北师大版七年级数学寒假讲义(尖子班)
北师版七年级下数学预习寒假班希望杯讲义尖子训练
初一数学寒假教材目录(尖子训练营)第一节 整式的指数运算(一)【知识要点】1.幂的有关概念一般地,几个相同因数相乘,即n aa a a a ⋅⋅⋅⋅个可以记作n a .“na ”读作:a 的n 次方或a 的n 次幂,乘方的结果叫做幂. 其中,a 叫做底数,n 叫做指数. 2.同底数幂的乘法法则: mm aa a a a =⋅⋅⋅个 n n aa a a aa =⋅⋅个,所以有 ()m nm n m an am n aa a a a a a a a a a a a a a ++⋅=⋅⋅⋅⋅⋅⋅⋅⋅=⋅⋅⋅⋅=个个个.即m n m na a a+⋅=(m 、n 都是正整数).这就是说,同底数幂相乘,底数不变,指数相加. 3.幂的乘方与积的乘方幂的乘方法则:底数不变,指数相乘,即()m n m n a a ⋅=(m,n 为正整数)积的乘方法则: 积的乘方等于各个因式的乘方之积,即()m m m ab a b =⋅(m 为正整数)【典型例题】例1. 计算(1)815210101010⋅⋅⋅ (2)425610100010101010⋅+⋅-⋅(3)62a a - (4)62)(a a -例2. 计算下列各式(1)23()()m n n m -⋅- (2)21()()n n x y x y ++⋅--(n 为正整数)例3.(1)已知32=x ,求32+x 的值(2)已知2510,510==+b a a ,求b10的值例4. 计算下列各式(1)m m m x x x 5233)()(⋅⋅+ (2)[]3342)(b a a -⋅-例5. 试比较5554443333,4,5的大小* 例6. 已知23,26,218a b c ===试问c b a ,,之间关系如何?【初试锋芒】1.35a a a ∙∙= 2.235()a a ∙= 3.若34na=,则6n a =4.若5,2n n a b ==则32()n a b = 5.n 为奇数,则22()()n n a a -+-= 6.2003200331()(1)43-∙=7.nx -与()n x -的正确关系为( ) A .相等 B .互为相反数C .当n 为奇数时,它们互为相反数,当n 为偶数时它们相等D .当n 为奇数时,它们相等,当n 为偶数时,它们相反 8.1001012(2)+-所得结果是( )A .1002B .1002-C .-2D .2 9.如果单项式42a b x y --与3a b x y +是同类项,则它们的积为( )A .64x yB .32x y -C .3283x y - D .64x y -10.若5544332,3,4a b c ===则c b a ,,的大小关系是( )A .b >c >aB .a >b >cC .c >a >bD .a <b <c 11. 把计算结果写成幂的形式(1)822154⋅⋅ (2)12525.52⋅⋅ (3)926416⋅⋅12. 已知2=ma 5=n a ,求n m a +的值.13. 计算(1)22)()(a a a -⋅-⋅ (2)121121(1)n n n n x x x x n +--+⋅-⋅为大于的正整数14. 求下列各式中的x . (1)107a a a x =⋅ (2)10m m m x x =⋅(3)123++=x x a a (4)1671)43(-=x* 15.已知:37,314,328a b c ===试确定a,b,c 之间的关系.【大展身手】1.22()()x y y x -∙-= 2.若2(3)21636x x +-=则x= 3.若()m n mn x x -=-成立则( )A .m ,n 均为奇数;B .m ,n 均为偶数C .m 为奇数,n 为偶数D .不论m 为奇数还是偶数,n 为奇数 4.若1221253()()m n n m a b a b a b ++-=则m+n 的值为( )A .1B .2C .3D .-3* 5.若a -b =2,a -c =12,则代数式29()3()4b c b c ---+的值为( )A .32- B .0 C .32 D .96.若21(3)202a b -+-=,求4b aa b +7. 求下列各式中的m 值 (1)1542+=⋅⋅m a a a a(2)1732222.4=⋅m m8.计算312()()()()nn y x x y x y y x +--+--9. 计算:235()()()m n n m n m -⋅-⋅-10. 已知2,2,x y a b ==求)22(2y x y x +⋅+的值.11.比较706与3535的大小* 12.计算(2)(2)(2)n n -+-∙-(n 为正整数)* 13.3,4m n a a ==求32m n a +的值为多少?第二节 整式的指数运算(二)【知识要点】1.同底数幂的除法法则:同底数幂相除,底数不变,指数相减.即 mnm na a a-÷=(a ≠0,m ,n 都是正整数且m >n )2.零指数:任何一个不为零的数的0次幂都等于1.即01(0)a a =≠ 3.负整数指数幂:任何不等于零的数的-P (P 是正整数)次幂,等于这个数的P 次幂的倒数. 即 1pp aa-=(a ≠0,P 是正整数) 【典型例题】例1. 计算(1)63x x ÷ (2)62(2)(2)x x ÷-(3)43(3)(3)ax ax -÷- (4)21()m x x +÷-(5)22152525m mm -⋅÷ (6)()()()()7632x y y x x y x y -÷-+--÷+例2. 计算 320110()(5)1230π-+⨯-+-例3. 若26,42m n ==,求2222m n -+的值.例4. 比较大小181010152323⋅⋅与【初试锋芒】1.729()x x ÷= 2.212-= 3.若02(5)2(26)x x ----有意义,那么x 的取值范围是 4.如果0a ≠,p 是正整数,那么下列各式中错误的是( ) A .1pp aa -= B .1pp a a -⎛⎫= ⎪⎝⎭C .p p a a -=-D .1()p p a a --= 5.化简2333333++∙∙-n nn 等于( ) A .89B .13n +-C .1139n +-D .13n -6.若3220m n -+=求321010m n÷的值.7.已知:53,254,m n ==求4215m n --的值.8.化简2124223316452852n n n nnn n +-+++⋅⋅∙⋅9.比较181023⨯与101523⨯的大小【大展身手】1.22102222--∙∙∙= 2.若1327x =则x =3.若02(3)2(36)x x ----有意义,那么x 的取值范围是( ) A .x >3 B .x <2 C .x ≠3或x ≠2 D .x ≠3且x ≠2 4.如果2xn m mm +÷=那么x 的值为( )A .n +3B .n +2C .n +1D .3-n 5.若(1)1aa -= 求a6.若P =999999,Q =990119,证明:P =Q第三节 整式的乘法【知识要点】1.单项式与单项式相乘:把它们的系数,相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式. 2.单项式与多项式相乘:根据分配律,用单项式去乘多项式的每一项,再把所得的积相加. 3.多项式与多项式相乘:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.【典型例题】例1 计算(1)34323(2)a b ab c ⋅- (2)232216()()3a b x y ab y x -⋅-⋅-例2 计算(1)232(3)(21)x x x -+- (2)243(142)2x x x x --+-例3 计算 (2)(53)x y a b --例4 若2(3)(4)mx x x -+的积中不含2x 项,求m 的值.例5 计算121231231()()()n n n n a a a a a a a a a a ---+++++++-+++12()n a a a ++例6 若单项式246()()m n x y xy z y z ⋅⋅乘积是单项式58p x y z ,求m+n+p 的值.【初试锋芒】1.计算2(6)2a b ab -⋅=2.23422635x y x yz ⎛⎫⎛⎫⋅- ⎪ ⎪⎝⎭⎝⎭= 3.若12212611()()m n m n a b a b a b ++-⋅⋅=则m +n 的值为 4.化简:2232(3)(23)3(25)x x x x x x ---+--=5.已知21m m +=,则324m m m +-+=6.解方程2(3)2(3)8x x x x -+-=-得( )A .2x =B .2x =-C .4x =D .4x =- 7.如果M 、N 分别是关于x 的7次多项式和5次多项式,则M ·N ( ) A .一定是12次多项式 B .一定是35次多项式 C .大于12次的多项式 D .无法确定积的次数 8.若(2)(1)x a x -+-的结果不含x 的一次项,则( ) A .1a = B .1a =- C .2a = D .2a =- 9.2(1)(21)x x ax +++的结果中2x 项的系数为-2,则a 等于( ) A .-2 B .1 C .-4 D .以上都不对10.计算223212()5()4()k kx y x y x y +-⎡⎤⎡⎤⎡⎤+⋅+⋅+⎣⎦⎣⎦⎣⎦11.在22()(231)x ax b x x ++--的积中,3x 的系数是-5,2x 的系数是-6,求,a b 的值.12.求证:对于任何自然数n ,代数式(5)(3)(2)n n n n +--⋅+的值都能被6整除.【大展身手】1.M 是关于x 的三次式,N 是关于x 的五次式,则下列结论正确的是( ) A .M +N 是八次式 B .N -M 是二次式 C .MN 是八次式 D .MN 是十五次式2.化简23332(3)7(41)x x x x x ⎡⎤--+⎣⎦等于( )A .4397x x +B .6953277287x x x x ---C .5243177x x x -+D .64487x x + 3.计算322322(1)(3)(4)x y x y xy xy ++⋅-⋅-4.计算:11111111()(1)(1)(23200322002220032++++++-++++11)32002++5.如果22(8)(3)x px x x q ++-+的结果中不含2x 和3x 项,试求p ,q 的值.第四节 平方差公式【知识要点】如图1,边长为a 的大正方形中有一个边长为b 的小正方形. 1.请表示图中阴影部分的面积.2.小颖将阴影部分拼成了一个长方形(如图2),这个长方形的长和宽分别是多少?你能表示出它的面积吗?3.两图阴影部分的面积相等吗?(1) 22b a -;(2) 长b a +,宽b a -,面积()()b a b a -+; (3) 相等 ()()22b a b a b a -=-+即 两个数的和与这两个数的差的积等于这两个数的平方差.【典型例题】例1.用平方差公式计算(1)(2x+5)(2x-5) (2) (x+ab)(x-ab)(3) (-3a-b)(-3a+b) (4) (-2(5) (2x+3)(3-2x) (6) (-y-x)(-x+y)图1图2(7)(-x+1)(-x-1) (8))21)(41)(21(2++-x x x* (9)(a-b+c)(-a+b+c) * (10)(-x-y+z)(-x+y+z)例2.观察下列格式你会发现什么规律? 1× 3= 3 而 3=22-1 3× 5= 15而 15=42-1 5× 7= 35而 35=62-1 …11×13=143而143=122-1 …将你猜想到的规律用只含一个字母的式子表示出来 并用你得到的规律对下列式子进行简算(1)102×98 (2)119×121 (3)32311⨯例3. 