人教版七年级上册数学1.5.1《有理数的乘方》教案设计

合集下载

人教版七年级数学上册第一章1.有理数的乘方教案

人教版七年级数学上册第一章1.有理数的乘方教案

1.5.1《有理数的乘方》教案一、 教学目标(一)知识技能1、理解有理数乘方的意义, 能明确底数、指数、幂这几个概念的意义2、掌握有理数乘方的运算(二)过程与方法:通过经历探索有理数乘方意义的过程,鼓励学生积极主动发现问题并解决问题。

(三)情感态度与价值观:1.在经历发现问题,探索规律的过程中体会到数学学习的乐趣,从而培养学生学习数学的主动性。

2.培养学生勤于思考、认真仔细和勇于探索的精神.教学重、难点:教学重点:有理数乘方的概念及运算。

教学难点:有理数乘方运算的符号法则。

二、教学设计(一)有效导入,明确目标提出问题:(1)边长为2的正方形的面积怎么计算?(2)棱长为2的正方体的体积怎么计算?(3)把一张足够大的厚度为0.1毫米的纸对折一次的厚度怎样计算?那么连续对折2次的厚度又怎样计算呢?连续对折3次,4次,...,30次又怎样计算呢? 依次引导学生完成三个问题。

导入新课。

(二)自主学习,合作探究阅读教材41页,完成以下问题:1、什么叫做乘方?什么叫做幂?2、 所代表的意义是什么?请说出 的读法。

3、什么叫做底数?什么叫做指数?n a n a学生以组为单位,展开活动,讨论交流。

教师在学生活动时,深入学生的活动中去,了解学生的讨论情况,帮助各别有困难的小组分析问题,提出思考方向。

(三)大组汇报,教师点拨1、什么是乘方?什么叫做幂?求n 个相同因数的积的运算,叫做乘方。

乘方的结果叫做幂。

对回答问题的小组进行评价,板书。

2、 所代表的意义是什么?请说出 的读法。

n 个相同的因数a 相乘,即 ,记作 ,读作“a 的n 次方”,也可读作“a 的n 次幂”。

对回答问题的小组进行评价,板书。

3、什么是底数?什么叫做指数?在 n a 中, a 叫做底数, n 叫做指数。

对回答问题的小组进行评价,板书。

教师补充提出问题:在教材,你还发现哪些其他的知识,请你提出来有同学们一起分享你的发现!教师鼓励学生发现知识,对发现知识的同学所在的小组进行评价。

人教版数学七年级上册1.5.1《有理数的乘方(1)》教学设计

人教版数学七年级上册1.5.1《有理数的乘方(1)》教学设计

人教版数学七年级上册1.5.1《有理数的乘方(1)》教学设计一. 教材分析人教版数学七年级上册1.5.1《有理数的乘方(1)》是学生在学习了有理数的加减乘除、相反数、绝对值等概念的基础上,进一步深化对有理数运算法则的理解。

本节课主要让学生掌握有理数的乘方运算,为后续学习幂的运算、指数函数等知识打下基础。

教材通过具体的例子引导学生探究有理数乘方的规律,从而让学生自主发现并掌握有理数乘方的法则。

二. 学情分析七年级的学生已经具备了一定的数学基础,对有理数的加减乘除运算较为熟悉。

但是,对于有理数的乘方运算,学生可能存在一定的困难,因为乘方运算涉及到多个有理数的乘积,运算规则相对复杂。

因此,在教学过程中,需要引导学生通过实例探究有理数乘方的规律,让学生在理解的基础上掌握乘方运算。

三. 教学目标1.理解有理数乘方的概念,掌握有理数乘方的法则。

2.能够熟练进行有理数的乘方运算。

3.培养学生的抽象思维能力,提高学生解决实际问题的能力。

四. 教学重难点1.教学重点:有理数乘方的概念,有理数乘方的法则。

2.教学难点:有理数乘方运算的规律,有理数乘方在实际问题中的应用。

五. 教学方法1.实例导入:通过具体的例子引导学生探究有理数乘方的规律。

2.小组讨论:让学生分组讨论,共同发现有理数乘方的法则。

3.练习巩固:通过大量练习,让学生熟练掌握有理数乘方运算。

4.实际应用:引导学生运用有理数乘方知识解决实际问题。

六. 教学准备1.教学课件:制作课件,展示有理数乘方的例子和知识点。

2.练习题:准备适量练习题,巩固学生对有理数乘方的掌握。

3.教学道具:准备一些教学道具,如卡片、小黑板等,方便学生直观地理解乘方运算。

七. 教学过程1.导入(5分钟)利用实例引入有理数乘方的概念,如:2的3次方表示2乘以自己3次,即2×2×2=8。

让学生初步认识有理数乘方。

2.呈现(10分钟)展示多个有理数乘方的例子,引导学生发现有理数乘方的法则。

人教版七年级数学上册1.5《有理数的乘方》教学设计

人教版七年级数学上册1.5《有理数的乘方》教学设计

人教版七年级数学上册1.5《有理数的乘方》教学设计一. 教材分析人教版七年级数学上册1.5《有理数的乘方》是学生在学习了有理数的加减乘除、相反数、绝对值等概念的基础上,进一步深化对有理数运算的理解。

本节内容主要介绍有理数的乘方,包括乘方的定义、乘方的运算规则以及乘方在实际问题中的应用。

通过本节课的学习,学生能够掌握有理数乘方的基本概念和运算方法,提高解决实际问题的能力。

二. 学情分析七年级的学生已经具备了一定的数学基础,对有理数的加减乘除、相反数、绝对值等概念有了初步的认识。

但是,对于有理数的乘方,学生可能存在以下问题:1. 对乘方的概念理解不深,容易与乘法混淆;2. 对乘方的运算规则掌握不牢固,容易出错;3. 不知道如何将乘方运用到实际问题中。

