2019-2020年中考数学试题分类汇编 统计
辽宁省2019年、2020年中考数学试题分类汇编——统计与概率(含答案)
2019年、2020年数学中考试题分类——统计与概率一.全面调查与抽样调查(共2小题)1.(2019•朝阳)下列调查中,调查方式最适合普查(全面调查)的是()A.对全国初中学生视力情况的调查B.对2019年央视春节联欢晚会收视率的调查C.对一批飞机零部件的合格情况的调查D.对我市居民节水意识的调查2.(2019•抚顺)下列调查中,最适合采用全面调查的是()A.对全国中学生视力和用眼卫生情况的调查B.对某班学生的身高情况的调查C.对某鞋厂生产的鞋底能承受的弯折次数的调查D.对某池塘中现有鱼的数量的调查二.频数(率)分布直方图(共1小题)3.(2020•鞍山)为了解某校学生的睡眠情况,该校数学小组随机调查了部分学生一周的平均每天睡眠时间,设每名学生的平均每天睡眠时间为x时,共分为四组:A.6≤x<7,B.7≤x<8,C.8≤x<9,D.9≤x≤10,将调查结果绘制成如图两幅不完整的统计图:注:学生的平均每天睡眠时间不低于6时且不高于10时.请回答下列问题:(1)本次共调查了名学生;(2)请补全频数分布直方图;(3)求扇形统计图中C组所对应的圆心角度数;(4)若该校有1500名学生,根据抽样调查结果,请估计该校有多少名学生平均每天睡眠时间低于7时.三.扇形统计图(共2小题)4.(2020•阜新)在“尚科学,爱运动”主题活动中,某校在七年级学生中随机抽取部分同学就“一分钟跳绳”进行测试,并将测试成绩x(单位:次)进行整理后分成六个等级,分别用A,B,C,D,E,F表示,并绘制成如图所示的两幅不完整的统计图表.请根据图表中所给出的信息解答下列问题:组别成绩x(单位:次)人数A70≤x<904B90≤x<11015C110≤x<13018D130≤x<15012E150≤x<170mF170≤x<1905(1)本次测试随机抽取的人数是人,m=;(2)求C等级所在扇形的圆心角的度数;(3)若该校七年级学生共有300人,且规定不低于130次的成绩为优秀,请你估计该校七年级学生中有多少人能够达到优秀.5.(2020•盘锦)某校为了解学生课外阅读时间情况,随机抽取了m名学生,根据平均每天课外阅读时间的长短,将他们分为A,B,C,D四个组别,并绘制了如图不完整的频数分布表和扇形统计图.频数分布表组别时间/(小时)频数/人数A0≤t<0.52nB0.5≤t<120C1≤t<1.5n+10D t≥1.55请根据图表中的信息解答下列问题:(1)求m与n的值,并补全扇形统计图;(2)直接写出所抽取的m名学生平均每天课外阅读时间的中位数落在的组别;(3)该校现有1500名学生,请你估计该校有多少名学生平均每天课外阅读时间不少于1小时.四.条形统计图(共4小题)6.(2020•朝阳)由于疫情的影响,学生不能返校上课,某校在直播授课的同时还为学生提供了四种辅助学习方式:A网上自测,B网上阅读,C网上答疑,D网上讨论.为了解学生对四种学习方式的喜欢情况,该校随机抽取部分学生进行问卷调查,规定被调查学生从四种方式中选择自己最喜欢的一种,根据调查结果绘制成如图两幅不完整的统计图:根据统计图提供的信息,解答下列问题:(1)本次共调查了名学生;(2)在扇形统计图中,m的值是,D对应的扇形圆心角的度数是;(3)请补全条形统计图;(4)若该校共有2000名学生,根据抽样调查的结果,请你估计该校最喜欢方式D的学生人数.7.(2020•锦州)某中学八年级在新学学期开设了四门校本选修课程:A.轮滑;B.书法;C.舞蹈;D.围棋,要求每名学生必须选择且只能选择其中一门课程,学校随机抽查了部分八年级学生,对他们的课程选择情况进行了统计,并绘制了如图两幅不完整的统计图.请根据统计图提供的信息,解答下列问题:(1)此次共抽查了名学生;(2)请通过计算补全条形统计图;(3)若该校八年级共有900名学生,请估计选择C课程的有多少名学生.8.(2020•沈阳)某市为了将生活垃圾合理分类,并更好地回收利用,将垃圾分为可回收物、厨余垃圾、有害垃圾和其他垃圾四类.现随机抽取该市m吨垃圾,将调查结果制成如下两幅不完整的统计图:根据统计图提供的信息,解答下列问题:(1)m=,n=;(2)根据以上信息直接补全条形统计图;(3)扇形统计图中,厨余垃圾所对应的扇形圆心角的度数为度;(4)根据抽样调查的结果,请你估计该市2000吨垃圾中约有多少吨可回收物.9.(2020•丹东)某校为了解疫情期间学生居家学习情况,以问卷调查的形式随机调查了部分学生居家学习的主要方式(每名学生只选最主要的一种),并将调查结果绘制成如图不完整的统计图.种类A B C D E学习方式老师直播教学课程国家教育云平台教学课程电视台播放教学课程第三方网上课程其他根据以上信息回答下列问题:(1)参与本次问卷调查的学生共有人,其中选择B类型的有人.(2)在扇形统计图中,求D所对应的圆心角度数,并补全条形统计图.(3)该校学生人数为1250人,选择A、B、C三种学习方式大约共有多少人?五.折线统计图(共1小题)10.(2020•阜新)如图,是小明绘制的他在一周内每天跑步圈数的折线统计图.下列结论正确的是()A .众数是9B .中位数是8.5C .平均数是9D .方差是7六.加权平均数(共2小题)11.(2019•铁岭)某公司招聘职员,公司对应聘者进行了面试和笔试(满分均为100分),规定笔试成绩占40%,面试成绩占60%.应聘者蕾蕾的笔试成绩和面试成绩分别为95分和90分,她的最终得分是( ) A .92.5分B .90分C .92分D .95分12.(2020•大连)某公司有10名员工,他们所在部门及相应每人所创年利润如下表所示.部门人数每人所创年利润/万元A 1 10B 2 8 C75这个公司平均每人所创年利润是 万元. 七.中位数(共2小题)13.(2020•辽阳)一组数据1,8,8,4,6,4的中位数是( ) A .4B .5C .6D .814.(2019•抚顺)一组数据1,3,﹣2,3,4的中位数是( ) A .1B .﹣2C .12D .3八.众数(共9小题)15.(2020•锦州)某校足球队有16名队员,队员的年龄情况统计如下:年龄/岁 13 14 15 16 人数3562则这16名队员年龄的中位数和众数分别是( )A.14,15B.15,15C.14.5,14D.14.5,15 16.(2020•朝阳)某书店与一山区小学建立帮扶关系,连续6个月向该小学赠送书籍的数量分别如下(单位:本):300,200,200,300,300,500这组数据的众数、中位数、平均数分别是()A.300,150,300B.300,200,200C.600,300,200D.300,300,30017.(2020•葫芦岛)一组数据1,4,3,1,7,5的众数是()A.1B.2C.2.5D.3.5 18.(2020•鞍山)我市某一周内每天的最高气温如下表所示:最高气温(℃)25262728天数1123则这组数据的中位数和众数分别是()A.26.5和28B.27和28C.1.5和3D.2和3 19.(2019•盘锦)在中考体育加试中,某班30名男生的跳远成绩如下表:成绩/m 1.95 2.00 2.05 2.10 2.15 2.25人数239853这些男生跳远成绩的众数、中位数分别是()A.2.10,2.05B.2.10,2.10C.2.05,2.10D.2.05,2.05 20.(2019•铁岭)为了建设“书香校园”,某班开展捐书活动,班长将本班44名学生捐书情况统计如下:捐书本数2345810捐书人数25122131该组数据捐书本数的众数和中位数分别为()A.5,5B.21,8C.10,4.5D.5,4.5 21.(2019•丹东)在从小到大排列的五个整数中,中位数是2,唯一的众数是4,则这五个数和的最大值是()A.11B.12C.13D.14 22.(2019•朝阳)李老师为了了解本班学生每周课外阅读文章的数量,抽取了7名同学进行调查,调查结果如下(单位:篇/周):,其中有一个数据不小心被墨迹污损.已知这组数据的平均数为4,那么这组数据的众数与中位数分别为()A.5,4B.3,5C.4,4D.4,5 23.(2019•葫芦岛)某校女子排球队12名队员的年龄分布如下表所示:年龄(岁)13141516人数(人)1254则该校女子排球队12名队员年龄的众数、中位数分别是()A.13,14B.14,15C.15,15D.15,14九.方差(共7小题)24.(2020•盘锦)在市运动会射击比赛选拔赛中,某校射击队甲、乙、丙、丁四名队员的10次射击成绩如图所示.他们的平均成绩均是9.0环,若选一名射击成绩稳定的队员参加比赛,最合适的人选是()A.甲B.乙C.丙D.丁25.(2020•辽阳)某校九年级进行了3次数学模拟考试,甲、乙、丙、丁4名同学3次数学成绩的平均分都是129分,方差分别是s甲2=3.6,s乙2=4.6,s丙2=6.3,s丁2=7.3,则这4名同学3次数学成绩最稳定的是()A .甲B .乙C .丙D .丁26.(2020•朝阳)临近中考,报考体育专项的同学利用课余时间紧张地训练,甲、乙两名同学最近20次立定跳远成绩的平均值都是2.58m ,方差分别是:S 甲2=0.075,S 乙2=0.04,这两名同学成绩比较稳定的是 (填“甲”或“乙”).27.(2020•葫芦岛)甲、乙两人参加“环保知识”竞赛,经过6轮比赛,他们的平均成绩都是97分.如果甲、乙两人比赛成绩的方差分别为s 甲2=6.67,s 乙2=2.50,则这6次比赛成绩比较稳定的是 .(填“甲”或“乙”)28.(2020•沈阳)甲、乙两人在相同条件下进行射击练习,每人10次射击成绩的平均值都是7环,方差分别为S 甲2=2.9,S 乙2=1.2,则两人成绩比较稳定的是 (填“甲”或“乙”).29.(2020•丹东)甲、乙两人进行飞镖比赛,每人投5次,所得平均环数相等,其中甲所得环数的方差为5,乙所得环数如下:2,3,5,7,8,那么成绩较稳定的是 (填“甲”或“乙”).30.(2020•营口)从甲、乙、丙三人中选拔一人参加职业技能大赛,经过几轮初赛选拔,他们的平均成绩都是87.9分,方差分别是S 甲2=3.83,S 乙2=2.71,S 丙2=1.52.若选取成绩稳定的一人参加比赛,你认为适合参加比赛的选手是 . 一十.统计量的选择(共1小题)31.(2019•阜新)商场经理调查了本商场某品牌女鞋一个月内不同尺码的销售量,如表:尺码/码 36 37 38 39 40 数量/双15281395商场经理最关注这组数据的( ) A .众数B .平均数C .中位数D .方差一十一.随机事件(共2小题)32.(2020•沈阳)下列事件中,是必然事件的是( ) A .从一个只有白球的盒子里摸出一个球是白球B .任意买一张电影票,座位号是3的倍数C .掷一枚质地均匀的硬币,正面向上D .汽车走过一个红绿灯路口时,前方正好是绿灯 33.(2019•盘锦)下列说法正确的是( )A .方差越大,数据波动越小B .了解辽宁省初中生身高情况适合采用全面调查C .抛掷一枚硬币,正面向上是必然事件D .用长为3cm ,5cm ,9cm 的三条线段围成一个三角形是不可能事件 一十二.概率公式(共5小题)34.(2020•阜新)掷一枚质地均匀的硬币5次,其中3次正面朝上,2次正面朝下,则再次掷出这枚硬币,正面朝下的概率是( ) A .1B .25C .35D .1235.(2020•大连)在一个不透明的袋子中有3个白球、4个红球,这些球除颜色不同外其他完全相同.从袋子中随机摸出一个球,它是红球的概率是( ) A .14B .13C .37D .4736.(2020•葫芦岛)一个不透明的口袋中有4个红球、2个白球,这些球除颜色外无其他差别,从袋子中随机摸出1个球,则摸到红球的概率是( ) A .16B .13C .12D .2337.(2020•丹东)四张背面完全相同的卡片,正面分别印有等腰三角形、圆、平行四边形、正六边形,现在把它们的正面向下,随机的摆放在桌面上,从中任意抽出一张,则抽到的卡片正面是中心对称图形的概率是( ) A .14B .12C .34D .138.(2020•锦州)在一个不透明的袋子中装有4个白球,a 个红球.这些球除颜色外都相同.若从袋子中随机摸出1个球,摸到红球的概率为23,则a = .一十三.列表法与树状图法(共9小题)39.(2020•锦州)A ,B 两个不透明的盒子里分别装有三张卡片,其中A 盒里三张卡片上分别标有数字1,2,3,B 盒里三张卡片上分别标有数字4,5,6,这些卡片除数字外其余都相同,将卡片充分摇匀.(1)从A 盒里抽取一张卡、抽到的卡片上标有数字为奇数的概率是 ; (2)从A 盒,B 盒里各随机抽取一张卡片,请用列表或画树状图的方法,求抽到的两张卡片上标有的数字之和大于7的概率.40.(2020•朝阳)某校准备组建“校园安全宣传队”,每班有两个队员名额,七年2班有甲、乙、丙、丁四位同学报名,这四位同学综合素质都很好,王老师决定采取抽签的方式确定人选.具体做法是:将甲、乙、丙、丁四名同学分别编号为1、2、3、4号,将号码分别写在4个大小、质地、形状、颜色均无差别的小球上,然后把小球放入不透明的袋子中,充分搅拌均匀后,王老师从袋中随机摸出两个小球,根据小球上的编号确定本班“校园安全宣传员”人选.(1)用画树状图或列表法,写出“王老师从袋中随机摸出两个小球”可能出现的所有结果.(2)求甲同学被选中的概率.41.(2020•盘锦)有四张正面分别标有数字1,2,3,4的不透明卡片,它们除数字外无其他差别,现将它们背面朝上洗匀.(1)随机抽取一张卡片,卡片上的数字是奇数的概率为.(2)随机抽取一张卡片,然后放回洗匀,再随机抽取一张卡片,请用列表或画树状图的方法,求两次抽取的卡片上的数字和等于6的概率.42.(2020•葫芦岛)某校计划组建航模、摄影、乐器、舞蹈四个课外活动小组,要求每名同学必须参加,并且只能选择其中一个小组.为了解学生对四个课外活动小组的选择情况,学校从全体学生中随机抽取部分学生进行问卷调查,并把此次调查结果整理并绘制成如图两幅不完整的统计图.根据图中提供的信息,解答下列问题:(1)本次被调查的学生有人;(2)请补全条形统计图,并求出扇形统计图中“航模”所对应的圆心角的度数;(3)通过了解,喜爱“航模”的学生中有2名男生和2名女生曾在市航模比赛中获奖,现从这4个人中随机选取2人参加省青少年航模比赛,请用列表或画树状图的方法求出所选的2人恰好是1名男生和1名女生的概率.43.(2020•鞍山)甲、乙两人去超市选购奶制品,有两个品牌的奶制品可供选购,其中蒙牛品牌有两个种类的奶制品:A.纯牛奶,B.核桃奶;伊利品牌有三个种类的奶制品:C.纯牛奶,D.酸奶,E.核桃奶.(1)甲从这两个品牌的奶制品中随机选购一种,选购到纯牛奶的概率是;(2)若甲喜爱蒙牛品牌的奶制品,乙喜爱伊利品牌的奶制品,甲、乙两人从各自喜爱的品牌中随机选购一种奶制品,请利用画树状图或列表的方法求出两人选购到同一种类奶制品的概率.44.(2020•沈阳)沈阳市图书馆推出“阅读沈阳书香盛京”等一系列线上线下相融合的阅读推广活动,需要招募学生志愿者.某校甲、乙两班共有五名学生报名,甲班一名男生,一名女生;乙班一名男生,两名女生.现从甲、乙两班各随机抽取一名学生作为志愿者,请用列表法或画树状图法求抽出的两名学生性别相同的概率.(温馨提示:甲班男生用A 表示,女生用B表示;乙班男生用a表示,两名女生分别用b1,b2表示).45.(2020•丹东)在一个不透明的口袋中装有4个依次写有数字1,2,3,4的小球,它们除数字外都相同,每次摸球前都将小球摇匀.(1)从中随机摸出一个小球,小球上写的数字不大于3的概率是.(2)若从中随机摸出一球不放回,再随机摸出一球,请用画树状图或列表的方法,求两次摸出小球上的数字和恰好是偶数的概率.46.(2020•营口)随着“新冠肺炎”疫情防控形势日渐好转,各地开始复工复学,某校复学后成立“防疫志愿者服务队”,设立四个“服务监督岗”:①洗手监督岗,②戴口罩监督岗,③就餐监督岗,④操场活动监督岗.李老师和王老师报名参加了志愿者服务工作,学校将报名的志愿者随机分配到四个监督岗.(1)李老师被分配到“洗手监督岗”的概率为;(2)用列表法或画树状图法,求李老师和王老师被分配到同一个监督岗的概率.47.(2020•辽阳)为培养学生的阅读习惯,某中学利用学生课外时间开展了以“走近名著”为主题的读书活动.为了有效了解学生课外阅读情况,现随机调查了部分学生每周课外阅读的时间,设被调查的每名学生每周课外阅读的总时间为x小时,将它分为4个等级:A(0≤x<2),B(2≤x<4),C(4≤x<6),D(x≥6),并根据调查结果绘制了如图两幅不完整的统计图:请你根据统计图的信息,解决下列问题:(1)本次共调查了名学生;(2)在扇形统计图中,等级D所对应的扇形的圆心角为°;(3)请补全条形统计图;(4)在等级D中有甲、乙、丙、丁4人表现最为优秀,现从4人中任选2人作为学校本次读书活动的宣传员,用列表或画树状图的方法求恰好选中甲和乙的概率.一十四.利用频率估计概率(共3小题)48.(2020•盘锦)为了解某地区九年级男生的身高情况,随机抽取了该地区1000名九年级男生的身高数据,统计结果如下:身高x/cm x<160160≤x<170170≤x<180x≥180人数60260550130根据以上统计结果,随机抽取该地区一名九年级男生,估计他的身高不低于170cm的概率是()A.0.32B.0.55C.0.68D.0.87 49.(2020•营口)某射击运动员在同一条件下的射击成绩记录如下:射击次数20801002004001000“射中九环以上”的次数186882168327823“射中九0.900.850.820.840.820.82环以上”的频率(结果保留两位小数)根据频率的稳定性,估计这名运动员射击一次时“射中九环以上”的概率约是()A.0.90B.0.82C.0.85D.0.84 50.(2019•阜新)一个不透明的袋子中有红球、白球共20个这些球除颜色外都相同将袋子中的球搅匀后,从中随意摸出1个球,记下颜色后放回,不断重复这个过程,共摸了100次,其中有30次摸到红球,由此可以估计袋子中红球的个数约为()A.12B.10C.8D.62019年、2020年辽宁省数学中考试题分类(13)——统计与概率参考答案与试题解析一.全面调查与抽样调查(共2小题)1.【解答】解:A、对全国初中学生视力情况的调查,适合用抽样调查,A不合题意;B、对2019年央视春节联欢晚会收视率的调查,适合用抽样调查,B不合题意;C、对一批飞机零部件的合格情况的调查,适合全面调查,C符合题意;D、对我市居民节水意识的调查,适合用抽样调查,D不合题意;故选:C.2.【解答】解:A、对全国中学生视力和用眼卫生情况的调查,适合抽样调查,故此选项错误;B、对某班学生的身高情况的调查,适合全面调查,故此选项正确;C、对某鞋厂生产的鞋底能承受的弯折次数的调查,适合抽样调查,故此选项错误;D、对某池塘中现有鱼的数量的调查,适合抽样调查,故此选项错误;故选:B.二.频数(率)分布直方图(共1小题)3.【解答】解:(1)本次共调查了17÷34%=50名学生,故答案为:50;(2)C组学生有50﹣5﹣18﹣17=10(名),补全的频数分布直方图如右图所示;(3)扇形统计图中C组所对应的圆心角度数是:360°×1050=72°,即扇形统计图中C组所对应的圆心角度数是72°;(4)1500×550=150(名),答:该校有150名学生平均每天睡眠时间低于7时.三.扇形统计图(共2小题)4.【解答】解:(1)15÷25%=60(人),m=60﹣4﹣15﹣18﹣12﹣5=6;答:本次测试随机抽取的人数是60人,故答案为60,6;(2)C等级所在扇形的圆心角的度数=360°×1860=108°,(3)该校七年级学生能够达到优秀的人数为300×12+6+560=115(人).故答案为:60,6.5.【解答】解:(1)m=20÷40%=50,2n+(n+10)=50﹣20﹣5,解得,n=5,A组所占的百分比为:2×5÷50×100%=20%,C组所占的百分比为:(5+10)÷50×100%=30%,补全的扇形统计图如右图所示;(2)∵A组有2×5=10(人),B组有20人,抽查的学生一共有50人,∴所抽取的m名学生平均每天课外阅读时间的中位数落在B组;(3)1500×5+10+550=600(名),答:该校有600名学生平均每天课外阅读时间不少于1小时.四.条形统计图(共4小题)6.【解答】解:(1)20÷40%=50(名); 故答案为:50;(2)15÷50×100%=30%,即m =30;1050×360°=72°;故答案为:30,72°;(3)50﹣20﹣15﹣10=5(名);(4)2000×1050=400(名).答:该校最喜欢方式D 的学生约有400名. 7.【解答】解:(1)这次学校抽查的学生人数是40÷80360=180(名), 故答案为:180名;(2)C 项目的人数为180﹣46﹣34﹣40=60(名) 条形统计图补充为:(3)估计全校选择C课程的学生有900×60180=300(名).8.【解答】解:(1)m=8÷8%=100,n%=100−30−2−8100×100%=60%,故答案为:100,60;(2)可回收物有:100﹣30﹣2﹣8=60(吨),补全完整的条形统计图如右图所示;(3)扇形统计图中,厨余垃圾所对应的扇形圆心角的度数为:360°×30100=108°,故答案为:108;(4)2000×60100=1200(吨),即该市2000吨垃圾中约有1200吨可回收物.9.【解答】解:(1)参与本次问卷调查的学生共有:240÷60%=400(人),其中选择B类型的有:400×10%=40(人);故答案为:400,40;(2)在扇形统计图中,D 所对应的圆心角度数为: 360°×(1﹣60%﹣10%﹣20%﹣6%)=14.4°, ∵400×20%=80(人), ∴选择C 种学习方式的有80人. ∴补全的条形统计图如下:(3)该校学生人数为1250人,选择A 、B 、C 三种学习方式大约共有: 1250×(60%+10%+20%)=1125(人).答:选择A 、B 、C 三种学习方式大约共有1125人. 五.折线统计图(共1小题)10.【解答】解:A .数据10出现的次数最多,即众数是10,故本选项错误; B .排序后的数据中,最中间的数据为9,即中位数为9,故本选项错误; C .平均数为:17(7+8+9+9+10+10+10)=9,故本选项正确;D .方差为17[(7﹣9)2+(8﹣9)2+(9﹣9)2+(9﹣9)2+(10﹣9)2+(10﹣9)2+(10﹣9)2]=87,故本选项错误; 故选:C .六.加权平均数(共2小题) 11.【解答】解:根据题意得: 95×40%+90×60%=92(分). 答:她的最终得分是92分. 故选:C .12.【解答】解:这个公司平均每人所创年利润是:110(10+2×8+7×5)=6.1(万).故答案为:6.1. 七.中位数(共2小题)13.【解答】解:一组数据1,4,4,6,8,8的中位数是4+62=5,故选:B .14.【解答】解:将这组数据从小到大排列为﹣2、1、3、3、4, 则这组数据的中位数为3, 故选:D . 八.众数(共9小题)15.【解答】解:共有16个数,最中间两个数的平均数是(14+15)÷2=14.5,则中位数是14.5;15出现了6次,出现的次数最多,则众数是15; 故选:D .16.【解答】解:众数:一组数据中出现次数最多的数据为这组数据的众数,这组数据中300出现了3次,次数最多,所以众数是300;中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数,6个数据按顺序排列之后,处于中间的数据是300,300,所以中位数是300+3002=300;平均数是x =16(200+200+300+300+300+500)=300, 故选:D .17.【解答】解:本题中数据1出现了2次,出现的次数最多,所以本组数据的众数是1. 故选:A .18.【解答】解:共7天,中位数应该是排序后的第4天, 则中位数为:27, 28℃的有3天,最多, 所以众数为:28. 故选:B .19.【解答】解:由表可知,2.05出现次数最多,所以众数为2.05; 由于一共调查了30人,所以中位数为排序后的第15人和第16人的平均数,即:2.10. 故选:C .20.【解答】解:由表可知,5出现次数最多,所以众数为5; 由于一共调查了44人,所以中位数为排序后的第22和第23个数的平均数,即:5. 故选:A .21.【解答】解:因为五个整数从小到大排列后,其中位数是2,这组数据的唯一众数是4. 所以这5个数据分别是x ,y ,2,4,4,且x <y <2,当这5个数的和最大时,整数x ,y 取最大值,此时x =0,y =1, 所以这组数据可能的最大的和是0+1+2+4+4=11. 故选:A .22.【解答】解:设被污损的数据为x , 则4+x +2+5+5+4+3=4×7, 解得x =5,∴这组数据中出现次数最多的是5,即众数为5篇/周, 将这7个数据从小到大排列为2、3、4、4、5、5、5, ∴这组数据的中位数为4篇/周, 故选:A .23.【解答】解:∵这组数据中15出现5次,次数最多, ∴众数为15岁,中位数是第6、7个数据的平均数, ∴中位数为15+152=15岁,故选:C .九.方差(共7小题)24.【解答】解:∵四人的平均成绩相同,而观察图形可知,乙和丙的波动较大, ∴应在丁和甲中做出选择. ∵丁有两次成绩恰好为平均成绩,∴丁比甲稳定.故选:D .25.【解答】解:∵s 甲2=3.6,s 乙2=4.6,s 丙2=6.3,s 丁2=7.3,且平均数相等, ∴s 甲2<s 乙2<s 丙2<s 丁2,∴这4名同学3次数学成绩最稳定的是甲, 故选:A .26.【解答】解:∵S 甲2=0.075,S 乙2=0.04 ∴S 甲2>S 乙2∴乙的波动比较小,乙比较稳定 故答案为:乙.27.【解答】解:∵s 甲2=6.67,s 乙2=2.50, ∴s 甲2>s 乙2,∴这6次比赛成绩比较稳定的是乙, 故答案为:乙.28.【解答】解:∵x 甲=7=x 乙,S 甲2=2.9,S 乙2=1.2, ∴S 甲2>S 乙2, ∴乙的成绩比较稳定, 故答案为:乙. 29.【解答】解:∵x 乙=2+3+5+7+85=5,∴S 乙2=15×[(2﹣5)2+(3﹣5)2+(5﹣5)2+(7﹣5)2+(8﹣5)2]=265, ∵S 甲2=5<S 乙2,∴成绩较稳定的是甲, 故答案为:甲.30.【解答】解:∵平均成绩都是87.9分,S 甲2=3.83,S 乙2=2.71,S 丙2=1.52, ∴S 丙2<S 乙2<S 甲2, ∴丙选手的成绩更加稳定, ∴适合参加比赛的选手是丙, 故答案为:丙.一十.统计量的选择(共1小题)31.【解答】解:对这个商场的经理来说,最关注的是哪一型号的卖得最多,即是这组数据故选:A .一十一.随机事件(共2小题)32.【解答】解:A 、从一个只有白球的盒子里摸出一个球是白球,是必然事件; B 、任意买一张电影票,座位号是3的倍数,是随机事件; C 、掷一枚质地均匀的硬币,正面向上,是随机事件;D 、汽车走过一个红绿灯路口时,前方正好是绿灯,是随机事件; 故选:A .33.【解答】解:A 、方差越大,数据波动越大,故本选项错误; B 、了解辽宁省初中生身高情况适合采用抽样调查,故本选项错误; C 、抛掷一枚硬币,正面向上是不确定事件,故本选项错误;D 、用长为3cm ,5cm ,9cm 的三条线段围成一个三角形是不可能事件,故本选项正确; 故选:D .一十二.概率公式(共5小题)34.【解答】解:∵掷质地均匀硬币的试验,每次正面向上和向下的概率相同, ∴再次掷出这枚硬币,正面朝下的概率是12.故选:D .35.【解答】解:根据题意可得:袋子中有3个白球,4个红球,共7个, 从袋子中随机摸出一个球,它是红球的概率47.故选:D .36.【解答】解:根据题意可得:袋中有4个红球、2个白球,共6个, 从袋子中随机摸出1个球,则摸到红球的概率是46=23.故选:D .37.【解答】解:∵从这4张卡片中任意抽取一张共有4种等可能结果,其中抽到的卡片正面是中心对称图形的是圆、平行四边形、正六边形这3种结果, ∴抽到的卡片正面是中心对称图形的概率是34,故选:C .38.【解答】解:根据题意,得:aa+4=23,。
2019-2020年中考数学试题真题含考点分类汇编详解
