2010年辽宁省高考数学试卷(文科)答案与解析
2010年高考文科数学试题(全国新课标卷)答案
2010年普通高等学校招生全国统一考试(新课标全国卷)文科数学答案1.D 【解析】由题可知,集合{|22}A x x=-剟,集合B ={0,l ,2,3,4,5, 6,7,8,9,10,11,12 ,13,14,15,16},所以集合AB ={0,1,2},故选D .2.C 【解析】由题可知,设(,)x y =b ,则2(8,6)(3,18)x y +=++=a b ,解得5,12x y =-=,故(5,12)=-b ,由16cos ,||||65⋅<>==a b a b a b ,故选C .3.B 【解析】由14z i ====+,可得1||2z ==,故选B . 4.A 【解析】由题可知,点(1,0)在曲线321y x x =-+上,求导可得232y x '=-,所以在点(1,0)处的切线的斜率1k =,切线过点(1,0),根据直线的点斜式可得过点(1,0)的曲线321y x x =-+的切线方程为1y x =-,故选A .5.D 【解析】设双曲线的标准方程为22221(0,0)x y a b a b-=>>,所以其渐近线方程为b y x a =±,因为点(4,2)-在渐近线上,所以12b a =,根据222c a b =+,可得22214c a a -=,解得254e =,e =,故选D .6.C 【解析】由题可知,质点P 的初始位置在0P ,所以此时点P 到x 轴的距离由题质点P 按照逆时针方向运动,所以应该是距离x 轴的距离越来越小.根据四个选项可得C 正确.7.B 【解析】由题可知,长方体的长、宽、高分别为2,,a a a ,其顶点在同一个球面上,所以球的直径等于长方体的体对角线的长度,故2R 解得R =,所以球的表面积2246S R a ππ==,故选B .8.D 【解析】根据程序框图可知,该程序框图的功能是计算1111122334(1)S k k =+++⋅⋅⋅+⨯⨯⨯⨯+, 现在输入的5N =,所以满足条件k N <的结果为11111111115(1)()()1223344556223566S =++++=-+-+⋅⋅⋅+-=⨯⨯⨯⨯⨯, 故选D .9.B 【解析】由题意可知函数()f x 是偶函数,所以当0x <时的解析式为()24(0)x f x x -=-<,所以当20x -<时,(2)(2)24x f x ---=-,要使(2)0f x ->,解得0x <;当20x -…时,2(2)24x f x --=-,要使2(2)240x f x --=->,解得4x >,综上{|(2)0}{|04}x f x x x x ->=<>或,故选B . 10.A 【解析】由题知,4cos 5α=-,α是第三项限的角,所以3sin 5α=-,由两角和的正弦公式可得sin()sin coscos sin44410πππααα+=+=-,故选A . 11.B 【解析】由题可知:平行四边形ABCD 的点D 的坐标为(0,4)-,点(,)x y 在平行四边形内部,如图,所以在(0,4)D -处目标函数25z x y =-取得最大值为20,在点(3,4)B 处目标函数25z x y =-取得最小值为-14,由题知点(,)x y 在平行四边形内部,所以端点取不到,故25z x y =-的取值范围是(-14,20),故选B .12.C 【解析】由题意可知,画出函数的图象,不妨设a b c <<,因为()()()f a f b f c ==,所以1ab =,c 的范围是( 10,12),所以abc 的范围是(10,12).13.222x y +=【解析】由题意可知,原点到直线20x y +-=的距离为圆的半径,即r ==,所以圆的方程为222x y +=. 14.1N N【解析】这种随机模拟的方法,是在[0,1]内生成了N 个点,而满足几条曲线围成的区域内的点是1N 个,所以根据比例关系1=S N S N矩形。
2010年高考试题文科数学(全国卷I)及答案解析
A
1 1 + x2
=
,
O
P
��� � ��� � ��� � ��� � PA • PB =| PA| ⋅ | PB| cos 2α
2 2 4 2
x 2 (1 − 2 sin2 α )
= B
��� � ��� � x ( x − 1) x − x x4 − x2 = ,令 PA • PB = y ,则 y = , x2 + 1 x2 + 1 x2 + 1
| PF1 |i| PF2 | =
(A)2 (B)4 (C) 6 (D) 8 8.B【命题意图】本小题主要考查双曲线定义、几何性质、余弦定理,考查转化的数学思想, 通过本题可以有效地考查考生的综合运用能力及运算能力. 【解析 1】.由余弦定理得 cos ∠ F1 P F2 =
| PF1 |2 + | PF2 |2 − | F1 F2 |2 2 | PF1 || PF2 |
D1 A1 D A O B1
C1
C B
面 AC D1 所 成 角 相 等 , 设 DO ⊥ 平 面 AC D1 , 由 等 体 积 法 得 VD − ACD1 = VD1− ACD , 即
1 1 S ∆ACD1 ⋅ DO = S∆ACD ⋅ DD1 .设 DD1=a, 3 3
则 S∆ ACD1 =
7.C【命题意图】本小题主要考查对数函数的性质、函数的单调性、函数的值域,考生在做本 小题时极易忽视 a 的取值范围,而利用均值不等式求得 a+b= a + 题者的用苦良心之处. 【解析 1】因为 f(a)=f(b), 所以|lga|=|lgb|, 所以 a=b(舍去) ,或 b =
1 ≥ 2 , 从而错选 D,这也是命 a
2010年辽宁省高考数学试卷(文科) (1)
2010年辽宁省高考数学试卷(文科)一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知集合U={1,3,5,7,9},A={1,5,7},则∁U A=()A.{1,3}B.{3,7,9}C.{3,5,9}D.{3,9}2.(5分)设a,b为实数,若复数,则()A.B.a=3,b=1 C.D.a=1,b=33.(5分)设S n为等比数列{a n}的前n项和,已知3S3=a4﹣2,3S2=a3﹣2,则公比q=()A.3 B.4 C.5 D.64.(5分)已知a>0,函数f(x)=ax2+bx+c,若x0满足关于x的方程2ax+b=0,则下列选项的命题中为假命题的是()A.∃x∈R,f(x)≤f(x0)B.∃x∈R,f(x)≥f(x0)C.∀x∈R,f (x)≤f(x0)D.∀x∈R,f(x)≥f(x0)5.(5分)如果执行右面的程序框图,输入n=6,m=4,那么输出的p等于()A.720 B.360 C.240 D.1206.(5分)设ω>0,函数y=sin(ωx+)+2的图象向右平移个单位后与原图象重合,则ω的最小值是()A.B.C.D.37.(5分)设抛物线y2=8x的焦点为F,准线为l,P为抛物线上一点,PA⊥l,A 为垂足.如果直线AF的斜率为,那么|PF|=()A.B.8 C.D.168.(5分)平面上O,A,B三点不共线,设,则△OAB的面积等于()A.B.C. D.9.(5分)设双曲线的一个焦点为F,虚轴的一个端点为B,如果直线FB与该双曲线的一条渐近线垂直,那么此双曲线的离心率为()A.B.C.D.10.(5分)设2a=5b=m,且,则m=()A. B.10 C.20 D.10011.(5分)已知S,A,B,C是球O表面上的点,SA⊥平面ABC,AB⊥BC,SA=AB=1,,则球O的表面积等于()A.4πB.3πC.2πD.π12.(5分)已知点P在曲线y=上,a为曲线在点P处的倾斜角,则a的取值范围是()A.[0,)B.[,) C.(,] D.[,π)二、填空题(共4小题,每小题5分,满分20分)13.(5分)三张卡片上分别写上字母E、E、B,将三张卡片随机地排成一行,恰好排成英文单词BEE的概率为.14.(5分)设S n为等差数列{a n}的前n项和,若S3=3,S6=24,则S9=.15.(5分)已知﹣1<x+y<4且2<x﹣y<3,则z=2x﹣3y的取值范围是.(答案用区间表示)16.(5分)如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为.三、解答题(共8小题,满分90分)17.(12分)在△ABC中,a、b、c分别为内角A、B、C的对边,且2asinA=(2b+c)sinB+(2c+b)sinC(Ⅰ)求A的大小;(Ⅱ)若sinB+sinC=1,试判断△ABC的形状.18.(12分)为了比较注射A,B两种药物后产生的皮肤疱疹的面积,选200只家兔做试验,将这200只家兔随机地分成两组,每组100只,其中一组注射药物A,另一组注射药物B.(Ⅰ)甲、乙是200只家兔中的2只,求甲、乙分在不同组的概率;(Ⅱ)下表1和表2分别是注射药物A和B后的试验结果.(疱疹面积单位:mm2)表1:注射药物A后皮肤疱疹面积的频数分布表表2:注射药物B后皮肤疱疹面积的频数分布表(ⅰ)完成下面频率分布直方图,并比较注射两种药物后疱疹面积的中位数大小;完成下面2×2列联表,并回答能否有99.9%的把握认为“注射药物A后的疱疹面积与注射药物B后的疱疹面积有差异”.表3:附:K2=.19.(12分)如图,棱柱ABC﹣A1B1C1的侧面BCC1B1是菱形,B1C⊥A1B(Ⅰ)证明:平面AB1C⊥平面A1BC1;(Ⅱ)设D是A1C1上的点,且A1B∥平面B1CD,求A1D:DC1的值.20.(12分)设F1,F2分别为椭圆(a>b>0)的左、右焦点,过F2的直线l与椭圆C相交于A,B两点,直线l的倾斜角为60°,F1到直线l的距离为.(Ⅰ)求椭圆C的焦距;(Ⅱ)如果,求椭圆C的方程.21.(12分)已知函数f(x)=(a+1)lnx+ax2+1.(Ⅰ)讨论函数f(x)的单调性;(Ⅱ)设a≤﹣2,证明:对任意x1,x2∈(0,+∞),|f(x1)﹣f(x2)|≥4|x1﹣x2|.22.(10分)如图,△ABC的角平分线AD的延长线交它的外接圆于点E.(1)证明:△ABE∽△ADC;(2)若△ABC的面积S=AD•AE,求∠BAC的大小.23.(10分)已知P为半圆C:(θ为参数,0≤θ≤π)上的点,点A 的坐标为(1,0),O为坐标原点,点M在射线OP上,线段OM与C的弧的长度均为.(1)以O为极点,x轴的正半轴为极轴建立极坐标系,求点M的极坐标;(2)求直线AM的参数方程.24.(10分)已知a,b,c均为正数,证明:≥6,并确定a,b,c为何值时,等号成立.2010年辽宁省高考数学试卷(文科)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知集合U={1,3,5,7,9},A={1,5,7},则∁U A=()A.{1,3}B.{3,7,9}C.{3,5,9}D.{3,9}【分析】从U中去掉A中的元素就可.【解答】解:从全集U中,去掉1,5,7,剩下的元素构成C U A.故选:D.【点评】集合补集就是从全集中去掉集合本身含有的元素后所构成的集合.2.(5分)设a,b为实数,若复数,则()A.B.a=3,b=1 C.D.a=1,b=3【分析】先化简,然后用复数相等的条件,列方程组求解.【解答】解:由可得1+2i=(a﹣b)+(a+b)i,所以,解得,,故选:A.【点评】本题考查了复数相等的概念及有关运算,考查计算能力.是基础题.3.(5分)设S n为等比数列{a n}的前n项和,已知3S3=a4﹣2,3S2=a3﹣2,则公比q=()A.3 B.4 C.5 D.6【分析】3S3=a4﹣2,3S2=a3﹣2,两式相减得3a3=a4﹣a3,由此能求出公比q=4.【解答】解:∵S n为等比数列{a n}的前n项和,3S3=a4﹣2,3S2=a3﹣2,两式相减得3a3=a4﹣a3,a4=4a3,∴公比q=4.故选:B.【点评】本题考查公比的求法,是基础题,解题时要认真审题,注意等比数列的性质的合理运用.4.(5分)已知a>0,函数f(x)=ax2+bx+c,若x0满足关于x的方程2ax+b=0,则下列选项的命题中为假命题的是()A.∃x∈R,f(x)≤f(x0)B.∃x∈R,f(x)≥f(x0)C.∀x∈R,f (x)≤f(x0)D.∀x∈R,f(x)≥f(x0)【分析】由x0满足关于x的方程2ax+b=0得出x=x0是二次函数的对称轴,由a >0可知二次函数有最小值.【解答】解:∵x0满足关于x的方程2ax+b=0,∴∵a>0,∴函数f(x)在x=x0处取到最小值是等价于∀x∈R,f(x)≥f(x0),所以命题C错误.故选:C.【点评】本题考查二次函数的最值问题,全称命题和特称命题真假的判断,注意对符号∃和∀的区分和理解.5.(5分)如果执行右面的程序框图,输入n=6,m=4,那么输出的p等于()A.720 B.360 C.240 D.120【分析】讨论k从1开始取,分别求出p的值,直到不满足k<4,退出循环,从而求出p的值,解题的关键是弄清循环次数.【解答】解:第一次:k=1,p=1×3=3;第二次:k=2,p=3×4=12;第三次:k=3,p=12×5=60;第四次:k=4,p=60×6=360此时不满足k<4.所以p=360.故选:B.【点评】本题主要考查了直到形循环结构,循环结构有两种形式:当型循环结构和直到型循环结构,当型循环是先判断后循环,直到型循环是先循环后判断,属于基础题.6.(5分)设ω>0,函数y=sin(ωx+)+2的图象向右平移个单位后与原图象重合,则ω的最小值是()A.B.C.D.3【分析】求出图象平移后的函数表达式,与原函数对应,求出ω的最小值.【解答】解:将y=sin(ωx+)+2的图象向右平移个单位后为=,所以有=2kπ,即,又因为ω>0,所以k≥1,故≥,故选:C.【点评】本题考查了三角函数图象的平移变换与三角函数的周期性,考查了同学们对知识灵活掌握的程度.7.(5分)设抛物线y2=8x的焦点为F,准线为l,P为抛物线上一点,PA⊥l,A 为垂足.如果直线AF的斜率为,那么|PF|=()A.B.8 C.D.16【分析】先根据抛物线方程求出焦点坐标,进而根据直线AF的斜率为求出直线AF的方程,然后联立准线和直线AF的方程可得点A的坐标,得到点P的坐标,根据抛物线的性质:抛物线上的点到焦点和准线的距离相等可得到答案.【解答】解:抛物线的焦点F(2,0),准线方程为x=﹣2,直线AF的方程为,所以点、,从而|PF|=6+2=8故选:B.【点评】本题考查了抛物线的定义、抛物线的焦点与准线、直线与抛物线的位置关系,考查了等价转化的思想.8.(5分)平面上O,A,B三点不共线,设,则△OAB的面积等于()A.B.C. D.【分析】利用三角形的面积公式表示出面积;再利用三角函数的平方关系将正弦表示成余弦;再利用向量的数量积公式求出向量夹角的余弦化简即得.【解答】解:==•=;故选:C.【点评】本题考查三角形的面积公式;同角三角函数的平方关系,利用向量的数量积求向量的夹角.9.(5分)设双曲线的一个焦点为F,虚轴的一个端点为B,如果直线FB与该双曲线的一条渐近线垂直,那么此双曲线的离心率为()A.B.C.D.【分析】先设出双曲线方程,则F,B的坐标可得,根据直线FB与渐近线y=垂直,得出其斜率的乘积为﹣1,进而求得b和a,c的关系式,进而根据双曲线方程a,b和c的关系进而求得a和c的等式,则双曲线的离心率可得.【解答】解:设双曲线方程为,则F(c,0),B(0,b)直线FB:bx+cy﹣bc=0与渐近线y=垂直,所以,即b2=ac所以c2﹣a2=ac,即e2﹣e﹣1=0,所以或(舍去)【点评】本题考查了双曲线的焦点、虚轴、渐近线、离心率,考查了两条直线垂直的条件,考查了方程思想.10.(5分)设2a=5b=m,且,则m=()A. B.10 C.20 D.100【分析】直接化简,用m代替方程中的a、b,然后求解即可.【解答】解:,∴m2=10,又∵m>0,∴.故选:A.【点评】本题考查指数式和对数式的互化,对数的运算性质,是基础题.11.(5分)已知S,A,B,C是球O表面上的点,SA⊥平面ABC,AB⊥BC,SA=AB=1,,则球O的表面积等于()A.4πB.3πC.2πD.π【分析】先寻找球心,根据S,A,B,C是球O表面上的点,则OA=OB=OC=OS,根据直角三角形的性质可知O为SC的中点,则SC即为直径,根据球的面积公式求解即可.【解答】解:∵已知S,A,B,C是球O表面上的点∴OA=OB=OC=OS=1又SA⊥平面ABC,AB⊥BC,SA=AB=1,,∴球O的直径为2R=SC=2,R=1,∴表面积为4πR2=4π.故选:A.【点评】本题主要考查了直线与平面垂直的性质,以及球的表面积等有关知识,考查空间想象能力、运算能力和推理论证能力,属于基础题.12.(5分)已知点P在曲线y=上,a为曲线在点P处的倾斜角,则a的取值范围是()A.[0,)B.[,) C.(,] D.[,π)【分析】利用导数在切点处的值是曲线的切线斜率,再根据斜率等于倾斜角的正切值求出角的范围.【解答】解:因为y=上的导数为y′=﹣=﹣,∵e x+e﹣x≥2=2,∴e x+e﹣x+2≥4,∴y′∈[﹣1,0)即tanα∈[﹣1,0),∵0≤α<π∴π≤α<π.即α的取值范围是[π,π).故选:D.【点评】本题主要考查直线的斜率关系、导数的几何意义.属于基础题.二、填空题(共4小题,每小题5分,满分20分)13.(5分)三张卡片上分别写上字母E、E、B,将三张卡片随机地排成一行,恰好排成英文单词BEE的概率为.【分析】由题意知本题是一个古典概型,试验包含的所有事件可以列举出三张卡片随机地排成一行,而满足条件的只有一种,根据概率公式得到结果.【解答】解:由题意知本题是一个古典概型,∵试验包含的所有事件可以列举出三张卡片随机地排成一行,共有三种情况:BEE,EBE,EEB,而满足条件的只有一种,∴概率为:.故答案为:【点评】字母排列问题是概率中经常出现的题目,一般可以列举出要求的事件,古典概型要求能够列举出所有事件和发生事件的个数,而不能列举的可以借助于排列数和组合数来表示.14.(5分)设S n为等差数列{a n}的前n项和,若S3=3,S6=24,则S9=63.【分析】利用等差数列的性质得S3,S6﹣S3,S9﹣S6成等差数列,由此能求出结果.【解答】解:∵S n为等差数列{a n}的前n项和,且S3=3,S6=24,∴S3,S6﹣S3,S9﹣S6成等差数列,设S9=x,则2(24﹣3)=3+(x﹣24),解得x=63.故答案为:63.【点评】本题考查等差数列的前9项和的求法,解题时要认真审题,注意等差数列性质的合理运用.15.(5分)已知﹣1<x+y<4且2<x﹣y<3,则z=2x﹣3y的取值范围是(3,8).(答案用区间表示)【分析】本题考查的知识点是线性规划,处理的思路为:根据已知的约束条件画出满足约束条件的可行域,再用角点法,求出目标函数的最大值和最小值,再根据最值给出目标函数的取值范围.【解答】解:画出不等式组表示的可行域如下图示:在可行域内平移直线z=2x﹣3y,当直线经过x﹣y=2与x+y=4的交点A(3,1)时,目标函数有最小值z=2×3﹣3×1=3;当直线经过x+y=﹣1与x﹣y=3的交点B(1,﹣2)时,目标函数有最大值z=2×1+3×2=8.z=2x﹣3y的取值范围是(3,8).故答案为:(3,8).【点评】用图解法解决线性规划问题时,分析题目的已知条件,找出约束条件和目标函数是关键,可先将题目中的量分类、列出表格,理清头绪,然后列出不等式组(方程组)寻求约束条件,并就题目所述找出目标函数.然后将可行域各角点的值一一代入,最后比较,即可得到目标函数的最优解.16.(5分)如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为.【分析】结合题意及图形,可知几何体为一个底面边长为2的正方形且有一条长为2的侧棱垂直于底面的四棱锥,还原几何体,求解即可.【解答】解:由三视图可知,此多面体是一个底面边长为2的正方形,且有一条长为2的侧棱垂直于底面的四棱锥,所以最长棱长为.【点评】本题考查了三视图视角下多面体棱长的最值问题,考查了同学们的识图能力以及由三视图还原物体的能力.三、解答题(共8小题,满分90分)17.(12分)在△ABC中,a、b、c分别为内角A、B、C的对边,且2asinA=(2b+c)sinB+(2c+b)sinC(Ⅰ)求A的大小;(Ⅱ)若sinB+sinC=1,试判断△ABC的形状.