计算2222210099989721-+-++-例4.求证:22(7)(5)n n +--能被24整除【初试锋芒】1. 用平方差公式计算下列各式 (1)( (2)(3a-bc)(-bc-3a)(3) (4)((5) (6)24(21)(21)(41)(161)x x xx -+++2.下面计算正确的是( ) A.(x+3)(x-3)=x 2-9 B.(2x+3)(2x-3)=2x 2-9 C.(2x+3)(x-3)=2x 2-9 D.(5ab+1)(5ab-1)=25a 2b 2-13.(-3x+4)(-3x-4)等于( ) A.(3x)2- 4B. 42-(3x)2C.- (3x)2-4D.(-4)2-(3x)24.若M(3x-y 2)=y 4-9x 2,那么代数式M 应是( ) A.-(3x+y 2)B.- y 2+3xC.3x+ y 2D.3x- y26.(x-1)(x+1)(x 2+1)-(x 4+1)的值是( ) A.-2x 2B.0C.-2D.-17.已知x 2-y 2=4,那么(x-y )2(x+y)2的结果是( ) A.4B.8C.16D.328.设正方形的面积为S 平方厘米,长方形的面积为S 2平方厘米,如果长方形的长比正方形的边长多3厘米,宽比正方形的边长少3厘米,则S 1与S 2的关系是( ) A .S 1=S 2 B .S 1=S 2+9 C .S 1=S 2-9 D .无法确定9.简算:(1)1001×999 (2)32123113(3)2001×1999-20002(4)1.02×0.9810.化简求值:(y+3x)(3x-y)-(3y-x)(3y+x),其中x=-2,y=3.11.解方程:(2x+3)(-2x+3)+9x=x(3-4x)【大展身手】1. 运用平方差公式计算: (1)( (2) (2x+3)(2x-3)(3) (5ab+1)(5ab-1) (4) (-3x+4)(-3x-4)2. 运用平方差公式计算(1)403×397 (2) 3.01 2.99⨯(3)12008200620072+⨯ (4) 9910110001⨯⨯第五节 完全平方公式(一)【知识要点】1.完全平方公式 (a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b2特点:两个公式的左边都是一个二项式的完全平方,仅有一个符号不同;右边都是二次三项式,其中第一项与第三项是公式左边二项式中的一项的平方;中间一项是二项式中两项乘积的2倍,二者也仅有一个符号不同. 注意:公式中的a 、b 可以是数,也可以是单项式或多项式. 2.完全平方公式的变形及推广:(1)()()[]()222b a b a b a +=+-=--;()()[]()222b a b a b a -=--=+-;(2)()()22a b b a -=+-;()()[]22c b a c b a +-=--;(3)()()ab b a ab b a b a 222222+-=-+=+;()()ab b a b a 422-+=-【典型例题】例1. 用完全平方公式计算(1)(3a+b )2(2) (-x+3y)2(3) (x-3y)2 (4) (5x-3y)2(5) 22)121(-x (6) (x+)2例2. 利用完全平方公式计算(1)1022(2) 1972(3) 9952(4)452例3. 计算(看谁的方法更快更好!)(1)(2x-3y)2(2x+3y)2(2) (x-y)(x+y)(x 2-y 2)* (3) (a-2b+3c)(a-3c-2b) * (4) (a+b+c)2例4.若2226100x x y y ++-+=,试求x ,y 的值.例5.已知:3,1a b ab +==,求 ①22a b + ②2()a b - ③22ab a b + ④11a b + ⑤b a a b+【初试锋芒】1.要使4x 2+mx+成为一个两数的和的完全平方式,则( ) A.m=-2 B.m=2 C.m=1 D.m=-1 2.若x 2+ax=(x+)2+b ,则a,b 的值是( )A.a=1,b=B.a=1,b=-C.a=2,b=D.a=0,b=- 3.要使(a-b)2+M=(a+b)2成立,代数式M 应是( )A.2abB.-2abC.-4abD. 4ab 4.若x 2+y 2=(x-y)2+p=(x+y)2-Q,则P ,Q 分别为( )A.P=2xy,Q=-2xyB. P=-2xy,Q=2xyC. P=2xy,Q=2xyD. P=-2xy,Q=2xy5.若m ≠n,下列等式中:(m-n)2=(n-m)2, (m+n)(m-n)=(-m-n)(-m+n), (m-n)2=-(n-m)2, (-m-n)2=-(m-n)2,其中错误的有( )A.1个B. 2个C.3个D.4个 6.如果a+=3,则a 2+=( )A.5B.7C.9D.11 7.若x+y=3,x-y=1,则xy=8.(2a+3b )2=4a 2+ +9b 2(a+ )2=a 2+ + (a+b)2- =a 2+b 2(a-b)2=(a+b)24ab9.已知:224250a b a b ++-+=则a ba b+-= * 10.15,a a +=则4221a a a ++=11. 已知(a+b)2=7,(a-b)2=4,求a 2+b 2和ab 的值. 12.已知x+y=4,xy=-12求下列各代数式的值.(1)22x y + (2)22x y xy + (3)2()x y - (4)y xx y+【大展身手】1. 计算: (1) (-a-2b)2(2) (x+2y)2 (3) -(5x-2y)2 (4) (2x-3y)(2x-3y)2.如果2249x mxy y ++是一个完全平方式,则m 的值是( )A .6B .±6C .12D .±123.已知2216x ax ++是一个完全平方式,则a 的值等于( )A .8B .4C .±4D .±84.已知则014642222=+-+-++z y x z y x z y x ++的值为5. 计算:(1)5012(2)99.82(3) 9926. 利用完全平方公式计算: 221.23450.76552.4690.7655++⨯7. 已知a+b=3,ab=-12,求下列各式的值: (1) a 2+b 2(2) a 2-ab+b 2(3) (a-b)2第六节 整式的检测一、判断题(每题1分,共10分)1.22223a a a a ⋅⋅= ( )2.()()22mmmn m mn x yx y -=- ( )3. 112n n n a a a -+⋅= ( )4.()()437333-⋅-=- ( )5.4444()a a a a -⋅÷-= ( )6. ()()44mm b b -=- ( )7.()()()22mmx y y x x y +--=-( )8. ()224)4(4b a b a b a -=-- ( )9.xy xy xy 91)31)(13(-=-+ ( ) 10.n n n a a a a 2)2(22+=+ ( ) 二、填空题(每空1分,共14分) 1.在下列各式中填上适当的式子或数字: (1)(2=mnb()=m ()2= n 2);(2)()(n m x + nm x 33)+=;(3)(5⋅x n x +=6); (4)(35)(c a - 22)925c a =- 2.()()34x y x y +--= ;3.()()3223a a -+-= ;4.若()3511,m aa a =则m = ;5.()()=+-332x x ;6.()()=++-222323y x y x ;7.)(12(--x 241)x -=; 8.()+-2y x 22y xy x ++=;9.()=++=+-p px x x ,16422 三、选择题(每题2分,共20分)1.44a b ⋅等于( ) A 、()22a b +B 、16abC 、4abD 、16a b +2.下列计算结果等于5a 的是( )A 、()()32a a -⋅- B 、()()38a a -÷- C 、()23a a ⋅-D 、()611a a -÷3.()()20032002125.08-⨯-的结果是( )A 、81 B 、81-C 、8D 、-84.下列计算:①1023x x x =+ ②126632y y y =⋅ ③()[]()853b a b a +=+④()()[]()()555y x y x y x y x -+=-+,其中正确的个数是( )A 、1B 、2C 、3D 、45.若)1)(2(-+-x a x 结果中不含x 的一次项,则( ) A .1=aB .1-=aC .2=aD .2-=a6.若B Ax x x x ++=+-2)7)(6(,则( ) A .A=1,B=42B .A=-1,B=-42C .A=-1,B=42D .A=1,B=-427.()()[]2y x y x -+等于( )A .4224)(2y y x x ++-B .44y x - C .42242y y x x +-D . 2222y x -8.若P n m n m +-=+22)53()53(成立,则P 等于( ) A .15mn B .30mnC .60mnD .120mn9.如果12,7==+ab b a ,那么22b ab a +-值为( ) A 、-11B 、13C 、37D 、6110.式子2242x xy y ---的最大值是( )A .4B .0C .2D .不存在四、计算题(每题4分,共16分) 1.a 5·a n +a 3·a 2+n –a ·a4+n +a 2·a3+n 2.[(-32)8×(23)8]73.99101⨯4.)2)((4)2(2y x y x y x +---五、解方程(每题5分,共10分)1.()()()()1573-+=-+x x x x 2.414141412=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+x x x六、解答题(30分) 1.若41,4=-=y x ,求()2122+⋅⋅n n y x x 的值,n 为自然数.(5分)2.若0352=-+y x ,求yx 324⋅的值.(6分)3.若54,32-=+=x B x A ,求AB 2,其中2-=x (5分)4.①若25,152-==-xy y x ,求1422-+y x 的值;(5分) ②若53=-y x ,求x xy x 532--的值. (3分)5.计算:2222211111(1)(1)(1)(1)(1)23499100-----.(6分)第七节三线八角【知识要点】一、互余、互补的概念及性质1.定义:如果两个角的和是一个平角,这两个角叫做互为补角,简称互补.如果两个角的和是一个直角,这两个角叫做互为余角,简称互余.2.性质:(1)同角或等角的补角相等(2)同角或等角的余角相等二、邻补角、对顶角1.两条直线相交成四个角.其中相邻的两个角是邻补角,其中不相邻的两个角是对顶角.2.对顶角相等三、同位角、内错角,同旁内角的概念如图所示,直线AB,CD被直线EF所截,形成八个角1.同位角:两个角都在两条直线的同侧,并且在第三条直线(截线)的同旁,这样的一对角叫做同位角. 如图中的∠1与∠5,∠2与∠6,∠3与∠7,∠4与∠8都是同位角.2.内错角:两个角都在两条直线之间,并且在第三条直线(截线)的两旁,这样的一对角叫做内错角.如图中的∠4与∠6,∠3与∠5是内错角.3.同旁内角:两个角都在两条直线之间,并且在第三条直线(截线)的同旁,这样的一对角叫做同旁内角.如∠4与∠5,∠3与∠6是同旁内角.【典型例题】例1(1)一个角的余角比它的补角的13还少20°,求这个角.23 418567A BCDEF(2) 如图1,已知AOB 是一直线,OC 是∠AOB 的平分线,∠DOE 是直角,图中哪些角互余?哪些角互补?分别写出3对.例2 如图所示,已知直线1,2,34l l l l 和相交于一点O ,请问有多少对对顶角?例3 如图所示,已知AB ∥CD ,分别找出同位角,内错角和同旁内角各5对.ABO CE 1 2 3 4图(1)DO1l2l3l4lABC DE【初试锋芒】1.如右图所示,∠1和∠2是直线___ ___和直线___ __ 被直线_______所截得的同位角。
