大学线性代数考试模拟题9
线性代数模拟试题(4套)
模拟试题一一、判断题:(正确:√,错误:×)(每小题2分,共10分)1、若B A ,为n 阶方阵,则 B A B A +=+. ……………………( )2、可逆方阵A 的转置矩阵T A 必可逆。
……………………………( )3、n 元非齐次线性方程组b Ax =有解的充分必要条件n A R =)(.…( )4、A 为正交矩阵的充分必要条件1-=A A T .…………………………( )5、设A 是n 阶方阵,且0=A ,则矩阵A 中必有一列向量是其余列向量的线性组合。
…………………………………………………………( ) 二、填空题:(每空2分,共20分)1、,A B 为 3 阶方阵,如果 ||3,||2A B ==,那么 1|2|AB -= 。
2、行列式中元素ij a 的余子式和代数余子式,ij ij M A 的关系是 。
3、在5阶行列式中,项5541243213a a a a a 所带的正负号是 。
4、已知()⎪⎪⎪⎭⎫ ⎝⎛-==256,102B A 则=AB .5、若⎪⎪⎭⎫ ⎝⎛--=1225A ,则=-1A . 6、设矩阵⎪⎪⎪⎭⎫ ⎝⎛--2100013011080101是4元非齐次线性方程组b Ax =的增广矩阵,则b Ax =的通解为 。
7、()B A R + ()()B R A R +。
8、若*A 是A 的伴随矩阵,则=*AA .9、设=A ⎪⎪⎪⎭⎫ ⎝⎛-500210111t ,则当t 时,A 的行向量组线性无关。
10、方阵A 的特征值为λ,方阵E A A B 342+-=,则B 的特征值为 . 三、计算:(每小题8分,共16分)1、已知4阶行列式1611221212112401---=D ,求4131211132A A A A +-+。
2、设矩阵A 和B 满足B AE AB +=+2,其中⎪⎪⎪⎭⎫ ⎝⎛=101020101A ,求矩阵B 。
四、(10分) 求齐次线性方程组⎪⎪⎩⎪⎪⎨⎧=++-=-++=--+-=++-0242205230204321432143214321x x x x x x x x x x x x x x x x 的基础解系和它的通解.五、(10分) 设三元非齐次线性方程组b Ax =的增广矩阵为⎪⎪⎪⎭⎫ ⎝⎛+-+----22)1)(1()2)(1(00)1(11011λλλλλλλλλλ, 讨论当λ取何值时,b Ax =无解,有唯一解和有无穷多解,并在无穷多解时求出通解。
线性代数考试题库及答案(九)
线性代数(经管类)综合试题三(课程代码 4184)一、单项选择题(本大题共10小题,每小题2分,共20分)1.当( D )成立时,阶行列式的值为零.A.行列式主对角线上的元素全为零B.行列式中有个元素等于零C.行列式至少有一个阶子式为零D.行列式所有阶子式全为零2.已知均为n阶矩阵,E为单位矩阵,且满足ABC=E,则下列结论必然成立的是( B ).A.ACB=EB. BCA=EC. CBA=ED. BAC=E3.设A,B均为n阶可逆矩阵,则下列等式成立的是( D ).A. (AB)-1=A-1B-1B.(A+B)-1=A-1+B-1C.(AB)T=A T B TD.4.下列矩阵不是初等矩阵的是( B ).A.B.C. D.5.设是4维向量组,则(D ).A.线性无关B.至少有两个向量成比例C.只有一个向量能由其余向量线性表示D.至少有两个向量可由其余向量线性表示6.设A为m×n矩阵,且m<n,则齐次线性方程组Ax = o必( C ).A.无解B.只有唯一零解C.有非零解D.不能确定7.已知4元线性方程组Ax=b的系数矩阵A的秩为3,又是Ax=b的两个解,则Ax=b的通解是(D ).A. B.C.D.8.如果矩阵A与B满足( D ),则矩阵A与B相似.A.有相同的行列式B.有相同的特征多项式C.有相同的秩D.有相同的特征值,且这些特征值各不相同9.设A是n阶实对称矩阵,则A是正定矩阵的充要条件是 (D ).A. |A|>0B. A的每一个元素都大于零C. D. A的正惯性指数为n10.设A,B为同阶方阵,且r(A) = r(B),则 ( C ).A. A与B相似B. A与B合同C. A与B等价D.|A|=|B|二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。
错填、不填均无分。
11.行列式24 .12.设A为三阶矩阵,|A|=-2,将矩阵A按列分块为,其中是A的第j列,,则|B|= 6.13.已知矩阵方程AX=B,其中A=,B=,则X=11 12-⎛⎫⎪-⎝⎭.14.已知向量组的秩为2,则k =-2 .15.向量的长度16.向量在基下的坐标为(3,-4,3) .17.设是4元齐次线性方程组Ax=o的基础解系,则矩阵A的秩r(A)= 1 .18.设是三阶矩阵A的特征值,则a = 1 .19.若是正定二次型,则λ>.满足520.设三阶矩阵A的特征值为1,2,3,矩阵B=A2+2A,则|B|= 360 .三、计算题(本大题共6小题,每小题9分,共54分)21.设三阶矩阵A=,E为三阶单位矩阵.求:(1)矩阵A-2E及|A-2E|;(2).解:(1) A-2E=300200100 110020110 123002121⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪-=-⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭| A-2E |= -1;(2)100100100100 110010010110 121001021101⎛⎫⎛⎫ ⎪ ⎪-→--⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭100100010110001121⎛⎫⎪→- ⎪ ⎪-⎝⎭1100(2)110121-⎛⎫⎪∴-=- ⎪ ⎪-⎝⎭A E . 22.已知向量组求:(1)向量组的秩; (2)向量组的一个极大线性无关组,并将其余向量用该极大线性无关组线性表示.解:(1)将所给向量按列构成矩阵A ,然后实施初等行变换:121012101202240400240012243200120000⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪→-→- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭. 所以,向量组的秩1234(,,,)2r =αααα;(2)向量组的一个极大无关组为:13,αα,且有214132,22==-ααααα.23.讨论a 为何值时,线性方程组有解?当方程组有解时,求出方程组的通解.解:对方程组的增广矩阵实施初等行变换:1222201111111311151a -⎛⎫ ⎪-- ⎪= ⎪- ⎪--⎝⎭A 122220*********03333a -⎛⎫⎪-- ⎪→ ⎪-- ⎪--⎝⎭12222011110000100000a -⎛⎫ ⎪-- ⎪→ ⎪- ⎪⎝⎭10040011110000100000a ⎛⎫⎪-- ⎪→⎪- ⎪⎝⎭. 若方程组有解,则()()2r r ==A A ,从而a =1.当a =1时,原方程组的通解方程组为:1423441x x x x x =-⎧⎨=++⎩,34,x x 为自由未知量.令340x x ==,得原方程组的一个特解:(0, 1, 0, 0)T .导出组的同解方程组为:142344x x x x x =-⎧⎨=+⎩,34,x x 为自由未知量. 令34x x ⎛⎫ ⎪⎝⎭分别取10,01⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭得导出组的基础解系:(0, 1, 1, 0)T ,(-4, 1, 0, 1)T . 所以,方程组的通解为:(0, 1, 0, 0)T +c 1(0, 1, 1, 0)T +c 2(-4, 1, 0, 1)T ,其中,c 1,c 2为任意常数.24.已知向量组,讨论该向量组的线性相关性. 解:因为12112111022(2)(6)24082a a a a a a ----=+=-++. 当a =2或a =-6时,向量组相性相关;当a ≠2且a ≠-6时,向量组线性无关.25.已知矩阵A =,(1)求矩阵A 的特征值与特征向量; (2)判断A 可否与对角矩阵相似,若可以,求一可逆矩阵P 及相应的对角形矩阵Λ.解:矩阵A 的特征多项式为:2110|430(2)(1)102λλλλλλ+--=-=----|E A , 所以,A 的特征值为:1231,2λλλ===.