如图1-2所示。

放大倍数fo f 1f K 0.7o K o K 2of ∆通频带f ∆2o f ∆2o f ∆图1-2图中晶体管T 起放大信号的作用,R B1、R B2、R E 为直流偏置电阻,用以保证晶体管工作于放大区域,从而放大器工作于甲类。

C E 是R E 的旁路电容,C B 、C C 是输入、输出耦合电容,L 、C 是谐振回路作为放大器的集电极负载起选频作用,它采用抽头接入法,以减轻晶体管输出电阻对谐振回路Q 值的影响,R C 是集电极(交流)电阻,它决定了回路Q 值、带宽。

三.双调谐回路放大器图中,R B1、R B2、R E 为直流偏置电阻,用以保证晶体管工作于放大区域,且放大器工作于甲类状态,E C 为E R 的旁通电容,B C 和C C 为输入、输出耦合电容。

图中两个谐振回路:11L C 、组成了初级回路,22L C 、组成了次级回路。

两者之间并无互感耦合(必要时,可分别对12L L 、加以屏蔽),而是由电容3C 进行耦合,故称为电容耦合。

本次实验需做内容1.采用点测法测量单调谐和双调谐放大器的幅频特性;2.用示波器测量输入、输出信号幅度,并计算放大器的放大倍数;3.用示波器观察耦合电容对双调谐回路放大器幅频特性的影响;4.用示波器观察放大器的动态范围;5.观察集电极负载对放大器幅频特性的影响。

实验一.小信号调谐放大器实验

实验一.小信号调谐放大器实验

c.改变扫频仪输出衰减使曲线的顶点正好与基准 同高,由衰减器衰减系数便知放大器的放大倍 数,显示的曲线为谐振放大器的幅频特性曲线, 由曲线可看出中心频率及通频带的数值。 5.当高频信号源输出Ui=10mV,m=30% 的调幅信号 加到放大器输入端时,用示波器观察输出波形, 测出输出信号的m值。
m m值的测量可用下述公式: A B 100 % A B
图1.小信号谐振放大器实验电路图如下:
QL
f0
B0.7

RL RP 0 L
kv
f
i
无阻尼电阻接入时(R=∞)的幅频特性曲线
接入阻尼电阻(R=3kΩ )时的幅频特性曲线

比较可以看出,接入阻尼电阻,放大器增益下降, 通频带展宽.

实验内容
1.为顺利完成本次实验,应先对电路作以仿真分 析,仿真时可完成下列内容: a:静态工作点对放大器的影响。 b: 阻尼电阻变化对放大器增益、带宽、品质因 数等的影响。 c:负载电阻的变化对放大器的影响。 2.测量并调整放大器的工作点:调Rw1使UEQ=2V,测 此时的工作点Q(UCEQ,ICQ)。※注意:测试时, 输入高频=0,ICQ值可用间接法获得。 3.用逐点测试法测试放大器的幅频特性曲线,并 算出增益、带宽及品质因数 测试条件:
f0
1
C
便于实现调试,C取47pF的固定电容和可调电容 5/22pF并联使用。 (4).工程估算 a.谐振增益 因 goe=200μ s, gp=1/ω 0LQ0=1/2π f0LQ0≈53.1μ S ∴G∑=n12goe+n22gL+gp≈353.1s ∴Av0=n1n2Yfe/GΣ ≈32或30dB b.通频带 由前知 QL=1/GΣ ω 0L≈106/(353.1×2×π ×15×2)≈1

单调谐小信号谐振放大器设计

单调谐小信号谐振放大器设计

单调谐小信号谐振放大器设计引言谐振放大器是一种电子放大电路,它的输入和输出都是谐振频率。

在无线通信、放大放大器、滤波器和振荡器等电子设备中广泛应用。

本文将介绍单调谐小信号谐振放大器的设计方法和步骤。

一、谐振放大器的原理谐振放大器的设计基于谐振频率的放大,其原理如下:1.输入信号通过输入网络进入放大器。

2.放大器中的增益网络对输入信号进行放大。

3.输出信号通过输出网络输出。

二、单调谐小信号谐振放大器的设计步骤在进行单调谐小信号谐振放大器的设计之前,我们需要明确一些重要的参数:1.频率范围:确定需要放大的频率范围。

2.谐振频率:确定谐振频率。

3.放大增益:确定需要的放大增益。

4.设计目标:根据应用需求确定设计目标。

设计步骤如下:1.确定放大器的类型:根据应用需求选择合适的放大器类型,如共射放大器、共基放大器或共集放大器等。

2.确定大信号参数:计算输入信号的最大振幅和最大频率。

3.确定放大器的频率特性:根据输入信号的频率范围和谐振频率,计算并选择带通滤波器的元件参数。

4.进行放大器设计:根据放大增益的要求,计算并选择放大器的元件参数,如电阻、电容、电感等。

5.进行电源设计:计算并选择适当的电源电压和电源稳压电路。

6.进行仿真和优化:利用电磁仿真软件进行电路仿真,并根据仿真结果优化电路参数。

7.进行实验验证:根据设计结果制作实际电路并进行实验验证。

三、设计注意事项在进行单调谐小信号谐振放大器设计时,需要注意以下几个方面:1.输入和输出的匹配:确保输入输出网络与放大器的输入输出阻抗匹配,以提高功率传输效率。

2.稳定性:通过适当选择电容或电感等元件,可以提高放大器的稳定性。

3.线性度:在设计过程中,需要考虑放大器的线性度,以保证输入输出信号的准确性。

4.功率容量:根据应用需求确定放大器的功率容量。

结论单调谐小信号谐振放大器是一种常用的电子放大电路,其设计步骤包括确定放大器类型、大信号参数、频率特性、元件参数、电源设计,进行仿真和优化以及实验验证。

小信号调谐(单双调谐)放大器实验

小信号调谐(单双调谐)放大器实验

实验一 高频小信号调谐放大器实验一、实验目的1. 掌握小信号调谐放大器的基本工作原理;2. 掌握谐振放大器电压增益、通频带、选择性的定义、测试及计算;3. 了解高频小信号放大器动态范围的测试方法;二、实验原理1-1a 1-1b(一)单调谐放大器小信号谐振放大器是通信机接收端的前端电路,主要用于高频小信号或微弱信号的线性放大。