2019-2020年中考数学试题真题含考点分类汇编详解参考公式:二次函数)0(2≠++=a c bc ax y 图象的顶点坐标是(ab2-,a b ac 442-)一、选择题(本题有10小题,每小题3分,共30分) 1. -2的倒数是A. 21-B. 21C. -2D. 2 2. 下图是由四个相同的小立方块搭成的几何体,它的主视图是3. 下列计算正确的是A. ab b a 22=+B. 22)(a a =- C. 326a a a =÷ D. 623a a a =⋅4. 据调查,某班20位女同学所穿鞋子的尺码如下表所示,则鞋子尺码的众数和中位数分别是A. 35码,35码B. 35码,36码C. 36码,35码D. 36码,36码5. 如图,AB ∥CD ,∠A=70°,∠C=40°,则∠E 等于A. 30°B. 40°C. 60°D. 70° 6. 二元一次方程组⎩⎨⎧-=-=+236y x y x 的解是A. ⎩⎨⎧==15y x B.⎩⎨⎧==24y x C. ⎩⎨⎧-=-=15y x D. ⎩⎨⎧-=-=24y x7. 下列四种基本尺规作图分别表示:①作一个角等于已知角;②作一个角的平分线;③作一条线段的垂直平分线;④过直线外一点P 作已知直线的垂线。
则对应作法错误..的是A. ①B. ②C. ③D. ④8. 如图,在直角坐标系中,点A 在函数)0(4>=x xy 的图象上,AB ⊥x 轴于点B ,AB 的垂直平分线与y 轴交于点C ,与函数)0(4>=x xy 的图象交于点D 。
连结AC ,CB ,BD ,DA ,则四边形ACBD 的面积等于A. 2B. 32C. 4D. 34 9. 如图,矩形纸片ABCD 中,AB=4,BC=6,将△ABC 沿AC 折叠,使点B 落在点E 处,CE 交AD 于点F ,则DF 的长等于A. 53B. 35C. 37D.4510. 运用图形变化的方法研究下列问题:如图,AB 是⊙O 的直径,CD ,EF 是⊙O 的弦,且AB ∥CD ∥EF ,AB=10,CD=6,EF=8。
2019、2020年山东中考数学试题分类(1)——数与式
2019、2020年山东中考数学试题分类(1)——数与式一.有理数的加减混合运算(共1小题) 1.(2019•德州)已知:[x ]表示不超过x 的最大整数.例:[4.8]=4,[﹣0.8]=﹣1.现定义:{x }=x ﹣[x ],例:{1.5}=1.5﹣[1.5]=0.5,则{3.9}+{﹣1.8}﹣{1}= . 二.科学记数法—表示较大的数(共5小题) 2.(2020•日照)“扶贫”是新时期党和国家的重点工作之一,为落实习近平总书记提出的“精准扶贫”战略构想,某省预计三年内脱贫1020000人,数字1020000用科学记数法可表示为( ) A .1.02×106 B .1.02×105 C .10.2×105 D .102×104 3.(2020•潍坊)今年的政府工作报告中指出:去年脱贫攻坚取得决定性成就,农村贫困人口减少1109万.数字1109万用科学记数法可表示为( ) A .1.109×107 B .1.109×106 C .0.1109×108 D .11.09×106 4.(2020•泰安)2020年6月23日,中国北斗系统第五十五颗导航卫星暨北斗三号最后一颗全球组网卫星成功发射入轨,可以为全球用户提供定位、导航和授时服务.今年我国卫星导航与位置服务产业产值预计将超过4000亿元.把数据4000亿元用科学记数法表示为( ) A .4×1012元 B .4×1010元 C .4×1011元 D .40×109元 5.(2020•烟台)5G 是第五代移动通信技术,其网络下载速度可以达到每秒1300000KB 以上,正常下载一部高清电影约需1秒.将1300000用科学记数法表示为 . 6.(2019•济南)2019年1月3日,“嫦娥四号”探测器成功着陆在月球背面东经177.6度、南纬45.5度附近,实现了人类首次在月球背面软着陆.数字177.6用科学记数法表示为( ) A .0.1776×103 B .1.776×102 C .1.776×103 D .17.76×102 三.科学记数法—表示较小的数(共2小题) 7.(2020•威海)人民日报讯,2020年6月23日,中国成功发射北斗系统第55颗导航卫星.至此中国提前半年全面完成北斗三号全球卫星导航系统星座部署.北斗三号卫星上配置的新一代国产原子钟,使北斗导航系统授时精度达到了十亿分之一秒.十亿分之一用科学记数法可以表示为( )A .10×10﹣10B .1×10﹣9C .0.1×10﹣8 D .1×109 8.(2019•烟台)某种计算机完成一次基本运算的时间约为1纳秒(ns ),已知1纳秒=0.000 000 001秒,该计算机完成15次基本运算,所用时间用科学记数法表示为( )A .1.5×10﹣9秒B .15×10﹣9秒C .1.5×10﹣8秒D .15×10﹣8秒 四.计算器—基础知识(共1小题)9.(2020•东营)利用科学计算器求值时,小明的按键顺序为,则计算器面板显示的结果为( ) A .﹣2 B .2 C .±2 D .4五.实数的性质(共1小题) 10.(2020•济南)﹣2的绝对值是( ) A .2 B .﹣2 C .±2 D .√2六.实数大小比较(共1小题) 11.(2020•菏泽)下列各数中,绝对值最小的数是( ) A .﹣5B .12C .﹣1D .√2七.规律型:数字的变化类(共4小题) 12.(2020•淄博)某快递公司在甲地和乙地之间共设有29个服务驿站(包括甲站、乙站),一辆快递货车由甲站出发,依次途经各站驶往乙站,每停靠一站,均要卸下前面各站发往该站的货包各1个,又要装上该站发往后面各站的货包各1个.在整个行程中,快递货车装载的货包数量最多是 个. 13.(2019•济宁)已知有理数a ≠1,我们把11−a称为a 的差倒数,如:2的差倒数是11−2=−1,﹣1的差倒数是11−(−1)=12.如果a 1=﹣2,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数……依此类推,那么a 1+a 2+…+a 100的值是( ) A .﹣7.5 B .7.5C .5.5D .﹣5.514.(2020•泰安)如表被称为“杨辉三角”或“贾宪三角”.其规律是:从第三行起,每行两端的数都是“1”,其余各数都等于该数“两肩”上的数之和.表中两平行线之间的一列数:1,3,6,10,15,…,我们把第一个数记为a1,第二个数记为a2,第三个数记为a3,…,第n个数记为a n,则a4+a200=.15.(2020•滨州)观察下列各式:a1=23,a2=35,a3=107,a4=159,a5=2611,…,根据其中的规律可得a n=(用含n的式子表示).八.规律型:图形的变化类(共3小题)16.(2020•聊城)人行道用同样大小的灰、白两种不同颜色的小正方形地砖铺设而成,如图中的每一个小正方形表示一块地砖.如果按图①①①…的次序铺设地砖,把第n个图形用图ⓝ表示,那么第50个图形中的白色小正方形地砖的块数是()A.150B.200C.355D.50517.(2019•青岛)问题提出:如图,图①是一张由三个边长为1的小正方形组成的“L”形纸片,图①是一张a×b的方格纸(a×b的方格纸指边长分别为a,b的矩形,被分成a×b个边长为1的小正方形,其中a≥2,b≥2,且a,b为正整数).把图①放置在图①中,使它恰好盖住图①中的三个小正方形,共有多少种不同的放置方法?问题探究:为探究规律,我们采用一般问题特殊化的策略,先从最简单的情形入手,再逐次递进,最后得出一般性的结论.探究一:把图①放置在2×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图①,对于2×2的方格纸,要用图①盖住其中的三个小正方形,显然有4种不同的放置方法.探究二:把图①放置在3×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图①,在3×2的方格纸中,共可以找到2个位置不同的2×2方格,依据探究一的结论可知,把图①放置在3×2的方格纸中,使它恰好盖住其中的三个小正方形,共有2×4=8种不同的放置方法.探究三:把图①放置在a×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图①,在a×2的方格纸中,共可以找到个位置不同的2×2方格,依据探究一的结论可知,把图①放置在a×2的方格纸中,使它恰好盖住其中的三个小正方形,共有种不同的放置方法.探究四:把图①放置在a×3的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图①,在a×3的方格纸中,共可以找到个位置不同的2×2方格,依据探究一的结论可知,把图①放置在a×3的方格纸中,使它恰好盖住其中的三个小正方形,共有种不同的放置方法.……问题解决:把图①放置在a×b的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?(仿照前面的探究方法,写出解答过程,不需画图.)问题拓展:如图,图①是一个由4个棱长为1的小立方体构成的几何体,图①是一个长、宽、高分别为a,b,c(a ≥2,b≥2,c≥2,且a,b,c是正整数)的长方体,被分成了a×b×c个棱长为1的小立方体.在图①的不同位置共可以找到个图①这样的几何体.18.(2020•日照)用大小相同的圆点摆成如图所示的图案,按照这样的规律摆放,则第10个图案中共有圆点的个数是()A.59B.65C.70D.71九.完全平方公式(共2小题)19.(2019•烟台)南宋数学家杨辉在其著作《详解九章算法》中揭示了(a+b)n(n为非负整数)展开式的项数及各项系数的有关规律如下,后人也将右表称为“杨辉三角”(a+b)0=1(a+b)1=a+b(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5…则(a+b)9展开式中所有项的系数和是()A.128B.256C.512D.102420.(2020•济南)下列运算正确的是( ) A .(﹣2a 3)2=4a 6 B .a 2•a 3=a 6 C .3a +a 2=3a 3 D .(a ﹣b )2=a 2﹣b 2 一十.整式的混合运算(共1小题) 21.(2020•东营)下列运算正确的是( ) A .(x 3)2=x 5 B .(x ﹣y )2=x 2+y 2 C .﹣x 2y 3•2xy 2=﹣2x 3y 5 D .﹣(3x +y )=﹣3x +y 一十一.提公因式法与公式法的综合运用(共1小题) 22.(2019•临沂)将a 3b ﹣ab 进行因式分解,正确的是( ) A .a (a 2b ﹣b ) B .ab (a ﹣1)2C .ab (a +1)(a ﹣1)D .ab (a 2﹣1) 一十二.分式的混合运算(共3小题) 23.(2019•青岛)(1)化简:a −aa ÷(a 2+a 2a−2n );(2)解不等式组{1−15a ≤653a −1<8,并写出它的正整数解.24.(2020•青岛)(1)计算:(1a+1a)÷(a a−a a);(2)解不等式组:{2a −3≥−5,13a +2<a .25.(2020•泰安)(1)化简:(a ﹣1+1a −3)÷a 2−4a −3;(2)解不等式:a +13−1<a −14.一十三.分式的化简求值(共12小题) 26.(2020•烟台)先化简,再求值:(aa −a−a 2a 2−a 2)÷aaa +a 2,其中x =√3+1,y =√3−1.27.(2019•日照)(1)计算:|√3−2|+π0+(﹣1)2019﹣(12)﹣1;(2)先化简,再求值:1−a +3a 2−1÷a +3a −1,其中a =2;(3)解方程组:{2a −a =5,3a +4a =2.28.(2019•菏泽)先化简,再求值:1a −a (2aa +a−1)÷1a 2−a 2,其中x =y +2019.29.(2019•枣庄)先化简,再求值:a 2a 2−1÷(1a −1+1),其中x 为整数且满足不等式组{a −1>1,5−2a ≥−2.30.(2019•滨州)先化简,再求值:(a 2a −1−a 2a 2−1)÷a 2−aa 2−2a +1,其中x 是不等式组{a −3(a −2)≤4,2a −33<5−a 2的整数解.31.(2019•泰安)先化简,再求值:(a ﹣9+25a +1)÷(a ﹣1−4a −1a +1),其中a =√2. 32.(2019•德州)先化简,再求值:(2a−1a)÷(a 2+a 2aa−5a a)•(a2a+2a a+2),其中√a +1+(n ﹣3)2=0.33.(2020•东营)(1)计算:√27+(2cos60°)2020﹣(12)﹣2﹣|3+2√3|;(2)先化简,再求值:(x −2aa −a 2a )÷a 2−a2a 2+aa,其中x =√2+1,y =√2. 34.(2020•潍坊)先化简,再求值:(1−a +1a 2−2a +1)÷a −3a −1,其中x 是16的算术平方根.35.(2020•菏泽)先化简,再求值:(2a −12a a +2)÷a −4a 2+4a +4,其中a 满足a 2+2a ﹣3=0. 36.(2020•德州)先化简:(a −1a −2−a +2a )÷4−aa 2−4a +4,然后选择一个合适的x 值代入求值.37.(2020•滨州)先化简,再求值:1−a −a a +2a ÷a 2−a 2a 2+4aa +4a 2;其中x =cos30°×√12,y =(π﹣3)0﹣(13)﹣1.一十四.最简二次根式(共1小题) 38.(2020•济宁)下列各式是最简二次根式的是( ) A .√13B .√12C .√a 3D .√53一十五.二次根式的加减法(共1小题) 39.(2020•日照)下列各式中,运算正确的是( ) A .x 3+x 3=x 6 B .x 2•x 3=x 5 C .(x +3)2=x 2+9 D .√5−√3=√2 一十六.二次根式的混合运算(共6小题) 40.(2019•聊城)下列各式不成立的是( ) A .√18−√89=73√2B .√2+23=2√23C .√8+√182=√4+√9=5D .√3+√2=√3−√241.(2020•菏泽)计算(√3−4)(√3+4)的结果是 . 42.(2020•青岛)计算:(√12−√43)×√3= . 43.(2019•临沂)计算:√12×√6−tan45°= .44.(2019•青岛)计算:√24+√8√2−(√3)0= . 45.(2020•临沂)计算:√(13−12)2+√221√6−sin60°.2019、2020年山东中考数学试题分类(1)——数与式参考答案与试题解析一.有理数的加减混合运算(共1小题) 1.【解答】解;根据题意可得原式=(3.9﹣3)+[(﹣1.8)﹣(﹣2)]﹣(1﹣1)=0.9+0.2=1.1; 故答案为:1.1二.科学记数法—表示较大的数(共5小题) 2.【解答】解:1020000=1.02×106. 故选:A . 3.【解答】解:∵1109万=11090000, ∴11090000=1.109×107. 故选:A . 4.【解答】解:4000亿=4000×108=4×1011, 故选:C . 5.【解答】解:将数据1300000用科学记数法可表示为:1.3×106. 故答案为:1.3×106. 6.【解答】解:177.6=1.776×102. 故选:B .三.科学记数法—表示较小的数(共2小题) 7.【解答】解:∵十亿分之一=11000000000=1×10﹣9,∴十亿分之一用科学记数法可以表示为:1×10﹣9. 故选:B .8.【解答】解:所用时间=15×0.000 000 001=1.5×10﹣8. 故选:C .四.计算器—基础知识(共1小题)9.【解答】解:表示“√4=”即4的算术平方根,∴计算器面板显示的结果为2, 故选:B .五.实数的性质(共1小题) 10.【解答】解:﹣2的绝对值是2; 故选:A .六.实数大小比较(共1小题)11.【解答】解:∵|﹣5|=5,|12|=12,|﹣1|=1,|√2|=√2, ∴绝对值最小的数是12.故选:B .七.规律型:数字的变化类(共4小题) 12.【解答】解:当一辆快递货车停靠在第x 个服务驿站时,快递货车上需要卸下已经通过的(x ﹣1)个服务驿站发给该站的货包共(x ﹣1)个, 还要装上下面行程中要停靠的(n ﹣x )个服务驿站的货包共(n ﹣x )个. 根据题意,完成下表:服务驿站序号 在第x 服务驿站启程时快递货车货包总数1 n ﹣12 (n ﹣1)﹣1+(n ﹣2)=2(n ﹣2)3 2(n ﹣2)﹣2+(n ﹣3)=3(n ﹣3)4 3(n ﹣3)﹣3+(n ﹣4)=4(n ﹣4)5 4(n ﹣4)﹣4+(n ﹣5)=5(n ﹣5)……n 0由上表可得y =x (n ﹣x ).当n =29时,y =x (29﹣x )=﹣x 2+29x =﹣(x ﹣14.5)2+210.25, 当x =14或15时,y 取得最大值210. 故答案为:210. 13.【解答】解:∵a 1=﹣2,∴a 2=11−(−2)=13,a 3=11−13=32,a 4=11−32=−2,…… ∴这个数列以﹣2,13,32依次循环,且﹣2+13+32=−16,∵100÷3=33…1,∴a 1+a 2+…+a 100=33×(−16)﹣2=−152=−7.5,故选:A .14.【解答】解:观察“杨辉三角”可知第n 个数记为a n =(1+2+…+n )=12n (n +1), 则a 4+a 200=12×4×(4+1)+12×200×(200+1)=20110. 故答案为:20110.15.【解答】解:由分析可得a n =a 2+(−1)a +12a +1.故答案为:a 2+(−1)a +12a +1.八.规律型:图形的变化类(共3小题) 16.【解答】解:由图形可知:第1个图形12块白色小正方形,第2个图形19个白色小正方形,第3个图形26个白色小正方形则图ⓝ的白色小正方形地砖有(7n +5)块, 当n =50时,7n +5=350+5=355. 故选:C . 17.【解答】解:探究三:根据探究二,a ×2的方格纸中,共可以找到(a ﹣1)个位置不同的 2×2方格, 根据探究一结论可知,每个2×2方格中有4种放置方法,所以在a ×2的方格纸中,共可以找到(a ﹣1)×4=(4a ﹣4)种不同的放置方法; 故答案为a ﹣1,4a ﹣4;探究四:与探究三相比,本题矩形的宽改变了,可以沿用上一问的思路:边长为a ,有(a ﹣1)条边长为2的线段, 同理,边长为3,则有3﹣1=2条边长为2的线段,所以在a ×3的方格中,可以找到2(a ﹣1)=(2a ﹣2)个位置不同的2×2方格,根据探究一,在在a ×3的方格纸中,使它恰好盖住其中的三个小正方形,共有(2a ﹣2)×4=(8a ﹣8)种不同的放置方法.故答案为2a ﹣2,8a ﹣8;问题解决:在a ×b 的方格纸中,共可以找到(a ﹣1)(b ﹣1)个位置不同的2×2方格,依照探究一的结论可知,把图①放置在a ×b 的方格纸中,使它恰好盖住其中的三个小正方形,共有4(a ﹣1)(b ﹣1)种不同的放置方法;问题拓展:发现图①示是棱长为2的正方体中的一部分,利用前面的思路, 这个长方体的长宽高分别为a 、b 、c ,则分别可以找到(a ﹣1)、(b ﹣1)、(c ﹣1)条边长为2的线段,所以在a ×b ×c 的长方体共可以找到(a ﹣1)(b ﹣1)(c ﹣1)位置不同的2×2×2的正方体, 再根据探究一类比发现,每个2×2×2的正方体有8种放置方法, 所以在a ×b ×c 的长方体中共可以找到8(a ﹣1)(b ﹣1)(c ﹣1)个图①这样的几何体; 故答案为8(a ﹣1)(b ﹣1)(c ﹣1). 18.【解答】解:根据图中圆点排列,当n =1时,圆点个数5+2;当n =2时,圆点个数5+2+3;当n =3时,圆点个数5+2+3+4;当n =4时,圆点个数5+2+3+4+5,…∴当n =10时,圆点个数5+2+3+4+5+6+7+8+9+10+11=4+(1+2+3+4+5+6+7+8+9+10+11)=4+12×11×(11+1)=70. 故选:C .九.完全平方公式(共2小题) 19.【解答】解:由“杨辉三角”的规律可知,(a +b )9展开式中所有项的系数和为(1+1)9=29=512 故选:C . 20.【解答】解:∵(﹣2a 3)2=4a 6,故选项A 正确; ∵a 2•a 3=a 5,故选项B 错误;∵3a +a 2不能合并,故选项C 错误;∵(a ﹣b )2=a 2﹣2ab +b 2,故选项D 错误; 故选:A .一十.整式的混合运算(共1小题) 21.【解答】解:A 、原式=x 6,不符合题意; B 、原式=x 2﹣2xy +y 2,不符合题意; C 、原式=﹣2x 3y 5,符合题意; D 、原式=﹣3x ﹣y ,不符合题意. 故选:C .一十一.提公因式法与公式法的综合运用(共1小题) 22.【解答】解:a 3b ﹣ab =ab (a 2﹣1)=ab (a +1)(a ﹣1), 故选:C .一十二.分式的混合运算(共3小题)23.【解答】解:(1)原式=a −a a ÷a 2+a 2−2aaa=a −a a ×a (a −a )2=1a −a; (2){1−15a ≤65a 3a −1<8a 由①,得x ≥﹣1, 由①,得x <3.所以该不等式组的解集为:﹣1≤x <3. 所以满足条件的正整数解为:1、2.24.【解答】解:(1)原式=(a aa+aaa)÷(a 2aa−a 2aa)=a +a aa ÷a 2−a 2aa=a +aaa •aa (a +a )(a −a ) =1a −a ;(2)解不等式2x ﹣3≥﹣5,得:x ≥﹣1, 解不等式13x +2<x ,得:x >3, 则不等式组的解集为x >3.25.【解答】解:(1)原式=[(a −1)(a −3)a −3+1a −3]÷(a +2)(a −2)a −3=(a 2−4a +3a −3+1a −3)•a −3(a +2)(a −2)=(a −2)2a −3•a −3(a +2)(a −2)=a −2a +2;(2)去分母,得:4(x +1)﹣12<3(x ﹣1), 去括号,得:4x +4﹣12<3x ﹣3, 移项,得:4x ﹣3x <﹣3﹣4+12, 合并同类项,得:x <5.一十三.分式的化简求值(共12小题) 26.【解答】解:(aa −a −a 2a 2−a 2)÷aaa +a 2,=[a (a +a )(a +a )(a −a )−a 2(a +a )(a −a )]÷a a (a +a ), =aa (a +a )(a −a )×a (a +a )a , =a 2a −a ,当x =√3+1,y =√3−1时,原式=(√3−1)22=2−√3. 27.【解答】解:(1)|√3−2|+π0+(﹣1)2019﹣(12)﹣1=2−√3+1+(﹣1)﹣2 =−√3; (2)1−a +3a 2−1÷a +3a −1 =1−a +3(a +1)(a −1)⋅a −1a +3=1−1a +1 =a +1−1a +1=a a +1当a =2时,原式=22+1=23;(3){2a −a =5a3a +4a =2a ,①×4+①,得 11x =22, 解得,x =2,将x =2代入①中,得 y =﹣1,故原方程组的解是{a =2a =−1.28.【解答】解:1a −a (2aa +a−1)÷1a 2−a 2=1a −a ⋅2a −(a +a )a +a⋅(a +a )(a −a )=﹣(2y ﹣x ﹣y ) =x ﹣y ,∵x =y +2019,∴原式=y +2019﹣y =2019.29.【解答】解:原式=a 2(a +1)(a −1)÷(1a −1+a −1a −1)=a 2(a +1)(a −1)•a −1a=a a +1,解不等式组{a −1>1,5−2a ≥−2.得2<x ≤72,则不等式组的整数解为3,当x =3时,原式=33+1=34. 30.【解答】解:原式=[a 3+a 2(a +1)(a −1)−a 2(a +1)(a −1)]•(a −1)2a (a −1)=a 3(a +1)(a −1)•(a −1)2a (a −1) =a 2a +1,解不等式组{a −3(a −2)≤4,2a −33<5−a 2得1≤x <3, 则不等式组的整数解为1、2, 又x ≠±1且x ≠0, ∴x =2, ∴原式=43.31.【解答】解:原式=(a 2−8a −9a +1+25a +1)÷(a 2−1a +1−4a −1a +1)=a 2−8a +16a +1÷a 2−4a a +1 =(a −4)2a +1•a +1a (a −4)=a −4a ,当a =√2时, 原式=√2−4√2=1﹣2√2.32.【解答】解:(2a −1a )÷(a 2+a 2aa −5aa)•(a2a+2a a+2)=2a −a aa ÷a 2+a 2−5a 2aa •a 2+4a 2+4aa 2aa=2a −aaa •aa (a +2a )(a −2a )•(a +2a )22aa=−a +2a 2aa .∵√a +1+(n ﹣3)2=0.∴m +1=0,n ﹣3=0, ∴m =﹣1,n =3.∴−a +2a2aa =−−1+2×32×(−1)×3=56. ∴原式的值为56.33.【解答】解:(1)原式=3√3+(2×12)2020﹣22﹣(3+2√3) =3√3+1﹣4﹣3﹣2√3 =√3−6;(2)原式=a 2−2aa +a 2a •a 2+aa a 2−a 2 =(a −a )2a •a (a +a )(a +a )(a −a )=x ﹣y .当x =√2+1,y =√2时,原式=√2+1−√2=1.34.【解答】解:原式=(a 2−2a +1a 2−2a +1−a +1a 2−2a +1)÷a −3a −1, =(a 2−3a a 2−2a +1)×a −1a −3, =a (a −3)(a −1)2×a −1a −3, =a a −1. ∵x 是16的算术平方根,∴x =4,当x =4时,原式=43. 35.【解答】解:原式=(2a 2+4a a +2−12a a +2)÷a −4(a +2)2 =2a 2−8a a +2•(a +2)2a −4 =2a (a −4)a +2•(a +2)2a −4 =2a (a +2)=2(a 2+2a )∵a 2+2a ﹣3=0,∴a 2+2a =3,则原式=2×3=6.36.【解答】解:(a −1a −2−a +2a )÷4−aa 2−4a +4=[a (a −1)a (a −2)−(a −2)(a +2)a (a −2)]×(a −2)24−a=4−a a (a −2)⋅(a −2)24−a=a −2a , ∵x 不能取0,2,4把x =1代入a −2a =1−21=−1.37.【解答】解:原式=1−a −a a +2a ÷(a +a )(a −a )(a +2a )2=1+a −a a +2a •(a +2a )2(a +a )(a −a ) =1+a +2a a +a=a +a +a +2a a +a =2a +3a a +a ,∵x =cos30°×√12=√32×2√3=3,y =(π﹣3)0﹣(13)﹣1=1﹣3=﹣2,∴原式=2×3+3×(−2)3−2=0. 一十四.最简二次根式(共1小题)38.【解答】解:A 、√13是最简二次根式,符合题意;B 、√12=2√3,不是最简二次根式,不符合题意;C 、√a 3=a √a ,不是最简二次根式,不符合题意;D 、√53=√153,不是最简二次根式,不符合题意. 故选:A .一十五.二次根式的加减法(共1小题)39.【解答】解:A 、x 3+x 3=2x 3,故选项A 不符合题意;B 、x 2•x 3=x 5计算正确,故选项B 符合题意;C 、(x +3)2=x 2+6x +9,故选项C 不符合题意;D 、二次根式√5与√3不是同类二次根式故不能合并,故选项D 不符合题意. 故选:B .一十六.二次根式的混合运算(共6小题)40.【解答】解:√18−√89=3√2−2√23=7√23,A 选项成立,不符合题意; √2+23=√83=2√23,B 选项成立,不符合题意; √8+√182=2√2+3√22=5√22,C 选项不成立,符合题意; √3+√2=√3−√2(√3+√2)(√3−√2)=√3−√2,D 选项成立,不符合题意; 故选:C .41.【解答】解:原式=(√3)2﹣42 =3﹣16=﹣13.故答案为:﹣13.42.【解答】解:原式=(2√3−2√33)×√3 =4√33×√3=4, 故答案为:4.43.【解答】解:√12×√6−tan45°=√12×6−1=√3−1, 故答案为:√3−1.44.【解答】解:√24+√8√2−(√3)0=2√3+2﹣1=2√3+1, 故答案为:2√3+1. 45.【解答】解:原式=12−13+23−√32 =16+√36−√32=1−2√36.。
2019-2020年中考数学考点分类解析汇编
