(精品)椭圆离心率经典题型
求椭圆及双曲线的离心率的习题(最新整理)
求椭圆的离心率1、已知F 1,F 2分别为椭圆的左,右焦点,椭圆上点M 的横坐标等于右焦点的横坐标,其纵坐标等于短半轴长的,求椭圆的离心率. e =.23532、已知F 是椭圆C 的一个焦点,B 是短轴的一个端点,线段BF 的延长线交C 于点D ,且=2BF,则C 的离心率为________.解析:答案:FD333、已知F 是椭圆C 的一个焦点,B 是短轴的一个端点,线段BF 的延长线交C 于点D ,且=2BF,则C 的离心率为________.如图,设椭圆的标准方程为+=1(a >b >0)不妨设B 为FD 22x a22y b上顶点,F 为右焦点,设D (x ,y ).由=2,得(c ,-b )=2(x -c ,y ),BF FD即,解得,D (,-).2()2c x c b y =-⎧⎨-=⎩322c x by ⎧=⎪⎪⎨⎪=-⎪⎩32c 2b 由D 在椭圆上得:=1, ∴=,∴e=.22223()()22b c a b -+22c a13ca4、设椭圆C :22221(0)x y a b a b+=>>的左焦点为F ,过点F 的直线与椭圆C 相交于A ,B 两点,直线l的倾斜角为60o ,2AF FB =.椭圆C 的离心率;解:设1122(,),(,)A x y B x y ,由题意知1y <0,2y >0.直线l 的方程为 )y x c =-,其中c=.联立2222),1y x c x y ab ⎧=-⎪⎨+=⎪⎩得22224(3)30a b y cy b ++-=解得12y y ==因为2AF FB =,所以122y y -=.即2=得离心率23c e a ==. 5.已知椭圆E 的短轴长为6,焦点F 到长轴的一个端点的距离等于9,则椭圆E 的离心率等于________.6、在平面直角坐标系xOy 中,已知椭圆+=1(a >b >0)的右顶点为A ,上顶点为B ,Mx 2a 2y 2b2为线段AB 的中点,若∠MOA =30°,则该椭圆的离心率为________. 答案:637.已知F 1,F 2是椭圆C 的两个焦点,焦距为4.若P 为椭圆C 上一点,且△PF 1F 2的周长为14,则椭圆C 的离心率e 为( )A. B. C. D. ,故选B.1525452158、设椭圆C :+=1(a >b >0)的左右焦点为F 1,F 2,过F 2作x 轴的垂线与C 相交于A ,Bx 2a 2y 2b2两点,F 1B 与y 轴相交于点D ,若AD ⊥F 1B ,则椭圆C 的离心率等于________.e =.339.椭圆()的两个焦点分别为、,以、为边作正三角形,若椭22221x y a b+=0a b >>F 2F 1F 2F 圆恰好平分三角形的另两边,则椭圆的离心率为(B )eA B C .D 1-4(2-10、已知F 是椭圆的左焦点,A ,B 分别是其在x 轴正半轴和y 轴正半轴上的顶点,P 是椭圆上一点,且PF ⊥x 轴,OP ∥AB ,那么该椭圆的离心率为( )A. B. C. D.2224123211、如图所示,椭圆的中心在坐标原点O ,顶点分别是A 1,A 2,B 1,B 2,焦点分别为F 1,F 2,延长B 1F 2与A 2B 2交于P 点,若∠B 1PA 2为钝角,则此椭圆的离心率的取值范围为________.易知直线B 2A 2的方程为bx +ay -ab =0,直线B 1F 2的方程为bx -cy -bc =0.联立可得P .又A 2(a ,0),B 1(0,-b ),(2ac a +c ,b (a -c )a +c)所以=,=.PB 1→ (-2ac a +c ,-2ab a +c )PA 2→ (a (a -c )a +c ,-b (a -c )a +c)因为∠B 1PA 2为钝角,所以·<0, 即+<0.PA 2→ PB 1→ -2a 2c (a -c )(a +c )22ab 2(a -c )(a +c )2化简得b 2<ac ,即a 2-c 2<ac ,故+-1>0即e 2+e -1>0,. 而0<e <1,所以(c a )2 c a 5-12<e <1求双曲线的离心率1、已知双曲线的顶点到渐近线的距离为2,焦点到渐近线的距离为6,则该双曲线的离心率为________.由三角形相似或平行线分线段成比例定理得=,∴=3,即e =326a c ca2、已知F 1,F 2分别是双曲线的两个焦点,P 为该双曲线上一点,若△PF 1F 2为等腰直角三角形,则该双曲线的离心率为( )A.+1 B.+1 C .2 D .2 选B32323、设双曲线的焦点在x 轴上,两条渐近线为y =±x ,则该双曲线的离心率e 等于( )12A .5 B. C. D. 选C552542.过双曲线22221(0,0)x y a b a b-=>>的右顶点A 作斜率为1-的直线,该直线与双曲线的两条渐近线的交点分别为,B C .若12AB BC =,则双曲线的离心率是( )ABC D 【解析】对于(),0A a ,则直线方程为0x y a +-=,直线与两渐近线的交点为B ,C ,22,,(,)a ab a ab B C a b a b a b a b ⎛⎫- ⎪++--⎝⎭,22222222(,),,a b a b ab ab BC AB a b a b a b a b ⎛⎫=-=-⎪--++⎝⎭ ,因此222,4,ABBC a b e =∴=∴=C4、设F 1,2是双曲线C :-=1(a >0,b >0)的左、右焦点,P 是C 上一点,若|PF 1|+|PF 2|=6a ,x 2a 2y 2b2且△PF 1F 2的最小内角为30°,则C 的离心率为( )A. B .2 C. D .2353如图,设P 为右支上一点,则|PF 1|-|PF 2|=2a ,|PF 1|+|PF 2|=6a ,得|PF 1|=4a ,|PF 2|=2a ,最小角∠PF 1F 2=30°,由余弦定理得:(2a )2=(4a )2+(2c )2-2×4a ×2c ·cos 30°, 解得e =c a=.35、过双曲线-=1(a >0,b >0)的左焦点且垂直于x 轴的直线与双曲线相交于M 、N 两x 2a 2y 2b2点,以MN 为直径的圆恰好过双曲线的右顶点,则双曲线的离心率为________.解析:由题意知,a +c =,即a 2+ac =c 2-a 2,∴c 2-ac -2a 2=0,∴e 2-e -2=0,b 2a。
离心率问题的7种题型和15种方法
离心率问题的7种题型和15种方法离心率(eccentricity)是描述椭圆轨道形状的一个重要参数,它的大小决定了行星或卫星轨道的偏心程度。
在天文学、航天学等相关领域,经常需要解决各种与离心率相关的问题,下面我们将介绍离心率问题的7种常见题型和15种解题方法。
一、离心率的定义及性质离心率是描述椭圆轨道形状的一个参数,它等于椭圆长半轴和短半轴之差的一半与长半轴的比值。
离心率的取值范围为0到1之间,当离心率为0时,椭圆变成了一个圆,当离心率为1时,椭圆变成了一条直线。
离心率越大,椭圆的形状越扁平,轨道越偏心。
二、离心率问题的7种题型1. 求给定离心率的椭圆的半长轴和半短轴长度;2. 已知椭圆的长半轴和离心率,求短半轴长度;3. 已知椭圆的长半轴和短半轴长度,求离心率;4. 求给定行星或卫星的轨道离心率;5. 已知行星或卫星轨道的离心率和半长轴长度,求轨道的半短轴长度;6. 已知行星或卫星的轨道离心率和半短轴长度,求轨道的半长轴长度;7. 求给定行星或卫星的轨道周期。
三、离心率问题的15种解题方法1. 利用椭圆轨道的定义和性质,直接计算出椭圆的长短半轴;2. 利用椭圆的面积和周长公式计算出椭圆的长短半轴;3. 利用行星或卫星的轨道速度和距离公式计算出轨道离心率;4. 利用行星或卫星的轨道周期和距离公式计算出轨道离心率;5. 利用行星或卫星的轨道半径和速度公式计算出轨道离心率;6. 利用行星或卫星在轨道上的最高点和最低点的距离差和总距离计算出轨道离心率;7. 利用行星或卫星的轨道焦点距离和长轴长度计算出轨道离心率;8. 利用行星或卫星的轨道高度、速度和引力公式计算出轨道离心率;9. 利用行星或卫星的轨道高度、周期和引力公式计算出轨道离心率;10. 利用行星或卫星的轨道高度、半径和引力公式计算出轨道离心率;11. 利用行星或卫星的轨道平均速度和最高、最低速度之比计算出轨道离心率;12. 利用行星或卫星在轨道上的最高点和最低点速度之比计算出轨道离心率;13. 利用行星或卫星在轨道上的最高点和最低点的动能之比计算出轨道离心率;14. 利用行星或卫星在轨道上的最高点和最低点的势能之比计算出轨道离心率;15. 利用行星或卫星的轨道半径、质量和速度计算出轨道离心率。
椭圆离心率题型归类高二数学选择性必修第一册)(解析版)
专题9椭圆离心率题型归类目录【题型一】离心率基础.....................................................................................................................1【题型二】利用椭圆第一定义求离心率.........................................................................................3【题型三】焦点三角形与余弦定理.................................................................................................5【题型四】顶角直角三角形型.........................................................................................................7【题型五】焦半径与第二定义.......................................................................................................10【题型六】第三定义与中点弦.......................................................................................................12【题型七】焦点三角形:双底角型...............................................................................................14【题型八】焦点三角形:双余弦定理型.......................................................................................16【题型九】焦点弦与定比分点.......................................................................................................19【题型十】焦点圆...........................................................................................................................22【题型十一】椭圆与圆...................................................................................................................24培优第一阶——基础过关练...........................................................................................................26培优第二阶——能力提升练...........................................................................................................31培优第三阶——培优拔尖练.. (35)综述:1.