三. 教学目标1.理解有理数的乘方概念,掌握有理数乘方的运算规则;2. 能够运用乘方解决实际问题;3. 培养学生的数学思维能力,提高学生的数学素养。

四. 教学重难点1.有理数的乘方概念;2. 有理数乘方的运算规则;3. 乘方在实际问题中的应用。

五. 教学方法采用问题驱动法、案例教学法、小组合作学习法等,引导学生主动探究、积极思考,提高学生的数学思维能力和解决问题的能力。

六. 教学准备1.PPT课件;2. 相关练习题;3. 教学素材(如实际问题案例等)。

七. 教学过程1.导入(5分钟)利用PPT课件,展示一些生活中的实际问题,如计算折扣、计算利息等,引导学生发现这些问题都可以通过乘方来解决。

从而引出本节课的主题——有理数的乘方。

2.呈现(10分钟)通过PPT课件,介绍乘方的定义,如a的n次方表示n个a相乘,同时强调乘方与乘法的区别。

接着,讲解乘方的运算规则,如a的m次方乘以a的n次方等于a的m+n次方,a的m次方除以a的n次方等于a的m-n次方等。

3.操练(10分钟)让学生独立完成一些乘方的运算题,如3的2次方、5的3次方等,同时引导学生总结乘方的运算规则。

人教版七年级上册数学1.5.1《有理数的乘方》教学设计

人教版七年级上册数学1.5.1《有理数的乘方》教学设计
5.拓展延伸,激发思维
引导学生探讨乘方的逆运算,如开平方、开立方等,激发学生的思维,为后续学习打下基础。
6.总结反馈,查漏补缺
通过课堂小结,让学生回顾本节课的学习内容,发现并弥补自己的知识漏洞。
7.课后作业,巩固提高
布置适量的课后作业,包括基础题和提高题,让学生在课后巩固所学知识,并适当拓展。
8.关注个体差异,实施个性化教学
(2)一个正方体的边长是5cm,求它的表面积和体积。
4.思考题:
(1)如何计算负数的奇数次幂和偶数次幂?
(2)有理数的乘方在实际生活中有哪些应用?
作业要求:
1.认真完成作业,字迹清楚,保持卷面整洁。
2.注意有理数乘方的计算法则,避免常见错误。
3.对于应用题和思考题,尽量用自己的语言进行解答,体现思考过程。
2.教师引导学生通过具体的例子,总结有理数乘方的计算法则。
师:请同学们观察以下算式,并总结有理数乘方的计算法则。
算式:(-2)^2, (-2)^3, (-2)^4, ...
生:负数的偶数次幂是正数,负数的奇数次幂是负数。
3.教师强调有理数乘方计算法则中的注意事项,并进行讲解。
(三)学生小组讨论,500字
人教版七年级上册数学1.5.1《有理数的乘方》教学设计
一、教学目标
(一)知识与技能
1.理解有理数乘方的定义,知道乘方的意义是表示几个相同因数的乘积。
2.掌握有理数乘方的计算法则,能够准确进行有理数乘方运算。
3.能够运用有理数乘方的知识解决生活中的实际问题,如计算面积、体积等。
(二)过程与方法
1.观察生活中的乘方现象,培养学生发现问题的能力。
2.学生分享学习心得,教师给予鼓励和肯定。
3.教师布置课后作业,要求学生在课后巩固所学知识,并为下一节课做好准备。

数学人教版七年级上册1.5.1有理数的乘方.5.1有理数的乘方教学设计与反思

数学人教版七年级上册1.5.1有理数的乘方.5.1有理数的乘方教学设计与反思
3、进行乘方运算应先定符号后计算。
目标检测
1、在46中,底数是,指数,
2、(-4)7读做;
3、(-4)12的结果是数(填“正”或“负”);
4、计算:=;
5、计算:(-1)2n+(-1)2n+1=;
课后作业
教材p47立完成,师生共同订正
通过练习使学生对这节课的知识得以巩固,加深理解
对折3次可裁成8张,即2×2×2张;
问题(1):
若对折10次可裁成几张?请用一个算式表示(不用算出结果)
2×2×2×2×2×2×2×2×2×2
有10个2相乘
若对折100次,算式中有几个2相乘?
在这个积中有100个2相乘。这么长的算式有简单的记法吗?
问题(2):
2个a相加可记为:a+a=a×2
边长为a的正方形的面积可记为:
七、教学评价设计
在探索法则的教学环节中,教师放手学生操作,把课堂还给学生,真正体现学生的主体地位,教师起到一个引导者、合作者、组织者的作用,学生在合作交流与自主探索的过程中归纳出有理数乘方的符号法则。在练习设计中,设置不同难度的计算题,让不同的学生都得到训练,得到提高。为了使学生真正掌握重难点,熟练的进行有理数的乘方运算,设计了一定的试题教学,难点得以突破,学生的能力得到提高,同时培养了学生集体合作的意识。
a×a=a2
3个a相加可记为:a+a+a=a×3
棱长为a的正方体的体积可记为:
a×a×a=a3
4个a相加可记为:a+a+a+a=a×4
那么4个a相乘可记为:
a×a×a×a=a4
n个a相加可记为:a+a+…+a=a×n
n个a相乘可记为:a×a×…×a=an

人教版数学七年级上册1.5.1乘方第二课时用计算器计算有理数的乘方教学设计

人教版数学七年级上册1.5.1乘方第二课时用计算器计算有理数的乘方教学设计
4.教学资源:
-利用多媒体课件展示乘方的动态过程,帮助学生形象理解。
-提供网络资源和计算器软件,供学生课后自主学习和练习。
-设计丰富的教学活动,如数学游戏、竞赛等,增加学生的学习兴趣和动力。
四、教学内容与过程
(一)导入新课
在教学“有理数的乘方”这一节时,我们将从学生熟悉的生活实例出发,以正方形的面积计算为例,引导学生发现乘方的概念。首先,在大屏幕上展示一个边长为2的正方形,并提问:“同学们,我们知道正方形的面积怎么计算吗?”待学生回答后,继续提问:“如果我们要计算边长为2的平方,也就是2自乘2次,应该怎么表示呢?”通过这样的问题,自然引出乘方的表示方法2^2。然后,进一步提问:“如果我们要计算边长为2的正方体的体积,又该如何表示呢?”从而引出乘方的更广泛应用。
人教版数学七年级上册1.5.1乘方第二课时用计算器计算有理数的乘方教学设计
一、教学目标
(一)知识与技能
1.让学生掌握有理数乘方的概念,理解乘方的意义和表示方法。
-学生能够理解乘方的定义,即一个数自乘若干次,能够用符号表示乘方,如a^n表示a自乘n次。
-学生能够识别和写出有理数的乘方表达形式,包括整数、分数的乘方。
五、作业布置
为了巩固本节课所学的有理数乘方知识,确保学生对乘方的概念、性质和应用有深入的理解,特布置以下作业:
1.基础巩固题:
-完成课本练习册中关于有理数乘方的相关习题,要求学生独立完成,加强对乘方定义和性质的记忆。
-利用计算器计算以下乘方表达式,并解释其结果的正负性:(-3)^2, (-2)^3, (-1)^4, 0^5。
-思考如何利用乘方来简化一些复杂的计算问题,例如,如何快速计算2^10?
4.探究性作业:
-分组进行探究活动,每组选择一个乘方主题(如平方的应用、立方的应用等),通过网络、书籍等资源收集相关信息,并制作成PPT或小册子,下节课分享给全班同学。

人教版数学七年级上册1.5.1有理数的乘方 教案

人教版数学七年级上册1.5.1有理数的乘方 教案

培养学生自 主学习、合作 探究的能力
3.小组讨论完毕后,教师找 1-2 个代表举例回答什么是底数、
指数、幂,并完成笔记。( an 各部分名称的示意图)
【活动练习】一个学生任意举一个幂的例子,另一个学生 回答该幂的底数、指数分别是什么?(讲学生举的 5 个例 子,以表格形式写在笔记上)(2min)
例 1:(预设的回答情况)
后期做题时还是分
完成板书例 2 的表格。 ②可能有学生会问:0 的底数、指数是什么?(0 单独
作为一个数字,它的指数是 1,底数是 0)
给学生展示 的机会,让学 生多读、多 想、多说、多 练。坚持以学 生为主体,教 师为主导的 教育思想。
【活动 2】自学乘方运算的符号法则(15min) 课本 P42/例 1,思考 1.学生活动内容:独立自学例 1,并完成思考(2min)
(三) 自主学习,探 究新知 (25min)
【活动 1】自学幂的各部分名称(10min) 1.学生自学课本 P41“从乘方的定义开始,一直到 41 页最 后一个字”。(自学时间:2-3min)
2.自学结束后,两人一组讨论。互相说说自己在自学中遇到 的问题(如果有的话),以及什么是底数、指数、幂。 (小组讨论时间:5min)
由复杂的同 一个数的连 乘形式到简
(2)请尝试用数学算式表示棋盘第写— —幂的形式; 由小学的正
数乘方到初
63 个 2
中新加入的
【追问】为了简便,根据上面的探究,你觉得 63 个 2 相乘 负数乘方。
还可以怎么表示?读作什么?
【回答】 263 ,读作:二的六十三次方
板书设计 第一块板
1.5 有理数的乘法 1.5.1 乘方 1. 一般地,几个相同的因数 a 相乘,即:

七年级数学《有理数的乘方》教案设计优秀5篇

七年级数学《有理数的乘方》教案设计优秀5篇

教学目标:1.通过现实背景理解有理数乘方的意义,能进行有理数乘方的运算。

2.已知一个数,会求出它的正整数指数幂,渗透转化思想。

3.培养学生观察、归纳能力,以及思考问题、解决问题的能力,切实提高学生的运算能力。

教学重点:正确理解乘方的意义,能利用乘方运算法则进行有理数乘方运算。

教学难点:准确理解底数、指数和幂三个概念,并能进行求幂的运算。

教学过程设计:(一)创设情境,导入新课提问并引导学生回答:在小学里我们学过一个数的平方和立方是如何定义的?怎样表示?a·a记作a2,读作a的平方(或a的2次方),即a2=a·a;a·a·a记作a3,读作a的立方(或a的3次方),即a3=a·a·a.(分别是边长为a的正方形的面积与棱长为a的正方体的体积)(多媒体演示细胞分裂过程)其中一种细胞,每过30分钟便由1个分裂成2个,经过5小时,这种细胞由1个分裂成多少个?1个细胞30分钟分裂成2个,1个小时后分裂成2某2个,1.5小时后分裂成2某2某2个,…,5小时后要分裂10次,分裂成个,为了简便可将记作210.(二)合作交流,解读探究一般地,n个相同的因数a相乘,即,记作an,读作a的n次方。

求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。

在an 中,a叫做底数,n叫做指数,当an看作a的n次方的结果时,也可读作a的n次幂。

说明:(1)举例94来说明概念及读法。

(2)一个数可以看作这个数本身的一次方,通常省略指数1不写。

(3)因为an就是n个a相乘,所以可以利用有理数的乘法运算来进行有理数的乘方运算。

(4)乘方是一种运算,幂是乘方运算的结果。

(三)应用迁移,巩固提高【例1】(1)(-4)3;(2)(-2)4;(3)-24.点拨:(1)计算时仍然是要先确定符号,再确定绝对值。

(2)注意(-2)4与-24的区别。

根据有理数的乘法法则得出有理数乘方的符号规律:负数的奇次幂是负数,负数的偶次幂是正数;正数的任何次幂都是正数,0的任何正整数次幂都是0.【例2】计算:(1)(3; (2)(-)3;(3)(-)4;(4)-;(5)-22某(-3)2;(6)-22+(-3)2.(四)总结反思,拓展升华1.引导学生作知识小结:理解有理数乘方的意义,运用有理数乘方运算法则进行有理数乘方的运算,熟知底数、指数和幂三个基本概念。

人教版七年级数学上册:1.5.1 《乘方》教案

人教版七年级数学上册:1.5.1 《乘方》教案

人教版七年级数学上册:1.5.1 《乘方》教案一. 教材分析《乘方》是人教版七年级数学上册第一章第五节的第一课时,主要介绍有理数的乘方。

教材通过简单的实例让学生感受乘方的意义,理解乘方的运算规则,为后续学习指数幂、对数等概念打下基础。

本节课的内容在数学体系中起到承前启后的作用,既巩固了有理数的基本运算,又为高中阶段更深入的数学学习奠定基础。

二. 学情分析七年级的学生已经掌握了有理数的基本运算,对数学符号和概念有一定的理解。

但乘方作为一个新的概念,需要学生从新的角度去理解。

学生在学习乘方时,可能会对乘方的意义和运算规则产生困惑,因此需要通过实例和练习来帮助学生理解和掌握。

三. 教学目标1.让学生理解乘方的意义,掌握有理数的乘方运算规则。

2.培养学生的逻辑思维能力,提高学生解决实际问题的能力。

3.激发学生对数学的兴趣,培养学生的自主学习能力。

四. 教学重难点1.乘方的意义和运算规则。

2.乘方在实际问题中的应用。

五. 教学方法采用问题驱动法、实例教学法和小组合作学习法。

通过问题引导学生的思考,实例让学生理解乘方的意义,小组合作学习法培养学生的团队协作能力。

六. 教学准备1.教学PPT。

2.实例和练习题。

3.小组合作学习的相关材料。

七. 教学过程1.导入(5分钟)通过一个实际问题引出乘方的概念:某商品打八折出售,即按原价的80%出售,问原价为100元的商品现价是多少?让学生思考如何用数学方法表示这个问题。