2019-2020 年中考数学考点分类解析汇编一、选择题1. ( 2012 安徽, 3,4 分)计算(2x 2 ) 3的结果是()A. 2x5B.8x 6C. 2x6D.8x 5解析:依照积的乘方和幂的运算法规可得.解答:解: ( 2x 2 ) 3( 2)3 (x 2 ) 38x6应选B.议论:幂的几种运算不要混淆,当底数不变时,指数运算要相应的降一级,还要弄清符号,这些都是易错的地方,要熟练掌握,要点是理解乘方运算的意义.2.( 2012 安徽, 4,4 分)下面的多项式中,能因式分解的是()A. m2nB.m2m 1C. m2nD. m22m1解析:依照分解因式的方法,第一是提公因式,尔后考虑用公式,若是项数很多,要分组分解,此题给出四个选项,问哪个能够分解,比较选项中的多项式,试用所学的方法分解.就能判断出只有 D 项能够 .解答:解: m22m 1 (m1)2应选D.议论:在进行因式分解时,第一是提公因式,尔后考虑用公式,(两项考虑用平方差公式,三项用完好平方公式,自然吻合公式才能够.)若是项数很多,要分组分解,最后必然要分.解到每个因式不能够再分为止3. ( 2012 安徽,5,4 分)某企业今年 3 月份产值为 a 万元,4 月份比 3 月份减少了10%,5 月份比 4 月份增加了15%,则 5 月份的产值是()A. (a -10%)(a +15 %)万元B. a (1-10%)(1+15%)万元C.(a -10% +15 %)万元D. a (1-10%+15%)万元解析:依照 4 月份比 3 月份减少10﹪,可得 4 月份产值是(1-10﹪) a, 5 月份比 4 月份增加 15﹪,可得 5 月份产值是(1- 10﹪)( 1+15﹪) a,解答:A.议论:此类题目要点是弄清楚谁是“基准”,把“基准”看作“单位1”,在此基础上增加还是减少,就可以用这个基准量表示出来了.4.( 2012 福州)以下计算正确的选项是A. a+ a= 2a B. b3· b3= 2b3C. a3÷a= a3 D . (a5)2= a7考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.专题:计算题.解析:分别依照合并同类项、同底数幂的除法与乘法、幂的乘方与积的乘方法规对各选项进行逐一计算即可.解答:解: A、 a+ a= 2a,故本选项正确;B、 b3?b3= b6,故本选项错误;C、 a3÷ a=a2,故本选项错误;D、 (a5)2=a10,故本选项错误.应选 A.熟知议论:此题观察的是合并同类项、同底数幂的除法与乘法、幂的乘方与积的乘方法规,以上知识是解答此题的要点.5.( 2012?广州)下面的计算正确的选项是()A. 6a﹣ 5a=1B. a+2a2 =3a3C.﹣(a﹣ b) =﹣ a+b D. 2(a+b) =2a+b考点:去括号与添括号;合并同类项。
2019-2020年中考数学试题分类汇编解析综合性问题.docx
2019-2020 年中考数学试题分类汇编解析综合性问题一、选择题1.(2014?年山东东营 , 第 10 题 3 分) 如图,四边形 ABCD 为菱形, AB=BD ,点 B、C、D 、G 四个点在同一个圆⊙ O 上,连接 BG 并延长交 AD 于点 F,连接 DG 并延长交 AB 于点 E,BD与 CG 交于点 H,连接 FH ,下列结论:①AE=DF ;② FH∥ AB ;③△ DGH ∽△ BGE ;④当 CG 为⊙ O 的直径时, DF=AF .其中正确结论的个数是()A . 1B . 2 C. 3 D.4考点:圆的综合题.分析:①由四边形ABCD 是菱形, AB=BD ,得出△ ABD 和△ BCD 是等边三角形,再由 B、C、D 、 G 四个点在同一个圆上,得出∠ADE= ∠ DBF ,由△ ADE ≌△ DBF ,得出 AE=DF ,②利用内错角相等∠FBA= ∠ HFB ,求证 FH ∥ AB ,③利用∠ DGH= ∠ EGB 和∠ EDB= ∠FBA ,求证△ DGH ∽△ BGE,④利用 CG 为⊙ O 的直径及 B 、C、D 、G 四个点共圆,求出∠ ABF=120 °﹣ 90°=30°,在RT△AFB 中求出 AF= AB在 RT△ DFB 中求出 FD= BD ,再求得 DF=AF .解答:解:① ∵四边形ABCD 是菱形,∴AB=BC=DC=AD ,又∵ AB=BD ,∴△ ABD 和△BCD 是等边三角形,∴∠ A= ∠ ABD= ∠ DBC= ∠ BCD= ∠ CDB= ∠BDA=60 °,又∵ B、 C、D 、G 四个点在同一个圆上,∴∠ DCH= ∠ DBF ,∠ GDH= ∠BCH ,∴∠ ADE= ∠ ADB ﹣∠ GDH=60 °﹣∠ EDB ,∠ DCH= ∠ BCD ﹣∠ BCH=60 °﹣∠BCH ,∴∠ ADE= ∠ DCH ,∴∠ ADE= ∠ DBF ,在△ADE 和△DBF 中,∴△ ADE ≌△ DBF ( ASA )∴AE=DF故① 正确,②由①中证得∠ ADE= ∠ DBF ,∴∠ EDB= ∠ FBA ,∵ B、 C、D 、 G 四个点在同一个圆上,∠BDC=60 °,∠ DBC=60 °,∴∠ BGC= ∠ BDC=60 °,∠ DGC= ∠DBC=60 °,∴∠ BGE=180 °﹣∠ BGC ﹣∠ DGC=180 °﹣ 60°﹣60°=60°,∴FGD=60 °,∴FGH=120 °,又∵∠ ADB=60 °,∴F、G、H、D 四个点在同一个圆上,∴∠ EDB= ∠ HFB ,∴∠ FBA= ∠ HFB ,∴FH∥ AB ,故② 正确,③ ∵ B、 C、D 、G 四个点在同一个圆上,∠DBC=60 °,∴∠ DGH= ∠ DBC=60 °,∵∠ EGB=60 °,∴∠ DGH= ∠ EGB ,由①中证得∠ ADE= ∠ DBF ,∴∠ EDB= ∠ FBA ,∴△ DGH ∽△ BGE ,故③ 正确,④ 如下图∵CG 为⊙ O 的直径,点 B 、 C、 D、 G 四个点在同一个圆⊙ O 上,∴∠ GBC= ∠ GDC=90 °,∴∠ ABF=120 °﹣90°=30 °,∵∠A=60 °,∴∠ AFB=90 °∴AF= AB ,又∵∠ DBF=60 °﹣ 30°=30 °,∠ ADB=60 °,∴∠ DFB=90 °,∴FD= BD ,∵AB=BD ,∴ DF=AF ,故④ 正确,故选: D.点评:此题综合考查了圆及菱形的性质,等边三角形的判定与性质,全等三角形的判定和性质,运用四点共圆找出相等的角是解题的关键.解题时注意各知识点的融会贯通.2. ( 2014?甘肃白银、临夏, 第 10 题 3 分)如图,边长为 1 的正方形ABCD 中,点 E 在 CB 延长线上,连接ED 交 AB 于点 F,AF=x( 0.2 ≤x≤0.8),EC=y.则在下面函数图象中,大致能反映 y 与 x 之闻函数关系的是()A.B.C.D.考点:动点问题的函数图象.分析:通过相似三角形△EFB∽△ EDC 的对应边成比例列出比例式=,从而得到与 x 之间函数关系式,从而推知该函数图象.解答:解:根据题意知,BF=1﹣x, BE=y﹣ 1,且△ EFB ∽△ EDC,则=,即=,所以 y=(0.2≤x≤0.8),该函数图象是位于第一象限的双曲线的一部分.A、D 的图象都是直线的一部分, B 的图象是抛物线的一部分, C 的图象是双曲线的一部分.故选 C.点评:本题考查了动点问题的函数图象.解题时,注意自变量x 的取值范围.3.( 2014?甘肃兰州 , 第 15 题 4 分)如图,在平面直角坐标系中,四边形OBCD 是边长为4的正方形,平行于对角线BD 的直线 l 从 O 出发,沿x 轴正方向以每秒 1 个单位长度的速度运动,运动到直线l 与正方形没有交点为止.设直线l 扫过正方形OBCD 的面积为S,直线运动的时间为t(秒),下列能反映S 与 t 之间函数关系的图象是()y lA.B.C.D.考点:动点问题的函数图象.分析:根据三角形的面积即可求出S 与 t 的函数关系式,根据函数关系式选择图象.解答:解:①当0≤t≤4 时, S=×t×t=t 2,即 S=t2.该函数图象是开口向上的抛物线的一部分.故 B、C 错误;②当 4<t ≤8 时, S=16﹣×( t﹣ 4)×( t﹣4) =2,即 S=﹣2t t +4t+8 .该函数图象是开口向下的抛物线的一部分.故A错误.故选:D.点评:本题考查了动点问题的函数图象.本题以动态的形式考查了分类讨论的思想,函数的知识和等腰直角三角形,具有很强的综合性.三、解答题1. ( 2014?上海,第 25 题 14 分)如图 1,已知在平行四边形ABCD 中,AB=5 ,BC=8 ,cosB=4 ,5点 P 是边 BC 上的动点,以 CP 为半径的圆 C 与边 AD 交于点 E、 F(点 F 在点 E 的右侧),射线CE 与射线 BA 交于点 G.(1)当圆 C 经过点 A 时,求 CP 的长;(2)联结 AP ,当 AP ∥ CG 时,求弦 EF 的长;( 3)当△ AGE 是等腰三角形时,求圆 C 的半径长.考圆的综合题点:分( 1)当点 A 在⊙ C 上时,点 E 和点 A 重合,过点析:理求出 AC 进而得出答案;( 2)首先得出四边形APCE 是菱形,进而得出 CM A 作 AH ⊥ BC 于 H ,直接利用勾股定的长,进而利用锐角三角函数关系得出 CP 以及 EF 的长;( 3)当∠ AEG= ∠ B 时, A 、E、 G 重合,只能∠ AGE= ∠ AEG ,利用 AD ∥ BC ,得出△ GAE ∽△ GBC,进而求出即可.解解:( 1)如图 1,设⊙ O 的半径为 r,答:当点 A 在⊙ C 上时,点 E 和点 A 重合,过点 A 作 AH ⊥BC 于 H,∴BH=AB?cosB=4 ,∴AH=3 ,CH=4 ,∴AC==5 ,∴此时 CP=r=5 ;(2)如图 2,若 AP ∥CE, APCE 为平行四边形,∵ CE=CP ,∴四边形APCE 是菱形,连接 AC 、EP,则 AC ⊥ EP,∴AM=CM= ,由( 1)知, AB=AC ,则∠ ACB= ∠ B,∴ CP=CE==,∴ EF=2=;(3)如图 3:过点 C 作 CN⊥AD 于点 N,∵cosB= 4,5∴∠ B< 45°,∵∠ BCG < 90°,∴∠ BGC > 45°,∵∠ AEG= ∠ BCG≥ ∠ACB= ∠ B,∴当∠ AEG= ∠B 时, A 、E、 G 重合,∴只能∠ AGE= ∠AEG ,∵AD ∥BC ,∴△ GAE ∽△ GBC,∴=,即=,解得: AE=3 , EN=AN ﹣AE=1 ,∴CE===.点此题主要考查了相似三角形的判定与性质以及勾股定理以及锐角三角函数关系等知识,评:利用分类讨论得出△AGE 是等腰三角形时只能∠ AGE= ∠ AEG 进而求出是解题关键.2. ( 2014?四川巴中,第31 题 12 分)如图,在平面直角坐标系xOy 中,抛物线2y=ax +bx﹣ 4与 x 轴交于点A(﹣ 2, 0)和点 B,与 y 轴交于点 C,直线 x=1 是该抛物线的对称轴.( 1)求抛物线的解析式;( 2)若两动点 M, H 分别从点A, B 以每秒 1 个单位长度的速度沿x 轴同时出发相向而行,当点M 到达原点时,点H 立刻掉头并以每秒个单位长度的速度向点 B 方向移动,当点M 到达抛物线的对称轴时,两点停止运动,经过点M 的直线l⊥ x 轴,交AC或BC于点 P,设点 M 的运动时间为 t 秒( t> 0).求点 M 的运动时间 t 与△ APH 的面积 S的函数关系式,并求出 S 的最大值.考点:二次函数综合题.2分析:( 1)根据抛物线y=ax +bx﹣ 4 与 x 轴交于点A(﹣ 2,0),直线 x=1 是该抛物线的对称轴,得到方程组,解方程组即可求出抛物线的解析式;2( 2)由于点 M 到达抛物线的对称轴时需要 3 秒,所以 t≤3,又当点 M 到达原点时需要秒,且此时点H 立刻掉头,所以可分两种情况进行讨论:①当0< t≤2时,由△ AMP∽△ AOC,得出比例式,求出PM , AH,根据三角形的面积公式求出即可;②当2< t≤3时,过点 P 作 PM⊥x 轴于 M, PF⊥ y 轴于点 F,表示出三角形APH 的面积,利用配方法求出最值即可.解答:( 1)∵抛物线 y=ax2+bx﹣4 与 x 轴交于点 A(﹣ 2,0),直线 x=1 是该抛物线的对称轴,∴,解得:,∴抛物线的解析式是:y=x2﹣ x﹣4,( 2)分两种情况:①当 0<t≤2时,∵ PM ∥ OC,∴△ AMP∽△ AOC,∴=,即=,∴ PM =2t.解方程x2﹣ x﹣ 4=0,得 x1=﹣2, x2=4 ,∵A(﹣ 2, 0),∴ B(4, 0),∴ AB=4﹣(﹣ 2) =6.∵AH=AB﹣ BH=6﹣t ,22∴ S= PM ?AH= ×2t(6﹣ t )=﹣ t +6 t=﹣( t﹣ 3) +9,当 t=2 时 S 的最大值为8;②当 2<t≤3时,过点P 作 PM ⊥ x 轴于 M,作 PF⊥ y 轴于点 F,则△ COB∽△ CFP ,又∵ CO=OB,∴FP=FC=t﹣2, PM =4﹣( t﹣ 2) =6﹣ t,AH =4+ ( t﹣ 2) = t+1,∴ S=PM ?AH= (6﹣ t)(t+1) =﹣ t2 +4t+3= ﹣(t ﹣)2+,当 t=时, S 最大值为.综上所述,点 M 的运动时间 t 与△ APQ 面积 S 的函数关系式是S=, S 的最大值为.点评:本题是二次函数的综合题型,其中涉及到运用待定系数法求二次函数的解析式,三角形的面积,二次函数的最值等知识,综合性较强,难度适中.运用数形结合、分类讨论及方程思想是解题的关键.23. ( 2014?山东威海,第 25 题 12 分)如图,已知抛物线 y=ax +bx+c( a≠0)经过 A(﹣ 1,0),B( 4, 0), C( 0, 2)三点.(1)求这条抛物线的解析式;(2) E 为抛物线上一动点,是否存在点 E 使以 A、 B、 E 为顶点的三角形与△COB 相似?若存在,试求出点 E 的坐标;若不存在,请说明理由;( 3)若将直线 BC 平移,使其经过点 A,且与抛物线相交于点 D,连接 BD,试求出∠ BDA 的度数.考点:二次函数综合题分析:解答:( 1)本题需先根据已知条件,过 C 点,设出该抛物线的解析式为2,y=ax +bx+2再根据过 A,B 两点,即可得出结果;( 2)由图象可知,以 A、 B 为直角顶点的△ ABE 不存在,所以△ ABE 只可能是以点 E 为直角顶点的三角形.由相似关系求出点 E 的坐标;( 3)如图 2,连结 AC,作 DE⊥ x 轴于点 E,作 BF ⊥ AD 于点 F,由 BC∥ AD 设BC 的解析式为 y=kx+b,设 AD 的解析式为 y=kx+n,由待定系数法求出一次函数的解析式,就可以求出 D 坐标,由勾股定理就可以求出BD 的值,由勾股定理的逆定理就可以得出∠ACB=90°,由平行线的性质就可以得出∠ CAD =90°,就可以得出四边形 ACBF 是矩形,就可以得出 BF 的值,由勾股定理求出 DF 的值,而得出 DF =BF 而得出结论.解:( 1)∵该抛物线过点 C( 0, 2),∴可设该抛物线的解析式为y=ax2+bx+2.将 A(﹣ 1, 0), B( 4, 0)代入,得,解得,∴抛物线的解析式为:y=﹣x2 + x+2.( 2)存在.由图象可知,以A、B 为直角顶点的△ABE不存在,所以△ ABE只可能是以点E 为直角顶点的三角形.在 Rt△BOC 中, OC=2, OB=4,∴BC==.在 Rt△BOC 中,设 BC 边上的高为h,则×h=×2×4,∴ h=.∵△ BEA ∽△ COB,设 E 点坐标为( x, y),∴=,∴ y=±2将 y=2 代入抛物线 y=﹣ x2+ x+2,得 x1=0, x2=3 .当 y=﹣2 时,不合题意舍去.∴ E 点坐标为( 0, 2),( 3, 2).( 3)如图 2,连结 AC,作 DE ⊥x 轴于点 E,作 BF ⊥AD 于点 F,∴∠ BED =∠ BFD =∠ AFB=90°.设 BC 的解析式为 y=kx+b,由图象,得,∴,y BC=﹣x+2.由 BC∥ AD ,设 AD 的解析式为y=﹣x+n,由图象,得0=﹣×(﹣1)+n∴n=﹣,y AD =﹣x﹣.2∴﹣x + x+2= ﹣x﹣,解得: x1 =﹣ 1, x2=5∴D(﹣ 1,0)与 A 重合,舍去, D( 5,﹣3).∵ DE ⊥x 轴,∴DE =3,OE=5.由勾股定理,得BD=.∵ A(﹣ 1, 0), B(4, 0), C( 0, 2),∴OA=1,OB=4, OC=2.∴AB=5在 Rt△AOC 中, Rt△ BOC 中,由勾股定理,得AC= , BC=2,∴ AC2=5, BC2=20 ,AB 2=25 ,∴ AC2+BC2=AB 2∴△ ACB 是直角三角形,∴∠ ACB =90°.∵BC∥AD,∴∠ CAF +∠ ACB =180°,∴∠ CAF =90°.∴∠ CAF =∠ ACB =∠ AFB=90°,∴四边形 ACBF 是矩形,∴ AC=BF= ,在 Rt△BFD 中,由勾股定理,得 DF =,∴ DF =BF,∴∠ ADB =45°.点评:本题考查了运用待定系数法求二次函数解析式和一次函数的解析式的运用,相似三角形的性质的运用,勾股定理的运用,矩形的判定及性质的运用,等腰直角三角形的性质的运用,解答时求出函数的解析式是关键.4. ( 2014?山东枣庄,第25 题 10 分)如图,在平面直角坐标系中,二次函数y=x 2﹣ 2x﹣3的图象与x 轴交于 A 、B 两点,与y 轴交于点C,连接 BC ,点 D 为抛物线的顶点,点第四象限的抛物线上的一个动点(不与点 D 重合).P 是( 1)求∠OBC 的度数;( 2)连接CD 、 BD 、DP,延长DP交x 轴正半轴于点E,且S△OCE=S 四边形OCDB,求此时P 点的坐标;( 3)过点考点:分析:P 作PF⊥ x 轴交 BC 于点 F,求线段PF 长度的最大值.二次函数综合题( 1)由抛物线已知,则可求三角形OBC 的各个顶点,易知三角形形状及内角.( 2)因为抛物线已固定,则S四边形OCDB固定,对于坐标系中的不规则图形常用分割求和、填补求差等方法求面积,本图形过顶点作x 轴的垂线及可将其分为直角梯形及直角三角形,面积易得.由此可得 E 点坐标,进而可求ED 直线方程,与抛物线解析式联立求解即得P 点坐标.( 3)PF 的长度即为y F﹣ y P.由P、 F 的横坐标相同,则可直接利用解析式作差.由所得函数为二次函数,则可用二次函数性质讨论最值,解法常规.解答:解:( 1)∵ y=x2﹣ 2x﹣ 3=( x﹣ 3)( x+2 ),∴由题意得, A (﹣ 1, 0), B ( 3,0), C( 0,﹣ 3), D( 1,﹣ 4).在 Rt△OBC 中,∵ OC=OB=3 ,∴△ OBC 为等腰直角三角形,∴∠ OBC=45° .( 2)如图1,过点 D 作DH ⊥x轴于H ,此时S 四边形OCDB =S 梯形OCDH +S△HBD,∵OH=1 , OC=3 ,HD=4 , HB=2 ,∴S 梯形OCDH = ?(OC+HD )?OH= , S△HBD = ?HD?HB=4 ,∴S 四边形OCDB= .∴ S△OCE=S 四边形OCDB = =,∴OE=5 ,∴E( 5, 0).设 l DE: y=kx+b ,∵ D( 1,﹣ 4), E( 5, 0),∴,解得,∴l DE: y=x ﹣ 5.∵DE 交抛物线于 P,设 P( x, y),∴ x2﹣ 2x﹣ 3=x ﹣ 5,解得 x=2 或 x=1( D 点,舍去),∴x P=2 ,代入 l DE: y=x ﹣ 5,∴P(2,﹣ 3).( 3)如图 2,设 l BC: y=kx+b ,∵ B( 3, 0), C( 0,﹣ 3),∴,解得,∴l BC: y=x ﹣ 3.∵F在 BC 上,∴y F=x F﹣ 3,∵P 在抛物线上,∴y P=x P2﹣ 2x P﹣3,∴线段 PF 长度 =y F﹣ y P=x F﹣ 3﹣( x P2﹣ 2x P﹣ 3),∵x P=x F,∴线段 PF 长度 =﹣ x P2+3x P=﹣( x P﹣)2+,( 1< x P≤3),∴当 x P= 时,线段 PF 长度最大为.点评:本题考查了抛物线图象性质、已知两点求直线解析式、直角三角形性质及二次函数最值等基础知识点,题目难度适中,适合学生加强练习.5.( 2014?山东潍坊,第 22 题 12 分)如图 1,在正方形 ABCD 中, E、 F 分别为 BC、CD 的中点,连接 AE、 BF ,交点为 G.(1)求证: AE⊥ BF;(2) 将△ BCF 沿 BF 对折,得到△ BPF(如图 2),延长 FP 交 BA 的延长线于点 Q,求 sin∠BQP 的值;(3)将△ ABE 绕点 A 逆时针方向旋转,使边 AB 正好落在 AE 上,得到△ AHM (如图 3),若AM 和 BF 相交于点N,当正方形ABCD 的面积为 4 时,求四边形GHMN 的面积.考点:相似三角形的判定与性质;全等三角形的判定与性质;正方形的性质;解直角三角形.分析:(1)由四边形 ABCD 是正方形,可得∠ ABE=∠ BCF=90°, AB=BC,又由 BE=CF,即可证得△ ABE ≌△ BCF ,可得∠ BAE=∠ CBF ,由∠ ABF+∠ CBF =90 0可得∠ ABF+∠BAE=90 0,即 AE⊥ BF;(2)由△ BCF ≌△ BPF, 可得 CF=PF,BC=BP,∠ BFE=∠ BFP,由 CD∥AB 得∠ BFC=∠ ABF,从而 QB=QF ,设 PF 为 x,则 BP 为 2x,在 Rt△ QBF 中可求QB 为5x,即可求得答案;2( 3)由AGN(AN) 2可求出△AGN的面积,进一步可求出四边形GHMN 的面积.AHM AM解答: (1) 证明:∵ E、F 分别是正方形ABCD 边 BC、 CD 的中点,∴ CF=BE ,∴ Rt△ ABE≌Rt△ BCF∴∠ BAE=∠CBF又∵∠ BAE+∠ BEA=900,∴∠ CBF +∠ BEA=90 0,∴∠ BGE=90 0,∴AE⊥ BF(2)根据题意得: FP=FC,∠ PFB=∠BFC ,∠ FPB=900,∵CD ∥ AB,∴∠ CFB =∠ ABF,∴∠ ABF=∠ PFB.∴ QF=QB令 PF=k( k>O),则 PB=2k,2225k,∴ sin∠ BQP=BP在 Rt△ BPQ 中,设 QB=x,∴ x =(x-k) +4k ,∴ x=QP2(3) 由题意得:∠ BAE=∠ EAM,又 AE⊥ BF,∴AN=AB=2,∵ ∠ AHM =900, ∴ GN//HM , ∴AGN(AN)2∴AGN(2)24AHM AM155∴四边形 GHMN =S AHM - S AGN=1 一4=4552k 45k52答:四边形GHMN 的面积是 4 .5点评:此题考查了相似三角形的判定与性质、正方形的性质、全等三角形的判定与性质以及三角函数等知识.此题综合性较强,难度较大,注意掌握旋转前后图形的对应关系,注意数形结合思想的应用.6. ( 2014?山东潍坊,第24 题 13 分)如图,抛物线y=ax2+bx+c( a≠O)与 y 轴交于点C(O,4),与 x 轴交于点 A 和点 B,其中点 A 的坐标为(-2,0),抛物线的对称轴x=1 与抛物线交于点 D,与直线BC 交于点 E.(1)求抛物线的解析式;(2)若点 F 是直线 BC 上方的抛物线上的一个动点,是否存在点 F 使四边形 ABFC 的面积为 17,若存在,求出点 F 的坐标;若不存在,请说明理由;(3) 平行于 DE 的一条动直线Z 与直线 BC 相交于点P,与抛物线相交于点Q,若以 D 、E、P、Q 为顶点的四边形是平行四边形,求点P 的坐标。
2019-2020年中考数学试卷解析分类汇编:有理数(可编辑修改word版)
2019-2020 年中考数学试卷解析分类汇编:有理数一、选择题1. (2014•上海第2 题4 分)据统计,2013 年上海市全社会用于环境保护的资金约为60 800 000 000 元,这个数用科学记数法表示为()A.608×108B.60.8×109C.6.08×1010D.6.08×1011考点:科学记数法—表示较大的数分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定 n 的值时,要看把原数变成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1 时,n 是正数;当原数的绝对值<1 时,n 是负数.解答:解:60 800 000 000=6.08×1010,故选:C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定 a 的值以及 n 的值.2. (2014•四川巴中,第1 题3 分)﹣的相反数是()A.﹣B.C.﹣5 D.5考点:有理数.分析:根据只有符号不同的两个数互为相反数,可得一个数的相反数.解答:﹣的相反数是,故选:B.点评:本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.3.(2014•四川巴中,第 2 题 3 分)2014 年三月发生了一件举国悲痛的空难事件﹣﹣马航失联,该飞机上有中国公民 154 名.噩耗传来后,我国为了搜寻生还者及找到失联飞机,在搜救方面花费了大量的人力物力,已花费人民币大约 934 千万元.把 934 千万元用科学记数法表示为()元.A.9.34×102 B.0.934×103 C.9.34×109 D.9.34×1010考点:科学记数法.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定n 的值是易错点,由于 150 千万有 11 位,所以可以确定n=11﹣1=10.解答:934 千万=934 00 000 000=9.34×1010.故选:D.点评:此题考查科学记数法表示较大的数的方法,准确确定a 与n 值是关键.4.(2014•ft东威海,第1 题3 分)若a3=8,则a 的绝对值是()A.2 B.﹣2 C.D.﹣考点:立方根;绝对值分析:运用开立方的方法求解.解答:解:∵a3=8,∴a=2.故选:A.点评:本题主要考查开立方的知识,关键是确定符号.5.(2014•ft东枣庄,第 1 题3 分)2 的算术平方根是()A.±B.C.±4D.4考点:算术平方根.分析:根据开方运算,可得算术平方根.解答:解:2 的算术平方根是,故选;B.点评:本题考查了算术平方根,开方运算是解题关键.6.(2014•ft东枣庄,第 2 题3 分)2014 年世界杯即将在巴西举行,根据预算巴西将总共花费14000000000 美元,用于修建和翻新 12 个体育场,升级联邦、各州和各市的基础设施,以及为 32 支队伍和预计约 60 万名观众提供安保.将 14000000000 用科学记数法表示为()A.140×108B.14.0×109C.1.4×1010D.1.4×1011考点:科学记数法—表示较大的数分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定 n 的值时,要看把原数变成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1 时,n是正数;当原数的绝对值<1 时,n 是负数.解答:解:14 000 000 000=1.4×1010,故选:C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.7.(2014•ft东烟台,第1 题3 分)﹣3 的绝对值等于()A.﹣3 B.3 C.±3D.﹣考点:绝对值.分析:根据绝对值的性质解答即可.解答:|﹣3|=3.故选B.点评:此题考查了绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0 的绝对值是0.8.(2014•ft东烟台,第 3 题3 分)烟台市通过扩消费、促投资、稳外需的协同发力,激发了区域发展活力,实现了经济平稳较快发展.2013 年全市生产总值(GDP)达 5613 亿元.该数据用科学记数法表示为()A.5.613×1011元 B.5.613×1012元C.56.13×1010元D.0.5613×1012元考点:科学记数法.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1 时,n 是正数;当原数的绝对值<1 时,n 是负数.解答:将 5613 亿元用科学记数法表示为:5.613×1011元.故选;A.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.9.(2014•湖南怀化,第1 题,3 分)我国南海海域面积为3500000km2,用科学记数法表示正确的是()A.3.5×105cm2B.3.5×106cm2C.3.5×107cm2D.3.5×108cm2考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定 n 的值时,要看把原数变成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1 时,n 是正数;当原数的绝对值<1 时,n 是负数.