钢材的控制轧制和控制冷却

合集下载

钢筋的控制轧制和控制冷却学习笔记

钢筋的控制轧制和控制冷却学习笔记

钢筋的控制轧制和控制冷却钢筋的控制冷却又称为钢筋轧后余热处理或轧后余热淬火。

该工艺是利用钢筋轧后在奥氏体状态下直接进行表层淬火,随后由其心部传出余热进行自身回火,以提高塑性,改善韧性,使钢筋得到良好的综合性能。

钢筋的综合性能,如屈服强度、反弯、焊接性能、疲劳强度、冲击韧性等,决定于钢的化学成分、变性条件、终轧温度、钢筋直径、冷却条件、冷却速度和自回火温度等因素。

其整炉与整支钢筋的组织性能与均质性同生产工艺参数的控制、钢筋长度、冷却设备型式、水质、水温及其控制有密切关系。

1 钢筋轧后控制冷却的特点及其基本原理1.1 可以在轧制作业线上,通过控制冷却工艺,强化钢筋,代替重新加热进行淬火、回火的调质钢筋。

利用控制冷却强化钢筋与一般热处理强化钢筋比较,不仅由于利用轧制余热,不需要重新加热,节约了燃料及热量消耗,缩短生产周期,提高生产率,降低了生产高强度钢筋的成本,而且还具有更高的综合力学性能。

其原因在于:在利用轧制余热淬火之前已发生奥氏体再结晶,使晶粒细化,奥氏体晶界的位置已经改变,新晶界的形成时间又很短,杂质原子还来不及向晶界偏聚,因而改善了低温力学性能。

1.2 选用碳素钢(Q235)和低合金钢(20MnSi),采用轧后控制冷却工艺,可生产不同强度等级的钢筋,从而可能改变用热轧按钢种分等级的传统生产方法,节约合金元素,降低成本。

1.3 设备简单,对于现有轧机不用改动轧制设备,只需在精轧机后安装一套水冷设备。

1.4 在奥氏体未再结晶区终轧后快冷的轧制余热强化钢筋在使用性能上存在(应力腐蚀开裂倾向较大)。

但是,在奥氏体再结晶区终轧的轧制余热强化钢筋,由于再结晶过程消除了晶内位错,而不出现应力腐蚀开裂倾向的缺点。

对于钢筋来说,轧后控制冷却工艺大体包括以下三个过程:第一阶段:表面淬火阶段(急冷段),钢筋离开精轧机在终轧温度下,尽快地进入高效冷却装置,进行快速冷却。

其冷却速度必须大于使表面层达到一定深度淬火马氏体的临界速度。

钢材控制轧制和控制冷却

钢材控制轧制和控制冷却

钢材控制轧制与控制冷却姓名:蔡翔班级:材控12学号:钢材控制轧制与控制冷却摘要:控轧控冷就是对热轧钢材进行组织性能控制得技术手段,目前已经广泛应用于热轧带钢、中厚板、型钢、棒线材与钢管等钢材生产得各个领域。

控轧控冷技术能够通过袭警抢话、相变强化等方式,使钢材得强度韧度得以提高。

Abstract: controlled rolling is controlledcooling of hot rolled steel organization performance control technology, has been widely usedinthe hot rolled strip steel,plate,steel,wire rod and steelpipeand other steel products production fields。

Controlledrollingtechnology of controlled cooling can pas sover assaulting a police officer, phasetransformationstrengthening and so on,to improve the strengthofthe steeltoug hness、关键词:宽厚板厂,控制轧制,控制冷却1。

引言:控轧控冷技术得发展历史:20世纪之前,人们对金属显微组织已经有了一些早期研究与正确认识,已经观察到钢中得铁素体、渗碳体、珠光体、马氏体等组织。

20世纪20年代起开始有学者研究轧制温度与变形对材料组织性能得影响,这就是人们对钢材组织性能控制得最初尝试,当时人们不仅已经能够使用金相显微镜来观察钢得组织形貌,而且还通过X射线衍射技术得使用加深了对金属微观组织结构得认识、1980年OLAC层流层装置投产,控轧控冷在板带、棒线材等大面积应用,技术已成熟,理论进展发展迅速、2 控轧控冷技术得冶金学原理2。

控轧控冷1

控轧控冷1
LK L0 100%
L0
拉伸性能
❖ 断面收缩率ψ: ❖ 断面收缩率ψ是评定材料塑性的主要指标。
AK A0 100%
A0
低碳钢的工程应力一工程应变曲线
true strain-stress line
2.0
Stress / MPa
1.5
Pm
Pb
1.0
0.5
0.0
0.0
0.5
1.0
1.5
2.0
载荷P压入被测材料表面,保持一定时间后卸除载荷,测出压 痕直径d,求出压痕面积F计算出平均应力值,以此为布氏硬度 值的计量指标,并用符号HB表示。
标注:D/P/T如120HB/10/3000/10,即表示此硬度值120 在D=10mm,P=3000kgf,T=10秒的条件下得到的。
简单标注:200~230HB
布氏硬度测定主要适用于各种未经淬火的钢、退火、
正火状态的钢;结构钢调质件;铸铁、有色金属、质地 轻软的轴承合金等原材料。
布氏硬度试验只可用来测定小于450HB的金属材料,
②洛氏硬度(HR)
基本原理—洛氏硬度属压入法洛氏硬度测定时需 要先后施加二次载荷(予载荷P1和主载荷P2)预 加载荷的目的是使压头与试样表面接触良好以保 证测量结果准确。洛氏硬度就是以主载荷引起的
对微量塑性变形的抗力
E /e
拉伸性能
❖ 抗拉强度b: ❖ 定义为试件断裂前所能承受的最大工程应力,
以前称为强度极限。取拉伸图上的最大载荷,即 对应于b点的载荷除以试件的原始截面积,即得抗 拉强度之值,记σ为b=b Pmax/A0
拉伸性能
延伸率: 材料的塑性常用延伸率表示。测定方法如下:拉伸
试验前测定试件的标距L0,拉伸断裂后测得标距为Lk, 然而按下式算出延伸率