椭圆离心率求解方法主要有:①求出a ,c ,代入公式ce a;②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=a 2-c 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).③特殊情况下的不等方程,甚至可以直接设a=1,分别解出c 或b 的值,c 值就是离心率2.椭圆扁平程度:因为e =ca=c 2a 2=a 2-b 2a 2=e 越大,椭圆越扁;e 越小,椭圆越圆【题型一】离心率基础【典例分析】如果椭圆221(8)89x y kk+=>-+的离心率为12e=,则k=()A.4B.4或54-C.45-D.4或45-【答案】B【分析】分焦点在x轴和在y轴两种情况,分别得到a,b的表达式,进而求得c的表达式,然后根据离心率得到关于k的方程,求解即可.【详解】解:因为椭圆221(8)89x y kk+=>-+的离心率为12e=,当89k+>时,椭圆焦点在x轴上,可得:13,2a b c e=∴=∴==,解得4k=,当089k<+<时,椭圆焦点在y轴上,可得:13,32ca b c ea======,解得54k=-.4k∴=或54k=-.故选:B.1.已知椭圆()22105x y mm+=>的离心率5e=,则m的值为______.【答案】253或3【分析】分别对焦点在x轴和y轴讨论,结合离心率求解m即可.【详解】已知椭圆方程为221(05).5x y m mm+=>≠且当焦点在x轴上,即05m<<时,有a b=则c=105=,解得m=3.当焦点在y轴上,即5m>时,有a b则c==253m=,即m的值为3或253.故答案为:3或2532.方程22134x y m m +=--表示的曲线是椭圆,则离心率的取值范围是____________.【答案】(0,1);【分析】根据椭圆的标准方程求解.【详解】由题意4030m m ->⎧⎨->⎩且34m m -≠-,解得4m >。
(完整版)求椭圆离心率范围的常见题型及解析
求椭圆离心率范围的常见题型解析解题关键:挖掘题中的隐含条件,构造关于离心率e 的不等式.一、利用曲线的范围,建立不等关系例1已知椭圆22221(0)x y a b a b+=>>右顶为A,点P 在椭圆上,O 为坐标原点,且OP 垂直于PA ,求椭圆的离心率e 的取值范围.例2已知椭圆22221(0)x y a b a b+=>>的左、右焦点分别为12(,0),(,0)F c F c -,若椭圆上存在一点P 使1221sin sin a cPF F PF F =,则该椭圆的离心率的取值范围为()21,1-.二、利用曲线的平面几何性质,建立不等关系 例3已知12、F F 是椭圆的两个焦点,满足的点P 总在椭圆内部,则椭圆离心率的取值范围是( )A.(0,1) B.1(0,]2C.2(0,)2 D.2[,1)2xy OF 1F 2三、利用点与椭圆的位置关系,建立不等关系例4已知ABC ∆的顶点B 为椭圆12222=+by a x )0(>>b a 短轴的一个端点,另两个顶点也在椭圆上,若ABC ∆的重心恰好为椭圆的一个焦点F )0,(c ,求椭圆离心率的范围.四、利用函数的值域,建立不等关系例5椭圆12222=+by a x )0(>>b a 与直线01=-+y x 相交于A 、B 两点,且0=⋅OB OA (O为原点),若椭圆长轴长的取值范围为[]6,5,求椭圆离心率的范围.五、利用均值不等式,建立不等关系.例6 已知F 1、F 2是椭圆的两个焦点,P 为椭圆上一点,∠F 1PF 2=60°.求椭圆离心率的范围;解 设椭圆方程为x 2a 2+y 2b 2=1 (a>b>0),|PF 1|=m ,|PF 2|=n ,则m +n =2a.在△PF 1F 2中,由余弦定理可知, 4c 2=m 2+n 2-2mncos 60°=(m +n)2-3mn =4a 2-3mn ≥4a 2-3·⎝⎛⎭⎪⎫m +n 22=4a 2-3a 2=a 2 xy OA BF MC(当且仅当m =n 时取等号).∴c 2a 2≥14,即e ≥12.又0<e<1,∴e 的取值范围是⎣⎡⎭⎫12,1.例7 已知1F 、2F 是椭圆)0(12222>>=+b a by a x 的两个焦点,椭圆上一点P 使︒=∠9021PF F ,求椭圆离心率e 的取值范围.解析1:令n PF m pF ==21,,则a n m 2=+ 由21PF PF ⊥2224c n m=+∴ ()22222224a nm n m c=+≥+=∴ 即21222≥=ac e又12210<≤∴<<e e 六、利用焦点三角形面积最大位置,建立不等关系解析2:不妨设短轴一端点为B 则2245tan 21b b S PFF =︒=∆≤bc b c S BF F =⨯⨯=∆22121b ⇒≤c 2b ⇒≤2c 22c a -⇒≤2c 222ac e =⇒≥21故22≤e <1 七、利用实数性质,建立不等关系解析3:设()y x P ,,由21PF PF ⊥得1-=-⋅+cx y c x y ,即222x c y -=,代入12222=+by a x 得()22222c b c a x -= ,2220b c x ≥∴≥即222c a c-≥,22≥=∴a c e 又1<e 122<≤∴e 八、利用曲线之间位置关系,建立不等关系解析4:21PF PF ⊥ 为直径的圆上点在以21F F P ∴ 又P 在椭圆上,222c y x P =+∴为圆 与 12222=+by a x 的公共点.由图可知222a c b a c b <≤⇒<≤ ∴2222a c c a <≤-122<≤∴e 说明:椭圆上一点距中心距离最小值为短半轴长.九、利用21PF F ∠最大位置,建立不等关系解析4:椭圆12222=+by a x )0(>>b a 当P 与短轴端点重合时∠21PF F 最大无妨设满足条件的点P 不存在 ,则∠21PF F <0902245sin sin 001=<∠=<∴OPF a c 又10<<e 所以若存在一点P 则 122<≤e .。
求椭圆离心率范围的常见题型及解析
求椭圆离心率范围的常见题型及解析解析解题关键:挖掘题中的隐含条件,构造关于离心率e的不等式。
一、利用曲线的范围,建立不等关系已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$右顶点为A,点P在椭圆上,O为坐标原点,且OP垂直于PA,求椭圆的离心率e的取值范围。
小改写:已知椭圆方程$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$,右顶点为A,点P在椭圆上,且OP垂直于PA,求椭圆的离心率e的取值范围。
二、利用曲线的平面几何性质,建立不等关系已知F1、F2是椭圆的两个焦点,满足所有点P总在椭圆内部,则椭圆离心率的取值范围是()。
小改写:已知F1、F2是椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的两个焦点,满足所有点P总在椭圆内部,则椭圆离心率的取值范围是()。
三、利用点与椭圆的位置关系,建立不等关系已知$\triangle ABC$的顶点B为椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$短轴的一个端点,另两个顶点也在椭圆上,若$\triangle ABC$的重心恰好为椭圆的一个焦点F(c,0),求椭圆离心率的范围。
小改写:已知椭圆方程$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$,短轴的一个端点为B,另两个顶点也在椭圆上,$\triangle ABC$的重心恰好为椭圆的一个焦点F(c,0),求椭圆离心率的范围。
四、利用函数的值域,建立不等关系椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$与直线$x+y-1=0$相交于A、B两点,且OA·OB=(O为原点),若椭圆长轴长的取值范围为$[5,6]$,求椭圆离心率的范围。
(完整版)椭圆离心率高考练习题
椭圆的离心率专题训练一.选择题(共29小题)1.椭圆的左右焦点分别为F1,F2,若椭圆C上恰好有6个不同的点P,使得△F1F2P为等腰三角形,则椭圆C的离心率的取值范围是()A.B.C.D.2.在区间[1,5]和[2,4]分别取一个数,记为a,b,则方程表示焦点在x轴上且离心率小于的椭圆的概率为()A.B.C.D.3.已知椭圆(a>b>0)上一点A关于原点的对称点为点B,F为其右焦点,若AF⊥BF,设∠ABF=α,且,则该椭圆离心率e的取值范围为()A.B.C. D.4.斜率为的直线l与椭圆交于不同的两点,且这两个交点在x轴上的射影恰好是椭圆的两个焦点,则该椭圆的离心率为()A. B.C. D.5.设椭圆C:=1(a>b>0)的左、右焦点分别为F1、F2,P是C上的点,PF2⊥F1F2,∠PF1F2=30°,则C的离心率为()A. B.C.D.6.已知椭圆,F1,F2为其左、右焦点,P为椭圆C上除长轴端点外的任一点,△F1PF2的重心为G,内心I,且有(其中λ为实数),椭圆C的离心率e=()A.B.C.D.7.已知F1(﹣c,0),F2(c,0)为椭圆的两个焦点,P为椭圆上一点且,则此椭圆离心率的取值范围是()A.B. C.D.8.椭圆+=1(a>b>0)的左、右焦点分别是F1,F2,过F2作倾斜角为120°的直线与椭圆的一个交点为M,若MF1垂直于x轴,则椭圆的离心率为()A.B.2﹣C.2(2﹣)D.9.椭圆C的两个焦点分别是F1,F2,若C上的点P满足,则椭圆C的离心率e的取值范围是()A.B. C.D.或10.设F1,F2为椭圆的两个焦点,若椭圆上存在点P满足∠F1PF2=120°,则椭圆的离心率的取值范围是()A.B.C.D.11.设A1,A2分别为椭圆=1(a>b>0)的左、右顶点,若在椭圆上存在点P,使得>﹣,则该椭圆的离心率的取值范围是()A.(0,)B.(0,)C.D.12.设椭圆C的两个焦点为F1、F2,过点F1的直线与椭圆C交于点M,N,若|MF2|=|F1F2|,且|MF1|=4,|NF1|=3,则椭圆Г的离心率为()A.B.C.D.13.(2015•高安市校级模拟)椭圆C:+=1(a>b>0)的左焦点为F,若F关于直线x+y=0的对称点A是椭圆C上的点,则椭圆C的离心率为()A.B.C. D.一l14.已知F1,F2分别为椭圆+=1(a>b>0)的左、右焦点,P为椭圆上一点,且PF2垂直于x轴.若|F1F2|=2|PF2|,则该椭圆的离心率为()A. B. C.D.15.已知椭圆(a>b>0)的两焦点分别是F1,F2,过F1的直线交椭圆于P,Q两点,若|PF2|=|F1F2|,且2|PF1|=3|QF1|,则椭圆的离心率为()A.B.C.D.16.已知椭圆C:的左、右焦点分别为F1,F2,O为坐标原点,M为y轴正半轴上一点,直线MF2交C于点A,若F1A⊥MF2,且|MF2|=2|OA|,则椭圆C的离心率为()A.B.C.D.17.