【分析】(Ⅰ)利用正弦定理把题设等式中的角的正弦转化成边,求得a,b和c 关系式,代入余弦定理中求得cosA的值,进而求得A.(Ⅱ)把(Ⅰ)中a,b和c关系式利用正弦定理转化成角的正弦,与sinB+sinC=1联立求得sinB和sinC的值,进而根据C,B的范围推断出B=C,可知△ABC是等腰的钝角三角形.【解答】解:(Ⅰ)由已知,根据正弦定理得2a2=(2b+c)b+(2c+b)c即a2=b2+c2+bc由余弦定理得a2=b2+c2﹣2bccosA故(Ⅱ)由(Ⅰ)得sin2A=sin2B+sin2C+sinBsinC.变形得=(sinB+sinC)2﹣sinBsinC又sinB+sinC=1,得sinBsinC=上述两式联立得因为0°<B<60°,0°<C<60°,故B=C=30°所以△ABC是等腰的钝角三角形.【点评】本题主要考查了正弦定理和余弦定理的应用.在解三角形问题中一般借助正弦定理和余弦定理边化角,角化边达到解题的目的.18.(12分)为了比较注射A,B两种药物后产生的皮肤疱疹的面积,选200只家兔做试验,将这200只家兔随机地分成两组,每组100只,其中一组注射药物A,另一组注射药物B.(Ⅰ)甲、乙是200只家兔中的2只,求甲、乙分在不同组的概率;(Ⅱ)下表1和表2分别是注射药物A和B后的试验结果.(疱疹面积单位:mm2)表1:注射药物A后皮肤疱疹面积的频数分布表表2:注射药物B 后皮肤疱疹面积的频数分布表(ⅰ)完成下面频率分布直方图,并比较注射两种药物后疱疹面积的中位数大小;完成下面2×2列联表,并回答能否有99.9%的把握认为“注射药物A 后的疱疹面积与注射药物B 后的疱疹面积有差异”. 表3:附:K 2=.【分析】(1)利用组合数找出所有事件的个数n ,基本事件的个数m ,代入古典概率计算公式p=(2)由频数分布表中的频数求出每组的,画出频率分布直方图,完成2×2列联表,代入计算随机变量值后与临界点比较判断两变量的相关性的大小.【解答】解:(Ⅰ)从200选100的组合数C 200100,记:“甲、乙两只家兔分在不同组”为事件A ,则事件A 包含的情况有2C 19899∴(4分)(Ⅱ)(i)图Ⅰ注射药物A后皮肤疱疹面积的频率分布直方图图Ⅱ注射药物B后皮肤疱疹面积的频率分布直方图可以看出注射药物A后的疱疹面积的中位数在65至70之间,而注射药物B后的疱疹面积的中位数在70至75之间,所以注射药物A后疱疹面积的中位数小于注射药物B后疱疹面积的中位数.(8分)(ii)表3:由于K2>10.828,所以有99.9%的把握认为“注射药物A后的疱疹面积与注射药物B后的疱疹面积有差异”.(12分)【点评】本题考查的内容为:利用组合数求古典概率,由频数分布表画频率分布直方图及2×2列联表,考查独立性检验的计算公式与临界值比较以判断两个变量的关联性.要注意频率分布直方图的纵轴是19.(12分)如图,棱柱ABC﹣A1B1C1的侧面BCC1B1是菱形,B1C⊥A1B(Ⅰ)证明:平面AB1C⊥平面A1BC1;(Ⅱ)设D是A1C1上的点,且A1B∥平面B1CD,求A1D:DC1的值.【分析】(Ⅰ)证明平面AB1C内的直线B1C垂直平面A1BC1,内的两条相交直线A1B,BC1,即可证明平面AB1C⊥平面A1BC1;(Ⅱ)D是A1C1上的点,且A1B∥平面B1CD,BC1交B1C于点E,连接DE,E是BC1的中点,推出D为A1C1的中点,可得A1D:DC1的值.【解答】(Ⅰ)证明:因为侧面BCC1B1是菱形,所以B1C⊥BC1又已知B1C⊥A1B,且A1B∩BC1=B,又B1C⊥平面A1BC1,又B1C⊂平面AB1C,所以平面AB1C⊥平面A1BC1.(Ⅱ)解:设BC1交B1C于点E,连接DE,则DE是平面A1BC1与平面B1CD的交线,因为A1B∥平面B1CD,所以A1B∥DE.又E是BC1的中点,所以D为A1C1的中点.即A1D:DC1=1.【点评】本题考查平面与平面垂直的判定,直线与平面平行的性质,考查空间想象能力,逻辑思维能力,是中档题.20.(12分)设F1,F2分别为椭圆(a>b>0)的左、右焦点,过F2的直线l与椭圆C相交于A,B两点,直线l的倾斜角为60°,F1到直线l的距离为.(Ⅰ)求椭圆C的焦距;(Ⅱ)如果,求椭圆C的方程.【分析】(Ⅰ)过F1作F1⊥l可直接根据直角三角形的边角关系得到,求得c的值,进而可得到焦距的值.(Ⅱ)假设点A,B的坐标,再由点斜式得到直线l的方程,然后联立直线与椭圆方程消去x得到关于y的一元二次方程,求出两根,再由可得y1与y2的关系,再结合所求得到y1与y2的值可得到a,b的值,进而可求得椭圆方程.【解答】解:(Ⅰ)设焦距为2c,由已知可得F1到直线l的距离.所以椭圆C的焦距为4.(Ⅱ)设A(x1,y1),B(x2,y2),可设y1<0,y2>0,直线l的方程为.联立,y2+y+﹣1=0解得.因为.即.得.故椭圆C的方程为.【点评】本题主要考查椭圆的基本性质.考查考生对椭圆基本性质的理解和认知,椭圆的基本性质是高考的重点内容,每年必考,一定要熟练掌握并能灵活运用.21.(12分)已知函数f(x)=(a+1)lnx+ax2+1.(Ⅰ)讨论函数f(x)的单调性;(Ⅱ)设a≤﹣2,证明:对任意x1,x2∈(0,+∞),|f(x1)﹣f(x2)|≥4|x1﹣x2|.【分析】(1)先求出函数的定义域,然后对函数f(x)进行求导,根据导函数大于0时原函数单调递增、导函数小于0时原函数单调递减对a分3种情况进行讨论.(2)先根据a的范围对函数f(x)的单调性进行判断,然后根据单调性去绝对值,将问题转化为证明函数g(x)=f(x)+4x的单调性问题.【解答】解:(Ⅰ)f(x)的定义域为(0,+∞),.当a≥0时,f′(x)>0,故f(x)在(0,+∞)单调增加;当a≤﹣1时,f′(x)<0,故f(x)在(0,+∞)单调减少;当﹣1<a<0时,令f′(x)=0,解得x=.当x∈(0,)时,f′(x)>0;x∈(,+∞)时,f′(x)<0,故f(x)在(0,)单调增加,在(,+∞)单调减少.(Ⅱ)不妨假设x1≤x2.由于a≤﹣2,故f(x)在(0,+∞)单调递减.所以|f(x1)﹣f(x2)|≥4|x1﹣x2|等价于f(x1)﹣f(x2)≥4x2﹣4x1,即f(x2)+4x2≤f(x1)+4x1.令g(x)=f(x)+4x,则+4=.于是g′(x)≤=≤0.从而g(x)在(0,+∞)单调减少,故g(x1)≥g(x2),即f(x1)+4x1≥f(x2)+4x2,故对任意x1,x2∈(0,+∞),|f(x1)﹣f(x2)|≥4|x1﹣x2|.【点评】本题主要考查函数的单调性与其导函数正负之间的关系,即当导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减.22.(10分)如图,△ABC的角平分线AD的延长线交它的外接圆于点E.(1)证明:△ABE∽△ADC;(2)若△ABC的面积S=AD•AE,求∠BAC的大小.【分析】(1)要判断两个三角形相似,可以根据三角形相似判定定理进行证明,但注意观察已知条件中给出的是角的关系,故采用判定定理1更合适,故需要再找到一组对应角相等,由圆周角定理,易得满足条件的角.(2)根据(1)的结论,我们可得三角形对应对成比例,由此我们可以将△ABC的面积转化为S=AB•AC,再结合三角形面积公式,不难得到∠BAC 的大小.【解答】证明:(1)由已知△ABC的角平分线为AD,可得∠BAE=∠CAD因为∠AEB与∠ACB是同弧上的圆周角,所以∠AEB=∠ACD故△ABE∽△ADC.解:(2)因为△ABE∽△ADC,所以,即AB•AC=AD•AE.又S=AB•ACsin∠BAC,且S=AD•AE,故AB•ACsin∠BAC=AD•AE.则sin∠BAC=1,又∠BAC为三角形内角,所以∠BAC=90°.【点评】相似三角形有三个判定定理:判定定理1:两角对应相等的两个三角形相似;判定定理2:三边对应成比例的两个三角形相似;判定定理3:两边对应成比例,并且夹角相等的两个三角形相似.在证明三角形相似时,要根据已知条件选择适当的定理.23.(10分)已知P为半圆C:(θ为参数,0≤θ≤π)上的点,点A 的坐标为(1,0),O为坐标原点,点M在射线OP上,线段OM与C的弧的长度均为.(1)以O为极点,x轴的正半轴为极轴建立极坐标系,求点M的极坐标;(2)求直线AM的参数方程.【分析】(1)利用直角坐标与极坐标间的关系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,进行代换即得.(2)先在直角坐标系中算出点M、A的坐标,再利用直角坐标的直线AM的参数方程求得参数方程即可.【解答】解:(Ⅰ)由已知,M点的极角为,且M点的极径等于,故点M的极坐标为(,).(5分)(Ⅱ)M点的直角坐标为(),A(1,0),故直线AM的参数方程为(t为参数)(10分)【点评】本题考查点的极坐标和直角坐标的互化,能在极坐标系中用极坐标刻画点的位置,体会在极坐标系和平面直角坐标系中刻画点的位置的区别,能进行极坐标和直角坐标的互化.24.(10分)已知a,b,c均为正数,证明:≥6,并确定a,b,c为何值时,等号成立.【分析】证法一:两次利用基本不等式放小,此处不用考虑等号成立的条件,因等号不成立不影响不等号的传递性.证法二:先用基本不等式推出a2+b2+c2≥ab+bc+ac与两者之和用基本不等式放小,整体上只用了一次放缩法.其本质与证法一同.【解答】证明:证法一:因为a,b,c均为正数,由平均值不等式得①所以②故.又③所以原不等式成立.当且仅当a=b=c时,①式和②式等号成立.当且仅当时,③式等号成立.即当且仅当a=b=c=时,原式等号成立.证法二:因为a,b,c均为正数,由基本不等式得所以a2+b2+c2≥ab+bc+ac①同理②故③所以原不等式成立.当且仅当a=b=c时,①式和②式等号成立,当且仅当a=b=c,(ab)2=(bc)2=(ac)2=3时,③式等号成立.即当且仅当a=b=c=时,原式等号成立.【点评】考查放缩法在证明不等式中的应用,本题在用缩法时多次用到基本不等式,请读者体会本题证明过程中不考虑等号是否成立的原理,并与利用基本不等式求最值再据最值成立的条件求参数题型比较.深入分析等号成立的条件什么时候必须考虑,什么时候可以不考虑.。
2010年全国统一高考数学试卷(文科)(新课标)解析版
2010年全国统一高考数学试卷(文科)(新课标)解析版参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合{|||2A x x =…,}x R ∈,{|4B x =,}x Z ∈,则(A B = )A .(0,2)B .[0,2]C .{0,2}D .{0,1,2}【考点】1E :交集及其运算 【专题】11:计算题【分析】由题意可得{|22}A x x =-剟,{0B =,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16},从而可求 【解答】解:{|||2}{|22}A x x x x ==-剟?{|4B x =,}{0x Z ∈=,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}则{0A B =,1,2}故选:D .【点评】本题主要考查了集合的交集的求解,解题的关键是准确求解A ,B ,属于基础试题2.(5分)平面向量,a b ,已知(4,3)a =,2(3,18)a b +=,则,a b 夹角的余弦值等于( ) A .865B .865-C .1665D .1665-【考点】9S :数量积表示两个向量的夹角【分析】先设出b 的坐标,根据(4,3)a =,2(3,18)a b +=,求出坐标,根据数量积的坐标公式的变形公式,求出两个向量的夹角的余弦 【解答】解:设(,)b x y =, (4,3)a =,2(3,18)a b +=,∴(5,12)b =-2036cos 513θ-+∴=⨯1665=,【点评】本题是用数量积的变形公式求向量夹角的余弦值,数量积的主要应用:①求模长;②求夹角;③判垂直,实际上在数量积公式中可以做到知三求一.3.(5分)已知复数Z =,则||(z = )A .14B .12C .1D .2【考点】5A :复数的运算 【专题】11:计算题【分析】由复数的代数形式的乘除运算化简可得4iZ =+,由复数的模长公式可得答案.【解答】解:化简得13213iZ i+===-+1(3)(13)12323224(13)(13)i i i ii i +--=-=-=-++-,故1||2z =, 故选:B .【点评】本题考查复数的代数形式的乘除运算,涉及复数的模长,属基础题. 4.(5分)曲线321y x x =-+在点(1,0)处的切线方程为( ) A .1y x =-B .1y x =-+C .22y x =-D .22y x =-+【考点】6H :利用导数研究曲线上某点切线方程 【专题】1:常规题型;11:计算题【分析】欲求在点(1,0)处的切线方程,只须求出其斜率的值即可,故先利用导数求出在1x =处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决. 【解答】解:验证知,点(1,0)在曲线上321y x x =-+,232y x '=-,所以1|1x k y -='=,得切线的斜率为1,所以1k =; 所以曲线()y f x =在点(1,0)处的切线方程为: 01(1)y x -=⨯-,即1y x =-.【点评】本小题主要考查直线的斜率、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力.属于基础题.5.(5分)中心在原点,焦点在x 轴上的双曲线的一条渐近线经过点(4,2),则它的离心率为( )A BC D 【考点】KC :双曲线的性质 【专题】11:计算题【分析】先求渐近线斜率,再用222c a b =+求离心率. 【解答】解:渐近线的方程是by x a =±,24ba∴=,12b a =,2a b =,c =,c e a ==. 故选:D .【点评】本题考查双曲线的几何性质.6.(5分)如图,质点P 在半径为2的圆周上逆时针运动,其初始位置为0P ,角速度为1,那么点P 到x 轴距离d 关于时间t 的函数图象大致为( )A .B .C .D .【考点】3A :函数的图象与图象的变换【分析】本题的求解可以利用排除法,根据某具体时刻点P 的位置到到x 轴距离来确定答案.【解答】解:通过分析可知当0t =时,点P 到x 轴距离d ,于是可以排除答案A ,D , 再根据当4t π=时,可知点P 在x 轴上此时点P 到x 轴距离d 为0,排除答案B ,故选:C .【点评】本题主要考查了函数的图象,以及排除法的应用和数形结合的思想,属于基础题. 7.(5分)设长方体的长、宽、高分别为2a 、a 、a ,其顶点都在一个球面上,则该球的表面积为( ) A .23a πB .26a πC .212a πD .224a π【考点】LG :球的体积和表面积 【专题】11:计算题【分析】本题考查的知识点是球的体积和表面积公式,由长方体的长、宽、高分别为2a 、a 、a ,其顶点都在一个球面上,则长方体的对角线即为球的直径,即球的半径R 满足22(2)6R a =,代入球的表面积公式,24S R π=球,即可得到答案. 【解答】解:根据题意球的半径R 满足22(2)6R a =,所以2246S R a ππ==球. 故选:B .【点评】长方体的外接球直径等于长方体的对角线长.8.(5分)如果执行如图的框图,输入5N =,则输出的数等于( )A .54B .45C .65D .56【考点】EF :程序框图 【专题】28:操作型【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出111111223344556S =++++⨯⨯⨯⨯⨯的值. 【解答】解:分析程序中各变量、各语句的作用, 再根据流程图所示的顺序,可知: 该程序的作用是累加并输出111111223344556S =++++⨯⨯⨯⨯⨯的值. 11111151122334455666S =++++=-=⨯⨯⨯⨯⨯ 故选:D .【点评】根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是::①分析流程图(或伪代码),从流程图(或伪代码)中即要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模.9.(5分)设偶函数()f x 满足()24(0)x f x x =-…,则{|(2)0}(x f x ->= ) A .{|2x x <-或4}x > B .{|0x x <或4}x > C .{|0x x <或6}x >D .{|2x x <-或2}x >【考点】3K :函数奇偶性的性质与判断 【专题】11:计算题【分析】由偶函数()f x 满足()24(0)x f x x =-…,可得||()(||)24x f x f x ==-,根据偶函数的性质将函数转化为绝对值函数,再求解不等式,可得答案.【解答】解:由偶函数()f x 满足()24(0)x f x x =-…,可得||()(||)24x f x f x ==-, 则|2|(2)(|2|)24x f x f x --=-=-,要使(|2|)0f x ->,只需|2|240x -->,|2|2x -> 解得4x >,或0x <. 应选:B .【点评】本题主要考查偶函数性质、不等式的解法以及相应的运算能力,解答本题的关键是利用偶函数的性质将函数转化为绝对值函数,从而简化计算. 10.(5分)若cos 45α=-,α是第三象限的角,则sin()(4πα+= )A .BC .D 【考点】GG :同角三角函数间的基本关系;GP :两角和与差的三角函数 【专题】11:计算题【分析】根据α的所在的象限以及同角三角函数的基本关系求得sin α的值,进而利用两角和与差的正弦函数求得答案. 【解答】解:α是第三象限的角3sin 5α∴==-,所以324s i()445ππααα+=+=故选:A .【点评】本题主要考查了两角和与差的正弦函数,以及同角三角函数的基本关系的应用.根据角所在的象限判断三角函数值的正负是做题过程中需要注意的.11.(5分)已知ABCD 的三个顶点为(1,2)A -,(3,4)B ,(4,2)C -,点(,)x y 在ABCD 的内部,则25z x y =-的取值范围是( ) A .(14,16)-B .(14,20)-C .(12,18)-D .(12,20)-【考点】7C :简单线性规划 【专题】11:计算题;16:压轴题【分析】根据点坐标与向量坐标之间的关系,利用向量相等求出顶点D 的坐标是解决问题的关键.结合线性规划的知识平移直线求出目标函数的取值范围. 【解答】解:由已知条件得(0,4)AB DC D =⇒-, 由25z x y =-得255z y x =-,平移直线当直线经过点(3,4)B 时,5z-最大, 即z 取最小为14-;当直线经过点(0,4)D -时,5z-最小,即z 取最大为20,又由于点(,)x y 在四边形的内部,故(14,20)z ∈-. 如图:故选B .【点评】本题考查平行四边形的顶点之间的关系,用到向量坐标与点坐标之间的关系,体现了向量的工具作用,考查学生线性规划的理解和认识,考查学生的数形结合思想.属于基本题型.12.(5分)已知函数||,010()16,102lgx x f x x x <⎧⎪=⎨-+>⎪⎩…,若a ,b ,c 互不相等,且f (a )f =(b )f =(c ),则abc 的取值范围是( ) A .(1,10)B .(5,6)C .(10,12)D .(20,24)【考点】3A :函数的图象与图象的变换;3B :分段函数的解析式求法及其图象的作法;4H :对数的运算性质;4N :对数函数的图象与性质 【专题】13:作图题;16:压轴题;31:数形结合【分析】画出函数的图象,根据f (a )f =(b )f =(c ),不妨a b c <<,求出abc 的范围即可.【解答】解:作出函数()f x 的图象如图, 不妨设a b c <<,则16(0,1)2lga lgb c -==-+∈1ab =,10612c <-+<则(10,12)abc c =∈. 故选:C .【点评】本题主要考查分段函数、对数的运算性质以及利用数形结合解决问题的能力. 二、填空题:本大题共4小题,每小题5分.13.