解答:解:将 3500000 用科学记数法表示为:3.5×106.故选:B.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定 a 的值以及 n 的值.10.(2014•湖南张家界,第1 题,3 分)﹣2014 的绝对值是()A.﹣2014 B.2014 C.D.﹣考点:绝对值.分析:根据负数的绝对值等于它的相反数解答.解答:解:﹣2014 的绝对值是 2014.故选 B.点评:本题考查了绝对值的性质,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0 的绝对值是 0.11. (2014•江西抚州,第 1 题,3 分)-7 的相反数是A. -7B. -1 7解析:选D. ∵|-7|=|7|.1C. D. 774.(2014•江西抚州,第 4 题,3 分)抚州名人雕塑园是国家 4A 级旅游景区,占地面积约560000m2,将 560000 用科学记数法表示应为A. 0.56×106B. 5.6×106C. 5.6×10 5D. 56×104解析:选C. ∵A、D 不符合书写要求,B 错误.12.(2014 ft东济南,第 4 题,3 分)我国成功发射了嫦娥三号卫星,是世界上第三个实现月面软着陆和月面巡视探测的国家.嫦娥三号探测器的发射总质量约 3700 千克,3700 用科学计数法表示为A.3.7 ⨯102B.3.7 ⨯103C.37 ⨯102D.0.37 ⨯104【解析】3700 用科学计数法表示为3.7 ⨯103,可知 B 正确.13.(2014•ft东聊城,第1 题,3 分)在﹣,0,﹣2,,1 这五个数中,最小的数为()A.0 B.﹣C.﹣2 D.考点:有理数大小比较.分析:用数轴法,将各选项数字标于数轴之上即可解本题.解答:解:画一个数轴,将 A=0、B=﹣、C=﹣2、D=,E=1 标于数轴之上,可得:∵C 点位于数轴最左侧,是最小的数故选 C.点评:本题考查了数轴法比较有理数大小的方法,牢记数轴法是解题的关键.14.(2014 年贵州黔东南1.(4 分)) =()A. 3 B.﹣3 C.D.﹣考点:绝对值.分析:按照绝对值的性质进行求解.解答:解:根据负数的绝对值是它的相反数,得:|﹣|=.故选 C.点评:绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是 0.15.(2014•遵义(3 分))﹣3+(﹣5)的结果是()A.﹣2 B.﹣8 C.8 D.2考点:有理数的加法.分析:根据同号两数相加,取相同的符号,并把绝对值相加,可得答案.解答:解:原式=﹣(3+5)=﹣8.故选:B.点评:本题考查了有理数的加法,先确定和的符号,再进行绝对值得运算.16.(2014•遵义 3.(3 分))“着力扩大投资,突破重点项目建设”是遵义经济社会发展的主要任务之一.据统计,遵义市 2013 年全社会固定资产投资达 1762 亿元,把 1762 亿元这个数字用科学记数法表示为()A.1762×108B.1.762×1010C.1.762×1011D.1.762×1012考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定 n 的值时,要看把原数变成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1 时,n 是正数;当原数的绝对值<1 时,n 是负数.解答:解:将 1762 亿用科学记数法表示为:1.762×1011.故选:C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定 a 的值以及 n 的值.17(2014•十堰 1.(3 分))3 的倒数是()A.B.﹣C.3 D.﹣3考点:倒数.分析:根据倒数的定义可知.解答:解:3 的倒数是.故选 A.点评:主要考查倒数的定义,要求熟练掌握.需要注意的是:倒数的性质:负数的倒数还是负数,正数的倒数是正数,0 没有倒数.倒数的定义:若两个数的乘积是 1,我们就称这两个数互为倒数.18.(2014•十堰11.(3 分))世界文化遗产长城总长约6700 000m,用科学记数法可表示为 6.7×106m .考点:科学记数法—表示较大的数分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定 n 的值时,要看把原数变成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1 时,n 是正数;当原数的绝对值<1 时,n 是负数.解答:解:将 6700 000m 用科学记数法表示为:6.7×106m.故答案为:6.7×106m.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定 a 的值以及 n 的值.19.(2014•娄底1.(3 分))2014 的相反数是()A.﹣2014 B.﹣C.2014 D.考点:相反数.分析:根据只有符号不同的两个数互为相反数,可得一个数的相反数.解答:解:2014 的相反数是﹣2014,故选:A.点评:本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.20.(2014•娄底 11.(3 分))五月初五是我国的传统节日﹣端午节.今年端午节,小王在“百度”搜索引擎中输入“端午节”,搜索到与之相关的结果约为 75100000 个,75100000用科学记数法表示为7.51×107.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定 n 的值时,要看把原数变成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1 时,n 是正数;当原数的绝对值<1 时,n 是负数.解答:解:将 75100000 用科学记数法表示为7.51×107.故答案为:7.51×107.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定 a 的值以及 n 的值.21.( 2014年河南,1题3分)下列各数中,最小的数是()1 (A). 0 (B).3 答案:D (C).-13(D).-3解析:根据有理数的大小比较法则(正数都大于 0,负数都小于 0,正数都大于负数,两个负数,其绝对值大的反而小)比较即可.解:∵﹣3<-1 3∴最小的数是﹣3,故选A.1 <0<,322.( 2014 年河南 2 题 3 分)据统计,2013 年河南省旅游业总收入达到 3875.5 亿元.若将3875.5 亿用科学计数法表示为 3.8755×10n,则n 等于()(A) 10 (B) 11 (C).12 (D).13答案:B解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3875.5 亿=3.8755×1011,故选B.23.(2014•江苏苏州,第1 题3 分)(﹣3)×3的结果是()A.﹣9 B.0 C.9 D.﹣6考点:有理数的乘法.分析:根据两数相乘,异号得负,可得答案.解答:解:原式=﹣3×3=﹣9,故选:A.点评:本题考查了有理数的乘法,先确定积的符号,再进行绝对值得运算.24.(2014•江苏徐州,第1 题3 分)2﹣1等于()A. 2 B.﹣2 C.D.﹣考点:负整数指数幂.分析:根据a ,可得答案.解答:解:2 ,故选:C.点评:本题考查了负整指数幂,负整数指数为正整数指数的倒数.25.(2014•江苏徐州,第8 题3 分)点A、B、C 在同一条数轴上,其中点A、B 表示的数分别为﹣3、1,若BC=2,则AC 等于()A. 3 B. 2 C. 3 或5 D. 2 或6考点:两点间的距离;数轴.菁优网分析:要求学生分情况讨论 A,B,C 三点的位置关系,即点 C 在线段 AB 内,点 C 在线段 AB 外.解答:解:此题画图时会出现两种情况,即点 C 在线段 AB 内,点 C 在线段 AB 外,所以要分两种情况计算.点 A、B 表示的数分别为﹣3、1,AB=4.第一种情况:在 AB 外,AC=4+2=6;第二种情况:在 AB 内,AC=4﹣2=2.故选:D.点评:在未画图类问题中,正确画图很重要.本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.26.(2014•江苏盐城,第1 题3 分)4 的相反数是()A.4B.﹣4 C.D.考点:相反数分析:根据相反数的性质,互为相反数的两个数和为 0,采用逐一检验法求解即可.解答:解:根据概念,(4 的相反数)+(4)=0,则4 的相反数是﹣4.故选 B.点评:主要考查相反数的性质.相反数的定义为:只有符号不同的两个数互为相反数,0 的相反数是 0.27. (2014•江苏盐城,第 4 题 3 分) 2014 年 5 月,中俄两国签署了供气购销合同,从 2018年起,俄罗斯开始向我国供气,最终达到每年 380 亿立方米.380 亿这个数据用科学记数法表示为()A.3.8×109 B.3.8×1010 C.3.8×1011D.3.8×1012考点:科学记数法—表示较大的数分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定 n 的值时,要看把原数变成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1 时,n 是正数;当原数的绝对值<1 时,n 是负数.解答:解:将 380 亿用科学记数法表示为:3.8×1010.故选:B.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定 a 的值以及 n 的值.28. (2014•ft东临沂,第1 题3 分)﹣3 的相反数是()A.3 B.﹣3 C.D.﹣考点:相反数.分析:根据相反数的概念解答即可.解答:解:﹣3 的相反数是 3,故选 A.点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0 的相反数是 0.29.(2014•ft东临沂,第 2 题 3 分)根据世界贸易组织(WTO)秘书处初步统计数据,2013年中国货物进出口总额为4160000000000 美元,超过美国成为世界第一货物贸易大国.将这个数据用科学记数法可以记为()A.4.16×1012美元B.4.16×1013美元C.0.416×1012美元D.416×1010美元考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定 n 的值是易错点,由于 4160000000000 有13 位,所以可以确定 n=13﹣1=12.解答:解:4 160 000 000 000=4.16×1012.故选 A.点评:此题考查科学记数法表示较大的数的方法,准确确定 a 与 n 值是关键.30. (2014•ft东淄博,第1 题4 分)计算(﹣3)2等于()A.﹣9 B.﹣6 C. 6 D.9考点:有理数的乘方.分析:根据负数的偶次幂等于正数,可得答案.解答:解:原式=32=9.故选:D.点评:本题考查了有理数的乘方,负数的偶次幂是正数.31.(2014•四川遂宁,第1 题,4 分)在下列各数中,最小的数是()A.0 B.﹣1 C.D.﹣2考点:有理数大小比较.分析:根据正数大于 0,0 大于负数,可得答案.解答:解:﹣2<﹣1<0 ,故选:D.点评:本题考查了有理数比较大小,正数大于 0,0 大于负数是解题关键.32.(2014•四川遂宁,第2 题,4 分)下列计算错误的是()A.4÷(﹣2)=﹣2 B.4﹣5=﹣1 C.(﹣2)﹣2=4 D.20140=1考点:负整数指数幂;有理数的减法;有理数的除法;零指数幂.分析:根据有理数的除法、减法法则、以及 0 次幂和负指数次幂即可作出判断.解答:解:A、B、D 都正确,不符合题意;B、(﹣2)﹣2= =,错误,符合题意.故选B.点评:本题主要考查了零指数幂,负指数幂的运算.负整数指数为正整数指数的倒数;任何非 0 数的0 次幂等于 1.33.(2014•四川南充,第1 题,3 分)=()A.3 B.﹣3 C.D.﹣分析:按照绝对值的性质进行求解.解:根据负数的绝对值是它的相反数,得:|﹣|=.故选C.点评:绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是 0.34.(2014•四川泸州,第1 题,3 分)5 的倒数为()A.B.5 C.D.﹣5解答:解:5 的倒数是,故选:A.点评:本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.35.(2014•四川凉ft州,第6 题,4 分)凉ft州的人口约有473 万人,将473 万人用科学记数法表示应为()A.473×104人B.4.73×106人C.4.7×106人D.47.3×105人考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定n 的值是易错点,由于473 万有7 位,所以可以确定n=7﹣1=6.解答:解:473 万=4 730 000=4.73×106.故选B.点评:此题考查科学记数法表示较大的数的方法,准确确定a 与n 值是关键.36.(2014•四川内江,第2 题,3 分)一种微粒的半径是0.00004 米,这个数据用科学记数法表示为()A.4×106B.4×10﹣6C.4×10﹣5D.4×105考点:科学记数法—表示较小的数.分析:绝对值小于 1 的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的 0 的个数所决定.解答:解:0.00004=4×10﹣5,故选:C.点评:本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的 0 的个数所决定.37.(2014•四川宜宾,第1 题,3 分)2 的倒数是()A.B.﹣C.±D.2考点:倒数.分析:根据乘积为1 的两个数互为倒数,可得一个数的倒数.解答:解:2 的倒数是,故选:A.点评:本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.38.(2014•四川宜宾,第2 题,3 分)下列运算的结果中,是正数的是()A.(﹣2014)﹣1 B.﹣(2014)﹣1 C.(﹣1)×(﹣2014) D.(﹣2014)÷2014考点:负整数指数幂;正数和负数;有理数的乘法;有理数的除法.分析:分别根据负指数幂和有理数的乘除法进行计算求得结果,再判断正负即可.解答:解:A、原式= <0,故A 错误;B、原式=﹣<0,故B 错误;C、原式=1×2014=2014>0,故C 正确;D、原式=﹣2014÷2014=﹣1<0,故D 错误;故选C.点评:本题主要考查了有理数的乘除法,负指数幂的运算.负整数指数为正整数指数的倒数.39.(2014•福建福州,第1 题4 分)-5 的相反数是【】A.5B.5 C.15D.1540.(2014•甘肃白银、临夏,第1 题3 分)﹣3 的绝对值是()A.3 B.﹣3 C.﹣D.考点:绝对值.分析:计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.解答:解:﹣3 的绝对值是 3.故选:A.点评:此题主要考查了绝对值的定义,规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0 的绝对值是 0.41.(2014•广州,第1 题3 分)()的相反数是().(A)(B)(C)(D)【考点】相反数的概念【分析】任何一个数的相反数为.【答案】A42.(2014•广东梅州,第1 题3 分)下列各数中,最大的是()A.0 B.2 C.﹣2 D.﹣考点:有理数大小比较.专题:常规题型.分析:用数轴法,将各选项数字标于数轴之上即可解本题.解答:解:画一个数轴,将A=0、B=2、C=﹣2、D=﹣标于数轴之上,可得:∵D 点位于数轴最右侧,∴B 选项数字最大.故选B.点评:本题考查了数轴法比较有理数大小的方法,牢记数轴法是解题的关键.二、填空题1.(2014•上海,第10 题4 分)某文具店二月份销售各种水笔320 支,三月份销售各种水笔的支数比二月份增长了10%,那么该文具店三月份销售各种水笔352 支.考点:有理数的混合运算专题:应用题.分析:三月份销售各种水笔的支数比二月份增长了 10%,是把二月份销售的数量看作单位“1”,增加的量是二月份的 10%,即三月份生产的是二月份的(1+10%),由此得出答案.解答:解:320×(1+10%)=320×1.1=352(支).答:该文具店三月份销售各种水笔 352支.故答案为:352.点评:此题考查有理数的混合运算,理解题意,列出算式解决问题.2.(2014•ft东威海,第 13 题3 分)据威海市旅游局统计,今年“五一”小长假期间,我市各旅游景点门票收入约 2300 万元,数据“2300万“用科学记数法表示为2.3×107.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1 时,n 是正数;当原数的绝对值<1 时,n 是负数.解答:解:将2300 万用科学记数法表示为:2.3×107.故答案为:2.3×107.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3. 1.(2014•湖南怀化,第9 题,3 分)计算:(﹣1)2014= 1 .考点:有理数的乘方分析:根据(﹣1)的偶数次幂等于 1 解答.解答:解:(﹣1)2014=1.故答案为:1.点评:本题考查了有理数的乘方,﹣1 的奇数次幂是﹣1,﹣1 的偶数次幂是 1.4.(2014•湖南张家界,第 9 题,3分)我国第一艘航母“辽宁舰”的最大的排水量约为 68000 吨,用科学记数法表示这个数是 6.8×104吨.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1 时,n 是正数;当原数的绝对值<1 时,n 是负数.解答:解:将 68000 用科学记数法表示为:6.8×104.故答案为:6.8×104.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定 a 的值以及 n 的值.5.(2014 ft东济南,第16 题,3 分)- 7 - 3 =.【解析】- 7 - 3 =-10 = 10 ,应填 10.6. (2014•浙江杭州,第 11 题,4 分)2012 年末统计,杭州市常住人口是 880.2 万人,用科学记数法表示为8.802×106人.考点:科学记数法—表示较大的数分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定 n 的值时,要看把原数变成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1 时,n 是正数;当原数的绝对值<1 时,n 是负数.解答:解:880.2 万=880 2000=8.802×106,故答案为:8.802×106.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定 a 的值以及 n 的值.7. (2014•江苏苏州,第11 题3 分)的倒数是.考点:倒数.分析:根据乘积为 1 的两个数倒数,可得一个数的倒数.解答:解:的倒数是,故答案为:.点评:本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.8. (2014•江苏苏州,第 12 题3 分)已知地球的表面积约为 510000000km2,数 510000000 用科学记数法可表示为 5.1×108.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定 n 的值是易错点,由于 510000000 有9 位,所以可以确定 n=9﹣1=8.解答:解:510 000 000=5.1×108.故答案为:5.1×108.点评:此题考查科学记数法表示较大的数的方法,准确确定 a 与 n 值是关键.9.(2014•江苏徐州,第10 题3 分)我国“钓鱼岛”周围海域面积约170 000km2,该数用科学记数法可表示为 1.7×105.考点:科学记数法—表示较大的数.菁优网分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定 n 的值时,要看把原数变成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1 时,n 是正数;当原数的绝对值<1 时,n 是负数.解答:解:170 000=1.7×105,故答案为:1.7×105.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定 a 的值以及 n 的值.10.(2014•年ft东东营,第11 题3 分) 013 年东营市围绕“转方式,调结构,扩总量,增实力,上水平”的工作大局,经济平稳较快增长,全年GDP 达到3250 亿元,3250 亿元用科学记数法表示为 3.25×1011.考点:科学记数法—表示较大的数.菁优网分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定 n 的值时,要看把原数变成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1 时,n 是正数;当原数的绝对值<1 时,n 是负数.解答:解:将3250 亿用科学记数法表示为:3.25×1011.故答案为:3.25×1011.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定 a 的值以及 n 的值.11.(2014•四川遂宁,第 12 题,4 分)四川省第十二届运动会将于 2014 年8 月16 日在我市举行,我市约 3810000 人民热烈欢迎来自全省的运动健儿.请把数据 3810000 用科学记数法表示为 3.81×106.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1 时,n 是正数;当原数的绝对值<1 时,n 是负数.解答:解:将 3810000 用科学记数法表示为:3.81×106.故答案为:3.81×106.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.2019-2020 年中考数学试卷解析分类汇编:一元一次方程及其应用一、选择题1. (2014 年湖北咸宁2.(3 分))若代数式x+4 的值是2,则x 等于()A. 2 B.﹣2 C. 6 D.﹣6考点:解一元一次方程;代数式求值.分析:根据已知条件列出关于x 的一元一次方程,通过解一元一次方程来求x 的值.解答:解:依题意,得x+4=2移项,得x=﹣2故选:B.点评:题实际考查解一元一次方程的解法;解一元一次方程常见的过程有去括号、移项、系数化为1 等.二、填空题1. (2014•娄底 13.(3 分))已知关于 x 的方程 2x+a﹣5=0 的解是 x=2,则a 的值为 1 .考点:一元一次方程的解分析:把x=2 代入方程即可得到一个关于 a 的方程,解方程即可求解解答:解:把 x=2 代入方程,得:4+a﹣5=0,解得:a=1.故答案是:1.点评:本题考查了方程的解的定义,理解定义是关键.三、解答题1.(2014•江西抚州,第 19 题,8 分)情景:试根据图中的信息,解答下列问题:⑴ 购买6 根跳绳需元,购买12 根跳绳需元.⑵ 小红比小明多买 2 根,付款时小红反而比小明少 5 元,你认为有这种可能吗?若有,请求出小红购买跳绳的根数;若没有,请说明理由.解析:(1)25×6=150,25×0.8×12=240.(2)有这种可能.设小红买了x 根跳绳,则25×0.8·x=25(x-2)-5 ,解得x=11.∴小红买了 11 根跳绳.2.(2014•ft东淄博,第 21 题 8 分)为鼓励居民节约用电,某省试行阶段电价收费制,具体执行方案如表:档次每户每月用电数(度)执行电价(元/度)第一档小于等于 200 0.55第二档大于 200 小于 400 0.6第三档大于等于 400 0.85例如:一户居民七月份用电 420 度,则需缴电费420×0.85=357(元).某户居民五、六月份共用电 500 度,缴电费 290.5 元.已知该用户六月份用电量大于五月份,且五、六月份的用电量均小于 400 度.问该户居民五、六月份各月电多少度?考点:一二元一次方程的应用.菁优网分析:某户居民五、六月份共用电 500 度,就可以得出每月用电量不可能都在第一档,分情况讨论,当 5 月份用电量为 x 度≤200度,6 月份用电(500﹣x)度,当 5 月份用电量为 x度>200 度,六月份用电量为(500﹣x)度>x 度,分别建立方程求出其解即可.解答:解:当 5 月份用电量为 x 度≤200 度,6 月份用电(500﹣x)度,由题意,得0.55x+0.6(500﹣x)=290.5,解得:x=190,∴6 月份用电 500﹣x=310 度.当 5 月份用电量为 x 度>200 度,六月份用电量为(500﹣x)度,由题意,得0.6x+0.6(500﹣x)=290.5,300=290.5,原方程无解.∴5 月份用电量为 190 度,6 月份用电 310 度.点评:本题考查了列一元一次方程解实际问题的运用,一元一次方程的解法的运用,分类讨论思想的运用,解答时由总价=单价×数量是关键.。
2019、2020年中考试题汇编 浙江省中考数学试题分类(3)——一次函数与二次函数