对于121λλ==,求齐次线性方程组()-=E A x o 的基础解系,210101420012101000-⎛⎫⎛⎫ ⎪ ⎪-=-→ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭E A ,得基础解系:121-⎛⎫ ⎪- ⎪ ⎪⎝⎭,从而矩阵A 的对应于特征值121λλ==的全部特征向量为:121c -⎛⎫ ⎪- ⎪ ⎪⎝⎭,(c ≠0). 对于32λ=,求齐次线性方程组(2)-=E A x o 的基础解系,3101002410010100000-⎛⎫⎛⎫ ⎪ ⎪-=-→ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭E A ,得基础解系:001⎛⎫ ⎪ ⎪ ⎪⎝⎭,从而矩阵A 的对应于特征值32λ=的全部特征向量为:00(0)1c c ⎛⎫⎪≠ ⎪ ⎪⎝⎭. 因为三阶矩阵A 只有两个线性无关的特征向量,所以, A 不能相似于对角矩阵.26.设二次型(1)将二次型化为标准形;(2)求二次型的秩和正惯性指数.解:(1) 利用配方法,将二次型化为标准形: 222123112132233,,22243f x x x x x x x x x x x x =+-+--() 22222112323232233[2()()]()243x x x x x x x x x x x x =+-+---+-- 2221232233()24x x x x x x x =+-+-- 222212322333()(2)5x x x x x x x x =+-+-+-222123233=()()5x x x x x x +-+--. 令112322333y x x x y x x y x ⎧=+-⎪=-⎨⎪=⎩,即11222333x y y x y y x y ⎧=-⎪=+⎨⎪=⎩,得二次型的标准形为:2221235y y y +-.(2)由上述标准形知:二次型的秩为3,正惯性指数为2.四、证明题(本大题共6分)27.已知A 是n 阶方阵,且,证明矩阵A 可逆,并求证:由2()+=A E O ,得: A 2+2A = -E ,从而 A (A +2E )= -E , A (-A -2E )= E 所以A 可逆,且12-=--A A E .。
线性代数练习题(有答案)
《线性代数》 练习题一、选择题1、 设A ,B 是n 阶方阵,则必有 ……………………………………………( A )A 、|AB |=|BA | B 、2222)(B AB A B A ++=+C 、22))((B A B A B A -=-+D 、BA AB = 2、设A 是奇数阶反对称矩阵,则必有( B ) (A)、1=A (B)、0=A (C)、0≠A (D)、A 的值不确定3、向量组)0,1,1(,)9,0,3(-,)3,2,1(,)6,1,1(--的秩为____2 ________4、向量组)1,3,1,2(-,)4,5,2,4(-,)1,4,1,2(--的秩为______2__ ___.5、设A 是n m ⨯阶矩阵,r A r =)(,则齐次线性方程组O AX =的基础解系中包含解向量的个数为( C )(A)、r (B)、n (C)、r n - (D)、r m - 二、计算与证明题6、设⎪⎪⎪⎭⎫ ⎝⎛----=020212022A , ⎪⎪⎪⎭⎫⎝⎛---=221021132B 求(1)32AB A -,(2).T B A6、解(1). A AB 23-2202313212120020122--⎛⎫⎛⎫ ⎪⎪=-- ⎪⎪ ⎪⎪---⎝⎭⎝⎭2202212020-⎛⎫⎪--- ⎪ ⎪-⎝⎭2223186240-⎛⎫ ⎪=-- ⎪ ⎪--⎝⎭2202212020-⎛⎫ ⎪--- ⎪ ⎪-⎝⎭210612622680-⎛⎫ ⎪=- ⎪ ⎪--⎝⎭(2). 220231231212120120020122122T A B ---⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪=--= ⎪⎪ ⎪ ⎪⎪ ⎪-----⎝⎭⎝⎭⎝⎭222186240-⎛⎫⎪=-- ⎪ ⎪--⎝⎭7、设A ,B 是n 阶方阵满足AB B A =+,证明:E A -可逆. 7、解、1()A E B E --=-8、设方阵A 满足0332=--E A A ,证明:A 可逆,并求1-A .8、解、由2330A A E --=有A (3A E -)=3E ,于是,A [21(3A E -)]=E ,所以A 可逆,且11(3)3A A E -=-.9、计算行列式:1014300211321221---=D9、69D =-.10、计算行列式D =4232002005250230---- 10、解:D =423200200525230----0205252304--=55208---=80-=11、计算n 阶行列式abbb b a bb b a D =11、1[(1)]()n D a n b a b -=+--。
大学数学线性代数期末复习模拟测试试卷(含答案)
线性代数期末模拟测试试卷(含答案)班别 姓名 成绩一、选择题1.已知二次型3231212322214225x x x x x tx x x x f +-+++=,当t 取何值时,该二次型为正定?( ) A.054<<-t B.5454<<-t C.540<<t D.2154-<<-t2.已知矩阵B A x B A ~,50060321,340430241且⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-=,求x 的值( )A.3B.-2C.5D.-53.设A 为n 阶可逆矩阵,则下述说法不正确的是( ) A. 0≠A B. 01≠-A C.n A r =)( D.A 的行向量组线性相关4.过点(0,2,4)且与两平面2312=-=+z y z x 和的交线平行的直线方程为( ) A.14322-=-=-z y x B.24322-=-=z y x C.14322+=+=-z y x D.24322+=+=z y x5.已知矩阵⎪⎪⎭⎫ ⎝⎛-=1513A ,其特征值为( )A.4,221==λλB.4,221-=-=λλC.4,221=-=λλD.4,221-==λλ二、填空题.答题要求:将正确答案填写在横线上6.三阶行列式ij a 的展开式中,321123a a a 前面的符号应是 。
7.设123221,343A ⎛⎫⎪= ⎪ ⎪⎝⎭ij A 为A 中元ij a 的代数余子式,则111213A A A ++= 。
8.设n 阶矩阵A 的秩1)(-<n A r ,则A 的伴随矩阵A *的元素之和∑∑===n i nj ij A 11。
9.三阶初等矩阵()1,2E 的伴随矩阵为 。
10.若非齐次线性方程组AX B =有唯一解,则其导出组0AX =解的情况是 。
11.若向量组11121233,a b a b a b αβ⎛⎫⎛⎫⎪ ⎪== ⎪ ⎪⎪ ⎪⎝⎭⎝⎭线性相关,则向量组112222,a b a b αβ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭的线性关系是 。
海南大学线性代数模拟试题及答案
《线性代数》模拟题二答案一、填空题(每空 3 分,共 30分) 1. 排列3421的逆序数为___5___.2. 设A 为三阶方阵,*A 为其伴随矩阵, ||2,A = 则*|3|A =___108___.3. 设n 个未知量的齐次线性方程组0Ax =,()R A r =,则0Ax =有非零解的充要条件r n < .4. 设B 可逆,()3R C =,A BC =,则矩阵A 的秩()R A = 3 .5. 设1012,,1134A B ⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭则AB =1246⎛⎫⎪⎝⎭. 6. 设1,2,3是三阶矩阵A 的特征值,则2|-5|A A = __-144_. 7. 设方阵A 满足 2,A A = 则1(2)A E --=1-()2A E +8. 122112121A ⎛⎫ ⎪=- ⎪ ⎪-⎝⎭,则122232A A A ++=0. 9. 设12,,s ααα,是非齐次线性方程组Ax b =的解,若1122+++s s C C C ααα也是Ax b =的一个解,则12+++s C C C = 1 解10. 若1234,,,αααα线性无关,则12233441,,,αααααααα++++线性 相关 . 