(5分)圆心在原点上与直线20x y +-=相切的圆的方程为 222x y += . 【考点】1J :圆的标准方程;9J :直线与圆的位置关系【分析】可求圆的圆心到直线的距离,就是半径,写出圆的方程.【解答】解:圆心到直线的距离:r =,所求圆的方程为222x y +=.故答案为:222x y +=【点评】本题考查圆的标准方程,直线与圆的位置关系,是基础题.14.(5分)设函数()y f x =为区间(0,1]上的图象是连续不断的一条曲线,且恒有0()1f x 剟,可以用随机模拟方法计算由曲线()y f x =及直线0x =,1x =,0y =所围成部分的面积S ,先产生两组(每组N 个),区间(0,1]上的均匀随机数1x ,2x ,⋯,n x 和1y ,2y ,⋯,n y ,由此得到N 个点(x ,)(1y i -,2⋯,)N .再数出其中满足1()(1y f x i =…,2⋯,)N 的点数1N ,那么由随机模拟方法可得S 的近似值为1N N. 【考点】CE :模拟方法估计概率;CF :几何概型【分析】由题意知本题是求10()f x dx ⎰,而它的几何意义是函数()f x (其中0()1)f x 剟的图象与x 轴、直线0x =和直线1x =所围成图形的面积,积分得到结果. 【解答】解:1()f x dx ⎰的几何意义是函数()f x (其中0()1)f x 剟的图象与x 轴、直线0x =和直线1x =所围成图形的面积,∴根据几何概型易知110()N f x dx N≈⎰.故答案为:1N N. 【点评】古典概型和几何概型是我们学习的两大概型,古典概型要求能够列举出所有事件和发生事件的个数,而不能列举的就是几何概型,几何概型的概率的值是通过长度、面积和体积的比值得到.15.(5分)一个几何体的正视图为一个三角形,则这个几何体可能是下列几何体中的 ①②③⑤ (填入所有可能的几何体前的编号)①三棱锥②四棱锥③三棱柱④四棱柱⑤圆锥⑥圆柱.【考点】7L :简单空间图形的三视图 【专题】15:综合题;16:压轴题【分析】一个几何体的正视图为一个三角形,由三视图的正视图的作法判断选项. 【解答】解:一个几何体的正视图为一个三角形,显然①②⑤正确;③是三棱柱放倒时也正确;④⑥不论怎样放置正视图都不会是三角形; 故答案为:①②③⑤【点评】本题考查简单几何体的三视图,考查空间想象能力,是基础题.16.(5分)在ABC ∆中,D 为BC 边上一点,3BC BD =,AD =,135ADB ∠=︒.若AC ,则BD = 2【考点】HR :余弦定理【专题】11:计算题;16:压轴题【分析】先利用余弦定理可分别表示出AB ,AC ,把已知条件代入整理,根据3BC BD =推断出2C D B D =,进而整理2222AC CD CD =+- 得22424AC BD BD =+-把AC ,代入整理,最后联立方程消去AB 求得BD 的方程求得BD .【解答】用余弦定理求得2222cos135AB BD AD AD BD =+-︒ 2222cos45AC CD AD AD CD =+-︒即2222AB BD BD =++①2222AC CD CD =+-② 又3BC BD = 所以2CD BD =所以 由(2)得22424AC BD BD =+-(3)因为 A C A B所以 由(3)得222424AB BD BD =+- (4) (4)2-(1) 2410BD BD --=求得2BD =故答案为:2【点评】本题主要考查了余弦定理的应用.考查了学生创造性思维能力和基本的推理能力. 三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(10分)设等差数列{}n a 满足35a =,109a =-. (Ⅰ)求{}n a 的通项公式;(Ⅱ)求{}n a 的前n 项和n S 及使得n S 最大的序号n 的值. 【考点】84:等差数列的通项公式;85:等差数列的前n 项和【分析】(1)设出首项和公差,根据35a =,109a =-,列出关于首项和公差的二元一次方程组,解方程组得到首项和公差,写出通项.(2)由上面得到的首项和公差,写出数列{}n a 的前n 项和,整理成关于n 的一元二次函数,二次项为负数求出最值.【解答】解:(1)由1(1)n a a n d =+-及35a =,109a =-得 199a d +=-,125a d +=解得2d =-,19a =,数列{}n a 的通项公式为112n a n =- (2)由(1)知21(1)102n n n S na d n n -=+=-. 因为2(5)25n S n =--+. 所以5n =时,n S 取得最大值.【点评】数列可看作一个定义域是正整数集或它的有限子集的函数,当自变量从小到大依次取值对应的一列函数值,因此它具备函数的特性.18.(10分)如图,已知四棱锥P ABCD -的底面为等腰梯形,//AB CD ,AC BD ⊥,垂足为H ,PH 是四棱锥的高. (Ⅰ)证明:平面PAC ⊥平面PBD ;(Ⅱ)若AB 60APB ADB ∠=∠=︒,求四棱锥P ABCD -的体积.【考点】LF :棱柱、棱锥、棱台的体积;LY :平面与平面垂直 【专题】11:计算题;14:证明题;35:转化思想【分析】(Ⅰ)要证平面PAC ⊥平面PBD ,只需证明平面PAC 内的直线AC ,垂直平面PBD 内的两条相交直线PH ,BD 即可.(Ⅱ)AB 60APB ADB ∠=∠=︒,计算等腰梯形ABCD 的面积,PH 是棱锥的高,然后求四棱锥P ABCD -的体积. 【解答】解:(1)因为PH 是四棱锥P ABCD -的高.所以AC PH ⊥,又AC BD ⊥,PH ,BD 都在平PHD 内,且PH BD H =.所以AC ⊥平面PBD .故平面PAC ⊥平面PBD (6分)(2)因为ABCD 为等腰梯形,//AB CD ,AC BD ⊥,AB =所以HA HB = 因为60APB ADB ∠=∠=︒所以PA PB ==1HD HC ==.可得PH =.等腰梯形ABCD 的面积为122S ACxBD ==+9分)所以四棱锥的体积为1(23V=⨯+.(12分)【点评】本题考查平面与平面垂直的判定,棱柱、棱锥、棱台的体积,考查空间想象能力,计算能力,推理能力,是中档题.19.(10分)为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如表:(1)估计该地区老年人中,需要志愿者提供帮助的比例;(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?(3)根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中需要志愿者提供帮助的老年人比例?说明理由.附:2()()()()()n ad bcKa b c d a c b d-=++++.【考点】BL:独立性检验【专题】11:计算题;5I:概率与统计【分析】(1)由样本的频率率估计总体的概率,(2)求2K的观测值查表,下结论;(3)由99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关,则可按性别分层抽样.【解答】解:(1)调查的500位老年人中有70位需要志愿者提供帮助,因此在该地区老年人中,需要帮助的老年人的比例的估计值为7014%500=(2)2K的观测值2500(4027030160)9.96720030070430k⨯-⨯=≈⨯⨯⨯因为9.967 6.635>,且2( 6.635)0.01P K=…,所以有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关.(3)根据(2)的结论可知,该地区的老年人是否需要志愿者提供帮助与性别有关,并且从样本数据能够看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男女两层,并采取分层抽样方法比简单随机抽样方法更好.【点评】本题考查了抽样的目的,独立性检验的方法及抽样的方法选取,属于基础题.20.(10分)设1F ,2F 分别是椭圆222:1(01)y E x b b+=<<的左、右焦点,过1F 的直线l 与E相交于A 、B 两点,且2||AF ,||AB ,2||BF 成等差数列. (Ⅰ)求||AB ;(Ⅱ)若直线l 的斜率为1,求b 的值. 【考点】4K :椭圆的性质 【专题】15:综合题【分析】(1)由椭圆定义知22||||||4AF AB BF ++=,再由2||AF ,||AB ,2||BF 成等差数列,能够求出||AB 的值.(2)L 的方程式为y x c =+,其中c ,设1(A x ,1)y ,1(B x ,1)y ,则A ,B 两点坐标满足方程组2221y x cy x b =+⎧⎪⎨+=⎪⎩,化简得222(1)2120b x cx b +++-=.然后结合题设条件和根与系数的关系能够求出b 的大小.【解答】解:(1)由椭圆定义知22||||||4AF AB BF ++= 又222||||||AB AF BF =+,得4||3AB =(2)L 的方程式为y x c =+,其中c =设1(A x ,1)y ,2(B x ,2)y ,则A ,B 两点坐标满足方程组2221y x c y x b =+⎧⎪⎨+=⎪⎩.,化简得222(1)2120b x cx b +++-=.则2121222212,11c b x x x x b b --+==++. 因为直线AB 的斜率为1,所以21|||AB x x =-即214|3x x =-. 则224212122222284(1)4(12)8()49(1)1(1)b b b x x x x b b b --=+-=-=+++.解得b . 【点评】本题综合考查椭圆的性质及其运用和直线与椭圆的位置关系,解题时要注意公式的灵活运用.21.设函数2()(1)x f x x e ax =-- (Ⅰ)若12a =,求()f x 的单调区间; (Ⅱ)若当0x …时()0f x …,求a 的取值范围. 【考点】6B :利用导数研究函数的单调性 【专题】15:综合题;53:导数的综合应用【分析】()I 求导函数,由导数的正负可得函数的单调区间;()()(1)x II f x x e ax =--,令()1x g x e ax =--,分类讨论,确定()g x 的正负,即可求得a 的取值范围. 【解答】解:1()2I a =时,21()(1)2x f x x e x =--,()1(1)(1)x x x f x e xe x e x '=-+-=-+ 令()0f x '>,可得1x <-或0x >;令()0f x '<,可得10x -<<;∴函数的单调增区间是(,1)-∞-,(0,)+∞;单调减区间为(1,0)-;()()(1)x II f x x e ax =--.令()1x g x e ax =--,则()x g x e a '=-.若1a …,则当(0,)x ∈+∞时,()0g x '>,()g x 为增函数, 而(0)0g =,从而当0x …时()0g x …,即()0f x …. 若1a >,则当(0,)x lna ∈时,()0g x '<,()g x 为减函数, 而(0)0g =,从而当(0,)x lna ∈时,()0g x <,即()0f x <. 综合得a 的取值范围为(-∞,1]. 另解:当0x =时,()0f x =成立;当0x >,可得10xe ax --…,即有1x e a x-…的最小值,由1x y e x =--的导数为1x y e '=-,当0x >时,函数y 递增;0x <时,函数递减, 可得函数y 取得最小值0,即10x e x --…,0x >时,可得11x e x-…, 则1a ….【点评】本题考查导数知识的运用,考查函数的单调性,考查分类讨论的数学思想,属于中档题.22.(10分)如图:已知圆上的弧AC BD =,过C 点的圆的切线与BA 的延长线交于E 点,证明:(Ⅰ)ACE BCD ∠=∠. (Ⅱ)2BC BE CD =.【考点】9N :圆的切线的判定定理的证明;NB :弦切角 【专题】14:证明题【分析】()I 先根据题中条件:“AC BD =”,得BCD ABC ∠=∠.再根据EC 是圆的切线,得到ACE ABC ∠=∠,从而即可得出结论. ()II 欲证2BC BE = x CD .即证BC CDBE BC=.故只须证明~BDC ECB ∆∆即可. 【解答】解:(Ⅰ)因为AC BD =, 所以BCD ABC ∠=∠. 又因为EC 与圆相切于点C , 故ACE ABC ∠=∠所以ACE BCD ∠=∠.(5分)(Ⅱ)因为ECB CDB ∠=∠,EBC BCD ∠=∠, 所以~BDC ECB ∆∆, 故BC CDBE BC=. 即2BC BE CD =⨯.(10分)【点评】本题主要考查圆的切线的判定定理的证明、弦切角的应用、三角形相似等基础知识,考查运化归与转化思想.属于基础题.23.(10分)已知直线11cos (sin x t C t y t αα=+⎧⎨=⎩为参数),2cos (sin x C y θθθ=⎧⎨=⎩为参数),(Ⅰ)当3πα=时,求1C 与2C 的交点坐标;(Ⅱ)过坐标原点O 做1C 的垂线,垂足为A ,P 为OA 中点,当α变化时,求P 点的轨迹的参数方程,并指出它是什么曲线.【考点】3J :轨迹方程;JE :直线和圆的方程的应用;4Q :简单曲线的极坐标方程;QJ :直线的参数方程;QK :圆的参数方程 【专题】15:综合题;16:压轴题【分析】()I 先消去参数将曲线1C 与2C 的参数方程化成普通方程,再联立方程组求出交点坐标即可,()II 设(,)P x y ,利用中点坐标公式得P 点轨迹的参数方程,消去参数即得普通方程,由普通方程即可看出其是什么类型的曲线. 【解答】解:(Ⅰ)当3πα=时,1C的普通方程为1)y x =-,2C 的普通方程为221x y +=.联立方程组221)1y x x y ⎧=-⎪⎨+=⎪⎩, 解得1C 与2C 的交点为(1,10)(,2.(Ⅱ)1C 的普通方程为sin cos sin 0x y ααα--=①. 则OA 的方程为cos sin 0x y αα+=②, 联立①②可得2sin x α=,cos sin y αα=-;A 点坐标为2(sin α,cos sin )αα-,故当α变化时,P 点轨迹的参数方程为:()21212x sin y sin cos αααα⎧=⎪⎪⎨⎪=-⎪⎩为参数,P 点轨迹的普通方程2211()416x y -+=.故P 点轨迹是圆心为1(,0)4,半径为14的圆.【点评】本题主要考查直线与圆的参数方程,参数方程与普通方程的互化,利用参数方程研究轨迹问题的能力.24.(10分)设函数()|24|1f x x =-+. (Ⅰ)画出函数()y f x =的图象:(Ⅱ)若不等式()f x ax …的解集非空,求a 的取值范围.【考点】3A :函数的图象与图象的变换;7E :其他不等式的解法;5R :绝对值不等式的解法【专题】11:计算题;13:作图题;16:压轴题【分析】()I 先讨论x 的范围,将函数()f x 写成分段函数,然后根据分段函数分段画出函数的图象即可;()II 根据函数()y f x =与函数y ax =的图象可知先寻找满足()f x ax …的零界情况,从而求出a 的范围.【解答】解:(Ⅰ)由于25,2()23,2x x f x x x -+<⎧=⎨-⎩…,函数()y f x =的图象如图所示.(Ⅱ)由函数()y f x =与函数y ax =的图象可知,极小值在点(2,1) 当且仅当2a <-或12a …时,函数()y f x =与函数y ax =的图象有交点.故不等式()f x ax …的解集非空时,a 的取值范围为1(,2)[2-∞-,)+∞.【点评】本题主要考查了函数的图象,以及利用函数图象解不等式,同时考查了数形结合的数学思想,属于基础题.。
2010年高考试题——数学文(全国卷I)(解析版)
2010年普通高等学校招生全国统一考试文科数学(必修+选修) 解析版本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分。
第I 卷1至2页。
第Ⅱ卷3 至4页。
考试结束后,将本试卷和答题卡一并交回。
第I 卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准条形码上的准考证号、姓名和科目。
2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.........。
3.第I 卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
参考公式:如果事件A 、B 互斥,那么 球的表面积公式()()()P A B P A P B +=+ 24S R π=如果事件A 、B 相互独立,那么 其中R 表示球的半径 ()()()P A B P A P B =g g 球的体积公式 如果事件A 在一次试验中发生的概率是p ,那么 334V R π=n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径()(1)(0,1,2,)k kn k n n P k C p p k n -=-=…一、选择题 (1)cos300︒=(A)2-(B)-12 (C)12(D) 2 1.C 【命题意图】本小题主要考查诱导公式、特殊三角函数值等三角函数知识 【解析】()1cos300cos 36060cos602︒=︒-︒=︒=(2)设全集{}1,2,3,4,5U =,集合{}1,4M =,{}1,3,5N =,则()U N M ⋂=ð A.{}1,3 B. {}1,5 C. {}3,5 D. {}4,52.C 【命题意图】本小题主要考查集合的概念、集合运算等集合有关知识【解析】{}2,3,5U M =ð,{}1,3,5N =,则()U N M ⋂=ð{}1,3,5{}2,3,5⋂={}3,5(3)若变量,x y 满足约束条件1,0,20,y x y x y ≤⎧⎪+≥⎨⎪--≤⎩则2z x y =-的最大值为(A)4 (B)3 (C)2 (D)13.B 【命题意图】本小题主要考查线性规划知识、作图、识图能力及计算能力. 【解析】画出可行域(如右图),11222z x y y x z =-⇒=-,由图可知,当直线l 经过点A(1,-1)时,z 最大,且最大值为max 12(1)3z =-⨯-=.(4)已知各项均为正数的等比数列{n a },123a a a =5,789a a a =10,则456a a a =(A)4.A 【命题意图】本小题主要考查等比数列的性质、指数幂的运算、根式与指数式的互化等知识,着重考查了转化与化归的数学思想.【解析】由等比数列的性质知31231322()5a a a a a a a ===g ,37897988()a a a a a a a ===g 10,所以132850a a =, 所以133364564655()(50)a a a a a a a =====g(5)43(1)(1x --的展开式 2x 的系数是(A)-6 (B)-3 (C)0 (D)35.A. 【命题意图】本小题主要考查了考生对二项式定理的掌握情况,尤其是展开式的通项公式的灵活应用,以及能否区分展开式中项的系数与其二项式系数,同时也考查了考生的一些基本运算能力.【解析】()134323422(1)(11464133x x x x x x x x ⎛⎫-=-+---+- ⎪⎝⎭x +20y -=2x 的系数是 -12+6=-6(6)直三棱柱111ABC A B C -中,若90BAC ∠=︒,1AB AC AA ==,则异面直线1BA 与1AC 所成的角等于(A)30° (B)45°(C)60° (D)90°6.C 【命题意图】本小题主要考查直三棱柱111ABC A B C -的性质、异面直线所成的角、异面直线所成的角的求法.【解析】延长CA 到D ,使得AD AC =,则11ADAC 为平行四边形,1DA B ∠就是异面直线1BA 与1AC 所成的角,又三角形1A DB 为等边三角形,0160DA B ∴∠=(7)已知函数()|lg |f x x =.