已知椭圆C的中心为O,两焦点为F1、F2,M是椭圆C上一点,且满足||=2||=2||,则椭圆的离心率e=()A.B.C. D.18.设F1,F2分别是椭圆+=1(a>b>0)的左右焦点,若在直线x=上存在点P,使△PF1F2为等腰三角形,则椭圆的离心率的取值范围是()A.(0,)B.(0,)C.(,1)D.(,1)19.点F为椭圆+=1(a>b>0)的一个焦点,若椭圆上在点A使△AOF为正三角形,那么椭圆的离心率为()A. B. C. D.﹣120.已知椭圆C:=1(a>b>0)和圆O:x2+y2=b2,若C上存在点M,过点M引圆O的两条切线,切点分别为E,F,使得△MEF为正三角形,则椭圆C的离心率的取值范围是()A.[,1)B.[,1)C.[,1)D.(1,]21.在平面直角坐标系xOy中,以椭圆+=1(a>b>0)上的一点A为圆心的圆与x轴相切于椭圆的一个焦点,与y轴相交于B,C两点,若△ABC是锐角三角形,则该椭圆的离心率的取值范围是()A.(,)B.(,1)C.(,1)D.(0,)22.设F1、F2为椭圆C:+=1(a>b>0)的左、右焦点,直线l过焦点F2且与椭圆交于A,B两点,若△ABF1构成以A为直角顶点的等腰直角三角形,设椭圆离心率为e,则e2=()A.2﹣B.3﹣C.11﹣6D.9﹣623.直线y=kx与椭圆C:+=1(a>b>0)交于A、B两点,F为椭圆C的左焦点,且•=0,若∠ABF∈(0,],则椭圆C的离心率的取值范围是()A.(0,]B.(0,]C.[,]D.[,1)24.已知F1(﹣c,0),F2(c,0)为椭圆=1(a>b>0)的两个焦点,若椭圆上存在点P满足•=2c2,则此椭圆离心率的取值范围是()A.[,]B.(0,]C.[,1)D.[,]25.已知F1(﹣c,0),F2(c,0)是椭圆=1(a>b>0)的左右两个焦点,P为椭圆上的一点,且,则椭圆的离心率的取值范围为()A.B.C.D.26.已知两定点A(﹣1,0)和B(1,0),动点P(x,y)在直线l:y=x+2上移动,椭圆C以A,B为焦点且经过点P,则椭圆C的离心率的最大值为()A. B. C.D.27.过椭圆+=1(a>b>0)的左顶点A且斜率为k的直线交椭圆于另一个点B,且点B 在x轴上的射影恰好为右焦点F,若0<k<,则椭圆的离心率的取值范围是()A.(0,)B.(,1)C.(0,)D.(,1)28.已知椭圆C1:=1(a>b>0)与圆C2:x2+y2=b2,若在椭圆C1上存在点P,过P作圆的切线PA,PB,切点为A,B使得∠BPA=,则椭圆C1的离心率的取值范围是()A.B. C.D.29.已知圆O1:(x﹣2)2+y2=16和圆O2:x2+y2=r2(0<r<2),动圆M与圆O1、圆O2都相切,动圆圆心M的轨迹为两个椭圆,这两个椭圆的离心率分别为e1、e2(e1>e2),则e1+2e2的最小值是()A.B.C. D.参考答案与试题解析一.选择题(共29小题)1.椭圆的左右焦点分别为F1,F2,若椭圆C上恰好有6个不同的点P,使得△F1F2P为等腰三角形,则椭圆C的离心率的取值范围是()A .B .C .D .解答:解:①当点P与短轴的顶点重合时,△F1F2P构成以F1F2为底边的等腰三角形,此种情况有2个满足条件的等腰△F1F2P;②当△F1F2P构成以F1F2为一腰的等腰三角形时,以F2P作为等腰三角形的底边为例,∵F1F2=F1P,∴点P在以F1为圆心,半径为焦距2c的圆上因此,当以F1为圆心,半径为2c的圆与椭圆C有2交点时,存在2个满足条件的等腰△F1F2P,在△F1F2P1中,F1F2+PF1>PF2,即2c+2c>2a﹣2c,由此得知3c>a.所以离心率e >.当e=时,△F1F2P是等边三角形,与①中的三角形重复,故e≠同理,当F1P为等腰三角形的底边时,在e且e≠时也存在2个满足条件的等腰△F1F2P这样,总共有6个不同的点P使得△F1F2P为等腰三角形综上所述,离心率的取值范围是:e∈(,)∪(,1)2.在区间[1,5]和[2,4]分别取一个数,记为a,b ,则方程表示焦点在x轴上且离心率小于的椭圆的概率为()A .B .C .D .解解:∵表示焦点在x 轴上且离心率小于,答:∴a>b>0,a<2b它对应的平面区域如图中阴影部分所示:则方程表示焦点在x 轴上且离心率小于的椭圆的概率为P==,故选B.3.已知椭圆(a>b>0)上一点A关于原点的对称点为点B,F为其右焦点,若AF⊥BF,设∠ABF=α,且,则该椭圆离心率e的取值范围为()A .B .C .D .解解:已知椭圆(a>b>0)上一点A关于原点的对称点为点B,答:F为其右焦点,设左焦点为:N则:连接AF,AN,AF,BF所以:四边形AFNB为长方形.根据椭圆的定义:|AF|+|AN|=2a∠ABF=α,则:∠ANF=α.所以:2a=2ccosα+2csinα利用e==所以:则:即:椭圆离心率e的取值范围为[]故选:A4.斜率为的直线l 与椭圆交于不同的两点,且这两个交点在x轴上的射影恰好是椭圆的两个焦点,则该椭圆的离心率为()A .B .C .D .解答:解:两个交点横坐标是﹣c,c所以两个交点分别为(﹣c ,﹣c)(c ,c)代入椭圆=1两边乘2a2b2则c2(2b2+a2)=2a2b2∵b2=a2﹣c2c2(3a2﹣2c2)=2a^4﹣2a2c22a^4﹣5a2c2+2c^4=0(2a2﹣c2)(a2﹣2c2)=0=2,或∵0<e<1所以e==故选A5.设椭圆C :=1(a>b>0)的左、右焦点分别为F1、F2,P是C上的点,PF2⊥F1F2,∠PF1F2=30°,则C的离心率为()A .B .C .D .解解:设|PF2|=x,答:∵PF2⊥F1F2,∠PF1F2=30°,∴|PF1|=2x,|F1F2|=x,又|PF1|+|PF2|=2a,|F1F2|=2c∴2a=3x,2c=x,∴C的离心率为:e==.故选A.6.已知椭圆,F1,F2为其左、右焦点,P为椭圆C上除长轴端点外的任一点,△F1PF2的重心为G,内心I ,且有(其中λ为实数),椭圆C的离心率e=()A .B .C .D .解答:解:设P(x0,y0),∵G为△F1PF2的重心,∴G点坐标为 G (,),∵,∴IG∥x轴,∴I 的纵坐标为,在焦点△F1PF2中,|PF1|+|PF2|=2a,|F1F2|=2c∴=•|F1F2|•|y0|又∵I为△F1PF2的内心,∴I 的纵坐标即为内切圆半径,内心I把△F1PF2分为三个底分别为△F1PF2的三边,高为内切圆半径的小三角形∴=(|PF1|+|F1F2|+|PF2|)||∴•|F1F2|•|y0|=(|PF1|+|F1F2|+|PF2|)||即×2c•|y0|=(2a+2c)||,∴2c=a,∴椭圆C的离心率e==故选A7.已知F1(﹣c,0),F2(c,0)为椭圆的两个焦点,P 为椭圆上一点且,则此椭圆离心率的取值范围是()A .B .C .D .解答:解:设P(m,n ),=(﹣c﹣m,﹣n)•(c﹣m,﹣n)=m2﹣c2+n2,∴m2+n2=2c2,n2=2c2﹣m2①.把P(m,n )代入椭圆得b2m2+a2n2=a2b2②,把①代入②得m2=≥0,∴a2b2≤2a2c2,b2≤2c2,a2﹣c2≤2c2,∴≥.又 m2≤a2,∴≤a2,∴≤0,故a2﹣2c2≥0,∴≤.综上,≤≤,故选:C.8.椭圆+=1(a>b>0)的左、右焦点分别是F1,F2,过F2作倾斜角为120°的直线与椭圆的一个交点为M,若MF1垂直于x轴,则椭圆的离心率为()A .B.2﹣C.2(2﹣)D .解解:如图,答:在Rt△MF1F2中,∠MF2F1=60°,F1F2=2c∴MF2=4c,MF1=2 cMF1+MF2=4c+2c=2a⇒e==2﹣,故选B.9.椭圆C的两个焦点分别是F1,F2,若C上的点P 满足,则椭圆C的离心率e的取值范围是()A .B .C .D .或解答:解:∵椭圆C上的点P 满足,∴|PF1|==3c,由椭圆的定义可得|PF1|+|PF2|=2a,∴|PF2|=2a﹣3c.利用三角形的三边的关系可得:2c+(2a﹣3c)≥3c,3c+2c≥2a﹣3c,化为.∴椭圆C的离心率e 的取值范围是.故选:C.10.设F1,F2为椭圆的两个焦点,若椭圆上存在点P满足∠F1PF2=120°,则椭圆的离心率的取值范围是()A .B .C .D .解答:解:F1(﹣c,0),F2(c,0),c>0,设P(x1,y1),则|PF1|=a+ex1,|PF2|=a﹣ex1.在△PF1F2中,由余弦定理得cos120°==,解得x12=.∵x12∈(0,a2],∴0≤<a2,即4c2﹣3a2≥0.且e2<1∴e=≥.故椭圆离心率的取范围是 e ∈.故选A.11.设A1,A2分别为椭圆=1(a>b>0)的左、右顶点,若在椭圆上存在点P ,使得>﹣,则该椭圆的离心率的取值范围是()A.(0,)B.(0,)C .D .解答:解:设P(asinα,bcosα),A1(﹣a,0),A2(a,0);∴,;∴;∴;∴,a,c>0;∴解得;∴该椭圆的离心率的范围是().故选:C.12.设椭圆C的两个焦点为F1、F2,过点F1的直线与椭圆C交于点M,N,若|MF2|=|F1F2|,且|MF1|=4,|NF1|=3,则椭圆Г的离心率为()A .B .C .D .解答:解:设椭圆(a>b>0),F1(﹣c,0),F2(c,0),|MF2|=|F1F2|=2c,由椭圆的定义可得|NF2|=2a﹣|NF1|=2a﹣3,|MF2|+|MF1|=2a,即有2c+4=2a,即a﹣c=2,①取MF1的中点K,连接KF2,则KF2⊥MN,由勾股定理可得|MF2|2﹣|MK|2=|NF2|2﹣|NK|2,即为4c2﹣4=(2a﹣3)2﹣25,化简即为a+c=12,②由①②解得a=7,c=5,则离心率e==.故选:D.13.椭圆C :+=1(a>b>0)的左焦点为F,若F 关于直线x+y=0的对称点A是椭圆C上的点,则椭圆C的离心率为()A .B .C .D .一l解:设F(﹣c,0)关于直线x+y=0的对称点A(m,n),则解答:,∴m=,n=c,代入椭圆方程可得,化简可得e4﹣8e2+4=0,∴e=﹣1,故选:D.14.已知F1,F2分别为椭圆+=1(a>b>0)的左、右焦点,P为椭圆上一点,且PF2垂直于x轴.若|F1F2|=2|PF2|,则该椭圆的离心率为()A .B .C .D .解答:解:F 1,F 2分别为椭圆+=1(a >b >0)的左、右焦点,设F 1(﹣c ,0),F 2(c ,0),(c >0),P 为椭圆上一点,且PF 2垂直于x 轴.若|F 1F 2|=2|PF 2|, 可得2c=2,即ac=b 2=a 2﹣c 2.可得e 2+e ﹣1=0. 解得e=.故选:D . 15.已知椭圆(a >b >0)的两焦点分别是F 1,F 2,过F 1的直线交椭圆于P ,Q 两点,若|PF 2|=|F 1F 2|,且2|PF 1|=3|QF 1|,则椭圆的离心率为( ) A . B . C . D .解答: 解:由题意作图如右图,l 1,l 2是椭圆的准线,设点Q (x 0,y 0),∵2|PF 1|=3|QF 1|,∴点P (﹣c ﹣x 0,﹣y 0); 又∵|PF 1|=|MP|,|QF 1|=|QA|, ∴2|MP|=3|QA|, 又∵|MP|=﹣c ﹣x 0+,|QA|=x 0+,∴3(x 0+)=2(﹣c ﹣x 0+),解得,x 0=﹣,∵|PF 2|=|F 1F 2|, ∴(c+x 0+)=2c ; 将x 0=﹣代入化简可得,3a 2+5c 2﹣8ac=0, 即5﹣8+3=0;解得,=1(舍去)或=;故选:A.16.