控制轧制和控制冷却工艺讲义

控制轧制和控制冷却工艺讲义

控制轧制和控制冷却工艺讲义控制轧制和冷却工艺讲义一、轧制工艺控制1. 轧制温度控制a. 在热轧过程中,轧机和钢坯之间的接触摩擦会产生高温,因此需要控制轧机温度,避免过热。

b. 实时监测轧机温度,根据温度变化调整轧制速度和冷却水量,确保温度适中。

c. 使用专用液体和冷却器进行在线冷却,防止轧机过热引起事故。

2. 轧制力控制a. 测量轧机产生的轧制力,确保轧机施加的压力适中。

b. 监控轧制力的变化,根据钢坯的变形情况调整轧制力,使钢坯的形状和尺寸满足要求。

c. 根据轧制力的大小调整轧制速度,保持稳定的轧制负荷。

3. 轧制速度控制a. 根据不同钢材的特性和规格,调整轧制速度,确保成品钢材的质量和尺寸满足要求。

b. 控制轧制速度的稳定性,避免过快或过慢的轧制速度导致钢材质量不达标。

4. 轧辊调整控制a. 定期检查和调整轧辊的位置和间距,确保钢坯能够顺利通过轧机,避免产生不均匀的轧制力和过度变形。

b. 根据车间实际情况和轧制工艺要求,调整轧辊的工作方式和参数,使轧制过程更加稳定和高效。

二、冷却工艺控制1. 冷却水量控制a. 根据钢材的材质和规格,调整冷却水的流量和压力,确保钢材迅速冷却到所需温度。

b. 监测冷却水流量和温度,根据实时数据调整冷却水量,确保冷却效果和成品钢材的质量。

2. 冷却速度控制a. 根据不同的冷却工艺要求,调整冷却速度,使钢材的组织和性能满足要求。

b. 监控冷却速度的变化,根据实时数据调整冷却速度,确保成品钢材的质量和性能稳定。

3. 冷却方法控制a. 根据钢材的特性和要求,选择合适的冷却方法,如水冷、风冷等。

b. 根据不同冷却方法的特点和效果,调整冷却工艺参数,使冷却效果和成品钢材的质量最优化。

4. 冷却设备维护a. 定期检查和维护冷却设备,确保设备的正常运行和效果良好。

b. 清洗和更换冷却设备中的阻塞、损坏部件,保证冷却水的流量和质量。

以上是对控制轧制和控制冷却工艺的讲义,通过合理的工艺控制和设备维护,能够提高轧制和冷却过程的效率和质量,满足钢材的要求。

控制轧制与控制冷却

控制轧制与控制冷却

奥氏体晶粒的大小对钢材的力学性能有显著的 影响。一般用晶粒度表示晶粒的大小。因此, 影响。一般用晶粒度表示晶粒的大小。因此,测定奥 氏体的晶粒度通常作为鉴定钢材质量的指标之一。 氏体的晶粒度通常作为鉴定钢材质量的指标之一。
铁 碳 平 衡 相 图
二、钢的控制轧制
控制轧制是以钢的化学成分调整或添加微合 金元素Nb Nb、 Ti为基础 为基础, 金元素Nb、V、Ti为基础,在热轧过程中对钢 坯加热温度、 开轧温度、 变形量、 坯加热温度 、 开轧温度 、 变形量 、 终轧温度 等工艺参数实行合理控制, 等工艺参数实行合理控制 , 以细化奥氏体和 铁素体晶粒, 并通过沉淀强化、 铁素体晶粒 , 并通过沉淀强化 、 位错亚结构 强化充分发掘钢材内部潜力, 强化充分发掘钢材内部潜力 , 提高钢材力学 性能和使用性能。 性能和使用性能。
控轧控冷的物理冶金基础
轧后冷却速率对γ 轧后冷却速率对γ→α相变及其细化晶粒的 影响: 影响: 研究表明,提高轧后冷却速度能明显降低Ar 研究表明,提高轧后冷却速度能明显降低Ar3, 可抵消奥氏体晶粒细化及相变前形变给晶 粒细化带来的不利影响, 粒细化带来的不利影响,有力地增加了相 变细化晶粒作用。 变细化晶粒作用。这要求在控轧实践中对 冷却制度进行控制。 冷却制度进行控制。
控轧控冷的物理冶金基础
钢中溶质原子及第二相粒子: 钢中溶质原子及第二相粒子:在钢中适当添加 Nb、Ti等微合金元素 细化奥氏体晶粒. 等微合金元素, Nb、Ti等微合金元素,细化奥氏体晶粒. 这种利用高温形变再结晶与微合金元素溶解这种利用高温形变再结晶与微合金元素溶解析出的相互作用使晶粒充分细化的机制便是 控轧中控制奥氏体晶粒尺寸的主要的物理冶 金基础. 金基础.
控轧控冷的物理冶金基础

钢材控制轧制和控制冷却

钢材控制轧制和控制冷却

钢材控制轧制和控制冷却(一)姓名:蔡翔班级:材控12学号:钢材控制轧制和控制冷却:控轧控冷是对热轧钢材进行组织性能控制的技术手段,目前已经广泛应用于热轧带钢、中厚板、型钢、棒线材和钢管等钢材生产的各个领域。

控轧控冷技术能够通过袭警抢话、相变强化等方式,使钢材的强度韧度得以提高。

Abstract: controlled rolling is controlled cooling of hot rolled steel organization performance control technology, has been widely used in the hot rolled strip steel, plate, steel, wire rod and steel pipe and other steel products production fields.Controlled rolling technology of controlled cooling can pass over assaulting a police officer, phase transformation strengthening and so on, to improve the strength of the steel toughness.关键词:宽厚板厂,控制轧制,控制冷却1.引言:控轧控冷技术的发展历史:20世纪之前,人们对金属显微组织已经有了一些早期研究和正确认识,已经观察到钢中的铁素体、渗碳体、珠光体、马氏体等组织。

20世纪代起开始有学者研究轧制温度和变形对材料组织性能的影响,这是人们对钢材组织性能控制的最初尝试,当时人们不仅已经能够使用金相显微镜来观察钢的组织形貌,而且还通过X射线衍射技术的使用加深了对金属微观组织结构的认识。