若a b ≠且,()()f a f b =,则a b +的取值范围是 (A)(1,)+∞ (B)[1,)+∞(C) (2,)+∞ (D) [2,)+∞7.C 【命题意图】本小题主要考查对数函数的性质、函数的单调性、函数的值域,考生在做本小题时极易忽视a 的取值范围,而利用均值不等式求得a+b=12a a+≥,从而错选D,这也是命题者的用苦良心之处.【解析1】因为 f(a)=f(b),所以|lga|=|lgb|,所以a=b(舍去),或1b a =,所以a+b=1a a+ 又0<a<b,所以0<a<1<b ,令()f a a=1a +由“对勾”函数的性质知函数()f a 在a ∈(0,1)上为减函数,所以f(a)>f(1)=1+1=2,即a+b 的取值范围是(2,+∞).【解析2】由0<a<b,且f (a )=f (b )得:0111a b ab <<⎧⎪<⎨⎪=⎩,利用线性规划得:0111x y xy <<⎧⎪<⎨⎪=⎩,化为求z x y =+的取值范围问题,z x y y x z =+⇒=-+,2111y y x x'=⇒=-<-⇒过点()1,1时z 最小为2,∴(C) (2,)+∞(8)已知1F 、2F 为双曲线C:221x y -=的左、右焦点,点P 在C 上,∠1F P 2F =060,则12||||PF PF =g(A)2 (B)4 (C) 6 (D) 8AB C DA 1B 1C 1D 1 O8.B 【命题意图】本小题主要考查双曲线定义、几何性质、余弦定理,考查转化的数学思想,通过本题可以有效地考查考生的综合运用能力及运算能力. 【解析1】.由余弦定理得cos ∠1F P 2F =222121212||||||2||||PF PF F F PF PF +-()(22221212121212122221cos60222PF PF PF PF PF PF F F PF PF PF PF +--+-⇒=⇒=12||||PF PF =g 4【解析2】由焦点三角形面积公式得:1202201216011cot 1cot sin 602222F PF S b PF PF PF PF θ∆=====12||||PF PF =g 4(9)正方体ABCD -1111A B CD 中,1BB 与平面1ACD 所成角的余弦值为(A )3 (B(C )23(D 9.D 【命题意图】本小题主要考查正方体的性质、直线与平面所成的角、点到平面的距离的求法,利用等体积转化求出D 到平面AC 1D 的距离是解决本题的关键所在,这也是转化思想的具体体现.【解析1】因为BB 1//DD 1,所以B 1B 与平面AC 1D 所成角和DD 1与平面AC 1D 所成角相等,设DO ⊥平面AC 1D ,由等体积法得11D ACD D ACD V V --=,即111133ACD ACD S DO S DD∆∆⋅=⋅.设DD 1=a,则122111sin 60)2222ACD S AC AD a ∆==⨯⨯=o g ,21122ACD SAD CD a ∆==g . 所以131ACD ACD S DD DO S ∆∆===g ,记DD 1与平面AC 1D 所成角为θ,则1sin DO DD θ==,所以cos 3θ=. 【解析2】设上下底面的中心分别为1,O O ;1O O 与平面AC 1D 所成角就是B 1B 与平面AC 1D所成角,1111cos1/3O OO ODOD∠===(10)设123log2,ln2,5a b c-===则(A)a b c<<(B)b c a<< (C) c a b<< (D) c b a<<10.C 【命题意图】本小题以指数、对数为载体,主要考查指数函数与对数函数的性质、实数大小的比较、换底公式、不等式中的倒数法则的应用.【解析1】a=3log2=21log3, b=In2=21log e,而22log3log1e>>,所以a<b,c=125-222log4log3>=>,所以c<a,综上c<a<b.【解析2】a=3log2=321log,b=ln2=21log e, 3221log log2e<<<,32211112log log e<<<;c=12152-=<=,∴c<a<b(11)已知圆O的半径为1,PA、PB为该圆的两条切线,A、B为两切点,那么PA PB•u u u v u u u v的最小值为(A) 4-(B)3-+(C) 4-+3-+11.D【命题意图】本小题主要考查向量的数量积运算与圆的切线长定理,着重考查最值的求法——判别式法,同时也考查了考生综合运用数学知识解题的能力及运算能力.【解析1】如图所示:设PA=PB=x(0)x>,∠APO=α,则∠APB=2α,,sinα=||||cos2PA PB PA PBα•=⋅u u u v u u u v u u u v u u u v=22(12sin)xα-=222(1)1x xx-+=4221x xx-+,令PA PB y•=u u u v u u u v,则4221x xyx-=+,即42(1)0x y x y-+-=,由2x是实数,所以2[(1)]41()0y y∆=-+-⨯⨯-≥,2610y y++≥,解得3y≤--或3y≥-+.故min()3PA PB•=-+u u u v u u u v.此时x=【解析2】设,0APB θθπ∠=<<,()()2cos 1/tan cos 2PA PB PA PB θθθ⎛⎫•== ⎪⎝⎭u u u v u u u v 2222221sin 12sin cos 22212sin 2sin sin 22θθθθθθ⎛⎫⎛⎫-- ⎪⎪⎛⎫⎝⎭⎝⎭=⋅-= ⎪⎝⎭换元:2sin ,012x x θ=<≤,()()1121233x x PA PB x x x--•==+-≥u u u v u u u v 【解析3】建系:园的方程为221x y +=,设11110(,),(,),(,0)A x y B x y P x -,()()2211101110110,,001AO PA x y x x y x x x y x x ⊥⇒⋅-=⇒-+=⇒=()222222221100110110221233PA PB x x x x y x x x x x •=-+-=-+--=+-≥u u u v u u u v(12)已知在半径为2的球面上有A 、B 、C 、D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值为(C)12.B 【命题意图】本小题主要考查几何体的体积的计算、球的性质、异面直线的距离,通过球这个载体考查考生的空间想象能力及推理运算能力.【解析】过CD 作平面PCD ,使AB ⊥平面PCD,交AB 与P,设点P 到CD 的距离为h ,则有ABCD 11222323V h h =⨯⨯⨯⨯=四面体,当直径通过AB 与CD 的中点时,max h =故max V =.第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考 证号填写清楚,然后贴好条形码。
2010年普通高等学校招生全国统一考试(辽宁卷.文)答案
2010年普通高等学校招生全国统一考试(辽宁卷)数学试卷(文科)参考答案一、选择题 (1)D(2)A (3)B (4)C (5)B (6)C (7)B (8)C(9)D(10)A(11)A(12)D二、填空题(13)31 (14)15 (15)(3,8)(16)32(17)解:(I )由已知,根据正弦定理得c b c b c b a )2()2(22+++=即bc c b a ++=222由余弦定理得 A bc c b a cos 2222-+= 故 ︒=-=120,21cos A A (II )由(I )得C B C B A sin sin sin sin sin 222++= 又21sin sin ,1sin sin ===+C B C B 得 因为0°<B <90°,0°<C <90°,故B=C 所以△ABC 是等腰的钝角三角形。
(18)(I )可以看出注射药物A 后的疱疹面积的中位数在65至70之间,而注射药物B 后的疱疹面积的中位数在70至75之间,所以注射药物A 后疱疹面积的中位数小于注射药物B 后疱疹面积的中位数。
(II )表356.249510510010030)35-65(70200K 22≈⨯⨯⨯⨯⨯⨯=由于10.828,K 2>所以有99.9%的把握认为“注射药物A 后的疱疹面积与注射药物B 后的疱疹面积有差异”。
(19)解:(I )因为侧面BCC 1B 1是菱形,所以B 1C ⊥BC 1 又已知B 1C ⊥A 1B,且A 1B ∩BC 1=B 所以B 1C ⊥平面A 1BC 1,又 B 1C ⊂平面AB 1C 所以平面AB 1C ⊥平面A 1BC 1(II )设BC 1交B 1C 于点E,连接DE,则DE 是平面A 1BC 1与平面B 1CD 的交线。
因为A 1B ∥平面B 1CD ,所以A 1B ∥DE 又E 是BC 1的中点,所以D 为A 1C 1的中点即A 1D:DC 1=1(20)解:(I )设焦距为2c ,由已知可得F 1到直线l 2.c ==故所以椭圆C 的焦距为4.……4分(Ⅱ)设)y ,B(x ),y ,A(x 2211,由题意知0,021<<y y ,直线l 的方程为2).y x =-联立⎪⎩⎪⎨⎧=+-=1)2(32222b yax x y 得03234)3(4222=--++b y y b y b a解得22122222(22)(22),.33a a y y a b a b+-==++因为22122,2.AF F B y y =-=所以即222222(22)(22)2.33a a a b a b +-=∙++……18分得223.4,a a b b =-==而所以故椭圆C 的方程为:221.95x y += ……12分(21)解:(Ⅰ)f (x )的定义域为(0,+∞),2121()2a ax a f x ax x x+++'=+=. 当a ≥0时,()f x '>0,故f (x )在(0,+∞)单调增加; 当a ≤-1时,()f x '<0, 故f (x )在(0,+∞)单调减少;当-1<a <0时,令()fx '=0,解得x当x ∈(0, )时, ()f x'>0; x ∈+∞)时,()f x '<0, 故f (x )在(0,单调增加,在+∞)单调减少.(Ⅱ)不妨假设x 1≥x 2.由于a ≤-2,故f (x )在(0,+∞)单调减少. 所以1212()()4f x f x x x -≥-等价于21()()f x f x -≥4x 1-4x 2,即f (x 2)+ 4x 2≥f (x 1)+ 4x 1. 令g (x )=f (x )+4x ,则1()2a g x ax x+'=++4=2241ax x a x+++.8分于是()g x '≤2441x x x -+-=2(21)x x--≤0. 从而g (x )在(0,+∞)单调减少,故 g (x 1) ≤g (x 2),即 f (x 1)+ 4x 1≤f (x 2)+ 4x 2,故对任意x 1,x 2∈(0,+∞),1212()()4f x f x x x -≥-. 12分 (22)证明:(Ⅰ)由已知条件,可得∠BAE =∠CAD .因为∠AEB 与∠ACB 是同弧上的圆周角,所以∠AEB =∠ACD . 故△ABE ∽△ADC .(Ⅱ)因为△ABE ∽△ADC ,所以AB ADAE AC=,即AB ·AC =AD ·AE . 又S =12AB ·AC sin ∠BAC ,且S =12AD ·AE ,故AB ·AC sin ∠BAC =AD ·AE .则sin ∠BAC =1,又∠BAC 为三角形内角,所以∠BAC =90°. (23)解: (Ⅰ)由已知,M 点的极角为π3,且M 点的极径等于π3,故点M 的极坐标为(π3,π3)……5分(Ⅱ)M点的直角坐标为(π,66),A (l,0),故直线AM 的参数方程为π1(1).6.6x t y t ⎧=+-⎪⎪⎨⎪=⎪⎩(t 为参数). ……10分(24)证明: (证法一)因为a ,b ,c 均为正数,由平均值不等式得a 2+b 2+c 2≥32)(3abc①111a b c++≥)(331-abc 所以2111a b c ⎛⎫++ ⎪⎝⎭≥32)(9-abc② ……6分故a 2+b 2+c 2+2111a b c ⎛⎫++ ⎪⎝⎭≥32)(3abc +32)(9-abc又32)(3abc +32)(9-abc ≥=③ ……8分所以原不等式成立.当且仅当a =b =c 时,①式和②式等号成立.当且仅当32)(3abc =32)(9-abc 时, ③式等号成立. 即当且仅当a =b =c =143时,原式等号成立. ……10分(证法二)因为a ,b ,c 均为正数,由基本不等式 a 2+b 2≥2ab , b 2+c 2≥2ab , c 2+a 2≥2ac .所以a 2+b 2+c 2≥ab+bc+ac①同理222111a b c ++≥111ab bc ac++② ……6分故a 2+b 2+c 2+(111a b c ++)2≥ab+bc+ac+31ab +31bc +31ac≥ ③ ……8分所以原不等式成立当且仅当a =b =c 时,①式和②式等号成立,当且仅当a =b =c ,(ab )2=(b c )2=(ac )2=3时,③式等号成立. 即当且仅当a =b =c =143时,原式等号成立.……10分。
2010年普通高等学校招生全国统一考试(全国新课标卷)数学试题(文科)(解析版)
2010 年普通高等学校招生全国统一考试文科数学参考公式:样本数据 x 1, x 2x n 的标准差锥体体积公式s1( x 1x )2( x 2 x )2( x n x )2V1 s hn3其中 x 为样本平均数 其中 S 为底面面积, h 为高 柱体体积公式球的表面积,体积公式VShS4 R 2,V4 R 3 其中 S 为底面面积, h 为高其中 R 为球的半径 3第Ⅰ卷一、选择题:本大题共 12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的。
( 1)已知集合 Ax x 2, x R, B x x 4, x Z ,则A B()( A )0,2 ( B )0,2 (C ) 0,2 (D )0,1,2解析: A x | 2 x 2 , B {0,1,2} , A B 0,1,2 ,选 D命题意图:本题考查集合的运算及不等式解法( 2) a ,b 为平面向量,已知 a=( 4,3),2a+b=( 3,18),则 a ,b 夹角的余弦值等于()(A )8(B )8 (C )16( D )16 65656565a b16 解析: a(4,3), b ( 5,12),cosa,ba b 65,选 C命题意图:本题考查向量数量积运算与夹角( 3)已知复数 z3 i,则 z =()(13i)2(A)1(B )1(C )1( D )242解析: z3 i 3 i4 3 4i3 i, z a 2b 21 ,选 B(1 3i )2 2 2 3i 1642命题意图:本题考查复数的代数运算及模的定义( 4)曲线 y x 32x 1在点( 1,0 )处的切线方程为()(A ) y x 1(B ) yx 1( C ) y2x 2( D ) y2x 2解析: y '3x 2 2, k1, 切线方程为 y x 1,选 A( 5)中心在原点, 焦点在 x 轴上的双曲线的一条渐近线经过点( 4,2 ),则它的离心率为 ( )(A ) 6(B )5( C )6 ( D )52 2解析:由双曲线的几何性质可得b 1即 a2b , e2c 2a2b25,e5 ,选 Da2a 2a 242命题意图:本题考查双曲线的几何性质( 6)如图,质点 p 在半径为 2 的圆周上逆时针运动,其初始位置为p 0 ( 2 ,2 ),角速度为 1,那么点 p 到 x 轴距离 d 关于时间 t 的函数图像大致为()解析:法一:排除法取点 t 0时 , d 2 , 排除 A 、 D ,又当点 P 刚从 t=0 开始运动, d 是关于 t 的减函数,所以排除 B ,选 C法二:构建关系式x 轴非负半轴到 OP 的角t ,由三角函数的定义可知4 y p 2sin( t) ,所以 d 2sin( t ),选 C44命题意图:考察三角函数的定义及图像(7) 设长方体的长、 宽、高分别为 2a 、a 、a, 其顶点都在一个球面上, 则该球的表面积为 ( )( A )3 a 2 ( B ) 6 a 2 (C ) 12 a 2 (D ) 24 a 2( 8) 解析:球心在长方体对角线交点处,球半径R 为对角线长一半6a 长方体中,由对角线定理知对角线长为6a , R2球表面积 S 4 R 2 6 a 2 ,选 B命题意图:本题以球与多面体的接切为载体考查球的表面积公式( 8)如果执行右面的框图,输入 N=5,则输出的数等于()(A ) 5(B )4(C )6(D )54556 解析:S111 1122 3 3 44 5 561(1 1) (1 1) (1 1) (11) (1 1)5所以选 D命题意图:以算法为背景考察裂项相消求和(9) 设偶函数 f(x) 满足 f(x)=2x-4 (x0),则x f x 2 0 =()( A)x x2或 x 4( B)x x0或 x 4( C)x x0或 x 6( D)x x2或 x 2解析:当x 0时,由 f ( x) 2x40得x 2 又 f ( x)为偶函数, f ( x)0时 x2或x 2f (x 2) 0x 2 2或x 22,即 x4或 x 0 ,选B 命题意图:利用函数性质解不等式( 10)若cosa = -4, a 是第三象限的角,则sin(a) =()54(A)- 7 2(B)7 2(C)-2( D)2 10101010解析: a 是第三象限的角,sin a 1 cos 235则sin( a)2cos72 (sin),选 A4210命题意图:本题考查同角三角函数关系及和角正弦公式( 11)已知ABCD的三个顶点为A( -1 ,2),B(3,4),C( 4, -2 ),点( x,y)在ABCD 的内部,则z=2x-5y 的取值范围是()(A)(-14 , 16)( B)(-14 , 20)( C)(-12 , 18)( D)(-12 , 20)解析:当直线 z=2x-5y过点 B 时,z min14当直线 z=2x-5y过点 D( 0,-4 )时,z max20所以 z=2x-5y 的取值范围为(-14 , 20),选 B点 D 的坐标亦可利用AB DC求得,进一步做出可行域命题意图:本题考查线性规划lg x ,0x10( 12)已知函数 f(x)= 1 x6, x10若 a, b, c 均不相等,2且 f(a)= f(b)= f(c),则 abc 的取值范围是()( A)(1, 10)( B) (5 , 6)( C) (10 , 12)( D)(20 , 24)解析: a,b,c 互不相等,不妨设a b c由f (a) f (b), 得lg a lg b,即 ab=1abc c ,显然 10 c 12所以选 C命题意图:考察数形结合思想,利用图像处理函数与方程问题第Ⅱ卷本卷包括必考题和选考题两部分。
2010年全国统一高考数学试卷(文科)(大纲版ⅰ)(含解析版)(附详细答案)
门,若要求两类课程中各至少选一门,则不同的选法共有
种.(用
数字作答)
16.( 5 分)已知 F 是椭圆 C 的一个焦点, B 是短轴的一个端点,线段 BF 的延长
线交 C 于点 D,且
,则 C 的离心率为
.
三、解答题(共 6 小题,满分 70 分) 17.( 10 分)记等差数列 { an} 的前 n 项和为 Sn,设 S3=12,且 2a1,a2,a3+1 成等
)
A.
B.
C.
D.
10.( 5 分)设 a=log32,b=ln2,c= ,则(
)
A.a<b<c
B.b<c< a
C.c<a<b
D.c<b<a
11.( 5 分)已知圆 O 的半径为 1,PA、PB为该圆的两条切线, A、B 为两切点,
那么
的最小值为(
)
A.
B.
C.
D.
12.( 5 分)已知在半径为 2 的球面上有 A、B、C、D 四点,若 AB=CD=2,则四面
值.
【解答】 解:∵
.
故选: C. 【点评】 本小题主要考查诱导公式、特殊三角函数值等三角函数知识.
第 5 页(共 23 页)
3.( 5 分)若变量 x,y 满足约束条件
,则 z=x﹣2y 的最大值为(
)
A.4
B.3
C.2
D.1
【考点】 7C:简单线性规划. 【专题】 11:计算题; 31:数形结合. 【分析】 先根据约束条件画出可行域,再利用几何意义求最值, z=x﹣2y 表示直
C.6
D.