七年级数学寒假专题(三)北师大版知识精讲
七年级数学寒假专题(三)北师大版【本讲教育信息】一. 教学内容:寒假专题(三)——解方程二. 教学目标1、学会利用等式性质解方程;理解移项的概念;学会移项。
2、通过分析具体问题中的数量关系,了解到解方程作为运用方程解决实际问题的需要,正确理解和使用乘法分配律和去括号法则解方程。
3、经历解方程基本思路是把“复杂”转化为“简单”,把“新”转化为“旧”的过程,进一步理解并掌握如何去分母的解题方法。
三. 重点及难点教学重点:利用等式性质解方程及移项法则;正确去括号解方程,解方程时如何去分母。
教学难点:利用等式性质来解释方程的变形。
去括号法则和分配律的正确使用,解方程时如何去分母。
四. 课堂教学[知识要点]1、方程:含有未知数的等式叫做方程。
2、下面的一些式子是否为方程?这些方程又有何特点?①5x+6=9x ②3x+5 ③7+5×3=22 ④4x+3y=2答:①、④是方程。
分析这些方程得:①等式两边都是一次式或等式一边是一次式,另一边是常数,②这些方程中有的含一个未知数,也有的含两个未知数。
我们先来研究最简单的(只含有一个未知数的)的一元一次方程。
3、一次方程:我们把等号两边是一次式、或等号一边是一次式,另一边是常数的方程叫做一次方程。
注意:一次方程可以含有两个或两个以上的未知数:如上例的④。
4、一元一次方程:在一个方程中,只含有一个未知数X(元),并且未知数的指数是1(次),这样的方程叫一元一次方程。
等式和方程之间有什么区别和联系?方程是等式,但必须含有未知数;等式不一定含有未知数,它不一定是方程。
5、判断下列方程哪些是一次方程,哪些是一元一次方程?①2x+3=11 ②y2=16 ③x+y=2 ④3y-1=4y6、什么叫方程的解?怎样解方程?关键是把方程进行变形为x=a,即求得方程的解。
今天我们就来研究如何求一元一次方程的解。
7、等式性质:(一):等式两边同时加上(或减去)同一个代数式,所得结果仍是等式(二):等式两边同时乘同一个数(或除以同一个不为0的数),所得结果仍是等式。
学而思寒假七级尖子班讲义第1讲平行线四大模型
目录Contents第1平行四大模型⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1第2数三大概念⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯17第3平面直角坐系⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 33第4坐系与面初步⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 51第5二元—次方程⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 67第6含参不等式〔〕⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯791平行线四大模型知识目标目标一熟练掌握平行线四大模型的证明目标二熟练掌握平行线四大模型的应用目标三掌握辅助线的构造方法,熟悉平行线四大模型的构造秋季回忆平行线的判定与性质l、平行线的判定根据平行线的定义,如果平面内的两条直线不相交,就可以判断这两条直线平行,但是,由于直线无限延伸,检验它们是否相交有困难,所以难以直接根据定义来判断两条直线是否平行,这就需要更简单易行的判定方法来判定两直线平行.判定方法 l :两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简称:同位角相等,两直线平行.判定方法 2:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简称:内错角相等,两直线平行,判定方法 3:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简称:同旁内角互补,两直线平行,如上图:假设∠ 1=∠2,那么 AB∥CD〔同位角相等,两直线平行〕;假设∠ 1=∠3,那么 AB∥CD〔内错角相等,两直线平行〕;假设∠ 1+ ∠4= 180 °,那么 AB∥CD〔同旁内角互补,两直线平行〕.另有平行公理推论也能证明两直线平行:平行公理推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.2、平行线的性质利用同位角相等,或者内错角相等,或者同旁内角互补,可以判定两条直线平行.反过来,如果两条直线平行,当它们被第三条直线所截,得到的同位角、内错角、同旁内角也有相应的数量关系,这就是平行线的性质.性质 1:两条平行线被第三条直线所截,同位角相等.简称:两直线平行,同位角相等性质 2:两条平行线被第三条直线所截,内错角相等.简称:两直线平行,内错角相等性质 3:两条平行线被第三条直线所截,同旁内角互补.简称:两直线平行,同旁内角互补本讲进阶平行线四大模型模型一“铅笔〞模型点 P 在 EF 右侧,在AB、 CD 内部“铅笔〞模型结论 1:假设 AB∥CD,那么∠ P+∠AEP+∠PFC=3 60°;结论 2:假设∠ P+∠AEP+∠PFC= 360°,那么 AB∥CD.模型二“猪蹄〞模型〔M 模型〕点 P 在 EF 左侧,在AB、 CD 内部“猪蹄〞模型结论 1:假设 AB∥CD,那么∠ P=∠AEP+∠CFP;结论 2:假设∠ P=∠AEP+∠CFP,那么 AB∥CD.模型三“臭脚〞模型点 P 在 EF 右侧,在AB、 CD 外部“臭脚〞模型结论 1:假设 AB∥CD,那么∠ P=∠AEP- ∠CFP或∠ P=∠CFP- ∠AEP;结论 2:假设∠ P=∠AEP- ∠CFP或∠ P=∠CFP- ∠AEP,那么 AB∥CD.模型四“骨折〞模型点 P 在 EF 左侧,在AB、 CD 外部“骨折〞模型结论 1:假设 AB∥CD,那么∠ P=∠CFP- ∠AEP或∠ P=∠AEP- ∠CFP;结论 2:假设∠ P=∠CFP- ∠AEP或∠ P=∠AEP- ∠CFP,那么 AB∥CD.稳固练习平行线四大模型证明〔1〕 AE // CF ,求证∠ P +∠AEP +∠PFC = 360°.〔2〕∠ P=∠AEP+∠CFP,求证 AE∥CF.〔3〕 AE∥CF,求证∠ P=∠AEP- ∠CFP.〔4〕∠P= ∠CFP - ∠AEP , 求证 AE //CF .模块一平行线四大模型应用例1〔1〕如图, a∥b,M、 N分别在 a、b 上, P 为两平行线间一点,那么∠l+ ∠2+∠3=.(2)如图, AB∥CD,且∠ A=25°,∠ C=45°,那么∠E的度数是.(3)如图, AB∥DE,∠ABC=80°,∠CDE=140°,那么∠ BCD=.(4)如图,射线AC∥BD,∠ A= 70°,∠ B= 40°,那么∠ P=.练(1)如下图,AB∥CD,∠E=37°,∠C= 20°,那么∠ EAB的度数为.(2)〔七一中学 2021-2021 七下 3 月月考〕如图, AB∥CD,∠ B=30°,∠ O=∠C.那么∠ C=.例2如图, AB∥DE,BF、 DF 分别平分∠ ABC、∠CDE,求∠ C、∠F的关系 .练如图, AB∥DE,∠ FBC=∠ABF,∠ FDC=∠FDE.(1)假设 n=2, 直接写出∠ C、∠F的关系;(2)假设 n=3,试探宄∠ C、∠F的关系;(3)直接写出∠ C、∠F的关系〔用含n的等式表示〕.例3如图, AB∥CD,BE平分∠ ABC,DE平分∠ ADC.求证:∠E= 2 ( ∠A+∠C) .练如图,己知 AB∥DE, BF、DF分别平分∠ ABC、∠ CDE,求∠ C、∠F 的关系 .例4如图,∠ 3==∠1+∠2,求证:∠ A+∠B+∠C+∠D= 180°.练〔武昌七校2021-2021 七下期中〕如图,AB⊥BC,AE平分∠BAD交BC于E,AE⊥DE,∠ l+ ∠2= 90°, M、N分别是 BA、 CD 的延长线上的点,∠ EAM和∠ EDN的平分线相交于点 F 那么∠F的度数为〔〕.A. 120 °B. 135°C. 145°D. 150 °模块二平行线四大模型构造例5如图,直线 AB∥CD,∠EFA=30°,∠FGH=90°,∠HMN=30°,∠CNP=50°,那么∠GHM=.练如图,直线 AB∥CD,∠ EFG =100°,∠ FGH =140°,那么∠ AEF+∠CHG=.例6∠ B =25°,∠ BCD=45°,∠ CDE =30°,∠ E=l0 °,求: AB∥EF.AB∥EF,求∠l- ∠2+∠3+∠4的度数 .(1) 如 (l) , MA1∥NAn,探索∠ A1、∠A2、⋯、∠An,∠B1、∠B2⋯∠ Bn-1之的关系.(2) 如 (2) ,己知 MA1∥NA4,探索∠ A1、∠ A2、∠ A3、∠ A4,∠ B1、∠ B2之的关系.(3)如 (3) , MA1∥NAn,探索∠ A1、∠ A2、⋯、∠ An 之的关系.如所示,两直AB∥CD平行,求∠ 1+∠2+∠3+∠4+∠5+∠6.挑〔粮道街 2021—2021 七下期中〕如 1,直 AB∥CD,P 是截 MN上的一点, MN与 CD、AB分交于 E、F.(1)假设∠ EFB=55°,∠ EDP= 30°,求∠ MPD的度数;(2)当点 P 在段 EF上运,∠ CPD与∠ ABP的平分交于 Q,:是否定?假设是定,求出定;假设不是,明其范;(3)当点 P 在段 EF的延上运,∠ CDP与∠ ABP的平分交于 Q,的足否认,在 2 中将形充完整并明理由.第一讲平行线四大模型〔课后作业〕1. 如图, AB // CD // EF , EH⊥CD于H ,那么∠ BAC+∠ACE +∠CEH等于().A. 180 °B. 270°C. 360°D. 450°2.〔武昌七校 2021-2021 七下期中〕假设 AB∥CD,∠ CDF=∠CDE,∠ ABF=∠ABE,那么∠ E:∠ F=().A.2:1B.3:1C.4:3D.3:2学而思寒假七年级尖子班讲义第 1 讲平行线四大模型(1)C=.3. 如图3,己知AE∥BD,∠ 1=130°,∠ 2=30°,那么∠4. 如图,直线 AB∥CD,∠ C =115°,∠ A= 25°,那么∠ E=.5.如阁所示, AB∥CD,∠ l=l l0°,∠ 2=120°,那么∠α=.6.如下图, AB∥DF,∠ D =116°,∠ DCB=93°,那么∠ B=.7.如图,将三角尺的直角顶点放在直线 a 上, a∥b. ∠1=50°,∠ 2=60°,那么∠3的度数为.8.如图, AB∥CD,EP⊥FP, ∠ 1=30°,∠ 2=20°.那么∠F的度数为.9.如图,假设 AB∥CD,∠BEF=70°,求∠ B+∠F+∠C的度数 .10.,直线AB∥CD.(1)如图 l ,∠ A、∠ C、∠ AEC之间有什么关系?请说明理由;〔2〕如图 2,∠ AEF、∠ EFC、∠ FCD之间有什么关系?请说明理由;(3) 如图 3,∠A、∠E、∠F、∠G、∠H、∠O、∠C之间的关是.。
初中数学-寒假班-北师大-初一 第9讲 三角形2--基础班