1980年OLAC层流层装置投产,控轧控冷在板带、棒线材等大面积应用,技术已成熟,理论进展发展迅速。

钢铁的控轧控冷工艺(TMCP)介绍

钢铁的控轧控冷工艺(TMCP)介绍

4.控制轧制的效应
(1)使钢材的强度和低温韧性有较大幅度的改善
控制轧制对细化晶粒有明显的作用,按常规轧制工艺, 铁素体晶粒最好的情况为7~8级,晶粒直径>20m,而 按控制轧制工艺,铁素体晶粒可达12级,其直径可为 5m。仅从这方面就可使钢材的强韧性能得到明显的改 善。
(2)可以充分发挥微量合金元素的作用
5.控制冷却的介绍
➢ 控制冷却存在的主要问题是高冷却速率下材料冷 却不均而发生较大残余应力、甚至翘曲的问题。 例如,作为控制冷却的极限结果,直接淬火的作 用早已为人们所认识。但是,其潜在的能力一直 未得到发挥,原因在于直接淬火条件下冷却均匀 性的问题一直没有得到解决,板形控制一直因扰 着人们。
5.控制冷却的介绍
对于控制冷却,有两个通俗说法:
(1)水是最廉价的合金元素 (可以用水替代合金元素来改变钢材的性能)
控制冷却的理念可以归纳为“水是最廉价的合金元素” 这样一句话。
(2)中国的多数(中板)轧机是世界上最干旱的轧机 (目前我们还没有充分利用好水的作用) -川崎水岛:12000 m3/h,迪林根:14000 m3/h -宝钢2050:14000 m3/h,1580: 13000 m3/h
钢铁的控轧控冷 工艺介绍
知识求索人
目录
1. 何为控轧控冷工艺? 2. 控轧控冷工艺的优势和应用 3. 控制轧制的类型 4. 控制轧制的效应 5. 控制冷却介绍
1.何为控轧控冷工艺?
➢ 控轧控冷工艺,又称TMCP(Thermo Mechanical Control Process:热机械控制工艺),是将控制轧制和控制冷却 技术结合起来的工艺,该工艺能够进一步提高钢材的强 韧性和获得合理的综合性能,并能够降低合金元素含量 和碳含量,节约贵重的合金元素,降低生产成本。TMCP 是20世纪钢铁业最伟大的成就之一!

钢材的控制轧制和控制冷却

钢材的控制轧制和控制冷却

钢材的控制轧制和控制冷却一、名词解释:1、控制轧制:在热轧过程中通过对金属的加热制度、变形制度、温度制度的合理控制,使热塑性变形与固态相变结合,以获得细小晶粒组织,使钢材具有优异的综合力学性能。

2、控制冷却:控制轧后钢材的冷却速度、冷却温度,可采用不同的冷却路径对钢材组织及性能进行调控。

3、形变诱导相变:由于热轧变形的作用,使奥氏体向铁素体转变温度Ar3上升,促进了奥氏体向铁索体的转变。

在奥氏体未再结晶区变形后造成变形带的产生和畸变能的增加,从而影响Ar3温度。

4、形变诱导析出:在变形过程中,由于产生大量位错和畸变能增加,使微量元素析出速度增大。

两相区轧制后的组织中既有由变形未再结晶奥氏体转变的等轴细小铁素体晶粒,还有被变形的细长的铁素体晶粒。

同时在低温区变形促进了含铌、钒、钛等微量合金化钢中碳化物的析出.5、再结晶临界变形量:在一定的变形速率和变形温度下,发生动态再结晶所必需的最低变形量。

6、二次冷却:相变开始温度到相变结束温度范围内的冷却控制。

二、填空:1、再结晶的驱动力是储存能,影响其因素可以分为:一类是工艺条件,主要有变形量、变形温度、变形速度。

另一类是材料的内在因素,主要是材料的化学成分和冶金状态。

2、控制冷却主要控制轧后钢材冷却过程的(冷却温度)、(冷却速度)等工艺条件,达到改善钢材组织和性能的目的.3、固溶体的类型有(间隙式固溶)和(置换式固溶),形成(间隙式)固溶体的溶质元素固溶强化作用更大。

4、根据热轧过程中变形奥氏体的组织状态和相变机制不同,将控制轧制划分为三个阶段,即奥氏体再结晶型控制轧制、奥氏体未再结晶型控制轧制、在A+F两相区控制轧制。

5、以珠光体为主的中高碳钢,为达到珠光体团直径减小,则要细化奥氏体晶粒,必须采用(奥氏体再结晶)型控制轧制。

6、控制轧制是在热轧过程中通过对金属的(加热制度)、(变形制度)、(温度制度)的合理控制,使热塑性变形与固态相变结合使钢材具有优异的综合力学性能.7、钢的强化机制主要包括(固溶强化)、(位错强化)、(沉淀强化)、(细晶强化)、(亚晶强化)、(相变强化)等,其中(绕过)机制既能使钢强化又使钢的韧性得到提高。

控制轧制于控制冷却

控制轧制于控制冷却

1、控制轧制:在热轧过程中,通过对金属加热制度、变形制度和温度制度的合理控制,使热塑性形变与固态相变相结合,以获得细小的晶粒组织,使钢材具有优异的综合力学性能的轧制技术2、控制冷却:通过对控制轧后的钢材的冷却速度来改善钢材的组织性能.3、金属的强化:通过合金化,塑性变形和热处理等手段来提高金属的强度。

4、固溶强化:添加溶质元素使固溶体强度提高的方法.5、韧性:材料在塑性变形和断裂所吸收能量的能力。

6、微合金钢:钢种的合金含量小于0.1%。

7、IF钢:无间隙原子钢8、不锈钢:具有良好的抗腐蚀性能和抗氧化性的钢.9、变形抗力:在一定条件下材料变形单位面积的抵抗变形的力.10、在线常化工艺:在热轧无缝钢管中在轧管延伸工序后将钢管按常化热处理要求冷却到某一温度后在进加热炉然后就行减径轧制按照一定的速度冷却到常温。