已知椭圆C :的左、右焦点分别为F1,F2,O为坐标原点,M为y 轴正半轴上一点,直线MF2交C于点A,若F1A⊥MF2,且|MF2|=2|OA|,则椭圆C的离心率为()A .B .C .D .解答:解:如图所示,在Rt△AF1F2中,|F1F2|=2|OA|=2c.又|MF2|=2|OA|,在Rt△OMF2中,∴∠AF2F1=60°,在Rt△AF1F2中,|AF2|=c,|AF1|=c.∴2a=c+c,∴=﹣1.故选:C.17.已知椭圆C的中心为O,两焦点为F1、F2,M是椭圆C上一点,且满足||=2||=2||,则椭圆的离心率e=()A .B .C .D .解答:解:∵|MF1|=|MO|=|MF2|,由椭圆定义可得2a=|MF1|+|MF2|=3|MF2|,即|MF2|=a,|MF1|=a,在△F1OM中,|F1O|=c,|F1M|=a,|OM|=a,则cos∠MOF1==,在△OF2M中,|F2O|=c,|M0|=|F2M|=a,则cos∠MOF2==,由∠MOF1=180°﹣∠MOF2得:cos∠MOF1+co s∠MOF2=0,即为+=0,整理得:3c2﹣2a2=0,即=,即e2=,即有e=.故选:D.18.设F1,F2分别是椭圆+=1(a>b>0)的左右焦点,若在直线x=上存在点P,使△PF1F2为等腰三角形,则椭圆的离心率的取值范围是()A.(0,)B.(0,)C.(,1)D.(,1)解答:解:由已知P (,y),得F1P的中点Q 的坐标为(),∴,∵,∴y2=2b2﹣,∴y2=(a2﹣c2)(3﹣)>0,∴3﹣>0,∵0<e<1,∴<e<1.故选:C.19.点F 为椭圆+=1(a>b>0)的一个焦点,若椭圆上存在点A使△AOF为正三角形,那么椭圆的离心率为()A .B .C .D .﹣1解答:解:如下图所示:设椭圆的右焦点为F,根据椭圆的对称性,得直线OP的斜率为k=tan60°=,∴点P坐标为:(c ,c),代人椭圆的标准方程,得,∴b2c2+3a2c2=4a2b2,∴e=.故选:D.20.已知椭圆C :=1(a>b>0)和圆O:x2+y2=b2,若C上存在点M,过点M引圆O 的两条切线,切点分别为E,F,使得△MEF为正三角形,则椭圆C的离心率的取值范围是()A.[,1)B.[,1)C.[,1)D.(1,]解答:解:如图所示,连接OE,OF,OM,∵△MEF为正三角形,∴∠OME=30°,∴OM=2b,则2b≤a,∴,∴椭圆C的离心率e==.又e<1.∴椭圆C 的离心率的取值范围是.故选:C.21.在平面直角坐标系xOy 中,以椭圆+=1(a>b>0)上的一点A为圆心的圆与x轴相切于椭圆的一个焦点,与y轴相交于B,C两点,若△ABC是锐角三角形,则该椭圆的离心率的取值范围是()A.(,)B.(,1)C.(,1)D.(0,)解答:解:如图所示,设椭圆的右焦点F(c,0),代入椭圆的标准方程可得:,取y=,A.∵△ABC是锐角三角形,∴∠BAD<45°,∴1>,化为,解得.故选:A.22.设F1、F2为椭圆C :+=1(a>b>0)的左、右焦点,直线l过焦点F2且与椭圆交于A,B两点,若△ABF1构成以A为直角顶点的等腰直角三角形,设椭圆离心率为e,则e2=()A.2﹣B.3﹣C.11﹣6D.9﹣6解答:解:可设|F1F2|=2c,|AF1|=m,若△ABF1构成以A为直角顶点的等腰直角三角形,则|AB|=|AF1|=m,|BF1|=m,由椭圆的定义可得△ABF1的周长为4a,即有4a=2m+m,即m=2(2﹣)a,则|AF2|=2a﹣m=(2)a,在直角三角形AF1F2中,|F1F2|2=|AF1|2+|AF2|2,即4c2=4(2﹣)2a2+4()2a2,即有c2=(9﹣6)a2,即有e2==9﹣6.故选D.23.直线y=kx与椭圆C :+=1(a>b>0)交于A、B两点,F为椭圆C的左焦点,且•=0,若∠ABF∈(0,],则椭圆C的离心率的取值范围是()A.(0,]B.(0,]C.[,]D.[,1)解答:解:设F2是椭圆的右焦点.∵•=0,∴BF⊥AF,∵O点为AB的中点,OF=OF2.∴四边形AFBF2是平行四边形,∴四边形AFBF2是矩形.如图所示,设∠ABF=θ,∵BF=2ccosθ,BF2=AF=2csinθ,BF+BF2=2a,∴2ccosθ+2csinθ=2a,∴e=,sinθ+cosθ=,∵θ∈(0,],∴∈,∴∈.∴∈,∴e ∈.故选:D.24.已知F1(﹣c,0),F2(c,0)为椭圆=1(a>b>0)的两个焦点,若椭圆上存在点P 满足•=2c2,则此椭圆离心率的取值范围是()A.[,]B.(0,]C.[,1)D.[,]解答:解:设P(x0,y0),则2c2==(﹣c﹣x0,﹣y0)•(c﹣x0,﹣y0)=+,化为.又,∴=,∵,∴,∵b2=a2﹣c2,∴,∴.故选:A.25.已知F1(﹣c,0),F2(c,0)是椭圆=1(a>b>0)的左右两个焦点,P为椭圆上的一点,且,则椭圆的离心率的取值范围为()A .B .C .D .解答:解:设P(x0,y0),则,∴=.∵,∴(﹣c﹣x0,﹣y0)•(c﹣x0,﹣y0)=c2,化为=c2,∴=2c2,化为=,∵,∴0≤≤a2,解得.故选:D.26.已知两定点A(﹣1,0)和B(1,0),动点P(x,y)在直线l:y=x+2上移动,椭圆C以A,B为焦点且经过点P,则椭圆C的离心率的最大值为()A .B .C .D .解答:解:由题意知c=1,离心率e=,椭圆C以A,B为焦点且经过点P,则c=1,∵P在直线l:y=x+2上移动,∴2a=|PA|+|PB|.过A作直线y=x+2的对称点C,设C(m,n),则由,解得,即有C(﹣2,1),则此时2a=|PA|+|PB|≥|CD|+|DB|=|BC|=,此时a 有最小值,对应的离心率e 有最大值,故选C.27.过椭圆+=1(a>b>0)的左顶点A且斜率为k的直线交椭圆于另一个点B,且点B 在x轴上的射影恰好为右焦点F,若0<k <,则椭圆的离心率的取值范围是()A.(0,)B.(,1)C.(0,)D.(,1)解解:如图所示:|AF2|=a+c,|BF2|=,答:∴k=tan∠BAF2=,又∵0<k <,∴0<<,∴0<<,∴<e<1.故选:D.28.已知椭圆C1:=1(a>b>0)与圆C2:x2+y2=b2,若在椭圆C1上存在点P,过P作圆的切线PA,PB,切点为A,B 使得∠BPA=,则椭圆C1的离心率的取值范围是()A .B .C .D .解答:解:连接OA,OB,OP,依题意,O、P、A、B四点共圆,∵∠BPA=,∠APO=∠BPO=,在直角三角形OAP 中,∠AOP=,∴cos∠AOP==,∴|OP|==2b,∴b<|OP|≤a,∴2b≤a,∴4b2≤a2,即4(a2﹣c2)≤a2,∴3a2≤4c2,即,∴,又0<e<1,∴≤e<1,∴椭圆C的离心率的取值范围是[,1),故选:A.29.已知圆O1:(x﹣2)2+y2=16和圆O2:x2+y2=r2(0<r<2),动圆M与圆O1、圆O2都相切,动圆圆心M的轨迹为两个椭圆,这两个椭圆的离心率分别为e1、e2(e1>e2),则e1+2e2的最小值是()A .B .C .D .解答:解:①当动圆M与圆O1、O2都相内切时,|MO2|+|MO1|=4﹣r=2a,∴e1=.②当动圆M与圆O1相内切而与O2相外切时,|MO1|+|MO2|=4+r=2a′,∴e2=∴e1+2e2=+=,令12﹣r=t(10<t<12),e1+2e2=2×≥2×==故选:A.。
(完整版)椭圆离心率题型总结,推荐文档
)【解析】选 C
( A) 1 2
(B) 2 3
(C)
(D)
解:
F2PF1 是底角为 30 的等腰三角形 PF2
F2 F1
2( 3 a c) 2c e c 3
2
a4
x 2 y 2 1(a 0, b 0)
3、(12 辽理)已知点(2,3)在双曲线 C: a 2 b 2
上,C 的焦距为 4,则它的离心率为 .
y2 b2
(1 a b 0)和圆 x 2
y2
b 2
c 2 (其中 c 为椭圆半焦距)有四个不同的交点,求椭圆的
离心率的取值范围。 解:要使椭圆与圆有四个不同的交点,只需满足
b
b 2
c
a
,即
b b
2c 2a
2c
b b
2 2
4c 2 4a2
8ac 4c 2
Байду номын сангаас
c2 a2
5
3a 5c
椭圆离心率题型:
e c a
1
b2 a2
一)求离心率
1)用定义(求出 a,c 或找到 c/a)求离心率
1、已知椭圆 C
:
x2 a2
y2 b2
1, (a
b
0)
的两个焦点分别为
F1
(1,
0),
F2
(1,
0)
,且椭圆
C
经过点
P(
4 3
,
1) 3
.求椭圆
C 的离心率;
【答案】解: 2a PF1 PF2
x2 2ax 2b2 0 的两根,由 (2a)2 4 2b2 0 , 可得 a2 2b2 ,即 a2 2(c2 a2 ) 所以 e c
离心率问题的7种题型15种方法(教师版)
目录题型一:椭圆离心率的求值 2方法一:定义法求离心率 2方法二:运用通径求离心率 3方法三:运用e=e=1+k2λ-1λ+1求离心率 4方法四:运用e=c a=sin(α+β)sinα+sinβ求离心率 4方法五:运用k OM⋅k AB=-b2a2求离心率 5方法六:运用正弦定理、余弦定理、三角函数求离心率 6方法七:运用相似比求离心率 6方法八:求出点的坐标带入椭圆方程建立等式 7方法九:运用几何关系求离心率 7题型二:双曲线离心率的求解 9方法一:定义法关系求离心率 10方法二:运用渐近线求离心率 10方法三:运用e=1+k2λ-1λ+1求离心率 11方法四:运用e=c a=sin(α+β)sinα-sinβ求离心率 11方法五:运用结论k OM•k AB=b2a2求离心率 12方法六:运用几何关系求离心率 13题型三:椭圆、双曲线离心率综合运用 15题型四:根据已知不等式求离心率的取值范围 17题型五:根据顶角建立不等式求离心率范围 18题型六:根据焦半径范围求离心率范围 19题型七:题型七根据渐近线求离心率的取值范围 21离心率问题的7种题型15种方法1离心率问题的7种题型15种方法求离心率常用公式椭圆公式1:e =ca 公式2:e =1-b 2a2证明:e =c a=c 2a 2=a 2−b 2a 2=1-b 2a 2公式3:已知椭圆方程为x 2a 2+y 2b2=1(a >b >0),两焦点分别为F 1,F 2,设焦点三角形PF 1F 2,∠PF 1F 2=α,∠PF 2F 1=β,则椭圆的离心率e =sin (α+β)sin α+sin β证明:∠PF 1F 2=α,∠PF 2F 1=β,由正弦定理得:F 1F 2 sin (180o −α−β)=PF 2 sin α=PF 1sin β由等比定理得:F 1F 2 sin (α+β)=PF 1 +PF 2 sin α+sin β,即2c sin (α+β)=2a sin α+sin β∴e =c a =sin (α+β)sin α+sin β。
专题讲座:椭圆离心率的常规求法(文)
a,c的齐次式,解出e. 2.思想方法:
方程的思想,转化的思想
六.课后练习
1.若一个椭圆长轴的长度、短轴的长度和焦距长 成等差数列,求该椭圆的离心率.
2.设椭圆的两个焦点分别为F1和F2 ,过F2作椭圆 长轴的垂线交椭圆于点P,若为△F2PF1等腰直角 三角形,求椭圆的离心率.
专题讲座
椭圆离心率的常规求法
刘帅帅
一.复习巩固
二.离心率的常见题型及解法
题型一:定义法 例1.已知椭圆方程为 x2 + y2 =1,求椭圆的离心率;
16 8
y
P
a
F1(-c,0)o c F2(c,0)
x
1.直接算出a、c带公式求e 2. 几何意义:e为∠OPF2的正弦值
变式训练1:
若椭圆x2 + y2 =1的离心率为1/2,求m的值.