2.呈现(15分钟)讲解乘方的意义和运算规则,通过PPT展示实例,让学生理解乘方的概念。

例如,2的3次方表示2乘以自己3次,即2×2×2=8。

3.操练(15分钟)让学生进行乘方运算的练习,教师巡回指导,解答学生的疑问。

可以设置一些有趣的题目,让学生在练习中感受乘方的魅力。

4.巩固(10分钟)通过一些实际问题,让学生运用乘方解决实际问题。

例如,一个班级有30人,每次活动参加的人数是上一次的90%,问第三次活动参加的人数是多少?5.拓展(5分钟)讲解乘方在实际生活中的应用,如科学计算、金融理财等。

人教版七年级上册数学教学案:1.5 有理数的乘方

人教版七年级上册数学教学案:1.5 有理数的乘方

1.5.1 有理数的乘方(1)第一课时三维目标一、知识与技能(1)正确理解乘方、幂、指数、底数等概念.(2)会进行有理数乘方的运算.二、过程与方法通过对乘方意义的理解,培养学生观察比较、分析、归纳概括的能力,渗透转化思想.三、情感态度与价值观培养探索精神,体验小组交流、合作学习的重要性.教学重、难点与关键1.重点:正确理解乘方的意义,掌握乘方运算法则.2.难点:正确理解乘方、底数、指数的概念,并合理运算.3.关键:弄清底数、指数、幂等概念,注意区别-a n与(-a)n的意义.四、课堂引入1.几个不等于零的有理数相乘,积的符号是怎样确定的?几个不等于零的有理数相乘,积的符号由负因数的个数确定,当负因数的个数为奇数时,积为负;当负因数的个数为偶数时,积为正.2.正方形的边长为2,则面积是多少?棱长为2的正方体,则体积为多少?五、新授边长为a的正方形的面积是a·a,棱长为a的正方体的体积是a·a·a.a·a简记作a2,读作a的平方(或二次方).a·a·a简记作a3,读作a的立方(或三次方).一般地,几个相同的因数a相乘,记作a n.即a·a……a.这种求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂.在a n中,a叫底数,n叫做指数,当a n看作a的n次方的结果时,也可以读作a的n 次幂.例如,在94中,底数是9,指数是4,94读作9的4次方,或9的4次幂,它表示4个9相乘,•即9×9×9×;又如(-2)4的底数是-2,指数是4,读作-2的4次方(或-2的4次幂),它表示(-2)×(-2)×(-2)×(-2).思考:32与23有什么不同?(-2)3与-23的意义是否相同?其中结果是否一样?(-2)4与-24呢?(35)2与235呢?(-2)3的底数是-2,指数是3,读作-2的3次幂,表示(-2)×(-2)×(-2),结果是-8;-23的底数是2,指数是3,读作2的3次幂的相反数,表示为-(2×2×2),结果是-8.(-2)3与-23的意义不相同,其结果一样.(-2)4的底数是-2,指数是4,读作-2的四次幂,表示(-2)×(-2)×(-2)×(-2),•结果是16;-24的底数是2,指数是4,读作2的4次幂的相反数,表示为-(2×2×2×2),其结果为-16.(-2)4与-24的意义不同,其结果也不同.(35)2的底数是35,指数是2,读作35的二次幂,表示35×35,结果是925;235表示32与5的商,即335,结果是95.因此,当底数是负数或分数时,一定要用括号把底数括起来.一个数可以看作这个数本身的一次方,例如5就是51,指数1通常省略不写.因为a n就是n个a相乘,所以可以利用有理数的乘方运算来进行有理数的乘方运算.例1:计算:(1)(-4)3;(2)(-2)4;(3)(-12)5;(4)33;(5)24;(6)(-13)2.解:(1)(-4)3=(-4)×(-4)×(-4)=-64 (2)(-2)4=(-2)×(-2)×(-2)×(-2)=16(3)(-12)5=(-12)×(-12)×(-12)×(-12)×(-12)=-132(4)33=3×3×3=27(5)24=2×2×2×2=16(6)(-13)2=(-13)×(-13)=19例2:用计算器计算(-8)5和(-3)6.解:用带符号键(-)的计算器.开启计算器后按照下列步骤进行:((-) 8 )∧ 5 =显示:(-8)^ 5-32768 即(-8)5=-32768((-) 3 )∧ 6 =显示:(-3)^ 6729 即(-3)6=729用带符号转换键 +/-的计算器:8 +/-∧ 5 =显示:-327683 +/-∧ 6 =显示:729所以(-8)5=-32768 (-3)6=729因此,可以得出:负数的奇次幂是负数,负数的偶次幂是正数;正数的任何非零次幂都是正数;0的任何非零次幂都是0.六、巩固练习1.课本第52页练习1、2.七、课堂小结正确理解乘方的意义,a n表示n个a相乘的积.注意(-a)n与-a n•两者的区别及相互关系:(-a)n的底数是-a,表示n个-a相乘的积;-a n底数是a,表示n个a 相乘的积的相反数.当n为偶数时,(-a)n与-a n互为相反数,当n为奇数时,(-a)n与-a n相等.八、作业布置1.课本第47页习题1.5第1题,第48页第11、12题.九、板书设计:1.5.1 有理数的乘方(1)第一课时1、负数的奇次幂是负数,负数的偶次幂是正数;正数的任何非零次幂都是正数;0的任何非零次幂都是0.2、随堂练习。

人教版数学七年级上1.5.1有理数的乘方教学设计

人教版数学七年级上1.5.1有理数的乘方教学设计
通过生活中的实例,如平方、立方等,引导学生发现乘方的规律,激发学生的兴趣,从而引出乘方的定义。
2.分步骤讲解,突破难点
(1)借助具体实例,讲解乘方符号法则,帮助学生理解和记忆。
(2)通过对比不同乘方运算,引导学生发现运算简便方法,提高解题效率。
(3)设计具有挑战性的题目,让学生在解决实际问题时,运用乘方知识建立数学模型。
人教版数学七年级上1.5.1有理数的乘方教学设计
一、教学目标
(一)知识与技能
1.理解乘方的定义,知道乘方的意义是将几个相同因数相乘的运算。
2.掌握有理数乘方的符号法则,包括同号得正、异号得负的规律。
3.学会进行有理数乘方运算,能够准确计算出结果,并掌握乘方运算的简便方法。
4.能够运用乘方知识解决实际问题,如计算面积、体积等。
3.教师总结与拓展
教师对乘方知识进行总结,并提出拓展性问题,激发学生的思考,为下一节课的学习打下基础。
五、作业布置
为了巩固学生对有理数乘方知识的掌握,培养其运用乘方解决实际问题的能力,特布置以下作业:
1.必做题:
(1)完成课本第25页第3、4、5题,强化对有理数乘方定义和符号法则的理解。
(2)根据课堂所学的简便方法,计算以下乘方运算:(-2)^3、(-3)^4、2^5、3^6,并解释运算过程中符号的变化规律。
(3)结合实际情境,编写两个应用有理数乘方的实际问题,并与同学交流讨论解题方法。
2.选做题:
(1)探索有理数乘方在生活中的应用,如面积、体积等,撰写一篇小论文,不少于300字。
(2)研究乘方运算的规律,如负数的奇数次幂和偶数次幂的性质,整理成笔记,与同学分享。
3.思考题:
(1)为什么负数的偶数次幂等于正数,而奇数次幂等于负数?

1.5.1有理数的乘方(第一课时)(教学设计)七年级数学上册(人教版)

1.5.1有理数的乘方(第一课时)(教学设计)七年级数学上册(人教版)