11、变形温度贝氏体处理化工艺:在钢管轧制过程中不直接加热到马氏体温度一下,而是快速冷却带中温以后再置于静止的空气中冷却、以变形奥氏体转变为贝氏体省去回火工序。

12、高温变形淬火:钢管在稳定的奥氏体区域变形,而且一般温度在再结晶温度以上然后进行淬火,已获得马氏体组织。

13、低温相变淬火:将钢管加热到奥氏体状态,经一段保温冷却到Ac1高于M的某一中间温度进行变形后淬火的工艺。

14、非调质钢:将调质钢的化学成分进行调解并对轧制过程进行控制不进行调制其性能达到调制的水平。

1、控制轧制是指在热轧过程中通过对金属加热制度,温度制度,保险制度的控制而获得细小的晶粒2、控制冷却是控制轧后钢材的冷却速度来改善组织性能。

3、钢材的强化方法有固溶强化,变形强化,沉淀强化,弥散强化,亚晶强化,细晶强化,相变强化。

4、影响材料韧性有,化学成分,气体和夹杂物,晶粒细化,形变的影响,形变细化5、动态结晶是晶粒细化提高扩孔性的手段6、控制轧制的目标是为了获得较小的铁素体组织7、加快冷却速度可以获得细小的铁素体晶粒所以不产生奥氏体组织为界限8、贝氏体是结构性能钢有校坏的塑形焊接性能强韧性微合金钢是指钢中的合金元素总量小于0。

1.3.2控制轧制和控制冷却

1.3.2控制轧制和控制冷却
1.3.2 控制轧制和控制 冷却
1. 控轧控冷的必要性
• 用户要求:产品性能(强度、韧性、焊接性、冲击性能…)
• 决定性能的因素:组织结构(晶粒、析出、组织分数…)
• 决定组织的因素:成分和工艺(压下率、轧制温度、冷却 速度。

柔性制造技术
加工工艺1
组织特征1
用户需求1
钢种 成分
加工工艺2
组织特征2
6
6
2.3 控轧工艺特点 • 控制加热温度 • 控制轧制温度 • 控制变形程度 • 控制轧后冷却速度
钢的成分
常规轧制
% 0.14C+1.3Mn
σs N/mm2 FATT℃
313.9
+10
0.14C+0.034Nb 392.4
+50
0.14C+0.08V
421.8
+40
0.14C+0.004Nb
3. 1 控冷的意义
3. 2控冷的原理
3.2 控制冷却原理-晶粒细化和相变强化
温度 加热 控制冷却 时间
再结晶区控轧
未再结晶区控轧 两相区控轧
3~5μm
5 ~10 μm
10~20μm
1. 控轧工艺分哪几类?控轧实践中最常用的 是哪种工艺?分别画出示意图。
2.Ⅰ型控轧与Ⅱ型控轧相比,哪种工艺轧材 的性能更好些?为什么?
控制轧制: - 轧制温度制度(加热、粗轧、精轧,待温) - 轧制压下制度(粗轧、精轧压下量,方向) - 液压弯辊等板凸度控制制度
控制冷却(Controlled Cooling)是控制轧后钢材的 冷却速度达到改善钢材组织和性能的目的。
CR----控制轧制 AcC----控制冷却

钢材的控制轧制和控制冷却PPT课件

钢材的控制轧制和控制冷却PPT课件
材料抵抗裂纹失稳扩展断裂癿能力用k表示是材料本身癿特性由材料癿成分组织状态决定不裂纹癿尺寸形状及外加应力大小第54页兯72页12材料的韧性二提高钢材韧性癿途徂断裂韧性是材料癿一种性能不强度一样取决于材料癿组织结构而材料癿成分和生产加工工艺又决定了材料癿组织结构故改善材料癿韧性必然从工艺入手改变材料癿结构以达到改善材料韧性癿目癿
第11页/共72页
控轧控冷技术发展过程
• 60年代中期,英国钢铁研究会对钢的成分与钢的力学性能之间的关系进行了系 列研究,提出了相应的控制轧制理论;
• 在开发控制轧制工艺时,人们致力于降低终轧温度; • 近些年来,控制冷却工艺已经成功地运用到棒材、螺纹钢、钢管及型钢生产和合
金钢生产中,并取得了明显的经济效益和社会效益。
§1 钢的强化和韧化
对于钢材来说,在大多数情况下其力学性能是最重要的,其中强度性能又居首位。 除了强度之外,钢材还要求一定的韧性和可焊性能,这两个指标和强度是相互关 联甚至互相矛盾的,很难单方面改变某一指标而其它不变。 结构钢的最新发展方向是高强、高韧和良好的焊接性能,控制控冷是满足这一 要求的一种较好的工艺。
§1.1 钢的强化机制
二、固溶强化
(solid solution strengthening)
1、基本概念
• 固溶强化:当合金元素(溶质)固溶 到基体金属(溶剂)中形成固溶体时, 合金的强度和硬度则会提高,称为固 溶强化。如黄铜(Cu-Zn)强度要高于
第30页/共72页
§1.1 钢的强化机制
2、强化机理
第22页/共72页
§1.1 钢的强化机制
金属和合金塑性变形包含晶内变 形和晶间变形。晶内变形是通过各种 位错运动而实现的晶内一部分相对于 另一部分的剪切运动,最基本的是滑 移、孪生和扭折。

控轧与控冷

控轧与控冷

控轧与控冷一:名词解释控制轧制:是指在热轧过程中通加热制度,变形制度,温度制度的合理控制,使钢材具有优异综合理学性能的轧制新工艺。

控制冷却:是指控制轧后钢材的冷却速度达到改善组织和性能的目的。

金属强化:通过合金化,塑性变形,和热处理等手段提高金属材料的强度。

韧性:材料在断裂前在塑性变形和裂纹扩展时吸收能量的能力。

铁素体:铁或其内固溶体有一种或数种其他元素形成的体心立方固溶体。

奥氏体:γ铁内固溶有碳和其他元素的面立方固溶体。

贝氏体:钢在奥氏体化后被过冷到珠光体转变温度一下,马氏体转变温度以上这一中间温度区间,转变而成的有铁素体及其内分布着弥散的碳化物形成的亚稳定结构。

IF钢:又称无间隙,由于C,N含量低,在加入一定量TI,Nb使钢背固定成碳化物,氮化物或者碳氮化物,从而使钢无间隙存在。

不锈钢:在腐蚀介质中有良好的耐腐蚀性的钢。

双相钢:由马氏体或奥氏体基本两相组织构成的钢。

再结晶:经冷塑性变形的金属超过一定加热温度时,通过形核长大形成等轴晶粒无畸变新晶粒过程。

在线常化:在热轧无缝钢生产中,在轧管延伸工序后,将钢管按常化处理要求冷却到某一温度后,再进行加热炉生产,然后进行减轻轧制,按照一定冷却速度冷却至常温。

1·控制轧制与普通轧制的区别答:可以充分发挥微量元素的作用起沉淀强化,细化晶粒的作用;提高钢的强度的同时题干钢的韧性;降低了终轧温度,采用较低的卷曲温度,课消除或减少板卷头部,中部和尾部的强度差;采用低温大压下细化低碳钢的铁素体晶粒,提高强韧性。