二(1,2,3)、计算题 (30分)1、(8分) 111111111411030077189;1141003011140003=⨯=⨯=解:D ….. (8分)2、 (10分) 设21-3111222013225A B -⎛⎫⎛⎫ ⎪ ⎪=-= ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭,, 求解矩阵方程AX B = .解:2131112220(,)12220031311322505005A B ---⎛⎫⎛⎫ ⎪ ⎪=---- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭102221002200132010010100100132---⎛⎫⎛⎫⎪ ⎪- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭…………(7分) 即1420132x A B --⎛⎫⎪== ⎪ ⎪-⎝⎭……………………………………(3分)3、(12分) 求非齐次线性方程组的通解及其对应的齐次线性方程组的基础解系.⎪⎩⎪⎨⎧-=+-+-=-+=-+-62421351134543214214321x x x x x x x x x x x解: 154311154311530110282014562421601410728B ----⎛⎫⎛⎫⎪⎪=---- ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭………(2分) 3172551172721543111010120120000000000-----⎛⎫⎛⎫⎪⎪-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭…………..(2分) ()()R A R B =,方程组有解通解为31725172121212,,100010x y c c c c R z w --⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪=++∈ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭……..(4分)齐次线性方程组的基础解系为3511772212,T T ξξ--==(,,1,0)(,,0,1) ……..(4分)二(4,5)、计算题 (24分)4、(10分) 已知矩阵20000101A x ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦与20000001B y ⎡⎤⎢⎥=⎢⎥-⎢⎥⎣⎦相似.求x 与y . 解: 矩阵A 与矩阵B 相似,则||||,A B =即22,1y y -=-= …..(5分) 由trA trB =,即221,x y +=+-因此0x =….. ……. ……. ……. (5分)5、(14分)解:(1)二次型所对应的矩阵513153333A -⎛⎫ ⎪=-- ⎪ ⎪-⎝⎭……..(3分)(2)513413153453335033A E λλλλλλλλ-----=---=-------=(-4)(-9)λλλ-….. ……. ….. ……. ……. ……. ….. ……. ……. ……...(4分)当10λ=时由0Ax =及12121531002412010126000A --⎛⎫⎛⎫ ⎪⎪- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭得1112ξ-⎛⎫ ⎪= ⎪⎪⎝⎭,…(2分) 当24λ=时由2)0A E x -=(及1104001000A E-⎛⎫ ⎪- ⎪ ⎪⎝⎭得2110ξ⎛⎫⎪= ⎪ ⎪⎝⎭,…(2分) 当39λ=时由9)0A E x -=(及1019011000A E-⎛⎫ ⎪- ⎪⎪⎝⎭得3111ξ⎛⎫ ⎪=- ⎪ ⎪⎝⎭, …(1分) 令123)=P x Py =,,则有222349fy y =+ …...(2分)三、证明题(16分)1、 (8分)向量组T 1:(0,1,1),A α=T 2(1,1,0);α= T1:(1,0,1)B β-=,T 2(1,2,1),β=T 3(3,2,1)β-=.证明A 组与B 组等价..证明:对矩阵()12123(,),,,A B ααβββ=,进行行初等变换0111310111(,)11022011131011101113A B --⎛⎫⎛⎫ ⎪⎪=- ⎪⎪ ⎪ ⎪--⎝⎭⎝⎭………………(2分) 1011101113,(,)200000R A B -⎛⎫ ⎪-= ⎪ ⎪⎝⎭..………………………… (2分) 又()()2R A R B ==,因此向量组321,,ααα ……………………..(2分)()()(),2R A R B R A B ===,因此A 组与B 组等价 .……………… (2分)2、(8分) 设A 是n 阶方阵,若存在正整数k ,使得线性方程组0=x A k 有 解向量α,且01≠-αk A .证明:向量组ααα1,,,-k A A 是线性无关的.证明:设10110k k l l A l A ααα--+++=,则 …………..(2分)11011()0k k k A l l A l A ααα---+++=即100k l A α-=,又01≠-αk A因此00l =,带入第一式可得1110k k l A l A αα--++= …………..(2分)类似可得110k l l -=== …………..(2分)即0110k l l l -====,向量组ααα1,,,-k A A 是线性无关的..(2分)。
线性代数 模拟题
一、 选择题1.设向量()()()=-1,0,1=2,-3,=,3,1TTTx y αβγ-,,,且2αβγ+=,则x =( )..1A - .0B .2C .1D2.如果方程组⎪⎩⎪⎨⎧=+=-=-+0404033232321kx x x x x kx x 有非零解,则 k =( ) A.-2 B.-1 C.1D.23.若3阶行列式1023145x x 的代数余子式121A =-,则代数余子式21A =( ) .1A - B .4 C .-2 D .24.设A 、B 为同阶可逆矩阵,则以下结论正确的是( ) A .|AB|=|BA| B .|A+B|=|A|+|B| C .(AB )-1=A -1B -1D .(A+B )2=A 2+2AB+B 25.设A 为3阶方阵,且|A |=2,则|2A -1|=( ) A .-4 B .-1 C .1 D .4 6.若矩阵A 满足()12,A A E A E -+=+=则( ).A A E - .B A E + .2C A E -+ .D A7.设123,,,,αααβγ均为4维列向量,且4阶行列式321,,,2,αααβ=-123,,,1,βγααα+=-则4阶行列式1232,,,γααα=( )A .0B .2C .1D .-18.设A 为三阶矩阵,且|A |=2,则|(A *)-1|=( ) A.41 B.1 C.2D.49.设A 为5×4矩阵,若秩(A )=4,则秩(5A T )为( ) A .2 B .3 C .4 D .510.设α1=[1,2,1],α2=[0,5,3],α3=[2,4,2],则向量组α1,α2,α3的秩是( )A .0B .1C .2D .3 11.若向量组α1=(1,t+1,0),α2=(1,2,0),α3=(0,0,t 2+1)线性相关,则实数t=( )A .0B .1C .2D .312.设3元非齐次线性方程组Ax=b 的两个解为α=(1,0,2)T ,β=(1,-1,3)T ,且系数矩阵A 的秩r(A )=2,则对于任意常数k , k 1, k 2, 方程组的通解可表为( ) A .k 1(1,0,2)T +k 2(1,-1,3)TB .(1,0,2)T +k (1,-1,3)TC .(1,0,2)T +k (0,1,-1)TD .(1,0,2)T +k (2,-1,5)T13.对非齐次线性方程组A m ×n x =b ,设秩(A )=r ,则( ) A .r =m 时,方程组Ax =b 有解 B .r =n 时,方程组Ax =b 有唯一解 C .m =n 时,方程组Ax =b 有唯一解 D .r <n 时,方程组Ax =b 有无穷多解14.若A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡10001000210100002B x 与相似,则x=( ) A .-1 B .0 C .1 D .215.设()21,103Ta A ξ⎛⎫== ⎪⎝⎭是的特征向量,则a =( )A .1B .0C .-1D .216.