有理数的乘方(第一课时) 教学设计一、内容和内容解析1.内容本节课是人教版《义务教育教科书•数学》七年级上册(以下统称“教材”)第一章“有理数”1.5.1 有理数的乘方(第一课时),内容包括:有理数的乘方、幂、底数、指数的概念及意义、有理数的乘方运算.2.内容解析《有理数的乘方》是义务教育课程标准实验教科书新人教版《数学》七年级上册第一章的内容,有理数的乘方是有理数的一种基本运算,是在学生学习了有理数的加、减、乘、除运算的基础上来学习的,它既是有理数乘法的推广和延续,又是后续学习有理数的混合运算、科学记数法和八年级数学开方、整数指数幂的基础,起到承前启后、铺路架桥的作用.基于以上分析,确定本节课的教学重点为:理解并掌握有理数的乘方、幂、底数、指数的概念及意义.二、目标和目标解析1.目标(1)理解并掌握有理数的乘方、幂、底数、指数的概念及意义.(转化思想)(2)能够正确进行有理数的乘方运算.(运算能力)2.目标解析通过自主学习理解有理数乘方的乘方、底数、指数、幂的概念.通过探究掌握乘方运算的符号法则并能正确进行乘方运算.通过现实情境及题组练习让学生经历探索乘方意义及乘方符号法则的过程,发展学生的合情推理能力和演绎推理能力,体会由特殊到一般的数学思想及转化的数学思想.让学生体会在具体的情景中从数学角度去发现和解决问题,在与他人合作交流的过程中,较好地理解他人的思考方法和结论.在乘方运算中增强学生的数感,感悟乘方符号的简捷美;让学生在经历发现问题、探索规律的过程中体会到数学学习的乐趣,从而培养学生学习数学的主动性和勇于探索的精神,增强学生学好数学的自信心.三、教学问题诊断分析七年级学生思维比较活跃,喜欢发表自己的见解而且具备小组合作学习的经验,从知识体系上来说,学生已经学习了有理数的加、减、乘、除运算,对有理数运算法则及特点已经有了初步认识,具备了学习本节课的必要条件.但是学生对有理数乘方中相关概念的理解及其符号规律的推导、应用方面可能会有模糊现象.所以在本节课的教学中应予以简单明白,深入浅出的分析.基于以上学情分析,确定本节课的教学难点为:掌握有理数乘方运算的符号法则.四、教学过程设计(一)情境引入某种细胞每过30分钟便由1个分裂成2个. 经过5时,这种细胞由1个能分裂成多少个?(二)自学导航边长为2cm 的正方形的面积是2×2=4(cm 2);棱长为2cm 的正方体的体积2×2×2=8(cm 3).2×2记作22,读作“2的平方”(或“2的二次方”);2×2×2记作23,读作“2的立方”(或“2的三次方”).2×2×2×2×2×2×2×2×2×2记作_____,读作___________.(-2)×(-2)×(-2)×(-2)记作_____,读作___________.(-52)×( -52)×(-52)×(-52)×(-52)记作______,读作___________. 【归纳】一般地,n 个相同的因数a 相乘,记作a n ,读作“a 的n 次幂(或a 的n 次方)”,即乘方的定义:这种求n 个相同因数的积的运算叫做乘方,乘方的结果叫做幂.组成要素:一个数可以看作这个数本身的一次方,例如8就是81,指数1通常省略不写.【迁移应用】1.(-5)3的底数是 ,指数是 ,(-7)6表示6个 相乘,读作 ,也读作-7的 .2.(−32)5表示 个 相乘,读作 的 次方,也读作 的 次幂,其中-32叫做 ,6叫做 .(三)合作探究探究1:(-2)4与-24一样吗?为什么?(-2)4表示4个-2相乘,即:(-2)×(-2)×(-2)×(-2)-24表示4个2相乘的相反数,即:-2×2×2×2(-2)4与-24互为相反数.【归纳】负数的乘方,在书写时一定要把整个负数(连同负号)用小括号括起来. 探究2:432⎪⎭⎫ ⎝⎛与324一样吗?为什么? 32×32×32×32记作432⎪⎭⎫ ⎝⎛;32222⨯⨯⨯记作324. 432⎪⎭⎫ ⎝⎛与324是不相同的. 【归纳】分数的乘方,在书写时一定要把整个分数(连同负号)用小括号括起来.(四)考点解析例1.下列对于-34的叙述正确的是( )A.读作“-3的4次幂”B.底数是-3,指数是4C.表示4个3相乘的积的相反数D.表示4个-3相乘的积【迁移应用】1.填空:2.-35的4次幂记为( )A.-345B.-(35)4C.-(−35)4D. (−35)4例2.计算:(1)34=__________=_____; (2)(-3)4=____________________=_____;(3)53=________=_____; (4)(-5)3=_______________=_____;(5)(34)3=_________=_____; (6)(−34)3=_________________=_____;(7)-34=___________=_____; (8)(-1)2034=__________________=_____.【迁移应用】1.下列各数:-(-2),(-2)2,-22,(-2)3,其中负数的个数为( )A.1B.2C.3D.42.下列各组数中,其值相等的是( )A.23和32B.-32和(-3)2C.-23和(-2)3D. (−23)3和-233 3.计算:(1)63; (2)-53; (3)(-4)4; (4)06; (5)(-2)7; (6)(-0.3)3; (7)(-12)5. 解:(1)原式=6×6×6=216;(2)原式=-5×5×5=-125;(3)原式=(-4)×(-4)×(-4)×(-4)=256;(4)原式=0;(5)原式=(-2)×(-2)×(-2)×(-2)×(-2)×(-2)×(-2)= -128;(6)原式=(-0.3)×(-0.3)×(-0.3)=-0.027;(7)原式= (-12)×(-12)×(-12)×(-12)×(-12)=-132.(五)自学导航不计算下列各式,你能确定其结果的符号吗?从计算结果中,你能得到什么规律?⑴(-2)51; ⑴(-2)50; ⑴250; ⑴251;⑴(-1)2012; ⑴(-1)2013; ⑴02012; ⑴12013.【归纳】(1)正数的任何次幂是______;(2)负数的偶次幂是_____;负数的奇次幂是_____;(3)0的任何次幂等于____;(4)1的任何次幂等于____;(5)-1的偶次幂等于____;-1的奇次幂是_____.(六)考点解析例3.(1)比较各组中两个数的大小:⑴12_____21; ⑴23_____32; ⑴34____43; ⑴45____54.(2)将上题的结果进行归纳,比较n n+1与(n+1)n (n 为正整数)的大小.(3)根据归纳的结论,比较999998与998999的大小.解:(2)当n <3时,n n+1<(n+1)n ;当n≥3时,n n+1>(n+1)n .(3)999998<998999【迁移应用】1.比较大小:(1)(32)2_____(32)3; (2)(12)4_____(13)4.2.若a=-2×32,b=(-2×3)2,c=-(2×3)2,则( )A.a>b>cB.b>c>aC.b>a>cD.c>a>b3.将下列各数用“<”号连接起来:(1)23,(23)2,(23)3,(23)4; (2)15,25,35,45.解:(1)23=5481, (23)2=49=3681,(23)3=827=2481,(23)4=1681;所以 (23)4<(23)3<(23)2<23.(2)15=1,25=32,35=243,45=1024;所以15<25<35<45.例4.计算:(1)2233(-)(-)⨯ (2)-23×(-32) (3)64÷(-2)5(4)(-4)3÷(-1)200+2×(-3)4 22236;33解:(1)(-)(-)=9(-)⨯⨯=-(2)-23×(-32)=-8×(-9)=72;(3)64÷(-2)5=64÷(-32)=-2;(4)(-4)3÷(-1)200+2×(-3)4=-64÷1+2×81=98思考:通过以上计算,对于乘除和乘方的混合运算,你觉得有怎样的运算顺序?【运算顺序】先算乘方,后算乘除;如果遇到括号就先进行括号里的运算.【迁移应用】计算:(1)−23÷49×(−23)2; (2)−32÷23×(1−13)2; (3)(−1)9×(−2)2017×(−12)2016.(1)解原式 =−8÷49×49 =−8×94×49=-8; (2)解原式=−9×32×49=−6;(3)解原式=(−1)×(−2)×[(−2)2016×(−12)2016]=2×[(−2)×(−12)]2016=2×12016=2×1=2. 例 5.你喜欢吃拉面吗?拉面馆的师傅.用一根很粗的面条,把两头捏合在一起拉伸,再捏合、拉伸,反复多次,就能拉成许多细面条.如图所示:(1)经过第3次捏合后,可以拉出______根细面条;(2)若拉出128根细面条,则捏合的次数是多少?解:(1)根据题意得4×2=8故第三次后可以拉出8根细面条;(2)由于27=128,因此若拉出128根细面条,则捏合的次数是7.【迁移应用】当你把纸对折一次时,就得到2层,当对折两次时,就得到4层,照这样折下去.(1)当对折3次时,层数是多少;(2)如果纸的厚度是0.1mm ,求对折8次时,总厚度是多少mm ?(1)解:因为23=8,所以对折3次时,层数是8;(2)解:28×0.1=256×0.1=25.6(mm ),所以总厚度是25.6mm .例6.已知(a -7)2+|b+6|=0,求(-a -b)100的值.解:因为(a -7)2不小于0,|b+6|不小于0,(a -7)2+|b+6|=0,所以(a -7)2=0,|b+6|=0.所以a=7,b=-6.当a=7,b=-6时,原式=[-7-(-6)]100=(-1)100=1.【迁移应用】1.若|x+2|+(y -3)2=0,则x -y 的值为( )A.-5B.5C.1D.-12.若|a -1|+(a -b -2)2=0,则下列式子正确的是( )A.a=1,b=1B.a+b=1C.a+b=0D.a -b=03.|a -4|与(b+5)2互为相反数,则b a 的值为_______.例7.(1)根据已知条件填空:⑴已知(-1.2)2=1.44,计算:(-120)2=_______,(-0.012)2=________.⑴已知(-3)3=-27,计算:(-30)3=________,(-0.3)3=________.(2)观察上述计算结果我们可以看出:⑴当底数的小数点向左(或右)每移动位,它的二次幂的小数点向左(或右)移动_____位; ⑴当底数的小数点向左(或右)每移动一位,它的三次幂的小数点向左(或右)移动_____位.【迁移应用】1.观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,猜想:32025的个位上的数是_____.2.给出下列两组算式:(4×5)2与42×52; [(-13)×9]3与(-13)3×93. (1)每组的结果相等吗?(2)想一想:当n 是正整数时,(a·b)n =______.(3)用你发现的规律计算:(-0.125)20×820.解:(1)相等.(3)(-0.125)20×820=(-0.125×8)20=(-1)20=1.(七)小结梳理五、教学反思。