其实验单元电路如图1-1(a )所示。

该电路由晶体管Q 1、选频回路T 1二部分组成。

它不仅对高频小信号进行放大,而且还有一定的选频作用。

本实验中输入信号的频率f S =12MHz 。

基极偏置电阻W 3、R 22、R 4和射极电阻R 5决定晶体管的静态工作点。

可变电阻W 3改变基极偏置电阻将改变晶体管的静态工作点,从而可以改变放大器的增益。

表征高频小信号调谐放大器的主要性能指标有谐振频率f 0,谐振电压放大倍数A v0,放大器的通频带BW 及选择性(通常用矩形系数K r0.1来表示)等。

放大器各项性能指标及测量方法如下: 1.谐振频率放大器的调谐回路谐振时所对应的频率f 0称为放大器的谐振频率,对于图1-1(a )所示电路(也是以下各项指标所对应电路),f 0的表达式为∑=LC f π210式中,L 为调谐回路电感线圈的电感量;∑C 为调谐回路的总电容,∑C 的表达式为ie oe C P C P C C 2221++=∑式中, C oe 为晶体管的输出电容;C ie 为晶体管的输入电容;P 1为初级线圈抽头系数;P 2为次级线圈抽头系数。

谐振频率f 0的测量方法是:用扫频仪作为测量仪器,测出电路的幅频特性曲线,调变压器T 的磁芯,使电压谐振曲线的峰值出现在规定的谐振频率点f 0。

2.电压放大倍数放大器的谐振回路谐振时,所对应的电压放大倍数A V0称为调谐放大器的电压放大倍数。

A V0的表达式为Gg p g p y p p g y p p v v A ie oe fe fei V ++-=-=-=∑2221212100 式中,∑g 为谐振回路谐振时的总电导。

小信号调谐放大器实验报告

小信号调谐放大器实验报告

一、实验目的本次实验旨在通过搭建和调试小信号调谐放大器电路,深入了解调谐放大器的工作原理和设计方法,掌握其特性参数的测量方法,并通过实验数据分析放大器的性能,为后续高频电子线路设计打下基础。

二、实验原理小信号调谐放大器是一种高频放大器,其主要功能是对高频小信号进行线性放大。

其工作原理是利用LC并联谐振回路作为晶体管的集电极负载,通过调节谐振频率来实现对特定频率信号的放大。

实验中,我们采用共发射极接法的晶体管高频小信号调谐放大器。

晶体管的静态工作点由电阻RB1、RB2及RE决定。

放大器在高频情况下的等效电路如图1所示,其中晶体管的4个y参数分别为输入导纳yie、输出导纳yoe、正向传输导纳yfe和反向传输导纳yre。

图1 高频小信号调谐放大器等效电路三、实验仪器与设备1. 高频信号发生器:用于产生不同频率和幅度的正弦波信号。

2. 双踪示波器:用于观察放大器输入、输出信号的波形和幅度。

3. 万用表:用于测量电路中电阻、电容等元件的参数。

4. 扫频仪(可选):用于测试放大器的幅频特性曲线。

四、实验步骤1. 搭建小信号调谐放大器电路,连接好实验仪器。

2. 调整谐振回路的电容和电感,使放大器工作在谐振频率附近。

3. 使用高频信号发生器输入不同频率和幅度的正弦波信号,观察放大器输入、输出信号的波形和幅度。

4. 使用示波器测量放大器的电压放大倍数、通频带和矩形系数等性能指标。

5. 使用扫频仪测试放大器的幅频特性曲线,进一步分析放大器的性能。

五、实验结果与分析1. 电压放大倍数通过实验,我们得到了放大器的电压放大倍数Avo,其值约为30dB。

这说明放大器对输入信号有较好的放大作用。

2. 通频带放大器的通频带BW0.7为2MHz,说明放大器对频率为2MHz的信号有较好的放大效果。

3. 矩形系数放大器的矩形系数Kr0.1为1.2,说明放大器对信号的选择性较好。

4. 幅频特性曲线通过扫频仪测试,我们得到了放大器的幅频特性曲线,如图2所示。

单调谐小信号放大器实验报告

单调谐小信号放大器实验报告

单调谐小信号放大器实验报告1. 背景单调谐小信号放大器是一种常见的电子设备,用于放大输入信号,并同时对其进行频率调制。

该放大器在电子通信、音频处理和无线传输等领域具有广泛的应用。

本实验旨在通过搭建单调谐小信号放大器电路并对其进行测试,探究其性能和特点。

2. 分析2.1 原理单调谐小信号放大器通常由三部分组成:输入级、中间级和输出级。

输入级负责接收外部输入信号,并将其转换为低幅度、高阻抗的中频信号;中间级负责对中频信号进行放大,并将其转换为低阻抗的高幅度中频信号;输出级负责将中频信号转换为输出信号。