四.高考链接
( (a>2b0>102)新的课左标、全右国焦卷点),设P为F1直和线F2是x=椭3圆a ax上22 +一by点22 =,1
2
△ F2 P F1是底角为30°的等腰三角形, 求该椭圆
的离心率。
y P
30°
2c
F1 (-c,0)o2c
F2
(c,0)
c
x
2c=3a/2
x=3a/2
五.小结
3.已知椭圆的两个焦点为F1和F2,A为椭圆上一 点 ,且AF1⊥AF2,∠AF1F2=60°,求该椭圆的 离心率。
变式训练2:
椭圆
x a
2 2
+
y2 b2
【圆锥曲线】02椭圆离心率与几何性质(含经典题型+答案)
椭圆的离心率与几何性质角,则该椭圆的离心率为 .2.若椭圆的一个焦点与短轴的两个顶点可构成一个等边三角形,则椭圆的离心率为( )1123. . . .4222A B C D 3.在一椭圆中以焦点F 1、F 2为直径两端点的圆,恰好过短轴的两顶点,则此椭圆的离心率e 等于( ).秒杀秘籍:椭圆离心率的计算定义:如图所示,P 为椭圆的上顶点,令122,PF F OPF αθ∠=∠=,离心率就是sin cos ce aθα=== 例1:已知直线220x y -+=经过椭圆22221(0)x y a b a b+=>>的一个顶点和一个焦点,那么这个椭圆的方程为____________________,离心率为_______. 解:()()220;2,00,1x y -+=∴-直线过点;,故过椭圆的上顶点和左焦点,根据图形可得2,1,5c b a ===;故椭圆方程为2215x y +=,255c e a ==椭圆顶点三角形与离心率:如右图,2tan 1be aα==-, 例2:椭圆)0(12222>>=+b a by ax 的四个顶点为A 、B 、C 、D ,若菱形ABCD 的内切圆恰好过焦点,则椭圆的离心率是( ) A.253- B.853+ C. 215- D.815+解:根据图形可得22222tan b c c b ac a c ac a ba c α===⇒=⇒-=-; 即22251110,2c c e e e a a --=⇒+-==(黄金椭圆2b ac =)半通径的焦点三角形与离心率:如右图,过椭圆右焦点作垂直于x 轴的直线交椭圆于点P ,则22b PF a =,12,F PF α∠=222222221cos 12bab a ac e a c ea α--===++- 例3:设椭圆的两个焦点分别为1F ,2F ,过2F 作椭圆长轴的垂线交椭圆于点P ,若△12F PF 为等腰直角三角形,则椭圆的离心率为__________ .解:根据图形可得()22222212cos 21122e e e e α--==⇒=⇒=-+ 例4:椭圆221123x y +=的两个焦点为F 1,F 2, 点P 在椭圆上,若线段PF 1的中点在y 轴上,则|PF 1|是|PF 2|的 倍。
(完整版)专题:椭圆的离心率解法大全,推荐文档
专题:椭圆的离心率一,利用定义求椭圆的离心率(a c e = 或 221⎪⎭⎫⎝⎛-=a b e )1,已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率=e322,椭圆1422=+m y x 的离心率为21,则=m [解析]当焦点在x 轴上时,32124=⇒=-m m ; 当焦点在y 轴上时,316214=⇒=-m mm , 综上316=m 或3 3,已知椭圆的焦距、短轴长、长轴长成等差数列,则椭圆的离心率是534,已知m,n,m+n 成等差数列,m ,n ,mn 成等比数列,则椭圆122=+ny m x 的离心率为 [解析]由⇒⎪⎩⎪⎨⎧≠=+=02222mn n m n nm n ⎩⎨⎧==42n m ,椭圆122=+n y m x 的离心率为22 5,已知)0.0(121>>=+n m nm 则当mn 取得最小值时,椭圆12222=+n y m x 的的离心率为236,设椭圆2222by a x +=1(a >b >0)的右焦点为F 1,右准线为l 1,若过F 1且垂直于x 轴的弦的长等于点F 1到l 1的距离,则椭圆的离心率是21。
二,运用几何图形中线段的几何意义结合椭圆的定义求离心率e1,在∆Rt ABC 中,ο90=∠A ,1==AC AB ,如果一个椭圆过A 、B 两点,它的一个焦点为C ,另一个焦点在AB 上,求这个椭圆的离心率 ()36-=e2, 如图所示,椭圆中心在原点,F 是左焦点,直线1AB 与BF 交于D,且ο901=∠BDB ,则椭圆的离心率为( ) [解析]=⇒=-⇒-=-⋅e ac c a cba b 221)(215-3,以椭圆的右焦点F 2为圆心作圆,使该圆过椭圆的中心并且与椭圆交于M 、N 两点,椭圆的左焦点为F 1,直线MF 1与圆相切,则椭圆的离心率是13-变式(1):以椭圆的一个焦点F 为圆心作一个圆,使该圆过椭圆的中心O 并且与椭圆交于M 、N 两点,如果∣MF∣=∣MO∣,则椭圆的离心率是13-4,椭圆x 2a 2 +y 2b 2=1(a>b >0)的两焦点为F 1 、F 2 ,以F 1F 2为边作正三角形,若椭圆恰好平分正三角形的两边,则椭圆的离心率e ?解:∵|F 1F 2|=2c |BF 1|=c |BF 2|=3c c+3c=2a ∴e= ca= 3-1变式(1):椭圆x 2 a 2 +y 2b 2 =1(a>b >0)的两焦点为F 1 、F 2 ,点P 在椭圆上,使△OPF 1 为正三角形,求椭圆离心率?解:连接PF 2 ,则|OF 2|=|OF 1|=|OP |,∠F 1PF 2 =90°图形如上图,e=3-1变式(2) 椭圆x 2 a 2 +y 2b 2=1(a>b >0)的两焦点为F 1 、F 2 ,AB 为椭圆的顶点,P 是椭圆上一点,且PF 1 ⊥X 轴,PF 2 ∥AB,求椭圆离心率?解:∵|PF 1|= b 2 a |F 2 F 1|=2c |OB |=b |OA |=a PF 2 ∥AB ∴|PF 1| |F 2 F 1|= b a 又 ∵b= a 2-c 2∴a 2=5c 2 e=55变式(3):将上题中的条件“PF 2 ∥AB ”变换为“PO ∥AB (O 为坐标原点)”相似题:椭圆x 2 a 2 +y 2 b 2 =1(a>b >0),A 是左顶点,F 是右焦点,B 是短轴的一个顶点,∠ABF=90°,求e?解:|AO |=a |OF |=c |BF |=a |AB |=a 2+b 2a 2+b 2+a 2 =(a+c)2 =a 2+2ac+c 2 a 2-c 2-ac=0 两边同除以a 2 e 2+e-1=0 e=-1+ 5 2 e=-1-52(舍去)变式(1):椭圆x 2a 2 +y 2b 2 =1(a>b >0),e=-1+ 52, A 是左顶点,F 是右焦点,B 是短轴的一个顶点,求∠ABF ?点评:此题是上一题的条件与结论的互换,解题中分析各边,由余弦定理解决角的问题。
椭圆离心率50道题训练含详解
(2)设椭圆 : , 为椭圆 上一点,过点 的直线交椭圆 于A, 两点,且 为线段 的中点,过 , 两点的直线交椭圆 于 , 两点,如图.当 在椭圆 上移动时,四边形 的面积是否为定值?若是,求出该定值;若不是,请说明理由.
参考答案
1.C
【详解】
由椭圆 ,可得 ,所以 ,
所以椭圆的离心率为 .
15.已知椭圆 : 的离心率为 ,则 的值可能是()
A. B. C. D.
16.椭圆的中心在原点,离心率为 ,则该椭圆的方程可能为()
A. B.
C. D.
17.已知曲线 : ,其中 为非零常数,则下列结论中正确的是()
A.当 时,则曲线 是一个圆
B.当 时,则曲线 是一个椭圆
C.若 时,则曲线 是焦点为 的椭圆
A.椭圆的离心率是 B.线段AB长度的取值范围是
C. 面积的最大值是 D. 的周长存在最大值
22.如图,椭圆Ⅰ与Ⅱ有公共的左顶点和左焦点,且椭圆Ⅱ的右顶点为椭圆Ⅰ的中心.设椭圆Ⅰ与Ⅱ的长半轴长分别为 和 ,半焦距分别为 和 ,离心率分别为 和 ,则下列结论正确的是()
A. B.
C. D.椭圆Ⅱ比椭圆Ⅰ更扁
34.椭圆 : 的左右焦点分别为 , ,过点 的直线 交椭圆 于 , 两点,已知 , ,则椭圆 的离心率为___________.
35.已知椭圆 的左、右焦点分别为 , ,上顶点为 ,且 ,若第一象限的点 、 在 上, , , ,则直线 的斜率为__________.
36.设 , 分别是椭圆 的左、右焦点,过点 的直线交椭圆 于 两点, ,若 ,则椭圆 的离心率为___________.
四、解答题
44.已知椭圆的焦点为 和 , 是椭圆上的一点,且 是 与 的等差中项.
求椭圆离心率的题型
椭圆离心率的题型椭圆的离心率是椭圆最重要的几何性质,求解椭圆的离心率的三种方法:1.定义法:求出a ,c ,代入公式c e a=,根据离心率的定义求解离心率; 2.齐次式法:由已知条件得出关于,a c 的齐次方程,然后转化为关于e 的方程求解; 3.特殊值法:通过取特殊值或特殊位置,求出离心率.一、定义法,求出a ,c ,代入公式c e a=,根据离心率的定义求解离心率e 1.已知椭圆C :2221(0)4x y a a +=>的一个焦点为(20),,则C 的离心率为( )A .13 B .12 C .2 D .3二、齐次式法,由已知条件得出关于,a c 的齐次方程,然后转化为关于e 的方程求解 (1)通过等量关系列式得出关于,a c 的齐次方程1.若一个椭圆的焦距、短轴长、长轴长组成一个等比数列,则该椭圆的离心率e =( )A B C .35 D 2.椭圆22221x y a b+=(0a b >>)的左焦点1()0F c -,到过顶点(0)A a -,,(0)B b ,的直线的,则该椭圆的离心率e =( )A B .12 C .2 D 3.已知椭圆22221(0)x y a b a b+=>>左右焦点分别为1(,0)F c -,2(,0)F c ,若椭圆上一点P 满足2PF x ⊥轴,且1PF 与圆2224c x y +=相切,则该椭圆的离心率为( )A .3B .12C D4.若椭圆22221(0)x y a b a b+=>>的左、右焦点分别为F 1、F 2,线段F 1F 2被抛物线22(0)y bx b =>的焦点分成5:3的两段,则此椭圆的离心率为( )A .1617BC .45D 5.已知椭圆()222210x y a b a b+=>>的左顶点为M ,上顶点为N ,右焦点为F ,若0MN NF ⋅=,则椭圆的离心率为( )A .2 B .12 C .12 D .12(2)通过特殊三角形的边关系列式得出关于,a c 的二元齐次方程 1.设椭圆C :22221x y a b+=(0a b >>)的左、右焦点分别为12F F P 、,是C 上的点2121230PF F F PF F ⊥∠=︒,,则C 的离心率为( )A B .13 C .12 D .32.若1F ,2F 是椭圆的两个焦点,P 是椭圆上一点,当12PF PF ⊥,且1230PF F ∠=︒,则椭圆的离心率为( )A 1BC 1D .23.已知椭圆22221(0)x y a b a b+=>>的左、右焦点分别为1F 、2F ,点A 是椭圆短轴的一个顶点,且123cos 4F AF ∠=,则椭圆的离心率e =( )A .12 B .2 C .14 D4.设椭圆的两个焦点分别为1F 、2F ,过2F 作椭圆长轴的垂线交椭圆于点P ,若12F PF △为等腰直角三角形,则椭圆的离心率是e =( )A B 1 C 1 D -5.设1F ,2F 分别为椭圆C :()222210x y a b a b+=>>的左右焦点,点A ,B 分别为椭圆C 的右顶点和下顶点,且点1F 关于直线AB 的对称点为M .若212MF F F ⊥,则椭圆C 的离心率为( )A B C D 6.设1F ,2F 分别是椭圆C :22221(0)x y a b a b+=>>的左右焦点,点P 在椭圆C 上,且213PF PF =,若线段1PF 的中点恰在y 轴上,则椭圆的离心率为( )A B C .2 D .127.椭圆C :22221(0)x y a b a b+=>>的左.右焦点为1 F ,2 F ,过2 F 垂直于 x 轴的直线交C 于 A ,B 两点,若1AF B △为等边三角形,则椭圆 C 的离心率为( )A .12B .2C .13D 8.在Rt ABC 中,AB AC =,如果一个椭圆通过A 、B 两点,它的一个焦点为点C ,另一个焦点在AB 上,则这个椭圆的离心率e =( )A B 1 C 1 D -9.如图,已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为12,F F ,P 为椭圆C 上一点,212PF F F ⊥,直线1PF 与y 轴交于点Q ,若||4b OQ =,则椭圆C 的离心率为( )A .2B .2C .12D .2310.