2019、2020年浙江中考数学试题分类(3)——一次函数与二次函数一.一次函数的图象(共2小题)1.(2020•嘉兴)一次函数y=2x﹣1的图象大致是()A.B.C.D.2.(2019•杭州)已知一次函数y1=ax+b和y2=bx+a(a≠b),函数y1和y2的图象可能是()A.B.C.D.二.一次函数的性质(共1小题)3.(2019•杭州)某函数满足当自变量x=1时,函数值y=0,当自变量x=0时,函数值y=1,写出一个满足条件的函数表达式.三.一次函数图象上点的坐标特征(共3小题)4.(2020•杭州)在平面直角坐标系中,已知函数y=ax+a(a≠0)的图象过点P(1,2),则该函数的图象可能是()A.B.C.D.5.(2020•湖州)已知在平面直角坐标系xOy中,直线y=2x+2和直线y=23x+2分别交x轴于点A和点B.则下列直线中,与x轴的交点不在线段AB上的直线是()A.y=x+2B.y=√2x+2C.y=4x+2D.y=2√33x+26.(2019•绍兴)若三点(1,4),(2,7),(a,10)在同一直线上,则a的值等于()A.﹣1B.0C.3D.4四.一次函数的应用(共10小题)7.(2019•金华)元朝朱世杰的《算学启蒙》一书记载:“今有良马日行二百四十里,驽马日行一百五十里.驽马先行一十二日,问良马几何日追及之.”如图是两匹马行走路程s关于行走时间t的函数图象,则两图象交点P的坐标是.8.(2020•宁波)A,B两地相距200千米.早上8:00货车甲从A地出发将一批物资运往B地,行驶一段路程后出现故障,即刻停车与B地联系.B地收到消息后立即派货车乙从B地出发去接运甲车上的物资.货车乙遇到甲后,用了18分钟将物资从货车甲搬运到货车乙上,随后开往B地.两辆货车离开各自出发地的路程y(千米)与时间x(小时)的函数关系如图所示.(通话等其他时间忽略不计)(1)求货车乙在遇到货车甲前,它离开出发地的路程y关于x的函数表达式.(2)因实际需要,要求货车乙到达B地的时间比货车甲按原来的速度正常到达B地的时间最多晚1个小时,问货车乙返回B地的速度至少为每小时多少千米?9.(2020•衢州)2020年5月16日,“钱塘江诗路”航道全线开通.一艘游轮从杭州出发前往衢州,线路如图1所示.当游轮到达建德境内的“七里扬帆”景点时,一艘货轮沿着同样的线路从杭州出发前往衢州.已知游轮的速度为20km/h,游轮行驶的时间记为t(h),两艘轮船距离杭州的路程s(km)关于t(h)的图象如图2所示(游轮在停靠前后的行驶速度不变).(1)写出图2中C点横坐标的实际意义,并求出游轮在“七里扬帆”停靠的时长.(2)若货轮比游轮早36分钟到达衢州.问:①货轮出发后几小时追上游轮?①游轮与货轮何时相距12km?10.(2020•绍兴)我国传统的计重工具﹣﹣秤的应用,方便了人们的生活.如图1,可以用秤砣到秤纽的水平距离,来得出秤钩上所挂物体的重量.称重时,若秤杆上秤砣到秤纽的水平距离为x(厘米)时,秤钩所挂物重为y(斤),则y是x的一次函数.下表中为若干次称重时所记录的一些数据.x(厘米)12471112y(斤)0.75 1.00 1.50 2.75 3.25 3.50(1)在上表x,y的数据中,发现有一对数据记录错误.在图2中,通过描点的方法,观察判断哪一对是错误的?(2)根据(1)的发现,问秤杆上秤砣到秤纽的水平距离为16厘米时,秤钩所挂物重是多少?11.(2020•金华)某地区山峰的高度每增加1百米,气温大约降低0.6℃,气温T(℃)和高度h(百米)的函数关系如图所示.请根据图象解决下列问题:(1)求高度为5百米时的气温;(2)求T关于h的函数表达式;(3)测得山顶的气温为6℃,求该山峰的高度.12.(2020•温州)某经销商3月份用18000元购进一批T恤衫售完后,4月份用39000元购进一批相同的T 恤衫,数量是3月份的2倍,但每件进价涨了10元.(1)4月份进了这批T恤衫多少件?(2)4月份,经销商将这批T恤衫平均分给甲、乙两家分店销售,每件标价180元.甲店按标价卖出a 件以后,剩余的按标价八折全部售出;乙店同样按标价卖出a件,然后将b件按标价九折售出,再将剩余的按标价七折全部售出,结果利润与甲店相同.①用含a的代数式表示b.①已知乙店按标价售出的数量不超过九折售出的数量,请你求出乙店利润的最大值.13.(2019•绍兴)如图是某型号新能源纯电动汽车充满电后,蓄电池剩余电量y(千瓦时)关于已行驶路程x(千米)的函数图象.(1)根据图象,直接写出蓄电池剩余电量为35千瓦时时汽车已行驶的路程.当0≤x≤150时,求1千瓦时的电量汽车能行驶的路程.(2)当150≤x≤200时,求y关于x的函数表达式,并计算当汽车已行驶180千米时,蓄电池的剩余电量.14.(2019•台州)如图1,某商场在一楼到二楼之间设有上、下行自动扶梯和步行楼梯.甲、乙两人从二楼同时下行,甲乘自动扶梯,乙走步行楼梯,甲离一楼地面的高度h(单位:m)与下行时间x(单位:s)之间具有函数关系h=−310x+6,乙离一楼地面的高度y(单位:m)与下行时间x(单位:s)的函数关系如图2所示.(1)求y关于x的函数解析式;(2)请通过计算说明甲、乙两人谁先到达一楼地面.15.(2019•宁波)某风景区内的公路如图1所示,景区内有免费的班车,从入口处出发,沿该公路开往草甸,途中停靠塔林(上下车时间忽略不计).第一班车上午8点发车,以后每隔10分钟有一班车从入口处发车.小聪周末到该风景区游玩,上午7:40到达入口处,因还没到班车发车时间,于是从景区入口处出发,沿该公路步行25分钟后到达塔林.离入口处的路程y(米)与时间x(分)的函数关系如图2所示.(1)求第一班车离入口处的路程y(米)与时间x(分)的函数表达式.(2)求第一班车从入口处到达塔林所需的时间.(3)小聪在塔林游玩40分钟后,想坐班车到草甸,则小聪最早能够坐上第几班车?如果他坐这班车到草甸,比他在塔林游玩结束后立即步行到草甸提早了几分钟?(假设每一班车速度均相同,小聪步行速度不变)16.(2019•湖州)某校的甲、乙两位老师同住一小区,该小区与学校相距2400米.甲从小区步行去学校,出发10分钟后乙再出发,乙从小区先骑公共自行车,途经学校又骑行若干米到达还车点后,立即步行走回学校.已知甲步行的速度比乙步行的速度每分钟快5米.设甲步行的时间为x (分),图1中线段OA 和折线B ﹣C ﹣D 分别表示甲、乙离开小区的路程y (米)与甲步行时间x (分)的函数关系的图象;图2表示甲、乙两人之间的距离s (米)与甲步行时间x (分)的函数关系的图象(不完整).根据图1和图2中所给信息,解答下列问题:(1)求甲步行的速度和乙出发时甲离开小区的路程;(2)求乙骑自行车的速度和乙到达还车点时甲、乙两人之间的距离;(3)在图2中,画出当25≤x ≤30时s 关于x 的函数的大致图象.(温馨提示:请画在答题卷相对应的图上)五.一次函数综合题(共2小题)17.(2019•温州)如图,在平面直角坐标系中,直线y =−12x +4分别交x 轴、y 轴于点B ,C ,正方形AOCD的顶点D 在第二象限内,E 是BC 中点,OF ⊥DE 于点F ,连结OE .动点P 在AO 上从点A 向终点O 匀速运动,同时,动点Q 在直线BC 上从某一点Q 1向终点Q 2匀速运动,它们同时到达终点.(1)求点B 的坐标和OE 的长.(2)设点Q 2为(m ,n ),当n n =17tan ∠EOF 时,求点Q 2的坐标.(3)根据(2)的条件,当点P 运动到AO 中点时,点Q 恰好与点C 重合.①延长AD 交直线BC 于点Q 3,当点Q 在线段Q 2Q 3上时,设Q 3Q =s ,AP =t ,求s 关于t 的函数表达式.①当PQ 与△OEF 的一边平行时,求所有满足条件的AP 的长.18.(2019•衢州)定义:在平面直角坐标系中,对于任意两点A (a ,b ),B (c ,d ),若点T (x ,y )满足x =n +n 3,y =n +n 3那么称点T 是点A ,B 的融合点. 例如:A (﹣1,8),B (4,﹣2),当点T (x ,y )满足x =−1+43=1,y =8+(−2)3=2时,则点T (1,2)是点A ,B 的融合点.(1)已知点A (﹣1,5),B (7,7),C (2,4),请说明其中一个点是另外两个点的融合点.(2)如图,点D (3,0),点E (t ,2t +3)是直线l 上任意一点,点T (x ,y )是点D ,E 的融合点. ①试确定y 与x 的关系式.①若直线ET 交x 轴于点H .当△DTH 为直角三角形时,求点E 的坐标.六.反比例函数的性质(共1小题)19.(2020•杭州)设函数y 1=n n ,y 2=−n n (k >0). (1)当2≤x ≤3时,函数y 1的最大值是a ,函数y 2的最小值是a ﹣4,求a 和k 的值.(2)设m ≠0,且m ≠﹣1,当x =m 时,y 1=p ;当x =m +1时,y 1=q .圆圆说:“p 一定大于q ”.你认为圆圆的说法正确吗?为什么?七.反比例函数系数k 的几何意义(共3小题)20.(2020•温州)点P ,Q ,R 在反比例函数y =n n(常数k >0,x >0)图象上的位置如图所示,分别过这三个点作x 轴、y 轴的平行线.图中所构成的阴影部分面积从左到右依次为S 1,S 2,S 3.若OE =ED =DC ,S 1+S 3=27,则S 2的值为 .21.(2020•湖州)如图,已知在平面直角坐标系xOy 中,Rt △OAB 的直角顶点B 在x 轴的正半轴上,点A在第一象限,反比例函数y =n n(x >0)的图象经过OA 的中点C .交AB 于点D ,连结CD .若△ACD 的面积是2,则k 的值是 .22.(2019•衢州)如图,在平面直角坐标系中,O 为坐标原点,①ABCD 的边AB 在x 轴上,顶点D 在y 轴的正半轴上,点C 在第一象限,将△AOD 沿y 轴翻折,使点A 落在x 轴上的点E 处,点B 恰好为OE 的中点,DE 与BC 交于点F .若y =n n (k ≠0)图象经过点C ,且S △BEF =1,则k 的值为 .八.反比例函数图象上点的坐标特征(共3小题)23.(2020•金华)已知点(﹣2,a),(2,b),(3,c)在函数y=n n(k>0)的图象上,则下列判断正确的是()A.a<b<c B.b<a<c C.a<c<b D.c<b<a24.(2020•衢州)如图,将一把矩形直尺ABCD和一块含30°角的三角板EFG摆放在平面直角坐标系中,AB在x轴上,点G与点A重合,点F在AD上,三角板的直角边EF交BC于点M,反比例函数y=n n(x >0)的图象恰好经过点F,M.若直尺的宽CD=3,三角板的斜边FG=8√3,则k=.25.(2019•绍兴)如图,矩形ABCD的两边分别与坐标轴平行,顶点A,C都在双曲线y=n n(常数k>0,x>0)上,若顶点D的坐标为(5,3),则直线BD的函数表达式是.九.待定系数法求反比例函数解析式(共1小题)26.(2019•舟山)如图,在直角坐标系中,已知点B(4,0),等边三角形OAB的顶点A在反比例函数y=n n的图象上.(1)求反比例函数的表达式.(2)把△OAB向右平移a个单位长度,对应得到△O'A'B'当这个函数图象经过△O'A'B'一边的中点时,求a的值.一十.反比例函数与一次函数的交点问题(共3小题)27.(2020•宁波)如图,经过原点O的直线与反比例函数y=n n(a>0)的图象交于A,D两点(点A在第一象限),点B,C,E在反比例函数y=nn(b<0)的图象上,AB∥y轴,AE∥CD∥x轴,五边形ABCDE的面积为56,四边形ABCD 的面积为32,则a ﹣b 的值为 ,n n 的值为 . 28.(2019•宁波)如图,过原点的直线与反比例函数y =n n (k >0)的图象交于A ,B 两点,点A 在第一象限.点C 在x 轴正半轴上,连结AC 交反比例函数图象于点D .AE 为∠BAC 的平分线,过点B 作AE 的垂线,垂足为E ,连结DE .若AC =3DC ,△ADE 的面积为8,则k 的值为 .29.(2019•湖州)如图,已知在平面直角坐标系xOy 中,直线y =12x ﹣1分别交x 轴,y 轴于点A 和点B ,分别交反比例函数y 1=n n (k >0,x >0),y 2=2n n (x <0)的图象于点C 和点D ,过点C 作CE ⊥x 轴于点E ,连结OC ,OD .若△COE 的面积与△DOB 的面积相等,则k 的值是 .一十一.反比例函数的应用(共3小题)30.(2019•温州)验光师测得一组关于近视眼镜的度数y (度)与镜片焦距x (米)的对应数据如下表,根据表中数据,可得y 关于x 的函数表达式为( )近视眼镜的度数y (度)200 250 400 500 1000 镜片焦距x(米)0.50 0.40 0.25 0.20 0.10 A .y =100n B .y =n 100 C .y =400n D .y =n 40031.(2020•台州)小明同学训练某种运算技能,每次训练完成相同数量的题目,各次训练题目难度相当.当训练次数不超过15次时,完成一次训练所需要的时间y(单位:秒)与训练次数x(单位:次)之间满足如图所示的反比例函数关系.完成第3次训练所需时间为400秒.(1)求y与x之间的函数关系式;(2)当x的值为6,8,10时,对应的函数值分别为y1,y2,y3,比较(y1﹣y2)与(y2﹣y3)的大小:y1﹣y2y2﹣y3.32.(2019•杭州)方方驾驶小汽车匀速地从A地行驶到B地,行驶里程为480千米,设小汽车的行驶时间为t(单位:小时),行驶速度为v(单位:千米/小时),且全程速度限定为不超过120千米/小时.(1)求v关于t的函数表达式;(2)方方上午8点驾驶小汽车从A地出发.①方方需在当天12点48分至14点(含12点48分和14点)间到达B地,求小汽车行驶速度v的范围.①方方能否在当天11点30分前到达B地?说明理由.2019、2020年浙江中考数学试题分类(3)——一次函数与二次函数参考答案与试题解析一.一次函数的图象(共2小题)1.【解答】解:由题意知,k =2>0,b =﹣1<0时,函数图象经过一、三、四象限. 故选:B .2.【解答】解:A 、由图可知:直线y 1=ax +b ,a >0,b >0.∴直线y 2=bx +a 经过一、二、三象限,故A 正确; B 、由图可知:直线y 1=ax +b ,a <0,b >0.∴直线y 2=bx +a 经过一、四、三象限,故B 错误; C 、由图可知:直线y 1=ax +b ,a <0,b >0.∴直线y 2=bx +a 经过一、二、四象限,交点不对,故C 错误; D 、由图可知:直线y 1=ax +b ,a <0,b <0,∴直线y 2=bx +a 经过二、三、四象限,故D 错误.故选:A .二.一次函数的性质(共1小题)3.【解答】解:设该函数的解析式为y =kx +b ,∵函数满足当自变量x =1时,函数值y =0,当自变量x =0时,函数值y =1,∴{n +n =0n =1 解得:{n =−1n =1, 所以函数的解析式为y =﹣x +1,故答案为:y =﹣x +1(答案不唯一).三.一次函数图象上点的坐标特征(共3小题)4.【解答】解:∵函数y =ax +a (a ≠0)的图象过点P (1,2),∴y =x +1,∴直线交y 轴的正半轴于点(0,1),且过点(1,2),故选:A .5.【解答】解:∵直线y =2x +2和直线y =23x +2分别交x 轴于点A 和点B . ∴A (﹣1,0),B (﹣3,0)A 、y =x +2与x 轴的交点为(﹣2,0);故直线y =x +2与x 轴的交点在线段AB 上;B 、y =√2x +2与x 轴的交点为(−√2,0);故直线y =√2x +2与x 轴的交点在线段AB 上;C 、y =4x +2与x 轴的交点为(−12,0);故直线y =4x +2与x 轴的交点不在线段AB 上;D 、y =2√33x +2与x 轴的交点为(−√3,0);故直线y =2√33x +2与x 轴的交点在线段AB 上;故选:C .6.【解答】解:设经过(1,4),(2,7)两点的直线解析式为y =kx +b , ∴{4=n +n 7=2n +n ∴{n =3n =1, ∴y =3x +1,将点(a ,10)代入解析式,则a =3;故选:C .四.一次函数的应用(共10小题)7.【解答】解:令150t =240(t ﹣12),解得,t =32,则150t =150×32=4800,∴点P 的坐标为(32,4800),故答案为:(32,4800).8.【解答】解:(1)设函数表达式为y =kx +b (k ≠0), 把(1.6,0),(2.6,80)代入y =kx +b ,得{0=1.6n +n 80=2.6n +n , 解得:{n =80n =−128, ∴y 关于x 的函数表达式为y =80x ﹣128;由图可知200﹣80=120(千米),120÷80=1.5(小时),1.6+1.5=3.1(小时),∴x 的取值范围是1.6≤x ≤3.1.∴货车乙在遇到货车甲前,它离开出发地的路程y 关于x 的函数表达式为y =80x ﹣128(1.6≤x ≤3.1);(2)当y =200﹣80=120时,120=80x ﹣128,解得x =3.1,由图可知,甲的速度为801.6=50(千米/小时),货车甲正常到达B 地的时间为200÷50=4(小时),18÷60=0.3(小时),4+1=5(小时),5﹣3.1﹣0.3=1.6(小时),设货车乙返回B 地的车速为v 千米/小时,∴1.6v ≥120,解得v ≥75.答:货车乙返回B 地的车速至少为75千米/小时.9.【解答】解:(1)C 点横坐标的实际意义是游轮从杭州出发前往衢州共用了23h .∴游轮在“七里扬帆”停靠的时长=23﹣(420÷20)=23﹣21=2(h ).(2)①280÷20=14h ,∴点A (14,280),点B (16,280),∵36÷60=0.6(h ),23﹣0.6=22.4,设BC 的解析式为s =20t +b ,把B (16,280)代入s =20t +b ,可得b =﹣40,∴s =20t ﹣40(16≤t ≤23),同理由D (14,0),E (22.4,420)可得DE 的解析式为s =50t ﹣700(14≤t ≤22.4),由题意:20t ﹣40=50t ﹣700,解得t =22,∵22﹣14=8(h ),∴货轮出发后8小时追上游轮.①相遇之前相距12km 时,20t ﹣40﹣(50t ﹣700)=12,解得t =21.6.相遇之后相距12km 时,50t ﹣700﹣(20t ﹣40)=12,解得t =22.4,当游轮在刚离开杭州12km 时,此时根据图象可知货轮就在杭州,游轮距离杭州12km ,所以此时两船应该也是想距12km ,即在0.6h 的时候,两船也相距12km∴0.6h 或21.6h 或22.4h 时游轮与货轮相距12km .10.【解答】解:(1)观察图象可知:x =7,y =2.75这组数据错误.(2)设y =kx +b ,把x =1,y =0.75,x =2,y =1代入可得{n +n =0.752n +n =1, 解得{n =14n =12, ∴y =14x +12, 当x =16时,y =4.5,答:秤杆上秤砣到秤纽的水平距离为16厘米时,秤钩所挂物重是4.5斤.11.【解答】解:(1)由题意得,高度增加2百米,则气温降低2×0.6=1.2(℃),∴13.2﹣1.2=12(℃),∴高度为5百米时的气温大约是12℃;(2)设T 关于h 的函数表达式为T =kh +b ,则:{3n +n =13.25n +n =12, 解得{n =−0.6n =15, ∴T 关于h 的函数表达式为T =﹣0.6h +15(h >0);(3)当T =6时,6=﹣0.6h +15,解得h =15.∴该山峰的高度大约为15百米,即1500米.12.【解答】解:(1)设3月份购进x 件T 恤衫,18000n +10=390002n ,解得,x =150,经检验,x =150是原分式方程的解,则2x =300,答:4月份进了这批T 恤衫300件;(2)①每件T 恤衫的进价为:39000÷300=130(元),(180﹣130)a +(180×0.8﹣130)(150﹣a )=(180﹣130)a +(180×0.9﹣130)b +(180×0.7﹣130)(150﹣a ﹣b )化简,得b =150−n 2; ①设乙店的利润为w 元,w =(180﹣130)a +(180×0.9﹣130)b +(180×0.7﹣130)(150﹣a ﹣b )=54a +36b ﹣600=54a +36×150−n 2−600=36a +2100, ∵乙店按标价售出的数量不超过九折售出的数量, ∴a ≤b , 即a ≤150−n 2, 解得,a ≤50,∴当a =50时,w 取得最大值,此时w =3900,答:乙店利润的最大值是3900元.13.【解答】解:(1)由图象可知,蓄电池剩余电量为35千瓦时时汽车已行驶了150千米.1千瓦时的电量汽车能行驶的路程为:15060−35=6千米;(2)设y =kx +b (k ≠0),把点(150,35),(200,10)代入,得{150n +n =35200n +n =10, ∴{n =−0.5n =110, ∴y =﹣0.5x +110,当x =180时,y =﹣0.5×180+110=20,答:当150≤x ≤200时,函数表达式为y =﹣0.5x +110,当汽车已行驶180千米时,蓄电池的剩余电量为20千瓦时.14.【解答】解:(1)设y 关于x 的函数解析式是y =kx +b ,{n =615n +n =3,解得,{n =−15n =6, 即y 关于x 的函数解析式是y =−15x +6;(2)当h =0时,0=−310x +6,得x =20,当y =0时,0=−15x +6,得x =30, ∵20<30,∴甲先到达地面.15.【解答】解:(1)由题意得,可设函数表达式为:y =kx +b (k ≠0), 把(20,0),(38,2700)代入y =kx +b ,得{0=20n +n 2700=38n +n ,解得{n =150n =−3000, ∴第一班车离入口处的路程y (米)与时间x (分)的函数表达为y =150x ﹣3000(20≤x ≤38);(2)把y =1500代入y =150x ﹣3000,解得x =30,30﹣20=10(分),∴第一班车从入口处到达塔林所需时间10分钟;(3)设小聪坐上了第n 班车,则30﹣25+10(n ﹣1)≥40,解得n ≥4.5,∴小聪坐上了第5班车,等车的时间为5分钟,坐班车所需时间为:1200÷150=8(分),步行所需时间:1200÷(1500÷25)=20(分),20﹣(8+5)=7(分),∴比他在塔林游玩结束后立即步行到草甸提早了7分钟.16.【解答】解:(1)由图可得,甲步行的速度为:2400÷30=80(米/分),乙出发时甲离开小区的路程是10×80=800(米),答:甲步行的速度是80米/分,乙出发时甲离开小区的路程是800米;(2)设直线OA的解析式为y=kx,30k=2400,得k=80,∴直线OA的解析式为y=80x,当x=18时,y=80×18=1440,则乙骑自行车的速度为:1440÷(18﹣10)=180(米/分),∵乙骑自行车的时间为:25﹣10=15(分钟),∴乙骑自行车的路程为:180×15=2700(米),当x=25时,甲走过的路程为:80×25=2000(米),∴乙到达还车点时,甲乙两人之间的距离为:2700﹣2000=700(米),答:乙骑自行车的速度是180米/分,乙到达还车点时甲、乙两人之间的距离是700米;(3)乙步行的速度为:80﹣5=75(米/分),乙到达学校用的时间为:25+(2700﹣2400)÷75=29(分),当25≤x≤30时s关于x的函数的大致图象如右图所示.五.一次函数综合题(共2小题)17.【解答】解:(1)令y=0,则−12x+4=0,∴x=8,∴B(8,0),∵C(0,4),∴OC=4,OB=8,在Rt△BOC中,BC=√82+42=4√5,又∵E为BC中点,∴OE=12BC=2√5;(2)如图1,作EM⊥OC于M,则EM∥CD,∵E 是BC 的中点∴M 是OC 的中点∴EM =12OB =4,OE =12BC =2√5∵∠CDN =∠NEM ,∠CND =∠MNE ∴△CDN ∽△MEN , ∴nn nn =nn nn =1,∴CN =MN =1,∴EN =√12+42=√17,∵S △ONE =12EN •OF =12ON •EM ,∴OF =17=1217√17, 由勾股定理得:EF =√nn 2−nn 2=(2√5)2−(121717)2=1417√17,∴tan ∠EOF =nn nn =14√171712√1717=76, ∴nn =17×76=16, ∵n =−12m +4, ∴m =6,n =1,∴Q 2(6,1);(3)①∵动点P 、Q 同时作匀速直线运动,∴s 关于t 成一次函数关系,设s =kt +b ,∵当点P 运动到AO 中点时,点Q 恰好与点C 重合,∴t =2时,CD =4,DQ 3=2, ∴s =Q 3C =√22+42=2√5,∵Q 3(﹣4,6),Q 2(6,1),∴t =4时,s =√(6+4)2+(6−1)2=5√5,将{n =2n =2√5和{n =4n =5√5代入得{2n +n =2√54n +n =5√5,解得:{n =32√5n =−√5, ∴s =3√52n −√5,∵s ≥0,t ≥0,且32√5>0, ∴s 随t 的增大而增大, 当s ≥0时,3√52n −√5≥0,即t ≥23,当t =23时,Q 3与Q 重合,∵点Q 在线段Q 2Q 3上,综上,s 关于t 的函数表达式为:s =3√52n −√5(23≤t ≤4); ①(i )当PQ ∥OE 时,如图2,∠QPB =∠EOB =∠OBE , 作QH ⊥x 轴于点H ,则PH =BH =12PB , Rt △ABQ 3中,AQ 3=6,AB =4+8=12,∴BQ 3=√62+122=6√5,∵BQ =6√5−s =6√5−3√52t +√5=7√5−3√52t ,∵cos ∠QBH =nn nn 3=nn nn =65=25√5,∴BH =14﹣3t ,∴PB =28﹣6t , ∴t +28﹣6t =12,t =165;(ii )当PQ ∥OF 时,如图3,过点Q 作QG ⊥AQ 3于点G ,过点P 作PH ⊥GQ 于点H ,由△Q 3QG ∽△CBO 得:Q 3G :QG :Q 3Q =1:2:√5,∵Q 3Q =s =3√52t −√5, ∴Q 3G =32t ﹣1,GQ =3t ﹣2, ∴PH =AG =AQ 3﹣Q 3G =6﹣(32t ﹣1)=7−32t ,∴QH =QG ﹣AP =3t ﹣2﹣t =2t ﹣2,∵∠HPQ =∠CDN ,∴tan ∠HPQ =tan ∠CDN =14,∴2t ﹣2=14(7−32n ),t =3019, (iii )由图形可知PQ 不可能与EF 平行,综上,当PQ 与△OEF 的一边平行时,AP 的长为165或3019. 18.【解答】解:(1)x =13(﹣1+7)=2,y =13(5+7)=4, 故点C 是点A 、B 的融合点;(2)①由题意得:x=13(t+3),y=13(2t+3),则t=3x﹣3,则y=13(6x﹣6+3)=2x﹣1;①当∠DHT=90°时,如图1所示,点E(t,2t+3),则T(t,2t﹣1),则点D(3,0),由点T是点D,E的融合点得:t=n+33,2t﹣1=2n+3 3,解得:t=32,即点E(32,6);当∠TDH=90°时,如图2所示,则点T(3,5),由点T是点D,E的融合点得:点E(6,15);当∠HTD=90°时,如图3所示,过点T作x轴的平行线交过点D与y轴平行的直线于点M,交过点E与y轴的平行线于点N,则∠MDT=∠NTE,则tan∠MDT=tan∠NTE,D (3,0),点E (t ,2t +3),则点T (n +33,2n +33)则MT =3−n +33=6−n 3,MD =2n +33,NE =2n +33−2t ﹣3=−2(2n +3)3,NT =n +33−t =3−2n 3, 由tan ∠MDT =tan ∠NTE得:6−n 32n +33=2(2n +3)33−2n 3, 解得:方程无解,故∠HTD 不可能为90°. 故点E (32,6)或(6,15). 六.反比例函数的性质(共1小题)19.【解答】解:(1)∵k >0,2≤x ≤3,∴y 1随x 的增大而减小,y 2随x 的增大而增大,∴当x =2时,y 1最大值为n 2=n ,①; 当x =2时,y 2最小值为−n 2=a ﹣4,①; 由①,①得:a =2,k =4;(2)圆圆的说法不正确,理由如下:设m =m 0,且﹣1<m 0<0,则m 0<0,m 0+1>0, ∴当x =m 0时,p =y 1=n n 0<0, 当x =m 0+1时,q =y 1=n n 0+1>0, ∴p <0<q ,∴圆圆的说法不正确.七.反比例函数系数k 的几何意义(共3小题)20.【解答】解:∵CD =DE =OE ,∴可以假设CD =DE =OE =a ,则P (n 3n ,3a ),Q (n 2n ,2a ),R (n n ,a ), ∴CP =n 3n ,DQ =n 2n ,ER =n n ,∴OG =AG ,OF =2FG ,OF =23GA , ∴S 1=23S 3=2S 2, ∵S 1+S 3=27,∴S 3=815,S 1=545,S 2=275, 故答案为275.21.【解答】解:连接OD ,过C 作CE ∥AB ,交x 轴于E , ∵∠ABO =90°,反比例函数y =n n (x >0)的图象经过OA 的中点C ,∴S △COE =S △BOD =12n ,S △ACD =S △OCD =2,∵CE ∥AB ,∴△OCE ∽△OAB ,∴n △nnnn △nnn =14, ∴4S △OCE =S △OAB , ∴4×12k =2+2+12k ,∴k =83, 故答案为:83.22.【解答】解:连接OC ,BD ,∵将△AOD 沿y 轴翻折,使点A 落在x 轴上的点E 处,∴OA =OE ,∵点B 恰好为OE 的中点,∴OE =2OB ,∴OA =2OB ,设OB =BE =x ,则OA =2x ,∴AB =3x ,∵四边形ABCD 是平行四边形,∴CD =AB =3x ,∵CD ∥AB ,∴△CDF ∽△BEF ,∴nn nn =nn nn =n 3n =13, ∵S △BEF =1,∴S △BDF =3,S △CDF =9,∴S △BCD =12,∴S △CDO =S △BDC =12,∴k 的值=2S △CDO =24.八.反比例函数图象上点的坐标特征(共3小题)23.【解答】解:∵k >0,∴函数y =n n (k >0)的图象分布在第一、三象限,在每一象限,y 随x 的增大而减小, ∵﹣2<0<2<3,∴b >c >0,a <0,∴a <c <b .故选:C .24.【解答】解:过点M 作MN ⊥AD ,垂足为N ,则MN =CD =3, 在Rt △FMN 中,∠MFN =30°,∴FN =√3MN =3√3,∴AN =MB =8√3−3√3=5√3,设OA =x ,则OB =x +3,∴F (x ,8√3),M (x +3,5√3),又∵点F 、M 都在反比例函数的图象上,∴8√3x =(x +3)×5√3,解得,x =5,∴F (5,8√3),∴k =5×8√3=40√3.故答案为:40√3.25.【解答】解:∵D (5,3),∴A (n 3,3),C (5,n 5),∴B (n 3,n 5),设直线BD 的解析式为y =mx +n ,把D (5,3),B (n 3,n 5)代入得{5n +n =3n 3n +n =n 5,解得{n =35n =0, ∴直线BD 的解析式为y =35x . 