2.2 设计与搭建根据实验要求,我们选择了共射极放大电路作为单调谐小信号放大器的基本电路。

根据设计原理,我们需要选择合适的晶体管、电容和电阻来搭建电路。

具体搭建步骤如下:1.将晶体管连接到集电极、基极和发射极上,确保极性正确。

2.接入输入电容和输出电容,用于隔离输入和输出信号。

3.连接偏置电阻,用于稳定电路工作点。

4.连接反馈电阻和耦合电容,用于增加放大器的增益。

2.3 测试与测量在搭建完单调谐小信号放大器电路后,我们需要进行测试和测量来评估其性能。

1.首先,我们使用函数发生器提供一个输入信号,并通过示波器观察到输出信号。

根据输出信号的幅度和频率变化情况,我们可以评估放大器的增益和频率响应。

2.然后,我们可以通过改变输入信号的幅度和频率,并观察输出信号的变化来测试放大器的线性度和动态范围。

3.最后,我们可以通过测量功耗、噪声等参数来评估放大器的效率和性能。

3. 结果在实验中,我们成功搭建了单调谐小信号放大器电路,并进行了相关测试与测量。

以下是一些典型结果:1.增益:根据实验数据计算得到的放大器增益为20 dB,在设计要求范围内。

2.频率响应:通过频谱分析仪测量得到的频率响应曲线显示出放大器在1 kHz至10 kHz范围内具有较平坦的增益。

3.线性度和动态范围:通过改变输入信号幅度和频率,我们观察到输出信号的线性变化,并确定了放大器的动态范围为-30 dB至+20 dB。

小信号调谐(单调谐)放大器实验

小信号调谐(单调谐)放大器实验

小信号调谐(单调谐)放大器实验
小信号调谐放大器实验是一种常见的实验,用于分析和研究放大器的频率响应特性。

在这个实验中,我们会使用一个单调谐放大器电路,通过调节电路参数来实现对特定频率信号的放大。

下面是一种常见的实验步骤:
材料准备:
1. 信号发生器:用于产生待放大的输入信号。

2. 单调谐放大器电路:由电容、电感和电阻等元件组成的并联谐振电路。

3. 可变电阻:用于调节电路的谐振频率。

实验步骤:
1. 创建实验电路:根据实验要求,根据所给的电路图,建立单调谐放大器电路。

2. 连接信号发生器和电路:使用信号发生器将待放大的输入信号接入电路的输入端。

3. 设置信号发生器:调节信号发生器的频率和幅度,使其产生待放大的输入信号。

4. 测量输出信号:使用示波器或其他合适的仪器,测量电路的输出信号。

5. 调节电路参数:根据实验需要,逐步调节电路的元件参数,如可变电阻,以使电路在特定频率上获得最大增益。

6. 记录实验数据:在每次调节电路参数后,记录输出信号的幅度和频率。

7. 分析实验数据:根据记录的数据,绘制输出信号的幅度和频率之间的关系曲线。

8. 总结实验结论:根据实验数据的分析结果,对放大器的频率响应特性进行总结,并根据需要进行进一步的讨论和研究。

这个实验可以帮助我们理解放大器的频率响应特性,并且可以通过调节电路参数来实现对特定频率信号的放大,这在实际电子电路设计和应用中非常重要。

小信号调谐放大器电路分析

小信号调谐放大器电路分析

vc ' vo '
1 p1 vc 1 p2 vo
vc ' vo '
2.1 高频小信号调谐放大器
2.1.4 晶体管高频小信号单调谐回路谐振放大器(P86)
vc '
1 p1
vc
vo '
1 p2 vo
vc ' vo '
三、放大器的电压增益

••
AV V0/Vi
yLGPjCj 1Lp2 2yie2
p1p2 yfe CΣ
.
Av0 20.7
yfe C
带宽增益积为一常数
带宽和增益为一对矛盾。
2.1 高频小信号调谐放大器
2.1.4 晶体管高频小信号单调谐回路谐振放大器(P86)
放大器的电压增益大小与哪些因素有关(P 89)

A Vf(p1,p2,yfe,G P,yoe,yie)
QL
0 (L
GP
上节内容回顾与扩展
晶体管高频小信号单调谐回路谐振放大器-基本电路 每个单元电路的交流分量自行构成回路,
RF电路中电源的去耦合 不通过公共电源的内阻。
上节内容回顾与扩展
晶体管高频小信号单调谐回路谐振放大器-基本电路 耦合电容、旁路电容及RFC电感值的选取
上节内容回顾与扩展
晶体管高频小信号单调谐回路谐振放大器-基本电路
I 2 y fe V1 y oe V2
问题:
1、yie? 2、yoe? 3、yfe? 4、yre?
I1
I2
上节内容回顾与扩展
+
+
V1
V2
高频晶体管小信号等效电路模型
-
-
I1

调谐小信号放大器分析报告设计与仿真

调谐小信号放大器分析报告设计与仿真

实验室时间段座位号实验报告实验课程实验名称班级姓名学号指导老师小信号调谐放大器预习报告一.实验目的1.熟悉电子元器件和高频电子线路实验系统;2.掌握单调谐和双调谐放大器的基本工作原理;3.掌握测量放大器幅频特性的方法;4.熟悉放大器集电极负载对单调谐和双调谐放大器幅频特性的影响;5.了解放大器动态范围的概念和测量方法。

