2008年第6届创新杯全国数学邀请赛7年级复试试题
第六届华罗庚金杯少年数学邀请赛初一决赛试题及答案(1997·5)
第六届华罗庚金杯少年数学邀请赛初一决赛试题及答案
(19975)
佚名
【期刊名称】《中学数学月刊》
【年(卷),期】1997(000)009
【摘要】一试 1.解方程||x|-|x-3.1415926||+||y+(11/8)-|2y-7.13||=0. 答x=1.5707963,y=(1151/600);(1701/200). 2.n是自然
数,N=[n+1,n+2,…,3n]是n+1,n+2,…,3n的最小公倍数,如果N可以表示成
N=2<sup>10</sup>×奇数,请回答n的可能值共有多少个?
【总页数】2页(P45-46)
【正文语种】中文
【中图分类】G634.605
【相关文献】
1.第九届“华罗庚金杯”少年数学邀请赛决赛试题(初一组) [J], 无
2.第十一届全国“华罗庚金杯”少年数学邀请赛决赛试卷(初一组) [J], 满涛
3.第十届全国“华罗庚金杯”少年数学邀请赛决赛试题初一组 [J], 徐淮源
4.第六届“华罗庚金杯”少年数学邀请赛复赛试题与答案 [J], 芮滋
5.第十一届全国“华罗庚金杯”少年数学邀请赛决赛试题 [J], 苏晓玲
因版权原因,仅展示原文概要,查看原文内容请购买。
初一创新杯数学邀请赛模拟试题集锦(5套)
初一数学“创新杯”邀请赛赛前训练题-1一、选择题1.如图,已知B 是线段AC 上的一点,M 是线段AB 的中点,N 是线段AC 的中点,P 为NA 的中点,Q 是AM 的中点,则MN:PQ=( )QP M N A CBA.1B.2C.3D.4 2.若0<a ,0>b ,0<+b a ,则下列关系中正确的是( )A.a b b a ->->>B.b b a a ->>->C.a b a b ->->>D.a b b a >->>-3.若a ,b ,c 是非零有理数,且0=++c b a ,则abc abcc c b b a a +++所有可能值为( )A.0B.1或-1C.-1D.14.计算:)514131)(615141311()61514131)(5141311(++++++-++++++=( )A.21B.31C.41D.61 5.已知实数a ,b 满足ab =1且b a M +++=1111,bba a N +++=11,则( ) A.N M > B.N M < C.N M = D.M 、N 的大小不能确定 6.观察以下数组:(1),(3,5),(7,9,11),(13,15,17,19),……2011在( )A.第44组B.第45组C.第46组 D 无法确定 7.已知:523=-++x x ,54+-=x y ,则y 的最大值是( )A.12B.15C.17D.无法确定 8.有一块试验地形状为等边三角形(设其为△ABC ),为了解情况,管理员甲从顶点A 出发,沿AB —BC —CA 的方向走了一圈回到顶点A 处。
管理员乙从BC 边上的一点D 出发,沿DC —CA —AB —BD 的方向走了一圈回到出发点D 处,则甲、乙两位管理员从出发到回到原处,在途中身体( )A.甲、乙都转过︒180B.甲转过︒120,乙转过︒180C.甲、乙都转过︒360D.甲转过︒240,乙转过︒3609.在九张卡片上分别写着数字1,2,3,……9,现将卡片顺序打乱,让空白面朝上,再写出1,2,3……,9,然后将每张卡片上的两个数字作差,则九个差的积( ) A.一定是奇数 B.可能是奇数也可能是偶数 C.一定是偶数 D.一定是负数 10.一个四位数能被9整除,去掉末位数字后所得的三位数恰好是4的倍数,这样的四位数中最大的一个的末位数字是( )A.6B.4C.3D.2二、填空题11.已知两个不相等的质数的和是一个质数,则较小的质数的倒数是 。
第06讲 整式的概念和整式的加减w
第6讲 整式的概念和整式的加减知识方法扫描整式的概念1. 单项式与多项式统称整式.2.单项式由数与字母的积组成的代数式叫做单项式,单独一个字或数也是单项式.单项式中的数字因数叫做单项式的系数,单项式中所有字母的指数和叫做单项式的次数3. 多项式几个单项式的和叫做多项式.在多项式中的每个单项式叫做多项式项,其中,不含字母的项叫做常数项.一个多项式有几项就叫做几项式,次数最高的项的次数就叫做多项的次数. 把一个多项式的各项按照某一个字母的指数从大到小(或从小到大) 的顺序排列叫做降(或升)幂排列法.整式的加减1.同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项,几个常数也是同类项.2.合并同类项:把多项式中的同类项合并成一项,即把它们的系数相加作为新的系数,而字母部分不变,叫做合并同类项.整式的加减实际就是合并同类项。
3. 灵活地去(添)括号括号前面去掉(或添上)“+”号,括号里各项都不变;括号前面去掉 (或添上)“-”号,括号里各项都变号,若有多层括号,去括号有三种方法:一是可以从里向外去;二是可以 从外向里去;三是可以里外同时去,同时在去括号后,在不影响计算结果 的前提下,也可以边去括号边合并同类项,从而简化计算,经典例题解析例1 (1997年北京市初二数学竞赛试题)同时都含有字母a ,b ,c ,且系数为1的7次单项式共有( ).(A)4个 (B) 12个 (C) 15个 (D) 25个解:设满足条件的单项式为p n m c b a 的形式,其中m 、n 、p 为自然数,且m+n+p=7.指数m ,n ,p 只能有如下四组可能: 1,1,5; l,2,4; 1,3,3; 2,2,3.所以满足条件的单项式有;,,;,,334242555c b a bc a c ab bc a c ab abc ;,,244224c b a c b a c ab .,,;,,223232322333333c b a c b a c b a c b a bc a c ab 总计有15个.故选(D )例2.(1993年第4届“希望杯”邀请赛试题)在多项式42123431993---++m n n m n m n m y x v u y x v u (其中m ,n 为正整数)中,恰有两项是同类项,则m·n=解 若n m v u 1993与n m v u 23是同类项,则m=0,n=0,与已知条件矛盾。
4年级-7-和差倍问题综合-难版
第7讲和差倍问题综合本讲是在已经学过基本和差倍问题的基础上进行拓展提高。
和差问题是已知大小两个数的和与这两个数的差,求大小两个数各是多少的应用题。
为了解答这种应用题,首先要弄清两个数相差多少的不同叙述方式.有些题目明确给了两个数的差,而有些应用题把两个数的差“暗藏”起来,我们管暗藏的差叫“暗差”。
知道两个数的和,以及它们的差,要求这两个数,解决和差问题需要我们画线段图来分析,方法如下:方法一:(和+差)÷2=大数和-大数=小数方法二:(和-差)÷2=小数和-小数=大数和倍问题的特点是已知两个数的和与大数是小数的几倍,要求两个数,一般是把较小数看作倍数,大数就是几倍数,这样就可知总和相当于小数的几倍了,可求出小数,再求大数.和倍问题的数量关系式是:和÷(倍数+1)=小数小数×倍数=大数或和一小数=大数如果要求两个数的差,要先求1份数:l份数×(倍数-1)=两数差.差倍问题的基本关系式:差÷(倍数-1)=1倍数(较小数)1倍数×几倍=几倍数(较大数)或较小数+差=较大数典型例题【例1】★5箱苹果和5箱葡萄共重75千克,每箱苹果是每箱葡萄重量的2倍。
每箱苹果和每箱葡萄各重多少千克?【解析】5箱苹果和5箱葡萄共重75千克,平均分成5份,1箱苹果与1箱葡萄重量和为:75÷5=15(千克)。
把1箱葡萄的重量看作一份,重量为:15÷(2+1)=5(千克);每箱苹果重量为:5×2=10(千克)。
【小试牛刀】师、徒两人共加工105个零件,师父加工的个数比徒弟的3倍还多5个,师父和徒弟各加工零件多少个?【解析】把徒弟加工的个数看作1份数,师父加工的个数就比3份数还多5个,如果师父少加工5个,两人加工的总数就少5个,总数变为(1055)-个,就可以求出师父和徒弟各加工多少个了.徒弟做了:100(31)25⨯+=(个).÷+=(个),师父做了:253580【例2】★★(2008第四届“IMC国际数学邀请赛”(新加坡)四年级复赛)甲、乙、丙三个小朋友共有73块巧克力,如果丙吃掉3块,那么乙和丙的巧克力就一样多;如果乙给甲2块巧克力,那么甲的巧克力就是乙的2倍,丙原有块巧克力.【解析】由题意可知,丙比乙多3块,所以如果乙给甲两块巧克力,则丙比乙多5块,此时乙的巧克力数为(735)(112)17++=(块)。
2008年时代杯数学竞赛(答案)
“时代杯”2008年江苏省中学数学应用与创新邀请赛复赛试题(初中组)(答案)1.本试卷共4页.满分150分.考试时间120分钟.2.用钢笔或圆珠笔(蓝色或黑色)直接答在试卷上.3.答卷前将密封线内的项目填写清楚.一、选择题(下列各题的四个选项中,只有一个是正确的.每题6分,共36分)1.计算12-22+32-42+52-62+…+992-1002的值是( B ).A.5050 B.-5050 C.100 D.-100 2.“龟兔赛跑”讲述了这样的故事:龟兔同时出发,沿直线向同一目标奔跑,领先的兔子看着缓慢爬行的乌龟,骄傲起来,停下来睡了一觉.当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到了终点,……. 用s1,s2分别表示乌龟和兔子所行的路程,t为时间,则下列图象中与故事情节相吻合的是( D ).A.B.D.3.同时抛掷两枚均匀的骰子1次,两枚骰子面朝上的点数之和大于8的概率是( C ).2+6 3+5 4+4 5+3 6+21+6 2+5 3+4 4+3 5+2 6+11+5 2+4 3+3 4+2 5+11+4 2+3 3+2 4+11+3 2+2 3+11+2 2+11+126/36=13/18 1-13/18=5/18A.12B.13C.518D.411 4.观察表一,寻找规律.表二、表三分别是从表一中选取的一部分,则x+y的值为( D ).A.45 B.46 C.48 D.4923+26=49 密封线姓名学校考号表一表二表三5.如图,△DEF的边长分别为1,3,2,正六边形网格是由24个边长为2的正三角形组成,以这些正三角形的顶点为顶点画△ABC,使得△ABC∽△DEF.如果相似比ABDE=k,那么k的不同的值共有( C )A.1个B.2个C.3个D.4个【解析】以直角三角形的最短直角边为分类依据,最短边依次可以是:2.所以有3个.6.将BC 沿弦BC折叠交直径AB于点D,若AD=4,DB=5,则BC的长是().A. 37 B.8 C.65D.215A B A B【解析】方法一:如图连接CD,作高CE,易证CA=CD,由三线合一可以知道1422AE DE==⨯=,则257BE=+=,在Rt ABC∆中,由射影定理可得:22714CE=⨯=,再在Rt BCE∆中使用勾股定理:BC=方法二:如图,由翻折联想到对称,取点,A D关于BC的对称点,A D'',可以知道'5,'4BD BD AD AD====,在'Rt ABD∆中使用勾股定理:'AD=.又在''Rt AA D∆中使用勾股定理:AA'=.所以:AC=最后在Rt ABC∆中使用勾股定理:BC===二、填空题(每题6分,共24分)7.若不等式组⎩⎨⎧x-a>2,b-2x>0的解集是-1<x<1,则(a+b)2009的值是.【解析】1-8.如图,在一条笔直的公路上有三个小镇A、B、C,甲车从A出发匀速开往C,乙车从B 出发匀速开往A.若两车同时出发,当甲车到达B时,乙车离A还有40km;当乙车到达A时,甲车正好到达C.已知BC=50km,则A、B两镇相距km...D EF(【解析】由题意得:4050v x x vv x xv ⎧=⎪-⎪⎨+⎪=⎪⎩甲乙甲乙 可以得到:200x =9.已知p ,q 都是正整数,方程7x 2-px +2009q =0的两个根都是质数,则p +q =_______.【解析】337.设方程的两个根为1212,()x x x x <.由韦达定理可知:1220097417x x q q ==⨯⨯. ∵12,x x 为质数,∴127,41x x ==. ∴()4177336,1p q =+⨯==.10.长方形ABCD 中,AB =1,AD =3,以点B 为圆心,BA 长为半径作圆交BC 于点E .在AE 上找一点P ,使过点P 的⊙B 的切线平分长方形的面积.