2·控制冷却的目的答:节约冷床面积;防止或减轻转型材的翘曲和弯曲;降低残余应力;提高型材的力学性能及改善组织状态,简化生产工艺。

3·影响材料强韧性的因素答:化学成分;气体夹杂物;晶粒尺寸;沉淀析出;形变;相变组织等的影响。

其中气体夹杂物对韧性有害,晶粒越小,材料韧性越好。

4·提高材料强韧性的措施答:晶粒细化;冶炼:采用真空搅拌,减少有害成分;控扎:使形变强化,提高材料强韧性;热处理:阻止晶粒长大,使晶粒细化,提高强韧性。

控制轧制、控制冷却工艺

控制轧制、控制冷却工艺

控制轧制、控制冷却⼯艺控制轧制、控制冷却⼯艺技术1.1 控制轧制⼯艺控制轧制⼯艺包括把钢坯加热到适宜的温度,在轧制时控制变形量和变形温度以及轧后按⼯艺要求来冷却钢材。

通常将控制轧制⼯艺分为三个阶段,如图 1.1所⽰[2]:(1>变形和奥⽒体再结晶同时进⾏阶段,即钢坯加热后粗⼤化了的γ呈现加⼯硬化状态,这种加⼯硬化了得奥⽒体具有促使铁素体相变形变形核作⽤,使相变后的α晶粒细⼩;(2> (γ+α>两相区变形阶段,当轧制温度继续降低到Ar3温度以下时,不但γ晶粒,部分相变后的α晶粒也要被轧制变形,从⽽在α晶粒内形成亚晶,促使α晶粒的进⼀步细化。

图1.1控制轧制的三个阶段(1>—变形和奥⽒体再结晶同时进⾏阶段;(2>—低温奥⽒体变形不发⽣再结晶阶段;(3>—<γ+α)两相区变形阶段。

1.2 控制轧制⼯艺的优点和缺点控制轧制的优点如下:1.可以在提⾼钢材强度的同时提⾼钢材的低温韧性。

采⽤普通热轧⽣产⼯艺轧制16Mn钢中板,以18mm厚中板为例,其屈服强度σs≤330MPa,-40℃的冲击韧性A k≤431J,断⼝为95%纤维状断⼝。

当钢中加⼊微量铌后,仍然采⽤普通热轧⼯艺⽣产时,当采⽤控制轧制⼯艺⽣产时,-40℃的A k值会降低到78J以下,然⽽采⽤控制轧制⼯艺⽣产时。

然⽽采⽤控制轧制⼯艺⽣产时-40℃的A k值可以达到728J以上。

在通常热轧⼯艺下⽣产的低碳钢α晶粒只达到7~8级,经过控制轧制⼯艺⽣产的低碳钢α晶粒可以达到12级以上<按ASTM标准),通过细化晶粒同时达到提⾼强度和低温韧性是控轧⼯艺的最⼤优点。

2.可以充分发挥铌、钒、钛等微量元素的作⽤。

在普通热轧⽣产中,钢中加⼊铌或钒后主要起沉淀强化作⽤,其结果使热轧钢材强度提⾼、韧性变差,因此不少钢材不得不进⾏正⽕处理后交货。

当采⽤控制轧制⼯艺⽣产时,铌将产⽣显著的晶粒细化和⼀定程度的沉淀强化,使轧后的钢材的强度和韧性都得到了很⼤提⾼,铌含量⾄万分之⼏就很有效,钢中加⼊的钒,因为具有⼀定程度的沉淀强化的同时还具有较弱的晶粒细化作⽤,因此在提⾼钢材强度的同时没有降低韧性的现象。

控制轧制及控制冷却技术在型钢生产中的应用

控制轧制及控制冷却技术在型钢生产中的应用

控制轧制及控制冷却技术在型钢生产中的应用一、导言在当今工业领域中,钢铁工业一直扮演着不可或缺的角色。

而型钢作为钢铁产品中的重要一员,其质量和性能的提升一直是企业和行业追求的目标。

控制轧制及控制冷却技术作为一种重要的生产工艺,对型钢的生产和性能提升具有重要意义。

本文将从控制轧制和控制冷却技术在型钢生产中的基本原理、关键技术和应用实例等方面展开探讨,旨在深入了解这一主题的重要性和具体应用。

二、控制轧制技术控制轧制技术是指钢铁生产中利用先进的控制系统和设备,对轧制过程中的参数进行精确控制,以获得高质量、高性能的型钢产品的一种技术。

这项技术最早应用于薄板生产领域,后来逐步在型钢生产中得到推广和应用。

1. 温度控制:在轧制过程中,控制轧制技术可以通过对钢坯的温度进行精确调控,以保证轧制过程中的塑性变形性能,从而得到均匀、细腻的晶粒结构。

2. 形状控制:利用控制轧制技术可以对轧制过程中的轧辊、模具等设备进行精确控制,获得符合设计要求的型钢截面形状和尺寸精度。

3. 轧制力控制:控制轧制技术可以实现对轧制力的实时监测和调节,避免轧制过程中的过度变形,并保证产品的尺寸和形状精度。

三、控制冷却技术控制冷却技术是指在型钢生产过程中,通过对冷却过程的控制,使钢材在冷却过程中获得理想的组织和性能。

这项技术的应用可以有效提高型钢的强度、韧性和耐磨性等性能,同时降低产品的变形和裂纹率。

1. 冷却介质控制:通过选择不同的冷却介质和控制冷却速度,可以使型钢获得不同的组织和性能,如马氏体组织、贝氏体组织等,从而满足不同领域对型钢性能的要求。

2. 温度控制:在控制冷却技术中,对冷却过程中的温度进行精确控制,可以有效控制组织相变,并获得理想的力学性能,如强度、韧性等。

3. 冷却速度控制:通过对型钢冷却速度进行控制,可以获得不同的组织和性能,如快速冷却可以获得细小的组织和高强度,而缓慢冷却则可以得到较好的塑性和韧性。

四、控制轧制及控制冷却技术在型钢生产中的应用实例1. 控制轧制技术在型钢生产中的应用:某钢铁企业引进了先进的控制轧制系统和设备,通过对轧制过程中的温度、形状和轧制力等参数进行精确控制,生产出了高精度、高强度的型钢产品,受到了市场的广泛认可。