5.(5 分)(1﹣x)4( 1﹣ ) 3 的展开式 x2 的系数是(
)
2010年辽宁高考数学文科试卷带详解
2010年普通高等学校招生全国统一考试(辽宁卷)数学(文科)解析第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}1,3,5,7,9U =,{}1,5,7A =,则U A =ð ( )A.{}1,3B.{}3,7,9C.{}3,5,9D.{}3,9【测量目标】集合的补集运算.【考查方式】集合的表示(列举法),求集合的补集. 【参考答案】D【试题解析】在集合U 中,去掉1,5,7,剩下的元素构成{}3,9U A =ð 2.设,a b 为实数,若复数12i1i ia b +=++,则 ( ) A.31,22a b == B.3,1a b == C.13,22a b == D.1,3a b ==【测量目标】复数代数形式的四则运算,复数相等.【考查方式】给出复数的除法形式,考查复数的代数四则运算. 【参考答案】A 【试题解析】12i 31i i 1i 22a b ++==++,因此31,22a b ==.3.设n S 为等比数列{}n a 的前n 项和,已知3432S a =-,2332S a =-,则公比q =( )A.3B.4C.5D.6【测量目标】等比数列的通项公式,等比数列的前n 项和. 【考查方式】给出等比数列前n 项和与其中一项的关系,求公比. 【参考答案】B【试题解析】 两式相减得,3433a a a =-,44334,4a a a q a =∴==. 4.已知0a >,函数2()f x ax bx c =++,若0x 满足关于x 的方程20ax b +=,则下列选项的命题中为假命题的是 ( ) A.0,()()x f x f x ∃∈R … B.0,()()x f x f x ∃∈R … C. 0,()()x f x f x ∀∈R … D.0,()()x f x f x ∀∈R … 【测量目标】全称量词与存在量词.【考查方式】将未知数设在方程里,与给定的0()f x 比较大小,判断命题的真假. 【参考答案】C【试题解析】函数()f x 的最小值是0()()2bf f x a-=等价于0,()()x f x f x ∀∈R …,所以命题C 错误.5.如果执行右面的程序框图,输入6,4n m ==,那么输出的p 等于 ( )A.720B.360C. 240D. 120 【测量目标】循环结构的程序框图.【考查方式】考查循环结构的流程图,注意循环条件的设置,以及循环体的构成,特别是注意最后一次循环的k 值,输出p【参考答案】B【试题解析】当1,3k p ==,当2,12k p ==,当3,60k p ==,当4,360k p ==输出p .6.设0ω>,函数πsin()23y x ω=++的图像向右平移4π3个单位后与原图像重合,则ω的最小值是 ( ) A.23 B. 43 C. 32D. 3 【测量目标】函数sin()y A x ωϕ=+的图像和性质.【考查方式】给定函数式进行移动一定单位与原图像重合,求ω的最小值. 【参考答案】C【试题解析】由已知,周期2π4π3,.32T ωω==∴= 7.设抛物线28y x =的焦点为F ,准线为l ,P 为抛物线上一点,PA l ⊥,A 为垂足,如果直线AF 斜率为3-,那么PF = ( ) A.43 B. 8 C. 83 D. 16 【测量目标】抛物线的简单几何意义.【考查方式】给出抛物线的准线及准线上交点与焦点的斜率,图形结合求直线最小值. 【参考答案】B【试题解析】利用抛物线定义,易证PAF △为正三角形,则48sin30PF ︒== 8.平面上,,O A B 三点不共线,设,OA OB ==a b ,则OAB △的面积等于 ( )A.222()- a b a bB.222()+ a b a bC.2221()2- a b a b D.2221()2+ a b a b【测量目标】平面向量的应用.【考查方式】给出平面向量的向量值,求三不共线向量围成的三角形面积. 【参考答案】C 【试题解析】2222111()sin ,1cos ,1222OABS =<>=-<>=- △a b a b a b a b a b a b a b2221()2=- a b a b9.设双曲线的一个焦点为F ,虚轴的一个端点为B ,如果直线FB 与该双曲线的一条渐近线垂直,那么此双曲线的离心率为 ( ) A.2 B.3 C.312+ D.512+ 【测量目标】双曲线的简单几何性质.【考查方式】给出双曲线方程,给出直线与渐近线的位置关系,求双曲线离心率. 【参考答案】D【试题解析】不妨设双曲线的焦点在x 轴上,设其方程为:22221(0,0)x y a b a b-=>>,则一个焦点为(,0),(0,)F c B b (步骤1) 一条渐近线斜率为:b a ,直线FB 的斜率为:bc -,()1b ba c∴-=- ,2b ac ∴=220c a ac --=,解得512c e a +==.(步骤2) 10.设25abm ==,且112a b+=,则m = ( ) A.10 B.10 C.20 D.100 【测量目标】对数运算.【考查方式】给出指数函数的方程式,用对数的方式求解. 【参考答案】A 【试题解析】211log 2log 5log 102,10,m m m m a b+=+==∴=又0,10.m m >∴= 11.已知,,,S A B C 是球O 表面上的点,SA ABC ⊥平面,AB BC ⊥,1SA AB ==,2BC =,则球O 的表面积等于 ( )A.4πB.3πC.2πD.π 【测量目标】球的表面积公式.【考查方式】给出球面上线线的位置与数量关系,线面关系,求圆的表面积. 【参考答案】A【试题解析】由已知,球O 的直径为22R SC ==,∴表面积为24π4π.R = 12.已知点P 在曲线4e 1x y =+上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是 ( ) A.π0,4⎡⎫⎪⎢⎣⎭ B.ππ,42⎡⎫⎪⎢⎣⎭ C.π3π,24⎛⎤ ⎥⎝⎦ D. 3π,π4⎡⎫⎪⎢⎣⎭【测量目标】导数的应用,基本不等式.【考查方式】给出曲线方程,利用导数求曲线上动点的切线倾斜角范围. 【参考答案】D 【试题解析】24e 41e 2e 1e 2e x x x x xy '=-=-++++,1e 2,10e xx y '+∴-< 厔,即1tan 0α-< (3)[,π)4α∴∈第Ⅱ卷本试卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答. 二、填空题:本大题共4小题,每小题5分.13.三张卡片上分别写上字母,,E E B ,将三张卡片随机地排成一行,恰好排成英文单词BEE的概率为 . 【测量目标】随机事件与概率.【考查方式】直接给出数字,求一定条件下的概率. 【参考答案】13【试题解析】题中三张卡片随机地排成一行,共有三种情况:,,BEE EBE EEB ,∴概率为:1.314.设n S 为等差数列{}n a 的前n 项和,若36324S S ==,,则9a = .【测量目标】等差数列的通项公式,等差数列的前n 项和.【考查方式】给出n S 中的数值,求n a 中的数值,求出通项公式进行求解. 【参考答案】15 【试题解析】316132332656242S a d S a d ⨯⎧=+=⎪⎪⎨⨯⎪=+=⎪⎩,解得112a d =-⎧⎨=⎩,(步骤1)91815.a a d ∴=+=(步骤2)15.已知14x y -<+<且23x y <-<,则23z x y =-的取值范围是 . (答案用区间表示)【测量目标】二元线性规划求目标函数的取值范围.【考查方式】给出两不等式,求z 的取值范围,将不等式化简后画图求解.【参考答案】(3,8) 【试题解析】利用线性规划,画出不等式组1423x y x y x y x y +>-⎧⎪+<⎪⎨->⎪⎪-<⎩表示的平面区域,即可求解.16.如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的 长为 .【测量目标】由三视图求几何体的棱长.【考查方式】给出图形的三视图,求几何体最长的棱长. 【参考答案】23【试题解析】画出直观图:图中四棱锥P ABCD -即是,22PA =,23,2,22PB PD PC ===,所以最长的一条棱的长为2 3.PB =三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)在ABC △中,a b c 、、分别为内角A B C 、、的对边,且2sin (2)sin (2)sin a A b c B c b C =+++ (Ⅰ)求A 的大小;(Ⅱ)若sin sin 1B C +=,试判断ABC △的形状.【测量目标】正弦定理余弦定理,利用正余弦定理判断三角形的形状.【考查方式】给出三角形边与角的等式,利用正、余弦定理求其中一角值;根据两角的关系判断ABC △的形状.【试题解析】解:(Ⅰ)由已知,根据正弦定理得c b c b c b a )2()2(22+++= 即bc c b a ++=222(步骤1) 由余弦定理得A bc c b a cos 2222-+=故1cos ,1202A A =-= (步骤2) (Ⅱ)由(Ⅰ)得.sin sin sin sin sin 222C B C B A ++=(步骤3)又1sin sin =+C B ,得21sin sin ==C B (步骤4)因为090,090B C <<<< ,故B C =(步骤5) 所以ABC △是等腰的钝角三角形.(步骤6)18.(本小题满分12分)为了比较注射,A B 两种药物后产生的皮肤疱疹的面积,选200只家兔做实验,将这200只家兔随机地分成两组.每组100只,其中一组注射药物A ,另一组注射药物B .表1和表2分别是注射药物A 药物B 后的实验结果.(疱疹面积单位:2mm )(Ⅰ)完成下面频率分布直方图,并比较注射两种药物后疱疹面积的中位数大小;(Ⅱ)完成下面22⨯列联表,并回答能否有99.9%的把握认为“注射药物A 后的疱疹面积与注射药物B 的疱疹面积有差异”.附:22()()()()()n ad bc K a b c d a c b d -=++++【测量目标】频率分布直方图,独立性检验.【考查方式】给出图示,完成频率分布直方图,检验独立性. 【试题解析】 (Ⅰ)可以看出注射药物A 后的疱疹面积的中位数在65至70之间,而注射药物B 后的疱疹面积的中位数在70至75之间,所以注射药物A 后疱疹面积的中位数小于注射药物B 后疱疹面积的中位数.(步骤1) (Ⅱ)表3疱疹面积小于270mm疱疹面积不小于270mm 合计 注射药物A 70a = 30b = 100 注射药物B35c = 65d = 100 合计10595200n =56.2495105100100)30356570(20022≈⨯⨯⨯⨯-⨯⨯=K由于828.102>K ,所以有99.9%的把握认为“注射药物A 后的疱疹面积与注射药物B后的疱疹面积有差异”.(步骤2)19.(本小题满分12分)如图,棱柱111ABC A B C -的侧面11BCC B 是菱形,11B C A B ⊥(Ⅰ)证明:平面1ABC ⊥平面11A BC ; (Ⅱ)设D 是11AC 上的点,且1//A B 平面1B CD ,求11:A D DC 的值.【测量目标】线面垂直的判定,面面垂直的判定,平行与垂直关系的综合问题.【考查方式】线线垂直推出面面垂直;给出直线与面的位置关系,求两直线长度的比值. 【试题解析】解:(Ⅰ)因为侧面11BCC B 是菱形,所以11BC C B ⊥(步骤1) 又已知11,B C A B ⊥且11AB BC B =所又⊥C B 1平面11A BC ,又⊂C B 1平面1ABC ,(步骤2) 所以平面⊥C AB 1平面11A BC .(步骤3)(Ⅱ)设1BC 交1B C 于点E ,连结DE , 则DE 是平面11A BC 与平面1B CD 的交线,(步骤4) 因为1A B 平面1B CD ,所以1A B DE .(步骤5) 又E 是1BC 的中点,所以D 为11AC 的中点.即11:1A D DC =.(步骤6) 20.(本小题满分12分)设1F ,2F 分别为椭圆2222:1x y C a b +=(0)a b >>的左、右焦点,过2F 的直线l 与椭圆C 相交于A ,B 两点,直线l 的倾斜角为60 ,1F 到直线l 的距离为23.(Ⅰ)求椭圆C 的焦距;(Ⅱ)如果222AF F B =,求椭圆C 的方程.【测量目标】椭圆与直线的位置关系,椭圆的简单几何性质.【考查方式】给出椭圆与直线的位置关系,直线的倾斜角,求椭圆的焦距;给出交点与焦距连线的两直线的数量关系,求椭圆方程.【试题解析】解:(Ⅰ)设焦距为2c ,由已知可得1F 到直线l 的距离323, 2.c c ==故 所以椭圆C 的焦距为4.(步骤1)(Ⅱ)设1122(,),(,),A x y B x y 由题意知120,0,y y <>直线l 的方程为3(2).y x =-联立2222422223(2),(3)4330.1y x a b y b y b x y ab ⎧=-⎪⇒++-=⎨+=⎪⎩解得221222223(22)3(22),.33b a b a y y a b a b -+--==++(步骤2)因为22122,2.AF F B y y =∴-=即2222223(22)3(22)2.33b a b a a b a b +--=++ (步骤3)得223.4, 5.a a b b =-=∴= (步骤4)故椭圆C 的方程为221.95x y +=(步骤5) 21.(本小题满分12分)已知函数2()(1)ln 1f x a x ax =+++. (Ⅰ)讨论函数()f x 的单调性;(Ⅱ)设2a -…,证明:对任意12,(0,)x x ∈+∞,1212|()()|4||f x f x x x --…. 【测量目标】利用导数判断函数的单调性,利用导数解决不等式问题.【考查方式】(1)给出函数式,求分类讨论其单调性;确定未知数的范围,证明不等式,需要间接转化为证明单调性.【试题解析】解:(Ⅰ)()f x 的定义域为(0,+∞),2121()2a ax a f x ax x x+++'=+=.(步骤1) 当0a …时,()f x '>0,故f (x )在(0,+∞)单调增加;(步骤2) 当1a -…时,()f x '<0, 故f (x )在(0,+∞)单调减少;(步骤3)当1-<a <0时,令()f x '=0,解得x =12a a+-.当x ∈(0, 12a a+-)时, ()f x '>0; x ∈(12a a +-,+∞)时,()f x '<0, 故()f x 在(0, 12a a+-)单调增加,在(12a a+-,+∞)单调减少.(步骤4) (Ⅱ)不妨假设12x x ….由于2a -…,故f (x )在(0,+∞)单调减少.(步骤5) 所以1212()()4f x f x x x --…等价于12()()f x f x -…4x 1-4x 2,即f (x 2)+ 4x 2…f (x 1)+ 4x 1.(步骤6)令()()4g x f x x =+,则1()2a g x ax x+'=++4 =2241ax x a x+++.(步骤7) 于是()g x '…2441x x x -+-=2(21)x x--…0.(步骤8) 从而()g x 在(0,+∞)单调减少,故g (x 1) …g (x 2),即f (x 1)+ 4x 1…f (x 2)+ 4x 2,故对任意x 1,x 2∈(0,+∞) ,1212()()4f x f x x x --….(步骤9) 请考生在第(22)、(23)、(24)三题中任选一题做答,如果多做,则按所做的第一题记分.做答时用2B 铅笔在答题卡上把所选题目对应题号下方的方框涂黑.22.(本小题满分10分)选修4-1:几何证明选讲如图,ABC △的角平分线AD 的延长线交它的外接圆于点.E(Ⅰ)证明:ABE △∽ADC △;(Ⅱ)若ABC △的面积12S AD AE = ,求BAC ∠的大小. 【测量目标】圆的性质的应用.【考查方式】给出图示,求圆内接三角形的相似,给出三角形的表达式,求一角值.【试题解析】证明:(Ⅰ)由已知条件,可得∠BAE =∠CAD .(步骤1)因为∠AEB 与∠ACB 是同弧上的圆周角,所以∠AEB =∠ACD .故△ABE ∽△ADC .(步骤2)(Ⅱ)因为△ABE ∽△ADC ,所以AB AD AE AC=,即AB AC =AD AE .(步骤3) 又S =12AB AC sin BAC ∠,且12S AD AE = ,故sin AB AC BAC AD AE ∠= .(步骤4)则sin 1BAC ∠=,又∠BAC 为三角形内角,所以∠BAC =90 .(步骤5)23.(本小题满分10分)选修4-4:坐标系与参数方程已知P 为半圆C :cos sin x y θθ=⎧⎨=⎩(θ为参数,0πθ剟)上的点,点A 的坐标为(1,0),O 为坐标原点,点M 在射线OP 上,线段OM 与C 的弧 AP 的长度均为π3. (Ⅰ)以O 为极点,x 轴的正半轴为极轴建立极坐标系,求点M 的极坐标; (Ⅱ)求直线AM 的参数方程.【测量目标】极坐标,圆的极坐标表示.【考查方式】给出圆的极坐标方程,给出部分坐标与位置关系,求一点的极坐标,及直线的参数方程.【试题解析】解:(Ⅰ)由已知,M 点的极角为π3,且M 点的极径等于π3, 故点M 的极坐标为(π3,π3) (步骤1) (Ⅱ)M 点的直角坐标为(π3π,66),A (l,0),故直线AM 的参数方程为 π1(1).63π.6x t y t ⎧=+-⎪⎪⎨⎪=⎪⎩(t 为参数). (步骤2)24.(本小题满分10分)选修4-5:不等式选讲 已知,,a b c 均为正数,证明:a 2+b 2+c 2+2111a b c ⎛⎫++ ⎪⎝⎭…63,并确定,,a b c 为何值时, 等号成立.【测量目标】平均值不等式,基本不等式.【考查方式】给出未知数,求解不等式,解出当未知数为何值时,不等式等号成立. 【试题解析】证明:(证法一)因为,,a b c 均为正数,由平均值不等式得222233()a b c abc ++…, ① 111a b c ++…133()abc -, 所以2111a b c ⎛⎫++ ⎪⎝⎭…239()abc -. (步骤1) ②故a 2+b 2+c 2+2111a b c ⎛⎫++ ⎪⎝⎭…233()abc 239()abc -+.(步骤2) 又233()abc 239()abc -+…22763=, ③所以原不等式成立.(步骤3)当且仅当a =b =c 时,①式和②式等号成立.当且仅当22333()9()abc abc -=时, ③式等号成立.即当且仅当a =b =c =143时,原式等号成立.(步骤4)(证法二)因为,,a b c 均为正数,由基本不等式222a b ab +…222b c bc +…222c a ac +…所以a 2+b 2+c 2…ab bc ac ++ (步骤5) ① 同理222111a b c ++…111ab bc ac ++ ②故a 2+b 2+c 2+2111()a b c ++…ab bc ac +++31ab +31bc +31ac63…. ③所以原不等式成立(步骤6)当且仅当a =b =c 时,①式和②式等号成立,当且仅当a =b =c ,(ab )2=(bc )2=(ac )2=3时,③式等号成立.即当且仅当a =b =c =143时,原式等号成立. (步骤7)。
da2010年高考数学辽宁(文)
x∈( ,+ )时, <0,
故f(x)在(0, )单调增加,在( ,+ )单调减少.5分
(Ⅱ)不妨假设 .而 ,故 在(0,+∞)单调减少,所以
等价于
即
.①
令 ,
则 8分
于是 .
从而 在(0,+∞)单调减少,故
,
即 ,
故对任意 , .12分
(22)证明:
(Ⅰ)由已知条件,可得∠BAE=∠CAD.
(23)解:
(Ⅰ)由已知,M点的极角为 ,且M点的极径等于 ,
故点M的极坐标为( , )5分
(Ⅱ)M点的直角坐标为( ),A(l,0),故直线AM的参数方程为
(t为参数).10分
(24)证明:
(证法一)
因为a,b,c均为正数,由平均值不等式得
,①
,
所以 ≥ .②6分
故a2+b2+c2+ ≥ .
又 ,③8分
即 .
由余弦定理得
故 6分
(Ⅱ)由(Ⅰ)得
又 ,得
因为 ,
故B=C,
所以 是等腰的钝角三角形.12分
(18)解:
(Ⅰ)
可以看出注射药物A后的疱疹面积的中位数在65至70之间,而注射药物B后的疱疹面积的中位数在70至75之间,所以注射药物A后疱疹面积的中位数小于注射药物B后疱疹面积的中位数.6分
(Ⅱ)表3
所以原不等式成立.
当且仅当a=b=c时,①式和②式等号成立.
当且仅当 时,③式等号成立.
即当且仅当 时,原式等号成立.10分
(证法二)
因为a,b,c均为正数,由基本不等式得
,
,
.
2010辽宁省高考试卷含解析(必备资料)
1、填入下面空缺处的语句,最恰当的一项是我需要清静……最好去处是到个庙宇前小河旁边大石头上坐坐,。
雨季来时上面长了些绿绒似地苔类。
雨季一过,苔已干枯了,在一片未干枯苔上正开着小小蓝花白花,有细脚蜘蛛在旁边爬。
A.阳光和雨露把这石头漂白磨光了 B.这石头被阳光和雨露漂白磨光了C.阳光和雨露已把这石头漂白磨光了的 D.这石头是被阳光和雨露漂白磨光了的2、把下列句子组成语意连贯的语段,排序最恰当的一项是①从汉字笔画的统计分布规律来看,这种看法是值得商榷的。
②不少人认为简化汉字的理想目标是把十画以上的字简化到十画或不足十画。
③为了增强区别性,对那些笔画较多的非常用字还是不去简化为好。
④文字的应用首先要保证看和读的方便,要有相当的清晰性和区别性。
⑤但把笔画全部减到十画或不足十画,势必增加大量的形近字,给看和读带来困难。
⑥其次才是笔画简单,写起来省事。
A.②①④⑥⑤③ B.②①⑤③④⑥ C.④⑥②①③⑤ D.④⑥③⑤②①3、下列各句中没有语病的一句是A.“五大道历史体验馆”项目以五大道历史为背景,以洋楼文化为主线,结合历史图片、历史资料、历史物品、历史人物,通过多媒体手段,展现当年的洋楼生活。
B.“全民阅读”活动是丰富市民文化生活,引导市民多读书、读好书,使读书成为一种体现百姓精神追求的生活方式。
C.由于自贸区致力于营造国际化、法治化、市场化的营商环境,使更多金融、物流和IT等专业人才有机会不出国门,就能拿到远超同行水平的“国际工资”。
D.一个民族的文明史实质上就是这个民族在漫长的历史长河中,即使经历了深重灾难,也绝不放弃文化的传承与融合,从而促进自我发展的精神升华历程。
4、在下面一段话空缺处依次填入词语,最恰当的一组是(3分)书是整个人类的记忆。
没有书,也许历史还在混沌未开的蒙昧中。
读书,让绵延的时光穿越我们的身体,让几千年来的智慧在我们每一个人的血液里汩汩流淌。
读书,不仅需要的精神,还需要懂得快慢精粗之分。
2010年全国统一高考数学试卷(文科)(新课标)(答案解析版)