设此切线交AD 于点S ,交BC 于点T ,则ST 的长为_______.【解析】3. 三、解答题(每题18分,共90分)11.已知二次函数y =x 2+2ax +b 2和y =x 2+2bx +c 2的图象与x 轴都有两个不同的交点,问函数y =x 2+2cx +a 2的图象与x 轴是否相交?为什么?【解析】不相交. ……………… 3分 由题设,得a 2-b 2>0,b 2-c 2>0. ………………9分 则a 2>b 2>c 2,所以c 2-a 2<0. ………………15分 从而知函数y =x 2+2cx +a 2的图象与x 轴不相交. ………………18分12.一个长40cm 、宽25cm 、高50cm 的无盖长方体容器(厚度忽略不计),盛有深为a cm(a ≤50)的水.现在容器里放入棱长为10cm 的立方体铁块(铁块的底面落在容器的底面上)后,水深是多少?【解析】由题设,知水箱底面积S =40×25=1000(cm 2).水箱体积V 水箱=1000×50=50000(cm 3), 铁块体积V 铁=10×10×10=1000(cm 3). ……………3分 (1)若放入铁块后,水箱中的水深恰好为50cm 时,1000a +1000=50000, 得 a =49(cm ).所以,当49≤a ≤50时,水深为50cm (多余的水溢出). ………………6分 (2)若放入铁块后,水箱中的水深恰好为10cm 时,1000a +1000=10000, 得 a =9(cm ). ………………9分所以,当9≤a <49时,水深为a ×40×25+10×10×1040×25 = (a +1) cm..……………12分(3)由(2)知,当0<a <9时,设水深为x cm ,则1000x =1000a +100x .得x =109a (cm ). ………………17分C AD B E答:当0<a <9时,水深为109a cm ;当9≤a <49时,水深为(a +1)cm ;当49≤a ≤50时,水深为50 cm . ………………18分13.设a ,b ,c 是整数,使得a 2+bb 2+c是一个有理数.求证:a 2+b 2+c 2a +b +c是一个整数.【解析】证法一:令a 2+bb 2+c=k ,k 为有理数, 得(a -kb )3+(b -kc )=0. ……………3分 因为a ,b ,c 是整数,k 为有理数,所以a -kb=0,b -kc =0,从而a=k 2c , b=kc .……………6分于是a 2+b 2+c 2a +b +c =k 4+k 2+1k 2+k +1·c .………………9分 又 k 4+k 2+1= (k 4+k 2+1)-k 2 = (k 2+k +1) (k 2-k +1),………………15分则 a 2+b 2+c 2a +b +c = (k 2-k +1)c =k 2c -kc +c =a +c -b .因为a +c -b 为整数,所以a 2+b 2+c 2a +b +c 为整数.…………18分证法二:a 2+b b 2+c=(a 2+b )(b 2-c )2b 2-c 2=(2ab -bc )+(b 2-ac )22b 2-c 2.……………6分 因为a 2+b b 2+c是有理数,所以b 2-ac =0,即b 2=ac .……………9分 所以 a 2+b 2+c 2a +b +c =(a +b +c )2-2(ab +bc +ca )a +b +c……………12分=(a +b +c )2-2(ab +bc +b 2)a +b +c……………15分=a +c -b .因为a +c -b 为整数,所以a 2+b 2+c 2a +b +c 为整数. ……………18分14.设n 为自然数,在△ABC 内给定n 个点.用一些除端点外没有公共点的线段连结这些点及A 、B 、C ,将△ABC 分成 t 个小的三角形. (1)用含n 的代数式表示t ;(2)证明t 为定值,与线段的连法无关. 【解析】(1)t =2n +1. ……………6分(2)由题设得,t 个三角形的内角和t π,△ABC 的内角和π, ……………9分 以给定的n 个点的每个点所构成的周角之和n ·2π. ……………12分由于t 个三角形的内角和等于△ABC 的内角和与以n 个点的每个点所构成的周角之和,所以 t π=π+n ·2π,得 t =2n +1.故结论成立. ……………18分15.如图,在△ABC 中,D 为BC 的中点,点E 、F 分别在边AC 、AB 上,并且∠ABE =∠ACF ,BE 、CF 交于点O .过点O 作OP ⊥AC ,OQ ⊥AB ,P 、Q 为垂足. 求证:DP=DQ .【解析】证法一:如图1,取OB 中点M ,OC 中点N .因为D 为BC 的中点,所以DM ∥OC ,DM =12OC ,DN ∥OB , DN =12OB .在Rt △BOQ 和Rt △OCP 中,QM =12OB ,PN =12OC .所以DM =PN ,QM =DN . ……………6分∠QMD =∠QMO +∠OMD =2∠ABO +∠FOB , ∠PND =∠PNO +∠OND =2∠ACO +∠EOC . 因为∠ABO =∠ACO ,∠FOB =∠EOC ,所以∠QMD =∠PND . ……………15分 于是△QMD ≌△DNP ,从而DQ=DP . ……………18分证法二:如图2,在直线BF 上取点M ,使QM=BQ ,在直线CA 上取点N ,使PN=CP . 连接CM ,BN ,OM ,ON .所以DQ=12CM ,DQ ∥CM ,DP=12BN ,DP ∥BN .……………6分因为OP ⊥AC ,OQ ⊥AB ,所以OM =OB ,ON =OC . ……………9分 ∠BOM =1800-2∠ABO ,∠CON =1800-2∠ACO ,因为∠ABO =∠ACO ,所以∠BOM =∠CON . ……………15分 从而∠BON=∠BOM +∠MON =∠CON +∠MON =∠COM . 所以△OMC ≌△ONB ,所以CM=BN ,从而DQ =DP . ……………18分图1图2 C A D B E F O P Q MN CAD BEF O PQ N M。
复赛答案
2008年“时代杯”江苏省中学数学应用与创新邀请赛复赛试题参考答案一、选择题(每题6分,共36分)1.B .2.D .3.C .4.D .5.C .6.A . 二、填空题(每题6分,共24分)7.-1.8.200.9.337.10.233.三、解答题(每题18分,共90分)11.解:不相交. ……………… 3分 由题设,得a 2-b 2>0,b 2-c 2>0. ………………9分 则a 2>b 2>c 2,所以c 2-a 2<0. ………………15分 从而知函数y =x 2+2cx +a 2的图象与x 轴不相交. ………………18分 12.解:由题设,知水箱底面积S =40×25=1000(cm 2).水箱体积V 水箱=1000×50=50000(cm 3), 铁块体积V 铁=10×10×10=1000(cm 3). ……………3分 (1)若放入铁块后,水箱中的水深恰好为50cm 时,1000a +1000=50000, 得 a =49(cm ).所以,当49≤a ≤50时,水深为50cm (多余的水溢出). ………………6分 (2)若放入铁块后,水箱中的水深恰好为10cm 时,1000a +1000=10000, 得 a =9(cm ). ………………9分所以,当9≤a <49时,水深为a ×40×25+10×10×1040×25 = (a +1) cm..……………12分(3)由(2)知,当0<a <9时,设水深为x cm ,则1000x =1000a +100x .得x =109a (cm ). ………………17分答:当0<a <9时,水深为109a cm ;当9≤a <49时,水深为(a +1)cm ;当49≤a ≤50时,水深为50 cm . ………………18分 13.证法一:令a 2+bb 2+c=k ,k 为有理数, 得(a -kb )3+(b -kc )=0. ……………3分 因为a ,b ,c 是整数,k 为有理数,所以a -kb=0,b -kc =0,从而a=k 2c , b=kc .……………6分于是a 2+b 2+c 2a +b +c =k 4+k 2+1k 2+k +1·c .………………9分 又 k 4+k 2+1= (k 4+k 2+1)-k 2 = (k 2+k +1) (k 2-k +1),………………15分则 a 2+b 2+c 2a +b +c = (k 2-k +1)c =k 2c -kc +c =a +c -b .因为a +c -b 为整数,所以a 2+b 2+c 2a +b +c 为整数.…………18分证法二:a 2+b b 2+c=(a 2+b )(b 2-c )2b 2-c 2=(2ab -bc )+(b 2-ac )22b 2-c 2.……………6分因为a 2+b b 2+c是有理数,所以b 2-ac =0,即b 2=ac .……………9分所以 a 2+b 2+c 2a +b +c =(a +b +c )2-2(ab +bc +ca )a +b +c……………12分=(a +b +c )2-2(ab +bc +b 2)a +b +c……………15分=a +c -b .因为a +c -b 为整数,所以a 2+b 2+c 2a +b +c 为整数. ……………18分14.解:(1)t =2n +1. ……………6分 (2)由题设得,t 个三角形的内角和t π,△ABC 的内角和π, ……………9分 以给定的n 个点的每个点所构成的周角之和n ·2π. ……………12分 由于t 个三角形的内角和等于△ABC 的内角和与以n 个点的每个点所构成的周角之和,所以 t π=π+n ·2π,得 t =2n +1.故结论成立. ……………18分 15.证法一:如图1,取OB 中点M ,OC 中点N .因为D 为BC 的中点,所以DM ∥OC ,DM =12OC ,DN ∥OB , DN =12OB .在Rt △BOQ 和Rt △OCP 中,QM =12OB ,PN =12OC .所以DM =PN ,QM =DN . ……………6分∠QMD =∠QMO +∠OMD =2∠ABO +∠FOB , ∠PND =∠PNO +∠OND =2∠ACO +∠EOC . 因为∠ABO =∠ACO ,∠FOB =∠EOC ,所以∠QMD =∠PND . ……………15分 于是△QMD ≌△DNP ,从而DQ=DP . ……………18分证法二:如图2,在直线BF 上取点M ,使QM=BQ ,在直线CA 上取点N ,使PN=CP .连接CM ,BN ,OM ,ON .所以DQ=12CM ,DQ ∥CM ,DP=12BN ,DP ∥BN .……………6分因为OP ⊥AC ,OQ ⊥AB ,所以OM =OB ,ON =OC . ……………9分 ∠BOM =1800-2∠ABO ,∠CON =1800-2∠ACO ,因为∠ABO =∠ACO ,所以∠BOM =∠CON . ……………15分 从而∠BON=∠BOM +∠MON =∠CON +∠MON =∠COM . 所以△OMC ≌△ONB ,所以CM=BN ,从而DQ =DP . ……………18分图1图2 C A D E F O P Q MN CAD BEF O PQ N M。
2008年全国初中数学联合竞赛试题参考答案及评分标准