人教版七年级数学上册1.5.1《有理数的乘方》教学设计

人教版七年级数学上册1.5.1《有理数的乘方》教学设计

人教版七年级数学上册1.5.1《有理数的乘方》教学设计一. 教材分析《有理数的乘方》是人教版七年级数学上册1.5.1的内容,主要介绍了有理数的乘方概念、乘方法则和乘方运算。

本节内容是在学生掌握了有理数的概念和运算基础上进行学习的,对于学生来说,乘方是一个比较抽象的概念,需要通过实例和练习来理解和掌握。

二. 学情分析七年级的学生已经具备了一定的数学基础,对于有理数的概念和运算规则有一定的了解。

但是,对于乘方这一概念,学生可能比较难以理解,需要通过具体的例子和实际操作来帮助学生理解和掌握。

三. 教学目标1.理解有理数的乘方概念,掌握有理数的乘方法则。

2.能够进行有理数的乘方运算,并解决实际问题。

3.培养学生的逻辑思维能力和解决问题的能力。

四. 教学重难点1.有理数的乘方概念的理解。

2.乘方法则的掌握和运用。

3.有理数乘方运算的熟练掌握。

五. 教学方法1.实例教学:通过具体的例子来引导学生理解和掌握乘方概念和乘方法则。

2.问题解决法:通过解决实际问题,让学生运用乘方知识,巩固所学内容。

3.小组合作学习:学生分组讨论和解决问题,培养学生的合作意识和解决问题的能力。

六. 教学准备1.教学PPT:制作相关的教学PPT,内容包括乘方概念、乘方法则和乘方运算的实例和练习题。

2.练习题:准备一些有关有理数乘方的练习题,用于巩固和拓展学生的知识。

3.教学素材:准备一些与乘方相关的实际问题,用于引导学生运用乘方知识解决实际问题。

七. 教学过程1.导入(5分钟)教师通过引入一个实际问题,如“一个物体每次翻倍,翻倍3次后的数量是多少?”来引导学生思考和引入乘方概念。

2.呈现(15分钟)教师通过PPT呈现乘方概念和乘方法则的定义和规则,并用具体的例子来解释和展示乘方的运算过程。

同时,教师引导学生观察和总结乘方的规律。

3.操练(10分钟)教师给出一些有理数的乘方运算题目,让学生独立完成,并及时给予反馈和解释错误的答案。

4.巩固(10分钟)教师学生进行小组合作学习,让学生分组讨论和解决一些与乘方相关的实际问题。

《有理数的乘方》

《有理数的乘方》

《1.5.1 有理数的乘方》教学设计相乘为n2。

将2换做a.揭示课题并板书课题让学生通过观察发现乘方的意义实际就是几个相同因数的积,从而得到乘方运算的概念。

给出乘方概念。

对照各部分名称:指数、底数、幂出示练习并提问学生教师巡视学生的完成情况,对出现模糊概念的学生给适当的指导师强调:a.单独一个数或字母可看成是指数为1,但1省略不写b.底数是分数或负算叫做乘方,乘方的结果叫做幂,相同的因数叫做底数,相同因数的个数叫做指数学生口答把下列乘法式子写成乘方的形式:1、1×1×1×1×1×1×1= ;2、3×3×3×3×3= ;3、(-3)×(-3)×(-3)×(-3)= ;4、=⨯⨯⨯65656565;小试牛刀:(1) 5看成幂的话,底数是________,指数是________。

(2)在(-5)15中,底数是_______ ,指数是_______,(-5)15读作_______。

(3)在42-)(中,底数是_____ ,指数是_____,42-)(读作_____意义是_____,结果是_____。

(4)在42-中,底数是_____ ,指数名称,为后面习题巩固概念做知识储备。

通过简单的练习,巩固知识,理解概念。

学生容易在对底数和指数的概念理解这个地方出现问题,利用习题来提醒学生注意区分底数。

对于分数及负数做底数时,让同学准确把握易错点,从而达到突破重点难点的目的。

有理数的乘方1、求几个相同因数积的运算,叫做乘方。

乘方的结果叫做幂。

a×a×a×…×a=a n读作:a的n次方(a的n次幂)n个a2、正数的任何次幂都是正数。

负数的偶次幂是正数。

负数的奇次幂是负数。

0的任何正次幂都是0。

3、平方具有非负性六、课后反思有理数的乘方的教学目的是使学生明白乘方是一种运算,能理解幂、底数、指数的概念,能正确的书写,准确的运算,教学中不但要搞好中小学数学在《课标》体系上的衔接,还要注重学生的心理上、习惯上、方法上的衔接。