二.实验内容调谐放大器的频率特性如图所示。

图1-1 调谐放大器的频率特性调谐放大器主要由放大器和调谐回路两部分组成。

因此,调谐放大器不仅有放大作用,而且还有选频作用。

本章讨论的小信号调谐放大器,一般工作在甲类状态,多用在接收机中做高频和中频放大,对它的主要指标要求是:有足够的增益,满足通频带和选择性要求,工作稳定等。

二.单调谐放大器共发射极单调谐放大器原理电路如图1-2所示。

放大倍数fo f 1f K 0.7o K o K 2of ∆通频带f ∆2o f ∆2o f ∆图1-2图中晶体管T 起放大信号的作用,R B1、R B2、R E 为直流偏置电阻,用以保证晶体管工作于放大区域,从而放大器工作于甲类。

C E 是R E 的旁路电容,C B 、C C 是输入、输出耦合电容,L 、C 是谐振回路作为放大器的集电极负载起选频作用,它采用抽头接入法,以减轻晶体管输出电阻对谐振回路Q 值的影响,R C 是集电极(交流)电阻,它决定了回路Q 值、带宽。

三.双调谐回路放大器图中,R B1、R B2、R E 为直流偏置电阻,用以保证晶体管工作于放大区域,且放大器工作于甲类状态,E C 为E R 的旁通电容,B C 和C C 为输入、输出耦合电容。

图中两个谐振回路:11L C 、组成了初级回路,22L C 、组成了次级回路。

两者之间并无互感耦合(必要时,可分别对12L L 、加以屏蔽),而是由电容3C 进行耦合,故称为电容耦合。

本次实验需做内容1.采用点测法测量单调谐和双调谐放大器的幅频特性;2.用示波器测量输入、输出信号幅度,并计算放大器的放大倍数;3.用示波器观察耦合电容对双调谐回路放大器幅频特性的影响;4.用示波器观察放大器的动态范围;5.观察集电极负载对放大器幅频特性的影响。

小信号调谐放大器电路设计、基于matlab的带通滤波器设计

小信号调谐放大器电路设计、基于matlab的带通滤波器设计

一、硬件部1、原理..................................................... 错误!未定义书签。

1.1 小信号调谐放大器的主要特点......................... 错误!未定义书签。

1.2 小信号调谐放大器的主要质量指标 (1)1.2.1谐振频率 (1)1.2.2谐振增益(Av) (1)1.2.3通频带 (1)1.2.4增益带宽积 (2)1.2.5选择性 (2)1.2.6噪声系数 (3)1.3 单级单调谐回路谐振放大器电路原理 (3)2、电路图 (4)3、实验过程 (4)4、实验结果 (6)二、软件部分1、凯瑟窗 (7)1.1 原理 (7)1.2 参数设置 (7)1.3 matlab程序 (8)1.4 实验图像 (9)2、频率采样法 (11)2.1 原理 (11)2.2 参数设置 (11)2.3 matlab程序 (12)2.4 实验图像 (13)三、实验心得 (15)四、参考文献 (16)一、硬件部分我们组硬件部分设计题目是:小信号调谐放大器的设计。

1、原理:1.1 小信号调谐放大器的主要特点晶体管集电极负载通常是一个由 LC 组成的并联谐振电路。

由于 LC 并联谐振回路的阻抗是随着频率变化而变化,理论上可以分析,并联谐振在谐振频率处呈现纯阻,并达到最大值。

即放大器在回路谐振频率上将具有最大的电压增益。

若偏离谐振频率,输出增益减小。

总之,调谐放大器不仅具有对特定频率信号的放大作用,同时也起着滤波和选频的作用。

1.2小信号调谐放大器的主要质量指标衡量小信号调谐放大器的主要质量主要包括以下几个方面:1.2.1谐振频率放大器调谐回路谐振时所对应的频率称为放大器的谐振频率,理论上,对于 LC 组成的并联谐振电路,谐振频率 的表达式为:LC f π21=式中,L 为调谐回路电感线圈的电感量;C 为调谐回路的总电容。

1.2.2谐振增益(Av )放大器的谐振电压增益放大倍数指:放大器处在在谐振频率f0下,输出电压与输入电压之比。

高频实验:小信号调谐放大器实验报告

高频实验:小信号调谐放大器实验报告

实验一 小信号调谐放大器实验报告一 实验目的1.进一步掌握高频小信号调谐放大器的工作原理和基本电路结构。

2.掌握高频小信号调谐放大器的调试方法。

3.掌握高频小信号调谐放大器各项技术参数(电压放大倍数,通频带,矩形系数)的测试。

二、实验使用仪器1.小信号调谐放大器实验板 2.200MH 泰克双踪示波器 3. FLUKE 万用表 4. 模拟扫频仪(安泰信) 5. 高频信号源 三、实验基本原理与电路 1、 小信号调谐放大器的基本原理所谓“小信号”,通常指输入信号电压一般在微伏 毫伏数量级附近,放大这种信号的放大器工作在线性范围内。

所谓“调谐”,主要是指放大器的集电极负载为调谐回路(如LC 调谐回路)。

这种放大器对谐振频率0f 及附近频率的信号具有最强的放大作用,而对其它远离0f 的频率信号,放大作用很差,如图1-1所示。

图1.1 高频小信号调谐放大器的频率选择特性曲线小信号调谐放大器技术参数如下:10.7071.增益:表示高频小信号调谐放大器放大微弱信号的能力2.通频带和选择性:通常规定放大器的电压增益下降到最大值的0.707倍时,所对应的频率范围为高频放大器的通频带,用B0.7表示。