2008年全国初中数学联合竞赛试题参考答案及评分标准说明:评阅试卷时,请依据本评分标准.第一试,选择题和填空题只设7分和0分两档;第二试各题,请按照本评分标准规定的评分档次给分.如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数.第一试一、选择题(本题满分42分,每小题7分)本题共有6小题,每题均给出了代号为的四个答案,其中有且仅有一个是正确的.将你所选择的答案的代号填在题后的括号内.每小题选对得7分;不选、选错或选出的代号字母超过一个(不论是否写在括号内),一律得0分.D C B A ,,,1.设,213a a +=213b b +=,且,则代数式a b ≠211a b 2+的值为 ( ) )(A 5. 7. 9. 11.)(B )(C )(D 【答】B .解 由题设条件可知2310a a −+=,,且2310b b −+=a b ≠,所以是一元二次方程的两根,故,,因此,a b 2310x x −+=3a b +=1ab =222222222211()23217()1a b a b ab a b a b ab ++−−×+====. 故选B . 2.如图,设AD ,BE ,CF 为三角形的三条高,若ABC 6AB =,5BC =,,则线段3EF =BE 的长为 ( ))(A 185. 4. )(B )(C 215. )(D 245. 【答】. D 解 因为AD ,BE ,CF 为三角形的三条高,易知ABC ,,,B C E F 四点共圆,于是△AEF ∽△,故ABC 35AF EF AC BC ==,即3cos 5BAC ∠=,所以4sin 5BAC ∠=. 在Rt △ABE 中,424sin 655BE AB BAC =∠=×=. 故选. D 3.从分别写有数字1,2,3,4,5的5张卡片中任意取出两张,把第一张卡片上的数字作为十位数字,第二张卡片上的数字作为个位数字,组成一个两位数,则所组成的数是3的倍数的概率是 ( ))(A 15. )(B 310. )(C 25. )(D 12. 【答】. C 解 能够组成的两位数有12,13,14,15,21,23,24,25,31,32,34,35,41,42,43,45,51,52,53,54,共20个,其中是3的倍数的数为12,15,21,24,42,45,51,54,共8个.所以所组成的数是3的倍数的概率是82205=. 故选C. 4.在△中,,∠=,ABC 12ABC ∠=°132ACB °BM 和CN 分别是这两个角的外角平分线,且点,M N 分别在直线和直线AC AB 上,则 ( ))(A BM CN >. )(B BM CN =.)(C . BM CN <)(D BM 和CN 的大小关系不确定.【答】B .解 ∵,12ABC ∠=°M 为的外角平分线,∴ABC ∠1(18012)842MBC ∠=°−°=B °°. 又,∴180********BCM ACB ∠=°−∠=°−°=180844848BMC ∠=°−°−°=°,∴.BM BC =又11(180)(180132)2422ACN ACB ∠=°−∠=°−°=°, ∴18018012()BNC ABC BCN ACB ACN ∠=°−∠−∠=°−°−∠+∠168(13224)=°−°+°12ABC =°=∠,∴. 因此,CN CB =BM BC CN ==.故选B .5.现有价格相同的5种不同商品,从今天开始每天分别降价10%或20%,若干天后,这5种商品的价格互不相同,设最高价格和最低价格的比值为,则的最小值为 ( )r r )(A 39()8. )(B 49(8. )(C 59(8. )(D 98. 【答】 B .解 容易知道,4天之后就可以出现5种商品的价格互不相同的情况.设5种商品降价前的价格为a ,过了天. 天后每种商品的价格一定可以表示为n n 98(110%)(120%)()()1010k n k k a a −n k ⋅−⋅−=⋅⋅k −,其中为自然数,且0. k n ≤≤要使r 的值最小,五种商品的价格应该分别为:98()()1010i n i a −⋅⋅,1198()(1010i n i a +−−⋅⋅, 2298()(1010i n a +−i ⋅⋅−,3398()()1010i n i a +−⋅⋅−,4498()()1010i n i a ,其中i 为不超过的自然数. n +−−⋅⋅所以r 的最小值为44498()()91010(988()()1010i n i i n ia a +−−−⋅⋅=⋅⋅. 故选B . 6. 已知实数,x y满足(,则2008x y −=223233x y x y −+−2007−的值为 ( ))(A . 2008. 2008−)(B )(C 1−. 1.)(D 【答】. D解 ∵(2008x y −=,∴x y ==+,y x −==+由以上两式可得x y =. 所以2(2008x =,解得,所以22008x =22222323320073233200720071x y x y x x x x x −+−−=−+−−=−=.故选.D二、填空题(本题满分28分,每小题7分)1.设12a −=,则5432322a a a a a a a +−−−+=−2−.解 ∵2213(122a a −===−,∴21a a +=, ∴543232323222()2(a a a a a a a a a a a a a a a a+−−−++−−++=−⋅−)2 33332221211(1)(11)2(1)1a a a a a a a a a a a−−+−−===−=−++=−+=−⋅−−−−.2.如图,正方形的边长为1,ABCD ,M N 为BD 所在直线上的两点,且AM =∠,则四边形的面积为135MAN =°AMCN 52解 设正方形的中心为O ,连,则ABCD AO AO BD ⊥,2AO OB ==,2MO ===, ∴MB MO OB =−=. 又, 135ABM NDA ∠=∠=°13590NAD MAN DAB MAB MAB ∠=∠−∠−∠=°−°−∠45=°−MAB AMB ∠=∠,所以△∽△ADN MBA ,故AD DNMB BA =,从而12AD DN BA MB =⋅==. 根据对称性可知,四边形的面积 AMCN11222222MAN S S MN AO ==×××=×××=△522. 3.已知二次函数2y x ax b =++的图象与x 轴的两个交点的横坐标分别为,,且m n 1m n +≤.设满足上述要求的b 的最大值和最小值分别为p ,q ,则p q +=12解 根据题意,是一元二次方程的两根,所以,m n 20x ax b ++=m n a +=−,. mn b =∵1m n +≤,∴1m n m n +≤+≤,1m n m n −≤+≤.∵方程的判别式,∴20x ax b ++=24a b Δ=−≥022()44a m n b +14≤=≤. 22244()()()1b mn m n m n m n ==+−−≥+−≥−1,故14b ≥−,等号当且仅当12m n 时取得; =−=122244()()1()b mn m n m n m n ==+−−≤−−≤,故14b ≤,等号当且仅当12m n 时取得. ==所以14p =,14q =−,于是12p q +=. 4.依次将正整数1,2,3,…的平方数排成一串:149162536496481100121144…,排在第1个位置的数字是1,排在第5个位置的数字是6,排在第10个位置的数字是4,排在第2008个位置的数字是 1 .解 1到3,结果都只各占1个数位,共占13223×=个数位; 24到,结果都只各占2个数位,共占个数位;292612×=210到,结果都只各占3个数位,共占23132266×=个数位;232到,结果都只各占4个数位,共占299468272×=个数位;2100到,结果都只各占5个数位,共占523162171085×=个数位;此时还差2008个数位.(312662721085)570−++++=2317到,结果都只各占6个数位,共占2411695570×=个数位.所以,排在第2008个位置的数字恰好应该是的个位数字,即为1. 2411第二试 (A )一.(本题满分20分) 已知,对于满足条件221a b +=01x ≤≤的一切实数x ,不等式(1)(1)()0a x x ax bx b x bx −−−−−−≥ (1)恒成立.当乘积ab 取最小值时,求的值.,a b 解 整理不等式(1)并将代入,得221a b +=2(1)(21)0a b x a x a ++−++≥ (2)在不等式(2)中,令0x =,得;令0a ≥1x =,得.0b ≥易知10,a b ++>21012(1)a ab +<<++,故二次函数2(1)(21)y a b x a x a =++−++的图象(抛物线)的开口向上,且顶点的横坐标在0和1之间.由题设知,不等式(2)对于满足条件01x ≤≤的一切实数x 恒成立,所以它的判别式,即2(21)4(1)0a a b Δ=+−++⋅≤a 14ab ≥. 由方程组 221,14a b ab ⎧+=⎪⎨=⎪⎩ (3) 消去b ,得16,所以421610a a −+=224a =或224a +=.又因为,所以0a≥4a =或4a +=,于是方程组(3)的解为,4,4a b ⎧=⎪⎪⎨⎪=⎪⎩或,4.4a b ⎧=⎪⎪⎨−⎪=⎪⎩ 所以的最小值为ab 14,此时的值有两组,分别为 ,ab ,44a b +==和44a b +==. 二.(本题满分25分) 如图,圆与圆相交于O D ,A B 两点,为圆的切线,点在圆上,且.BC D C O AB BC =(1)证明:点O 在圆的圆周上.D (2)设△的面积为,求圆的的半径的最小值.ABC S D r 解 (1)连,因为为圆心,,,,OA OB OC AC O AB BC =,所以△OBA ∽△,从而OBC OBA OBC ∠=∠.因为OD ,所以,AB DB BC ⊥⊥9090DOB OBA OBC DBO ∠=°−∠=°−∠=∠,所以DB DO =,因此点O 在圆的圆周上.D (2)设圆的半径为a ,的延长线交于点O BO ACE ,易知BE AC ⊥.设2AC y =(0)y a <≤,,,则,,OE x =AB l =22a x 2y =+()S y a x =+22222222()2222()aS l y a x y a ax x a ax a a x y=++=+++=+=+=. 因为,22ABC OBA OAB BDO ∠=∠=∠=∠AB BC =,DB DO =,所以△∽△,所以BDO ABC BD BO AB AC=,即2r a l y =,故2al r y =. 所以22223222()4422a l a aS S a S y y y y ==⋅=⋅≥r ,即2≥r ,其中等号当a y =时成立,这时是圆O 的AC直径.所以圆的的半径的最小值为Dr 2. 三.(本题满分25分)设为质数,b 为正整数,且a 29(2)509(4511)ab a b +=+ (1)求,b 的值.a 解 (1)式即2634511()509509ab a b ++=,设634511,509509a b a b m n ++==,则 50965094351m a n a b 1−−== (2) 故,又,所以35116n m a −+=02n m =2351160m m a −+= (3)由(1)式可知,(2能被509整除,而509是质数,于是2)a b +2a b +能被509整除,故为整数,即关于的一元二次方程(3)有整数根,所以它的判别式为完全平方数.m m 251172a Δ=−不妨设(t 为自然数),则722251172a t Δ=−=511(511)(511)a t t t 22=−=+−.由于511和511的奇偶性相同,且511t +t −511t +≥,所以只可能有以下几种情况:①两式相加,得36,没有整数解.51136,5112,t a t +=⎧⎨−=⎩21022a +=②两式相加,得18,没有整数解. 51118,5114,t a t +=⎧⎨−=⎩41022a +=③两式相加,得12,没有整数解. 51112,5116,t a t +=⎧⎨−=⎩61022a +=④两式相加,得6,没有整数解.5116,51112,t a t +=⎧⎨−=⎩121022a +=⑤两式相加,得4,解得5114,51118,t a t +=⎧⎨−=⎩181022a +=251a =. ⑥两式相加,得2,解得5112,51136,t a t +=⎧⎨−=⎩361022a +=493a =,而4931729=×不是质数,故舍去. 综合可知.251a =此时方程(3)的解为3m =或5023m =(舍去). 把,代入(2)式,得251a =3m =5093625173b ×−×==. 第二试 (B )一.(本题满分20分)已知,对于满足条件221a b +=1,0x y xy +=≥的一切实数对(,)x y ,不等式220ay xy bx −+≥ (1)恒成立.当乘积ab 取最小值时,求的值.,a b 解 由可知011,0x y xy +=≥,01x y ≤≤≤≤.在(1)式中,令0,1x y ==,得;令0a ≥1,0x y ==,得b .0≥x 将代入(1)式,得,即1y =−22(1)(1)0a x x x bx −−−+≥2(1)(21)0a b x a x a ++−++≥ (2)易知10,a b ++>21012(1)a ab +<<++,故二次函数2(1)(21)y a b x a x a =++−++的图象(抛物线)的开口向上,且顶点的横坐标在0和1之间.