人教版七年级数学上册:1.5.1《乘方》教学设计1

人教版七年级数学上册:1.5.1《乘方》教学设计1

人教版七年级数学上册:1.5.1《乘方》教学设计1一. 教材分析《乘方》是人教版七年级数学上册第一章第五节的第一部分内容。

本节内容是在学生已经掌握了有理数的乘法、平方根的概念以及性质的基础上进行的。

通过学习乘方,使学生能够理解乘方的概念,掌握乘方的运算法则,并能够运用乘方解决实际问题。

二. 学情分析七年级的学生已经具备了一定的数学基础,对有理数的乘法和平方根的概念有一定的了解。

但是,对于乘方的概念和运算法则可能还比较陌生,需要通过具体例子和实际操作来逐步理解和掌握。

三. 教学目标1.知识与技能目标:学生能够理解乘方的概念,掌握乘方的运算法则,并能够运用乘方解决实际问题。

2.过程与方法目标:通过具体例子和实际操作,学生能够逐步理解和掌握乘方的概念和运算法则。

3.情感态度与价值观目标:学生能够积极参与课堂活动,培养对数学的兴趣和自信心。

四. 教学重难点1.教学重点:乘方的概念,乘方的运算法则。

2.教学难点:乘方的运算法则的应用。

五. 教学方法1.情境教学法:通过具体例子和实际操作,引导学生理解和掌握乘方的概念和运算法则。

2.启发式教学法:通过提问和讨论,激发学生的思维,培养学生的解决问题的能力。

六. 教学准备1.教学PPT:制作教学PPT,包括具体的例子和实际操作的演示。

2.练习题:准备一些练习题,用于巩固学生的理解和掌握。

七. 教学过程通过一个实际问题,引出乘方的概念。

例如,一个正方形的边长为2,求它的面积。

学生可以通过计算得出答案,进而引出乘方的概念。

2.呈现(10分钟)通过PPT展示乘方的定义和运算法则,结合具体的例子进行解释和演示。

让学生直观地理解乘方的概念和运算法则。

3.操练(10分钟)让学生进行一些乘方的运算练习,巩固对乘方概念和运算法则的理解。

可以设置一些不同难度的题目,让学生根据自己的能力选择练习。

4.巩固(5分钟)通过一些实际问题,让学生运用乘方进行解决。

例如,计算一些数的乘方,或者解决一些与乘方相关的实际问题。

人教版七年级数学上册1.5.1《有理数的乘方》教案

人教版七年级数学上册1.5.1《有理数的乘方》教案
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了有理数乘方的基本概念、计算规则和它在实际中的应用。通过实践活动和小组讨论,我们也加深了对有理数乘方的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
3.重点难点解析:在讲授过程中,我会特别强调有理数乘方的计算规则和乘方的性质这两个重点。对于难点部分,比如负数的乘方,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与有理数乘方相关的实际问题,比如计算不同形状的物体的面积或体积。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。比如,通过折叠纸张来观察面积的变化,从而理解乘方的意义。
在教学过程中,教师应针对以上重点和难点内容,采用直观演示、实例分析、逻辑推理等教学方法,帮助学生透彻理解有理数乘方的核心知识,并能够熟练运用乘方运算解决实际问题。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《有理数的乘方》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算大面积或大体积的情况?”比如,我们要计算一个很大的广场的面积,或者一个巨大物体的体积。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索有理数乘方的奥秘。
4.培养学生在探索乘方性质的过程中,形成严谨的科学态度和合作交流的能力,提高数学综合素质。
三、教学难点与重点
1.教学重点
(1)有理数乘方的概念及其运算规则:重点理解乘方的定义,掌握有理数乘方的计算方法,包括正数、负数的乘方运算。

人教版七年级数学上册:1.5.1《乘方》教学设计

人教版七年级数学上册:1.5.1《乘方》教学设计

人教版七年级数学上册:1.5.1《乘方》教学设计一. 教材分析人教版七年级数学上册1.5.1《乘方》是学生在学习了有理数乘法和算术平方根的基础上,进一步探究乘方的概念及运算法则的一节课。

本节课的内容在数学知识的体系中起着承前启后的作用,既是对前面所学内容的延伸,又是后面学习指数运算、对数等知识的基础。

教材通过丰富的实例,引导学生探究乘方的规律,让学生在自主学习的过程中体会数学的归纳与演绎思想。

二. 学情分析七年级的学生已经具备了一定的逻辑思维能力和数学基础,对于乘法和算术平方根的概念有一定的了解。

但是,对于乘方的概念和运算法则,学生可能还比较陌生。

因此,在教学过程中,需要结合学生的实际情况,用生动形象的实例引导学生理解乘方的本质,逐步掌握乘方的运算法则。

三. 教学目标1.知识与技能:使学生理解乘方的概念,掌握乘方的运算法则,能正确进行乘方运算。

2.过程与方法:通过观察、分析、归纳等方法,引导学生探究乘方的规律,培养学生的逻辑思维能力和归纳演绎能力。

3.情感态度与价值观:让学生在自主学习的过程中,体验数学的乐趣,培养对数学的兴趣,增强自信心。

四. 教学重难点1.教学重点:乘方的概念,乘方的运算法则。

2.教学难点:乘方运算的规律,乘方在实际问题中的应用。

五. 教学方法采用情境教学法、问题教学法和小组合作学习法。

情境教学法可以帮助学生形象地理解乘方的概念;问题教学法可以激发学生的思考,引导学生自主探究乘方的规律;小组合作学习法可以培养学生的团队合作精神,提高学生的交流表达能力。

六. 教学准备1.教师准备:教材、PPT、黑板、粉笔等教学工具。

2.学生准备:预习教材,了解乘方的基本概念。

七. 教学过程1.导入(5分钟)利用PPT展示一个实际问题:计算3的4次方。

让学生尝试解答,引导学生思考乘方是什么。

2.呈现(10分钟)讲解乘方的概念,用PPT展示乘方的定义和运算法则。

让学生跟随教师一起,用归纳法探究乘方的规律。

人教版数学七年级上册1.5.1《乘方》教学设计1

人教版数学七年级上册1.5.1《乘方》教学设计1

人教版数学七年级上册1.5.1《乘方》教学设计1一. 教材分析《乘方》是人教版数学七年级上册的教学内容,本节课主要让学生掌握乘方的概念,理解乘方的运算规律,并能够运用乘方解决实际问题。

通过本节课的学习,为学生后续学习幂的运算、指数函数等知识打下基础。

二. 学情分析七年级的学生已经掌握了有理数的运算,对数学概念有一定的理解能力,但乘方概念较为抽象,学生可能存在一定的理解难度。

因此,在教学过程中,需要通过具体实例、生活中的实际问题引导学生理解和掌握乘方。

三. 教学目标1.知识与技能:使学生理解乘方的概念,掌握乘方的运算规律,能够正确进行乘方运算。

2.过程与方法:通过观察、思考、交流、归纳等方法,培养学生主动探索、合作学习的习惯。

3.情感态度与价值观:激发学生学习乘方的兴趣,感受数学在生活中的运用,提高学生对数学的热爱。

四. 教学重难点1.重点:乘方的概念,乘方的运算规律。

2.难点:乘方在实际问题中的应用。

五. 教学方法1.情境教学法:通过生活中的实际问题,引导学生理解和掌握乘方。

2.合作学习法:分组讨论,让学生在合作中思考,提高学生解决问题的能力。

3.归纳教学法:引导学生观察、思考、归纳乘方的运算规律。

六. 教学准备1.教学课件:制作乘方的概念、运算规律的课件。

2.实例材料:准备一些生活中的实际问题,用于引导学生运用乘方解决实际问题。

3.练习题:准备一些有关乘方的练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)利用生活中的实际问题,如“计算一瓶饮料中有多少粒葡萄”,引导学生思考如何用数学方法表示这个问题。

通过讨论,让学生发现需要用到乘方来解决这个问题。

2.呈现(15分钟)介绍乘方的概念,讲解乘方的运算规律。

通过示例,让学生了解乘方的意义,掌握乘方的运算方法。

3.操练(15分钟)让学生分组进行乘方运算练习,教师巡回指导。

在此过程中,引导学生发现乘方的运算规律,总结乘方的运算方法。

4.巩固(10分钟)让学生运用乘方解决实际问题,如计算游泳池中水温的变化等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有理数的乘方
在以学生发展为本的教育理念的指导下,为提高学生的学习兴趣尤其及课堂效率,提高教学质量,结合新课程标准的要求,对初一年级第一章第五节作如下的设计。