第9讲三角形21、三角形的内角和(1)三角形内角和定理:三角形内角和是180°.(2)三角形内角和定理的证明证明方法,不唯一,但其思路都是设法将三角形的三个内角移到一起,组合成一个平角.在转化中借助平行线.(3)三角形内角和定理的应用主要用在求三角形中角的度数.①直接根据两已知角求第三个角;②依据三角形中角的关系,用代数方法求三个角;③在直角三角形中,已知一锐角可利用两锐角互余求另一锐角.【典例】例1如果一个三角形的三个内角的度数之比为1:5:6,那么这个三角形一定是()A.直角三角形B.锐角三角形C.钝角三角形D.无法判断【解答】解:设该三角形最小的内角为x°,则另外两角分别为5x°,6x°,依题意,得:x+5x+6x=180,解得:x=15,∴5x°=75°,6x°=90°,∴这个三角形一定是直角三角形.故选:A.【方法总结】本题考查了三角形内角和定理,牢记三角形内角和是180°是解题的关键.例2 (2020春•泰兴市校级期中)在△ABC中,若∠C=50°,∠B﹣∠A=100°,则∠B 的度数为115°.【解答】解:∵∠C=50°,∴∠A+∠B=180°﹣∠C=130°,∵∠B﹣∠A=100°,∴∠B=115°,故答案为115°.【方法总结】本题考查三角形内角和定理,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.例3(2020春•福绵区期末)如图,∠C=90°,∠1=∠2,△ADE是直角三角形吗?为什么?【解答】解:∵∠C=90°,∴∠A+∠2=90°,∵∠1=∠2,∴∠A+∠1=90°,∴∠ADE=90°,∴△ADE是直角三角形.【方法总结】本题考查了三角形的内角,互余关系及直角三角形的判定,解题的关键是掌握直角三角形两锐角互余的性质,属于基础题型.【随堂练习】1.(2020春•陈仓区期末)在△ABC中,若∠A=30°,∠B=35°,则△ABC是钝角三角形.【解答】解:∵在△ABC中,∠A=30°,∠B=35°,∴∠C=115°,∴△ABC是钝角三角形.故答案为:钝角三角形.2.(2020秋•江岸区校级月考)一个三角形的三个内角度数之比为4:5:9,则这个三角形是()A.锐角三角形B.钝角三角形C.直角三角形D.斜三角形【解答】解:∵一个三角形的三个内角度数比为4:5:9,∴设三个内角的度数分别为4x,5x,9x,∴4x+5x+9x=180°,解得x=10°,∴9x=90°,∴此三角形是直角三角形.故选:C.3.(2020春•桂林期末)在Rt△ABC中,∠A=70°,那么另一个锐角∠B的度数是()A.10°B.20°C.30°D.40°【解答】解:在Rt△ABC中,∠A=70°,则∠B=90°﹣∠A=90°﹣70°=20°,故选:B.4.(2020春•兴化市期中)如图,在Rt△ABC中,∠C=90°,CD⊥AB,垂足为D.若∠A =32°,则∠BCD=32°.【解答】解:∵∠C=90°,∴∠BCD+∠ACD=90°,∵CD⊥AB,∴∠ADC=90°,∴∠A+∠ACD=90°,∴∠BCD=∠A=32°,故答案为:32.2、三角形的角平分线、中线和高线(1)三角形的高从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线,简称三角形的高.要点诠释:三角形的三条高所在的直线相交于一点的位置情况有三种:锐角三角形交点在三角形内;直角三角形交点在直角顶点;钝角三角形交点在三角形外.(2)三角形的中线三角形的一个顶点与它的对边中点的连线叫三角形的中线,要点诠释:一个三角形有三条中线,它们交于三角形内一点,叫做三角形的重心.中线把三角形分成面积相等的两个三角形.(3)三角形的角平分线三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.要点诠释:一个三角形有三条角平分线,它们交于三角形内一点,这一点叫做三角形的内心.【典例】例1(2020春•溧阳市期末)如图,在△ABC中,∠C=90°,点D在BC上,DE⊥AB,垂足为E,则△ABD的BD边上的高是()A.AD B.DE C.AC D.BC【解答】解:∵∠C=90°,∴AC⊥BD,∴△ABD的BD边上的高是AC,故选:C.【方法总结】本题考查的是三角形的三角形的角平分线、中线和高,掌握从三角形的一个顶点向底边作垂线,垂足与顶点之间的线段叫做三角形的高是解题的关键.例2(2020•西城区校级三模)如图所示,△ABC中,BC边上的中线是()A.线段AD B.线段AE C.线段AF D.线段AG【解答】解:用尺规作图得出中点E,△ABC中,BC边上的中线是线段AE,故选:B.【方法总结】此题考查三角形的中线,关键是根据三角形一边的中点与此边所对顶点的连线叫做三角形的中线解答.例3(2020•白云区模拟)如图,点D在线段BC上,AC⊥BC,AB=8cm,AD=6cm,AC =4cm,则在△ABD中,BD边上的高是4cm.【解答】解:如图,∵AC⊥BC,∴BD边上的高为线段AC.又∵AC=4cm,∴BD边上的高是4cm.故答案是:4.【方法总结】本题主要考查了三角形角平分线、中线和高.从三角形的一个顶点向它的对边所在的直线做垂线,顶点到垂足之间的线段叫做三角形的高线,简称为三角形的高.例4(2020秋•南岗区校级月考)如图,△ABC中,BE、CD分别平分∠ABC、∠ACB,并相交于点O,∠BOC=140°,则∠A=100°.【解答】解:∵BO平分∠ABC,CO平分∠ACB,∴∠ABC=2∠1,∠ACB=2∠2,∵∠BOC=140°,∴∠1+∠2=180°﹣140°=40°,∴∠ABC+∠ACB=2×40°=80°,∴∠A=180°﹣80°=100°,故答案为:100【方法总结】此题主要考查了三角形内角和定理,角平分线的定义,整体思想的利用是解题的关键.【随堂练习】1.(2020秋•南岗区校级月考)如图,在△ABC中,BC边上的高为()A.AD B.BE C.BF D.CG【解答】解:由图可知,△ABC中,BC边上的高为AD,故选:A.2.(2020秋•尚志市期末)如图,BD是△ABC的中线,AB=6cm,BC=4cm,则△ABD和△BCD的周长差为2cm.【解答】解:∵BD是△ABC的中线,∴AD=CD,∴△ABD和△BCD的周长的差是:(AB+BD+AD)﹣(BC+BD+CD)=AB﹣BC=6﹣4=2cm.故答案为:2.3.(2020春•合浦县期中)如图,在△ABC中,CF、BE分别是AB、AC边上的中线,若AE =2,AF=3,且△ABC的周长为15,求BC的长.【解答】解:∵CF、BE分别是AB、AC边上的中线,AE=2,AF=3,∴AB=2AF=2×3=6,AC=2AE=2×2=4,∵△ABC的周长为15,∴BC=15﹣6﹣4=5.综合运用1.(2020春•太原期末)用一块含30°角的透明直角三角板画已知△ABC的边BC上的高,下列三角板的摆放位置正确的是()A.B.C.D.【解答】解:A,B,C都不是△ABC的边BC上的高.故选:D.2.(2020春•历城区校级期中)在下列条件中:①∠A+∠B=∠C;②∠A:∠B:∠C=1:2:3;③∠A=2∠B=3∠C;④∠A=∠B=∠C中,能确定△ABC是直角三角形的条件有()A.1个B.2个C.3个D.4个【解答】解:①∠A+∠B=∠C,是直角三角形;②∠A:∠B:∠C=1:2:3,是直角三角形;③∠A=2∠B=3∠C,则设∠A=x,∠B=x2,∠C=x3,则x+x2+x3=180°,解得x=1080°11,∴∠A=108011,∠B=540°11,∠C=360°11,∴△ABC不是直角三角形;④∠A=∠B=∠C,不是直角三角形,是等边三角形,能确定△ABC是直角三角形的条件有2个,故选:B.3.(2020春•渝中区校级期中)如图,在三角形ABC中,∠ABC=50°,∠ACB=24°,BD 平分∠ABC,CD平分∠ACB,其角平分线相交于D,则∠BDC=()A.141°B.142°C.143°D.145°【解答】解:∵BD平分∠ABC,∴∠DBC=12∠ABC=12×50°=25°,∵CD平分∠ACB,∴∠DCB=12∠ACB=12×24°=12°,∴∠BDC=180°﹣∠DBC﹣∠DCB=180°﹣25°﹣12°=143°.故选:C.4.(2020春•青羊区期末)如图,在Rt△ABC中,∠C═90°,AD平分∠CAB交BC于点D,BE⊥AD交AD的延长线于点E.若∠DBE=25°,则∠CAB=50°.【解答】解:∵BE⊥AE,∴∠E=∠C=90°,∵∠ADC=∠BDE,∴∠CAD=∠DBE=25°,∵AE平分∠CAB,∴∠CAB=2∠CAD=50°,故答案为50°.5.(2020春•溧阳市期末)如图,在直角三角形ABC中,点P、Q分别是AC、BC边上的两个动点,MP、NQ分别平分∠APQ和∠BQP,交AB于点M、N,MR、NR又分别平分∠BMP和∠ANQ,两条角平分线交于点R,则∠R=67.5°.【解答】解:∵∠C+∠A+∠B=180°,∠C+∠CPQ+∠CQP=180°,∠C=90°,∴∠A+∠B=90°,∠CPQ+∠CQP=90°,∴∠APQ+∠BQP+∠CPQ+∠CQP=360°,∴∠APQ+∠BQP=270°,∵MP、NQ分别平分∠APQ和∠BQP,∴∠MPQ+∠NQP=∠APM+∠BQN=135°,∵∠MPQ+∠NQP+∠PMN+∠QNM=360°,∴∠PMN+∠QNM=225°,∵MR、NR又分别平分∠BMP和∠ANQ,∴∠NMR+∠MNR=112.5°,∵∠NMR+∠MNR+∠R=180°,∴∠R=67.5°.故答案为67.5.6.(2020春•扬中市期中)如图,若△ABC的三条内角平分线相交于点I,过I作DE⊥AI 分别交AB、AC于点D、E,则图中与∠ICE一定相等的角(不包括它本身)有∠ICB,∠DIB.【解答】解:∵AI平分∠BAC,∴∠IAD=∠IAE,∵AI⊥DE,∴∠AID=∠AIE=90°,∴∠ADI+∠DAI=90°,∠AEI+∠IAE=90°,∴∠ADE=∠AEI,∴∠BDI=∠IEC=180°﹣(90°﹣∠IAE)=90°+12∠BAC,∵IB,IC分别平分∠ABC,∠ACB,∴∠IBC=12∠ABC,∠ICB=12∠ACB,∴∠BIC=180°﹣(∠IBC+∠ICB)=180°−12(∠ABC+∠ACB)=180°−12(180°﹣∠BAC)=90°+12∠BAC,∴∠BDI=∠IEC=∠BIC,∵∠IBC+∠BIC+∠ICB=180°,∠ICE=∠ICB,∠IBC=∠DBI,∴∠ICE=∠ICB=∠DIB,∴与∠ICE一定相等的角有∠ICB,∠DIB.故答案为:∠ICB,∠DIB.7.(2020春•内江期末)如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠CAB=50°,∠C=60°,求∠DAE和∠BOA的度数.【解答】解:∵∠CAB=50°,∠C=60°∴∠ABC=180°﹣50°﹣60°=70°,又∵AD是高,∴∠ADC=90°,∴∠DAC=180°﹣90°﹣∠C=30°,∵AE、BF是角平分线,∴∠CBF=∠ABF=35°,∠EAF=25°,∴∠DAE=∠DAC﹣∠EAF=5°,∠AFB=∠C+∠CBF=60°+35°=95°,∴∠BOA=∠EAF+∠AFB=25°+95°=120°,∴∠DAC=30°,∠BOA=120°.故∠DAE=5°,∠BOA=120°.8.(2019春•平昌县期末)如图,△ACB中,∠ACB=90°,∠1=∠B.(1)试说明CD是△ABC的高;(2)如果AC=8,BC=6,AB=10,求CD的长.【解答】解:(1)∵∠1+∠BCD=90°,∠1=∠B∴∠B+∠BCD=90°∴△BDC是直角三角形,即CD⊥AB,∴CD是△ABC的高;(2)∵∠ACB=∠CDB=90°∴S△ABC=12AC•BC=12AB•CD,∵AC=8,BC=6,AB=10,∴CD=AC⋅BCAB=6×810=245.9.(2020秋•江岸区校级月考)如图,△ABC中,∠B=2∠C,AE平分∠BAC.(1)若AD⊥BC于D,∠C=35°,求∠DAE的大小;(2)若EF⊥AE交AC于F,求证:∠C=2∠FEC.【解答】(1)解:∵∠C=35°,∠B=2∠C,∴∠B=70°,∴∠BAC=75°,∵AE平分∠BAC,∴∠EAC=37.5°,∵AD⊥BC,∴∠ADC=90°,∴∠DAC=55°,∴∠DAE=55°﹣37.5°=17.5°;(2)证明:∵EF⊥AE,∴∠AEF=90°,∴∠AED+∠FEC=90°,∵∠DAE+∠AED=90°,∴∠DAE=∠FEC,∵AE平分∠BAC,∴∠EAC=12∠BAC=12(180°﹣∠B﹣∠C)=12(180°﹣3∠C)=90°−32∠C,∵∠DAE=∠DAC﹣∠EAC,∴∠DAE=∠DAC﹣(90°−32∠C)=90°﹣∠C﹣90°+32∠C=12∠C,∴∠FEC=12∠C,∴∠C=2∠FEC.。