由题设知,不等式(2)对于满足条件01x ≤≤的一切实数x 恒成立,所以它的判别式,即2(21)4(1)0a a b Δ=+−++⋅≤a 14ab ≥. 由方程组 221,14a b ab ⎧+=⎪⎨=⎪⎩ (3) 消去b ,得16,所以421610a a −+=224a −=或224a +=,又因为,所以0a≥4a =或4a =.于是方程组(3)的解为,4,4a b ⎧=⎪⎪⎨⎪=⎪⎩或,4.4a b ⎧=⎪⎪⎨−⎪=⎪⎩所以满足条件的的值有两组,分别为,ab ,44a b +==和44a b +==c ). 二.(本题满分25分)题目和解答与(A )卷第二题相同.三.(本题满分25分)题目和解答与(A )卷第三题相同.第二试 (C )一.(本题满分20分)题目和解答与(B )卷第一题相同.二.(本题满分25分)题目和解答与(A )卷第二题相同.三.(本题满分25分)设为质数,b 为正整数,且满足a ,29(22)509(41022511)2a b c a b c b c ⎧+−=+−⎨−=⎩ (1)(2)求的值.(a b c +解 (1)式即2()509509=, 设66341022511,509509a b c a b c m n +−+−==,则 5096509423511m a n a b c −−−== (3) 故,又,所以35116n m a −+=02n m =2351160m m a −+= (4)由(1)式可知,(2能被509整除,而509是质数,于是22)a b c +−c 22a b +−能被509整除,故为整数,即关于的一元二次方程(4)有整数根,所以它的判别式为完全平方数.m m 251172a Δ=−不妨设(t 为自然数),则722251172a t Δ=−=511(511)(511)a t t t 22=−=+−.由于511和511的奇偶性相同,且511t +t −511t +≥,所以只可能有以下几种情况:①两式相加,得36,没有整数解. 51136,5112,t a t +=⎧⎨−=⎩21022a +=②两式相加,得18,没有整数解.51118,5114,t a t +=⎧⎨−=⎩41022a +=③两式相加,得12,没有整数解. 51112,5116,t a t +=⎧⎨−=⎩61022a +=④两式相加,得6,没有整数解.5116,51112,t a t +=⎧⎨−=⎩121022a +=⑤两式相加,得4,解得5114,51118,t a t +=⎧⎨−=⎩181022a +=251a =. ⑥两式相加,得,解得5112,51136,t a t +=⎧⎨−=⎩236102a +=2493a =,而4931729=×不是质数,故舍去.综合可知,此时方程(4)的解为或251a =3m =5023m (舍去). =把,代入(3)式,得251a =3m =50936251273b c ×−×−==,即27c b =−. 代入(2)式得,所以b ,(27)2b b −−=5=3c =,因此()251(53)2008a b c +=×+=.。
小学奥数:和倍问题(三).专项练习及答案解析
1. 学会分析题意并且熟练的利用线段图法能够分析和倍问题2. 掌握寻找和倍的方法解决问题.知识点说明: 和倍问题就是已知两个数的和以及它们之间的倍数关系,求这两个数各是多少的问题. 解答此类应用题时要根据题目中所给的条件和问题,画出线段图,使数量关系一目了然,从而找出解题规律,正确迅速地列式解答。
和倍问题的特点是已知两个数的和与大数是小数的几倍,要求两个数,一般是把较小数看作1倍数,大数就是几倍数,这样就可知总和相当于小数的几倍了,可求出小数,再求大数.和倍问题的数量关系式是:和÷(倍数+1)=小数小数×倍数=大数 或 和一小数=大数如果要求两个数的差,要先求1份数:l 份数×(倍数-1)=两数差.解决和倍问题,关键是学会画线段图,这样可以帮助我们更好的弄清各数量之间的关系。
【例 1】 某项竞赛分一等奖、二等奖和三等奖,每个一等奖的奖金是每个二等奖奖金的2倍,每个二等奖的奖金是每个三等奖奖金的2倍.如果评出一、二、三等奖各2人,那么每个一等奖的奖金是308元.如果评出1个一等奖,2个二等奖,3个三等奖,那么一等奖的奖金是多少元?【考点】和倍问题 【难度】5星 【题型】解答【解析】 我们把每个三等奖奖金看作1份,那么每个二等奖奖金是2份,每个一等奖奖金则是4份.当一、二、三等奖各评2人时,2个一等奖的奖金之和是(3082)⨯元,2个二等奖的奖金之和等于1个一等奖的奖金308元,2个三等奖的奖金等于1个二等奖奖金(3082)÷元.所以奖金总额是:308230830821078⨯++÷=元.当评1个一等奖,2个二等奖,3个三等奖时,1个一等奖奖金看做4份,2个二等奖奖金224⨯=(份),3个三等奖奖金的份数是133⨯=(份),总份数就是:44311++=(份).这样,可以求出1份数为10781198÷=元,一等奖奖金为:984392⨯=(元).【答案】392元【例 2】 有5堆苹果,较小的3堆平均有18个苹果,较大的2堆,苹果数之差为5个;又较大的3堆平均有苹果26个,较小的2堆苹果之差为7个;最大堆与最小堆平均有22个苹果,问:各堆各有多少个苹果?例题精讲 知识点拨教学目标6-1-5.和倍问题【考点】和倍问题 【难度】5星 【题型】解答【解析】 方法二:作图表示题目各个量之间的关系能让复杂的关系看起来简洁明了且不易混乱,用下图表示它们的关系:最大堆与最小堆平均22个,那么最大堆与最小堆一共有22244⨯=(个);较大的2堆,苹果数之差为5个,得知次大堆比最大堆少5个苹果;较小的2堆苹果之差为7个,说明次小堆比最小堆多7个苹果,因此,得知次小堆和次大堆之和为:445746-+=(个),这样最大堆、最小堆、次大堆、次小堆四堆苹果数量之和是:444690+=(个),较大的3堆苹果之和:26378⨯=(个),较小的3堆苹果之和:18354⨯=(个),较大的3堆苹果和较小的3堆苹果总和等于最大堆、次大堆、最小堆、次小堆以及2个中间堆的数量之和. 所以,中间堆的数量是:785490221()+-÷=(个),最大堆与次大堆的和是:782157-=(个),最大堆有苹果:575231()+÷=(个),次大堆有:573126-=(个),同理最小堆有苹果:5421(-7213)-÷=(个),次小堆有苹果:13720+=(个). 方法一:最大堆与最小堆共22244⨯=个苹果.较大的2堆与较小的2堆共4427590⨯+-=个苹果.所以中间的一堆有:(18326390)221⨯+⨯-÷=个苹果;较大的2堆有:2632157⨯-=个苹果;最大的一堆有:(575)231+÷=个苹果;次大的一堆有:573126-=个苹果;较小的2堆有:1832133⨯-=个苹果;次小的一堆有:(337)220+÷=个苹果;最小的一堆有:20713-=个苹果.【答案】最小的有13个,次小的有20个,中间的有21个,次大的有26,最大的有31【例 3】 食堂买来5只羊,每次取出两只合称一次重量,得到10种不同重量(单位:千克):47,50,51,52,53,54,55,57,58,59.问:这五只羊各重多少千克?【考点】和倍问题 【难度】5星 【题型】解答【解析】 可以设定羊的重量从轻到重分别为A ,B ,C ,D ,E .则47+=A B ,59+=D E .同时不难整体分析得到()475051525354555758594134++++=+++++++++÷=A B C D E 千克.则134475928=--=C 千克.不难有50+=A C ,58+=E C .则22=A 千克,30=E 千克,25=B 千克,29=D 千克.【答案】这五只羊重为:22,25,28,29,30【例 4】 某小学五年级和六年级参加创新杯数学邀请赛共有16人,其中:五年级的学生比六年级的学生多;六年级的男生比五年级的男生多;五年级的男生比五年级的女生多;六年级的女生至少有1人.那么六年级的男生有 人.【考点】和倍问题 【难度】4星 【题型】填空【关键词】2008年,湖北省,第六届,创新杯【解析】 因“五年级的学生比六年级的学生多”,故五年级学生至少有9人,而六年级学生至多有7人;因“五年级男生比五年级的女生多”,所以五年级男生至少有5人;因“六年级男生比五年级男生多”,所以六年级男生至少有6人,而六年级男生不能多于6人,否则再加上六年级的女生至少有1人,则六年级的学生人数就会多于7人,这不可能.因此,六年级的男生恰好有有6人.【关键词】6人【例 5】某校师生共为地震灾区捐款462000元,经统计发现,他们各自所捐的钱数,共有10种不同档次.最低档次共有10人,而每上升一个档次,捐款人数就减少1人;且从第二档次开始,以后各档次的捐款钱数,分别为最低档次的2倍、3倍、4倍……10倍,那么捐款最多的人捐款___ ____元.【考点】和倍问题【难度】4星【题型】填空【关键词】迎春杯,四年级,初试,9题【解析】本题是一道和倍问题,最高档次是1个人,恰好是最低档次10人合捐的10倍,则把最低档次10人看作"1"份,则共10×1+9×2+8×3+7×4+5×6+……++2×9+1×10=220份,462000÷220=2100元,则最高档次即捐款最多的人捐款为2100×10=21000元【答案】21000元【例 6】()、、、、A B C D E五人坐在一起聊天.小明想知道这五个人的年龄和.可五人都没有直接回答.E说:“、、、A B C D四个人的年龄和101岁”.D说:“、、A B D E四个人的年龄和115B C E三个人的年龄和105岁”.C说:“、、、岁”.B说:“、、A D E三个人的年龄和80岁”.A说:“、、A C D三个人的年龄和66岁”.请问:五人的年龄和是岁。
第07讲 整式的乘法与乘法公式
第7讲 整式的乘法与乘法公式学习数学的惟一方法是做数学。
——哈尔莫斯 知识方法扫描整式的乘法包括单项式乘单项式,单项式乘多项式和多项式乘多项式。
乘法公式是多项式相乘得出的,它们是既有特殊性,又有规律性和实用性的具体结论.常用的公式有:;))()(1(22b a b a b a -=-+;2))(2(222b ab a b a +±=±;))()(3(3322b a b ab a b a ±=+±;222))(4(2222ca bc ab c b a c b a +++++=++;33))(5(32233b ab b a a b a +++=+;3))()(6(333222abc c b a ca bc ab c b a c b a -++=---++++))()(7(122321-----+++++-n n n n n b ab b a b a a b a n n b a -=))()(8(122321-----++-+-+n n n n n b ab b a b a a b a n n b a +=(n 为奇数)经典例题解析例1.(第16届“希望杯”初二第2试题)计算:1998)37(×20002000357153++。
解 原式02000020200020001998)57(7)53(3)37(⨯+⨯+⨯=2000200020000002002000201998577533)37(⨯+⨯+⨯= )51(7)51(3)37(20000002000220001998+⨯+⨯⨯=00028919)73()37(⨯= 219988919)73()73()37(⨯⨯=⋅=⨯⨯=499499)7337(1998 例2.(2005年四川省初中数学联赛决赛八年级试题) 计算:(2+1)(22+1)(24+1)…(232+1)+1=___解 原式=(2-1)(2+1)(22+1)(24+1)…(232+1)+1=(22-1)(22+1)(24+1)…(232+1)+1=(24-1)(24+1)…(232+1)+1=……=(232-1)(232+1)+1=(264-1)+1=264例3.(1999年武汉市初中数学竞赛试题) 设x,y 为实数,且满足⎩⎨⎧-=-+-=-+-1)1(1998)1(1)1(1998)1(33y y x x , 则x+y=( )(A) 1 (B) -1 (C) 2 (D) -2解 设 x-1=a,y-1=b,则有 ⎩⎨⎧-=+=+119981199833b b a a , 将两式相加,得 a 3+b 3+1998a+1998b=0,即 (a+b)[(a 2-ab+b 2)+1998(a+b)=0, 从而(a+b)( a 2-ab+b 2+1998)=0注意到 a 2-ab+b 2+1998=,01998])([21222>++++b a b a 所以a+b=0, 也就是 (x-1)+(y-1)=0, x+y=2, 故选C 。