设λ=2是可逆矩阵A 的一个特征值,则矩阵(A 2)-1必有一个特征值等于( )A .41 B .21 C .2D .417.设A 为3阶方阵,其特征值分别为2,1,0则| A +2E |=( ) A.0 B.2 C.3D.2418.若向量α=(1,-2,1)与β=(2,3,t )正交,则t =( ) A.-2 B.0 C.2D.419.三元二次型f (x 1,x 2,x 3)=233222312121912464x x x x x x x x x +++++的矩阵为( )A.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡963642321B.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡963640341C.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡960642621D.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡912304232120.若实对称矩阵A =⎪⎪⎪⎭⎫⎝⎛a a a 000103为正定矩阵,则a 的取值应满足().0A a <<.0B a <<.C a <<.1D a <<二、计算题1.已知矩阵A=011110124⎛⎫ ⎪ ⎪ ⎪-⎝⎭,B=101332⎛⎫ ⎪- ⎪ ⎪⎝⎭,(1)求A 的逆矩阵A -1; (2)解矩阵方程AX=B.2.求4阶行列式11211021210211-----的值. 3.求线性方程组123412341234221245224x x x x x x x x x x x x -++=⎧⎪+++=⎨⎪---+=-⎩(1)求导出组的基础解系; (2)求方程组的一般解。
线性代数模拟题及答案
模拟试题一一. 填空题 (将正确答案填在题中横线上。
每小题2分,共10分)1.n 阶行列式D 的值为c, 若将D 的所有元素改变符号, 得到的行列式值为 .2.设矩阵A = ⎪⎪⎪⎭⎫ ⎝⎛101020101 ,矩阵X 满足 E AX + = X A +2 ,则X = ⎪⎪⎪⎭⎫ ⎝⎛2010301023.设n 阶矩阵A 满足 E A A 552+- = 0 ,其中E 为n 阶单位阵,则 1)2(--E A =4.设A ,B 均为3阶方阵,A 的特征值为 1,2,3,则EA +*= .5.当 λ 满足条件 时线性方程组 ⎪⎪⎩⎪⎪⎨⎧=+--=-++-=-++-=+--00004321432143214321x x x x x x x x x x x x x x x x λλλλ 只有零解.二、单项选择题 (每小题仅有一个正确答案, 将正确答案题号填入括号内。
每小题2分,共20分)1.131211232221333231333231232221131211222333 d a a a a a a a a a a a a a a a a a a ---=则=( ).① 6d ② ―6d ③ 4d ④ ―4d 2. 向量组 s ααα,,,21 的秩为s 的充要条件是( )。
① 向量组不含零向量② 向量组没有两个向量的对应分量成比例 ③ 向量组有一个向量不能由其余向量线性表示 ④向量组线性无关3. 当t =( )时,向量组 ),4,5( , )5,2,3( , )0,1,2(321t ===ααα线性相关。
① 5 ② 10③ 15 ④ 204.已知向量组α1,α2,α3线性无关,则向量组( )线性无关。
① α1+2α2+α3, 2α1+4α2+α3, 3α1+6α2 ② α1, α1+α2, α1+α2+α3 ③ α1+α2, α2+α3, α1+2α2+α3 ④ α1-α2, α2-α3, α3-α15. 已知⎪⎪⎪⎭⎫ ⎝⎛---=63322211t A , B 为三阶非零矩阵且AB = 0, 则( ). ① 当t = 4时,B 的秩必为1 ② 当t = 4时,B 的秩必为2 ③ 当t ≠ 4时,B 的秩必为1 ④ 当t ≠ 4时,B 的秩必为26.设非齐次线性方程组A X = b 中未知量个数为n ,方程个数为m ,系数矩阵A 的秩为r ,则 .① r = m 时,方程组A X = b 有解 ② r = n 时,方程组A X = b 有唯一解 ③ m = n 时,方程组A X = b 有唯一解 ④ r < n 时,方程组A X = b 有无穷多解7. 设矩阵A 和B 等价,A 有一个k 阶子式不等于零,则B 的秩( )k.① < ② = ③ ≥ ④ ≤8. 一个向量组的极大线性无关组( ). ① 个数唯一 ② 个数不唯一③ 所含向量个数唯一 ④ 所含向量个数不唯一9. 下列关于同阶不可逆矩阵及可逆矩阵的命题正确的是( ). ① 两个不可逆矩阵之和仍是不可逆矩阵 ② 两个可逆矩阵之和仍是可逆矩阵 ③ 两个不可逆矩阵之积仍是不可逆矩阵 ④ 一个不可逆矩阵与一个可逆矩阵之积必是可逆矩阵10.已知任一n 维向量均可由n ααα,,,21 线性表示,则n ααα,,,21( )。
线性代数考试题及答案
线性代数考试题及答案一、单项选择题(每题2分,共10分)1. 矩阵A的行列式为0,则矩阵A是:A. 可逆的B. 不可逆的C. 正定的D. 负定的答案:B2. 若向量组\( \alpha_1, \alpha_2, \ldots, \alpha_n \)线性相关,则:A. 存在不全为0的实数k1, k2, ..., kn,使得k1\( \alpha_1 +k2\alpha_2 + \ldots + k_n\alpha_n = 0 \)B. 所有向量都为零向量C. 存在不全为0的实数k1, k2, ..., kn,使得k1\( \alpha_1 +k2\alpha_2 + \ldots + k_n\alpha_n \)是零向量D. 所有向量都为非零向量答案:A3. 矩阵A和B的乘积AB等于零矩阵,则:A. A和B都是零矩阵B. A和B中至少有一个是零矩阵C. A和B的秩之和小于A的列数D. A和B的秩之和小于B的行数答案:C4. 向量组\( \beta_1, \beta_2, \ldots, \beta_m \)可以由向量组\( \alpha_1, \alpha_2, \ldots, \alpha_n \)线性表示,则:A. m > nB. m ≤ nC. m ≥ nD. m < n答案:B5. 若矩阵A和B合同,则:A. A和B具有相同的行列式B. A和B具有相同的秩C. A和B具有相同的特征值D. A和B具有相同的迹答案:B二、填空题(每题3分,共15分)1. 若矩阵A的特征值为λ,则矩阵A^T的特征值为______。
答案:λ2. 若矩阵A可逆,则矩阵A的行列式|A|与矩阵A^-1的行列式|A^-1|满足关系|A^-1|=______。
答案:1/|A|3. 若向量组\( \alpha_1, \alpha_2 \)线性无关,则由这两个向量构成的矩阵的秩为______。
答案:24. 矩阵A的秩为r,则矩阵A的零空间的维数为______。
线性代数练习题及答案10套
1 0 1 14.设矩阵 A= 0 2 0 ,矩阵 B A E ,则矩阵 B 的秩 r(B)= __2__. 0 0 1 0 0 1 B A E = 0 1 0 ,r(B)=2. 0 0 0
15.向量空间 V={x=(x1,x2,0)|x1,x2 为实数}的维数为__2__. 16.设向量 (1,2,3) , (3,2,1) ,则向量 , 的内积 ( , ) =__10__. 17.设 A 是 4×3 矩阵,若齐次线性方程组 Ax=0 只有零解,则矩阵 A 的秩 r(A)= __3__. 18 . 已 知 某 个 3 元 非 齐 次 线 性 方 程 组 Ax=b 的 增 广 矩 阵 A 经 初 等 行 变 换 化 为 :
三、计算题(本大题共 6 小题,每小题 9 分,共 54 分)
Ibugua
交大打造不挂女神的领跑者
123 23 3 21.计算 3 阶行列式 249 49 9 . 367 67 7 123 23 3 100 20 3 解: 249 49 9 200 40 9 0 . 367 67 7 300 60 7
线代练习题及答案(一)
一、单项选择题(本大题共 10 小题,每小题 2 分,共 20 分)
1.设 A 为 3 阶方阵,且 | A | 2 ,则 | 2 A 1 | ( D A.-4 B.-1 C. 1 ) D.4
| 2 A 1 | 2 3 | A | 1 8
1 4. 2
)
1 2 3 1 2 2. 设矩阵 A= (1, 2) , B= C= 则下列矩阵运算中有意义的是 ( B 4 5 6 , 3 4 ,
行成比例值为零.