衡量放大器的频率选择性,通常引入参数——矩形系数K0.1。

2.实验电路原理图分析:In1是高频信号输入端,当信号从In1输入时,需要将跳线TP1的上部连接起来。

In2是从天线接收空间中的高频信号输入,电感L1和电容C1,C2组成选频网络,此时,需要将跳线TP1的下部连接起来。

电容C3是隔直电容,滑动变阻器RW2和电阻R2,R3是晶体管基极的直流偏置电阻,用来决定晶体管基极的直流电压,电阻R1是射极直流负反馈电阻,决定了晶体管射极的直流电流Ie。

晶体管需要设置一个合适的直流工作点,才能保证小信号谐振放大器正常工作,有一定的电压增益。

通常,适当的增加晶体管射极的直流电流Ie可以提高晶体管的交流放大倍数 ,增大小信号谐振放大器的放大倍数。

小信号放大器性能分析与仿真

小信号放大器性能分析与仿真

实验七 小信号放大器性能分析与仿真一、实验名称:小信号放大器性能分析与仿真 二、实验目的:1、仿真分析各种小信号放大器的结构,参数及特性,如电压增益、输入阻抗、输出阻抗、频率响应等等。

2、掌握实验中的小信号放大器的等效电路及其工作原理。

三、实验原理:小信号放大器是电子线路的重要组成部分之一,由于它工作在晶体管的线性区域之内,因此又称为线性放大器。

晶体管存在等效电路,常见的三极管等效电路有:低频h 参数、共基极T 型高频等效电路、混合π型高频等效电路。

共发射极h 参数的等效电路:适用于对低频放大器进行分析。

共基极T 型高频等效电路:适用于分析共基极高频放大电路,工作频率可以高达100MHz 以上。

混合π型高频等效电路:适应于分析共射极高频放大电路,在较宽的频率范围之内,等效电路的参数与工作频率无关。

四、实验内容:1、晶体三极管的等效电路常见的晶体三极管等效电路有:低频h 参数、共基极T 型高频等效电路、混合型高频等效电路,它们经常用于分析各种小信号晶体管放大器的特性。

共发射极h 参数的等效电路如图所示,它适用于对低频放大器进行分析。

另外,还存在着一种简化的h 参数等效电路,其中忽略晶体管内部的电压反馈系数h 。

共发射极的h 参数与各电压电流的关系为⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡c b oe fe re iec b v i h h h h i v共基极T 型高频等效电路如下左图所示,它适用于对共基极高频放大电路进行分析,工作频率可高达100MHz 以上。

混合π型高频等效电路如下图右所示,它适用于分析共发射极高频放大电路。

在较宽的频率范围内,等效电路的参数与工作频率无关。

另外还存在着简化的混合型高频等效电路,其中rb'e 和rce 处于开态。

2、共发射极放大电路共发射极放大电路是一种使用广泛的电路,其电压和电流增益都比较高。

自定义M 函数amplif.m 来仿真共发射极放大电路,使用它计算放大器的直流参数和交流参数(频率在1000HZ 左右的中间频率)。

高频小信号调谐放大器设计

高频小信号调谐放大器设计

高频小信号调谐放大器设计
一. 设计思路
1. 设计要求:要求中心频率11MHz ,增益20~30dB ,带宽0.5M 。

2. 设计原理:设计采用共射晶体管单调谐回路谐振放大器,小信号放大器的主要特点是晶体管的集电极负载不是纯电阻,而是由LC 组成的并联谐振回路。

二. 参数计算
1. 设置静态工作点
设计电路上取IC = 1.5mA ,Re=1K Ω,
由计算得Rb1 = 8.2 K Ω,Rb2=36.5 k Ω。

为了调整静态电流ICQ 。

Rb2用20 k Ω电位器与15 k Ω电阻串联。

2. 计算总电容
通过∑=LC f π21
得C 总= 55.5pf ,C = 48.5pf ,实际仿真时通过并联一个5~20pf 的可变电容实现。

3. 耦合电容和滤波电感
耦合电容取值在1000pf-0.01uf ,旁路电容取值在0.01-1uf ,滤波电容取值在220-330uh
4. 电感线圈用固定电感L1 = 300uh , L2 = 2.5uh 串联,部分接入中间抽头
三. 波形分析
1. 仿真电路图
2. 仿真输入波形图
3.输出的波形图
4.输出输入对比。