初中竞赛数学第七届“华杯赛”初一复赛试题(含答案)
第七届“华杯赛”初一复赛试题一、直接写出答案: 1.=-÷---)65()]2478(125.26.1[ . 2.52||31y x m +和3||33+n y x 是同类项,问:22n m +的值是多少?3.a -2b 的相反数数是0.685, 3b+c 的倒数是25,问:a+b+c 减-0.125的负数是多少?4.04)(=++x m k 和01)2(=--x m k 是关于x 的同解方程,问:2-nk的值是多少?5.小明在假期里打工挣了abc 元,已知a bcb =+,a +1=b ,c =2d .问:小明假期打问工挣了多少?6.将糖果300粒,饼干210块和苹果163个平均分给某班同学,余下的糖果、饼干和苹果的数量之比是1∶3∶2,问:该班有多少名同学?7.一串数1,1,1,2,2,3,4,5,7,9,12,16,21,……称为帕多瓦数列,请陈述这个数列的一个规律,并且写出其中的第14个数和第18个数.8.某商贸服务公司,为客户出售货物,收取3%的服务费;代客户购置物品,收取2%的服务费,今有一客户委托该公司出售自产的某种物品并代为购置新设备.已知该公司共收取了客户服务费264元,客户恰好收到平衡,问:所购置的新设备花费了多少元?9.由甲地到乙地前三分之二的路是高速公路,后三分之一的路是普通公路,高速公路和普通公路的交界处是丙地.A 车在高速公路上的行驶速度是100千米/时,在普通公路上的行驶速度是60千米/时.B 车在高速公路上的行驶速度是110千米/时,在普通公路上的行驶速度是70千米/时.A 、B 两车分别从甲乙二地相向行驶,在距离丙地20千米处相遇,求:甲乙两地之间距离是多少?10.如右图,在一个边长为a 厘米的正方体的两对侧面的中心各打通一个长方体的洞,在上下侧面的中心打通一个圆柱形的洞.已知侧耳面上的洞口是边长为a 52厘米的正方形,上下底面的口是直径为a 52厘米的圆,求右图立体的表面积的体积.(取14.3=π)11.AOMEN和MACAO分别是澳门的汉语拼音和英文名字,如果它们分别代表两个5位数,其中不同的字母代表从1到9不同的数字,相同的字母代表相同的数字,而且它们的和仍是一个5位数,求这个和可能的最大值是多少?12.用10个边长分别为3,5,6,11,17,19,22,23,24,25的正方形,可以拼接一个长方形,(1)求:这个长方形的长和宽各是多少?(2)请画出拼接图.第七届“华杯赛”初一组复赛试题答案1.解:这是一道有理数的混合运算试题,且含有小数和分数,其中有一个小数还是循环小数.根据题意,这道运算题最后求的是商,所以,先将题中的小数转化为分数,然后再根据有理数的运算运法则进行计算. 812125.2-=-3219616.1== (纯循环小数化成分数,分子是一个循环节表示的数,分母的各位数都是9,而9的个数与循环节的位数相同,最后能约分的再约分). 所以 原式=)65()]2478(812321[-÷--- 根据有理数减去法则,“减去一个数,等于加上这个数的相反数”;有理数乘法法则,“两数相乘,同号得正,异号得负,并把绝对值相乘”;还根据有理数除法法则,“除以一个数等于乘上这个数的倒数”,就可以得到结果原式=)56(]2478812321[-⨯+-=)56(657-⨯529)56647(-=⨯-=有关有理数的运算,掌握有理数运算法则是关键,而在掌握有理数运算法则的过程中,要特别注意符号问题,然后才是绝对值的计算.为了突出确定符号的训练,在进行有理数的运算时,绝对值就不必选择过大. 2.5解:根据题意,52||31y x m +和3||33+n y x 是同类项,就是说它们不仅所含字母相同,并且相同字母的次数也相同,即|m |+2=3, 也就是|m |=1, |n |+3=5,也就是|n |=2 又根据题意,一个数的平方等于这个数的绝对值的平方,所以 22||m m =, 22||n n =.因此,521||||222222=+=+=+n m n m . 答:22n m +的值是5. 3.a+b+c 减-0.125的负倒数是132552100=解:根据题意,a -2b 的相反数是0.685,而根据数a 的相反数是-a ,那么,a -2b 就是200137685.0-=-.又根据题意,3b+c 的倒数是25,而根据乘积是1的两个数互为倒数,那么20082513==+c b . 所以,a+b+c 减-0.125的负倒数是)125.0()(--++c b a 的负倒数,根据去括号法则,也就是125.0)(+++c b a 的负倒数.又因为c b a c b b a ++=++-)3()2(,所以, c b a ++减-0.125的负倒数,即200252008700137++-的负倒数,即200104-的负倒数, 也就是13251042002001041==--. 答:a+b+c 减-0.125的负倒数是132552100=. 4.321-解:根据题意,04)(=++x m k 和01)2(=--x m k 是关于x 的同解方程,那么,4)(-=+x m k 和1)2(=-x m k 同样是关于x 的同解方程.根据等式性质“等式两边都乘以(或除以,除数不能是0)的数,所得结果仍是等式.所以14)2()(-=-+x m k x m k 142-=-+m k m k m k m k +=+-48 k m 93= m k =93 31=m k 因此,3212312-=-=-m k答:3212--的值是m k .5.348解:根据题意,abc 为三位数,且a bcb =+, a +1=b ,那么, 0≠b (零不能作分母), a=b -1,所以 a b cb =+,也就是12-=+b bb b 则 b b b -=23即0)4(=-b b ,4=b 将b =4代入c =2b , 则c =2×4=8 4=b , 8=c 代入a b c b =+,则3484=+=a . 这样abc =348答:小明假期打工挣了348元. 6.23解:根据题意,糖果、饼干和苹果是平均分给全班同学的,所以,糖果、饼干和苹果减去余下的数量,也就是被平均分给全班同学的糖果、饼干和苹果的数量,一定是全班学生人数的整数倍.又根据题意,将糖果、饼干和苹果平均分给全班同学后,余下的糖果、饼干和苹果数量比是1∶3∶2,如果假设余下的糖果、饼干和苹查果的数为1份、3份、2份,甚至更直接的设余下的糖果、饼干和苹果的数量,分别是1粒、3块、2个,那么,被平均分给全班的糖果、饼干和苹果的数量,分别为300-1=299(粒),210-3=207(块),163-2=161(个).因为,299=23×13; 207=23×9; 161=23×7. 所以,该班有23名同学. 答:该班有23名同学. 7.86解:根据题意,要求陈述数列的一个规律,而帕多瓦数列蕴含有若干规律,可以通过该数列前后项之间的和、差、积、商,各自所具有的特征,归纳出规律,如: (1) 从第4项开始,每一项均是前面第2项和第3项的和.如(2) 从第6项开始,第一项均是前面第1项与第5项的和.如(3)以5项为一组,从第二组开始,每一组的5项,均是前一组的末项依次加上前一组各项的和.如……根据规律(1)可知:这串数的第14个数是第11个数与第12个数的和,即12+16=28;第18个数是第15个数与第16数的和,而第15个数是第12个数与第13个数的和,即16+21=37,第16个数是13个数与第14个数的和,即21+28=49,所以,第18个数即37+49=86. 8.5121.6解:根据题意,下列等量关系很明显:(1)出售物品的收入-服务费=购置设备费用+服务费(出售物品) (购置设备)即:出售物品收入-购置设备费用=总服务费(出售物品、购置设备) (2)服务费出售物品的 + 服务费购置设备的=总服务费即:收入出售物品 ×30%+费用购置设备 ×2%=264 (元)所以,本题如果设出售物品的收入用x 元,购置设备的费用用y 元表示,那么,用二元一次方程组来分析解答就比较容易了.⎩⎨⎧=+=-264%2%3264y x y x )2()1(将(2)化简,得3x +2y =26400 (3)由(1)得 y=x -264 (4) 用(4)代入(3),得3x +2(x -264)=26400 (5) 化简(5),得 5x -528=26400 5x =26928 x =5385.6将x =5385.6代入(1),得y =5121.6 答:购置的新设备花费了5121.6元. 9.1152000解:根据题意,结合如图所示可知,A 车的速度虽然是B 车的速度的73170100=(倍),但A 车在高速公路上行驶的路程却是B 车在普通公路上行驶路程的23132=÷(倍),所以,当A 、B 两车分别从甲乙两地相向行驶,B 车已经行驶完普通公路的路程时,A 车还在高速公路上行驶,因此,A 、B 两车在高速公路上距丙地20千米处相遇.又根据相向运动的主要特征——运动的时间相等,可知:A 车所用时间=B 车所用时间因为,A 车从出发到相遇,全都在高速公路上行驶,而B 车除了行驶完普通公路外,还在高速公路上行驶了20千米,因此:高速路上时间车行驶在A = 普通公路上时间车行驶在B + 高速公路的时间千米车行驶20B千米千米高速公路路程10020- 千米普通公路路程70 千米千米11020也就是1102070311002032+⨯=-⨯甲乙全程甲乙全程 因此,只要设甲乙两地之间的路程为x 千米,那么本题就可以用方程解答.1102070311002032+=-x x 1102010020703110032+=-xx 11251)21011501(+=-x 271505521⨯⨯=x 115200=x 答:甲乙两地之间距离是115200千米.10.28512.7a ,366864.0a解:根据题意,所求图形的总表面积包括外侧表面积和内侧表面积;所求图形的体积是由原正方体积减去被挖去部分的体积.那么,外侧表面积、内侧表面积和被挖去部分的体积分别指哪些部分呢?如果将被挖去的部分完整地表示出来,就比较容易理解了. 结合图示可右,外侧表面积是原正方体的表面积减去前后左右4个边长为a 52厘米的正形面积和两个直径为a 52厘米的圆面积,即 外侧表面积=表面积原正方体 -洞口面积挖去的正方形 -洞口面积挖去的圆62⨯a 4)52(2⨯a 2)2152(2⨯⨯a π22221088.525225166a a a a S =--=π外侧表 结合图示可知,内侧表面积是由16个长a 52厘米,宽a ]21)521[(⨯-厘米的长方形面积,加上2个边长为a 52厘米的正方形减去直径为a 52厘米的圆形后的环形面积,再加上2个底面直径为a 52厘米的圆柱侧面积,即])2152()52[(16]21)521[(52222⨯-+⨯⎭⎬⎫⎩⎨⎧⨯-⨯=a a a S π内侧表]21)521)[(52(22a a ⨯⨯-⨯+⨯π =2222562]25254[1610352a a a ⨯+⨯⨯-+⨯⨯⨯ππ=22225625)4(22548a a a ππ+-⨯+227424.225456a a =+=π所以,所求图形的立体表面积为:内侧表外侧表总表S S S +=2228512.77424.21088.5a a a =+=根据题意,所求图形的立体的体积是原正方体体积减去挖去部分的体积,而挖去部分的体积如图,可以看作两底面为正方形,边长为a 52厘米,高a 厘米的长方体,减去中间交叉部分的体积,交叉部分恰好是棱长为a 52厘米的正方体,再加上2个同样的圆柱体的体积,这个圆柱的底面直径为a 52厘米,高为a a 5321)521(=⨯-厘米,即a a 5321)521(=⨯-即交叉圆柱长方体挖V V V V -⨯+⨯=22a a ⋅2)52( a a 53)2152(2⨯⨯π 3)52(a33312581253258a a a -+=π3125842.940a -+=333136.0a =(立方厘米) 所以,所求立体的体积为:挖原V V V -=33366864.033136.0a a a =-=答:所以图形的立体的表面积是28512.7a 平方厘米,体积是366864.0a 立方厘米. 11.99782解:根据题意,设这两个五位数的和为WUVXY ,则 WUVXYMACAO AOMEN虽然最大的五位数为99999,但W U V X Y 不可能为99999.如果A+M =9, O+A =9, 那么M -O =0, 则M 与O 所代表的数字相同,与题意矛盾.但是当A+M =9, O+A =8时,只要M+C 能够进位,O+A 的和仍可能为9,所以,为了使和的值尽可能大,那么,M+C =17时最好,故必须取如下和式:甲: ⎝⎛=+=+=+,17,8,9C M A O M A此时, W =9, U =9, V =7.如果A+M =8,那么O+A 必须是17,那么W =9,但这样 U ≤8,因此,A+M =8时,和的最大值不是最大,而依甲式取值所得的和最大。