a1b2 a 2 b2 a 3 b2
长沙理工大学线性代数考试试卷及答案
长沙理工大学模拟考试试卷…………………………………………………………………………………………………………………………试卷编号1拟题教研室(或教师)签名教研室主任签名…………………………………………………………………………………………………………………………课程名称(含档次)线性代数课程代号0701011专业全校各专业层次(本、专)本科考试方式(开、闭卷)闭卷一、判断题(正确答案填√,错误答案填×。
每小题2分,共10分)1.设阶方阵可逆且满足,则必有()2.设是的解,则是的解()3.若矩阵的列向量组线性相关,则矩阵的行向量组不一定线性相关()4.设表示向量的长度,则()5.设是的解,则是的解()二、填空题:(每小题5分,共20分)1.计算行列式=;2.若为的解,则或必为的解;3.设n维向量组,当时,一定线性,含有零向量的向量组一定线性;4.设三阶方阵有3个特征值2,1,-2,则的特征值为;三、计算题(每小题10分,共60分)1.;第1页(共2页)2.若线性方程组有解,问常数应满足的条件3.设是方程组的解向量,若也是的解,则;4.求齐次线性方程组的基础解系;5.已知矩阵与矩阵相似,求的值;6.设为正定二次型,求.四、证明题(10分):设向量组线性无关,证明线性无关。
长沙理工大学模拟试卷标准答案课程名称:线性代数试卷编号:1一、判断题(正确答案填√,错误答案填×。
每小题2分,共10分)1,×2,×3,√4,×5,√二、填空题:(每小题5分,共20分)1,42;2,;3,相关,相关;4,4,1,4.三、计算题(每小题10分,共60分)1.==5(5分)=5=5(5分)2.(2分)(5分)若有解,则A的秩与的秩相等,即。
(3分)3.(6分)∴(1)当时,矩阵的秩为2;(2分)(2)当时,矩阵的秩为3.(2分)第1页(共3页)4.对系数矩阵作作初等行变换得同解方程组令,;得,基础解系为:5.解:∵与相似,∴特征多项式相同,即亦即6.解:的矩阵为∵为正定二次型,∴的各阶主子式大于0.即>0,>0>0第2页(共3页)解联立不等式组>0或<0<<或<<0<<0即当<<0时,为正定二次型.四、证明题(10分):证明:设存在一组数使得,(3分)又向量组线性无关,因此,(7分)由此可知,只有当时,等式才成立,即向量组线性无关。
线性代数大学试题及答案
线性代数大学试题及答案一、选择题(每题5分,共20分)1. 设A是一个3阶方阵,且满足A^2 = A,则下列说法正确的是:A. A是可逆矩阵B. A是幂等矩阵C. A是正交矩阵D. A是单位矩阵答案:B2. 若矩阵A的特征值为1,则下列说法正确的是:A. 1是A的迹B. 1是A的行列式C. 1是A的一个特征值D. 1是A的秩答案:C3. 设向量组α1, α2, ..., αn线性无关,则下列说法正确的是:A. 向量组中任意向量都可以用其他向量线性表示B. 向量组中任意向量都不可以被其他向量线性表示C. 向量组中任意向量都可以被其他向量线性表示D. 向量组中任意向量都不可以被其他向量线性表示,除非它们线性相关答案:B4. 若矩阵A的秩为2,则下列说法正确的是:A. A的行向量组线性无关B. A的列向量组线性无关C. A的行向量组线性相关D. A的列向量组线性相关答案:A二、填空题(每题5分,共30分)1. 若矩阵A的行列式为0,则A的______。
答案:秩小于矩阵的阶数2. 设向量空间V的一组基为{v1, v2, ..., vn},则任意向量v∈V可以唯一地表示为______。
答案:v = c1v1 + c2v2 + ... + cnn,其中ci为标量3. 设矩阵A和B可交换,即AB = BA,则A和B的______。
答案:特征值相同4. 若线性变换T: R^n → R^m,且T是可逆的,则T的______。
答案:行列式不为零5. 设A为n阶方阵,若A的特征多项式为f(λ) = (λ-1)^2(λ-2),则A的特征值为______。
答案:1, 1, 26. 若向量组α1, α2, ..., αn线性无关,则向量组α1, α2, ..., αn, α1+α2也是______。
答案:线性相关三、简答题(每题10分,共20分)1. 简述什么是矩阵的秩,并给出如何计算矩阵的秩的方法。
答案:矩阵的秩是指矩阵行向量或列向量组中线性无关向量的最大个数。
线性代数模拟试题及答案(三套)
第一套线性代数模拟试题解答一、填空题(每小题4分,共24分)1、 若12335544i j a a a a a 是五阶行列式中带正号的一项,则,12i j ==。
令1,2i j ==,(12354)(13524)134τπ+=+=,取正号。
2、 若将n 阶行列式D 的每一个元素添上负号得到新行列式D ,则D =(1)n D- 。
即行列式D 的每一行都有一个(-1)的公因子,所以D =(1)n D-。
3、设1101A ⎛⎫=⎪⎝⎭, 则100A =110001⎛⎫ ⎪⎝⎭。
23111112121113,,010*********A A ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫==== ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭可得4、设A 为5 阶方阵,5A =,则5A =15n +。
由矩阵的行列式运算法则可知:1555n n A A +==。
5、A 为n 阶方阵,TAA E =且=+<E A A 则,0 0 。
由已知条件:211,1T T TAA E AA A A A E A A =⇒====⇒=±⇒=-, 而 :0TTA E A AA A E A A A E A E A E +=+=+=+=-+⇒+=。
6、设三阶方阵2000023A x y ⎛⎫⎪= ⎪ ⎪⎝⎭可逆,则,x y 应满足条件32x y ≠。
可逆,则行列式不等于零:2002(32)032023A x y x y x y ==⨯-≠⇒≠。
二、单项选择题(每小题4分,共24分) 7、设0333231232221131211≠=M a a a a a aa a a ,则行列式=---------232221333231131211222222222a a a a a a a a a A 。
A .M 8 B .M 2 C .M 2- D .M 8-由于 ()()111213111213111213331323331323321222321222321222331323322222228(1)8222a a a a a a a a a a a a a a a a a a M a a a a a a a a a ------=-=--=---8、设n 阶行列式n D ,则0n D =的必要条件是 D 。
线性代数期末考试模拟试卷及答案