已知椭圆C :()222210x y a b a b+=>>的左、右焦点分别为1F 、2F ,B 是椭圆C 的上顶点,直线13x c =与直线2BF 交于点A ,若124AF F π∠=,则椭圆C 的离心率为( )A B C .2 D 11.设1F 、2F 分别是椭圆()2222:10x y C a b a b+=>>的左、右焦点,点P 在椭圆C 上,线段1PF 的中点在y 轴上,若1230PF F ∠=︒,则椭圆C 的离心率为( )A B C .13 D .1612.已知椭圆()2222:10x y C a b a b+=>>的上顶点为A ,左、右两焦点分别为1F 、2F ,若12AF F △为等边三角形,则椭圆C 的离心率为( )A .12BC .13D 13.已知椭圆22221x y a b+=()0a b >>的左、右焦点分别为1F ,2F ,右顶点为A ,上顶点为B ,以线段1F A 为直径的圆交线段1F B 的延长线于点P ,若2//F B AP ,则该椭圆的离心率是( )A .3B .3C .2D .2 14.已知椭圆()222210x y a b a b+=>>,点M 在椭圆上,以M 为圆心的圆与x 轴相切于椭圆的焦点,与y 轴相交于P ,Q ,若MPQ 为正三角形,则椭圆的离心率为( )A .12B .13C .2D .315.已知P 是椭圆()2222:10x y C a b a b+=>>上的点,1F ,2F 分别是C 的左,右焦点,O 是坐标原点,若212OP OF OF +=且1260F PF ∠=︒,则椭圆的离心率为( )A .12 B C D(3)求出某个在椭圆上的点的坐标,再把坐标代入标准方程,得出关于,a c 的齐次方程1.已知椭圆C 的方程为()222210x y a b a b +=>>,焦距为2c ,直线:l y x =与椭圆C 相交于A ,B 两点,若2AB c =,则椭圆C 的离心率为( )A B .34 C .12 D .142.椭圆22221(0)y x a b a b+=>>的上、下焦点分别为1F 、2F ,过椭圆上的点M 作向量MN 使得12MN F F =,且12 F F N 为正三角形,则该椭圆的离心率为( )A .2B .12C .2D .123.已知12,F F 是椭圆与22221(0)x y a b a b+=>>的左、右焦点,过左焦点1F 的直线与椭圆交于,A B 两点,且满足112||2||,||||AF BF AB BF ==,则该椭圆的离心率是( )A .12B .3C D4.椭圆2222:1(0)x y a b a bΓ+=>>的左、右焦点分别为12,F F ,焦距为2c .若直线)y x c =+与椭圆Γ的一个交点M 满足12212MF F MF F ∠=∠,则该椭圆的离心率等于( )A 1B .2CD .15.已知椭圆()2222:10x y C a b a b+=>>的左、右焦点分别为12,,F F P 是C 上一点,且2PF x ⊥轴,直线1PF 与C 的另一个交点为Q ,若114PF FQ =,则C 的离心率为( )A B .2 C .5 D .76.已知椭圆C :()222210x y a b a b +=>>经过点),且C 的离心率为12,则C 的方程是( )A .22143x y += B .22186x y + C .22142x y += D .22184x y += 7.已知椭圆()222210x y a b a b+=>>的左、右焦点分别为12,F F ,过1F 且与x 轴垂直的直线交椭圆于,A B 两点,直线2AF 与椭圆的另一个交点为C ,若23ABC BCF S S ∆∆=,则椭圆的离心率为( )A B C D(4)点差法 1.已知P 是椭圆22221x y a b+=(0a b >>)上一点,过原点的直线交椭圆于A ,B 两点,且34PA PB k k ⋅=-,则椭圆的离心率为( )A .12 B .13 C .14 D .2(5)涉及到最值1.设椭圆C :22214x y a +=(2a >)的左、右焦点分别为1F ,2F ,直线l :y x t =+交椭圆C 于点A ,B ,若1F AB 的周长的最大值为12,则C 的离心率为( )A B .3 C .3 D .59 2.已知椭圆C 过点(5,0),(0,)A B b -,左、右焦点分别为1F 、2F ,中心在原点,点M 的坐标为(1,2),P 为椭圆上一动点,若1PF PM +的最大值为10,则椭圆C 的离心率为( )A .15 B .25 C .35 D .45。
离心率专题
离心率训练一、选择题(题型注释)1.已知中心在原点的椭圆与双曲线有公共焦点,左、右焦点分别为12F F 、,且两条曲线在第一象限的交点为P ,12PF F V 是以1PF ,椭圆与双曲线的离心率分别为1e ,2e ,则121e e +的取值范围是A .(1,+∞)B .,+∞)C .,+∞)D .+∞)【答案】B 【解析】试题分析:由三角形12PF F 三边关系可知,因此121e e +的取值范围是(,+∞) 考点:椭圆双曲线的方程及性质2.已知F 1、F 2是椭圆的两个焦点,过F 1且与椭圆长轴垂直的直线交椭圆于A 、B 两点,若△ABF 2是等腰直角三角形,则这个椭圆的离心率是A 1 D 【答案】C 【解析】试题分析:由题意可知12AF F ∆是等腰直角三角形,3.已知12,F F 分别是椭圆的左,右焦点,现以2F 为圆心作一个圆恰好经过椭圆中心并且交椭圆于点M ,N ,若过1F 的直线1MF 是圆2F 的切线,则椭圆的离心率为( )A 【答案】A 【解析】试题分析:如图,易知2MF c =,122F F c =,12MF MF ⊥,故∵12F F ,分别是椭圆的左,右焦点,现以2F 为圆心作一个圆恰好经过椭圆中心并且交椭圆于点M N , ,过1F 的直线1MF 是圆2F 的切线,∴2MF c =,122F F c = ,12MF MF ⊥,∴A .考点:椭圆的离心率.4.若椭圆的短轴为AB ,一个焦点为1F ,且1ABF △为等边三角形的椭圆的离心率是( ) A【答案】B 【解析】试题分析:因为椭圆的短轴长为2b,1.椭圆的性质;2.离心率. 5.(0a b >>)(0m >,0n >)有相同的焦点(),0c -和(),0c ,若c 是a 、m 的等比中项,2n 是22m 与2c 的等差中项,则椭圆的离心率是( )A【答案】B 【解析】(0a b >>)与双曲线(0m >,0n >)有相同的焦点(),0c -和(),0c ,所以有22222(1);a b m n c -=+=⋅⋅⋅又c 是a 、m 的等比中项,所以2(2);c am =⋅⋅⋅ 2n 是22m 与2c 的等差中项,所以22222(3);n m c =+⋅⋅⋅由(1),(3)得223,n m =代入(1)得224,2;c m c m =∴=代入(2)得:4;a m =则椭圆的离心率是B 考点:椭圆和双曲线的几何性质,等差中项和等比中项的概念及基本运算.6.我们把焦点相同,且离心率互为倒数的椭圆和双曲线称为一对“相关曲线”.已知12,F F 是一对相关曲线的焦点,P 是椭圆和双曲线在第一象限的交点,当1260F PF ∠=︒时,这一对相关曲线中椭圆的离心率为( ) (A(B(C(D【答案】A 【解析】试题分析:设由余弦定理得:22202212121212121242cos60()3()c PF PF PF PF PF PF PF PF PF PF PF PF =+-=+-=-+所以2222212121216()3()412c PF PF PF PF a a =++-=+,A.考点:椭圆和双曲线定义及离心率7.已知点1F 、2F 分别是椭圆的左、右焦点,过1F 且垂直于x 轴的直线与椭圆交于A 、B 两点,若2ABF ∆为锐角三角形,则该椭圆离心率e 的取值范围是( )A【答案】B 【解析】试题分析:由对称性22AF BF =,只要290AF B ∠< ,2145AF F ⇒∠< 即可满足2ABF ∆为锐角三角形,代入x c =-,,所以2210e e ⇒+->,,由1e <,所以考点:1.焦点三角形;2.离心率;3.几何法.8.设1F 、2F 为椭圆的两个焦点,以2F 为圆心作圆2F ,已知圆2F 经过椭圆的中心,且与椭圆相交于M 点,若直线1MF 恰与圆2F 相切,则该椭圆的离心率e 为( ) A【答案】A1MF 恰与圆2F 相切知:02190=∠MF F ,所以三边满足勾股定理,()22242c c c a =+-,整理得02222=-+a ac c ,两边同时除以2a ,得到:0222=-+e e ,所以考点:椭圆的几何性质9.设12,F F 为椭圆右焦点,点M 在椭圆F 上.若△1MF F 为直角三角形,F 的离心率为( )AC【答案】A 【解析】试题分析:当M ∠,当2F ∠为直角时考点:椭圆离心率10.已知中心在原点的椭圆与双曲线有公共焦点,左右焦点分别为21,F F ,且两条曲线在第一象限的交点为P ,12PF F∆是以 1PF 为底边的等腰三角形,若 12,e e ,则21e e -的取值范围是( )AC【答案】A 【解析】试题分析:设椭圆与双曲线的半焦距为1122c PF r PF r ==,,. 利用三角形中边之间的关系得出c 的取值范围,再根据椭圆或双曲线的性质求出各自的离心率,最后依据c 的范围即可求出21e e -的取值范围; 设椭圆与双曲线的半焦距为1122c PF r PF r ==,,. 由题意知12102r r c ==, ,且12212r r r r >,>,A .考点:椭圆与双曲线离心率问题. 11.已知12(,0),(,0)F c F c -为椭圆22221x y a b+=的两个焦点,P 在椭圆上且满足212PF PF c ⋅= ,则此椭圆离心率的取值范围是( ) A .3 B.11[,]32 C.[32 D .(0,2【答案】C 试题分析:由椭圆的定义得:12|PF ||PF |2a +=,平方得:2221212|PF ||PF |2|PF||PF |4a ++=.① 又∵212PF PF c ⋅= ,∴21212|PF||PF |cos F PF c ⋅∠=,② 由余弦定理得:222212121212|PF ||PF |2|PF ||PF |cos F PF |F F |4c+-⋅∠==,③122212|PF ||PF |()2PF PF a +⋅≤=1椭圆的标准方程,2余弦定理. 12.在ABC ∆中,30CAB CBA ∠=∠=,,ACBC 边上的高分别为,BD AE ,则以,A B 为焦点,且过,D E两点的椭圆和双曲线的离心率的乘积为 ( )A .1B . .2 D 【答案】C【解析】试题分析:设2AB c =,则BD AE c ==2a ,则,,设双曲线的实轴长为2'a ,则),13.已知21,F F 是椭圆的两个焦点,过1F 且与椭圆长轴垂直的直线交椭圆于B A ,两点,若△2ABF 是正三角形,则这个椭圆的离心率为( )A【答案】C 【解析】试题分析:设2ABF ∆的边长为2x ,则2ABF ∆的高线长为223a x x x =+=,且C 正确.考点:椭圆的简单几何性质.14.如图,右顶点分别是A ,B ,左、右焦点分别是F 1,F 2,)A【答案】C 【解析】试题分析:a c =+,结合着三者成等比数列,所以2224,c a c =-即225a c =,故其离心率 考点:双曲线的离心率.15P 向x 轴作垂线, 垂足恰为左焦点F 1,又点A 是椭圆与x 轴正半轴的交点,点B 是椭圆与y 轴正半轴的交点,且AB ∥OP ,则椭圆的离心率为( )A【答案】C 【解析】试题分析:因AB ∥OP ,可知ABOP k k =,整理得b c =,所以选C .考点:椭圆的离心率.16的焦点为1F 、2F ,在长轴12A A 上任取一点M ,过M 作垂直于12A A 的直线交椭圆于P ,则使得120PF PF ⋅<的M 点的概率为 ( )A【答案】C 【解析】试题分析:设P (x 0,y 0),当120PF PF ⋅= 时,(x 0(x 0+y 02=0,02=1,得点,∴120PF PF ⋅< 的点在(P 考点:几何概型点评:本题主要考查了几何概型,涉及到椭圆的运算及数量积运算。
椭圆离心率经典题型总结