初一数学寒假衔接班(寒假补课讲义)
初一寒假讲义目录第1讲同底数幂的乘法第2讲幂、积、商的乘方第3讲整式的乘法第4讲平方差公式及其应用第5讲完全平方公式及其应用第6讲乘法公式综合应用第7讲整式的除法第8讲半期复习与测试第9讲平行线与相交线第10讲平行线与相交线第11讲三角形的边角关系第12讲全等三角形的性质和判定第13讲全等三角形的综合应用第14讲期末复习与检测第1讲 同底数幂的乘法一、新知探索1.同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加。
即nm nmaa a +=⋅ (m ,n 都是正整数).注意:① 三个或三个以上同底数幂相乘时,也具有这一性质.如:p n m p n m a a a a ++=⋅⋅ (m ,n ,p 都是正整数). ② 此性质可以逆用:n m nm a a a⋅=+说明:在幂的运算中,经常会用到以下的一些变形:(-a )n=⎪⎩⎪⎨⎧-);(),(为奇数为偶数n a n a n n (b -a )n=⎪⎩⎪⎨⎧---).()(),()(为奇数为偶数n b a n b a n n二、典例剖析1、顺用公式:例1、计算:(1)35aa a (2)35xx- (3) 231mm bb +⋅(4)m n p a a a ⋅⋅ (5)()()7633-⨯- (6)()()57a a a ---变形练习:(1)234aa a a (2)()()48x x x ---2、常用等式: ()()b a a b -=-- ()()22b a a b -=-()()33b a a b -=--()()44b a a b -=-()()2121n n b a a b ++-=--()()22nnb a a b -=-例2、(1)()()()38b a b a b a --- (2)()()()21221222n n n x y y x x y +----(3)()()()48x y y x y x --- (4)()()()37x y y x y x ---3、逆用公式:例3、已知:64,65mn== ,求:6m n+的值。
七年级数学寒假班讲义
..21,,C A ADC ABC DF BE ABC ADC ∠=∠∠∠∠∠∠=∠求证:=且、分别平分、已知:如图, 七年级数学寒假班讲义--------------平行与平移一、知识梳理(回顾所学知识,完成填空) 1.下图中,是同位角的是; 是内错角的是 ; 是同旁内角的是 .2.直线平行的条件:(1)基本事实: ,两直线平行; (2) 定理: ,两直线平行; (3) 定理: ,两直线平行. 3.平行线的性质: (1)基本事实:两直线平行, ; (2) 定理:两直线平行, ; (3) 定理:两直线平行, .4.在平面内, , (2)一个图形 . 二、典型例题证明:因为BE 、DF 分别平分∠ABC 、∠ADC ( ),所以∠1=,∠3=( ).(已知), 所以∠1=∠3( ),因为∠1=∠2(已知),所以 ∥ ( )所以∠A +∠ =180°, ∠C +∠ =180°( ). 所以∠A =∠C ( ). 三、课堂检测 1.如图,能判定EB ∥AC 的条件是( ) A .∠C =∠ABE B .∠A =∠EBD C .∠C =∠ABC D .∠A =∠ABEABC ∠21ADC ∠21ADC ABC ∠=∠因为如何由基本事实证明后面两个定理? 同位角、内错角一定相等吗?同旁内角一定互补嘛?描述平移,必须说清:按...方向,平移...距离画“平移”的依据和方法平行的条件与平行线性质的综合运用2.如图,直线a ∥b ,∠1=70°,那么∠2= °.3.如图,将一个长方形纸条折成如图的形状,若已知∠1=130°,则∠2= °.(第2题) (第3题) (第4题) (第5题) 4.如图,把边长为3cm 的正方形ABCD 先向右平移1cm ,再向上平移1cm ,得到正方形 EFGH ,则阴影部分的面积为 cm ².5.把图中的一个三角形先横向平移x 格,再纵向平移y 格,可以与另一个三角形拼合成一 些不同形状的四边形.那么移动的总格数(x +y )的值最小为 . 6.如图,点D 在AB 上,直线DG 交AF 于点E .请从①DG ∥AC ,②AF 平分∠BAC ,③∠ADE =∠DEA . 中任选两个作为条件,余下一个作为 结论,构造一个真命题,并说明理由. 已知: , 求证: .(填写序号) 证明:7.如图,在△ABC 中,CD ⊥AB ,垂足为D ,点E 在BC 上,EF ⊥AB ,垂足为F . (1)CD 与EF 平行吗?为什么?(2)如果∠1=∠2,且∠3=115°,求∠ACB 的度数.四:拓展归类1.如图、直线a 、b 被c 所截,所标出的角中有哪些角是同位角?同位角一定相等吗?8765cab 4321b ac 78126543 a bc 56 4 81 23 7 ab122.三类角的位置特征、基本图形、图形结构特征如下表:3.(1)同位角和同旁内角在位置上有什么相同点和不同点?内错角和同旁内角在位置上有什么相同点和不同点? (2)这三类角的共同特征是什么?总结:五、范例点睛例1、如图(1),∠1和∠2是直线_______、_______被直线_______所截得的_______角,∠2和∠3是直线_______、_______被直线_______所截得的_______角;如图(2),∠1和∠2是直线_______、_______被直线_______所截得的_______角,∠4和∠3是直线_______、_______被直线_______所截得的_______角。
七年级数学寒假专题(五)北师大实验版知识精讲
初一数学寒假专题(五)北师大实验版【本讲教育信息】一. 教学内容:寒假专题(五)【知识要点】:这一讲我们将整册书中的重要问题以及大家容易犯错的问题加以练习和讲解,可能有些问题是同学们以前练习过的,有些问题里面还包含很多章节,我们在这里只是加以深入研究和巩固复习,希望同学们在此可以得到一些收获。
一、几何问题其实本册书中有关几何部分的内容我们在小学都有所涉及,不过知识的学习过程都是螺旋式上升的,就像我们小学学习了四则运算,在这里还要巩固练习一样,几何部分的知识也需要我们有针对性的练习。
同学们要有意识的培养自己利用已有知识、技能去解决不同的实际问题,进一步发展空间观念,为我们今后学习几何打下良好的基础。
本问题主要涉及“包装的学问”和第三章“数学与生活空间”部分内容。
二、选取最佳策略其实此类问题与我们的生活实际联系最大,利用已有的知识、技能,根据具体情况从给定的优惠方案中选择较经济(或较短的路程、较快的方案等)的方案会使我们事半功倍,反之就会使我们在经济、时间,路程等方面蒙受损失。
本问题主要涉及“购物策略”、“包装的学问”、“旅游费用”、“联络方案”甚至“总复习”等很多部分内容。
三、组合问题教材只要求我们会用列表或画图的方法解决体育比赛中的组队、比赛场次问题及其他相类似的组合问题。
解决这类问题的关键的恰当的对问题进行分类,分类的根据可能会有所不同,然后用数学的方式对每类中可能情况作到不重不漏的列举出来。
本问题主要涉及“组队方案”和“比赛场次”等部分内容。
【例题分析】例1:如果一个大正方体的表面积是一个小正方体表面积的4倍,那么小正方体的棱长是大正方体棱长的多少倍?分析与解答:如图所示,大正方体的表面积是小正方体表面积的4倍,则:设大正方体的棱长为a ,小正方体的棱长为b大正方体面积1S =26a 小正方体面积2S =26b∵1S =42S ∴26a =4×26b 即22)2(b a = ∴b a 2=即小正方体的棱长是大正方体棱长的21倍。
七年级数学寒假专题(二)北师大版知识精讲
七年级数学寒假专题(二)北师大版【本讲教育信息】一. 教学内容:寒假专题(二)——平面图形及其位置关系二. 教学目标1. 掌握平面图形中线段、射线、直线的相同点与不同点,了解“两点确定一条直线、两点之间的所有连线中,线段最短”等几何性质,会用这一类性质解释实际生活中遇到的问题,遇到有关问题时会应用这一性质。
2. 理解角的有关定义,认识角的四种表示方法,会计算角度数的和、差,认识度、分、秒,会进行简单的换算。
3. 掌握平行、垂直定义,理解平行、垂直的性质,会利用性质解决生活中的实际问题。
三. 重点及难点1. 线段的比较及和、差的计算。
2. 角的比较及度数和、差计算。
四. 课堂教学 [知识要点]1. 线段的定义:有两个端点的线叫做线段。
射线的定义:将线段向一个方向无限延长就形成了射线 直线的定义:将线段向两个方向无限延长就形成了直线 直线性质:经过两点有且只有一条直线。
两点之间所有连线中,线段最短。
两点之间线段的长度,叫两点之间的距离。
2. 线段的中点:点M 把线段AB 分成相等的两条线段AM 与BM ,点M 叫做线段AB 的中点。
这时AM =BM =12AB3. 角的定义(一):角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点。
角通常有四种表示方法:(1)角可以用三个字母及符号“∠”表示,其中表示顶点的字母写在中间。
(2)角可以用一个数字和符号“∠”表示。
(3)角可以用希腊字母(α、β、γ)和符号“∠”表示。
(4)如果一个角的顶点上只有一个角,那么也可以用这个顶点字母和符号“∠”表示。
4. 角的定义(二):角也可以看成是由一条射线绕着它的端点旋转而成的。
5. 角的分类:周角(360°)、平角(180°)、直角(90°)、钝角(大于90°小于180°)、锐角(小于90°)6. 角平分线:从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。
学而思寒假七年级尖子班讲义第讲平面直角坐标系
领先中考培优课程M A T H E M A T I C S3 平面坐标系知识目标目标一理解有序数对、有序数对、点的坐标的概念目标二掌握象限、坐标轴、坐标轴夹角平分线的点的坐标特征目标三灵活运用点和线的平移变换。
点的对称变换求坐标模块一 平面直角坐标系的相关概念 知识导航1有序数对有顺序的两个数a 与b 组成的数对,叫做有序数对,记作(a,b),利用有序数对可以可以很准确的表示出一个位置。
2平面直角坐标系3、点的坐标平面内的点可以用一个有序数对表示,这个有序数对就叫做点的坐标。
对于平面内任意一点,过该点分别向横轴、纵轴作垂线,垂足在横轴、纵轴上对应的数分别叫做该点横坐标、纵坐标。
在平面内两条互相垂直、原点重合的数轴,组成平面直角坐标系、水平的数轴称为x 轴或横轴,习惯上取向右为正方向:竖直的数轴称为y 轴或纵轴,取向上方向为正方向;两坐标轴的交点为平面坐标系的原点。
如左图,建立了平面直角坐标系以后,坐标平面就被两条坐标轴分成了Ⅰ,Ⅱ,Ⅲ,Ⅳ四个部分,每个部分称为象限,分别叫做第一象限、第二象限、第三象限、第四象限。
坐标轴上的点不属于任何象限。
Ⅰ 第一象限 Ⅳ第四象限Ⅲ第三象限 Ⅱ 第二象限 原点如图,点p 为坐标平面内一点,过点p 作x 轴的垂线,垂足M 在x 轴上对应点的数是-2,则-2就是p 的横坐标;过点p 作y 轴的垂线,垂足N 在y 轴上对应的数为3,则3为点p 的纵坐标,点p 就可以用有序数对(-2,-3)来表示,记作p (-2,3)。
由坐标确定点的方法:要确定由坐标(a,b)所表示的点p 的位置,先在x 轴上找到表示a 的点,过这点作x 轴的垂线;再在y 轴上找到表示b 的点,过这点作y 轴的垂线,两条垂线的交点p 即为所求的位置。