小信号调谐放大器实验报告

小信号调谐放大器实验报告

小信号调谐放大器实验报告引言:小信号调谐放大器是电子电路中常用的一种放大器,它可以根据输入信号的频率进行调谐,实现对特定频率信号的放大。

本实验旨在通过搭建小信号调谐放大器电路并进行实际测量,验证其放大性能和调谐特性。

实验目的:1. 搭建小信号调谐放大器电路;2. 测量并分析电路的放大性能;3. 测试并探究电路的调谐特性。

实验步骤:一、搭建小信号调谐放大器电路根据实验要求,我们搭建了一个小信号调谐放大器电路。

该电路由一个晶体管放大电路和调谐电路组成。

晶体管放大电路采用共射极放大电路,调谐电路由电感和电容组成。

通过调节电容的值可以实现对不同频率信号的调谐。

二、测量电路的放大性能我们使用信号发生器作为输入信号源,将信号发生器的输出接入到放大器的输入端,然后连接示波器测量输出信号的幅值。

通过改变信号发生器的频率,我们可以测量和分析放大器在不同频率下的放大倍数和频率响应。

实验结果:1. 放大性能测量结果我们在实验中选择了几个不同频率的信号,测量了放大器的输入信号和输出信号的幅值,并计算了放大倍数。

实验结果表明,放大器对不同频率信号的放大倍数并不相同,存在一个最大放大倍数点。

在该点附近,放大倍数较大,而在离该点较远的频率处,放大倍数明显下降。

2. 调谐特性测量结果我们通过改变调谐电路中电容的值来调整放大器的调谐频率。

实验结果表明,当电容值较小时,调谐频率较高;而当电容值较大时,调谐频率较低。

通过合理选择电容值,可以实现对特定频率信号的调谐。

讨论:通过实验我们验证了小信号调谐放大器的基本性能和调谐特性。

实验结果表明,放大器对不同频率信号的放大倍数存在一个最大值,且在调谐频率点附近放大倍数较高,这是由于电路的频率特性和晶体管的工作原理决定的。

在实际应用中,我们可以根据需要选择合适的电容值和电感值,以满足对特定频率信号的放大要求。

结论:本实验通过搭建小信号调谐放大器电路并进行测量,验证了该电路的放大性能和调谐特性。

高频小信号调谐放大器的电路设计与仿真

高频小信号调谐放大器的电路设计与仿真

课程设计任务书学生姓名:_________________ 专业班级:_____________指导教师:________________ 工作单位:______________题目: 1.高频小信号调谐放大器的电路设计与仿真2.乘积型相位鉴频设计与仿真3.高频谐振功率放大器设计与制作初始条件:对电路器件的选型及电路形式的选择有一定的了解;具备高频电子电路的基本设计能力及基本调试能力。

要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求)1.谐振频率:f o = 10.7MHz谐振电压放大倍数:A V。

3 20dB,,通频带:B WO.7=1MH Z;矩形系数:K ro.1兰10。

要求:放大器电路工作稳定,采用自耦变压器谐振输出回路2.电路的主要技术指标:输出功率Po> 125mW V工作中心频率fo=6MHz >65%, 已知:电源供电为12V,负载电阻,RL=51 Q ,晶体管用3DA1,其主要参数:Pcm=1W,lcm=750mA,VCES=1.5V,fT=70MHz,hfe10,功率增益Ap> 13dB (20 倍)。

时间安排:第15周,安排任务(鉴3-204 )第16周,仿真、实物设计(鉴主实验室)第17周,完成(答辩,提交报告,演示)指导教师签名:年月日系主任(或责任教师)签名:年月日高频小信号谐振放大器 (3)1. ............................................................................................................................................... 设计任务32 .总体电路方框图 (3)3单元电路设计 (4)3.1小信号放大电路 (4)3.2选频网络 (5)4仿真结果 (6)5实物制作与测试 (7)乘积型相位鉴频设计与仿真 (8)1. 鉴频器概述 (8)2. 鉴频器的主要参数 (8)2.1鉴频特性(曲线) (8)2.2鉴频器的主要参数 (9)3. 鉴频方法 (9)3.1直接鉴频法 (9)3.2间接鉴频法 (10)3.2乘积型相位鉴频器原理说明 (10)4. 乘积型相位鉴频器实验电路说明及仿真设计 (11)4.1 乘积型相位鉴频器电路 (11)4.2仿真电路设计及结果分析 (12)5. MC1496鉴频电路的鉴频实物实验 (14)5.1鉴频电路的鉴频操作过程 (14)5.2鉴频特性曲线(S曲线)的测量方法 (14)高频功率放大器 (15)1.放大器电路分析 (15)2谐振功率放大器的动态特性 (16)2.1谐振功放的三种工作状态 (16)2.2谐振功率放大器的外部特性 (17)3单元电路的设计 (19)3.1确定功放的工作状态 (19)3.2基极偏置电路计算 (20)3.3计算谐振回路与耦合线圈的参数 (21)3.4电源去耦滤波元件选择 (21)4电路的安装与调试 (22)总结 (23)参考文献 (24)武汉理工大学《高频电子线路》课程设计说明书>高频小信号谐振放大器1. 设计任务设计一高频小信号谐振放大器,所设计电路的性能指标如下: 谐振频率:fo = 10.7MH z, 谐振电压放大倍数:Av ° _20dB , 通频带:B wo.7 "MHz , 矩形系数:J 」10 。

小信号谐振放大器的Multisim仿真

小信号谐振放大器的Multisim仿真
三、测试电路调整对指标的影响
1、如果在L、C3回路两端并联一个15KΩ的电阻,那么谐振电压增益Auo变小(变大、变小),通频带BW0.7变宽(变宽、变窄),选择性变差(变好、变差),品质因数Qe变小(变大、变小)。
2、修改变压器的参数设置,令n=10,测试Auo、fo、BW0.7的变化如下:
【附】:变压器参数设置n=10
1、测试幅度频特性曲线
图2幅频特性曲线与光标读数
【问题】:根据图2幅频特性曲线,读出谐振电压增益Auo=162.4,谐振频率fo=55.6MHz;
2、测试相频特性曲线
【问题】:根据图3的相频特性曲线,读出谐振时相位差=-12.3°。
【结论】:与普通LC并联回路相比,采用自耦变压器阻抗变换电路之后,会导致谐振时相位不为0,因此输出与输入波形也不是反相(相位差180)。
Rs2 11 5 5e-007oபைடு நூலகம்m
Le 6 7 1e-012H
Lm 7 2 6.5e-006H
E1 9 8 7 2 0.1539
E2 8 4 7 2 0.1539
V1 9 10 DC 0V
V2 8 11 DC 0V
F1 7 2 V1 0.307692
F2 7 2 V2 0.307692
二、测试谐振电压增益Auo、谐振频率fo、通频带等技术指标
学生作业单
一、仿真电路
图1仿真电路
【附】:变压器参数设置n=3.25
* EWB Version 4 - Transformer Model
* n= 3.25 Le= 1e-012 Lm= 4.22e-007 Rp= 1e-006 Rs= 1e-006
Rp 1 6 1e-006ohm
Rs1 10 3 1e-006ohm