共7页,第1页学 院: 专 业: 学 号: 姓 名:装 订 线一、 填空题(每小题3分,共24分)1.设A 、B 是n 阶方阵,下列等式正确的是 .(A )AB=BA (B )))((22B A B A B A -+=-(C )22A A = (D )111)(---+=+B A B A2. 设A 为n 阶方阵,则0=A 的必要条件是 .(A) A 中有两行(列)元素对应成比例; (B) A 中必有一行为其余行的线性组合;(C) A 中有一行元素全为零; (D) A 中任意一行为其余行的线性组合.3. 设有向量组1α=(1,-1,2,4),2α=(0,3,1,2),3α=(3,0,7,14),4α=(1,-2,2,0)与5α=(2,1,5,10),则向量组的极大线性无关组是( ) (A )231ααα,,; (B) 241ααα,,;(C)251ααα,,; (D) 2451αααα,,,.(C) A 的行向量线性无关; (D) A 的行向量线性相关.5. 、设3阶矩阵A 与B 相似,矩阵A 的特征值为41,31,21,则=)(det *B ( )共7页,第2页共7页,第3页共7页,第4页答案一、选择题(每小题3分,共24分)1.C2.B3.B4.C5.A6.C7.A8.B 二、填空题(每小题4分, 共24分)1.⎝⎛⎪⎪⎪⎪⎪⎭⎫-11001000003100001 , 2. 332±, 3. ⎝⎛⎪⎪⎭⎫10101, 4. k 不存在 5. 40, 6. 0. 三.(8分)证明:由06))(4(1032=-+-=--I I A I A I A A ……………………5分所以I I A I A 6))(4(=+- ……………………6分 故I A 4-可逆,且逆矩阵为6IA + ……………………8分 四、(12分) 解:2)3(111111111λλλλλ+=+++=A ………………………………………3分当03≠-≠λλ且时,方程组有唯一解………………………………5分当0=λ时,增广矩阵为⎪⎪⎪⎭⎫⎝⎛−→←⎪⎪⎪⎭⎫ ⎝⎛=000010000111011131110111r B 知 )()(B R A R ≠ , 方程组无解…………………………………………8分当3-=λ时,增广矩阵为共7页,第5页⎪⎪⎪⎭⎫⎝⎛----⎪⎪⎪⎭⎫ ⎝⎛----=000021103211 321131210112r B 2)()(==B R A R , 方程组有无穷多解,解为T T c x )0,2,1()1,1,1(--+=,(c 为任意常数)……………………12分 五、(10分)解:设有k x x x x ,,,,210 使得0)()()(22110=+++++++k k x x x x αβαβαββ , (1) )………2分⇒0)(2211210=++++++++k k k x x x x x x x αααβ , (2)………4分 若0210≠++++k x x x x ,则β可由k ααα,,,21 线性表示,⇒是0=Ax 的解,与已知矛盾.故必有0210=++++k x x x x ,从而02211=+++k k x x x ααα ,………………………………………………………7分 由k ααα,,,21 是0=Ax 的一个基础解系知k ααα,,,21 线性无关,⇒021====k x x x ,0)(210=+++-=k x x x x ,因此向量组k αβαβαββ+++,,,,21 线性无关.…………………………………10分六、(10分)解:由已知(2)-=A E X A , …………………………………………2分因为 100386(2,)0102960012129r--⎛⎫⎪-−−→-- ⎪ ⎪-⎝⎭A E A ………………………8分 故1386(2)2962129---⎛⎫ ⎪=-=-- ⎪ ⎪-⎝⎭X A E A …………………………………………10分β共7页,第6页七、(12分)解:)1()1(3240102232-+-=------=-λλλλλλE A =0, ………… 2分1,1321=-==λλλ. ………(4分) (1) ⎪⎪⎪⎭⎫ ⎝⎛--=-224000224)(1E A λ41113~⋅-r r r ⎪⎪⎪⎪⎪⎭⎫⎝⎛-00000021211, 02121321=-+x x x ,令2312,c x c x ==,2112121c c x +-=,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫⎝⎛1021012121321c c x x x .121-==λλ对应的特征向量⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=1021,012121ξξ它们是线性无关的. ………(8分)(2) ⎪⎪⎪⎭⎫ ⎝⎛---=-424020222)(3E A λ~132r r -⎪⎪⎪⎭⎫ ⎝⎛---020*******1123~⋅-r r r ⎪⎪⎪⎭⎫ ⎝⎛--0000201112122~21r r r --⋅⎪⎪⎪⎭⎫⎝⎛-000010101, ⎩⎨⎧==-00231x x x , 令13c x =,⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛1011321c x x x , 对应的特征向量为⎪⎪⎪⎭⎫⎝⎛=1013ξ. ………(10分)(3)因为321ξξξ,,线性无关,所以A 可以对角化,其中⎪⎪⎪⎪⎪⎭⎫⎝⎛-=11000112121P , ⎪⎪⎪⎭⎫ ⎝⎛--=Λ100010001. ………(12分)共7页,第7页。
线性代数模拟试题及答案
3、
1 1 =__________。 2 2 é 2 3ù é - 1ù ú ê ú =__________。 ë - 1 0û ë 3 û
4、矩阵 ê
5、若 A,B 为 n 阶矩阵,则 ( A + B )( A - B ) =__________。 6.设 A, B 为 3 阶方阵,且 A = 4, B = 2 ,则 2( B* A-1 ) = 7、若 A 是可逆矩阵,则 ( A¢ ) -1 =__________。 .
æ- 2 0 0 ö æ1 0 0 ö ÷ ç ç ÷ A - 3E = ç - 2 2 - 2 ÷ ~ ç 0 1 - 1÷ ç - 2 4 - 4÷ ç0 0 0 ÷ ø è è ø æ0ö ç ÷ ì x 2 - x3 = 0 从而解得基础解系 p1 = ç 1 ÷ 得对应的方程组为 í î x1 = 0 ç1÷ è ø
.
A+ B = A + B
A. 若矩阵 A, B 满足 AB = O ,则有 A = O 或 B = O B. 若矩阵 A, B 满足 AB = E ,则矩阵 A, B 都可逆。 C. 若 A* 是 n 阶矩阵 A 的伴随矩阵,则 A* = A D. 若 A ¹ O ,则 A ¹ 0
7.下列说法不正确的是( ) 。
æ1 ç 0 8.设矩阵 A = ç ç0 ç ç0 è
2 0 0ö ÷ 1 0 0÷ -1 ,则 A = ÷ 0 3 3 ÷ 0 2 1÷ ø
.