由点求坐标的方法:先由已知点p 分别向x 轴和y 轴作垂线,设垂足分别为A 和B ,再求出A 在x 轴上的坐标a 和B 在轴上的坐标b ,则点p 的坐标为(a,b)巩固练习 点的坐标(1)在图1的平面直角坐标系中描出下列个点:A(3,4),B(-2,3),C(-5,-2),D(4,-1),E(1,0),F(0,3),G(-2,0),H(0,-4). (2)写出图2中点A 、B 、C 、D 、E 、F 、G 、H 的坐标。
北师大七年级数学讲义
北师大七年级数学讲义
北师大七年级数学讲义的内容可能因版本和年级而有所不同,以下是一般性的信息:
北师大七年级数学讲义通常包括以下几个部分:
1. 代数基础:介绍基本的代数概念,如变量、代数式、方程式等。
2. 整式与分式:讲解整式和分式的加减乘除运算,以及化简求值的方法。
3. 一元一次方程:介绍一元一次方程的解法,包括合并同类项、移项、去括号等技巧。
4. 平面图形:介绍基本的平面图形,如线段、角、三角形、四边形等。
5. 平面图形的性质:讲解平面图形的性质和特点,如周长、面积、对称性等。
6. 平面图形的度量:介绍长度、角度等度量单位和测量方法。
7. 概率与统计:讲解概率和统计的基本概念和方法,如平均数、中位数、众数、方差等。
具体内容可能会因版本和年级的不同而有所差异,建议您查看具体的讲义目录或者咨询学校教师了解详细内容。
学而思寒假七年级尖子班讲义第3讲平面直角坐标系
领先中考培优课程M AT H E M A T I C S3 平面坐标系知识目标目标一理解有序数对、有序数对、点的坐标的概念目标二掌握象限、坐标轴、坐标轴夹角平分线的点的坐标特征目标三灵活运用点和线的平移变换。
点的对称变换求坐标模块一 平面直角坐标系的相关概念 知识导航1有序数对有顺序的两个数a 与b 组成的数对,叫做有序数对,记作(a,b),利用有序数对可以可以很准确的表示出一个位置。
3、点的坐标平面内的点可以用一个有序数对表示,这个有序数对就叫做点的坐标。
对于平面内任意一点,过该点分别向横轴、纵轴作垂线,垂足在横轴、纵轴上对应的数分别叫做该点横坐标、纵坐标。
在平面内两条互相垂直、原点重合的数轴,组成平面直角坐标系、水平的数轴称为x 轴或横轴,习惯上取向右为正方向:竖直的数轴称为y 轴或纵轴,取向上方向为正方向;两坐标轴的交点为平面坐标系的原点。
如左图,建立了平面直角坐标系以后,坐标平面就被两条Ⅰ 第一象限 Ⅳ 第四象限 Ⅲ 第三象限 Ⅱ 第二象限原点巩固练习 点的坐标(1)在图1的平面直角坐标系中描出下列个点:A(3,4),B(-2,3),C(-5,-2),D(4,-1),E(1,0),F(0,3),G(-2,0),H(0,-4). (2)写出图2中点A 、B 、C 、D 、E 、F 、G 、H 的坐标。
y x–1–2–3–4–512345–1–2–3–4–512345O图1 图2 4 象限及坐标轴的点坐标特征象限内的点p (a,b)坐标轴上的点p(a,b)点p 在第一象限a >0 ,b >0点p 在x 轴正半轴a >0 , b=0如图,点p 为坐标平面内一点,过点p 作x 轴的垂线,垂足M 在x 轴上对应点的数是-2,则-2就是p 的横坐标;过点p 作y 轴的垂线,垂足N 在y 轴上对应的数为3,则3为点p 的纵坐标,点p 就可以用有序数对(-2,-3)来表由坐标确定点的方法:要确定由坐标(a,b)所表示的点p 的位置,先在x 轴上找到表示a 的点,过这点作x 轴的垂线;再在y 轴上找到表示b 的点,过这点作y 轴的垂线,两条垂线的交点p 即为所求的位置。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一讲 整式的乘方一.同底数幂的乘法+⋅=m n m n a a a (其中,m n 都是正整数).即同底数幂相乘,底数不变,指数相加.要点诠释:(1)同底数幂是指底数相同的幂,底数可以是任意的实数,也可以是单项式、多项式.(2)三个或三个以上同底数幂相乘时,也具有这一性质,即m n p m n p a a a a ++⋅⋅=(,,m n p 都是正整数).(3)逆用公式:把一个幂分解成两个或多个同底数幂的积,其中它们的底数与原来的底数相同,它们的指数之和等于原来的幂的指数。
即m n m n a a a +=⋅(,m n 都是正整数).例题:1.已知n 是大于1的自然数,则(﹣c )n ﹣1•(﹣c )n+1等于( )A .B .﹣2ncC .﹣c 2nD .c 2n同步练习:1.(﹣p )2•(﹣p )3= .2.规定a*b=2a ×2b ,求:(1)求2*3; (2)若2*(x+1)=16,求x 的值.3.阅读材料:n 个相同的因数a 相乘,可记为a n ,如2×2×2=23=8,此时,3叫做以2为底8的对数,记为log 28(即log 28=3).一般地,若a n =b (a >0且a ≠1,b >0),则n 叫做以a 为底b 的对数,记为log a b (即log a b=n ).如34=81,则4叫做以3为底81的对数,记为log 381(即log 381=4).根据以上材料,解决下列问题:(1)计算以下各对数的值:log 24= ,log 216= ,log 264= ;(2)根据(1)中的计算结果,写出log 24,log 216,log 264满足的关系式;(3)根据(2)中的关系式及4,16,64满足的关系式猜想一般性结论:log a M+log a N= (a >0且a ≠1,M >0,N >0);(4)根据幂的运算法则说明(3)中一般性结论的正确性.二.幂的乘方与积的乘方幂的乘方法则: ()=m n mn a a (其中,m n 都是正整数).即幂的乘方,底数不变,指数相乘.要点诠释:(1)公式的推广:(())=m n p mnp a a(0≠a ,,,m n p 均为正整数) (2)逆用公式: ()()n m mn m n a a a ==,根据题目的需要常常逆用幂的乘方运算能将某些幂变形,从而解决问题.积的乘方法则:()=⋅n n nab a b (其中n 是正整数).即积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.要点诠释:(1)公式的推广:()=⋅⋅n n n nabc a b c (n 为正整数). (2)逆用公式:()nn n a b ab =逆用公式适当的变形可简化运算过程,尤其是遇到底数互为倒数时,计算更简便.如:1010101122 1.22⎛⎫⎛⎫⨯=⨯= ⎪ ⎪⎝⎭⎝⎭ 例题:1.图中是小明完成的一道作业题,请你参考小明答方法解答下面的问题:(1)计算:①82008×(﹣0.125)2008; ②()11×(﹣)13×()12.(2)若2•4n•16n=219,求n的值.同步练习:1.计算:x4•x5•(﹣x)7+5(x4)4﹣(x8)2.2.已知常数a、b满足3a×32b=27,且(5a)2×(52b)2÷(53a)b=1,求a2+4b2的值.3.规定两数a,b之间的一种运算,记作(a,b):如果a c=b,那么(a,b)=c.例如:因为23=8,所以(2,8)=3.(1)根据上述规定,填空:(3,27)= ,(5,1)= ,(2,)= .(2)小明在研究这种运算时发现一个现象:(3n,4n)=(3,4),小明给出了如下的证明:设(3n,4n)=x,则(3n)x=4n,即(3x)n=4n所以3x=4,即(3,4)=x,所以(3n,4n)=(3,4).请你尝试运用这种方法证明下面这个等式:(3,4)+(3,5)=(3,20)三.单项式乘以单项式单项式与单项式相乘,把它们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它们的指数作为积的一个因式.要点诠释:(1)单项式的乘法法则的实质是乘法的交换律和同底数幂的乘法法则的综合应用.(2)单项式的乘法方法步骤:积的系数等于各系数的积,是把各单项式的系数交换到一起进行有理数的乘法计算,先确定符号,再计算绝对值;相同字母相乘,是同底数幂的乘法,按照“底数不变,指数相加”进行计算;只在一个单项式里含有的字母,要连同它的指数写在积里作为积的一个因式.(3)运算的结果仍为单项式,也是由系数、字母、字母的指数这三部分组成.(4)三个或三个以上的单项式相乘同样适用以上法则.例题:1.若(a m+1b n+2)(a2n﹣1b2n)=a5b3,则求m+n的值.2.计算(1). a3•a4•a+(a2)4+(﹣2a4)2(2). (﹣3x2y)2•(﹣xyz)•xz2.同步练习:1.已知x3m=2,y2m=3,求(x2m)3+(y m)6﹣(x2y)3m•y m的值.2.计算:2x 3(x 3)2﹣(3x 3)3+5x 2•x 7四.单项式乘以多项式单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.即()m a b c ma mb mc ++=++. 要点诠释:(1)单项式与多项式相乘的计算方法,实质是利用乘法的分配律将其转化为多个单项式乘单项式的问题.(2)单项式与多项式的乘积仍是一个多项式,项数与原多项式的项数相同.(3)计算的过程中要注意符号问题,多项式中的每一项包括它前面的符号,同时还要注意单项式的符号.(4)对混合运算,应注意运算顺序,最后有同类项时,必须合并,从而得到最简的结果.例题:1.计算:x (x ﹣1)+2x (x+1)﹣3x (2x ﹣5)同步练习:1.计算:.2.若ab 2=﹣1,求﹣ab (a 2b 5﹣ab 3﹣2b )的值.五.多项式乘以多项式多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.即()()++=+++.a b m n am an bm bn要点诠释:多项式与多项式相乘,仍得多项式.在合并同类项之前,积的项数应该等于两个多项式的项数之积.多项式与多项式相乘的最后结果需化简,有同类项的要合并.特殊的二项式相乘:()()()2++=+++.x a x b x a b x ab例题:1.探究应用:(1)计算:(x+1)(x2﹣x+1)= ;(2x+y)(4x2﹣2xy+y2)= .(2)上面的乘法计算结果很简洁,你发现了什么规律(公式)?用含a、b的字母表示该公式为:.(3)下列各式能用第(2)题的公式计算的是A.(m+2)(m2+2m+4)B.(m+2n)(m2﹣2mn+2n2)C.(3+n)(9﹣3n+n2)D.(m+n)(m2﹣2mn+n2)同步练习:1.已知代数式(ax﹣3)(2x+4)﹣x2﹣b化简后,不含x2项和常数项.求a,b的值2.已知(x3+mx+n)(x2﹣3x+1)展开后的结果中不含x3、x2项.求m+n的值.3.根据几何图形的面积关系可以形象直观地表示多项式的乘法.例如:(2a+b)(a+b)=2a2+3ab+b2可以用图(1)表示(1)根据图(2),写出一个多项式乘以多项式的等式;(2)从A,B两题中任选一题作答:A.请画出一个几何图形,表示(x+p)(x+q)=x2+(p+q)x+pq,并仿照上图标明相应的字母;B.请画出一个几何图形,表示(x﹣p)(x﹣q)=x2﹣(p+q)x+pq,并仿照上图标明相应的字母.综合考查:1.若a m=a n(a>0且a≠1,m,n是正整数),则m=n.你能利用上面的结论解决下面的2个问题吗?试试看,相信你一定行!①如果2×8x×16x=222,求x的值;②如果(27﹣x)2=38,求x的值.2.计算:(1).用简便算法计算:(﹣9)3×(﹣)3×()3.(2).解方程:2x(x+1)﹣(3x﹣2)x=1﹣x2.第二讲 乘法公式一.平方差公式平方差公式: 22()()a b a b a b +-=-两个数的和与这两个数的差的积,等于这两个数的平方差.要点诠释:在这里,b a ,既可以是具体数字,也可以是单项式或多项式.抓住公式的几个变形形式利于理解公式.但是关键仍然是把握平方差公式的典型特征:既有相同项,又有“相反项”,而结果是“相同项”的平方减去“相反项”的平方.