钢材控制轧制和控制冷却技术

钢材控制轧制和控制冷却技术

钢材控制轧制和控制冷却技术材控14卢玉厚钢材的控制轧制和控制冷却技术卢玉厚材冶学院材料成型及控制工程 118【摘要】控制轧制和控制冷却技术,在提高钢材综合力学性能、开发新品种、简化生产工艺、节约能耗和改善生产条件等方面,取得了明显的经济效益和社会效益。

近三十年以来,控制轧制和控制冷却技术在国外得到了迅速的发展,各国先后开展了多方面的理论研究和应用技术研究,并在轧钢生产中加以利用,明显的改善和提高了钢材的强韧性和使用性能,为了节约能耗、简化生产工艺和开发钢材新品种创造了有力条件。

控制轧制是指在热轧过程中,通过对金属加热、轧制和冷却的合理控制,使范性形变与固态相变过程相结合,以获得良好的晶粒组织,使钢材具有优异的综合性能的轧制技术。

控制冷却是指热加工后对钢材进行的旨在控制相变组织和钢材性能的冷却技术。

【关键词】控制轧制技术控制冷却技术特点应用发展趋势Abstract:Controlled rolling and controlled cooling technology, to improve the comprehensive mechanics performance of steel, the development of new varieties, simplify the production process, save energy and improve production conditions, etc., have achieved obvious economic benefits and social benefits. For nearly 30 years, controlled rolling and controlled cooling technology obtained the rapid development in foreign countries, and countries successively carried out various theoretical research and applied technology research, and tries to use in the production of steel rolling, the obvious improve and enhance the tenacity of steel and the use of performance, in order to save energy consumption, simplify production process and development of new steel varieties created favourable conditions. Control is to point to in the hot rolling process of rolling, based on the reasonable control of the metal heating, rolling and cooling, and make the plastic deformation combined with solid phase change process, in order to obtain good grain organization, make steel has excellent comprehensive performance of the rolling technology. Controlled cooling means to control phase change of steel after hot working organization and performance of the steel cooling technology.Key Words:Control rolling technology;Characteristics of controlled cooling technology;application;development trend1.引言近代工业发展对热轧非调质钢板的性能要求越来越高,除了具有高强度外 ,还要有良好的韧性、焊接性能及低的冷脆性。

钢材控制轧制和控制冷却

钢材控制轧制和控制冷却

(a) γ再结晶 + (γ+α)
(b) γ未再结晶+(γ+α)
(c) γ 再结晶 + γ未再结晶+(γ+α)
(d) γ未再结晶 + (γ+α)
(c)是最常见的一种工艺
(d)低温加热,对γ细化有利
8.1(γ+α)控轧时钢材强韧性的变化 一.加热温度的影响 见图7-2,T加℃↑,σs↓,σb↓,Tc↑ 温度升高, γ晶粒粗大
由图可见: 奥氏体越细、ε↑, S越大 S↑,α细化 见图6-17
S一定时,在低于再结晶温度下增加变形量能更有效地细化晶粒 ε↑,α细化
三.轧制条件对力学性能的影响
见图6-18、6-19
ε↑——Tc↓,韧性↑ ——σs↑,σb↑ 性能不利
板坯加热温度越低,韧性越高 σs/σb ↑,屈强比↑,对冲压
二.再结晶行为对组织的影响
T轧℃>1100℃
动态再结晶 ,在轧制变形中完成 再结晶,γ晶粒呈等轴状
T轧℃=900~1000 ℃ 静态再结晶,轧制变形后发生 再结晶,在高温保持再结晶晶
粒长大。见图6-3、图6-4
再结晶过程(动态或静态),再结晶后的奥氏体晶粒度
由轧制温度和压下率决定 。见图6-5、6-6。
7.2 Ⅱ型轧制时组织和性能的变化 Ⅱ型,未再结晶,γ晶粒伸长,晶内产生形变带,α晶粒在 此形变带上形核 。
一.轧制条件对形变带的影响
①ε↑,形变带密度升高 ②T轧℃对形变带密度影响不明显 ③初始晶粒度、变形速度对形变带
密度无影响 ④晶粒越细,形变带越均匀
二.轧制条件对铁素体晶粒的影响 铁素体晶粒大小与有效晶间表面积相关 晶界总面积和形变带——有效晶间表面积 以S(mm2/mm3)表示 影响 S 的因素主要是:奥氏体晶粒大小和压下量 见图6-16

钢的控制轧制和控制冷却技术手册

钢的控制轧制和控制冷却技术手册

《钢的控制轧制和控制冷却技术手册》本文由430不锈钢公司/王宗超整理一、基本信息书名:钢的控制轧制和控制冷却技术手册作者:李曼云、孙本荣主编出版社:冶金工业出版社ISBN:7502406905页码:321出版日期:1990年9月二、内容介绍钢材控制轧制和控制冷却工艺是一项节约合金、简化生产工序、节约能源消耗的先进轧钢技术。

它能通过工艺手段充分挖掘钢材潜力,大幅度提高钢材综合性能,给冶金企业和社会带来巨大的经济效益。

本手册前三章介绍控制轧制和控制冷却的工艺特点、理论基础和工艺设计,是选择钢的控轧控冷工艺制度的基础;后三章是一些主要钢种的奥氏体再结晶曲线图、CCT曲线图和应力-应变曲线图共268幅,它们为制定钢的控轧控冷工艺提供了可靠的技术数据。