高频小信号单调谐放大器仿真分析

高频小信号单调谐放大器仿真分析

任务三、高频小信号单调谐放大器仿真分析一、目的(1)分析高频小信号单调谐放大器电路,并选择合适的元件参数,运用Multisim 仿真软件进行仿真分析与测试。

(2)测试高频小信号单调谐放大器的动态U i —U o 曲线和电压放大倍数. (3)利用波特图示仪测试高频小信号单调谐放大器回路谐振曲线。

(4)测试频率特性. 二、仪器和设备计算机:安装Multisim 电路仿真软件 三、原理图2—47 高频小信号单调谐放大器原理电路及等效电路小信号调谐放大器的指标:图2-48 单调谐放大电路等效电路高频小信号单调谐放大器等效电路进一步简化如图所示,该等效电路实质就是一单调谐回路,因此单调谐放大器指标的计算最终归结为单调谐回路的计算。

(1)谐振频率 LCf π210=(2)通频带 Qf B 07.0= 品质因数GC LG LC R C R LR Q 00001ωωωω=====(3)放大器的选择性 K 0.1 = BW 0。

1 / BW 0.7 = 9。

96 ≈ 10 (4)电压增益 GY p p Gu u Y p p u u p u u A fe 12SS fe 12SL 2SL 0V '====(5)增益带宽乘积 CY p p B A GB π2fe 127.00V ==四、内容与步骤1. 动态Ui-Uo 曲线和电压放大倍数测试图2-49 动态U i—U o曲线和电压放大倍数测试图1.连接电路如图,在发射极电阻R3上并联万用表,开启仿真开关,调整电位器R P,使万用表指示在1V 左右,并保持静态电压不变。

2.将万用表改接到输出端B,在输入端A接上信号发生器,信号发生器设置为:正弦波,频率10。

7MHz,峰值电压20mV;开启仿真开关,调节可变电容C2的百分比为35%,此时LC回路处于谐振状态,万用表交流电压读数最大为563。

955mV.3.逐渐增大信号发生器的信号幅值U i,记录每次的U o 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验室
时间段
座位号
实验报告
实验课程
实验名称
班级
姓名
学号
指导老师
小信号调谐放大器预习报告
一.实验目的
1.熟悉电子元器件和高频电子线路实验系统;
2.掌握单调谐和双调谐放大器的基本工作原理;
3.掌握测量放大器幅频特性的方法;
4.熟悉放大器集电极负载对单调谐和双调谐放大器幅频特性的影响;
5.了解放大器动态范围的概念和测量方法。

二.实验内容
调谐放大器的频率特性如图所示。

图1-1 调谐放大器的频率特性
调谐放大器主要由放大器和调谐回路两部分组成。

因此,调谐放大器不仅有放大作用,而且还有选频作用。

本章讨论的小信号调谐放大器,一般工作在甲类状态,多用在接收机中做高频和中频放大,对它的主要指标要求是:有足够的增益,满足通频带和选择性要求,工作稳定等。

二.单调谐放大器
共发射极单调谐放大器原理电路如图1-2所示。

放大倍数f
o f 1f K 0.7o K o K 2o
f ∆通频带f ∆2o f ∆2o f ∆
图1-2
图中晶体管T 起放大信号的作用,R B1、R B2、R E 为直流偏置电阻,用以保证晶体管工作于放大区域,从而放大器工作于甲类。

C E 是R E 的旁路电容,C B 、C C 是输入、输出耦合电容,L 、C 是谐振回路作为放大器的集电极负载起选频作用,它采用抽头接入法,以减轻晶体管输出电阻对谐振回路Q 值的影响,R C 是集电极(交流)电阻,它决定了回路Q 值、带宽。

三.双调谐回路放大器
图中,R B1、R B2、R E 为直流偏置电阻,用以保证晶体管工作于放大区域,且放大器工作于甲类状态,E C 为E R 的旁通电容,B C 和C C 为输入、输出耦合电容。

图中两个谐振回路:11L C 、组成了初级回路,22L C 、组成了次级回路。

两者之间并无互感耦合(必要时,可分别对12L L 、加以屏蔽),而是由电容3C 进行耦合,故称为电容耦合。

本次实验需做内容
1.采用点测法测量单调谐和双调谐放大器的幅频特性;
2.用示波器测量输入、输出信号幅度,并计算放大器的放大倍数;
3.用示波器观察耦合电容对双调谐回路放大器幅频特性的影响;
4.用示波器观察放大器的动态范围;
5.观察集电极负载对放大器幅频特性的影响。