2008年慈溪市初一数学应用与创新竞赛试卷(含答案)
2008年慈溪市初一(七年级)数学“应用与创新”竞赛(时间:2008年5月25日 上午8:30——10:30;满分:120分) 题号一 (1~6)二 (7~16)三总分17 18 19 20 得分一、选择题(每小题4分,共24分):1.杭州湾跨海大桥于5月1日23时58分开始试运行,大桥全长36千米,按规定桥上最 低时速为60千米,最高时速为100千米,两辆汽车从桥的南北两端同时出发,正常行 驶时到它们在途中交会所需时间可能为( )A .7分钟B .15分钟C .22分钟D .36分钟2.甲、乙两袋装有重量相等的大米(袋子还有较大的空余),先把甲袋的大米倒31给乙 袋,再把乙袋的大米倒83给甲袋,结果( ) A .甲袋多 B .乙袋多 C .一样多 D .谁多谁少,要视原来每袋大米的重量而定 3.如图,一张纸的厚度为0.07mm ,连续对折15次,这时它的厚 度最接近于( )A .数学课本的厚度B .书桌的高度C .姚明的身高D .三层楼的高度4.如图, 在△ABC 中,AD ⊥BC ,CE ⊥AB ,垂足分别为D 、E ,AD 、CE 交于点H ,已知EH =EB=3,AE =4,则CH 的长是 ( ) A . 1B . 2C . 3D .45.已知三角形的每条边长都是整数,且均不大于4,这样的互不全 等的三角形有( )A .9个B .11个C .12个D .13个 6.现有一个长方体水箱,从水箱里面量得它的深是30cm ,底面的长是25cm ,宽是20cm .水箱里盛有深为a cm (0<a ≤8)的水,若往水箱里放入棱长为10cm 的立方体铁块,则此时水深为 ( ) A.a 34cm B. a 45cm C.(a +2) cm D. 6105 a cm (第3题)AB CDHE(第4题)二、填空题(每小题5分,共50分): 7.若63=m,29=n,则1423+-n m = .8.写出一个能用算式2000%)281(⨯-解决的实际问题情境: .9.小红购买4种学习用品:计算器、笔记本、钢笔、圆珠笔,购买的件数和总金额列表如下:品名件数计算器笔记本钢笔圆珠笔总金额第一次购件数 1 3 4 5 78 第二次购件数157998则4种学习用品各买一件共需__________元.10.在“□ □2a •a • □44”的空格中,任意填上“+”或“-”,其中能够运用完全平方公式分 解因式的概率为_ .11.甲、乙两班共104名学生去西湖划船,大船每只可乘坐12人,小船每只可乘坐5 人,如果这些学生把租来的船都坐满,那么应租大船 只. 12.若规定:①{} m 表示大于m 的最小整数,例如:{}4 3 =,{}2 4.2-=-;②[] m 表示不大于m 的最大整数,例如:[]5 5 =,[]4 6.3-=-. 则使等式{}[]15 2=-x x 成立的整数..=x .13.“北”、“京”、“奥”、“运”分别代表一个数字,四位数“北京奥运”与它的各位数字的和为2008,则这个四位数为 .14.已知连续2008个正整数的和是一个完全平方数,则其中最大的数的最小值是 . 15.有A 、B 、C 、D 四位员工做一项工作,每天必须是三位员工同时做,另一位员工休 息,当完成这项工作时,D 做了8天,比其他任何人都多,B 做了5天,比其他任何 人都少,那么A 做了 天.16.三位同学分别用m 根长度相同的火柴棒,摆出了如图1、图2、图3的图案,各自恰好用完了这m 根火柴棒,这些图案中的小正方形边长均为一根火柴棒的长度.图 3图 1....................................图 2则m 的最小值为 .三、解答题(17题10分, 18、19、20题各12分,共46分) 17.我市旅游业计划开发的项目主要是景点和通往景点的公路,随着杭州湾大桥的开通, 我市加快旅游业开发,把景点和公路的开发总投资增加至10.5千万元,其中开发景 点的投资增加了20%,开发公路的投资增加了10% .已知原计划景点投资比公路投 资多3千万元.求我市实际投资景点和公路各多少千万元? 解:18.如图①∆ABC 中,D 为BC 边的中点,连结AD 并延长AD 至E ,使DE=AD ,连 结BE .(1)若∆ABC 中,AB=7,AC=5,则中线AD 的长度的的取值范围是什么?并说明理由; (2)∆ADC 经过怎样的图形变换得到∆BDE ?(3)利用(2)中变换的特点,把如图②的∆PQR 剪2刀后拼成一个长方形,把如图③的 正方形ABCD 剪1刀拼成一个直角三角形(但非等腰三角形),画出裁剪线及拼成的 图形,作出必要的说明. 解:(1)(2)(3)A B C DE 图① 图② P Q R A B C D 图③19.已知a 、b 、c 为正整数,且222c b a =+,又a 为质数.说明下列结论成立的理 由:(1)b 、c 两数必为一奇一偶;(2)2(22+-+c b a )是完全平方数(即一个 正整数的平方) 解:20.甲、乙、丙三人分小球,分法如下:先在三张纸签上各写上三个正整数a 、b 、c , 使c b a <<.分小球时,每人抽一张签,然后把抽得的签上的数减去a ,所得结果就 是他这一轮分得的小球个数,以后重复上述过程(每次写上的数不变).经过若干轮(不 小于2轮)这种分法后,甲共得到了20个小球,乙共得10个小球,丙共得9个小球, 又知最后一次乙拿到的纸签上写的数是 c ,而丙在各轮中拿到的纸签上写的数字之和 是18,问正整数a 、b 、c 各是多少?为什么? 解:2008年慈溪市初一(七年级)数学应用与创新竞赛试题参考答案及评分标准一、选择题(每小题4分,共24分)1、B ;2、A ;3、C ;4、A ;5、D ;6、B 。
2008年全国初中数学竞赛及答案
中国教育学会中学数学教学专业委员会“《数学周报》杯”2008 年全国初中数学竞赛试题一、选择题(共5 小题,每小题6 分,满分30 分以下每道小题均给出了代号为A 、B 、C 、D 的四个选项,其中有且只有一个选项是正确的. 请将正确选项的代号填入题后的括号里,不填、多填或错填都得0 分)1.已知实数x ,y 满足3,3242424=+=-y y x x ,则444y x+的值为( ) (A )7 (B )2131+ (C ) 2137+ (D )5 2.把一枚六个面编号分别为1,2,3,4,5,6 的质地均匀的正方体骰子先后投掷2 次,若两个正面朝上的编号分别为m ,n ,则二次函数 n mx x y ++=2的图象与x 轴有两个不同交点的概率是( ).(A )125 (B )94 (C )3617 (D )213.有两个同心圆, 圆周上有4 个不同的点,小圆周上有2 个不同的点,则这6 个点可确定的不同直线最少有( ) .(A )6 条 (B ) 8 条 (C )10 条 (D )12 条4.已知AB 是半径为1的圆O 的一条弦,且AB = a < 1.以AB 为一边在圆 O 内作正△ABC ,点D 为圆O 上不同于点A 的一点,且DB = AB = a ,DC 的延长线交圆O 于点E ,则AE 的长为( ).(A )a 25 (B )1 (C )23 (D )a5.将1,2,3,4,5 这五个数字排成一排,最后一个数是奇数,且使得其任意连续三个数之和都能被这三个数中的第一个数整除,那么满足要求的排法有( ).(A )2 种 (B )3 种 (C )4 种 (D )5 种二、填空题(共5 小题,每小题6 分,满分30 分)6.对于实数u ,v ,定义一种运算“*”为:u *v = uv + v .若关于x 的方程41)*(*-=x a x 有两个不同的实数根,则满足条件的实数a 的取值范围是 ;7.小王沿街匀速行走,发现每隔6 分钟从背后驶过一辆18 路公交车,每隔 3 分钟从迎面驶来一辆18 路公交车.假设每辆18 路公交车行驶速度相同,而且 18 路公交车总站每隔固定时间发一辆车,那么发车间隔的时间是 分钟.8.如图,在△ABC 中,AB=7,AC=11,点M 是BC 的中点,AD是∠BAC 的平分线,MF ∥AD ,则FC 的长为(第8 题)9.△ABC中,AB =7,BC =8,CA=9,过△ABC的内切圆圆心I 作DE ∥BC,分别与AB ,AC 相交于点D ,E ,则DE的长为.10.关于x ,y 的方程)(20822yxyx-=+的所有正整数解为.三、解答题(共4 题,每题15 分,满分60 分)11 (A).在直角坐标系xOy 中,一次函数y = kx + b (k≠0)的图象与x 轴、y 轴的正半轴分别交于A ,B 两点,且使得△OAB的面积值等于3++OBOA(1)用b 表示k;(2)求△OAB 面积的最小值.11 (B).已知一次函数xy21=,二次函数122+=xy,是否存在二次函数cbxaxy++=23,其图象经过点(-5,2),且对于任意实数x的同一个值,这三个函数对应的函数值321,,yyy,都有231yyy≤≤成立?若存在,求出函数3y的解析式;若不存在,请说明理由.12 (A).是否存在质数p ,q,使得关于x 的一元二次方程02=+-pqxpx有有理数根?12 (B).已知a,b 为正整数,关于x 的方程022=+-baxx的两个实数根为21,xx,关于y的方程022=++bayy两个实数根为21,yy,且满足20082211=-yxyx。
平均数问题
小学四年级奥数题——平均数问题(A卷)一、填空题.1.已知9个数的平均数是72,去掉一个数后,余下的数平均数为78,去掉的数是______.2.某班有40名学生,期中数学考试,有两名同学因故缺考,这时班级平均分为89分,缺考的同学补考各得99分,这个班级中考平均分是_______.3.有5个数,其平均数为138,按从小到大排列,从小端开始前3个数的平均数为127,从大端开始顺次取出3个数,其平均数为148,则第三个数是_______.4.某5个数的平均值为60,若把其中一个数改为80,平均值为70,这个数是________.5.如果三个人的平均年龄为22岁.年龄最小的没有小于18岁.那么最大年龄可能是______岁.6.数学考试的满分是100分,六位同学的平均分是91分,这6个同学的分数各不相同,其中一个同学得65分,那么居第三名的同学至少得_______分.7.在一次登山比赛中,小刚上山时每分钟走40米,18分钟达到山顶,然后按原路下山,每分钟走60米,小刚往返的平均速度是每分_______米.8.某校有100名学生参加数学考试,平均分是63分,其中男生平均分是60分,女同学的平均分是70分,男生比女生多_______人.9.一些同学分一些书,若平均每人分若干本,还余14本,若每人分9本,则最后一人分得6本,那么共有学生_______人.10.有几位同学参加语文考试,赵峰的得分如果再提高13分,他们的平均分就达到90分,如果赵峰的得分降低5分,他们的平均分就只得87分,那么这些同学共有________人.11.有四个数每次取三个数,算出它们的平均数再加上另一个数,用这种方法计算了四次,分别得到以下四个数:86,92,100,106,那么原4个数的平均数是________.12.甲、乙、丙三人一起买了8个面包平均分着吃,甲拿出5个面包的钱,乙付了3个面包的钱,丙没付钱.等吃完结算,丙应付4角钱,那么甲应收回钱_____分.二、分析解答题.13.今年前5个月,小明每月平均存钱4.2元,从6月起他每月储蓄6元,那么从哪个月起小明的平均储蓄超过5元?14.A、B、C、D四个数,每次去掉一个数,将其余下的三个数求平均数,这样计算了4次,得到下面4个数.23,26,30,33A、B、C、D4个数的平均数是多少?———————————————答案——————————————————————一、填空题答案:1.24729-788=24.2.89.5分.