故答案为y =35x . 九.待定系数法求反比例函数解析式(共1小题)26.【解答】解:(1)过点A 作AC ⊥OB 于点C ,∵△OAB 是等边三角形,∴∠AOB =60°,OC =12OB ,∵B (4,0),∴OB =OA =4,∴OC =2,AC =2√3. 把点A (2,2√3)代入y =n n ,得k =4√3. ∴反比例函数的解析式为y =4√3n ; (2)分两种情况讨论:①点D 是A ′B ′的中点,过点D 作DE ⊥x 轴于点E . 由题意得A ′B ′=4,∠A ′B ′E =60°,在Rt △DEB ′中,B ′D =2,DE =√3,B ′E =1.∴O ′E =3,把y =√3代入y =4√3n ,得x =4,∴OE =4,∴a =OO ′=1;①如图3,点F 是A ′O ′的中点,过点F 作FH ⊥x 轴于点H . 由题意得A ′O ′=4,∠A ′O ′B ′=60°,在Rt △FO ′H 中,FH =√3,O ′H =1.把y =√3代入y =4√3n,得x =4, ∴OH =4,∴a =OO ′=3,综上所述,a 的值为1或3.一十.反比例函数与一次函数的交点问题(共3小题)27.【解答】解:如图,连接AC ,OE ,OC ,OB ,延长AB 交DC 的延长线于T ,设AB 交x 轴于K .由题意A ,D 关于原点对称,∴A ,D 的纵坐标的绝对值相等,∵AE ∥CD ,∴E ,C 的纵坐标的绝对值相等,∵E ,C 在反比例函数y =n n的图象上, ∴E ,C 关于原点对称,∴E ,O ,C 共线,∵OE =OC ,OA =OD ,∴四边形ACDE 是平行四边形,∴S △ADE =S △ADC =S 五边形ABCDE ﹣S 四边形ABCD =56﹣32=24,∴S △AOE =S △DEO =12,∴12a −12b =12, ∴a ﹣b =24,∵S △AOC =S △AOB =12,∴BC ∥AD ,∴nn nn =nn nn ,∵S △ACB =32﹣24=8,∴S △ADC :S △ABC =24:8=3:1,∴BC :AD =1:3,∴TB :TA =1:3,设BT =m ,则AT =3m ,AK =TK =1.5m ,BK =0.5m ,∴AK :BK =3:1,∴n △nnn n △nnn =12n −12n =3, ∴n n =−3,即n n =−13, 故答案为24,−13. 28.【解答】解:连接OE ,CE ,过点A 作AF ⊥x 轴,过点D 作DH ⊥x 轴,过点D 作DG ⊥AF , ∵过原点的直线与反比例函数y =n n (k >0)的图象交于A ,B 两点, ∴A 与B 关于原点对称,∴O 是AB 的中点,∵BE ⊥AE ,∴OE =OA ,∴∠OAE =∠AEO ,∵AE 为∠BAC 的平分线,∴∠DAE =∠AEO ,∴AD ∥OE ,∴S △ACE =S △AOC ,∵AC =3DC ,△ADE 的面积为8,∴S △ACE =S △AOC =12,设点A (m ,n n ),∵AC =3DC ,DH ∥AF ,∴3DH =AF ,∴D (3m ,n 3n ),∵CH ∥GD ,AG ∥DH ,∴△DHC ∽△AGD ,∴S △HDC =14S △ADG ,∵S △AOC =S △AOF +S梯形AFHD +S △HDC =12k +12×(DH +AF )×FH +S △HDC =12k +12×4n 3n ×2m +12×14×2n 3n ×2n =12k +4n 3+n 6=12,∴2k =12,∴k =6;故答案为6;(另解)连结OE ,由题意可知OE ∥AC ,∴S △OAD =S △EAD =8,易知△OAD 的面积=梯形AFHD 的面积,设A 的纵坐标为3a ,则D 的纵坐标为a ,∴(3a +a )(n n −n 3n )=16,解得k =6.29.【解答】解:令x =0,得y =12x ﹣1=﹣1, ∴B (0,﹣1),∴OB =1,把y =12x ﹣1代入y 2=2n n (x <0)中得,12x ﹣1=2n n (x <0), 解得,x =1−√4n +1,∴n n =1−√4n +1, ∴n △nnn =12nn ⋅|n n |=12√4n +1−12, ∵CE ⊥x 轴, ∴n △nnn =12n , ∵△COE 的面积与△DOB 的面积相等,∴12√4n +1−12=12n , ∴k =2,或k =0(舍去).经检验,k =2是原方程的解.故答案为:2.一十一.反比例函数的应用(共3小题)30.【解答】解:由表格中数据可得:xy =100,故y 关于x 的函数表达式为:y =100n . 故选:A .31.【解答】解:(1)设y 与x 之间的函数关系式为:y =n n (k ≠0,x >0),把(3,400)代入y =n n 得,400=n 3,解得:k =1200,∴y 与x 之间的函数关系式为y =1200n (x >0);(2)把x =6,8,10分别代入y =1200n 得,y 1=12006=200,y 2=12008=150,y 3=120010=120, ∵y 1﹣y 2=200﹣150=50,y 2﹣y 3=150﹣120=30,∵50>30,∴y 1﹣y 2>y 2﹣y 3,故答案为:>.32.【解答】解:(1)∵vt =480,且全程速度限定为不超过120千米/小时, ∴v 关于t 的函数表达式为:v =480n ,(t ≥4).(2)①8点至12点48分时间长为245小时,8点至14点时间长为6小时将t=6代入v=480n得v=80;将t=245代入v=480n得v=100.∴小汽车行驶速度v的范围为:80≤v≤100.①方方不能在当天11点30分前到达B地.理由如下:8点至11点30分时间长为72小时,将t=72代入v=480n得v=9607>120千米/小时,超速了.故方方不能在当天11点30分前到达B地.。
2019、2020年浙江中考数学试题分类(8)——统计和概率
2019、2020年浙江中考数学试题分类(8)——统计和概率一.频数(率)分布直方图(共7小题)1.(2020•温州)某养猪场对200头生猪的质量进行统计,得到频数直方图(每一组含前一个边界值,不含后一个边界值)如图所示,其中质量在77.5kg及以上的生猪有头.2.(2019•温州)某校学生“汉字听写”大赛成绩的频数直方图(每一组含前一个边界值,不含后一个边界值)如图所示,其中成绩为“优良”(80分及以上)的学生有人.3.(2020•宁波)某学校开展了防疫知识的宣传教育活动.为了解这次活动的效果,学校从全校1500名学生中随机抽取部分学生进行知识测试(测试满分100分,得分x均为不小于60的整数),并将测试成绩分为四个等级:基本合格(60≤x<70),合格(70≤x<80),良好(80≤x<90),优秀(90≤x≤100),制作了如图统计图(部分信息未给出).由图中给出的信息解答下列问题:(1)求测试成绩为合格的学生人数,并补全频数直方图.(2)求扇形统计图中“良好”所对应的扇形圆心角的度数.(3)这次测试成绩的中位数是什么等级?(4)如果全校学生都参加测试,请你根据抽样测试的结果,估计该校获得优秀的学生有多少人?4.(2020•杭州)某工厂生产某种产品,3月份的产量为5000件,4月份的产量为10000件.用简单随机抽样的方法分别抽取这两个月生产的该产品若干件进行检测,并将检测结果分别绘制成如图所示的扇形统计图和频数直方图(每组不含前一个边界值,含后一个边界值).已知检测综合得分大于70分的产品为合格产品.(1)求4月份生产的该产品抽样检测的合格率;(2)在3月份和4月份生产的产品中,估计哪个月的不合格件数多?为什么?5.(2019•舟山)在“创全国文明城市”活动中,某社区为了了解居民掌握垃圾分类知识的情况进行调查.其中A、B两小区分别有500名居民,社区从中各随机抽取50名居民进行相关知识测试,并将成绩进行整理得到部分信息:【信息一】A小区50名居民成绩的频数直方图如图(每一组含前一个边界值,不含后一个边界值);【信息二】图中,从左往右第四组的成绩如下75757979797980808182828383848484【信息三】A、B两小区各50名居民成绩的平均数、中位数、众数、优秀率(80分及以上为优秀)、方差等数据如下(部分空缺):小区平均数中位数众数优秀率方差A75.17940%277B75.1777645%211根据以上信息,回答下列问题:(1)求A小区50名居民成绩的中位数.(2)请估计A小区500名居民中能超过平均数的有多少人?(3)请尽量从多个角度比较、分析A,B两小区居民掌握垃圾分类知识的情况.6.(2019•嘉兴)在推进嘉兴市城乡生活垃圾分类的行动中,某社区为了了解居民掌握垃圾分类知识的情况进行调查.其中A、B两小区分别有500名居民参加了测试,社区从中各随机抽取50名居民成绩进行整理得到部分信息:【信息一】A小区50名居民成绩的频数直方图如图(每一组含前一个边界值,不含后一个边界值):【信息二】上图中,从左往右第四组的成绩如下:75757979797980808182828383848484【信息三】A、B两小区各50名居民成绩的平均数、中位数、众数、优秀率(80分及以上为优秀)、方差等数据如下(部分空缺):小区平均数中位数众数优秀率方差A75.17940%277B75.1777645%211根据以上信息,回答下列问题:(1)求A小区50名居民成绩的中位数.(2)请估计A小区500名居民成绩能超过平均数的人数.(3)请尽量从多个角度,选择合适的统计量分析A,B两小区参加测试的居民掌握垃圾分类知识的情况.7.(2019•宁波)今年5月15日,亚洲文明对话大会在北京开幕.为了增进学生对亚洲文化的了解,某学校开展了相关知识的宣传教育活动.为了解这次宣传活动的效果,学校从全校1200名学生中随机抽取100名学生进行知识测试(测试满分100分,得分均为整数),并根据这100人的测试成绩,制作了如下统计图表.100名学生知识测试成绩的频数表成绩a(分)频数(人)50≤a<601060≤a<701570≤a<80m80≤a<904090≤a≤10015由图表中给出的信息回答下列问题:(1)m=,并补全频数直方图;(2)小明在这次测试中成绩为85分,你认为85分一定是这100名学生知识测试成绩的中位数吗?请简要说明理由;(3)如果80分以上(包括80分)为优秀,请估计全校1200名学生中成绩优秀的人数.二.扇形统计图(共5小题)8.(2019•温州)对温州某社区居民最爱吃的鱼类进行问卷调查后(每人选一种),绘制成如图所示统计图.已知选择鲳鱼的有40人,那么选择黄鱼的有()A.20人B.40人C.60人D.80人9.(2020•金华)某市在开展线上教学活动期间,为更好地组织初中学生居家体育锻炼,随机抽取了部分初中学生对“最喜爱的体育锻炼项目”进行线上问卷调查(每人必须且只选其中一项),得到如图两幅不完整的统计图表.请根据图表信息回答下列问题:抽取的学生最喜爱体育锻炼项目的统计表类别项目人数(人)A跳绳59B健身操▲C俯卧撑31D开合跳▲E其它22(1)求参与问卷调查的学生总人数.(2)在参与问卷调查的学生中,最喜爱“开合跳”的学生有多少人?(3)该市共有初中学生约8000人,估算该市初中学生中最喜爱“健身操”的人数.10.(2020•绍兴)一只羽毛球的重量合格标准是5.0克~5.2克(含5.0克,不含5.2克),某厂对4月份生产的羽毛球重量进行抽样检验,并将所得数据绘制成如图统计图表.4月份生产的羽毛球重量统计表组别重量x(克)数量(只)A x<5.0mB 5.0≤x<5.1400C 5.1≤x<5.2550D x≥5.230(1)求表中m的值及图中B组扇形的圆心角的度数.(2)问这些抽样检验的羽毛球中,合格率是多少?如果购得4月份生产的羽毛球10筒(每筒12只),估计所购得的羽毛球中,非合格品的羽毛球有多少只?11.(2020•衢州)某市在九年级“线上教学”结束后,为了解学生的视力情况,抽查了部分学生进行视力检测.根据检测结果,制成下面不完整的统计图表.被抽样的学生视力情况频数表组别视力段频数A 5.1≤x≤5.325B 4.8≤x≤5.0115C 4.4≤x≤4.7mD 4.0≤x≤4.352(1)求组别C的频数m的值.(2)求组别A的圆心角度数.(3)如果视力值4.8及以上属于“视力良好”,请估计该市25000名九年级学生达到“视力良好”的人数.根据上述图表信息,你对视力保护有什么建议?12.(2019•台州)安全使用电瓶车可以大幅度减少因交通事故引发的人身伤害,为此交警部门在全市范围开展了安全使用电瓶车专项宣传活动.在活动前和活动后分别随机抽取了部分使用电瓶车的市民,就骑电瓶车戴安全帽情况进行问卷调查,将收集的数据制成如下统计图表.(1)宣传活动前,在抽取的市民中哪一类别的人数最多?占抽取人数的百分之几?(2)该市约有30万人使用电瓶车,请估计活动前全市骑电瓶车“都不戴”安全帽的总人数;(3)小明认为,宣传活动后骑电瓶车“都不戴”安全帽的人数为178,比活动前增加了1人,因此交警部门开展的宣传活动没有效果.小明分析数据的方法是否合理?请结合统计图表,对小明分析数据的方法及交警部门宣传活动的效果谈谈你的看法.三.条形统计图(共3小题)13.(2020•湖州)为了解学生对网上在线学习效果的满意度,某校设置了:非常满意、满意、基本满意、不满意四个选项,随机抽查了部分学生,要求每名学生都只选其中的一项,并将抽查结果绘制成如图统计图(不完整).请根据图中信息解答下列问题:(1)求被抽查的学生人数,并补全条形统计图;(温馨提示:请画在答题卷相对应的图上)(2)求扇形统计图中表示“满意”的扇形的圆心角度数;(3)若该校共有1000名学生参与网上在线学习,根据抽查结果,试估计该校对学习效果的满意度是“非常满意”或“满意”的学生共有多少人?14.(2020•嘉兴)小吴家准备购买一台电视机,小吴将收集到的某地区A、B、C三种品牌电视机销售情况的有关数据统计如下:根据上述三个统计图,请解答:(1)2014~2019年三种品牌电视机销售总量最多的是品牌,月平均销售量最稳定的是品牌.(2)2019年其他品牌的电视机年销售总量是多少万台?(3)货比三家后,你建议小吴家购买哪种品牌的电视机?说说你的理由.15.(2019•绍兴)小明、小聪参加了100m跑的5期集训,每期集训结束时进行测试,根据他们的集训时间、测试成绩绘制成如下两个统计图.根据图中信息,解答下列问题:(1)这5期的集训共有多少天?小聪5次测试的平均成绩是多少?(2)根据统计数据,结合体育运动的实际,从集训时间和测试成绩这两方面,说说你的想法.四.折线统计图(共4小题)16.(2019•舟山)2019年5月26日第5届中国国际大数据产业博览会召开.某市在五届数博会上的产业签约金额的折线统计图如图.下列说法正确的是()A.签约金额逐年增加B.与上年相比,2019年的签约金额的增长量最多C.签约金额的年增长速度最快的是2016年D.2018年的签约金额比2017年降低了22.98%17.(2020•台州)甲、乙两位同学在10次定点投篮训练中(每次训练投8个),各次训练成绩(投中个数)的折线统计图如图所示,他们成绩的方差分别为S甲2与S乙2,则S甲2S乙2.(填“>”、“=”、“<”中的一个)18.(2020•温州)A,B两家酒店规模相当,去年下半年的月盈利折线统计图如图所示.(1)要评价这两家酒店7~12月的月盈利的平均水平,你选择什么统计量?求出这个统计量.(2)已知A,B两家酒店7~12月的月盈利的方差分别为1.073(平方万元),0.54(平方万元).根据所给的方差和你在(1)中所求的统计量,结合折线统计图,你认为去年下半年哪家酒店经营状况较好?请简述理由.19.(2019•杭州)称量五筐水果的质量,若每筐以50千克为基准,超过基准部分的千克数记为正数,不足基准部分的千克数记为负数,甲组为实际称量读数,乙组为记录数据,并把所得数据整理成如下统计表和未完成的统计图(单位:千克).实际称量读数和记录数据统计表12345序号数据甲组4852474954乙组﹣22﹣3﹣14(1)补充完成乙组数据的折线统计图.(2)①甲,乙两组数据的平均数分别为x甲,x乙,写出x甲与x乙之间的等量关系.①甲,乙两组数据的方差分别为S甲2,S乙2,比较S甲2与S乙2的大小,并说明理由.五.算术平均数(共2小题)20.(2020•湖州)数据﹣1,0,3,4,4的平均数是()A.4B.3C.2.5D.221.(2020•杭州)在某次演讲比赛中,五位评委给选手圆圆打分,得到互不相等的五个分数.若去掉一个最高分,平均分为x;去掉一个最低分,平均分为y;同时去掉一个最高分和一个最低分,平均分为z,则()A.y>z>x B.x>z>y C.y>x>z D.z>y>x六.加权平均数(共1小题)22.(2019•湖州)学校进行广播操比赛,如图是20位评委给某班的评分情况统计图,则该班的平均得分是分.七.中位数(共1小题)23.(2020•衢州)某班五个兴趣小组的人数分别为4,4,5,x,6.已知这组数据的平均数是5,则这组数据的中位数是.八.众数(共2小题)24.(2020•温州)山茶花是温州市的市花、品种多样,“金心大红”是其中的一种.某兴趣小组对30株“金心大红”的花径进行测量、记录,统计如下表:株数(株)79122花径(cm) 6.5 6.6 6.7 6.8这批“金心大红”花径的众数为()A.6.5cm B.6.6cm C.6.7cm D.6.8cm25.(2019•湖州)我市自开展“学习新思想,做好接班人”主题阅读活动以来,受到各校的广泛关注和同学们的积极响应,某校为了解全校学生主题阅读的情况,随机抽查了部分学生在某一周主题阅读文章的篇数,并制成下列统计图表.某校抽查的学生文章阅读的篇数统计表文章阅读的篇数(篇)34567及以上人数(人)2028m1612请根据统计图表中的信息,解答下列问题:(1)求被抽查的学生人数和m的值;(2)求本次抽查的学生文章阅读篇数的中位数和众数;(3)若该校共有800名学生,根据抽查结果,估计该校学生在这一周内文章阅读的篇数为4篇的人数.九.方差(共4小题) 26.(2020•嘉兴)已知样本数据2,3,5,3,7,下列说法不正确的是( ) A .平均数是4 B .众数是3 C .中位数是5 D .方差是3.2 27.(2019•台州)方差是刻画数据波动程度的量.对于一组数据x 1,x 2,x 3,…,x n ,可用如下算式计算方差:s 2=1x [(x 1﹣5)2+(x 2﹣5)2+(x 3﹣5)2+…+(x n ﹣5)2],其中“5”是这组数据的( ) A .最小值 B .平均数 C .中位数 D .众数 28.(2019•宁波)去年某果园随机从甲、乙、丙、丁四个品种的葡萄树中各采摘了10棵,每棵产量的平均数x (单位:千克)及方差S 2(单位:千克2)如表所示:甲 乙 丙 丁x24242320S 22.1 1.9 2 1.9 今年准备从四个品种中选出一种产量既高又稳定的葡萄树进行种植,应选的品种是( ) A .甲 B .乙 C .丙 D .丁 29.(2020•宁波)今年某果园随机从甲、乙、丙三个品种的枇杷树中各选了5棵,每棵产量的平均数x (单位:千克)及方差s 2(单位:千克2)如表所示:甲 乙 丙x 45 45 42 s 21.82.3 1.8 明年准备从这三个品种中选出一种产量既高又稳定的枇杷树进行种植,则应选的品种是 . 一十.标准差(共1小题) 30.(2019•杭州)点点同学对数据26,36,46,5□,52进行统计分析,发现其中一个两位数的个位数字被黑水涂污看不到了,则计算结果与被涂污数字无关的是( ) A .平均数 B .中位数 C .方差 D .标准差 一十一.统计量的选择(共1小题) 31.(2020•台州)在一次数学测试中,小明成绩72分,超过班级半数同学的成绩,分析得出这个结论所用的统计量是( ) A .中位数 B .众数 C .平均数 D .方差 一十二.概率公式(共9小题) 32.(2020•衢州)如图是一个游戏转盘,自由转动转盘,当转盘停止转动后,指针落在数字“Ⅱ”所示区域内的概率是( )A .13B .14C .16D .1833.(2020•金华)如图,有一些写有号码的卡片,它们的背面都相同,现将它们背面朝上,从中任意摸出一张,摸到1号卡片的概率是( )A .12B .13C .23D .1634.(2020•绍兴)如图,小球从A 入口往下落,在每个交叉口都有向左或向右两种可能,且可能性相等.则小球从E 出口落出的概率是( )A .12B .13C .14D .1635.(2020•温州)一个不透明的布袋里装有7个只有颜色不同的球,其中4个白球,2个红球,1个黄球.从布袋里任意摸出1个球,是红球的概率为( ) A .47B .37C .27D .1736.(2020•宁波)一个不透明的袋子里装有4个红球和2个黄球,它们除颜色外其余都相同.从袋中任意摸出一个球是红球的概率为( ) A .14B .13C .12D .2337.(2019•温州)在同一副扑克牌中抽取2张“方块”,3张“梅花”,1张“红桃”.将这6张牌背面朝上,从中任意抽取1张,是“红桃”的概率为( ) A .16B .13C .12D .2338.(2019•湖州)已知现有的10瓶饮料中有2瓶已过了保质期,从这10瓶饮料中任取1瓶,恰好取到已过了保质期的饮料的概率是( ) A .110B .910C .15D .4539.(2019•衢州)在一个箱子里放有1个白球和2个红球,它们除颜色外其余都相同.从箱子里任意摸出1个球,摸到白球的概率是( ) A .1B .23C .13D .1240.(2019•金华)一个布袋里装有2个红球、3个黄球和5个白球,除颜色外其它都相同.搅匀后任意摸出一个球,是白球的概率为( ) A .12B .310C .15D .710一十三.列表法与树状图法(共4小题) 41.(2020•湖州)在一个布袋里放有1个白球和2个红球,它们除颜色外其余都相同,从布袋里摸出1个球,记下颜色后放回,搅匀,再摸出1个球.将2个红球分别记为红Ⅰ,红Ⅱ,两次摸球的所有可能的结果如表所示,则两次摸出的球都是红球的概率是.42.(2020•杭州)一个仅装有球的不透明布袋里共有4个球(只有编号不同),编号分别为1,2,3,5.从中任意摸出一个球,记下编号后放回,搅匀,再任意摸出一个球,则两次摸出的球的编号之和为偶数的概率是.43.(2019•台州)一个不透明的布袋中仅有2个红球,1个黑球,这些球除颜色外无其它差别.先随机摸出一个小球,记下颜色后放回搅匀,再随机摸出一个小球,则两次摸出的小球颜色不同的概率是.44.(2019•舟山)从甲、乙、丙三人中任选两人参加“青年志愿者”活动,甲被选中的概率为.一十四.利用频率估计概率(共2小题)45.(2019•绍兴)为了解某地区九年级男生的身高情况,随机抽取了该地区100名九年级男生,他们的身高x(cm)统计如下:组别(cm)x<160160≤x<170170≤x<180x≥180人数5384215根据以上结果,抽查该地区一名九年级男生,估计他的身高不低于180cm的概率是()A.0.85B.0.57C.0.42D.0.1546.(2020•台州)新冠疫情期间,某校开展线上教学,有“录播”和“直播”两种教学方式供学生选择其中一种.为分析该校学生线上学习情况,在接受这两种教学方式的学生中各随机抽取40人调查学习参与度,数据整理结果如表(数据分组包含左端值不包含右端值).0.2~0.40.4~0.60.6~0.80.8~1参与度人数方式录播416128直播2101612(1)你认为哪种教学方式学生的参与度更高?简要说明理由.(2)从教学方式为“直播”的学生中任意抽取一位学生,估计该学生的参与度在0.8及以上的概率是多少?(3)该校共有800名学生,选择“录播”和“直播”的人数之比为1:3,估计参与度在0.4以下的共有多少人?2019、2020年浙江中考数学试题分类(8)——统计和概率参考答案与试题解析一.频数(率)分布直方图(共7小题)1.【解答】解:由直方图可得,质量在77.5kg及以上的生猪:90+30+20=140(头),故答案为:140.2.【解答】解:由直方图可得,成绩为“优良”(80分及以上)的学生有:60+30=90(人),故答案为:90.3.【解答】解:(1)30÷15%=200(人),200﹣30﹣80﹣40=50(人),直方图如图所示:(2)“良好”所对应的扇形圆心角的度数=360°×80200=144°.(3)这次测试成绩的中位数是80﹣90.这次测试成绩的中位数的等级是良好.(4)1500×40200=300(人),答:估计该校获得优秀的学生有300人.4.【解答】解:(1)(132+160+200)÷(8+132+160+200)×100%=98.4%,答:4月份生产的该产品抽样检测的合格率为98.4%;(2)估计4月份生产的产品中,不合格的件数多,理由:3月份生产的产品中,不合格的件数为5000×2%=100,4月份生产的产品中,不合格的件数为10000×(1﹣98.4%)=160,∵100<160,∴估计4月份生产的产品中,不合格的件数多.5.【解答】解:(1)因为有50名居民,所以中位数落在第四组,中位数为75,故答案为75;(2)500×2450=240(人),答:A小区500名居民成绩能超过平均数的人数240人;(3)从平均数看,两个小区居民对垃圾分类知识掌握情况的平均水平相同;从方差看,B小区居民对垃圾分类知识掌握的情况比A小区稳定;从中位数看,B小区至少有一半的居民成绩高于平均数.6.【解答】解:(1)因为有50名居民,所以中位数落在第四组,中位数为75,故答案为75;(2)500×2450=240(人),答:A小区500名居民成绩能超过平均数的人数240人;(3)从平均数看,两个小区居民对垃圾分类知识掌握情况的平均水平相同;从方差看,B小区居民对垃圾分类知识掌握的情况比A小区稳定;从中位数看,B小区至少有一半的居民成绩高于平均数.7.【解答】解:(1)m=100﹣(10+15+40+15)=20,补全图形如下:故答案为:20;(2)不一定是,理由:将100名学生知识测试成绩从小到大排列,第50、51名的成绩都在分数段80≤a<90中,但他们的中位数不一定是85分;(3)估计全校1200名学生中成绩优秀的人数为1200×40+15100=660(人).二.扇形统计图(共5小题)8.【解答】解:调查总人数:40÷20%=200(人),选择黄鱼的人数:200×40%=80(人),故选:D.9.【解答】解:(1)22÷11%=200(人),答:参与调查的学生总数为200人;(2)200×24%=48(人),答:最喜爱“开合跳”的学生有48人;(3)最喜爱“健身操”的学生数为200﹣59﹣31﹣48﹣22=40(人),8000×40200=1600(人),答:最喜爱“健身操”的学生数大约为1600人.10.【解答】解:(1)550÷55%=1000(只),1000﹣400﹣550﹣30=20(只)即:m=20,360°×4001000=144°,答:表中m的值为20,图中B组扇形的圆心角的度数为144°;(2)4001000+5501000=9501000=95%,12×10×(1﹣95%)=120×5%=6(只),答:这次抽样检验的合格率是95%,所购得的羽毛球中,非合格品的羽毛球有6只.11.【解答】解:(1)本次抽查的人数为:115÷23%=500,m=500×61.6%=308,即m的值是308;(2)组别A的圆心角度数是:360°×25500=18°,即组别A的圆心角度数是18°;(3)25000×25+115500=7000(人),答:该市25000名九年级学生达到“视力良好”的有7000人,建议是:同学们应少玩电子产品,注意用眼保护.12.【解答】解:(1)宣传活动前,在抽取的市民中偶尔戴的人数最多,占抽取人数:5101000×100%=51%;答:宣传活动前,在抽取的市民中偶尔戴的人数最多,占抽取人数的51%, (2)估计活动前全市骑电瓶车“都不戴”安全帽的总人数:30万×1771000=5.31万(人), 答:估计活动前全市骑电瓶车“都不戴”安全帽的总人数5.31万人; (3)小明分析数据的方法不合理.宣传活动后骑电瓶车“都不戴”安全帽的百分比:178896+702+224+178×100%=8.9%,活动前全市骑电瓶车“都不戴”安全帽的百分比:1771000×100%=17.7%,8.9%<17.7%,因此交警部门开展的宣传活动有效果. 三.条形统计图(共3小题) 13.【解答】解:(1)抽查的学生数:20÷40%=50(人), 抽查人数中“基本满意”人数:50﹣20﹣15﹣1=14(人),补全的条形统计图如图所示: (2)360°×1550=108°, 答:扇形统计图中表示“满意”的扇形的圆心角度数为108°; (3)1000×(2050+1550)=700(人),答:该校共有1000名学生中“非常满意”或“满意”的约有700人.14.