常见的变式有以下类型:(1)位置变化:如()()a b b a +-+利用加法交换律可以转化为公式的标准型(2)系数变化:如(35)(35)x y x y +-(3)指数变化:如3232()()m n m n +-(4)符号变化:如()()a b a b ---(5)增项变化:如()()m n p m n p ++-+(6)增因式变化:如2244()()()()a b a b a b a b -+++ 例题:1.若a 2﹣b 2=,a+b=,则a ﹣b 的值为( )A .﹣B .C .1D .22.3(22+1)(24+1)…(232+1)+1计算结果的个位数字是( )A .4B .6C .2D .8同步练习:1.化简(m 2+1)(m+1)(m ﹣1)﹣(m 4+1)的值是( )A .﹣2m 2B .0C .﹣2D .﹣12.计算下列各题:(1)(a ﹣2b )2﹣(2a+b )(b ﹣2a )﹣4a (a ﹣b )两数和 (差)的平方等于这两数的平方和加上(减去)这两数乘积的两倍.要点诠释:公式特点:左边是两数的和(或差)的平方,右边是二次三项式,是这两数的平方和加(或减)这两数之积的2倍.以下是常见的变形:()2222a b a b ab +=+-()22a b ab =-+ ()()224a b a b ab +=-+ 例题:1.已知x+y=5,xy=6,则x 2+y 2的值是( )A .1B .13C .17D .252.已知a+b=﹣5,ab=﹣4,则a 2﹣ab+b 2=( )A .29B .37C .21D .33同步练习:1.我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图的三角形解释二项式乘方(a+b )n 的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算(a+b )64的展开式中第三项的系数为( )A .2016B .2017C .2018D .20192.若x ,y 满足x 2+y 2=,xy=﹣,求下列各式的值.(1)(x+y )2 (2)x 4+y 4 (3)x 3+y 3两数和 (差)的平方等于这两数的平方和加上(减去)这两数乘积的两倍.要点诠释:公式特点:左边是两数的和(或差)的平方,右边是二次三项式,是这两数的平方和加(或减)这两数之积的2倍.以下是常见的变形:()2222a b a b ab +=+-()22a b ab =-+ ()()224a b a b ab +=-+ 例题:1.已知a ﹣=5,则a 2+的值是 .2.当4x 2+2(k ﹣3)x+25是一个完全平方式,则k 的值是 .同步练习:1.若4次3项式m 4+4m 2+A 是一个完全平方式,则A=2.已知4x 2+8(n+1)x+16n 是一个关于x 的完全平方式,则常数n 的值为 .综合考查:1. 计算:(2x+3y )2﹣(4x ﹣9y )(4x+9y )+(3x ﹣2y )2.2. 已知x+y=6,xy=5,求下列各式的值:(1)(2)(x ﹣y )2 (3)x 2+y 2.3. 若二次三项式x 2+(2m ﹣1)x+4是一个完全平方式,则m 的值是多少?第三讲相交线及三线八角一.对顶角和邻补角对顶角1. 对顶角的模型:∠1和∠2是对顶角,∠3和∠4是对顶角.特点:①成对出现;②两个角有公共的顶点;③角的两边互为反向延长线.2. 对顶角的性质:对顶角相等.邻补角1. 邻补角:两个角有一条公共边,他们的另一边互为反向延长线,具有这种关系的两个角互为邻补角.2. 邻补角的模型:∠1和∠3是邻补角,∠1和∠4是邻补角,∠2和∠3是邻补角,∠2和∠4是邻补角,特点:①成对出现;②两个角有公共的顶点;③两个角有一条公共边,另一边互为反向延长线.3. 邻补角的性质:两个角的和为180°.例题:1.如图,直线a、b相交于点O,将量角器的中心与点O重合,发现表示60°的点在直线a上,表示138°的点在直线b上,则∠1=_________°.2.如图,直线AB、CD、EF相交于点O.(1)写出∠BOE的对顶角和邻补角;(2)若∠AOC:∠AOE=2:1,∠EOD=90°,求∠BOC的度数.同步练习:1.如图,直线AB、CD相交于点O,OE平分∠AOD,若∠BOC=70°,则∠COE的度数是()A.110°B.120°C.135°D.145°2.如图,两条直线相交于点O,若射线OC平分平角∠AOB,∠1=56°,则∠2等于()A.44°B.56°C.45°D.34°3.如图所示,直线AB与CD相交于点O,OB平分∠DOE,若∠DOE=60°,则∠AOE的度数是()A.90°B.150°C.180°D.不能确定4.如图所示,直线AB交CD于点O,OE平分∠BOD,OF平分∠COB,∠AOD:∠BOE=5:2,则∠AOF等于()A.140°B.130°C.120°D.110°二.垂线垂线1. 两直线相交所形成的角中,当有一个角等于90°时,这两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,他们的交点叫做垂足.2. 垂直的模型:说法:①直线a是直线b的垂线(或直线b是直线a的垂线),垂足为O.②直线a垂直于直线b于点O(或直线b垂直于直线a于点O).结论:两垂直直线形成的四个角都是直角,均为90°.3. 在同一平面内,过一点有且只有一条直线与已知直线垂直.垂线段1. 过直线外一点作直线的垂线,以这个点和垂足为端点的线段叫做这个点到直线的垂线段.2. 垂线段模型:线段AB是点A到直线a的垂线段.3. 连接直线外一点与直线上各点的所有线段中,垂线段最短.简单说成:垂线段最短.4. 直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.注意:距离是长度,不是线段.例题:1.如图,OM⊥NP,ON⊥NP,所以ON与OM重合,理由是_________________.2.如图,直线AB,CD相交于点O,EO⊥AB,垂足为O.(1)写出图中与∠1互为余角的角;(2)若∠AOC:∠2=3:2,求∠1的度数.3.如图所示,AD⊥BD,BC⊥CD,AB=5cm,BC=3cm,则BD的长度的取值范围是________________.4.如图,BC⊥AC,CB=8cm,AC=6cm,AB=10cm,那么点B到AC的距离是________cm,点A到BC的距离是________cm,C到AB的距离是___________cm.同步练习:1.如图直线AB,CD相交于点O,EO⊥AB垂足为O,(1)与∠1互为补角的角是_ ___;(2)若∠AOC:∠2=3:2,求∠1的度数.2.如图,直线AB、CD相交于点O,OM⊥AB.(1)若∠1=∠2,求∠NOD的度数;(2)若∠1=∠BOC,求∠AOC和∠MOD的度数.3.如图,直线AB、CD相交于点O,OM⊥AB.(1)若∠1=∠2,则∠2的余角有___________.(2)若∠1=∠BOC,求∠AOD和∠BOD的度数.三.三线八角模型:1. 同位角:两条直线被第三条直线所截形成的角中,若两个角分别在两直线的同一方,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角.如∠1与∠8,∠2与∠5.2. 内错角:两条直线被第三条直线所截形成的角中,若两个角都在两直线之间,并且在第三条直线(截线)的两侧,则这样一对角叫做内错角.如∠1与∠6,∠4与∠5.3. 同旁内角:两条直线被第三条直线所截形成的角中,若两个角都在两直线之间,并且在第三条直线(截线)的同一旁,则这样一对角叫做同旁内角.如∠1与∠5,∠4与∠6.4. 三线八角中的某两个角是不是同位角、内错角或同旁内角,完全由那两个角在图形中的相对位置决定.在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.同位角的边构成“F”形,内错角的边构成“Z”形,同旁内角的边构成“U” 形.例题:1.如图,图中∠1与∠2是同位角的序号是___________.2.如图,已知直线a,b被直线c,d所截,直线a,c,d相交于点O,按要求完成下列各小题.(1)在图中的∠1~∠9这9个角中,同位角共有多少对?请你全部写出来;(2)∠4和∠5是什么位置关系的角?∠6和∠8之间的位置关系与∠4和∠5的相同吗?同步练习:1.如图所示,下列说法中:①∠A与∠B是同旁内角;②∠2与∠1是内错角;③∠A与∠C是内错角;④∠A与∠1是同位角.正确的个数是()A.1个B.2个C.3个D.4个2.如图,点E在BC的延长线上,则下列两个角是同位角的是()A.∠BAC和∠ACD B.∠D和∠BAD C.∠ACB和∠ACD D.∠B和∠DCE3.如图,按各组角的位置判断,下列结论:①∠2与∠6是内错角;②∠3与∠4是内错角;③∠5与∠6是同旁内角;④∠1与∠4是同旁内角.其中正确的是()A.①②B.②③④C.①②④D.①②③④综合考查:1.如图是一把剪刀,其中∠1=∠2,其理由是__________.2.如图,线段AD、AE、AF分别是△ABC的高线,角平分线,中线,比较线段AC、AD、AE、AF的长短,其中最短的是_________________.3.如图所示,AB⊥l1,AC⊥l2,则点A到直线l1的距离是线段_________的长度.4.如图所示,直线AD与直线BD相交于点D,BE⊥AD,垂足为点E,AC与DC垂直于点C.点B到直线AD的距离是线段_______的长度,点D到直线AB的距离是线段______的长度.5.如图,直线a、b被直线c所截,互为同旁内角是______________.6.如图所示,两只手的食指和拇指在同一平面内,它们构成的一对角可以看成__________.7.如图,OC⊥AB于点O,∠1=∠2,则图中互余的角有____________对.8.如图,直线AB、CD相交于点O,OE平分∠BOD,∠AOC=76°,∠DOF=90°,求∠EOF的度数.9.如图所示:(1)与∠B是同旁内角的有哪些角?(2)与∠C是内错角的有哪些角?它们分别是哪两条直线被哪一条直线所截形成的?第四讲平行线一.平行公理及推论1. 在同一平面内,不重合的两条直线只有两种位置关系:相交和平行.直线a与直线b不相交时,直线a与b互相平行,记作a∥b.2. 平行公理:经过直线外一点,有且只有一条直线与已知直线平行.平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.例题:1.如图,已知OA∥CD,OB∥CD,那么∠AOB是平角,为什么?2.如图,AD∥BC,E为AB上任一点,过E点作EF∥AD交DC于F.问EF与BC的位置关系怎样,为什么?同步练习:1.下列说法正确的是()A.经过已知一点有且只有一条直线与已知直线平行B.两个相等的角是对顶角C.互补的两个角一定是邻补角D.直线外一点与直线上各点连接的所有线段中,垂线段最短2.下列说法中不正确的有()①两条不相交的直线叫做平行线;②经过一点,有且只有一条直线与已知直线垂直;③经过一点,有且只有一条直线与已知直线平行;④一个角的两边与另一个角两边互相垂直,那么这两个角相等.A.1个B.2个C.3个D.4个二.平行线的判定1. 平行线的判定方法:判定方法1 两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单说成:同位角相等,两直线平行.如图1,∵∠4=∠2,∴a∥b.判定方法2 两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单说成:内错角相等,两直线平行.如图2,∵∠4=∠5,∴a∥b.判定方法3 两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简单说成:同旁内角互补,两直线平行.