椭圆离心率经典题型总结一、基础题1. 已知椭圆2215x y m+=的离心率e =m 的值为( )A .3B CD .253或32. 的两段,则其离心率为________.3. 若椭圆C :x 2a 2+y 2b2=1(a >b >0)的短轴长等于焦距,则椭圆的离心率为( )A.12B.33C.22D.244. 椭圆的一个顶点与两焦点构成等边三角形,则此椭圆的离心率是( )11A.D.54325. 以椭圆两焦点为直径的圆交椭圆于四个不同点,顺次连结这四个点和两个焦点,恰好围成一个正六边形,则这个椭圆的离心率等于________.6. 已知1F ,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为A .1B .2CD 17. 已知1F 、2F 是椭圆的两个焦点,过1F 且与椭圆长轴垂直的直线交椭圆于A 、B 两点,若2ABF △是等腰直角三角形,则这个椭圆的离心率是( )A B C 1 D8. 椭圆22221x y a b+=上一点到两焦点的距离分别为12d d 、,焦距为2c ,若122d c d 、、成等差数列,则椭圆的离心率为_____.9. 已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率等于( )A 、13B C 、12D10. 在ABC ∆中,7,cos .18AB BC B ==-若以,A B 为焦点的椭圆经过点,C 则该椭圆的离心率e =________.11. 若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是( )A. 45B.35C.25D.1512. 已知椭圆()222210x y a b a b+=>>,A 是椭圆长轴的一个端点,B 是椭圆短轴的一个端点,F 为椭圆的一个焦点. 若AB BF ⊥,则该椭圆的离心率为( )A B C D13. 椭圆22221(a b 0)x y a b+=>>的两顶点为A(,0),B(0,)a b 且左焦点为F ,FAB ∆是以角B为直角的直角三角形,则椭圆的离心率e 为( )A.B. C. D.14. 设椭圆E 的两焦点分别为F 1,F 2,以F 1为圆心,|F 1F 2|为半径的圆与E 交于P ,Q 两点.若△PF 1F 2为直角三角形,则E 的离心率为( )A.2-1B.5-12C.22 D.2+115. 已知椭圆22221x y a b+=,焦点为12,F F ,在椭圆上存在点P ,使得12PF PF ⊥,则椭圆的离心率e 的取值范围为________.16. 斜率为2的直线l 与椭圆22221(0)x y a b a b+=>>交于不同的两点,且这两个交点在x轴上的射影恰好是椭圆的两个焦点,则该椭圆的离心率为( )A .2B .12C D .1317. 已知椭圆()222210x y a b a b+=>>的左焦点为F ,右顶点为A ,点B 在椭圆上,且BF x ⊥轴,直线AB 交y 轴于点P .若2AP PB =,则椭圆的离心率是A B C .13 D .1218. 已知椭圆x 2a 2+y 2b2=1(a >b >0)的一条弦所在的直线方程是x -y +5=0,弦的中点坐标是M (-4,1),则椭圆的离心率是________.19. 与椭圆x 22+y 2=1有相同的焦点且与直线l :x -y +3=0相切的椭圆的离心率为________.20. 设B 是椭圆2222:1(0)x y C a b a b+=>>的上顶点,若C 上的任意点P 都满足||2PB b ≤,则C 的离心率的取值范围是( )A .2B .1[,1)2C .(0,2D .1(0,]2二、中档题21. 在平面直角坐标系xOy 中,设椭圆22221x y a b+=(0a b >>)的焦距为2c ,以点O 为圆心,a 为半径作圆M .若过点2,0a P c ⎛⎫⎪⎝⎭所作圆M 的两条切线互相垂直,则该椭圆的离心率为 .22. 如图,在平面直角坐标系xOy 中,1212,,,A A B B 为椭圆22221(0)x y a b a b+=>>的四个顶点,直线12A B 与直线1B F 相交于点,T 线段OT 与椭圆的交点M 恰为OT 的中点,则该椭圆的离心率为 .23. 已知F 1,F 2是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,A 是C 的左顶点,点P 在过A且斜率为36的直线上,△PF 1F 2为等腰三角形,∠F 1F 2P =120°,则C 的离心率为( ) A.23 B.12 C.13 D.1424. 已知F 是椭圆C 的一个焦点,B 是短轴的一个端点,线段BF 的延长线交C 于点D ,且2BF FD =,则C 的离心率为 .25. 如图,已知椭圆22221x y a b+=(0a b >>)的左顶点为A ,左焦点为F ,上顶点为B ,若90BAO BFO ∠+∠=°,则该椭圆的离心率是 .26. 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1(-c ,0),F 2(c ,0),斜率为-12的直线l 与椭圆C 交于A ,B 两点.若△ABF 1的重心为G (,)63c c ,则椭圆C 的离心率为_____.27. 已知O 为坐标原点,F 是椭圆22:1(0)C a b a b+=>>的左焦点,A ,B 分别为C 的左,右顶点。
离心率(例、练及答案)
离心率(例、练及答案)1.离心率的值例1:设,分别是椭圆的左、右焦点,点在椭圆上,线段的中点在轴上,若,则椭圆的离心率为()ABC .D .2.离心率的取值范围例2:已知是双曲线的左焦点,是该双曲线的右顶点,过点且垂直于轴的直线与双曲线交于,两点,若是锐角三角形,则该双曲线的离心率的取值范围为()A .B .C .D.练习一、单选题1.若双曲线的一条渐近线经过点,则该双曲线的离心率为() ABCD2.倾斜角为的直线经过椭圆右焦点,与椭圆交于、两点,且,则该椭圆的离心率为() A .BCD1F 2F ()2222:10x y C a b a b+=>>P C 1PF y 1230PF F ∠=︒1316F 22221x y a b -=()0,0a b >>E Fx A B ABE △e ()1,+∞()1,2(1,1(2,1()2222:10,0x y C a b a b -=>>()2,1-C π4()222210x y a b a b +=>>F A B 2AF FB =323.《九章算术》是我国古代内容极为丰富的数学名著,第九章“勾股”,讲述了“勾股定理”及一些应用,还提出了一元二次方程的解法问题.直角三角形的三条边长分别称“勾”“股”“弦”.设、分别是双曲线,的左、右焦点,是该双曲线右支上的一点,若,分别是的“勾”“股”,且,则双曲线的离心率为() ABC .2D4.已知双曲线的一个焦点与抛物线的焦点相同,它们交于,两点,且直线过点,则双曲线的离心率为() ABCD .25.已知点在椭圆上,若点为椭圆的右顶点,且(为坐标原点),则椭圆的离心率的取值范围是() A . B .C .D . 6.已知椭圆,点,是长轴的两个端点,若椭圆上存在点,使得,则该椭圆的离心率的最小值为() ABCD .7.已知双曲线的左,右焦点分别为,,点在双曲线的右支上,且,则此双曲线的离心率的最大值为()A .B .C .2D .8.已知椭圆的左、右焦点分别为,,点在椭圆上,为坐标原点,1F 2F ()222210,0x y a b a b -=>>P 1PF 2PF 12Rt F PF △124PF PF ab ⋅=()2212210,0:x y C a b a b -=>>F ()2220:C y px p =>A B AB F 1C 1()()000,P x y x a ≠±()2222:10x y C a b a b +=>>M C PO PM ⊥O C e ⎛ ⎝⎭()0,1⎫⎪⎪⎝⎭⎛ ⎝⎭()222210x y a b a b +=>>A B P 120APB ∠=︒3422221x y a b -=1F 2F P 124PF PF =e 435373()222210x y a b a b +=>>1F 2F P O若,且,则该椭圆的离心率为() A .BC .D9.若直线与双曲线有公共点,则双曲线的离心率的取值范围为() A .B .C .D .10.我们把焦点相同且离心率互为倒数的椭圆和双曲线称为一对“相关曲线”.已知,是一对相关曲线的焦点,,分别是椭圆和双曲线的离心率,若 为它们在第一象限的交点,,则双曲线的离心率()AB .2CD .311.又到了大家最喜(tao )爱(yan )的圆锥曲线了.已知直线与椭圆交于、两点,与圆交于、两点.若存在,使得,则椭圆的离心率的取值范围是()A .B .C .D . 12.已知点为双曲线右支上一点,点,分别为双曲线的左右焦点,点是的内心(三角形内切圆的圆心),若恒有成立,则双曲线的离心率取值范围是() A . B .C .D .二、填空题13.已知抛物线与双曲线有相同的焦点,点是两曲线的一个交点,若直线______.14.已知双曲线,其左右焦点分别为,,若是该双曲线右支上一点,1212OP F F =212PF PF a =34122y x =()222210x y a b a b -=>>(()+∞)+∞1F 2F 1e 2e 1260F PF ∠=︒2e =:210l kx y k --+=()22122:10x y C a b a b +=>>A B ()()222:211C x y -+-=C D []2,1k ∈--AC DB =1C 10,2⎛⎤ ⎥⎝⎦1,12⎡⎫⎪⎢⎣⎭⎛ ⎝⎦⎫⎪⎪⎣⎭P ()222210x y a b a b-=>>1F 2F I 12PF F △121213IPF IPF IF F S S S -≥△△△(]1,2()1,2(]0,3(]1,3()220y px p =>()222210,0x y a b a b-=>>F A AF ()222210,0x y a b a b -=>>1F 2F M满足,则离心率的取值范围是__________.15.已知椭圆的左、右焦点分别为,,过的直线与椭圆交于,的两点,且轴,若为椭圆上异于,的动点且,则该椭圆的离心率为_______.16.在平面直角坐标系中,记椭圆的左右焦点分别为,,若该椭圆上恰好有6个不同的点,使得为等腰三角形,则该椭圆的离心率的取值范围是____________. 三、解答题17.已知双曲线(1)求双曲线的渐进线方程.(2)当时,已知直线与双曲线交于不同的两点,,且线段的中点在圆上,求的值.123MF MF =e ()222210x y a b a b+=>>1F 2F 1F A B 2AF x ⊥P A B 14PAB PBF S S =△△xOy ()222210x y a b a b +=>>1F 2F P 12F F P △()2222:10,0x y C a b a b -=>>C 1a =0x y m -+=C A B AB 225x y +=m18.已知椭圆的左焦点为,离心率.(1)求椭圆的标准方程;(2)已知直线交椭圆于,两点.①若直线经过椭圆的左焦点,交轴于点,且满足,.求证:为定值;②若,求面积的取值范围.参考答案1.【答案】A【解析】本题存在焦点三角形,由线段的中点在轴上,为中点可得轴,从而,又因为,则直角三角形中,且,,所以,故选A . ()2222:10x y C a b a b+=>>()1,0F -e C l CA B l C F y P PA AF λ=PB BF μ=λμ+OA OB ⊥OAB △12PF F △1PF y O 12F F 2PF y ∥212PF F F ⊥1230PF F ∠=︒12PF F △1212::2PF PF F F =122a PF PF =+122c F F =121222F F c c e a a PF PF ∴====+2.【答案】B【解析】从图中可观察到若为锐角三角形,只需要为锐角.由对称性可得只需即可.且,均可用,,表示,是通径的一半,得:,,所以,即,故选B .练习答案一、单选题 1.【答案】D【解析】双曲线的渐近线过点,代入,可得:,即,,故选D .2.【答案】A【解析】设直线的参数方程为,代入椭圆方程并化简得,所以,,由于,即,代入上述韦达定理, 化简得,即,A .3.【答案】D【解析】由双曲线的定义得,所以,即,由题意得,所以,ABE △AEB ∠π0,4AEF ⎛⎫∠∈ ⎪⎝⎭AF FE a b c AF 2b AF a =FE a c =+()()222tan 1112AFb c a c aAEF e FE a a c a a c a--==<⇒<⇒<⇒<++()1,2e ∈()2,1-∴b y x a =-21ba-=-12b a =e ∴==2x c y ⎧⎪=+⎨=⎪⎪⎪⎩2222411022a b t ct b ⎛⎫++-= ⎪⎝⎭21222ct t a b +=-+412222b t t a b ⋅=-+2AF FB =122t t =-2228c a b =+2229c a =c a =122PF PF a -=()22124PF PF a -=222121224PF PF PF PF a +-⋅=12PF PF ⊥222212124PF PF F F c +==又,所以,解得,从而离心率,故选D . 