【解答】解:(1)由条形统计图可得,2014~2019年三种品牌电视机销售总量最多的是B 品牌,是1746万台;由折线统计图可得,2014~2019年三种品牌电视机月平均销售量最稳定的是C 品牌,比较稳定,极差最小;故答案为:B ,C ;(2)∵20×12÷25%=960(万台),1﹣25%﹣29%﹣34%=12%, ∴960×12%=115.2(万台);答:2019年其他品牌的电视机年销售总量是115.2万台;(3)建议购买C 品牌,因为C 品牌2019年的市场占有率最高,且5年的月销售量最稳定; 建议购买B 品牌,因为B 品牌的销售总量最多,受到广大顾客的青睐. 15.【解答】解:(1)这5期的集训共有:5+7+10+14+20=56(天), 小聪5次测试的平均成绩是:(11.88+11.76+11.61+11.53+11.62)÷5=11.68(秒), 答:这5期的集训共有56天,小聪5次测试的平均成绩是11.68秒;(2)从集训时间看,集训时间不是越多越好,集训时间过长,可能造成劳累,导致成绩下滑,如图中第4期与前面两期相比;从测试成绩看,两人的最好的平均成绩是在第4期出现,建议集训时间定为14天. 四.折线统计图(共4小题)16.【解答】解:A 、错误.签约金额2017,2018年是下降的. B 、错误.与上年相比,2016年的签约金额的增长量最多. C 、正确. D 、错误.下降了:244.5−221.6244.5≈9.4%.故选:C . 17.【解答】解:由折线统计图得乙同学的成绩波动较大, 所以S 甲2<S 乙2. 故答案为:<. 18.【解答】解:(1)选择两家酒店月盈利的平均值;x x =1+1.6+2.2+2.7+3.5+46=2.5(万元), x x =2+3+1.7+1.8+1.7+3.66=2.3(万元);(2)平均数,方差反映酒店的经营业绩,A 酒店的经营状况较好.理由:A 酒店盈利的平均数为2.5万元,B 酒店盈利的平均数为2.3万元.A 酒店盈利的方差为1.073平方万元,B 酒店盈利的方差为0.54平方万元,无论是盈利的平均数还是盈利的方差,都是A 酒店比较大,且盈利折线A 是持续上升的,故A 酒店的经营状况较好. 19.【解答】解:(1)乙组数据的折线统计图如图所示:(2)①x 甲=x 乙+50. ①S 甲2=S 乙2.理由:∵S 甲2=15[(48﹣50)2+(52﹣50)2+(47﹣50)2+(49﹣50)2+(54﹣50)2]=6.8. S 乙2=15[(﹣2﹣0)2+(2﹣0)2+(﹣3﹣0)2+(﹣1﹣0)2+(4﹣0)2]=6.8, ∴S 甲2=S 乙2.五.算术平均数(共2小题) 20.【解答】解:x =−1+0+3+4+45=2,故选:D . 21.【解答】解:由题意可得, 若去掉一个最高分,平均分为x ,则此时的x 一定小于同时去掉一个最高分和一个最低分后的平均分为z , 去掉一个最低分,平均分为y ,则此时的y 一定大于同时去掉一个最高分和一个最低分后的平均分为z , 故y >z >x , 故选:A .六.加权平均数(共1小题)22.【解答】解:该班的平均得分是:120×(5×8+8×9+7×10)=9.1(分). 故答案为:9.1.七.中位数(共1小题) 23.【解答】解:∵某班五个兴趣小组的人数分别为4,4,5,x ,6,已知这组数据的平均数是5, ∴x =5×5﹣4﹣4﹣5﹣6=6,∴这一组数从小到大排列为:4,4,5,6,6, ∴这组数据的中位数是5. 故答案为:5.八.众数(共2小题) 24.【解答】解:由表格中的数据可得, 这批“金心大红”花径的众数为6.7, 故选:C . 25.【解答】解:(1)被调查的总人数为16÷16%=100人, m =100﹣(20+28+16+12)=24;(2)由于共有100个数据,其中位数为第50、51个数据的平均数, 而第50、51个数据均为5篇, 所以中位数为5篇, 出现次数最多的是4篇, 所以众数为4篇; (3)估计该校学生在这一周内文章阅读的篇数为4篇的人数为800×28100=224人.九.方差(共4小题)26.【解答】解:样本数据2,3,5,3,7中平均数是4,中位数是3,众数是3,方差是S 2=15[(2﹣4)2+(3﹣4)2+(5﹣4)2+(3﹣4)2+(7﹣4)2]=3.2. 故选:C .27.【解答】解:方差s 2=1x[(x 1﹣5)2+(x 2﹣5)2+(x 3﹣5)2+…+(x n ﹣5)2]中“5”是这组数据的平均数,故选:B . 28.【解答】解:因为甲组、乙组的平均数丙组比丁组大, 而乙组的方差比甲组的小, 所以乙组的产量比较稳定, 所以乙组的产量既高又稳定, 故选:B . 29.【解答】解:因为甲、乙的平均数比丙大,所以甲、乙的产量较高, 又甲的方差比乙小,所以甲的产量比较稳定,即从这三个品种中选出一种产量既高又稳定的枇杷树进行种植,则应选的品种是甲; 故答案为:甲.一十.标准差(共1小题) 30.【解答】解:这组数据的平均数、方差和标准差都与第4个数有关,而这组数据的中位数为46,与第4个数无关. 故选:B .一十一.统计量的选择(共1小题) 31.【解答】解:班级数学成绩排列后,最中间一个数或最中间两个分数的平均数是这组成绩的中位数, 半数同学的成绩位于中位数或中位数以下,小明成绩超过班级半数同学的成绩所用的统计量是中位数, 故选:A .一十二.概率公式(共9小题)32.【解答】解:由游戏转盘划分区域的圆心角度数可得,指针落在数字“Ⅱ”所示区域内的概率是:120360=13.。
辽宁省2019年、2020年中考数学试题分类汇编(6)——一次函数
2019年、2020年 辽宁省数学中考试题分类(6)——一次函数一.规律型:点的坐标(共2小题)1.(2019•阜新)如图,在平面直角坐标系中,将△ABO 沿x 轴向右滚动到△AB 1C 1的位置,再到△A 1B 1C 2的位置……依次进行下去,若已知点A (4,0),B (0,3),则点C 100的坐标为( )A .(1200,125)B .(600,0)C .(600,125)D .(1200,0)2.(2020•朝阳)如图,动点P 从坐标原点(0,0)出发,以每秒一个单位长度的速度按图中箭头所示方向运动,第1秒运动到点(1,0),第2秒运动到点(1,1),第3秒运动到点(0,1),第4秒运动到点(0,2)…则第2068秒点P 所在位置的坐标是 .二.一次函数的图象(共1小题)3.(2019•辽阳)若ab <0且a >b ,则函数y =ax +b 的图象可能是( )A .B .C .D .三.一次函数的性质(共1小题)4.(2020•丹东)一次函数y =﹣2x +b ,且b >0,则它的图象不经过第 象限.四.正比例函数的性质(共1小题)5.(2019•本溪)函数y=5x的图象经过的象限是.五.一次函数图象与系数的关系(共3小题)6.(2020•沈阳)一次函数y=kx+b(k≠0)的图象经过点A(﹣3,0),点B(0,2),那么该图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限7.(2019•铁岭)在平面直角坐标系中,函数y=kx+b的图象如图所示,则下列判断正确的是()A.k>0B.b<0C.k•b>0D.k•b<0 8.(2019•沈阳)已知一次函数y=(k+1)x+b的图象如图所示,则k的取值范围是()A.k<0B.k<﹣1C.k<1D.k>﹣1六.一次函数图象上点的坐标特征(共8小题)9.(2020•鞍山)如图,在平面直角坐标系中,点A1,A2,A3,A4,…在x轴正半轴上,点B1,B2,B3,…在直线y=√33x(x≥0)上,若A1(1,0),且△A1B1A2,△A2B2A3,△A3B3A4,…均为等边三角形,则线段B2019B2020的长度为()A.22021√3B.22020√3C.22019√3D.22018√310.(2019•锦州)如图,一次函数y =2x +1的图象与坐标轴分别交于A ,B 两点,O 为坐标原点,则△AOB 的面积为( )A .14B .12C .2D .411.(2020•锦州)如图,过直线l :y =√3x 上的点A 1作A 1B 1⊥l ,交x 轴于点B 1,过点B 1作B 1A 2⊥x 轴.交直线l 于点A 2;过点A 2作A 2B 2⊥l ,交x 轴于点B 2,过点B 2作B 2A 3⊥x 轴,交直线l 于点A 3;…按照此方法继续作下去,若OB 1=1,则线段A n A n ﹣1的长度为 .(结果用含正整数n 的代数式表示)12.(2020•辽阳)若一次函数y =2x +2的图象经过点(3,m ),则m = .13.(2019•朝阳)如图,直线y =13x +1与x 轴交于点M ,与y 轴交于点A ,过点A 作AB ⊥AM ,交x 轴于点B ,以AB 为边在AB 的右侧作正方形ABCA 1,延长A 1C 交x 轴于点B 1,以A 1B 1为边在A 1B 1的右侧作正方形A 1B 1C 1A 2…按照此规律继续作下去,再将每个正方形分割成四个全等的直角三角形和一个小正方形,每个小正方形的每条边都与其中的一条坐标轴平行,正方形ABCA 1,A 1B 1C 1A 2,…,A n ﹣1B n ﹣1C n ﹣1A n 中的阴影部分的面积分别为S 1,S 2,…,S n ,则S n 可表示为 .14.(2019•营口)如图,在平面直角坐标系中,直线l1:y=√3x+√3与x轴交于点A1,与y轴交于点A2,过点A1作x轴的垂线交直线l2:y=√33x于点B1,过点A1作A1B1的垂线交y轴于点B2,此时点B2与原点O重合,连接A2B1交x轴于点C1,得到第1个△C1B1B2;过点A2作y轴的垂线交l2于点B3,过点B3作y轴的平行线交l1于点A3,连接A3B2与A2B3交于点C2,得到第2个△C2B2B3……按照此规律进行下去,则第2019个△C2019B2019B2020的面积是.15.如图,点B1在直线l:y=12x上,点B1的横坐标为2,过B1作B1A1⊥l,交x轴于点A1,以A1B1为边,向右作正方形A1B1B2C1,延长B2C1交x轴于点A2;以A2B2为边,向右作正方形A2B2B3C2,延长B3C2交x轴于点A3;以A3B3为边,向右作正方形A3B3B4C3,延长B4C3交x轴于点A4;…;按照这个规律进行下去,点∁n的横坐标为(结果用含正整数n的代数式表示)16.(2019•大连)如图,在平面直角坐标系xOy中,直线y=−34x+3与x轴,y轴分别相交于点A,B,点C在射线BO上,点D在射线BA上,且BD=53OC,以CO,CD为邻边作▱COED.设点C的坐标为(0,m),▱COED在x轴下方部分的面积为S.求:(1)线段AB的长;(2)S关于m的函数解析式,并直接写出自变量m的取值范围.七.待定系数法求一次函数解析式(共1小题)17.(2019•丹东)如图,在平面直角坐标系中,点A,C分别在x轴、y轴上,四边形ABCO 是边长为4的正方形,点D为AB的中点,点P为OB上的一个动点,连接DP,AP,当点P满足DP+AP的值最小时,直线AP的解析式为.八.一次函数与一元一次不等式(共1小题)18.(2019•鞍山)如图,若一次函数y=﹣2x+b的图象与两坐标轴分别交于A,B两点,点A的坐标为(0,3),则不等式﹣2x+b>0的解集为()A.x>32B.x<32C.x>3D.x<3九.一次函数的应用(共5小题)19.(2019•辽阳)一条公路旁依次有A,B,C三个村庄,甲乙两人骑自行车分别从A村、B村同时出发前往C村,甲乙之间的距离s(km)与骑行时间t(h)之间的函数关系如图所示,下列结论:①A,B两村相距10km;②出发1.25h后两人相遇;③甲每小时比乙多骑行8km;④相遇后,乙又骑行了15min或65min时两人相距2km.其中正确的个数是()A.1个B.2个C.3个D.4个20.(2020•阜新)甲、乙两人沿笔直公路匀速由A地到B地,甲先出发30分钟,到达B地后原路原速返回与乙在C地相遇.甲的速度比乙的速度快35km/h,甲、乙两人与A地的距离y(km)和乙行驶的时间x(h)之间的函数关系如图所示,则B,C两地的距离为km(结果精确到1km).21.(2019•阜新)甲、乙两人分别从A,B两地相向而行,匀速行进甲先出发且先到达B地,他们之间的距离s(km)与甲出发的时间t(h)的关系如图所示,则乙由B地到A地用了h.22.(2019•大连)甲、乙两人沿同一条直路走步,如果两人分别从这条直路上的A,B两处同时出发,都以不变的速度相向而行,图1是甲离开A处后行走的路程y(单位:m)与行走时间x(单位:min)的函数图象,图2是甲、乙两人之间的距离y(单位:m)与甲行走时间x(单位:min)的函数图象,则a﹣b=.23.(2020•大连)甲、乙两个探测气球分别从海拔5m和15m处同时出发,匀速上升60min.如图是甲、乙两个探测气球所在位置的海拔y(单位:m)与气球上升时间x(单位:min)的函数图象.(1)求这两个气球在上升过程中y关于x的函数解析式;(2)当这两个气球的海拔高度相差15m时,求上升的时间.一十.一次函数综合题(共1小题)24.(2019•沈阳)在平面直角坐标系中,直线y=kx+4(k≠0)交x轴于点A(8,0),交y 轴于点B.(1)k的值是;(2)点C是直线AB上的一个动点,点D和点E分别在x轴和y轴上.①如图,点E 为线段OB 的中点,且四边形OCED 是平行四边形时,求▱OCED 的周长; ②当CE 平行于x 轴,CD 平行于y 轴时,连接DE ,若△CDE 的面积为334,请直接写出点C 的坐标.2019年、2020年辽宁省数学中考试题分类(6)——一次函数参考答案与试题解析一.规律型:点的坐标(共2小题)1.【解答】解:根据题意,可知:每滚动3次为一个周期,点C1,C3,C5,…在第一象限,点C2,C4,C6,…在x轴上.∵A(4,0),B(0,3),∴OA=4,OB=3,∴AB=√OA2+OB2=5,∴点C2的横坐标为4+5+3=12=2×6,同理,可得出:点C4的横坐标为4×6,点C6的横坐标为6×6,…,∴点C2n的横坐标为2n×6(n为正整数),∴点C100的横坐标为100×6=600,∴点C100的坐标为(600,0).故选:B.2.【解答】解:由题意分析可得,动点P第8=2×4秒运动到(2,0),动点P第24=4×6秒运动到(4,0),动点P第48=6×8秒运动到(6,0),以此类推,动点P第2n(2n+2)秒运动到(2n,0),∴动点P第2024=44×46秒运动到(44,0),2068﹣2024=44,∴按照运动路线,点P到达(44,0)后,向右一个单位,然后向上43个单位,∴第2068秒点P所在位置的坐标是(45,43),故答案为:(45,43).二.一次函数的图象(共1小题)3.【解答】解:∵ab<0,且a>b,∴a>0,b<0,∴函数y=ax+b的图象经过第一、三、四象限.故选:A.三.一次函数的性质(共1小题)4.【解答】解:∵一次函数y =﹣2x +b ,且b >0,∴它的图象经过第一、二、四象限,不经过第三象限.故答案为:三.四.正比例函数的性质(共1小题)5.【解答】解:函数y =5x 的图象经过一三象限,故答案为:一、三五.一次函数图象与系数的关系(共3小题)6.【解答】解:(方法一)将A (﹣3,0),B (0,2)代入y =kx +b ,得:{−3k +b =0b =2, 解得:{k =23b =2, ∴一次函数解析式为y =23x +2.∵k =23>0,b =2>0,∴一次函数y =23x +2的图象经过第一、二、三象限,即该图象不经过第四象限.故选:D .(方法二)依照题意,画出函数图象,如图所示.观察函数图象,可知:一次函数y =kx +b (k ≠0)的图象不经过第四象限. 故选:D .7.【解答】解:∵一次函数y =kx +b 的图象经过一、二、四象限, ∴k <0,b >0.∴kb <0,故选:D.8.【解答】解:∵观察图象知:y随x的增大而减小,∴k+1<0,解得:k<﹣1,故选:B.六.一次函数图象上点的坐标特征(共8小题)9.【解答】解:设△B n A n A n+1的边长为a n,∵点B1,B2,B3,…是直线y=√33x上的第一象限内的点,∴∠A n OB n=30°,又∵△B n A n A n+1为等边三角形,∴∠B n A n A n+1=60°,∴∠OB n A n=30°,∠OB n A n+1=90°,∴B n B n+1=OB n=√3a n,∵点A1的坐标为(1,0),∴a1=1,a2=1+1=2,a3=1+a1+a2=4,a4=1+a1+a2+a3=8,…,∴a n=2n﹣1.∴B2019B2020=√3a2019=√3×22018=22018√3,故选:D.10.【解答】解:一次函数y=2x+1中,当x=0时,y=1;当y=0时,x=﹣0.5;∴A(﹣0.5,0),B(0,1)∴OA=0.5,OB=1∴△AOB的面积=0.5×1÷2=1 4故选:A.11.【解答】解:∵直线l:y=√3x,∴直线l与x轴夹角为60°,∵B1为l上一点,且OB1=1,∴OA1=cos60°•OB1=12OB1=12,OB1=cos60°•OA2,∴OA2=2OB1=2,∴A2A1=2−12=32∵OA2=2,∴OB2=2OA2=4,∴OA3=2OB2=8,∴A3A2=8﹣2=6,…A n A n﹣1=3×22n﹣5故答案为3×22n﹣5.12.【解答】解:∵一次函数y=2x+2的图象经过点(3,m),∴m=2×3+2=8.故答案为:8.13.【解答】解:在直线y=13x+1中,当x=0时,y=1;当y=0时,x=﹣3;∴OA=1,OM=3,∴tan∠AMO=1 3,∵∠OAB+∠OAM=90°,∠AMO+∠OAM=90°,∴∠OAB=∠AMO,∴tan∠OAB=OBOA=13,∴OB=1 3.∵1−13=23,∴S1=(23)2=49,易得tan∠CBB1=B1CBC=tan∠OAB=13,∴B1C=13BC=13A1C=13AB,∴A1B1=43 AB,∴S2=(43)2S1=169S1,同理可得S3=169S2=(169)2S1,S4=169S3=(169)3S1,…,S n=(169)n−1S1=(169)n−1×49=(2432)n−1×(23)2=24n−432n−2×2232=24n−232n . 故答案为:24n−232n .14.【解答】解:∵y =√3x +√3与x 轴交于点A 1,与y 轴交于点A 2,∴A 1(−1,0),A 2(0,√3),在y =√33x 中,当x =﹣1时,y =−√33, ∴B 1(−1,−√33),设直线A 2B 1的解析式为:y =kx +b , 可得:{b =√3−k +b =−√33, 解得:{k =4√33b =√3,∴直线A 2B 1的解析式为:y =4√33x +√3,令y =0,可得:x =−34, ∴C 1(−34,0),∴S △C 1B 1B 2=12B 2C 1⋅A 1B 1=12×34×√33=√38=90√38, ∵△A 1B 1B 2∽△A 2B 2B 3,∴△C 1B 1B 2∽△C 2B 2B 3,∴S △C 2B 2B 3S △C 1B 1B 2=(B 2B 3B 1B 2)2=(A 2B 2A 1B 1)2=√3)2(√33)=9, ∴S △C 2B 2B 3=9S △C 1B 1B 2=98√3,同理可得:S △C 3B 3B 4=9S △C 2B 2B 3=928√3⋯, ∴△C 2019B 2019B 2020的面积=920188√3=340368√3, 故答案为:340368√3.15.【解答】解:过点B 1、C 1、C 2、C 3、C 4分别作B 1D ⊥x 轴,C 1D 1⊥x 轴,C 2D 2⊥x 轴,C 3D 3⊥x 轴,C 4D 4⊥x 轴,……垂足分别为D 、D 1、D 2、D 3、D 4……∵点B 1在直线l :y =12x 上,点B 1的横坐标为2,∴点B 1的纵坐标为1,即:OD =2,B 1D =1,图中所有的直角三角形都相似,两条直角边的比都是1:2,B 1D OD =12=DA 1B 1D =C 1D 1A 1D 1=D 1A 2C 1D 1=⋯ ∴点C 1的横坐标为:2+12+(32)0,点C 2的横坐标为:2+12+(32)0+(32)0×14+(32)1=52+(32)0×54+(32)1 点C 3的横坐标为:2+12+(32)0+(32)0×14+(32)1+(32)1×14+(32)2=52+(32)0×54+(32)1×54++(32)2 点C 4的横坐标为:=52+(32)0×54+(32)1×54+(32)2×54+(32)3 …… 点∁n 的横坐标为:=52+(32)0×54+(32)1×54+(32)2×54+(32)3×54+(32)4×54⋯⋯+(32)n ﹣1 =52+54[(32)0+(32)1×+(32)2+(32)3+(32)4……]+(32)n ﹣1 =72(32)n ﹣1. 故答案为:72(32)n ﹣1.16.【解答】解:(1)当x =0时,y =3,当y =0时,x =4,∴直线y =−34x +3与x 轴点交A (4,0),与y 轴交点B (0,3)∴OA =4,OB =3,∴AB =√32+42=5,因此:线段AB 的长为5.(2)当CD ∥OA 时,如图,∵BD =53OC ,OC =m ,∴BD =53m ,由△BCD ∽△BOA 得:BD BA =BC BO ,即:53m 5=3−m 3,解得:m =32; ①当32<m ≤3时,如图1所示:过点D 作DF ⊥OB ,垂足为F ,此时在x 轴下方的三角形与△CDF 全等,∵△BDF ∽△BAO ,∴BD DF =BA OA =54, ∴DF =43m ,同理:BF =m ,∴CF =2m ﹣3,∴S △CDF =12DF ⋅CF =12(2m ﹣3)×43m =43m 2﹣2m ,即:S =43m 2﹣2m ,(32<m ≤3) ②当0<m ≤32时,如图2所示:DE =m ≤32,此时点E 在△AOB 的内部,S =0 (0<m ≤32);③当﹣3<m ≤0时,如图3所示:同理可得:点D (−43m ,m +3)设直线CD 关系式为y =kx +b ,把C (0,m )、D (−43m ,m +3)代入得:{b =m −43mk +b =m +3,解得:k =−94m ,b =m , 直线CD 关系式为y =−94m x +m ,当y =0时,0=−94m x +m ,解得x =49m 2F (49m 2,0)∴S △COF =12OC •OF =12(﹣m )×49m 2=−29m 3,即:S =−29m 3,(﹣3<m ≤0)④当m <﹣3时,如图4所示:同理可得:点D (−43m ,m +3)此时,DF =﹣m ﹣3,OC =﹣m ,OF =−43m ,∴S 梯形OCDF =12(﹣m ﹣3﹣m )×(−43m )=43m 2+2m即:S =43m 2+2m (m <﹣3)综上所述:S 与m 的函数关系式为:S ={ 43m 2−2m(32<m ≤3)0(0<m ≤32)−29m 3(−3<m ≤0)43m 2+2m(m ≤−3).七.待定系数法求一次函数解析式(共1小题)17.【解答】解:∵四边形ABCO是正方形,∴点A,C关于直线OB对称,连接CD交OB于P,连接P A,PD,则此时,PD+AP的值最小,∵OC=OA=AB=4,∴C(0,4),A(4,0),∵D为AB的中点,∴AD =12AB =2,∴D (4,2),设直线CD 的解析式为:y =kx +b ,∴{4k +b =2b =4, ∴{k =−12b =4, ∴直线CD 的解析式为:y =−12x +4,∵直线OB 的解析式为y =x ,∴{y =−12x +4y =x, 解得:x =y =83,∴P (83,83), 设直线AP 的解析式为:y =mx +n ,∴{4m +n =083m +n =83,解得:{m =−2,n =8, ∴直线AP 的解析式为y =﹣2x +8,故答案为:y =﹣2x +8.八.一次函数与一元一次不等式(共1小题)18.【解答】解:∵一次函数y =﹣2x +b 的图象交y 轴于点A (0,3),∴b =3,令y =﹣2x +3中y =0,则﹣2x +3=0,解得:x =32,∴点B (32,0). 观察函数图象,发现:当x <32时,一次函数图象在x 轴上方,∴不等式﹣2x +b >0的解集为x <32.故选:B .九.一次函数的应用(共5小题)19.【解答】解:由图象可知A 村、B 村相离10km ,故①正确,当1.25h 时,甲、乙相距为0km ,故在此时相遇,故②正确,当0≤t ≤1.25时,易得一次函数的解析式为s =﹣8t +10,故甲的速度比乙的速度快8km /h .故③正确当1.25≤t ≤2时,函数图象经过点(1.25,0)(2,6)设一次函数的解析式为s =kt +b代入得{0=1.25k +b 6=2k +b ,解得{k =8b =−10∴s =8t ﹣10当s =2时.得2=8t ﹣10,解得t =1.5h由1.5﹣1.25=0.25h =15min同理当2≤t ≤2.5时,设函数解析式为s =kt +b将点(2,6)(2.5,0)代入得{0=2.5k +b 6=2k +b ,解得{k =−12b =30∴s =﹣12t +30当s =2时,得2=﹣12t +30,解得t =73由73−1.25=1312h =65min 故相遇后,乙又骑行了15min 或65min 时两人相距2km ,④正确.故选:D .20.【解答】解:由题意可知,甲行驶的速度为:25÷12=50(km /h ),A 、B 两地之间的距离为:25+50×2=125(km ),乙的速度为:50﹣35=15(km /h ),2+(125﹣15×2)÷(50+15)=3613,即乙出发3613小时后与甲相遇, 所以B ,C 两地的距离为:125−15×3613≈73(km ).故答案为:73.21.【解答】解:由图可得,甲的速度为:36÷6=6(km /h ),则乙的速度为:36−6×4.54.5−2=3.6(km /h ),则乙由B 地到A 地用时:36÷3.6=10(h ),故答案为:10.22.【解答】解:从图1,可见甲的速度为1202=60, 从图2可以看出,当x =67时,二人相遇,即:(60+V 乙)×67=120,解得:乙的速度V 乙=80,∵乙的速度快,从图2看出乙用了b 分钟走完全程,甲用了a 分钟走完全程,a ﹣b =12060−12080=12, 故答案为12.23.【解答】解:(1)设甲气球的函数解析式为:y =kx +b ,乙气球的函数解析式为:y =mx +n , 分别将(0,5),(20,25)和(0,15),(20,25)代入,{5=b 25=20k +b ,{15=n 25=20m +n, 解得:{k =1b =5,{m =12n =15, ∴甲气球的函数解析式为:y =x +5(x ≥0),乙气球的函数解析式为:y =12x +15(x ≥0);(2)由初始位置可得:当x 大于20时,两个气球的海拔高度可能相差15m ,且此时甲气球海拔更高,∴x +5﹣(12x +15)=15, 解得:x =50,∴当这两个气球的海拔高度相差15m 时,上升的时间为50min . 一十.一次函数综合题(共1小题)24.【解答】解:(1)将A (8,0)代入y =kx +4,得:0=8k +4, 解得:k =−12.故答案为:−12.(2)①由(1)可知直线AB 的解析式为y =−12x +4. 当x =0时,y =−12x +4=4,∴点B 的坐标为(0,4),∴OB =4.∵点E 为OB 的中点,∴BE =OE =12OB =2.∵点A 的坐标为(8,0),∴OA =8.∵四边形OCED 是平行四边形,∴CE ∥DA ,∴BC AC =BE OE =1,∴BC =AC ,∴CE 是△ABO 的中位线,∴CE =12OA =4.∵四边形OCED 是平行四边形,∴OD =CE =4,OC =DE .在Rt △DOE 中,∠DOE =90°,OD =4,OE =2,∴DE =√OD 2+OE 2=2√5,∴C 平行四边形OCED =2(OD +DE )=2(4+2√5)=8+4√5. ②设点C 的坐标为(x ,−12x +4),则CE =|x |,CD =|−12x +4|,∴S △CDE =12CD •CE =|−14x 2+2x |=334, ∴x 2﹣8x +33=0或x 2﹣8x ﹣33=0. 方程x 2﹣8x +33=0无解; 解方程x 2﹣8x ﹣33=0,得:x 1=﹣3,x 2=11, ∴点C 的坐标为(﹣3,112)或(11,−32).。
2019-2020年中考数学试卷分类汇编:反比例函数(最新整理)
满足函数关系式ρ k (k 为常数,k 0),其图象如图所示,则 k 的值为(
)
V
ρ
A
( 6,1.5
O
)
V
第5题
A.9 B.-9 C.4 D.-4
【答案】:A.