三.实验步骤
1.画出单调谐和双调谐的幅频特性,计算幅值从最大值下降到0.707时的带宽,并由此说明其优缺点。

比较单调谐和双调谐在特性曲线上有何不同?
2.画出放大器电压放大倍数与输入电压幅度之间的关系曲线。

3.当放大器输入幅度增大到一定程度时,输出波形会发生什么变化?为什么?
4.总结由本实验所获得的体会。

实验报告
一.实验目的
1.掌握小信号调谐放大器的电路组成和工作原理。

2.了解调谐放大器性能指标的仿真方法。

3.理解电路元件参数对调谐放大器性能指标的影响。

二.实验原理(简述)
单调谐小信号放大器可以对高频小信号进行不失真的放大,其结构由放大部分和选频部分构成。

放大部分通常由晶体管或场效应管等构成放大电路,LC 谐振回路作为晶体管集电极负载起到选频的作用,这是与低频小信号放大器电路结构上最主要的区别。

调谐放大器具有选频滤波放大作用,当输入信号的频率与LC 回路的谐振频率相等时,LC 回路发生谐振,此时单调谐放大器增益达到最大。

单调谐小信号放大器的性能指标主要有增益,通频带B0.7和矩形系数K0.1,各项性能指标的定义如下:
1.增益
以电压增益Au 为例,指得是当单调谐放大器发生谐振时,所对应的电压放大倍数,即:
o u i =
U K U (1-1)
或者 o u i =20log
(dB)U K U (1-2) 或者
o b
=10log (dB)p P K P (1-3) Kp 是指功率增益,Po 是交流输出功率,Pb 是输入功率。

增益的大小,与所选用的晶体管型号、LC 谐振回路用的器件、品质因数、通频带等参数均有关。

2.通频带B 0.7
放大器的电压增益下降到最大值的 ( 下降-3dB )倍时所对应的频率范围称为通频带,即图1-1中选频特性曲线0.7所对应的频带宽度。

通频带也叫3dB 带宽,定义为:
B 0.7=f2-f1 (1-4)
图1-1 通频带
通频带B 0.7可表示为: 00.7f B Q
= (1-5) 其中,f 0是LC 谐振回路的谐振频率。

通频带是与谐振频率f 0成正比,与品质因数Q 成反比。

3.矩形系数K 0.1
矩形系数为电压增益下降到最大值的0.1倍(下降-20dB)所对应的频率范围和0.7倍对应的频率范围之比,即
43
0.121f f K f f -=- (1-6)
矩形系数衡量的是电路选择性的好坏。

在理想情况下,K 0.1的值为1。

因此,矩形系数的值越接近于1,说明电路的选择性越好。

而单调谐小信号放大器矩形系数的值理论上约为9.96,选择性不是非常理想。

一.实验电路或仿真电路图
1.单调谐放大电路的仿真
2.双调谐放大电路的仿真
四.实验内容和相关实验参数
1.单调谐放大电路的仿真
已知单调谐小信号谐振放大器电路如图1-2所示。

LC并联谐振回路作为集电极负载,起到选频和滤波的作用,要求该LC谐振回路的谐振频率f0为465KHz。

试:
(1)画出仿真电路图;
(2)通过仿真,用示波器观察输入、输出电压波形,计算电路谐振时的电压增益Ku0;(3)利用波特仪观察放大电路的幅频特性,通过该特性计算谐振频率f0,通频带BW0.7,品质因数QL和矩形系数K0.1;
(4)改变负载R4的值,观察负载对电路性能的影响(通频带BW0.7,品质因数QL);(5)改变信号源的频率,如当信号源频率为2f0、3f0、4f0,通过示波器观察输出电压波形的幅值变化,验证谐振电路的选频特性。

2.双调谐小信号谐振放大电路的仿真
双调谐放大电路如图1-3所示。

微调可变电容C2和C8,使电路谐振在465KHz。

(1)画出仿真电路图;
(2)调节耦合电容C9的值,用波特仪观察放大电路幅频特性,记录下不同的耦合电容C9的值时波形的变化情况,并与单调谐放大电路的性能进行比较;
(3)通过示波器观察输入、输出电压波形,并求电压增益K u0。

五.实验结果或仿真结果(测量数据和实测波形)
1.单调谐小信号谐振放大器相关仿真结果
图1-4 单调谐小信号谐振放大器输出输入波形图1-5 单调谐小信号谐振放大器的幅频特性
图1-6 放大器的电压增益下降-3dB时的幅频特性
图1-7 放大器的电压增益下降-20dB时的幅频特性
图1-8 将电路中的R4改为1kΩ时的幅频特性
图1-9 当信号源频率为2f0(930kHZ)时所产生的波形
图1-10当信号源频率为3f0(1395kHZ)时所产生的波形
图1-11 当信号源频率为4f0(1860kHZ)时所产生的波形2.双调谐小信号谐振放大器相关仿真结果
图1-12 双调谐小信号谐振放大器输出输入波形
六.实验数据处理(计算、分析误差,作曲线)
1.单调谐放大电路的相关数据计算
(1)该电路的输出电压为 2.540V,输入电压为9.807mV,故该电路谐振时的电压增益K u0=2.540V/9.807mV=259.00;
(2)该电路的谐振频率f0=465kHZ;通频带BW0.7=482.21-419.20=63.01kHZ;品质因数QL=465/63.01=7.38;矩形系数K0.1=(866.71-242.30)/(482.21-419.20)=9.91;(3)当R4改为1kΩ时,该电路的通频带BW0.7=673.69-308.04=365.65kHZ,品质因数Q L=465/365.65=1.27,可看出通频带变宽了,品质因数变小了;
(4)当信号源频率为2f0、3f0、4f0,通过示波器不难看出输出电压波形的幅值随着频率的增大,输出电压在逐渐减小。

2.双调谐放大电路的相关数据计算
该电路的输出电压为 6.252V,输入电压为9.861mV,故该电路谐振时的电压增益K u0=6.252V/9.861mV=634.01;
七.本实验小结、体会和建议
本次实验,通过绘制谐振小信号放大电路的电路图,并进行仿真调试,更好地理解了谐振小信号放大电路的基本组成和放大原理,以后做实验还是要多试试才好啊。

相关文档
最新文档