[89(40-2)+992]40=89.5(分).3.1351273+1483-1385=1354.3080-(705-605)=305.28岁,三人年龄和=223=66岁,设有两个人的年龄最小,和为192=38,所以,最大年龄可能是66-38=28(岁)6.95第一、二名最多可得100+99=199(分)第三、四、五名的平均分为:(916-100-99-65)3=94(分)第三名最少95(分)7.48米.(40182)[18+401860]=48(米).8.40(人).男生:(70100-63100)(70-60)=70(人)女生:100-70=30(人)70-30=40(人)9.17名由题意知,每人9本,最后一人只能分6本差3本,说明每次只能分8本、7本、6本……,设共有x名学生,可得:9x-3=8x+14x=17经检验,每人分7本,6本不合题意,所以共有17名同学.10.6人(13+5)(90-87)=6(人)11.48(86+92+100+106)24=4812.35分4038=15(分)155-410=35(分)二、分析解答题答案:1.10月份10月份起超过5元,以5元为基数,前5月平均每月少5-4.2=0.8(元),6月起平均每月增加6-5=1(元)(5-4.2)5(6-5)=4从6月起,4个月后每月平均储蓄就超过5元.2.28(23+26+30+33)4=28六、平均数问题(B)年级______班_____ 姓名_____得分_____1.三个数的平均数是120,加上一个数,四个数的平均数是115,这个数是________ .2.小强考了语文、数学、英语、历史、自然五门功课,数学成绩不算在内,平均成绩是90分.把数学成绩加上去,平均成绩是92分.小强的数学成绩是_______分.3.江滨小学有433个小朋友,分乘4辆汽车去儿童公园,第一辆车已经接走了115人,如果第二、三、四辆车乘的人数相同,第三辆车乘了______个小朋友.4.5个数写成一排,前3个数的平均值是15,后两个的数的平均值是10,这五个数的平均的值是______.5.甲、乙两地相距240公里,一辆汽车从甲地开往乙地用了6小时,返回时用了4小时.这辆汽车往返的平均速度________公里.6.甲、乙、丙三人的平均年龄为17岁,而甲乙两人的平均年龄为15岁,那么丙的年龄是________岁.7.甲乙两人带着同样多的钱,用他们全部的钱买了洗衣粉,甲拿走了12袋,乙拿走了8袋.回家后甲补给乙3.8元,每袋______元.8.学校足球队18人合影留念,照6寸照片洗三张价格是4.5元,另外加洗每张0.3元,如果每人各得一张,平均每人需______元.9.甲乙两块棉田,平均亩产185斤,甲棉田是5亩,亩产203,乙棉田亩产170斤,乙棉田有________亩.10.小明期中考试语文,数学两科分数共176分,如果再加上外语分数,三科的平均分就比语文,数学两科的平均分多3分,小明的外语成绩是________分.二、分析解答题:11.学校足球队18人合影留念,照六英寸照片.洗3张价格是4.5元,另外加洗,每张0.3元.如果每人各得一张,那么平均每人需元.12.五位裁判员给一名体操运动员评分后,去掉一个最高分和一个最低分,平均得9.58分;只去掉一个最高分,平均得9.46分;只去掉一个最低分,平均得9.66分.这个运动员的最高分与最低分相差多少?13.在一次登山比赛中,小刚上山时每分走40米,18分到达山顶.然后按原路下山,每分走60米.小刚上、下山平均每分走多少米?14.小明从家到学校的路程是540米,小明上学要走9分钟,回家时比上学时少用3分钟.那么小明往返一趟平均每分钟走多少米?———————————————答案—————————————————————— 1. 100 115 4-120 3=100 2. 102分数学得分加进后的六门课总分: 92 6=552(分) 除数学外的五门课总分: 90 5=450(分) 数学课成绩为:552-450=102(分) 3. 106 人(433-115) (4-1)=106(人) 4. 13 (3 15+2 10) (3+2)=13 5. 48公里/小时240 2 (6+4)=48(公里/小时) 6. 21岁3 17-2 15=21(岁) 7. 1.9元 3.8 [(12-8) 2]=1.9(元) 8. 0.5元[4.5+0.3 (18-3)] 18=0.5(元) 9. 6亩(5 203-5 185) (185-170)=6(亩) 10. 97分(176 2+3) 3-176=97(分) 二、分析解答题: 11. 0.2(元) 洗18张照片需要的钱数是:450+30 15=900(分). 每人需交的钱数为:900 18=20(分)=0.2(元). 12.0.8分最低分: 9.46 4-9.58 3=9.10(分) 最高分: 9.66 4-9.58 3=9.90(分) 最高分与最低分相差: 9.90-9.10=0.8(分) 13. 48米(40 18 2) [18+(40 18) 60]=48(米) 14. 72米/分钟540 2 [9+(9-3)]=72(米/分钟)知识点拔】姓名:【典型例题】【例1】小明的语文、数学的平均成绩是90分,语文、数学、英语三科的平均成绩是93分,由此可知小明的英语成绩是多少分?(2008年第六届小学希望杯全国数学邀请赛试题)【练一练】在期末考试中,小华的语文、数学、英语三科的平均成绩是94分,其中语文、数学两科的平均成绩是92分。
2008年我爱数学初中生夏令营数学竞赛试卷(第二试)
2008年我爱数学初中生夏令营数学竞赛试卷(第二试)一、若2008=()()()011-n 1-n n n a 3a 3a 3a +-∙++-∙+-∙ ,(其中ai=0,±1,±2,i=0,1,2,…,n )那么,011-n n a a a a ++++ =______________。
二、能使关于x 的议程02x 6x n 2=--(其中n 是正整数)有整数解的n 的值的个数等于______________。
三、如果函数y=b 的图像与函数3x 41x 3x y 2----=的图像恰有三个交点,那么,b 的可能值是_____________________。
四、已知a 为整数,关于x 的议程0a 21x x41x x 222=-++-+有实数根,那么,a 的可能值是_____________________。
五、如果某数可以表示成91的某个倍数的数字和,那么,就把这个数叫做和谐数。
在1,2,3,……,2008中,和谐数的个数是_____________________。
六、已知某种型号的汽车每台的售价是23万元,一个工厂在一年中生产这处汽车的总成本由固定成本和生产成本两部分组成。
一年的固定成本为7000万元。
在这一年中生产这种汽车x 辆时,生产每一辆车的生产成本为x 3x-70万元(0<x <1000)。
要使该厂一年中生产的这种汽车的销售收入不低于总成本,在一年中至少需要生产这种汽车____________辆。
七、如果2008个数a 1、a 2、……,a 2008满足条件:2a 1=,020081a a 12008a a n 1n 1n 2n =+⎪⎪⎭⎫ ⎝⎛+---,(其中n=2,3,……,2008),那么a2008可能达到的最大值是______________。
八、已知圆O 与直线l 相切于点M ,圆O 外一定点A 和圆O 都在直线l 的同一侧。
点A 到直线l 的距离大于圆O 的直径。
2008年第七届中国女子数学奥林匹克试题及解答(中山)
下面证明:
设P 1 , Q1 , R1 , S1 分别是边 DA,AB,BC,CD 的中点,SP,PQ,QR,RS 的中点分别 为 E,F,G,H.则 P 1 Q1 R1 S1 是平行四边形. 连接 P 1 E , S1 E ,设点 M,N 分别是 DP,DS 的中点,则 DS = S= DN = EM , 1 1N DP = PM = MD = EN , 1 1 又 ∠P = 360° − 60° − 60° − ∠PDS 1 DS 1 = 240° − (180° − ∠END) = 60° + ∠END = ∠ENS1 = ∠EMP 1, 所以 ∆DPS 1 1 ≅ ∆MP 1 E ≅ ∆NES1 ,
n + 3 n+3 , 2n + 1 . 2, 2n,3n + 1 − , , n − 1, n + 2 2 当 n 为奇数时,依次取上述数组为 A1 , A2 , , An ,则其为满足题设的三元子集族.故 n 为 所有的奇数.
第 2 页 共 12 页
2 因为 x1 , x2 , x3 大于 0,所以 ( x1 − x2 )( x12 − x2 ) ≥ 0.
3
②
2 3 也就是 x12 x2 + x2 x1 ≤ x13 + x2 .
2 2 3 3 2 3 同理 x2 x3 + x3 x2 ≤ x2 + x3 , x3 x1 + x12 x3 ≤ x3 + x13 .
λµ
λ
ϕ
ϕ2
b b , S3 = 2 , S 4 = 1 − b ,则我们有 t t
S3 S1 S 2 b b 1+ 5 = = t ∈ ( a, ), = > > 2 > a, 2 S 2 S3 2 S 4 t (1 − b) 4(1 − b) 由此我们得到对任意 i, j ∈ {1, 2,3, 4} ,有 Si ∉ [a −1 , a ] .这表明 amin = ϕ . Sj
2008学年第二学期阶段性考试(二)七年级数学试卷及答案
2008学年第二学期阶段性考试(二)七年级数学试卷 2009年5月一、选择题(下面每小题都给出编号为A, B,C,D的四个答案,其中有且只有一个是符合题意的,请选择符合题意的答案的编号,填在题后的括号内.本题共30分,每小题3分,选错、多选、不选都给零分)1、下列各组线段不可能构成三角形的是………………………………………()A 、3,4,5 B、 7,5,5 C、 3,4,7 D、 4,6,72、在△ABC中,∠A=40°,∠B=60°,则∠C=………………………………()A、40°B、80°C、60°D、100°3、满足条件“三条高均在三角形内部”的三角形是……………………………()A、锐角三角形B、直角三角形C、钝角三角形D、无法确定4、下列图中的“笑脸”,由图(1)按逆时针方向旋转90º得到的是……………()(1) A . B. C . D.5、转动如图所示的一些可以自由转动的转盘,当转盘停止时,指针落在阴影区域内的可能性最大的是………………………………………………………………()6、下列方程中,是二元一次方程的是…………………………………………()A.5=+yx; B.132=+yx; C.3=xy; D.21=+yx7、下列计算正确的是…………………………………………………………()A.1243aaa=⋅; B.743)(aa=; C.3632)(baba=; D.aaa=÷43 .8、下面等式中,从左至右的变形是因式分解的是………………………………()A.14)12)(12(2-=-+xxx; B.)3(3932baaaba-=-学校班级姓名学号C.)1(22xy x x y x +=+ ; D.2222))((z y x y x z y x --+=--.9、通过计算几何图形的面积可表示一些代数恒等式,右图可表示的代数恒等式是………………………………………………………………………………( )A .()2222——b ab a b a +=B .()2222b ab a b a ++=+;C .()ab a b a a 2222+=+ ;D .()()22——b a b a b a =+ .10、解方程组⎩⎨⎧=-=+872y cx by ax 时,一学生把c 看错得⎩⎨⎧=-=22y x ,已知方程组的正确解是⎩⎨⎧-==23y x ,则a 、b 、c 的值是……………………………………( )A 、a 、b 不能确定,c=-2B 、a 、b 、c 不能确定C 、a=4,b=7,c=2D 、a=4,b=5,c=-2二、填空题(把正确答案填在空格内,本题共30分,每小题3分) 11、如图,AD 是△ABC 的中线,如果△ABC 的面积是18cm 2,则△ADC 的面积是____cm 2.12、纳米是一个长度单位,1纳米=0.000000001米= 米.(用科学计数法表示)13、照镜子时,小明看到了镜子里自己的校微,实际上是:____________.14、从3名男生和2名女生中,安排一名男生和一名女生去打扫卫生,则有 种安排方式。
初中第六届东方杯七级数学竞赛试题含答案