本书是一本控制轧制和控制冷却的理论专著,也是一本数据图册。

它可供从事轧钢和热处理工作的工程技术人员学习和使用。

三、图书前言“控制轧制和控制冷却”专题是“六五”、“七五”国家重点科技攻关项目“低合金钢及合金钢技术开发”的一部分。

在“六五”期间进行了大量的科研工作,积累了许多数据。

为了将这些科研成果更快更好地推广到生产中去,在“七五”科技攻关课题“控制轧制及控制冷却”专题任务中确定编写《钢的控制轧制和控制冷却技术手册》。

手册中包括有关钢种的变形奥氏体再结晶、相变、变形抗力及组织状态与轧制工艺参数关系等方面的资料。

介绍了控制轧制和控制冷却工艺的选择与设计及其在板带、型钢和钢管生产中的应用。

手册的内容对制订有关钢种的控制轧制和控制冷却工艺制度、充实控制轧制和控制冷却理论有一定指导作用。

参加有关科研工作的单位有北京科技大学、冶金工业部钢铁研究总院、东北工学院、上钢三厂、上钢一厂、大冶钢厂、武汉钢铁公司、浙江甬金不锈钢集团有限公司、鞍山钢铁公司和重庆钢铁公司等。

本手册由北京科技大学李曼云和冶金部钢铁研究总院孙本荣主编。

参加各章编写的人员是:第一章—孙本荣,第二章—孙本荣、李曼云,第三章—王有铭,第四章—芦红、王连忠,第五章—孙本荣、赵佩祥,第六章—管克智、朱荣林、周继华。

钢材的控制轧制和控制冷却(7)

钢材的控制轧制和控制冷却(7)

§7.3 控制冷却各阶段的冷却目的和 冷却方式的选择
一、控制冷却的目的 控制冷却的目的在于能够在不降低材料韧 性的前提下进一步提高材料的强度。 低碳钢、低合金钢和微合金钢:改善材的 强韧性; 高碳钢和高碳合金钢:防止变形后的A晶 粒长大,降低以至阻止网状碳化物的析出 量和降低级别,减小P团尺寸,改善P形 貌和片层间距,从而改善钢材的性能。
§7.3 控制冷却各阶段的冷却目的和 冷却方式的选择
二、轧后的冷却阶段
1、一次冷却:从终轧温度开始到变形A向F 开始转变温度Ar3或二次碳化物开始析出 温度Arcm。 目的:是控制变形A的阻止状态,阻止A 晶粒的长大,阻止碳化物析出,固定因变 形而引起的位错,降低相变温度、为相变 做组织上的准备。一次冷却的开始温度越 接近终轧温度,细化变形A和增大有效晶 界面积的效果越明显。
一、基本概念 温度场:各时刻物体中各点温度分布的总 称,一般的讲是坐标和时间的函数。
t f x , y , z ,


x,y,z-空间坐标, -时间坐标。 非稳态温度场:物体温度随时间改变的温 度场; 稳态温度场:物体温度不随时间改变的温 度场,t = f(x, y, z)。
§7.5 热轧钢材水冷后温度场的计算
§7.3 控制冷却各阶段的冷却目的和 冷却方式的选择
§7.4 轧后快速冷却的强韧化机制
快速冷却强化机理与控制冷却的机理有 本质不同。轧后快速冷却实质上是控制轧 制后细化了变形A组织经过快速冷却,相 变组织相应变化,钢中析出物的大小、数 量、析出部位发生变化,从而使钢材的强 韧性得以提高。 一、轧后快速冷却对钢材强度的影响 控制冷却钢材的强化主要是由于F晶粒 细化、P片层间距减小、B量的增多和C、 N化合物的析出而引起的。而组织的变化 又与材料的成分、冷却工艺相关。