9 、 在 线性方程组 AX = O 中,若 末知 量的个数 n=5 , r ( A) = 3 ,则方程组的一 般 解中 自由末知 量的个数为 _________。 10. 设向量组 a1 , a 2 , a3 线性无关,则向量组 a1 , a1 + a 2 , a1 + a2 + a3 (填线性相关,线性无关) 。
线性代数全真模拟试卷
线性代数全真模拟试卷第一题 选择题1、已知行列式22221111b a b a b a b a -+-+=4,则2211b a b a =( )A 、2B 、4C 、-4D 、-22、若方程组⎪⎩⎪⎨⎧=-+=+-=-+03,02,022132132132x x x x x x x x x λ有非零解,则λ=( )A 、0B 、1C 、-1D 、23、设A 是n 阶非零方阵,下列矩阵不是对称矩阵的是( ) A 、A+A TB 、AA TC 、A-A TD 、21(A+A T) 4、设ABC 均为n 阶可逆方阵,且ABC=E,则下列结论成立的是( ) A 、ABC=E B 、BAC=E C 、BCA=E D 、CBA=E5、设a1,a2,a3线性无关,而a2,a3,a4线性相关,则( ) A 、a1必可由a2,a3线性表示 B 、a2必可由a3,a4线性表示 C 、a3必可由a2,a4线性表示 D 、a4必可由a2,a3线性表示6、向量组a 1,a 2…,a s 的秩为s 的充要条件为( )A 、此向量组中不含零向量B 、此向量组中没有两个向量的对应分量成比例C 、此向量组中有一个向量不能由其余向量线性表示D 、此向量组线性无关7、设A 为m*n 矩阵,且任何n 维列向量都是齐次线性方程组Ax=0的解,则( ) A 、A=0B 、r (A )=mC 、r (A )=nD 、0<r (A )<n8、设三元非齐次线性方程组Ax=b 的两个解为1η=(2,0,3),2η=(1,-1,2)T,r (A )=2,则此线性方程组的通解为( ) A 、k1(2,0,3)T+k2(1,-1,2)TB 、(2,0,3)T+k (1,1,1)TC 、(2,0,3)T+k (1,-1,2)TD 、(2,0,3)T+k (3,-1,5)T9、下列命题正确的是( )A 、两个同阶的正交矩阵的行列式都等于1B 、两个同阶的正交矩阵的和必是正交矩阵C 、两个同阶的正交矩阵的乘积必是正交矩阵D 、特征值为1的矩阵就是正交矩阵10、设A 为n 阶矩阵,则在( )情况下,它的特征值可以是零。
线性代数模拟试卷及答案4套
线性代数模拟试卷(一)一、 填空题(每小题3分,共6小题,总分18分)1、四阶行列式44434241343332312423222114131211a a a a a a a a a a a a a a a a 展开式中,含有因子3214a a 且带正号的项为___________2、设A 为n 阶可逆方阵,将A 的第i 行和第j 行对换后得到的矩阵记为B ,则AB -1=_________3、已知向量组)2- 5, 4,- ,0( , )0 t,0, ,2( , )1 1,- 2, ,1(321'='='=ααα线性相关,则t =_________4、设三阶方阵) , ,(B ), , ,(2121γγβγγα==A ,其中 , ,,21γγβα都是三维列向量且2B 1, ==A ,则=- 2B A _________5、A 为n 阶正交矩阵, , ,,21n ααα 为A 的列向量组,当i ≠j 时,)21 ,31(j i αα=_________ 6、三阶方阵A 的特征值为1,-2,-3,则 A =_______; E+A -1的特征值为______ 二、 单项选择题(每小题2分,共6小题,总分12分) 1、 设齐次线性方程组AX=0有非零解,其中A=()nn ija ⨯,A ij 为a ij (i,j=1,2,…n) 的代数余子式,则( ) (A)0111=∑=ni i i A a(B)0111≠∑=ni i i A a(C)n A ani i i =∑=111(D)n A ani i i ≠∑=1112、若A -1+ E, E+A, A 均为可逆矩阵,E 为单位矩阵,则(A -1+ E)-1=( ) (A) A+E (B) (A+E)-1 (C) A -1+ E (D) A(A+E)-13、设A, B 为n 阶方阵 ,A*,B*分别为A, B 对应的伴随矩阵,分块矩阵⎪⎪⎭⎫ ⎝⎛=B 00 A C ,则C 的伴随矩阵C* =( )(A) ⎪⎪⎭⎫⎝⎛*A B 0 0 *B A (B) ⎪⎪⎭⎫⎝⎛*B A 0 0 *A B(C) ⎪⎪⎭⎫⎝⎛*B B 0 0 *A A (D) ⎪⎪⎭⎫⎝⎛*A A 0 0 *B B 4、若向量组 , ,,21m ααα 的秩为r ,则( )(A) 必有 r<m (B)向量组中任意小于 r 个向量的部分组线性无关 (C) 向量组中任意 r 个向量线性无关(D) 向量组中任意 r+1个向量必线性相关5、已知 ,,321ααα是四元非齐次线性方程组AX=B 的三个解,且r(A)=3, 已知)3 2, 1, ,0( , )4 3, 2, ,1(321'=+'=ααα,C 为任意常数,则AX=B 通解X=( )(A) ⎪⎪⎪⎪⎪⎭⎫⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛11114321C (B)⎪⎪⎪⎪⎪⎭⎫⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛32104321C(C) ⎪⎪⎪⎪⎪⎭⎫⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛54324321C (D) ⎪⎪⎪⎪⎪⎭⎫⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛65434321C6、设A 为三阶方阵,有特征值λ1=1,λ2= -1, λ3=2,其对应的特征向量分别为 ,,321ααα,记P=(132 ,ααα),则P -1AP=( )(A) ⎪⎪⎪⎭⎫⎝⎛1 2 1- (B)⎪⎪⎪⎭⎫⎝⎛1- 1 2(C) ⎪⎪⎪⎭⎫⎝⎛2 1- 1 (D) ⎪⎪⎪⎭⎫⎝⎛2 1 1-三、计算下列行列式 (12分)1、 D=1- 3 3- 131 1 41- 3 0 5-21- 1 3 2、D n = n1 1 1 1.....................1 1 3 1 111 12 111 1 1 1四、已知A 、B 同为3阶方阵,且满足AB=4A+2B (12分) (1)证明:矩阵A-2E 可逆(2)若B=⎪⎪⎪⎭⎫⎝⎛2 0 00 2 10 2- 1 ,求A五、求向量组 )1 1, 1,- ,1( , )3 2, 1, ,1(21'='=αα, , )6 5, 2,- ,4( , )1 3, 3, ,1( 43'='=αα)7- 4,- 1,- ,3(5'-=α的一个极大无关组,并将其余向量用该极大无关组线性表示(10分)六、已知线性方程组⎪⎪⎩⎪⎪⎨⎧=---=+++-=+-=+-+bx x x x x ax x x x x x x x x x 432143214314321 6 - 17231 4 032 ,讨论参数a 、b 为何值方程组有解,在有解时,求出通解 (12分)七、用正交变换化二次型323121232221321222333),,(x x x x x x x x x x x x f ---++=为标准形,并写出相应的正交变换 (16分)八、已知 ,,,4321αααα是AX = 0的一个基础解系,若322211,ααβααβt t +=+=,144433,ααβααβt t +=+=,讨论t 为何值, ,,,4321ββββ是AX = 0的一个基础解系 (8分)线性代数模拟试卷(二)三、 填空题(每小题3分,共5小题,总分15分)1、j i a a a a a 53544231是五阶行列式展开式中带正号的一项,则i=_____, j=_____2、设n 阶方阵A 满足A 2 =A ,则A+E 可逆且(A+E )-1=_______________(E 为n 阶单位阵)3、已知向量组)0 6, 1,- ,1( , )2k - k,- ,3 ,1( , )2- 2, 1, ,1(321'='='=ααα 若该向量组的秩为2,则k =_________4、已知四阶方阵A 相似于B ,A 的特征值为2,3,4,5,E 是单位阵,则=- E B _________5、 向量α=(4,0,5)′在基)1 ,1- ,1(,)0 ,1 ,1( ,)1 ,2 ,1(321'='='=ηηη下的坐标为_________四、 单项选择题(每小题2分,共5小题,总分10分)1、 设 A 是三阶方阵A 的行列式,A 的三个列向量以γβα ,,表示,则 A =( ) (A)αβγ (B) γβα---(C)αγγββα+++ (D) γβαβαα+++2、设A, B ,C 为n 阶方阵, 若 AB = BA, AC = CA, 则ABC=( ) (A) BCA (B) ACB (C) CBA (D) CAB3、 A, B 均为n 阶方阵, A*为A 的伴随矩阵, 3B 2, -==A ,则21-*B A = ( )(A) 32 