初中第六届“东方杯”七年级数学比赛试题一、耐心填一填(每题 5 分,共 50 分)1、某天, 5 名同学去打羽毛球,从上午8:45 向来到上午 11:05,若这段时间内,他们向来玩双打(即须 4 人同时上场),则均匀一个人的上场时间为 ________分2、已知:一条射线OA ,若从点O 再引两条射线OB、OC,使∠AOB=60 0,∠ BOC=200,则∠ AOC=___________度142315 0.75115 _____________3、9494。
4、定义 a*b=ab+a+b,若 3*x=27 ,则 x 的值是 ________。
5、有一个正方体,在它的各个面上分别标上字母A、B、C、D、E、F,甲、乙、丙三位同学从不一样方向去观察其正方体,观察结果如图所示。
问:F的对面是_______。
F B EA D ACC D6A、B、C、D、E、F 六足球队进行单循环比赛,当比赛到某一时节,统计出 A、B、C、D、E、五队已分别比赛了 5、4、3、2、1场球,则还没与 B 队比赛的球队是________。
7、正方体每一面不一样的颜色对应着不一样的数字,将四个这样的正方体如图拼成一个水平搁置的长方体,那么长方体的下底面数字和为________。
8、小李同学参加了学校 的名 “互帮互助向将来”活 , 此小李自己在家制作了四份小礼物, 准 送 他的新同学, 四份小礼物分 装在形状完整一 的小 方体的盒子里, 每个小 方体的 、 、高分 是 3、1、1,而后把 四个小 方体盒子用美丽的 捆 成一个大方体,那么 个大 方体的表面 可能有 ________中不一样的 ,此中最小________。
x 3y a 2 a 19、 当 a______ ,方程9x 6 y 9a 2 2a2的解是正数。
10、如 1,棱 分 1 厘米, 2 厘米, 3 厘米, 5 厘米的四个正方体 在一起, 所获得的多面体的表面是 ________平方厘米。
相遇问题(一)
2009年秋季华英学校年级(VIP 课程)讲义()(仅供使用)1.甲乙两人分别从相距66千米的两地同时出发相向而行,甲每小时走16千米,经过两小时后两人相遇。
问乙每小时行多少千米?(2001年小学数学ABC卷试题)2.甲乙两列火车同时从相距700千米的两地相对开出,甲车每小时行75千米,经过5小时相遇。
乙车每小时行多少千米?(第五届“奥数之星”夏令营试题)3.王明和妹妹两人同时从相距2000米的两地相向而行,王明每分钟行110千米,妹妹每分钟行90千米,如果一只狗与王明同时同向而行,每分钟行500米,遇到妹妹后立即回头向王明跑去,遇到王明再向妹妹跑去,这样不断来回,直到王明和妹妹相遇为止。
狗共跑了多少米?(四川德阳市第十一届小学数学邀请赛试题)4.甲乙两队学生从相隔18千米的两地同时出发相向而行。
一名同学骑自行车以每小时14千米的速度在两队间不停地往返联络。
甲队每小时行5千米,乙对每小时行4千米。
两队相遇时,骑自行车的同学共行多少千米?(2007年“陈省身杯”国际数学邀请赛试题)5.A、B两地相距300米,甲乙两人各从A、B两地同时背向而行,7分钟后两人相距860米。
甲每分钟走37米,乙每分钟走多少米?(2000年广东中山市竞赛试题)6.在一条笔直的公路上,可可和凡凡从相距100米的地方同时出发,相背跑步,以后方向不变。
可可每秒跑6米,凡凡每秒跑4米。
出发多少秒时,他们相距200米?(2007年第五届“走进美妙的数学花园”试题)7.摩托车和自行车从相距298千米的甲、乙两地相向而行。
摩托车每小时行52千米,自行车每小时行18千米。
途中摩托车发生故障,修理了1小时,然后继续前行。
两车相遇时,摩托车行了多少千米?(2007年“陈省身杯”国际数学邀请赛试题)8.甲城与乙城相距138千米,张,赵两人骑自行车分别从两城同时出发,相向而行。
张每小时行13千米,赵每小时行12千米,赵在行进中因修车耽误了1小时,然后继续前进与张相遇。
七年级数学竞赛试题.doc
首届全国中学生数理化学科能力竞赛七年级数学学科能力解题技能初赛试题试卷说明:1、本试卷共计15题,满分为120分2、考试时间为120分钟 一、选择题(共6小题,每题5分,共30分)1、北京奥运期间,体育场馆要对观众进行安全检查.设某体育馆在安检开始时已有若干名观众在馆外等候安检,安检开始后,到达体育馆的观众人数按固定速度增加.又设各安检人员的安检效率相同.若用3名工作人员进行安检,需要25分钟才能将等候在馆外的观众检测完,使后来者能随到随检;若用6名工作人员进行安检,时间则缩短为10分钟.现要求不超过5分钟完成上述过程,则至少要安排 名工作人员进行安检.A. 9B. 10C. 11D. 122、2008年9月25日,中国国家主席胡锦涛在酒泉卫星发射中心“问天阁”为执行神州7号飞行任务的航天员壮行.3天后,神州7号巡天归来,在太空中留下了中国人骄人的足迹.根据这些事实和数据,我们发现有可能存在这样的等式: 神州7号问天×3 = 问天神州7号上述等式中,每个汉字代表从0到9中的不同自然数(其中7已经被使用).要使得等式成立,则神州7号 = .A. 2075B. 3075C. 3076D. 30783、若“学”、“科”、“能”、“力”这四个汉字中每个汉字分别代表一个非零的个位数,对于运算符号“∆”有:学科能力∆1=科学能力;学科能力∆2=能力科学,那么1234∆1∆2 = .A. 4312B. 3421C. 4321D. 34124、一个数学玩具的包装盒是正方体,其表面展开图如下.现在每方格内都填上相应的数字.已知将这个表面展开图沿虚线折成正方体后,相对面上的两数之和为“0 ”,则填在A 、B 、C 内的三个数依次是 .A. 0,-2,1B. 0,1,-2C. 1,0,-2 D. -2,0,15、某品牌乒乓球拍在北京奥运会后推出一款球拍的促销计划.该球拍每只售价为人民币60元,购买者同时获赠1张奖券;积累3张奖券可兑换1只球拍.由此可见,1张奖券价值为 元.A. 20B. 15C. 18D. 126、10个同学藏在10个谜宫里面.男同学的谜宫门前写的是一个正数,女同学的谜宫门前写的是一个负数,这10个迷宫门前的数字依次为8200823(5)(1)83(2008),,0.1,,,2008,2,,4(2),51,(25)20081997(3)a ---+---⨯-⨯---- 则谜宫里面的男同学、女同学的人数分别为 .A. 4人、6人B. 6人、4人C. 3人、7人D. 7人、3人二、填空题:(共6小题,每题5分,共30分)7、若(x -2y )2+(y +2)2=0,则y -x = .8、由6条长度均为2 cm 的线段可构成边长为2 cm 的n 个正三角形,则n 的最大值为 .9、在△ABC 中,点D 为边BC 的中点,点E 为线段AD 上一点,且满足AE =2ED ,则△ABC 与△BDE 的面积之比为 .10、某校A 、B 、C 三名同学参加全国中学生数理化学科能力竞赛,其指导教师赛前预测:“A 获金牌;B 不会获金牌;C 不会获铜牌.”结果出来后,三人之中,一人获金牌,一人获银牌,一人获铜牌,指导教师的预测只有一个与结果相符.由此可以推论: 获得银牌.11、已知2x y +(其中,x y 都是整数)能被9整除,则2(584)x y --被9除的余数为 .12、从2008,2009,2010,…, 2028这些数中,任取两个数,使其和不能写成三个连续自然数的和,则有 种取法.三、解答题(每小题20分,共60分)13、鲁西西开始研究整数的特征.她发现:4=22-02,12=42-22,20=62-42. 4,12,20这些正整数都能表示为两个连续偶数的平方差,她称这些正整数为“和谐数”.现在请你在鲁西西研究的基础上,进一步探究下列问题:(1) 判断28、2008是否为“和谐数”.(2) 根据上述判断,请你推广你的结论,指出判断一个正整数是否为“和谐数”的标准.(3) 更进一步探究:两个连续奇数的平方差(取正数)是“和谐数”吗?为什么?14、已知2008=1(xyx ,其中x,y为正整数,求x+y的最大值和最小值.十五为股八步勾,内容圆径怎生求?有人算得如斯妙,算学方为第一筹.当中提出的数学问题是这样的:已知直角三角形的两直角边边长分别为15步,8步,试求其内切圆的直径.请你尝试完成上述任务,如果时光倒流,看看你是否算得上古代中国的一流数学家.(温馨提示:直角三角形的三边存在这样的数量关系:斜边的平方等于两直角边的平方和.)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2008年第六届“创新杯”全国数学邀请赛(复试)
初中七年级试题
一、选择题
1.已知,10<<x 则x
x x 1,,2的大小关系是 2.若,1923,734=+=-b a b a 则b a 214-是
A. 48
B. 52
C. 58
D. 60
3.有理数c b a ,,在数轴上的点如下图所示,则||||||||ac ab ac ab a c a c c b c b b a b a --+--+-----的值等于
A. -1
B. 1
C. 2
D. 3
4.已知OC AOB ,90 =∠为一射线,ON OM ,分别平分BOC ∠和,AOC ∠ 则MON ∠是
o C B A 45.90.45. 或o 135 90.D 或 135
5.满足等式123323+-=++y y x x x 的有序整数对),(y x 的个数是
A. 0
B. 1
C. 2
D. 3
6.如图是一个正方体纸盒,在其中的三个面上各画一条线段构成△ABC ,且A 、
B 、
C 分别是各棱上的中点,现将纸盒剪开展成平面,则不可能的展开图是
7.如图为某三岔路口交通环岛的简化模型,在某高峰时,段,单位时间进出路口A 、B 、C 的机动车辆数如图所示,图中x 1,x 2,x 3分别表示该时段单位时间通过路段的机动车辆数(假设:单位时间内,在上述路段中,同一路段上驶入与驶出的车辆数相等),则
8.记][a 为不大于口的最大整数,如.3]3.2[,2]2[,1]3.1[-=-==不论对怎样的a ,当x ]2[],[a y a ==时,关于x ,y 的已知多项式恒等于0.这个多项式可能是
二、填空题
9.=--÷+)17
11741()17277217( 10.如图,,90 ⨯=∠+∠+∠+∠+∠+∠n F E D C B A 则n=
11.如图所示,已知2:7:=DB AD ,3:4:=CE AC 则=FC BF :
12.某校七年级举行数学竞赛,参加的人数是未参加人数的3倍,如果该年级学生减少6人,未参加的学生增加6人,那么参加与未参加竞赛的人数之比是2:1则该年级原有学生 人.
13.若c b a 、、为整数,且,1||||=-+-a c b a 则=-+-+-||||||a c c b b a
14.如图所示,,252,231,//o
BD AE =∠∠=∠则C ∠ 。
15.某村有四口水井,第一口水井在村委会的院子里,第二口水井在村委会正西900m 处,第三口水井在村委会北偏东30度2000m 处,第四口水井在村委会东偏南30度l000m 处,在计算结果精确到m 的要求下,第一、二、三口井在给定直角坐标系中的坐标分别为(O ,0)、(-900,O )、(1000,1732),则第四口井所在位置的坐标为____
16.对于大于3的自然数n ,我们用<n>表示所有小于n 的质数的乘积,如<8> =7×5×3× 2 =210.则方程<n>=2n +16的解n= .
三、解答题
17.从甲地到乙她的公路长12千米。
在该路上,距甲地2千米处有个铁路道口,每3分钟关闭又开放3分钟;在距甲地4千米及6千米处有交通灯,每亮2分钟红灯后就亮3分钟绿灯.小明驾驶电动车从甲地到乙地,出发时道口刚刚关闭,而那两处交通灯也刚好切换成红灯.已知电动车是常速,小明既不刹车也不加速.请问:在不违反交通规则的情况下,小明到达乙地最快需要几分钟?
18.AOCD 是放置在平面直角坐标系内的梯形,其中0是坐标原点,点A ,C ,D 的坐标分别为(0,8),(5,0),(3,8).若点P 在梯形内,且APAD 的面积等于APOC 的面积,△PAO 的面积等于△PCD 的面积.
(I)求点P 的坐标;
(Ⅱ)试比较∠PAD 和∠POC 的大小,并说明理由,
19.把正整数染成红色或蓝色,每种颜色的数不少于两个.是否存在这样的染法,使得 (I)红色数的积是红色,蓝色数的积是蓝色?
(Ⅱ)红色数的和是红色,蓝色数的和是蓝色?
如果存在,请写出你认为满足条件的染色方法;如果不存在,试说明理由.。