一、说教材
1、地位作用:
有理数的乘方是初一年级上学期第一章第五节的教学内容,是有理数的一种基本运算,从教材编排的结构上看,共需要4个课时,此课为第一课时,是在学生学习了有理数的加、减、乘、除运算的基础上来学习的,它既是有理数乘法的推广和延续,又是后继学习有理数的混合运算、科学记数法和开方的基础,起到承前启后、铺路架桥的作用。

在这一课的教学过程中,可以培养学生观察问题、分析问题和解决问题的能力,以及转化的数学思想,通过这一课的学习,对培养学生的这些能力和转化的数学思想起到很重要的作用。

2、教学目标:
(1)让学生理解并掌握有理数的乘方、幂、底数、指数的概念及意义;能够正确进行有理数的乘方运算。

(2)在生动的情境中让学生获得有理数乘方的初步经验;培养学生观察、分析、归纳、概括的能力;经历从乘法到乘方的推广的过程,从中感受转化的数学思想。

(3)让学生通过观察、推理,归纳出有理数乘方的符号法则,增进学生学好数学的自信心。

(4)经历知识的拓展过程,培养学生探究的能力和动手操作的能力,体会与他人合作交流的重要性。

3、教学重点:
有理数的乘方、幂、底数、指数的概念及其相互间的关系;有理数乘方的运算方法。

4、教学难点:
有理数的乘方、幂、底数、指数的概念及其相互间的关系的理解。

二、说教学方法
启发诱导式、实践探究式。

三、说学法
根据初一学生好动、好问、好奇的心理特征,课堂上采取由浅入深的启发诱导,随着教学内容的深入,让学生一步一步的跟着动脑、动手、动口,在合作交流中培养学生学习的积极性和主动性,使学习方式由“学会”变为“会学”。

四、说教学手段
利用多媒体教学和学案两者结合,目的之一是使课堂生动、形象
又直观,能激发学生的学习兴趣,目的之二是增大教学容量,增强教学效果。

五、说教学设计
(一)自主学习(多媒体:幻灯片一)
a (1)边长为a 的正方形的面积是多少?
a ·a 简记作a 2
,读作a 的平方(或二次方)
(2)棱长为a 的正方体的体积是多少?
a ·a
·a 记作a 3,读作a 的立方(或三次方)
(3)4个a 相乘呢?100个a 相乘呢?n 个a 相乘呢?
(二)引出新课:乘方(多媒体:幻灯二)
一般地,n 个相同的因数a 相乘
n 个
即: a ·a …·a 简记作a n ,读作a 的n 次方
也可读作a 的n 次幂
求n 个相同因数的积的运算叫做乘方。

乘方的结果叫做幂。

(多媒体:幻灯三)
如:在 94 中,底数是( 9 )
指数是( 4 )
读作(9的4次方或9的4次幂)
(三)试试你的火眼金睛(多媒体:幻灯四)指出下列每个的底数和指数。

(1)83 (2)(-3)2 (3)(-1)5(4)
2
2
1





-(5)6
(四)合作探究:(见学案)
(1) 51(2)101(3) 22
(4)32(5)23(6)
3 2 1





(7)()22-(8)22-(9)
3
3
1





-
(10)
2
2
1





-(11)()31.0-(12)30
让学生合作探究出:
负数的奇次幂是负数,负数的偶次幂是正数.
正数的任何次幂都是正数,0的任何正整数次幂都是0 (五)巩固新知:
1.确定下列幂的正负(多媒体:幻灯六)
2.(见学案:平行训练)
(1)()31-(2)35
(3)23(4)
4
2
1





-(5)100
(六)拓展训练:(见学案:合作探究)(1)-22与(-2)2有何区别?(2)若a 2=16,则a=
(3)已知()0122=-++b a ,求a= b=
(七)(见学案:平行训练)
(1)32- 和()32-的区别?(2)若92=a ,则:a = 。

(3)若()0122=-++b a ;则a= ; b= 。

(八)小结反思
通过这节课的学习,你有什么收获?你还有什么疑惑
(九)[达标测评](学案)
1.下列各组数中,数值相等的是( )
A 32- 和()32-
B 22- 和 ()22-
C 32-和 23-
D 101-和()101-
2、填空
(1)36 的底数是 ; 指数 。

()35-的底数是 ; 指数 。

(2)底数是-1,指数是91的幂写做_________,结果是_________.
(3)5个 13相乘写成 1
3的5次幂写成_________.
(4)正数的任何次幂都是 数。

负数的奇次幂是 数,负数的偶次幂是 数。

0的任何次幂都是 .
3、计算下列各式:
(1)21.0 (2)()4
2- (3)321⎪⎭
⎫ ⎝⎛ (4) 2
32⎪⎭⎫ ⎝⎛- (5) 50
4.解答题:
已知:()0
+
a求b
+b
4
32=
-
a+的值。

(十)选做题:(课下学习)
(1)生活和数学:
珠穆朗玛峰是世界的最高峰,它的海拔高度是8848米。

把一张足够大的厚度为0.1毫米的纸,连续对折30次的厚度能过珠穆朗玛峰。

这是真的吗?
(2)学科综合:
1个细胞30分钟后分裂成2个,经过5小时,这种细胞由1个能分裂成多少个?
教学设计说明:
本节课的教学设计是以人教版教材和新课程标准为依据,结合学生的实际情况,总体上采取教师创设问题—学生合作交流与自主探索—师生概括明晰的教学思路,整个教学过程环环相扣,层层深入,以问题为线索,启发学生思考和探索,这样的设计符合学生的认知规律,使学生易于接受。

教学开始,提出问题,借助多媒体手段,引发学生积极思考,并归结出答案,由答案的表现形式再给学生提出问题,激发学生的求知欲望,在教师的启发诱导下自然过度到新知的学习,接着层层设问,引出乘方以及与乘方有关的概念,采用归纳类比的方法把新旧知识联系起来,既有利于复习巩固旧知识,又有利于新知的理解和掌握。

在引入例题之前,创设与例题有关的问题,让学生讨论交流,教师鼓励学生积极发言,为学生提供表现的机会,使学生在这个环节中
弄清底数与指数之间的相互关系,认识到象a n等于多少的问题是可以通过转化为乘法运算来实现的,从中体会转化的思想,为引入例题的学习做好铺垫。

在教学环节中,教师启发、学生动脑、动口,在师生互动交流过程中让学生理解并掌握有理数乘方的运算方法。

在探索法则的教学环节中,结合学案形式出现,采用比一比看谁做的又快又准来激发学生的学习兴趣,教师放手学生操作,把课堂还给学生,真正体现学生的主体地位,教师起到一个合作者、组织者、引导者的作用,学生在合作交流与自主探索的过程中归纳出有理数乘方的符号法则。

在拓展训练环节中,设置几个容易出错的计算题,针对性的提出相关问题,采取先尝试,后引导,再探索辨析的方法,使学生在讨论交流中突破难点。

为了使学生真正掌握重难点,熟练的进行有理数的乘方运算,设计了达标测评,在生生互动、师生互动的教学过程中,教学难点得以突破,学生的能力得到提高,同时培养了学生集体合作的意识。

也让老师及时的了解和掌握学生本节课学习情况。

及时查漏补缺。

最后设计选做题,目的为了提高一部分学生的知识面,更好的满足不同层次学生的需要。

相关文档
最新文档