如图3,∵∠4+∠1=180°,∴a∥b.2. 重要结论:在同一平面内,垂直于同一条直线的两条直线互相平行.注意:条件“同一平面”不能缺少,否则结论不成立.例题:1.AB⊥BC,∠1+∠2=90°,∠2=∠3.BE与DF平行吗?为什么?解:BE∥DF.∵AB⊥BC,∴∠ABC=____°,即∠3+∠4=____°.又∵∠1+∠2=90°,且∠2=∠3,∴____=____.理由是:_________.∴BE∥DF.理由是:_____________.同步练习:1.如图,条件(填写所有正确的序号)一定能判定AB∥CD.①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5;2.如图,点E在AC的延长线上,给出四个条件:①∠1=∠2;②∠3=∠4:③∠A=∠DCE;④∠D+∠ABD=180°.其中能判断AB∥CD的有.(填写所有满足条件的序号)3.如图,有下列条件:①∠1=∠2;②∠3=∠4;③∠B=∠5;④∠B+∠BAD=180°.其中能得到AB∥CD的是____(填写编号).三.平行线的性质平行线的性质:性质1 两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.如图1,∵a∥b,∴∠4=∠2.性质2 两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等.如图2,∵a∥b,∴∠4=∠5.性质3 两条平行线被第三条直线所截,同旁内角互补.简单说成:同旁内角互补,两直线平行.如图3,∵a∥b,∴∠4+∠1=180°.例题:1.如图,∠ACB=90°,BD平分∠ABE,CD∥AB交BD于点D,若∠1=20°,求∠2的度数.同步练习:1.如图,AB∥CD,则∠A、∠C、∠E、∠F满足的数量关系是()A.∠A=∠C+∠E+∠F B.∠A+∠E﹣∠C﹣∠F=180°C.∠A﹣∠E+∠C+∠F=90°D.∠A+∠E+∠C+∠F=360°2.如图,已知AB∥DE,∠ABC=50°,∠CDE=150°,则∠BCD的值为()A.20°B.50°C.40°D.30°3.如图,已知直线AB∥CD,若∠C=118,∠A=26°,则∠E的度数为()A.70°B.82°C.92°D.102°四.平行线的判定与性质的综合运用两直线平行⇔同位角相等.两直线平行⇔内错角相等.两直线平行⇔同旁内角互补.“⇔”叫做“等价于”,即由左边能推出右边,由右边也能推出左边.例题:1.把下面的推理过程补充完整,并在括号内注明理由.如图,点D,E,F分别是三角形ABC的边BC,CA,AB上的点,连接DE,DF,DE∥AB,∠BFD=∠CED,连接BE交DF于点G,试说明:∠EGF+∠AEG=180°.理由:∵DE∥AB(已知),∴∠A=∠CED(___________________________),又∵∠BFD=∠CED(已知),∴∠A=∠BFD(___________________),∴DF∥AE(___________________________)∴∠EGF+∠AEG=180°(___________________________).2.已知:如图∠1=∠2,∠C=∠D,试说明:∠A=∠F.同步练习:1.已知:如图,点E、F分别在直线AB、CD上,点G、H在两直线之间,线段EF与GH相交于点O,且有∠AEF+∠CFE=180°,∠AEF﹣∠1=∠2,则在图中相等的角共有()A.5对B.6对C.7对D.8对2.如图,已知EF⊥AB,CD⊥AB,下列说法:①EF∥CD;②∠B+∠BDG=180°;③若∠1=∠2,则∠1=∠BEF;④若∠ADG=∠B,则∠DGC+∠ACB=180°,其中说法正确的是()A.①②B.③④C.①②③D.①③④3.如图,已知∠A+∠C=180°,∠APM=118°,则∠CQN= °.4.填写理由:如图所示∵DF∥AC(已知),∴∠D+∠DBC=180°.()∵∠C=∠D(已知),∴∠C+ =180°.()∴DB∥EC()∴∠D=∠CEF.()五.命题、定理、证明1. 命题:判断一件事情的语句叫做命题.数学中的命题常可以写成“如果……那么……”的形式,“如果”后接的部分是题设,“那么”后接的部分是结论.2. 真命题:如果题设成立,那么结论一定成立,这样的命题叫做真命题.假命题:题设成立时,不能保证结论一定成立,这样的命题叫做假命题.3. 定理:经过推理证实的真命题叫做定理.判断一个命题正确性的推理过程叫做证明.4. 判断一个命题是真命题,需要进行证明;判断一个命题是假命题,只要举出一个例子(反例),它符合命题的题设,但不满足结论就可以了.例题:1.如图,已知:点A、B、C在一条直线上.(1)请从三个论断①AD∥BE;②∠1=∠2;③∠A=∠E中,选两个作为条件,另一个作为结论构成一个真命题:条件:__________________________.结论:___________________________.(2)证明你所构建的是真命题.同步练习:1.下列命题中,为真命题的是()A.同位角相等B.若a>b,则﹣2a>﹣2bC.若a2=b2,则a=b D.对顶角相等2.命题:①一个三角形中至少有两个锐角;②垂直于同一条直线的两条直线垂直;③如果两个有理数的积小于0,那么这两个数的和也小于0.其中为真命题的有()A.0个B.1个C.2个D.3个3.下列命题中,正确的是()A.若a>b,则ac2>bc2B.若,则x>﹣2C.若ac2>bc2,则a>b D.若3x>﹣6,则x<﹣2综合考查:1.下列说法:①两点之间的距离是两点间的线段的长度;②过一点有且只有一条直线与已知直线平行;③两点之间的所有连线中,线段最短;④若a⊥b,c⊥b,则a与b的关系是平行;⑤只有一个公共点的两条直线叫做相交直线;其中正确的是.2.下列结论正确的是()A.同位角相等B.同一平面内,不相交的两条直线叫做平行线C.过一点有且只有一条直线与已知直线平行D.垂直于同一条直线的两条直线互相平行3.已知:如图,∠1=∠2,∠3=∠4,∠5=∠6.求证:ED∥FB.4.如图,∠A=22°,∠E=30°,AC∥EF,则∠1的度数为.5.如图,已知∠ABC+∠ECB=180°,∠P=∠Q.求证:∠1=∠2.6.如图,∠DAB+∠D=180°,AC平分∠DAB,且∠CAD=25°,求∠C的度数.第五讲函数一.常量与变量在一个变化过程中,我们称数值发生变化的量为变量,数值始终不变的量为常量.注意:字母可以表示数,但不一定是变量.例题:1.我国是一个严重缺水的国家,我们都应该倍加珍惜水资源,节约用水.据测试,拧不紧的水龙头每秒会滴下2滴水,每滴水约0.5毫升.小燕子同学在洗手时,没有拧紧水龙头,当小燕子离开x(时)后水龙头滴了y(毫升)水.在这段文字中涉及的量中,哪些是常量,哪些是变量?当堂练习:1.下列说法中正确的是()A.用图象表示变量之间关系时,用水平方向上的点表示自变量B.用图象表示变量之间关系时,用纵轴上的点表示因变量C.用图象表示变量之间关系时,用竖直方向上的点表示自变量D.用图象表示变量之间关系时,用横轴上的点表示因变量2.世纪花园居民小区收取电费的标准是0.6元/千瓦时,当用电量为x(单位:千瓦时)时,收取电费为y(单位:元).在这个问题中,下列说法中正确的是()A.x是自变量,0.6元/千瓦时是因变量B.y是自变量,x是因变量C.0.6元/千瓦时是自变量,y是因变量D.x是自变量,y是因变量二.函数的相关概念1. 函数:在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是因变量,y是x的函数.2. 函数值:在一个函数中,如果当x=a时y=b,那么b叫做自变量的值为a时的函数值.3. 解析式:用关于自变量的数学式子表示函数与自变量之间的关系,这种式子叫做函数解析式.4. 函数自变量的取值范围确定自变量的取值范围时,不仅要考虑使函数关系式有意义,而且还要注意问题的实际意义.例题:1.某公司销售部门发现,该公司的销售收入随销售量的变化而变化,其中__________是自变量,_______________是因变量.2.下列四个图象中,y是关于x的函数的是____________.3.判断下列选项中的变量y是否为x的函数?①y=2x;②y=2x2;③y2=2x;④y=2|x|;⑤|y|=2x.同步练习:1.求下列函数自变量x的取值范围.(1)y=﹣x2﹣5x+6;(2)y=√4x −3;(3)y=√7−x 4+5x.2.著名的狄利克雷(DcicHer )函数是这样定义的:y={1,x 是有理数0,x 是无理数. (1)这个函数的自变量与因变量分别是什么?(2)这个函数的自变量的取值范围和函数值的取值范围分别是什么?(3)请分别写出当x ═1,√2,6.4,3.1415时的函数值.3.如图所示能表示y 是x 的函数是( ) A . B .C .D . 4.函数y=,自变量x 的取值范围是( ) A .x >1B .x ≥1 且 x ≠﹣2C .x ≥1D .x ≠﹣2 5.函数y=的自变量x 的取值范围是( ) A .x >﹣3B .x ≠﹣3C .x ≥﹣3D .x >﹣3且x ≠0三.函数的表示方法①函数的表示方法——图象法1. 函数图象对于一个函数,如果把自变量x与函数的每对对应值y分别作为点的横坐标、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.注:①以满足函数解析式的有序实数对为坐标的点一定在函数图象上;②函数图象上点的坐标满足函数解析式.2. 画函数图象的步骤:①列表(表中随机取出一些自变量的值及其对应的函数值);②描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表中数值对应的各点);③连线(按横坐标由小到大的顺序把描出的各点用平滑的曲线连接起来).3. 用图象法表示函数的优缺点优点:直观的反应两个变量之间的关系,形象的反应函数的一些性质及变化趋势.缺点:由图象所得到的有关数据和数量关系不准确.例题:1.小红帮弟弟荡秋千(如图1),秋千离地面的高度h(m)与摆动时间t(s)之间的关系如图2所示.(1)根据函数的定义,请判断变量h是否为关于t的函数?(2)结合图象回答:①当t=0.7s时,h的值是多少?并说明它的实际意义.②秋千摆动第一个来回需多少时间?同步练习:1.一天,王亮同学从家里跑步到体育馆,在那里锻炼了一阵后又走到某书店去买书,然后散步走回家如图反映的是在这一过程中,王亮同学离家的距离s(千米)与离家的时间t(分)之间的关系,请根据图象解答下列问题:(1)体育馆离家的距离为________千米,书店离家的距离为________千米;王亮同学在书店待了________分钟.(2)分别求王亮同学从体育馆走到书店的平均速度和从书店出来散步回家的平均速度.②函数的表示方法——列表法列表法的优缺点:优点:可以直接找到函数值.缺点:只能列出部分自变量与函数的对应值,总结出的规律不一定可靠.例题:1.父亲告诉小明:“距离地面越远,温度越低,”并给小明出示了下面的表格.根据上表,父亲还给小明出了下面几个问题,你和小明一起回答.(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)如果用h表示距离地面的高度,用t表示温度,那么随着h的变化,t是怎么变化的?(3)你知道距离地面5千米的高空温度是多少吗?(4)你能猜出距离地面6千米的高空温度是多少吗?③函数的表示方法——解析式法解析式法表示函数的优缺点优点:简单准确的反应两个变量之间的关系.缺点:不能形象直观的反应函数关系的变化趋势.有些函数关系不能用解析式表示.例题:1.将长为40cm,宽为15cm的长方形白纸,按图所示的方法粘合起来,粘合部分宽为5cm.(1)根据图,将表格补充完整.(2)设x张白纸粘合后的总长度为y cm,求y与x之间的函数解析式.(3)你认为粘合起来白纸的总长度可能为2017cm吗?为什么?。