2010年全国统一高考数学试卷(文科)(新课标)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x||x|≤2,x∈R},B={x|≤4,x∈Z},则A∩B=( )A.(0,2)B.[0,2]C.{0,2}D.{0,1,2}【考点】1E:交集及其运算.【专题】11:计算题.【分析】由题意可得A={x|﹣2≤x≤2},B={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16},从而可求【解答】解:∵A={x||x|≤2}={x|﹣2≤x≤2}B={x|≤4,x∈Z}={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}则A∩B={0,1,2}故选:D.【点评】本题主要考查了集合的交集的求解,解题的关键是准确求解A,B,属于基础试题2.(5分)平面向量,已知=(4,3),=(3,18),则夹角的余弦值等于( )A.B.C.D.【考点】9S:数量积表示两个向量的夹角.【分析】先设出的坐标,根据a=(4,3),2a+b=(3,18),求出坐标,根据数量积的坐标公式的变形公式,求出两个向量的夹角的余弦【解答】解:设=(x,y),∵a=(4,3),2a+b=(3,18),∴∴cosθ==,故选:C.【点评】本题是用数量积的变形公式求向量夹角的余弦值,数量积的主要应用:①求模长;②求夹角;③判垂直,实际上在数量积公式中可以做到知三求一. 3.(5分)已知复数Z=,则|z|=( )A.B.C.1D.2【考点】A5:复数的运算.【专题】11:计算题.【分析】由复数的代数形式的乘除运算化简可得Z=,由复数的模长公式可得答案.【解答】解:化简得Z===•=•=•=,故|z|==,故选:B.【点评】本题考查复数的代数形式的乘除运算,涉及复数的模长,属基础题. 4.(5分)曲线y=x3﹣2x+1在点(1,0)处的切线方程为( )A.y=x﹣1B.y=﹣x+1C.y=2x﹣2D.y=﹣2x+2【考点】6H:利用导数研究曲线上某点切线方程.【专题】1:常规题型;11:计算题.【分析】欲求在点(1,0)处的切线方程,只须求出其斜率的值即可,故先利用导数求出在x=1处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决.【解答】解:验证知,点(1,0)在曲线上∵y=x3﹣2x+1,y′=3x2﹣2,所以k=y′|x﹣1=1,得切线的斜率为1,所以k=1;所以曲线y=f(x)在点(1,0)处的切线方程为:y﹣0=1×(x﹣1),即y=x﹣1.故选:A.【点评】本小题主要考查直线的斜率、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力.属于基础题.5.(5分)中心在原点,焦点在x轴上的双曲线的一条渐近线经过点(4,2),则它的离心率为( )A.B.C.D.【考点】KC:双曲线的性质.【专题】11:计算题.【分析】先求渐近线斜率,再用c2=a2+b2求离心率.【解答】解:∵渐近线的方程是y=±x,∴2=•4,=,a=2b,c==a,e==,即它的离心率为.故选:D.【点评】本题考查双曲线的几何性质.6.(5分)如图,质点P在半径为2的圆周上逆时针运动,其初始位置为P 0(,﹣),角速度为1,那么点P到x轴距离d关于时间t的函数图象大致为( )A.B.C.D.【考点】3A:函数的图象与图象的变换.【分析】本题的求解可以利用排除法,根据某具体时刻点P的位置到到x轴距离来确定答案.【解答】解:通过分析可知当t=0时,点P到x轴距离d为,于是可以排除答案A,D,再根据当时,可知点P在x轴上此时点P到x轴距离d为0,排除答案B,故选:C.【点评】本题主要考查了函数的图象,以及排除法的应用和数形结合的思想,属于基础题.7.(5分)设长方体的长、宽、高分别为2a、a、a,其顶点都在一个球面上,则该球的表面积为( )A.3πa2B.6πa2C.12πa2D.24πa2【考点】LG:球的体积和表面积.【专题】11:计算题.【分析】本题考查的知识点是球的体积和表面积公式,由长方体的长、宽、高分别为2a、a、a,其顶点都在一个球面上,则长方体的对角线即为球的直径,即球的半径R满足(2R)2=6a2,代入球的表面积公式,S球=4πR2,即可得到答案.【解答】解:根据题意球的半径R满足(2R)2=6a2,所以S球=4πR2=6πa2.故选:B.【点评】长方体的外接球直径等于长方体的对角线长.8.(5分)如果执行如图的框图,输入N=5,则输出的数等于( )A.B.C.D.【考点】EF:程序框图.【专题】28:操作型.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出S=的值.【解答】解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出S=的值.∵S==1﹣=故选:D.【点评】根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是::①分析流程图(或伪代码),从流程图(或伪代码)中即要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模.9.(5分)设偶函数f(x)满足f(x)=2x﹣4(x≥0),则{x|f(x﹣2)>0}=( )A.{x|x<﹣2或x>4}B.{x|x<0或x>4}C.{x|x<0或x>6}D.{x|x<﹣2或x>2}【考点】3K:函数奇偶性的性质与判断.【专题】11:计算题.【分析】由偶函数f(x)满足f(x)=2x﹣4(x≥0),可得f(x)=f(|x|)=2|x|﹣4,根据偶函数的性质将函数转化为绝对值函数,再求解不等式,可得答案.【解答】解:由偶函数f(x)满足f(x)=2x﹣4(x≥0),可得f(x)=f(|x|)=2|x|﹣4,则f(x﹣2)=f(|x﹣2|)=2|x﹣2|﹣4,要使f(|x﹣2|)>0,只需2|x﹣2|﹣4>0,|x﹣2|>2解得x>4,或x<0.应选:B.【点评】本题主要考查偶函数性质、不等式的解法以及相应的运算能力,解答本题的关键是利用偶函数的性质将函数转化为绝对值函数,从而简化计算.10.(5分)若cos α=﹣,α是第三象限的角,则sin(α+)=( )A.B.C.D.【考点】GG:同角三角函数间的基本关系;GP:两角和与差的三角函数.【专题】11:计算题.【分析】根据α的所在的象限以及同角三角函数的基本关系求得sinα的值,进而利用两角和与差的正弦函数求得答案.【解答】解:∵α是第三象限的角∴sinα=﹣=﹣,所以sin(α+)=sinαcos+cosαsin=﹣=﹣.故选:A.【点评】本题主要考查了两角和与差的正弦函数,以及同角三角函数的基本关系的应用.根据角所在的象限判断三角函数值的正负是做题过程中需要注意的. 11.(5分)已知▱ABCD的三个顶点为A(﹣1,2),B(3,4),C(4,﹣2),点(x,y)在▱ABCD的内部,则z=2x﹣5y的取值范围是( )A.(﹣14,16)B.(﹣14,20)C.(﹣12,18)D.(﹣12,20)【考点】7C:简单线性规划.【专题】11:计算题;16:压轴题.【分析】根据点坐标与向量坐标之间的关系,利用向量相等求出顶点D的坐标是解决问题的关键.结合线性规划的知识平移直线求出目标函数的取值范围.【解答】解:由已知条件得⇒D(0,﹣4),由z=2x﹣5y得y=,平移直线当直线经过点B(3,4)时,﹣最大,即z取最小为﹣14;当直线经过点D(0,﹣4)时,﹣最小,即z取最大为20,又由于点(x,y)在四边形的内部,故z∈(﹣14,20).如图:故选B.【点评】本题考查平行四边形的顶点之间的关系,用到向量坐标与点坐标之间的关系,体现了向量的工具作用,考查学生线性规划的理解和认识,考查学生的数形结合思想.属于基本题型.12.(5分)已知函数,若a,b,c互不相等,且f(a)=f(b)=f(c),则abc的取值范围是( )A.(1,10)B.(5,6)C.(10,12)D.(20,24)【考点】3A:函数的图象与图象的变换;3B:分段函数的解析式求法及其图象的作法;4H:对数的运算性质;4N:对数函数的图象与性质.【专题】13:作图题;16:压轴题;31:数形结合.【分析】画出函数的图象,根据f(a)=f(b)=f(c),不妨a<b<c,求出abc 的范围即可.【解答】解:作出函数f(x)的图象如图,不妨设a<b<c,则ab=1,则abc=c∈(10,12).故选:C.【点评】本题主要考查分段函数、对数的运算性质以及利用数形结合解决问题的能力.二、填空题:本大题共4小题,每小题5分.13.(5分)圆心在原点上与直线x+y﹣2=0相切的圆的方程为 x2+y2=2 .【考点】J1:圆的标准方程;J9:直线与圆的位置关系.【分析】可求圆的圆心到直线的距离,就是半径,写出圆的方程.【解答】解:圆心到直线的距离:r=,所求圆的方程为x2+y2=2.故答案为:x2+y2=2【点评】本题考查圆的标准方程,直线与圆的位置关系,是基础题.14.(5分)设函数y=f(x)为区间(0,1]上的图象是连续不断的一条曲线,且恒有0≤f(x)≤1,可以用随机模拟方法计算由曲线y=f(x)及直线x=0,x=1,y=0所围成部分的面积S,先产生两组(每组N个),区间(0,1]上的均匀随机数x1,x2,…,x n和y1,y2,…,y n,由此得到N个点(x,y)(i﹣1,2…,N).再数出其中满足y1≤f(x)(i=1,2…,N)的点数N1,那么由随机模拟方法可得S的近似值为 .【考点】CE:模拟方法估计概率;CF:几何概型.【分析】由题意知本题是求∫01f(x)dx,而它的几何意义是函数f(x)(其中0≤f(x)≤1)的图象与x轴、直线x=0和直线x=1所围成图形的面积,积分得到结果.【解答】解:∵∫01f(x)dx的几何意义是函数f(x)(其中0≤f(x)≤1)的图象与x轴、直线x=0和直线x=1所围成图形的面积,∴根据几何概型易知∫01f(x)dx≈.故答案为:.【点评】古典概型和几何概型是我们学习的两大概型,古典概型要求能够列举出所有事件和发生事件的个数,而不能列举的就是几何概型,几何概型的概率的值是通过长度、面积和体积的比值得到.15.(5分)一个几何体的正视图为一个三角形,则这个几何体可能是下列几何体中的 ①②③⑤ (填入所有可能的几何体前的编号)①三棱锥②四棱锥③三棱柱④四棱柱⑤圆锥⑥圆柱.【考点】L7:简单空间图形的三视图.【专题】15:综合题;16:压轴题.【分析】一个几何体的正视图为一个三角形,由三视图的正视图的作法判断选项.【解答】解:一个几何体的正视图为一个三角形,显然①②⑤正确;③是三棱柱放倒时也正确;④⑥不论怎样放置正视图都不会是三角形;故答案为:①②③⑤【点评】本题考查简单几何体的三视图,考查空间想象能力,是基础题.16.(5分)在△ABC中,D为BC边上一点,BC=3BD,AD=,∠ADB=135°.若AC=AB,则BD= 2+ .【考点】HR:余弦定理.【专题】11:计算题;16:压轴题.【分析】先利用余弦定理可分别表示出AB,AC,把已知条件代入整理,根据BC=3BD推断出CD=2BD,进而整理AC2=CD2+2﹣2CD 得AC2=4BD2+2﹣4BD把AC=AB,代入整理,最后联立方程消去AB求得BD的方程求得BD.【解答】用余弦定理求得AB2=BD2+AD2﹣2AD•BDcos135°AC2=CD2+AD2﹣2AD•CDcos45°即AB2=BD2+2+2BD ①AC2=CD2+2﹣2CD ②又BC=3BD所以CD=2BD所以由(2)得AC2=4BD2+2﹣4BD(3)因为AC=AB所以由(3)得2AB2=4BD2+2﹣4BD (4)(4)﹣2(1)BD2﹣4BD﹣1=0求得BD=2+故答案为:2+【点评】本题主要考查了余弦定理的应用.考查了学生创造性思维能力和基本的推理能力.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(10分)设等差数列{a n}满足a3=5,a10=﹣9.(Ⅰ)求{a n}的通项公式;(Ⅱ)求{a n}的前n项和S n及使得S n最大的序号n的值.【考点】84:等差数列的通项公式;85:等差数列的前n项和.【分析】(1)设出首项和公差,根据a3=5,a10=﹣9,列出关于首项和公差的二元一次方程组,解方程组得到首项和公差,写出通项.(2)由上面得到的首项和公差,写出数列{a n}的前n项和,整理成关于n的一元二次函数,二次项为负数求出最值.【解答】解:(1)由a n=a1+(n﹣1)d及a3=5,a10=﹣9得a1+9d=﹣9,a1+2d=5解得d=﹣2,a1=9,数列{a n}的通项公式为a n=11﹣2n(2)由(1)知S n=na1+d=10n﹣n2.因为S n=﹣(n﹣5)2+25.所以n=5时,S n取得最大值.【点评】数列可看作一个定义域是正整数集或它的有限子集的函数,当自变量从小到大依次取值对应的一列函数值,因此它具备函数的特性.18.(10分)如图,已知四棱锥P﹣ABCD的底面为等腰梯形,AB∥CD,AC⊥BD ,垂足为H,PH是四棱锥的高.(Ⅰ)证明:平面PAC⊥平面PBD;(Ⅱ)若AB=,∠APB=∠ADB=60°,求四棱锥P﹣ABCD的体积.【考点】LF:棱柱、棱锥、棱台的体积;LY:平面与平面垂直.【专题】11:计算题;14:证明题;35:转化思想.【分析】(Ⅰ)要证平面PAC⊥平面PBD,只需证明平面PAC内的直线AC,垂直平面PBD内的两条相交直线PH,BD即可.(Ⅱ),∠APB=∠ADB=60°,计算等腰梯形ABCD的面积,PH是棱锥的高,然后求四棱锥P﹣ABCD的体积.【解答】解:(1)因为PH是四棱锥P﹣ABCD的高.所以AC⊥PH,又AC⊥BD,PH,BD都在平PHD内,且PH∩BD=H.所以AC⊥平面PBD.故平面PAC⊥平面PBD(6分)(2)因为ABCD为等腰梯形,AB∥CD,AC⊥BD,AB=.所以HA=HB=.因为∠APB=∠ADB=60°所以PA=PB=,HD=HC=1.可得PH=.等腰梯形ABCD的面积为S=ACxBD=2+(9分)所以四棱锥的体积为V=×(2+)×=.(12分)【点评】本题考查平面与平面垂直的判定,棱柱、棱锥、棱台的体积,考查空间想象能力,计算能力,推理能力,是中档题.19.(10分)为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如表:性别是否需要志愿者男女需要4030不需要160270(1)估计该地区老年人中,需要志愿者提供帮助的比例;(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?(3)根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中需要志愿者提供帮助的老年人比例?说明理由.P(K2≥k)0.0500.0100.0013.841 6.63510.828附:K2=.【考点】BL:独立性检验.【专题】11:计算题;5I:概率与统计.【分析】(1)由样本的频率率估计总体的概率,(2)求K2的观测值查表,下结论;(3)由99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关,则可按性别分层抽样.【解答】解:(1)调查的500位老年人中有70位需要志愿者提供帮助,因此在该地区老年人中,需要帮助的老年人的比例的估计值为(2)K2的观测值因为9.967>6.635,且P(K2≥6.635)=0.01,所以有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关.(3)根据(2)的结论可知,该地区的老年人是否需要志愿者提供帮助与性别有关,并且从样本数据能够看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男女两层,并采取分层抽样方法比简单随机抽样方法更好.【点评】本题考查了抽样的目的,独立性检验的方法及抽样的方法选取,属于基础题.20.(10分)设F1,F2分别是椭圆E:x2+=1(0<b<1)的左、右焦点,过F1的直线l与E相交于A、B两点,且|AF2|,|AB|,|BF2|成等差数列.(Ⅰ)求|AB|;(Ⅱ)若直线l的斜率为1,求b的值.【考点】K4:椭圆的性质.【专题】15:综合题.【分析】(1)由椭圆定义知|AF2|+|AB|+|BF2|=4,再由|AF2|,|AB|,|BF2|成等差数列,能够求出|AB|的值.(2)L的方程式为y=x+c,其中,设A(x1,y1),B(x1,y1),则A,B两点坐标满足方程组,化简得(1+b2)x2+2cx+1﹣2b2=0.然后结合题设条件和根与系数的关系能够求出b的大小.【解答】解:(1)由椭圆定义知|AF2|+|AB|+|BF2|=4又2|AB|=|AF2|+|BF2|,得(2)L的方程式为y=x+c,其中设A(x1,y1),B(x2,y2),则A,B两点坐标满足方程组.,化简得(1+b2)x2+2cx+1﹣2b2=0.则.因为直线AB的斜率为1,所以即.则.解得.【点评】本题综合考查椭圆的性质及其运用和直线与椭圆的位置关系,解题时要注意公式的灵活运用.21.设函数f(x)=x(e x﹣1)﹣ax2(Ⅰ)若a=,求f(x)的单调区间;(Ⅱ)若当x≥0时f(x)≥0,求a的取值范围.【考点】6B:利用导数研究函数的单调性.【专题】15:综合题;53:导数的综合应用.【分析】(I)求导函数,由导数的正负可得函数的单调区间;(II)f(x)=x(e x﹣1﹣ax),令g(x)=e x﹣1﹣ax,分类讨论,确定g(x)的正负,即可求得a的取值范围.【解答】解:(I)a=时,f(x)=x(e x﹣1)﹣x2,=(e x﹣1)(x+1)令f′(x)>0,可得x<﹣1或x>0;令f′(x)<0,可得﹣1<x<0;∴函数的单调增区间是(﹣∞,﹣1),(0,+∞);单调减区间为(﹣1,0);(II)f(x)=x(e x﹣1﹣ax).令g(x)=e x﹣1﹣ax,则g'(x)=e x﹣a.若a≤1,则当x∈(0,+∞)时,g'(x)>0,g(x)为增函数,而g(0)=0,从而当x≥0时g(x)≥0,即f(x)≥0.若a>1,则当x∈(0,lna)时,g'(x)<0,g(x)为减函数,而g(0)=0,从而当x∈(0,lna)时,g(x)<0,即f(x)<0.综合得a的取值范围为(﹣∞,1].另解:当x=0时,f(x)=0成立;当x>0,可得e x﹣1﹣ax≥0,即有a≤的最小值,由y=e x﹣x﹣1的导数为y′=e x﹣1,当x>0时,函数y递增;x<0时,函数递减,可得函数y取得最小值0,即e x﹣x﹣1≥0,x>0时,可得≥1,则a≤1.【点评】本题考查导数知识的运用,考查函数的单调性,考查分类讨论的数学思想,属于中档题.22.(10分)如图:已知圆上的弧,过C点的圆的切线与BA的延长线交于E点,证明:(Ⅰ)∠ACE=∠BCD.(Ⅱ)BC2=BE•CD.【考点】N9:圆的切线的判定定理的证明;NB:弦切角.【专题】14:证明题.【分析】(I)先根据题中条件:“”,得∠BCD=∠ABC.再根据EC是圆的切线,得到∠ACE=∠ABC,从而即可得出结论.(II)欲证BC2=BE x CD.即证.故只须证明△BDC~△ECB即可.【解答】解:(Ⅰ)因为,所以∠BCD=∠ABC.又因为EC与圆相切于点C,故∠ACE=∠ABC所以∠ACE=∠BCD.(5分)(Ⅱ)因为∠ECB=∠CDB,∠EBC=∠BCD,所以△BDC~△ECB,故.即BC2=BE×CD.(10分)【点评】本题主要考查圆的切线的判定定理的证明、弦切角的应用、三角形相似等基础知识,考查运化归与转化思想.属于基础题.23.(10分)已知直线C1(t为参数),C2(θ为参数),(Ⅰ)当α=时,求C1与C2的交点坐标;(Ⅱ)过坐标原点O做C1的垂线,垂足为A,P为OA中点,当α变化时,求P 点的轨迹的参数方程,并指出它是什么曲线.【考点】J3:轨迹方程;JE:直线和圆的方程的应用;Q4:简单曲线的极坐标方程;QJ:直线的参数方程;QK:圆的参数方程.【专题】15:综合题;16:压轴题.【分析】(I)先消去参数将曲线C1与C2的参数方程化成普通方程,再联立方程组求出交点坐标即可,(II)设P(x,y),利用中点坐标公式得P点轨迹的参数方程,消去参数即得普通方程,由普通方程即可看出其是什么类型的曲线.【解答】解:(Ⅰ)当α=时,C1的普通方程为,C2的普通方程为x2+y2=1.联立方程组,解得C1与C2的交点为(1,0).(Ⅱ)C1的普通方程为xsinα﹣ycosα﹣sinα=0①.则OA的方程为xcosα+ysinα=0②,联立①②可得x=sin2α,y=﹣cosαsinα;A点坐标为(sin2α,﹣cosαsinα),故当α变化时,P点轨迹的参数方程为:,P点轨迹的普通方程.故P点轨迹是圆心为,半径为的圆.【点评】本题主要考查直线与圆的参数方程,参数方程与普通方程的互化,利用参数方程研究轨迹问题的能力.24.(10分)设函数f(x)=|2x﹣4|+1.(Ⅰ)画出函数y=f(x)的图象:(Ⅱ)若不等式f(x)≤ax的解集非空,求a的取值范围.【考点】3A:函数的图象与图象的变换;7E:其他不等式的解法;R5:绝对值不等式的解法.【专题】11:计算题;13:作图题;16:压轴题.【分析】(I)先讨论x的范围,将函数f(x)写成分段函数,然后根据分段函数分段画出函数的图象即可;(II)根据函数y=f(x)与函数y=ax的图象可知先寻找满足f(x)≤ax的零界情况,从而求出a的范围.【解答】解:(Ⅰ)由于f(x)=,函数y=f(x)的图象如图所示.(Ⅱ)由函数y=f(x)与函数y=ax的图象可知,极小值在点(2,1)当且仅当a<﹣2或a≥时,函数y=f(x)与函数y=ax的图象有交点.故不等式f(x)≤ax的解集非空时,a的取值范围为(﹣∞,﹣2)∪[,+∞).【点评】本题主要考查了函数的图象,以及利用函数图象解不等式,同时考查了数形结合的数学思想,属于基础题.。
2010年全国统一高考数学试卷(文科)(新课标)(含解析版)
的值.
∵S=
=1﹣ =
故选:D. 【点评】根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的
题型,其处理方法是::①分析流程图(或伪代码),从流程图(或伪代码) 中即要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数 据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第 一步分析的结果,选择恰当的数学模型③解模.
第 7页(共 25页)
【解答】解:设 =(x,y), ∵a=(4,3),2a+b=(3,18), ∴
∴cosθ=
=, 故选:C. 【点评】本题是用数量积的变形公式求向量夹角的余弦值,数量积的主要应用:
①求模长;②求夹角;③判垂直,实际上在数量积公式中可以做到知三求一.
3.(5 分)已知复数 Z=
A.
4.(5 分)曲线 y=x3﹣2x+1 在点(1,0)处的切线方程为( )
A.y=x﹣1
B.y=﹣x+1
C.y=2x﹣2
D.y=﹣2x+2
第 8页(共 25页)
【考点】6H:利用导数研究曲线上某点切线方程. 菁优 网版权所有
【专题】1:常规题型;11:计算题. 【分析】欲求在点(1,0)处的切线方程,只须求出其斜率的值即可,故先利用
有一项是符合题目要求的.