4.【答案】C【解析】设双曲线的左焦点坐标为,由题意可得:,, 则,,即,,又:,,据此有:,即,则双曲线的离心率:.本题选择C 选项. 5.【答案】C【解析】由题意,所以点在以为直径的圆上,圆心为,半径为,所以圆的方程为:,与椭圆方程联立得:,此方程在区间上有解,由于为此方程的一个根,且另一根在此区间内,所以对称轴要介于与之间,所以,结合,解得,.故选C .6.【答案】C【解析】设为椭圆短轴一端点,则由题意得,即, 因为,所以,,,,,C . 7.【答案】B124PF PF ab ⋅=22484c ab a -=2b a =ce a==1C ()',0F c -(),0F c 2p c =,2p A p ⎛⎫ ⎪⎝⎭,2p B p ⎛⎫- ⎪⎝⎭(),2A c c (),2B c c -'2AF AF a -='AF 22c a -=)1c a =1c e a ==PO PM ⊥P OM ,02a ⎛⎫⎪⎝⎭2a 22224a a x y ⎛⎫-+= ⎪⎝⎭222210b x ax b a ⎛⎫--+= ⎪⎝⎭()0,a a 2aa 22221a a ab a <<⎛⎫- ⎪⎝⎭222a b c =+221122a c<<1e <<M 120AMB APB ∠≥∠=︒60AMO ∠≥︒tan a OMA b ∠=tan60a b ≥︒a ∴≥()2223a a c ≥-2223a c ∴≤223e ≥e ≥【解析】由双曲线的定义知①;又,②联立①②解得,,在中,由余弦定理,得,要求的最大值,即求的最小值, 当时,解得,即的最大值为,故选B . 解法二:由双曲线的定义知①,又,②,联立①②解得,,因为点在右支所以,即故,即的最大值为,故选B . 8.【答案】D【解析】由椭圆的定义可得,,又,可得,即为椭圆的短轴的端点, ,且,即有即为,.故选D . 9.【答案】D【解析】双曲线的渐近线方程为,由双曲线与直线有交点,则有,即有,则双曲线的离心率的取值范围为,故选D .10.【答案】C【解析】设,,椭圆的长半轴长为,双曲线的实半轴长为,可得,,可得,, 由余弦定理可得,即有,122PF PF a -=124PF PF=183PF a =223PF a =12PF F △222212644417999cos 8288233a a c F PF e a a +-∠==-⋅⋅e 12cos F PF ∠12cos 1F PF ∠=-53e =e 53122PF PF a -=124PF PF =183PF a =223PF a =P 2PF c a ≥-23a c a ≥-53a c ≥e 53122PF PF a +=212PF PF a ⋅=12PF PF a ==P OP b =1212OP F F c ==c b =a =c e a ==()222210x y a b a b-=>>b y x a =±2y x =2b a >c e a ==)+∞()1,0F c -()2,0F c a m 122PF PF a +=122PF PF m =-1PF a m =+2PF a m =-2221212122cos60F F PF PF PF PF -⋅=+︒()()()()2222243c a m a m a m a m a m =++--+-=+由离心率公式可得,,即有,解得,故选C . 11.【答案】C【解析】直线,即, 直线恒过定点,直线过圆的圆心,,,的圆心为、两点中点, 设,,, 上下相减可得:,化简可得,, ,,故选C . 12.【答案】D 【解析】设的内切圆半径为,由双曲线的定义得,,,,,由题意得,故, 故,又,所以,双曲线的离心率取值范围是,故选D .二、填空题2212134e e +=121e e =4222430e e -+=2e =:210l kx y k --+=()210k x y --+=l ()2,1∴l 2C AC DB =22AC C B ∴=2C ∴A B ()11,A x y ()22,B x y 22112222222211x y a b x y a b ⎧⎪⎪⎨+=+=⎪⎪⎩()()()()1212121222x x x x y y y y a b +-+-=-2121221212x x y y b k y y a x x +--⋅==+-222b k a -⋅=221,122b k a ⎡⎤=-∈-⎢⎥⎣⎦e ⎛= ⎝⎦12PF F △r 122PF PF a -=122F F c =1112PF S PF r =⋅△2212PF S PF r =⋅△12122PF F S c r cr =⋅⋅=△12111223PF r PF r cr ⋅-⋅≥()12332c PF PF a ≤-=3ce a=≤1e >(]1,313.【解析】如图所示,设双曲线的另外一个焦点为,由于,且,所以是等边三角形, 所以,所以,,所以,所以,由双曲线的定义可知. 14.【答案】【解析】设点的横坐标为,∵,在双曲线右支上,根据双曲线的第二定义, 可得,,,,,,,,故答案为.15.【解析】根据题意,因为轴且,假设在第一象限,则,过作轴于,则易知,由得,所以,,1F AF 60BAF ∠=︒AF AB =ABF △130F BF ∠=︒1BF =4BF c =2221164242cos12028AF c c c c =+-⨯⨯⨯︒=1AF =24a c =-(]1,2M x 123MF MF =M ()x a ≥223a a e x e x c c ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭2ex a ∴=x a ≥ex ea ∴≥2a ea ∴≥2e ∴≤1e >12e ∴<≤(]1,22AF x ⊥()2,0F c A 2,b A c a ⎛⎫⎪⎝⎭B BC x ⊥C 121AF F BFC △~△14PAB PBF S S =△△113AF BF =23AF BC =1213F F CF =所以,代入椭圆方程得,即,又,所以,所以椭圆离心率为.. 16.【答案】 【解析】椭圆上恰好有6个不同的点,使得为等腰三角形,6个不同的点有两个为椭圆短轴的两个端点,另外四个分别在第一、二、三、四象限,且上下对称左右对称, 设在第一象限,,当时,, 即,解得, 又因为,所以, 当时,,即且,解得:,综上或.三、解答题17.【答案】(1);(2). 【解析】(1)由题意,得,, ∴,即,∴所求双曲线的渐进线方程.(2)由(1)得当时,双曲线的方程为.设,两点的坐标分别为,,线段的中点为,25,33b B c a ⎛⎫-- ⎪⎝⎭222225199c b a a +=222259c b a +=222b a c =-223c a=c e a ==111,,1322⎛⎫⎛⎫ ⎪⎪⎝⎭⎝⎭P 12F F P △P 11PFPF >1122PF F F c ==21222PF a PF a c =-=-222a a c >-12e >1e <112e <<2122PF F F c ==12222PF a PF a c =-=-222a c c ->2c a c >-1132e <<112e <<1132e <<y =1m =±ce a==223c a ∴=22222b c a a =-=222b a=C by x a=±=1a =C 2212y x -=A B ()11,x y ()22,x y AB ()00,M x y由,得(判别式), ∴,, ∵点在圆上,∴,∴.18.【答案】(1);(2)①见解析,②.【解析】(1)由题设知,,,所以,,, 所以椭圆的标准方程为.(2)①由题设知直线斜率存在,设直线方程为,则.设,,直线代入椭圆得,所以,,由,知,,. ②当直线,分别与坐标轴重合时,易知. 当直线,斜率存在且不为0时,设,,设,,直线代入椭圆得到,所以,,同理, ,令,则因为,所以,故,综上.22120y x x y m -⎧=++=⎪⎨⎪⎩22220x mx m ---=0Δ>1202x x x m +==002y x m m =+=()00,M x y 225x y +=()2225m m +=1m =±2212x y +=32OAB S ≤<△2c a =1c =22a =1c =21b =C 2212x y +=l l ()1y k x =+()0,P k ()11,A x y ()22,B x y l 2212x y +=()2222124220k x k x k +++-=2122412k x x k +=-+21222212k x x k -=+PA AF λ=PB BF μ=111x x λ=-+221xx μ=-+2222121222121222444212124422111212k k x x x x k k k k x x x x k k λμ--++++++=-=-=--++++-+++OA OB OAB S △OA OB :OA y kx =1:OB y x k =-()11,A x y ()22,B x y y kx =C 222220x k x +-=212212x k =+2212212k y k =+2222212k x k =+212212y k =+212OAB S OA OB =⨯=△211t k =+>OABS =△()10,1t ∈291192424t ⎛⎫<--≤ ⎪⎝⎭32OAB S ≤<△32OAB S ≤△。
离心率求解经典例题
1、已知椭圆 C:x^2/a^2 + y^2/b^2 = 1 (a > b > 0) 的离心率为√3/3,过点 A(0,b) 和 B(a,0) 的直线与直线 x = -a 交于点 M,且 |MA| = 2|MB|。
(1) 求 a,b 的值;(2) 设 P 为椭圆 C 上一点,E、F 分别为线段 OP 的中点,以EF 为直径的圆在点 P 处切于点 T,求向量 PT 与向量 PE 的夹角的余弦值。
(1) 设点 M 的坐标为 $(-a, y_0)$。
由 $|MA| = 2|MB|$,得 $\sqrt{(-a - 0)^2 + (y_0 - b)^2} = 2\sqrt{(-a - a)^2 + (y_0 - 0)^2}$。
化简得 $a^2 + (y_0 - b)^2 = 4(a^2 + y_0^2)$。
又因为 $e = \frac{\sqrt{3}}{3}$,得 $e^2 = \frac{c^2}{a^2} = \frac{a^2 - b^2}{a^2} = \frac{1}{3}$。
解得 $a = \sqrt{3}, b = \sqrt{2}$。
(2) 由(1) 得椭圆 C 的方程为$\frac{x^2}{3} + \frac{y^2}{2} = 1$。
设点P 的坐标为$(x_0, y_0)$,则由$\frac{x_0^2}{3} + \frac{y_0^2}{2} = 1$,得 $y_0^2 = 1 - \frac{2}{3}x_0^2$。
设点 E、F、T 的坐标分别为 $(x_1, y_1), (x_2, y_2), (x_3, y_3)$,则 $x_1 = \frac{x_0}{2}, y_1 = \frac{y_0}{2}$,从而$x_2 = x_1 - \frac{y_1}{x_1}, y_2 = -y_1$。
因此 $x_3 = x_2 - \frac{y_2}{x_2}, y_3 = -y_2$。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
椭圆离心率经典习题 一、直接求出a c
,或求出a 与b 的比值,以求解e。
在椭圆中,a c
e =,2
2
2
2
2
2
2
1a
b
a b a a c a c e -
=-=== 1.已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率等于
2.已知椭圆两条准线间的距离是焦距的2倍,则其离心率为
3.若椭圆经过原点,且焦点为)0,3(),0,1(2
1
F F ,则椭圆的离心率为 4.已知矩形ABCD ,AB =4,BC =3,则以A 、B 为焦点,且过C 、D 两点的椭圆的离心率。
5.若椭圆
)0(,12
2
22>>=+b a b y a x 短轴端点
为P 满足2
1
PF PF ⊥,则椭圆的离心
率为=e 。
6..已知)0.0(12
1>>=+n m n
m 则当mn 取得最小值时,椭圆12
2
2
2
=+n
y m
x 的的离心率为
7.椭圆2
2
2
2
1(0)x y a b a
b
+=>>的焦点为1
F ,2
F ,两条准线与x 轴的交点分别为M N ,,若12
MN F F 2≤,则该椭
圆离心率的取值范围是1⎫
⎪⎪⎣⎭
8.已知F 1为椭圆的左焦点,A 、B 分别为椭圆的右顶点和上顶点,P 为椭圆上的点,当PF 1⊥F 1A ,PO ∥AB (O 为椭圆中心)时,椭圆的离心率为。