【解析】反比例函数ρ k 经过 A(6,1.5),利用待定系数法将 V=6、 1.5 代入解析式 V
即可求出解析式。
【方法指导】本题考查待定系数法求反比例函数解析式。先设出函数解析式,再根据条件确
过 A,B 两点分别作 y 轴的垂线,垂足分别为点 C,D.则四边形 ACBD 的面积为( )
A.2
B.4
C.6
D.8
考点:反比例函数与一次函数的交点问题.
分析:首先根据反比例函数图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成
的直角三角形面积 S 的关系即 S=|k|,得出 S△AOC=S△ODB=2,再根据反比例函数的对称
点评:本题主要考查了反比例函数 y=中 k 的几何意义,即过双曲线上任意一点引 x 轴、y 轴
垂线,所得矩形面积为|k|;图象上的点与原点所连的线段、坐标轴、向坐标轴作垂
线所围成的直角三角形面积 S 的关系即 S=|k|,是经常考查的一个知识点;同时考查
了反比例函数图象的对称性. 17.(2013 湖北宜昌,11,3 分)如图,点 B 在反比例函数 y=(x>0)的图象上,横坐标为 1, 过点 B 分别向 x 轴,y 轴作垂线,垂足分别为 A,C,则矩形 OABC 的面积为( )
A.1
B.2
C.3
D.4
考点:反比例函数系数 k 的几何意义. 分析:因为过双曲线上任意一点引 x 轴、y 轴垂线,所得矩形面积 S 是个定值,即 S=|k|. 解答:解:∵点 B 在反比例函数 y=(x>0)的图象上,过点 B 分别向 x 轴,y 轴作垂线,垂
中考精品:2019年中考数学真题分类汇编全套(解析版试卷版)
中考精品:2019年中考数学真题分类汇编全套(解析版试卷版)中高考真题,永远是中高考备考的蓝本,中高考分类汇编,让真题渗透进每一个考点和三年学习的每一个课题每一个单元,化整为零,对中高考的把握会更加醇熟!!2019年中高考真题分类汇编系列,让真题回归课本,让同步学就能积累备考经验,是中高考备考更有效的方式。
本套资源含:最新2019年中考数学全国各省市中考真题,按中考考点分类汇编,教师版带详解分析,学生版可直接打印测试,让同学们无忧练,自信学不懂看解析,化整为零的全盘把握中考。
全套资料带教师解析版和学生试卷版双版本设计,是教师、培训机构教学参考,学生中考冲刺练习的极佳资料!初一初二同步学适用,初三中考复习适用,全学段中考备考都适用!2019年中考数学真题分类汇编目录及截图:2019年中考真题数学试题分项汇编:专题01 数与式(第01期)(原卷版).docx专题01 数与式(第01期)(解析版).docx专题01 数与式(第02期)(解析版).docx专题01 数与式(第02期)(原卷版).docx专题02 方程及其应用(第01期)(解析版).docx专题02 方程及其应用(第01期)(原卷版).docx专题02 方程及其应用(第02期)(解析版).docx专题02 方程及其应用(第02期)(原卷版).docx专题03 不等式(组)及其应用(第01期)(解析版).docx专题03 不等式(组)及其应用(第01期)(原卷版).docx专题03 不等式(组)及其应用(第02期)(解析版).docx专题03 不等式(组)及其应用(第02期)(原卷版).docx专题04 平面直角坐标系与函数(第01期)(解析版).docx 专题04 平面直角坐标系与函数(第01期)(原卷版).docx 专题04 平面直角坐标系与函数(第02期)(解析版).docx 专题04 平面直角坐标系与函数(第02期)(原卷版).docx 专题05 一次函数(第01期)(解析版).docx专题05 一次函数(第01期)(原卷版).docx专题05 一次函数(第02期)(解析版).docx专题05 一次函数(第02期)(原卷版).docx专题06 反比例函数(第01期)(解析版).docx专题06 反比例函数(第01期)(原卷版).docx专题06 反比例函数(第02期)(解析版).docx专题06 反比例函数(第02期)(原卷版).docx专题07 二次函数(第01期)(解析版).docx专题07 二次函数(第01期)(原卷版).docx专题07 二次函数(第02期)(解析版).docx专题07 二次函数(第02期)(原卷版).docx专题08 几何图形初步(第01期)(解析版).docx专题08 几何图形初步(第01期)(原卷版).docx专题08 几何图形初步(解析版).docx专题08 几何图形初步(原卷版).docx专题09 三角形(解析版).docx专题09 三角形(原卷版).docx专题09 三角形(第01期)(解析版).docx专题09 三角形(第01期)(原卷版).docx专题10 四边形(第01期)(解析版).docx专题10 四边形(第01期)(原卷版).docx专题10 四边形(解析版).docx专题10 四边形(原卷版).docx专题11 圆(第01期)(解析版).docx专题11 圆(第01期)(原卷版).docx专题11 圆(第02期)(解析版).docx专题11 圆(第02期)(原卷版).docx专题12 图形的变换(第01期)(解析版).docx专题12 图形的变换(第01期)(原卷版).docx专题13 图形的相似(第01期)(解析版).docx专题13 图形的相似(第01期)(原卷版).docx专题14 锐角三角函数(第01期)(解析版).docx专题14 锐角三角函数(第01期)(原卷版).docx专题15 尺规作图、投影与视图(第01期)(解析版).docx专题15 尺规作图、投影与视图(第01期)(原卷版).docx专题16 统计与概率(第01期)(解析版).docx专题16 统计与概率(第01期)(原卷版).docx专题17 规律探索题(第01期)(解析版).docx专题17 规律探索题(第01期)(原卷版).docx专题18 新定义与阅读理解题(第01期)(解析版).docx专题18 新定义与阅读理解题(第01期)(原卷版).docx专题19 几何探究型问题(第01期)(解析版).docx专题19 几何探究型问题(第01期)(原卷版).docx专题20 二次函数综合题(第01期)(解析版).docx专题20 二次函数综合题(第01期)(原卷版).docx 2019年中考数学母题探源:专题01 一元二次方程根的判别式、根与系数的关系(第二篇)(原卷版).docx专题01 实数(第一篇)(解析版).docx专题01 实数(第一篇)(原卷版).docx专题01 一元二次方程根的判别式、根与系数的关系(第二篇)(解析版).docx专题01 中考中与“化简求值型”相关的探索性问题(第三篇)(解析版).docx专题01 中考中与“化简求值型”相关的探索性问题(第三篇)专题02 代数式与因式分解(第一篇)(解析版).docx专题02 代数式与因式分解(第一篇)(原卷版).docx专题02 方案设计问题(第二篇)(解析版).docx专题02 方案设计问题(第二篇)(原卷版).docx专题02 中考中与“多结论判断型”相关的探索性问题(第三篇)(解析版).docx专题02 中考中与“多结论判断型”相关的探索性问题(第三篇)(原卷版).docx专题03 分式与二次根式(第一篇)(解析版).docx专题03 分式与二次根式(第一篇)(原卷版).docx专题03 解直角三角形的应用(第二篇)(解析版).docx专题03 解直角三角形的应用(第二篇)(原卷版).docx专题03 中考中与“探索规律型”相关的探索性问题(第三篇)(解析版).docx专题03 中考中与“探索规律型”相关的探索性问题(第三篇)(原卷版).docx专题04 方程与方程组(第一篇)(解析版).docx专题04 方程与方程组(第一篇)(原卷版).docx专题04 切线的判定与性质(第二篇)(解析版).docx专题04 切线的判定与性质(第二篇)(原卷版).docx专题04 中考中与“图形关系猜想证明型”相关的探索性问题(第三篇)(解析版).docx专题04 中考中与“图形关系猜想证明型”相关的探索性问题(第三篇)(原卷版).docx专题05 不等式与不等式组(第一篇)(解析版).docx专题05 不等式与不等式组(第一篇)(原卷版).docx专题05 圆综合题(第二篇)(解析版).docx专题05 圆综合题(第二篇)(原卷版).docx专题05 中考中与“操作探究型”相关的探索性问题(第三篇)专题05 中考中与“操作探究型”相关的探索性问题(第三篇)(原卷版).docx专题06 翻折变换(第二篇)(解析版).docx专题06 翻折变换(第二篇)(原卷版).docx专题06 一次函数(第一篇)(解析版).docx专题06 一次函数(第一篇)(原卷版).docx专题06 中考中与“动态型”相关的探索性问题(第三篇)(解析版).docx专题06 中考中与“动态型”相关的探索性问题(第三篇)(原卷版).docx专题07 反比例函数综合题(第二篇)(解析版).docx专题07 反比例函数综合题(第二篇)(原卷版).docx专题07 反比例函数(第一篇)(解析版).docx专题07 反比例函数(第一篇)(原卷版).docx专题08 二次函数综合题(第二篇)(解析版).docx专题08 二次函数综合题(第二篇)(原卷版).docx专题10 四边形(第一篇)(解析版).docx专题10 四边形(第一篇)(原卷版).docx专题11 圆(第一篇)(解析版).docx专题11 圆(第一篇)(原卷版).docx专题12 图形的变换与相似(第一篇)(解析版).docx专题12 图形的变换与相似(第一篇)(原卷版).docx专题13 锐角三角函数、视图与投影(第一篇)(解析版).docx专题13 锐角三角函数、视图与投影(第一篇)(原卷版).docx专题14 统计与概率(第一篇)(解析版).docx专题14 统计与概率(第一篇)(原卷版).docx资源截图:中考真题分类汇编系列,教师解析版+学生试卷版双版本设计,高清word可编辑修改打印,教师同学必备精品!。
全国2019—2020年最新中考数学真题分类汇编 14 统计专题精品试题及答案解析
统计考点一、统计学中的几个基本概念(4分)1、总体所有考察对象的全体叫做总体。
2、个体总体中每一个考察对象叫做个体。
3、样本从总体中所抽取的一部分个体叫做总体的一个样本。
4、样本容量样本中个体的数目叫做样本容量。
5、样本平均数样本中所有个体的平均数叫做样本平均数。
6、总体平均数总体中所有个体的平均数叫做总体平均数,在统计中,通常用样本平均数估计总体平均数。
考点二、众数、中位数(3~5分)1、众数在一组数据中,出现次数最多的数据叫做这组数据的众数。
2、中位数将一组数据按大小依次排列,把处在最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。
考点三、方差(3分)1、方差的概念在一组数据,,,,21n x x x 中,各数据与它们的平均数x 的差的平方的平均数,叫做这组数据的方差。
通常用“2s ”表示,即])()()[(1222212x x x x x x ns n -++-+-=2、方差的计算 (1)基本公式:])()()[(1222212x x x x x x ns n -++-+-=(2)简化计算公式(Ⅰ):])[(12222212x n x x x ns n -+++=也可写成2222212)][(1x x x x ns n -+++=此公式的记忆方法是:方差等于原数据平方的平均数减去平均数的平方。
(3)简化计算公式(Ⅱ):]')'''[(12222212x n x x x ns n-+++= 当一组数据中的数据较大时,可以依照简化平均数的计算方法,将每个数据同时减去一个与它们的平均数接近的常数a ,得到一组新数据a x x -=11',a x x -=22',…,a x x n n -=',那么,2222212')]'''[(1x x x x ns n-+++= 此公式的记忆方法是:方差等于新数据平方的平均数减去新数据平均数的平方。
2019-2020年中考数学试题分类汇编数据的收集整理与描述(最新整理)
调查结果比较近似. 解答:解:A、调查一批电视机的使用寿命情况,调查局有破坏性,适合抽样调查,故 A 不
符合题意; B、调查某中学九年级一班学生的视力情况,适合普查,故 B 符合题意; C、调查重庆市初中学生每天锻炼所用的时间情况,调查范围广,适合抽样调查,故 C 不符合题意; D、调查重庆市初中学生利用网络媒体自主学习的情况,适合抽样调查,故 D 不符合 题意; 故选:B. 点评:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对 象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义 或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用 普查. 8.(2015•聊城)电视剧《铁血将军》在我市拍摄,该剧展示了抗日英雄范筑先的光辉形 象.某校为了了解学生对“民族英雄范筑先”的知晓情况,从全校 2400 名学生中随机抽取了 100 名学生进行调查.在这次调查中,样本是( )
族英雄范筑先”的知晓情况,据此解答即可.
解答:解:根据总体、样本的含义,可得在这次调查中,
总体是:2400 名学生对“民族英雄范筑先”的知晓情况,
样本是:所抽取的 100 名学生对“民族英雄范筑先”的知晓情况.
故选:C.
点评:此题主要考查了总体、个体、样本、样本容量的含义和应用,要熟练掌握,解答此题
考点:全面调查与抽样调查. 分析:由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的
调查结果比较近似. 解答:解:A、对重庆市中学生每天学习所用时间的调查,人数众多,适宜采用抽样调查,
故此选项错误; B、对全国中学生心理健康现状的调查,人数众多,适宜采用抽样调查,故此选项错误; C、对某班学生进行 6 月 5 日是“世界环境日”知晓情况的调查,人数不多,适宜采用 全面调查,故此选项正确; D、对重庆市初中学生课外阅读量的调查,人数众多,适宜采用抽样调查,故此选项 错误; 故选:C. 点评:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对 象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义 或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用 普查. 2.(2015•漳州)下列调查中,适宜采用普查方式的是( ) A.了解一批圆珠笔的寿命 B.了解全国九年级学生身高的现状
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020年中考数学试题分类汇编 统计一.选择题1.(2015安徽)某校九年级(1)班全体学生2015年初中毕业体育考试的成绩统计如下表:根据上表中的信息判断,下列结论中错误..的是 A .该班一共有40名同学B .该班学生这次考试成绩的众数是45分C .该班学生这次考试成绩的中位数是45分D .该班学生这次考试成绩的平均数是45分2.(2015广东)3. 一组数据2,6,5,2,4,则这组数据的中位数是 A.2 B.4 C.5 D.6 【答案】B.【解析】由小到大排列,得:2,2,4,5,6,所以,中位数为4,选B 。
3.(孝感)今年,我省启动了“关爱留守儿童工程”.某村小为了了解各年级留守儿童的数量, 对一到六年级留守儿童数量进行了统计,得到每个年级的留守儿童人数分别为20 18 17 10 15 10,,,,,.对于这组数据,下列说法错误..的是 A .平均数是15 B .众数是10C .中位数是17D .方差是3444.(湖南常德)某村引进甲乙两种水稻良种,各选6块条件相同的实验田,同时播种并核定亩产,结果甲、乙两种水稻的平均产量均为550kg/亩,方差分别为2141.7S 甲=,2433.3S 乙=,则产量稳定,适合推广的品种为:A 、甲、乙均可B 、甲C 、乙D 、无法确定 【解答与分析】这是数据统计与分析中的方差意义的理解,平均数相同时,方差越小越稳定: 答案为B5.(衡阳)在今年“全国助残日”捐款活动中,某班级第一小组7名同学积极捐出自己的零花钱,奉献自己的爱心.他们捐款的数额分别是(单位:元)50,20,50,30,25,50,55,这组数据的众数和中位数分别是( C ). A .50元,30元 B .50元,40元 C .50元,50元 D .55元,50元6. )(2015•益阳)某小组5名同学在一周内参加家务劳动的时间如下表所示,关于“劳动平均数为:=3.8星手机的销售情况四个同学得出的以下四个结论,其中正确的为A . 4月份三星手机销售额为65万元B . 4月份三星手机销售额比3月份有所上升C . 4月份三星手机销售额比3月份有所下降D . 3月份与4月份的三星手机销售额无法比较,只能比较该店销售总额8.(野西南州)已知一组数据:-3,6,2,-1,0,4,则这组数据的中位数是A .1B .34C .0D .2 9.二.填空题1.(2015•厦门)已知一组数据1,2,3,…,n (从左往右数,第1个数是1,第2个数是2,第3个数是3,依此类推,第n 个数是n ).设这组数据的各数之和是s ,中位数是k ,则s = nk(用只含有k 的代数式表示).2.(2015•梅州)在“全民读书月”活动中,小明调查了班级里40名同学本学期计划购买课外书的花费情况,并将结果绘制成如图所示的统计图.请根据相关信息,解答下列问题:(直接填写结果)各月手机销售总额统计图三星手机销售额占该手机店 当月手机销售总额的百分比统计图(1)这次调查获取的样本数据的众数是 ; (2)这次调查获取的样本数据的中位数是 ;(3)若该校共有学生1000人,根据样本数据,估计本学期计划购买课外书花费50元的学生有 人.考点:条形统计图;用样本估计总体;中位数;众数.. 分析:(1)众数就是出现次数最多的数,据此即可判断; (2)中位数就是大小处于中间位置的数,根据定义判断;(3)求得调查的总人数,然后利用1000乘以本学期计划购买课外书花费50元的学生所占的比例即可求解. 解答:解:(1)众数是:30元,故答案是:30元; (2)中位数是:50元,故答案是:50元; (3)调查的总人数是:6+12+10+8+4=40(人), 则估计本学期计划购买课外书花费50元的学生有:1000×=250(人).故答案是:250.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.3.(汕尾)在“全民读书月活动中,小明调查了班级里40名同学本学期计划购买课外书的花费情况,并将结果绘制成如图所示的统计图。
请根据相关信息,解答下列问题:(直接填写结果)(1)这次调查获取的样本数据的众数是 ; (2)这次调查获取的样本数据的中位数是 ;(3)若该校共有学生1000人,根据样本数据,估计本学期计划购买课外书花费50元的学生有 人。
/元(1)30元; (2)50元; (3)2504.(贵州安顺)一组数据2,3,x ,5,7的平均数是4,则这组数据的众数是 .35.(株洲)某大学自主招生考试只考数学和物理,计算综合得分时,按数学占60%,物理占40%计算。
已知孔明数学得分为95分,综合得分为93分,那么孔明物理得分是 分。
【试题分析】本题考点为:加权平均数的运用,或者直接利用应用题来解答。
答案为:90分 6.三.解答题1(安顺)某学校为了增强学生体质,决定开设以下体育课外活动项目:A .篮球 B .乒乓球C .羽毛球 D .足球,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图。
请回答下列问题:(1)这次被调查的学生共有 人;(2)请你将条形统计图2补充完整; 解: (1)200 (2分); (2)略 (2分);(其中画图得1分,标出60得1分)2.(孝感)2015年1月,市教育局在全市中小学中选取了63所学校从学生的思想品德、学业水平、学业负担、身心发展和兴趣特长五个维度进行了综合评价.评价小组在选取的某中学七年级全体学生中随机抽取了若干名学生进行问卷调查,了解他们每天在课外用于学习的时间,并绘制成如下不完整的统计图.根据上述信息,解答下列问题: (1)本次抽取的学生人数是 ☆ ;扇形统计图中的圆心角α等于 ☆ ;补全统计直方图; 解:(1)30;︒144;………2分补全统计图如下: …………4分 (2)根据题意列表如下:36° A B C D )19(题第α小时54~小时10~小时32~小时21~%20 43小时~小时时间/人频数/小时时间/人频数/3.(常德)、某校组织了一批学生随机对部分市民就是否吸烟以及吸烟和非吸烟人群对他人在公共场所吸烟的态度(分三类:A 表示主动制止;B 表示反感但不制止,C 表示无所谓)进行了问卷调查,根据调查结果分别绘制了如下两个统计图。
请根据图中提供的信息解答下列问题:(1)图1中,(2)这次被调查的市民有多少人? (3)补全条形统计图(4)若该市共有市民760万人, 求该市大约有多少人吸烟? 【解答与分析】主要考点数据的分析 (1)360°×(1-85%)=54° (2)(80+60+30)÷85%=200 (3)200-(80+60+30+8+12)=(4)760×(1-85%)=114(万人) 3. (2015•益阳)2014年益阳市的地区生产总值(第一、二、三产业的增加值之和)已进入千亿元俱乐部,如图表示2014年益阳市第一、二、三产业增加值的部分情况,请根据图中提供的信息解答下列问题(1)2014年益阳市的地区生产总值为多少亿元? (2)请将条形统计图中第二产业部分补充完整;(3)求扇形统计图中第二产业对应的扇形的圆心角度数.图1吸烟与不吸烟人数比例统计图图2态度C 60403020B A)扇形统计图中第二产业部分的圆心角为4.(株洲)某学校举行一次体育测试,从所有参加测试的学生中随机抽取10名学生的成绩,等级请回答下列问题:(1)孔明同学这次测试的成绩是87分,则他的成绩等级是;(2)请将条形统计图补充完整;(3)已知该校所有参加这次测试的学生中,有60名学生成绩是A等,请根据以上抽样结果,估计该校参加这次测试的学生总人数是多少?【试题分析】本题考点:数据分析与统计(1)从表格中找到A的最低分为85分,故易知孔明的成绩为A(2)易知:C等的人数为10-3-5=2(3)这是由抽样来衡量整体的方法:10个中A有3个,所以A的比例为3 10总人数为:3 6020010÷=5.(无锡)某区教研部门对本区初二年级的学生进行了一次随机抽样问卷调查,其中有这样一个问题: 老师在课堂上放手让学生提问和表达 ( )A .从不B .很少C .有时D .常常E .总是答题的学生在这五个选项中只能选择一项.下面是根据学生对该问题的答卷情况绘制的两幅不完整的统计图.根据以上信息,解答下列问题:(1)该区共有 ▲ 名初二年级的学生参加了本次问卷调查; (2)请把这幅条形统计图补充完整; (3)在扇形统计图中,“总是”所占的百分比为 ▲ . .解:(1)3200;(2)图略,“有时”的人数为704;(3)42%. 6.(呼和浩特)学校准备从甲乙两位选手中选择一位选手代表学校参加所在地区的汉字听写大赛,学校对两位选手从表达能力、阅读理解、综合素质和汉字听写四个方面做了测试,他们各自的成绩(百分制)如下表:(1)应选派谁;(2)如果表达能力、阅读理解、综合素质和汉字听写分别赋予它们2、1、3和4的权,请分别计算两名选手的平均成绩,从他们的这一成绩看,应选派谁. 解:(1)乙的平均成绩:73+80+82+834=79.5∵80.25 >79.5 ∴应选派甲(2)甲的平均成绩:85×2+78×1+85×3+73×410 = 79.5乙的平均成绩:73×2+80×1+82×3+83×410= 80.4∵79.5<80.4 ∴应选派乙7.(浙江台州)某校想了解学生每周的课外阅读时间情况,随机调查了部分学生,对学生每周的课外阅读时间x (单位:小时)进行分组整理,并绘制了如图所示的不完整的频数分别直方图和扇形统计图:各选项选择人数的条形统计图各选项选择人数分布的扇形统计图 0600 900 12001500从不很少 有时 常常 总是 从不3%人数选项根据图中提供的信息,解答下列问题: (1)补全频数分布直方图(2)求扇形统计图中m 的值和E 组对应的圆心角度数(3)请估计该校3000名学生中每周的课外阅读时间不小于6小时的人数 解:(1)补全频数分布直方图,如图所示. (2)∵100%1010=÷, ∴%4010040=÷,∴40=m . ∵%41004=÷,∴“E ”组对应的圆心角度数︒=︒⨯=4.14360%4. (写成14.4,也给分) (3)870%)4%25(3000=+⨯人.答:估计该校学生中每周的课外阅读时间不小于6小时的人数是870人.。