1.(5 分)已知集合 A={x||x|≤2,x∈R},B={x| ≤4,x∈Z},则 A∩B=( )
A.(0,2)
B.[0,2]
C.{0,2}
D.{0,1,2}
【考点】1E:交集及其运算. 菁优 网 版权 所有
【专题】11:计算题. 【分析】由题意可得 A={x|﹣2≤x≤2},B={0,1,2,3,4,5,6,7,8,9,
2010年全国统一高考数学试卷(文科)(新课标)(含解析版)(附详细答案)
2010年全国统一高考数学试卷(文科)(新课标)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)平面向量,已知=(4,3),=(3,18),则夹角的余弦值等于()A.B.C.D.2.(5分)已知集合A={x||x|≤2,x∈R},B={x|≤4,x∈Z},则A∩B=()A.(0,2)B.[0,2]C.{0,2}D.{0,1,2} 3.(5分)已知复数Z=,则|z|=()A.B.C.1D.24.(5分)曲线y=x3﹣2x+1在点(1,0)处的切线方程为()A.y=x﹣1B.y=﹣x+1C.y=2x﹣2D.y=﹣2x+2 5.(5分)中心在原点,焦点在x轴上的双曲线的一条渐近线经过点(4,2),则它的离心率为()A.B.C.D.6.(5分)如图,质点P在半径为2的圆周上逆时针运动,其初始位置为P0(,﹣),角速度为1,那么点P到x轴距离d关于时间t的函数图象大致为()A.B.C.D.7.(5分)设长方体的长、宽、高分别为2a、a、a,其顶点都在一个球面上,则该球的表面积为()A.3πa2B.6πa2C.12πa2D.24πa28.(5分)如果执行如图的框图,输入N=5,则输出的数等于()A.B.C.D.9.(5分)设偶函数f(x)满足f(x)=2x﹣4(x≥0),则{x|f(x﹣2)>0}=()A.{x|x<﹣2或x>4}B.{x|x<0或x>4}C.{x|x<0或x >6}D.{x|x<﹣2或x>2}10.(5分)若cos α=﹣,α是第三象限的角,则sin(α+)=()A.B.C.D.11.(5分)已知?ABCD的三个顶点为A(﹣1,2),B(3,4),C(4,﹣2),点(x,y)在?ABCD的内部,则z=2x﹣5y的取值范围是()A.(﹣14,16)B.(﹣14,20)C.(﹣12,18)D.(﹣12,20)12.(5分)已知函数,若a,b,c互不相等,且f(a)=f(b)=f(c),则abc的取值范围是()A.(1,10)B.(5,6)C.(10,12)D.(20,24)二、填空题:本大题共4小题,每小题5分.13.(5分)圆心在原点上与直线x+y﹣2=0相切的圆的方程为.14.(5分)设函数y=f(x)为区间(0,1]上的图象是连续不断的一条曲线,且恒有0≤f(x)≤1,可以用随机模拟方法计算由曲线y=f(x)及直线x=0,x=1,y=0所围成部分的面积S,先产生两组(每组N个),区间(0,1]上的均匀随机数x1,x2,…,x n和y1,y2,…,y n,由此得到N个点(x,y)(i﹣1,2…,N).再数出其中满足y1≤f(x)(i=1,2…,N)的点数N1,那么由随机模拟方法可得S的近似值为.15.(5分)一个几何体的正视图为一个三角形,则这个几何体可能是下列几何体中的(填入所有可能的几何体前的编号)①三棱锥②四棱锥③三棱柱④四棱柱⑤圆锥⑥圆柱.16.(5分)在△ABC中,D为BC边上一点,BC=3BD,AD=,∠ADB=135°.若AC=AB,则BD= .三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(10分)设等差数列{a n}满足a3=5,a10=﹣9.(Ⅰ)求{a n}的通项公式;(Ⅱ)求{a n}的前n项和S n及使得S n最大的序号n的值.18.(10分)如图,已知四棱锥P﹣ABCD的底面为等腰梯形,AB∥CD,AC⊥BD,垂足为H,PH是四棱锥的高.(Ⅰ)证明:平面PAC⊥平面PBD;(Ⅱ)若AB=,∠APB=∠ADB=60°,求四棱锥P﹣ABCD的体积.19.(10分)为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如表:男女性别是否需要志愿者需要4030不需要160270(1)估计该地区老年人中,需要志愿者提供帮助的比例;(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?(3)根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中需要志愿者提供帮助的老年人比例?说明理由.P(K2≥k)0.0500.0100.0013.841 6.63510.828附:K2=.20.(10分)设F1,F2分别是椭圆E:x2+=1(0<b<1)的左、右焦点,过F1的直线l与E相交于A、B两点,且|AF2|,|AB|,|BF2|成等差数列.(Ⅰ)求|AB|;(Ⅱ)若直线l的斜率为1,求b的值.21.设函数f(x)=x(e x﹣1)﹣ax2(Ⅰ)若a=,求f(x)的单调区间;(Ⅱ)若当x≥0时f(x)≥0,求a的取值范围.22.(10分)如图:已知圆上的弧,过C点的圆的切线与BA的延长线交于E点,证明:(Ⅰ)∠ACE=∠BCD.(Ⅱ)BC2=BE?CD.23.(10分)已知直线C1(t为参数),C2(θ为参数),(Ⅰ)当α=时,求C1与C2的交点坐标;(Ⅱ)过坐标原点O做C1的垂线,垂足为A,P为OA中点,当α变化时,求P 点的轨迹的参数方程,并指出它是什么曲线.24.(10分)设函数f(x)=|2x﹣4|+1.(Ⅰ)画出函数y=f(x)的图象:(Ⅱ)若不等式f(x)≤ax的解集非空,求a的取值范围.2010年全国统一高考数学试卷(文科)(新课标)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)平面向量,已知=(4,3),=(3,18),则夹角的余弦值等于()A.B.C.D.【考点】9S:数量积表示两个向量的夹角.【分析】先设出的坐标,根据a=(4,3),2a+b=(3,18),求出坐标,根据数量积的坐标公式的变形公式,求出两个向量的夹角的余弦【解答】解:设=(x,y),∵a=(4,3),2a+b=(3,18),∴∴cosθ==,故选:C.【点评】本题是用数量积的变形公式求向量夹角的余弦值,数量积的主要应用:①求模长;②求夹角;③判垂直,实际上在数量积公式中可以做到知三求一.2.(5分)已知集合A={x||x|≤2,x∈R},B={x|≤4,x∈Z},则A∩B=()A.(0,2)B.[0,2]C.{0,2}D.{0,1,2}【考点】1E:交集及其运算.【专题】11:计算题.【分析】由题意可得A={x|﹣2≤x≤2},B={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16},从而可求【解答】解:∵A={x||x|≤2}={x|﹣2≤x≤2}B={x|≤4,x∈Z}={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}则A∩B={0,1,2}故选:D.【点评】本题主要考查了集合的交集的求解,解题的关键是准确求解A,B,属于基础试题3.(5分)已知复数Z=,则|z|=()A.B.C.1D.2【考点】A5:复数的运算.【专题】11:计算题.【分析】由复数的代数形式的乘除运算化简可得Z=,由复数的模长公式可得答案.【解答】解:化简得Z===?=?=?=,故|z|==,故选:B.【点评】本题考查复数的代数形式的乘除运算,涉及复数的模长,属基础题.4.(5分)曲线y=x3﹣2x+1在点(1,0)处的切线方程为()A.y=x﹣1B.y=﹣x+1C.y=2x﹣2D.y=﹣2x+2【考点】6H:利用导数研究曲线上某点切线方程.【专题】1:常规题型;11:计算题.【分析】欲求在点(1,0)处的切线方程,只须求出其斜率的值即可,故先利用导数求出在x=1处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决.【解答】解:验证知,点(1,0)在曲线上∵y=x3﹣2x+1,y′=3x2﹣2,所以k=y′|x﹣1=1,得切线的斜率为1,所以k=1;所以曲线y=f(x)在点(1,0)处的切线方程为:y﹣0=1×(x﹣1),即y=x﹣1.故选:A.【点评】本小题主要考查直线的斜率、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力.属于基础题.5.(5分)中心在原点,焦点在x轴上的双曲线的一条渐近线经过点(4,2),则它的离心率为()A.B.C.D.【考点】KC:双曲线的性质.【专题】11:计算题.【分析】先求渐近线斜率,再用c2=a2+b2求离心率.【解答】解:∵渐近线的方程是y=±x,∴2=?4,=,a=2b,c==a,e==,即它的离心率为.故选:D.【点评】本题考查双曲线的几何性质.6.(5分)如图,质点P在半径为2的圆周上逆时针运动,其初始位置为P0(,﹣),角速度为1,那么点P到x轴距离d关于时间t的函数图象大致为()A.B.C.D.【考点】3A:函数的图象与图象的变换.【分析】本题的求解可以利用排除法,根据某具体时刻点P的位置到到x轴距离来确定答案.【解答】解:通过分析可知当t=0时,点P到x轴距离d为,于是可以排除答案A,D,再根据当时,可知点P在x轴上此时点P到x轴距离d为0,排除答案B,故选:C.【点评】本题主要考查了函数的图象,以及排除法的应用和数形结合的思想,属于基础题.7.(5分)设长方体的长、宽、高分别为2a、a、a,其顶点都在一个球面上,则该球的表面积为()A.3πa2B.6πa2C.12πa2D.24πa2【考点】LG:球的体积和表面积.【专题】11:计算题.【分析】本题考查的知识点是球的体积和表面积公式,由长方体的长、宽、高分别为2a、a、a,其顶点都在一个球面上,则长方体的对角线即为球的直径,即球的半径R满足(2R)2=6a2,代入球的表面积公式,S球=4πR2,即可得到答案.【解答】解:根据题意球的半径R满足(2R)2=6a2,所以S球=4πR2=6πa2.故选:B.【点评】长方体的外接球直径等于长方体的对角线长.8.(5分)如果执行如图的框图,输入N=5,则输出的数等于()A.B.C.D.【考点】EF:程序框图.【专题】28:操作型.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出S=的值.【解答】解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出S=的值.∵S==1﹣=故选:D.【点评】根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是::①分析流程图(或伪代码),从流程图(或伪代码)中即要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)?②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模.9.(5分)设偶函数f(x)满足f(x)=2x﹣4(x≥0),则{x|f(x﹣2)>0}=()A.{x|x<﹣2或x>4}B.{x|x<0或x>4}C.{x|x<0或x >6}D.{x|x<﹣2或x>2}【考点】3K:函数奇偶性的性质与判断.【专题】11:计算题.【分析】由偶函数f(x)满足f(x)=2x﹣4(x≥0),可得f(x)=f(|x|)=2|x|﹣4,根据偶函数的性质将函数转化为绝对值函数,再求解不等式,可得答案.【解答】解:由偶函数f(x)满足f(x)=2x﹣4(x≥0),可得f(x)=f(|x|)=2|x|﹣4,则f(x﹣2)=f(|x﹣2|)=2|x﹣2|﹣4,要使f(|x﹣2|)>0,只需2|x﹣2|﹣4>0,|x﹣2|>2解得x>4,或x<0.应选:B.【点评】本题主要考查偶函数性质、不等式的解法以及相应的运算能力,解答本题的关键是利用偶函数的性质将函数转化为绝对值函数,从而简化计算.﹣,α是第三象限的角,则sin(α+)=()10.(5分)若cos α=A.B.C.D.【考点】GG:同角三角函数间的基本关系;GP:两角和与差的三角函数.【专题】11:计算题.【分析】根据α的所在的象限以及同角三角函数的基本关系求得sinα的值,进而利用两角和与差的正弦函数求得答案.【解答】解:∵α是第三象限的角∴sinα=﹣=﹣,所以sin(α+)=sinαcos+cosαsin=﹣=﹣.故选:A.【点评】本题主要考查了两角和与差的正弦函数,以及同角三角函数的基本关系的应用.根据角所在的象限判断三角函数值的正负是做题过程中需要注意的.11.(5分)已知?ABCD的三个顶点为A(﹣1,2),B(3,4),C(4,﹣2),点(x,y)在?ABCD的内部,则z=2x﹣5y的取值范围是()A.(﹣14,16)B.(﹣14,20)C.(﹣12,18)D.(﹣12,20)【考点】7C:简单线性规划.【专题】11:计算题;16:压轴题.【分析】根据点坐标与向量坐标之间的关系,利用向量相等求出顶点D的坐标是解决问题的关键.结合线性规划的知识平移直线求出目标函数的取值范围.【解答】解:由已知条件得?D(0,﹣4),由z=2x﹣5y得y=,平移直线当直线经过点B(3,4)时,﹣最大,即z取最小为﹣14;当直线经过点D(0,﹣4)时,﹣最小,即z取最大为20,又由于点(x,y)在四边形的内部,故z∈(﹣14,20).如图:故选B.【点评】本题考查平行四边形的顶点之间的关系,用到向量坐标与点坐标之间的关系,体现了向量的工具作用,考查学生线性规划的理解和认识,考查学生的数形结合思想.属于基本题型.12.(5分)已知函数,若a,b,c互不相等,且f(a)=f(b)=f(c),则abc的取值范围是()A.(1,10)B.(5,6)C.(10,12)D.(20,24)【考点】3A:函数的图象与图象的变换;3B:分段函数的解析式求法及其图象的作法;4H:对数的运算性质;4N:对数函数的图象与性质.【专题】13:作图题;16:压轴题;31:数形结合.【分析】画出函数的图象,根据f(a)=f(b)=f(c),不妨a<b<c,求出abc 的范围即可.【解答】解:作出函数f(x)的图象如图,不妨设a<b<c,则ab=1,则abc=c∈(10,12).故选:C.【点评】本题主要考查分段函数、对数的运算性质以及利用数形结合解决问题的能力.二、填空题:本大题共4小题,每小题5分.13.(5分)圆心在原点上与直线x+y﹣2=0相切的圆的方程为x2+y2=2 .【考点】J1:圆的标准方程;J9:直线与圆的位置关系.【分析】可求圆的圆心到直线的距离,就是半径,写出圆的方程.【解答】解:圆心到直线的距离:r=,所求圆的方程为x2+y2=2.故答案为:x2+y2=2【点评】本题考查圆的标准方程,直线与圆的位置关系,是基础题.14.(5分)设函数y=f(x)为区间(0,1]上的图象是连续不断的一条曲线,且恒有0≤f(x)≤1,可以用随机模拟方法计算由曲线y=f(x)及直线x=0,x=1,y=0所围成部分的面积S,先产生两组(每组N个),区间(0,1]上的均匀随机数x1,x2,…,x n和y1,y2,…,y n,由此得到N个点(x,y)(i﹣1,2…,N).再数出其中满足y1≤f(x)(i=1,2…,N)的点数N1,那么由随机模拟方法可得S的近似值为.【考点】CE:模拟方法估计概率;CF:几何概型.【分析】由题意知本题是求∫01f(x)dx,而它的几何意义是函数f(x)(其中0≤f(x)≤1)的图象与x轴、直线x=0和直线x=1所围成图形的面积,积分得到结果.【解答】解:∵∫01f(x)dx的几何意义是函数f(x)(其中0≤f(x)≤1)的图象与x轴、直线x=0和直线x=1所围成图形的面积,∴根据几何概型易知∫01f(x)dx≈.故答案为:.【点评】古典概型和几何概型是我们学习的两大概型,古典概型要求能够列举出所有事件和发生事件的个数,而不能列举的就是几何概型,几何概型的概率的值是通过长度、面积和体积的比值得到.15.(5分)一个几何体的正视图为一个三角形,则这个几何体可能是下列几何体中的①②③⑤(填入所有可能的几何体前的编号)①三棱锥②四棱锥③三棱柱④四棱柱⑤圆锥⑥圆柱.【考点】L7:简单空间图形的三视图.【专题】15:综合题;16:压轴题.【分析】一个几何体的正视图为一个三角形,由三视图的正视图的作法判断选项.【解答】解:一个几何体的正视图为一个三角形,显然①②⑤正确;③是三棱柱放倒时也正确;④⑥不论怎样放置正视图都不会是三角形;故答案为:①②③⑤【点评】本题考查简单几何体的三视图,考查空间想象能力,是基础题.16.(5分)在△ABC中,D为BC边上一点,BC=3BD,AD=,∠ADB=135°.若AC=AB,则BD= 2+.【考点】HR:余弦定理.【专题】11:计算题;16:压轴题.【分析】先利用余弦定理可分别表示出AB,AC,把已知条件代入整理,根据BC=3BD推断出CD=2BD,进而整理AC2=CD2+2﹣2CD 得AC2=4BD2+2﹣4BD把AC=AB,代入整理,最后联立方程消去AB求得BD的方程求得BD.【解答】用余弦定理求得AB2=BD2+AD2﹣2AD?BDcos135°AC2=CD2+AD2﹣2AD?CDcos45°即AB2=BD2+2+2BD ①AC2=CD2+2﹣2CD ②又BC=3BD所以CD=2BD所以由(2)得AC2=4BD2+2﹣4BD(3)因为AC=AB所以由(3)得2AB2=4BD2+2﹣4BD (4)(4)﹣2(1)BD2﹣4BD﹣1=0求得BD=2+故答案为:2+【点评】本题主要考查了余弦定理的应用.考查了学生创造性思维能力和基本的推理能力.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(10分)设等差数列{a n}满足a3=5,a10=﹣9.(Ⅰ)求{a n}的通项公式;(Ⅱ)求{a n}的前n项和S n及使得S n最大的序号n的值.【考点】84:等差数列的通项公式;85:等差数列的前n项和.【分析】(1)设出首项和公差,根据a3=5,a10=﹣9,列出关于首项和公差的二元一次方程组,解方程组得到首项和公差,写出通项.(2)由上面得到的首项和公差,写出数列{a n}的前n项和,整理成关于n的一元二次函数,二次项为负数求出最值.【解答】解:(1)由a n=a1+(n﹣1)d及a3=5,a10=﹣9得a1+9d=﹣9,a1+2d=5解得d=﹣2,a1=9,数列{a n}的通项公式为a n=11﹣2n(2)由(1)知S n=na1+d=10n﹣n2.因为S n=﹣(n﹣5)2+25.所以n=5时,S n取得最大值.【点评】数列可看作一个定义域是正整数集或它的有限子集的函数,当自变量从小到大依次取值对应的一列函数值,因此它具备函数的特性.18.(10分)如图,已知四棱锥P﹣ABCD的底面为等腰梯形,AB∥CD,AC⊥BD,垂足为H,PH是四棱锥的高.(Ⅰ)证明:平面PAC⊥平面PBD;(Ⅱ)若AB=,∠APB=∠ADB=60°,求四棱锥P﹣ABCD的体积.【考点】LF:棱柱、棱锥、棱台的体积;LY:平面与平面垂直.【专题】11:计算题;14:证明题;35:转化思想.【分析】(Ⅰ)要证平面PAC⊥平面PBD,只需证明平面PAC内的直线AC,垂直平面PBD内的两条相交直线PH,BD即可.(Ⅱ),∠APB=∠ADB=60°,计算等腰梯形ABCD的面积,PH是棱锥的高,然后求四棱锥P﹣ABCD的体积.【解答】解:(1)因为PH是四棱锥P﹣ABCD的高.所以AC⊥PH,又AC⊥BD,PH,BD都在平PHD内,且PH∩BD=H.所以AC⊥平面PBD.故平面PAC⊥平面PBD(6分)(2)因为ABCD为等腰梯形,AB∥CD,AC⊥BD,AB=.所以HA=HB=.因为∠APB=∠ADB=60°所以PA=PB=,HD=HC=1.可得PH=.等腰梯形ABCD的面积为S=ACxBD=2+(9分)所以四棱锥的体积为V=×(2+)×=.(12分)【点评】本题考查平面与平面垂直的判定,棱柱、棱锥、棱台的体积,考查空间想象能力,计算能力,推理能力,是中档题.19.(10分)为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如表:男女性别是否需要志愿者需要4030不需要160270(1)估计该地区老年人中,需要志愿者提供帮助的比例;(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?(3)根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中需要志愿者提供帮助的老年人比例?说明理由.P(K2≥k)0.0500.0100.0013.841 6.63510.828附:K2=.【考点】BL:独立性检验.【专题】11:计算题;5I:概率与统计.【分析】(1)由样本的频率率估计总体的概率,(2)求K2的观测值查表,下结论;(3)由99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关,则可按性别分层抽样.【解答】解:(1)调查的500位老年人中有70位需要志愿者提供帮助,因此在该地区老年人中,需要帮助的老年人的比例的估计值为(2)K2的观测值因为9.967>6.635,且P(K2≥6.635)=0.01,所以有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关.