控制轧制和控制冷却

控制轧制和控制冷却

3. 轧制工艺参数的控制
(1)坯料的加热制度
坯料的最高加热温度的选择应考虑对原始奥氏体 晶粒大小、晶粒均匀程度、碳化物的溶解程度以及开轧 温度和终轧温度的要求。
对一般轧制,加热的最高温度不能超过奥氏体晶粒 急剧长大的温度,如轧制低碳中厚板一般不超过1250℃。 但对控轧Ⅰ型或Ⅱ型都应降低加热温度(Ⅰ型控轧比一般 轧制低100~300℃),尤其要避免高温保温时间过长,不 使变形前晶粒过份长大,为轧制前提供尽可能小的原始晶 粒,以便最终得到细小晶粒和防止出现魏氏组织。
中厚板生产过程的控制
三个阶段
• 第一阶段在20 世纪40-50 年代,为单机 自动化阶段;
• 第二阶段在20 世纪60 年代,为计算机和 单机自动控制系统共存阶段;
• 第三阶段为20 世纪70 年代至现在,为全 部采用计算机直接数字控制阶段。
中厚钢板组织性能控制
一、组织与性能的关系
结论:材料的性能是由材料的组织决定的。 金属材料的性能有哪些?
对于任何钢材 最基本的性能要求是强度。
二、控制轧制
1.概念:通过控制加热温度、轧制 温度、变形制度等工艺参数,控制奥氏体 的状态和相变产物的组织状态,从而达到 控制钢材组织性能的目的。
2.控制轧制工艺的类型
(1)奥氏体再结晶区的控制轧制(又称Ⅰ型 控制轧制)
特点:轧制全部在奥氏体再结晶区内进 行(950℃以上)。
方法:一般采用快速冷却。 一次冷却的目的:控制变形奥氏体的组 织状态,阻止晶粒长大或碳化物过早析出形成 网状碳化物,固定由于变形引起的位错,增加 变形奥氏体相变时的过冷度,为变形奥氏体向 铁素体或渗碳体和珠光体的转变做组织上的准
备。
(2)二次冷却
由奥氏体向铁素体或渗碳体析出的相变阶段 的控制。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(A)再结晶奥氏体区(B)未再结晶奥氏体区
(C)部分再结晶奥氏体(D)奥氏体和铁素体的两相区
4、Nb(C、N)析出质点固定亚晶界而阻止奥氏体晶粒再结晶阶段是在:(C)
(A)出炉前(B)出炉后冷却到轧制前
(C)变形奥氏体中(D)变形奥氏体向铁素体转变过程中
5、抑制奥氏体再结晶作用最强的微合金元素是:(A)。
二、填空:
1、再结晶的驱动力是储存能,影响其因素可以分为:一类是工艺条件,主要有变形量、变形温度、变形速度。另一类是材料的内在因素,主要是材料的化学成分和冶金状态。
2、控制冷却主要控制轧后钢材冷却过程的(冷却温度)、(冷却速度)等工艺条件,达到改善钢材组织和性能的目的。
3、固溶体的类型有(间隙式固溶)和(置换式固溶),形成(间隙式)固溶体的溶质元素固溶强化作用更大。
6、相变强化:主要是指马氏体强化。马氏体是碳在α-Fe中的过饱和固溶体。
碳原子固溶强化是马氏体最基本的强化机制。
2、请画出奥氏体热加工时的真应力—真应变曲线示意图,并说明曲线共分为几个阶段。
1、第一阶段(加工硬化):当塑性变形小时,随着变形量增加变形抗力增加,直到达到最大值。另一方面,由于材料在高温下变形,变形中产生的位错能够在热加工过程中通过交滑移和攀移等方式运动,使部分位错消失,部分重新排列,造成奥氏体的回复。加工硬化超过动态软化。
(C)部分再结晶奥氏体(过渡型)(D)未再结晶奥氏体区(Ⅱ型)
四、简答:
1、简述钢材强化的几种主要机制,并说明对钢材韧性的影响。
钢的强化机制:固溶强化、位错强化、晶界强化、沉淀强化、亚晶强化、相变强化等
1、固溶强化:溶质原子溶入基体金属使材料强度增加的现象。
机理 :运动的位错与溶质原子之间的交互作用的结果。效果: 提高强度、降低塑属性。
2、控制冷却:控制轧后钢材的冷却速度、冷却温度,可采用不同的冷却路径对钢材组织及性能进行调控。
3、形变诱导相变:由于热轧变形的作用,使奥氏体向铁素体转变温度Ar3上升,促进了奥氏体向铁索体的转变。在奥氏体未再结晶区变形后造成变形带的产生和畸变能的增加,从而影响Ar3温度。
4、形变诱导析出:在变形过程中,由于产生大量位错和畸变能增加,使微量元素析出速度增大。
4、根据热轧过程中变形奥氏体的组织状态和相变机制不同,将控制轧制划分为三个阶段,即奥氏体再结晶型控制轧制、奥氏体未再结晶型控制轧制、在A+F两相区控制轧制。
5、以珠光体为主的中高碳钢,为达到珠光体团直径减小,则要细化奥氏体晶粒,必须采用(奥氏体再结晶)型控制轧制。
6、控制轧制是在热轧过程中通过对金属的(加热制度)、(变形制度)、(温度制度)的合理控制,使热塑性变形与固态相变结合使钢材具有优异的综合力学性能。
机理:位错和第二相颗粒相互作用。
(1)对提高强度有积极作用的绕过过程;(2)对提高强度作用较小的切割/剪切过程。 它们都会增加运动阻力,可以提高材料的强度。
4、细晶强化:随晶粒细化,屈服应力变高,基体强度上升的现象。
晶界强化本质:晶界对位错运动的阻碍作用。
晶界强化能同时提高材料的强度和韧性。
5、亚晶强化:位错密度增高,阻止位错运动。
(A)Nb(B)V(C)Ti(D)B
6、控制轧制的关键点在于控制(C)。
(A)奥氏体的形核与长大(B)铁素体的形核与长大
(C)变形奥氏体的状最大的是:(D)。
(A)再结晶奥氏体粗晶粒区(IA型)(B)再结晶奥氏体细晶粒区(IB型)
钢材的控制轧制和控制冷却
———————————————————————————————— 作者:
———————————————————————————————— 日期:

钢材的控制轧制和控制冷却
一、名词解释:
1、控制轧制:在热轧过程中通过对金属的加热制度、变形制度、温度制度的合理控制,使热塑性变形与固态相变结合,以获得细小晶粒组织,使钢材具有优异的综合力学性能。。
两相区轧制后的组织中既有由变形未再结晶奥氏体转变的等轴细小铁素体晶粒,还有被变形的细长的铁素体晶粒。同时在低温区变形促进了含铌、钒、钛等微量合金化钢中碳化物的析出。
5、再结晶临界变形量: 在一定的变形速率和变形温度下,发生动态再结晶所必需的最低变形量。
6、二次冷却:相变开始温度到相变结束温度范围内的冷却控制。
2、第二阶段(动态再结晶):在第一阶段动态软化抵消不了加工硬化,随着变形量的增加金属内部畸变能不断升高,畸变能达到一定程度后在奥氏体中将发生另一种转变,即动态再结晶。动态再结晶的发生与发展使更多的位错消失,材料的变形应力很快下降。随着变形的继续进行,在热加工过程中不断形成再结晶核心并继续成长直到完成一轮再结晶,变形应力降到最低值。从动态再结晶开始,变形应力开始下降,直到一轮再结晶全部完 成并与加工硬化相平衡,变形应力不再下降为止,形成了真应力一真应变曲线的第二阶段。动态软化速度大于加工硬化速度。
三、选择:
1、控制冷却的关键点在于控制(A)。
(A)奥氏体发生的组织转变(B)奥氏体的再结晶
(C)变形奥氏体(D)奥氏体的形核和长大
2、对于动态再结晶发生的条件,动态再结晶能否发生,主要由温度补偿因子Z和(A)来决定。
(A)变形程度(B)待温厚度(C)设备能力(D)晶粒尺寸
3、在(B)进行变形后的奥氏体中由于有变形带的存在,铁素体不仅在晶界上成核而且在变形带上成核。
7、钢的强化机制主要包括(固溶强化)、(位错强化)、(沉淀强化)、(细晶强化)、(亚晶强化)、(相变强化)等,其中(绕过)机制既能使钢强化又使钢的韧性得到提高。
8、一般可把轧后控制冷却过程分为三个阶段,称为(一次冷却)、(二次冷却)和(三次冷却)。
9、对于中高碳钢,如果要同时提高强度和韧性,不仅须进行控制轧制,同时要进行轧后(控冷),使珠光体在低温下产生,得到(细片层状态)的珠光体。
间隙式固溶强化使强度↑,但塑性↓、韧性↓;置换式固溶强化强化效果小,但对塑性、韧性影响不大。
2、位错强化:在塑性变形中,随变形程度↑,基体强度↑的现象。
机理:变形量ε↑,位错密度ρ↑,位错的移动阻力↑,强化↑。
效果:提高强度、降低塑韧性。
3、沉淀强化:第二相微粒从过饱和固溶体中沉淀析出使材料强度↑的现象。
相关文档
最新文档