12--n (B) 32 1--n (C) 23 12--n (D) 23 1--n4、已知向量组 , ,,4321αααα线性无关,则向量组( ) (A)14433221 , , ,αααααααα++++线性无关(B)14433221 , , ,αααααααα----线性无关(C)14433221 , , ,αααααααα-+++线性无关 (D)14433221 , , ,αααααααα--++线性无关5、若A ~ B ,则 有 ( )(A) A 、B 有相同的特征矩阵 (B) B =A(C) 对于相同的特征值λ,矩阵A 与B 有相同的特征向量 (D) A 、B 均与同一个对角矩阵相似三、计算下列行列式 (13分)2、 D=2- 3 0 112 1 - 121 0 331- 2 1 4、D n = 11 1 111 x 1 1 (1)1 1 1 x 1 1 1 1 x x ++++a)设B= ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛1 0 0 01- 1 0 00 1- 1 00 0 1- 1 ,C=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛2 0 0 01 2 0 03 12 043 12 ,且矩阵A 满足 E C B C E A =''--)(1, 试将关系式化简并求A (12分)b)求向量组, )4 1,- 2, ,1(1'=α )2 3, 1, ,0( 2'=α, , )14 0, 7, 3,(3'=α , )10 1, 5, 2,( 4'=α)0 2,- 2, ,1(5'=α的一个极大无关组,并将其余向量用该极大无关组线性表示 (13分)六、k 为何值时,线性方程组⎪⎪⎩⎪⎪⎨⎧=+-=++---=+++=+++kx x x x x k x x x x x x x x x x x 9 10 5 - 3)5(2 31 6 3 13 2 4321432143214321 有无穷多个解并求出通解 (14分)七、用正交变换化二次型31232221321422),,(x x x x x x x x f +-+=为标准形,并写出相应的正交变换 (16分)八、若矩阵A=⎪⎪⎪⎭⎫ ⎝⎛0y 10 1- 01 x0 有三个线性无关的特征向量,证明:x – y = 0线性代数模拟试卷(三)一、填空题(每小题3分,共18分)1、A 是三阶方阵,且|A|=6,则 |(3A)-1|= 。
线性代数考试练习题带答案大全
线性代数考试练习题带答案一、单项选择题(每小题3分,共15分)1.设A 为m n ⨯矩阵,齐次线性方程组0AX =仅有零解的充分必要条件是A 的( A ). (A ) 列向量组线性无关, (B ) 列向量组线性相关, (C )行向量组线性无关, (D ) 行向量组线性相关. 2.向量,,αβγ线性无关,而,,αβδ线性相关,则( C )。
(A ) α必可由,,βγδ线性表出, (B )β必不可由,,αγδ线性表出, (C )δ必可由,,αβγ线性表出, (D )δ必不可由,,αβγ线性表出. 3. 二次型()222123123(,,)(1)1f x x x x x x λλλ=-+++,当满足( C )时,是正定二次型.(A )1λ>-; (B )0λ>; (C )1λ>; (D )1λ≥.4.初等矩阵(A );(A ) 都可以经过初等变换化为单位矩阵;(B ) 所对应的行列式的值都等于1; (C ) 相乘仍为初等矩阵; (D ) 相加仍为初等矩阵 5.已知12,,,n ααα线性无关,则(C )A. 12231,,,n n αααααα-+++必线性无关;B. 若n 为奇数,则必有122311,,,,n n n αααααααα-++++线性相关;C. 若n 为偶数,则必有122311,,,,n n n αααααααα-++++线性相关;D. 以上都不对。
二、填空题(每小题3分,共15分)6.实二次型()232221213214,,x x x x tx x x x f +++=秩为2,则=t7.设矩阵020003400A ⎛⎫⎪= ⎪ ⎪⎝⎭,则1A -=8.设A 是n 阶方阵,*A 是A 的伴随矩阵,已知5A =,则*AA 的特征值为 。
9.行列式111213212223313233a b a b a b a b a b a b a b a b a b =______ ____;10. 设A 是4×3矩阵,()2R A =,若102020003B ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则()R AB =_____________;三、计算题(每小题10分,共50分)11.求行列式111213212223313233a b a b a b D a b a b a b a b a b a b +++=++++++的值。
线性代数模拟试题及答案
线性代数模拟试题及答案. . .. . ... .专业 . .《线性代数期末模拟试题⼀》⼀、填空(本题20分每⼩题2分) 1.设)det(ij a 为四阶⾏列式,若23M 表⽰元素23a 的余⼦式,23A 表⽰元素23a 的代数余⼦式,则23M +23A = 。
2.三阶⾏列式3331221311000a a a a a 中只有位于两条对⾓线上的元素均不为零,则该三阶⾏列式的所有项中有项不为零,这⼀结论对n 阶⾏列式(填成⽴或不成⽴)。
3.设321,,ααα均为3维列向量,记矩阵),,,(321ααα=A 记矩阵),,2(313221αααααα-+-=B ,若6=B ,则=A 。
4.设矩阵???-=?-= -=458271,131027241,213012C B A ,则=-C B A T2。
5.设矩阵A 可逆,且矩阵AB C =,所以矩阵C ⼀定可以由矩阵B 经过(填⾏或列)初等变换⽽得到。
6.设向量组43,21,,,αααα,若,3),,(,2),,(432321==ααααααR R 则1α⼀定得分阅卷⼈. . .. . ... .专业 . .可以由向量唯⼀的线性表⽰。
7.⾮齐次线性⽅程组b Ax =有唯⼀的解是对应的齐次⽅程组0=Ax 只有零解的充分但不必要条件。
8.设3阶矩阵A 的⾏列式0=A ,则矩阵A ⼀定有⼀个特征值。
9.n 阶矩阵A 有n 个特征值1,2,, n ,n 阶矩阵B 与A 相似,则=B 。
10.向量组:[][]1,121,1,12121-==p p(填是或不是)向量空间2R ⼀个规正交基。
⼆、单项选择(本题10分,每⼩题2分)注意:请务必将你的选择题的答案按要求填⼊下表,否则答案⽆效!1.设矩阵A 为n 阶⽅阵,则关于⾮齐次线性⽅程组b Ax =的解下列说法(). . .. . ... .专业 . .不正确(A )若⽅程组有解,则系数⾏列式0≠A ; (B )若⽅程组⽆解,则系数⾏列式0=A ;(C )若⽅程组有解,则或者有唯⼀解或者有⽆穷多解; (D )系数⾏列式0≠A 是⽅程组有唯⼀解的充分必要条件. 2. 设A 为n 阶可逆矩阵,下列正确的是()(A ) (2)2T T A A =; (B) 11(2)2A A --=; (C) 111[()][()]T T A A ---=;(D) 111[()][()]T T T A A ---=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
命题人: 审批人: 试卷分类(A 卷或B 卷) A
大学 试 卷
学期: 至 学年度 第 学期 课程: 线性代数 专业:
班级:
姓名: 学号:
一、
计算行列式x
a a a x a a
a x
D n ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅= (10分)
二、⎪⎪⎪⎪
⎪⎭
⎫ ⎝
⎛25
003800
0012
0025的逆阵(10分)
三、
设四元非齐次线性方程组的系数矩阵的秩为3, 已知η1, η2, η3
η1=(2, 3, 4, 5)T
, η2+η3=(1, 2, 3, 4)T
,求该方程组的通解. (12分)
四、已知R 3
的两个基为
a 1=(1, 1, 1)T , a 2=(1, 0, -1)T , a 3=(1, 0, 1)T ;
b 1=(1, 2, 1)T , b 2=(2, 3, 4)T , b 3=(3, 4, 3)T .
求由基a 1, a 2, a 3到基b 1, b 2, b 3的过渡矩阵P .(12分)
设 ⎪⎩⎪⎨⎧=++=++=++2
3
213213211
λλλλλx x x x x x x x x 问λ为何值时, 此方程组(1)有唯一解(2)无解(3)有无穷多解? (15分)
六、(1)判定向量组 (-1, 3, 1)T
, (2, 1, 0)T
, (1, 4, 1)T
是线性相关
还是线性无关;(2)试用施密特法把向量组⎪⎪⎪
⎭
⎫
⎝⎛=931421111) , ,(321a a a
正交化(16分)。
七、
已知3阶矩阵A 的特征值为3,2,1-, 求A A A 752
3+-.(10分)
求一个正交变换将二次型3
22322213214332),,(x x x x x x x x f +++=化成标准形(15分)。