(3)根据(2)的结论可知,该地区的老年人是否需要志愿者提供帮助与性别有关,并且从样本数据能够看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男女两层,并采取分层抽样方法比简单随机抽样方法更好.【点评】本题考查了抽样的目的,独立性检验的方法及抽样的方法选取,属于基础题.20.(10分)设F1,F2分别是椭圆E:x2+=1(0<b<1)的左、右焦点,过F1的直线l与E相交于A、B两点,且|AF2|,|AB|,|BF2|成等差数列.(Ⅰ)求|AB|;(Ⅱ)若直线l的斜率为1,求b的值.【考点】K4:椭圆的性质.【专题】15:综合题.【分析】(1)由椭圆定义知|AF2|+|AB|+|BF2|=4,再由|AF2|,|AB|,|BF2|成等差数列,能够求出|AB|的值.(2)L的方程式为y=x+c,其中,设A(x1,y1),B(x1,y1),则A,B两点坐标满足方程组,化简得(1+b2)x2+2cx+1﹣2b2=0.然后结合题设条件和根与系数的关系能够求出b的大小.【解答】解:(1)由椭圆定义知|AF2|+|AB|+|BF2|=4又2|AB|=|AF2|+|BF2|,得(2)L的方程式为y=x+c,其中设A(x1,y1),B(x2,y2),则A,B两点坐标满足方程组.,化简得(1+b2)x2+2cx+1﹣2b2=0.则.因为直线AB的斜率为1,所以即.则.解得.【点评】本题综合考查椭圆的性质及其运用和直线与椭圆的位置关系,解题时要注意公式的灵活运用.21.设函数f(x)=x(e x﹣1)﹣ax2(Ⅰ)若a=,求f(x)的单调区间;(Ⅱ)若当x≥0时f(x)≥0,求a的取值范围.【考点】6B:利用导数研究函数的单调性.【专题】15:综合题;53:导数的综合应用.【分析】(I)求导函数,由导数的正负可得函数的单调区间;(II)f(x)=x(e x﹣1﹣ax),令g(x)=e x﹣1﹣ax,分类讨论,确定g(x)的正负,即可求得a的取值范围.【解答】解:(I)a=时,f(x)=x(e x﹣1)﹣x2,=(e x ﹣1)(x+1)令f′(x)>0,可得x<﹣1或x>0;令f′(x)<0,可得﹣1<x<0;∴函数的单调增区间是(﹣∞,﹣1),(0,+∞);单调减区间为(﹣1,0);(II)f(x)=x(e x﹣1﹣ax).令g(x)=e x﹣1﹣ax,则g'(x)=e x﹣a.若a≤1,则当x∈(0,+∞)时,g'(x)>0,g(x)为增函数,而g(0)=0,从而当x≥0时g(x)≥0,即f(x)≥0.若a>1,则当x∈(0,lna)时,g'(x)<0,g(x)为减函数,而g(0)=0,从而当x∈(0,lna)时,g(x)<0,即f(x)<0.综合得a的取值范围为(﹣∞,1].另解:当x=0时,f(x)=0成立;当x>0,可得e x﹣1﹣ax≥0,即有a≤的最小值,由y=e x﹣x﹣1的导数为y′=e x﹣1,当x>0时,函数y递增;x<0时,函数递减,可得函数y取得最小值0,即e x﹣x﹣1≥0,x>0时,可得≥1,则a≤1.【点评】本题考查导数知识的运用,考查函数的单调性,考查分类讨论的数学思想,属于中档题.22.(10分)如图:已知圆上的弧,过C点的圆的切线与BA的延长线交于E点,证明:(Ⅰ)∠ACE=∠BCD.(Ⅱ)BC2=BE?CD.【考点】N9:圆的切线的判定定理的证明;NB:弦切角.【专题】14:证明题.【分析】(I)先根据题中条件:“”,得∠BCD=∠ABC.再根据EC是圆的切线,得到∠ACE=∠ABC,从而即可得出结论.(II)欲证BC2=BE x CD.即证.故只须证明△BDC~△ECB即可.【解答】解:(Ⅰ)因为,所以∠BCD=∠ABC.又因为EC与圆相切于点C,故∠ACE=∠ABC所以∠ACE=∠BCD.(5分)(Ⅱ)因为∠ECB=∠CDB,∠EBC=∠BCD,所以△BDC~△ECB,故.即BC2=BE×CD.(10分)【点评】本题主要考查圆的切线的判定定理的证明、弦切角的应用、三角形相似等基础知识,考查运化归与转化思想.属于基础题.23.(10分)已知直线C1(t为参数),C2(θ为参数),(Ⅰ)当α=时,求C1与C2的交点坐标;(Ⅱ)过坐标原点O做C1的垂线,垂足为A,P为OA中点,当α变化时,求P 点的轨迹的参数方程,并指出它是什么曲线.【考点】J3:轨迹方程;JE:直线和圆的方程的应用;Q4:简单曲线的极坐标方程;QJ:直线的参数方程;QK:圆的参数方程.【专题】15:综合题;16:压轴题.【分析】(I)先消去参数将曲线C1与C2的参数方程化成普通方程,再联立方程组求出交点坐标即可,(II)设P(x,y),利用中点坐标公式得P点轨迹的参数方程,消去参数即得普通方程,由普通方程即可看出其是什么类型的曲线.【解答】解:(Ⅰ)当α=时,C1的普通方程为,C2的普通方程为x2+y2=1.联立方程组,解得C1与C2的交点为(1,0).(Ⅱ)C1的普通方程为xsinα﹣ycosα﹣sinα=0①.则OA的方程为xcosα+ysinα=0②,联立①②可得x=sin2α,y=﹣cosαsinα;),A点坐标为(sin2α,﹣cosαsinα故当α变化时,P点轨迹的参数方程为:,P点轨迹的普通方程.故P点轨迹是圆心为,半径为的圆.【点评】本题主要考查直线与圆的参数方程,参数方程与普通方程的互化,利用参数方程研究轨迹问题的能力.24.(10分)设函数f(x)=|2x﹣4|+1.(Ⅰ)画出函数y=f(x)的图象:(Ⅱ)若不等式f(x)≤ax的解集非空,求a的取值范围.【考点】3A:函数的图象与图象的变换;7E:其他不等式的解法;R5:绝对值不等式的解法.【专题】11:计算题;13:作图题;16:压轴题.【分析】(I)先讨论x的范围,将函数f(x)写成分段函数,然后根据分段函数分段画出函数的图象即可;(II)根据函数y=f(x)与函数y=ax的图象可知先寻找满足f(x)≤ax的零界情况,从而求出a的范围.【解答】解:(Ⅰ)由于f(x)=,函数y=f(x)的图象如图所示.(Ⅱ)由函数y=f(x)与函数y=ax的图象可知,极小值在点(2,1)当且仅当a<﹣2或a≥时,函数y=f(x)与函数y=ax的图象有交点.故不等式f(x)≤ax的解集非空时,a的取值范围为(﹣∞,﹣2)∪[,+∞).【点评】本题主要考查了函数的图象,以及利用函数图象解不等式,同时考查了数形结合的数学思想,属于基础题.。
2010年辽宁省高考数学试卷(文科)答案与解析
2010年辽宁省高考数学试卷(文科)一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2010•辽宁)已知集合U={1,3,5,7,9},A={1,5,7},则∁U A=()A.{1,3} B.{3,7,9} C.{3,5,9} D.{3,9}2.(5分)(2010•辽宁)设a,b为实数,若复数,则()A.B.a=3,b=1 C.D.a=1,b=33.(5分)(2010•辽宁)设S n为等比数列{a n}的前n项和,已知3S3=a4﹣2,3S2=a3﹣2,则公比q=()A.3 B.4 C.5 D.64.(5分)(2010•辽宁)已知a>0,函数f(x)=ax2+bx+c,若x0满足关于x的方程2ax+b=0,则下列选项的命题中为假命题的是()A.∃x∈R,f(x)≤f(x0) B.∃x∈R,f(x)≥f(x0)C.∀x∈R,f(x)≤f(x0) D.∀x∈R,f(x)≥f(x0)5.(5分)(2010•辽宁)如果执行右面的程序框图,输入n=6,m=4,那么输出的p等于()A.720 B.360 C.240 D.1206.(5分)(2010•辽宁)设ω>0,函数y=sin(ωx+)+2的图象向右平移个单位后与原图象重合,则ω的最小值是()A.B.C.D.37.(5分)(2010•辽宁)设抛物线y2=8x的焦点为F,准线为l,P为抛物线上一点,PA⊥l,A为垂足.如果直线AF的斜率为,那么|PF|=()A.B.8 C. D.168.(5分)(2010•辽宁)平面上O,A,B三点不共线,设,则△OAB的面积等于()A.B.C.D.9.(5分)(2010•辽宁)设双曲线的﹣个焦点为F,虚轴的﹣个端点为B,如果直线FB与该双曲线的一条渐近线垂直,那么此双曲线的离心率为()A.B.C.D.10.(5分)(2010•辽宁)设2a=5b=m,且,则m=()A. B.10 C.20 D.10011.(5分)(2010•辽宁)已知S,A,B,C是球O表面上的点,SA⊥平面ABC,AB⊥BC,SA=AB=1,,则球O的表面积等于()A.4πB.3πC.2πD.π12.(5分)(2010•辽宁)已知点P在曲线y=上,α为曲线在点P处的切线的倾斜角,则α的取值范围是()A.[0,) B.C.D.二、填空题(共4小题,每小题5分,满分20分)13.(5分)(2010•辽宁)三张卡片上分别写上字母E、E、B,将三张卡片随机地排成一行,恰好排成英文单词BEE的概率为.14.(5分)(2010•辽宁)设S n为等差数列{a n}的前n项和,若S3=3,S6=24,则a9=.15.(5分)(2010•辽宁)已知﹣1<x+y<4且2<x﹣y<3,则z=2x﹣3y的取值范围是.(答案用区间表示)16.(5分)(2010•辽宁)如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为.三、解答题(共8小题,满分90分)17.(12分)(2010•辽宁)在△ABC中,a、b、c分别为内角A、B、C的对边,且2asinA=(2b+c)sinB+(2c+b)sinC(Ⅰ)求A的大小;(Ⅱ)若sinB+sinC=1,试判断△ABC的形状.18.(12分)(2010•辽宁)为了比较注射A,B两种药物后产生的皮肤疱疹的面积,选200只家兔做试验,将这200只家兔随机地分成两组,每组100只,其中一组注射药物A,另一组注射药物B.(Ⅰ)甲、乙是200只家兔中的2只,求甲、乙分在不同组的概率;(Ⅱ)下表1和表2分别是注射药物A和B后的试验结果.(疱疹面积单位:mm2)完成下面2×2列联表,并回答能否有99.9%的把握认为“注射药物A后的疱疹面积与注射药物B后的疱疹面积有差异”.附:K2=.19.(12分)(2010•辽宁)如图,棱柱ABC﹣A1B1C1的侧面BCC1B1是菱形,B1C⊥A1B(Ⅰ)证明:平面AB1C⊥平面A1BC1;(Ⅱ)设D是A1C1上的点,且A1B∥平面B1CD,求A1D:DC1的值.20.(12分)(2010•辽宁)设F1,F2分别为椭圆(a>b>0)的左、右焦点,过F2的直线l与椭圆C相交于A,B两点,直线l的倾斜角为60°,F1到直线l的距离为.(Ⅰ)求椭圆C的焦距;(Ⅱ)如果,求椭圆C的方程.21.(12分)(2010•辽宁)已知函数f(x)=(a+1)lnx+ax2+1.(Ⅰ)讨论函数f(x)的单调性;(Ⅱ)设a≤﹣2,证明:对任意x1,x2∈(0,+∞),|f(x1)﹣f(x2)|≥4|x1﹣x2|.22.(10分)(2010•辽宁)如图,△ABC的角平分线AD的延长线交它的外接圆于点E.(1)证明:△ABE∽△ADC;(2)若△ABC的面积S=AD•AE,求∠BAC的大小.23.(10分)(2010•辽宁)已知P为半圆C:(θ为参数,0≤θ≤π)上的点,点A的坐标为(1,0),O为坐标原点,点M在射线OP上,线段OM与C的弧的长度均为.(1)以O为极点,x轴的正半轴为极轴建立极坐标系,求点M的极坐标;(2)求直线AM的参数方程.24.(10分)(2010•辽宁)已知a,b,c均为正数,证明:≥6,并确定a,b,c 为何值时,等号成立.2010年辽宁省高考数学试卷(文科)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2010•辽宁)已知集合U={1,3,5,7,9},A={1,5,7},则∁U A=()A.{1,3} B.{3,7,9} C.{3,5,9} D.{3,9}【考点】补集及其运算.【分析】从U中去掉A中的元素就可.【解答】解:从全集U中,去掉1,5,7,剩下的元素构成C U A.故选D.【点评】集合补集就是从全集中去掉集合本身含有的元素后所构成的集合.2.(5分)(2010•辽宁)设a,b为实数,若复数,则()A.B.a=3,b=1 C.D.a=1,b=3【考点】复数相等的充要条件.【分析】先化简,然后用复数相等的条件,列方程组求解.【解答】解:由可得1+2i=(a﹣b)+(a+b)i,所以,解得,,故选A.【点评】本题考查了复数相等的概念及有关运算,考查计算能力.是基础题.3.(5分)(2010•辽宁)设S n为等比数列{a n}的前n项和,已知3S3=a4﹣2,3S2=a3﹣2,则公比q=()A.3 B.4 C.5 D.6【考点】等比数列的通项公式.【专题】等差数列与等比数列.【分析】3S3=a4﹣2,3S2=a3﹣2,两式相减得3a3=a4﹣a3,由此能求出公比q=4.【解答】解:∵S n为等比数列{a n}的前n项和,3S3=a4﹣2,3S2=a3﹣2,两式相减得3a3=a4﹣a3,a4=4a3,∴公比q=4.故选:B.【点评】本题考查公比的求法,是基础题,解题时要认真审题,注意等比数列的性质的合理运用.4.(5分)(2010•辽宁)已知a>0,函数f(x)=ax2+bx+c,若x0满足关于x的方程2ax+b=0,则下列选项的命题中为假命题的是()A.∃x∈R,f(x)≤f(x0) B.∃x∈R,f(x)≥f(x0)C.∀x∈R,f(x)≤f(x0) D.∀x∈R,f(x)≥f(x0)【考点】四种命题的真假关系.【专题】简易逻辑.【分析】由x0满足关于x的方程2ax+b=0得出x=x0是二次函数的对称轴,由a>0可知二次函数有最小值.【解答】解:∵x0满足关于x的方程2ax+b=0,∴∵a>0,∴函数f(x)在x=x0处取到最小值是等价于∀x∈R,f(x)≥f(x0),所以命题C错误.答案:C.【点评】本题考查二次函数的最值问题,全称命题和特称命题真假的判断,注意对符号∃和∀的区分和理解.5.(5分)(2010•辽宁)如果执行右面的程序框图,输入n=6,m=4,那么输出的p等于()A.720 B.360 C.240 D.120【考点】循环结构.【专题】阅读型.【分析】讨论k从1开始取,分别求出p的值,直到不满足k<4,退出循环,从而求出p的值,解题的关键是弄清循环次数.【解答】解:第一次:k=1,p=1×3=3;第二次:k=2,p=3×4=12;第三次:k=3,p=12×5=60;第四次:k=4,p=60×6=360此时不满足k<4.所以p=360.故选B【点评】本题主要考查了直到形循环结构,循环结构有两种形式:当型循环结构和直到型循环结构,当型循环是先判断后循环,直到型循环是先循环后判断,属于基础题.6.(5分)(2010•辽宁)设ω>0,函数y=sin(ωx+)+2的图象向右平移个单位后与原图象重合,则ω的最小值是()A.B.C.D.3【考点】函数y=Asin(ωx+φ)的图象变换.【专题】计算题;待定系数法.【分析】求出图象平移后的函数表达式,与原函数对应,求出ω的最小值.【解答】解:将y=sin(ωx+)+2的图象向右平移个单位后为=,所以有=2kπ,即,又因为ω>0,所以k≥1,故≥,故选C【点评】本题考查了三角函数图象的平移变换与三角函数的周期性,考查了同学们对知识灵活掌握的程度.7.(5分)(2010•辽宁)设抛物线y2=8x的焦点为F,准线为l,P为抛物线上一点,PA⊥l,A为垂足.如果直线AF的斜率为,那么|PF|=()A.B.8 C. D.16【考点】抛物线的简单性质;抛物线的定义.【分析】先根据抛物线方程求出焦点坐标,进而根据直线AF的斜率为求出直线AF的方程,然后联立准线和直线AF的方程可得点A的坐标,得到点P的坐标,根据抛物线的性质:抛物线上的点到焦点和准线的距离相等可得到答案.【解答】解:抛物线的焦点F(2,0),准线方程为x=﹣2,直线AF的方程为,所以点、,从而|PF|=6+2=8故选B.【点评】本题考查了抛物线的定义、抛物线的焦点与准线、直线与抛物线的位置关系,考查了等价转化的思想.8.(5分)(2010•辽宁)平面上O,A,B三点不共线,设,则△OAB的面积等于()A.B.C.D.【考点】向量在几何中的应用.【专题】计算题.【分析】利用三角形的面积公式表示出面积;再利用三角函数的平方关系将正弦表示成余弦;再利用向量的数量积公式求出向量夹角的余弦化简即得.【解答】解:==•=;故选C.【点评】本题考查三角形的面积公式;同角三角函数的平方关系,利用向量的数量积求向量的夹角.9.(5分)(2010•辽宁)设双曲线的﹣个焦点为F,虚轴的﹣个端点为B,如果直线FB与该双曲线的一条渐近线垂直,那么此双曲线的离心率为()A.B.C.D.【考点】双曲线的简单性质;两条直线垂直的判定.【专题】计算题;压轴题.【分析】先设出双曲线方程,则F,B的坐标可得,根据直线FB与渐近线y=垂直,得出其斜率的乘积为﹣1,进而求得b和a,c的关系式,进而根据双曲线方程a,b和c的关系进而求得a和c的等式,则双曲线的离心率可得.【解答】解:设双曲线方程为,则F(c,0),B(0,b)直线FB:bx+cy﹣bc=0与渐近线y=垂直,所以,即b2=ac所以c2﹣a2=ac,即e2﹣e﹣1=0,所以或(舍去)【点评】本题考查了双曲线的焦点、虚轴、渐近线、离心率,考查了两条直线垂直的条件,考查了方程思想.10.(5分)(2010•辽宁)设2a=5b=m,且,则m=()A. B.10 C.20 D.100【考点】指数式与对数式的互化;对数的运算性质.【专题】计算题;压轴题.【分析】直接化简,用m代替方程中的a、b,然后求解即可.【解答】解:,∴m2=10,又∵m>0,∴.故选A【点评】本题考查指数式和对数式的互化,对数的运算性质,是基础题.11.(5分)(2010•辽宁)已知S,A,B,C是球O表面上的点,SA⊥平面ABC,AB⊥BC,SA=AB=1,,则球O的表面积等于()A.4πB.3πC.2πD.π【考点】直线与平面垂直的性质;球的体积和表面积.【专题】压轴题.【分析】先寻找球心,根据S,A,B,C是球O表面上的点,则OA=OB=OC=OS,根据直角三角形的性质可知O为SC的中点,则SC即为直径,根据球的面积公式求解即可.【解答】解:∵已知S,A,B,C是球O表面上的点∴OA=OB=OC=OS=1又SA⊥平面ABC,AB⊥BC,SA=AB=1,,∴球O的直径为2R=SC=2,R=1,∴表面积为4πR2=4π.故选A.【点评】本题主要考查了直线与平面垂直的性质,以及球的表面积等有关知识,考查空间想象能力、运算能力和推理论证能力,属于基础题.12.(5分)(2010•辽宁)已知点P在曲线y=上,α为曲线在点P处的切线的倾斜角,则α的取值范围是()A.[0,) B.C.D.【考点】导数的几何意义.【专题】计算题;压轴题.【分析】利用导数在切点处的值是曲线的切线斜率,再根据斜率等于倾斜角的正切值求出角的范围.【解答】解:因为y′===,∵,∴e x+e﹣x+2≥4,∴y′∈[﹣1,0)即tanα∈[﹣1,0),∵0≤α<π∴≤α<π故选:D.【点评】本题考查导数的几何意义及直线的斜率等于倾斜角的正切值.二、填空题(共4小题,每小题5分,满分20分)13.(5分)(2010•辽宁)三张卡片上分别写上字母E、E、B,将三张卡片随机地排成一行,恰好排成英文单词BEE的概率为.【考点】排列及排列数公式.【专题】计算题.【分析】由题意知本题是一个古典概型,试验包含的所有事件可以列举出三张卡片随机地排成一行,而满足条件的只有一种,根据概率公式得到结果.【解答】解:由题意知本题是一个古典概型,∵试验包含的所有事件可以列举出三张卡片随机地排成一行,共有三种情况:BEE,EBE,EEB,而满足条件的只有一种,∴概率为:.故答案为:【点评】字母排列问题是概率中经常出现的题目,一般可以列举出要求的事件,古典概型要求能够列举出所有事件和发生事件的个数,而不能列举的可以借助于排列数和组合数来表示.14.(5分)(2010•辽宁)设S n为等差数列{a n}的前n项和,若S3=3,S6=24,则a9=15.【考点】等差数列的前n项和.【专题】计算题.【分析】利用等差数列的前n项和公式求出前3项、前6项和列出方程求出首项和公差;利用等差数列的通项公式求出第9项.【解答】解:,解得,∴a9=a1+8d=15.故答案为15【点评】本题考查等差数列的前n项和公式、等差数列的通项公式.15.(5分)(2010•辽宁)已知﹣1<x+y<4且2<x﹣y<3,则z=2x﹣3y的取值范围是(3,8).(答案用区间表示)【考点】简单线性规划的应用.【专题】计算题;压轴题;数形结合.【分析】本题考查的知识点是线性规划,处理的思路为:根据已知的约束条件画出满足约束条件的可行域,再用角点法,求出目标函数的最大值和最小值,再根据最值给出目标函数的取值范围.【解答】解:画出不等式组表示的可行域如下图示:在可行域内平移直线z=2x﹣3y,当直线经过x﹣y=2与x+y=4的交点A(3,1)时,目标函数有最小值z=2×3﹣3×1=3;当直线经过x+y=﹣1与x﹣y=3的交点B(1,﹣2)时,目标函数有最大值z=2×1+3×2=8.z=2x﹣3y的取值范围是(3,8).故答案为:(3,8).【点评】用图解法解决线性规划问题时,分析题目的已知条件,找出约束条件和目标函数是关键,可先将题目中的量分类、列出表格,理清头绪,然后列出不等式组(方程组)寻求约束条件,并就题目所述找出目标函数.然后将可行域各角点的值一一代入,最后比较,即可得到目标函数的最优解.16.(5分)(2010•辽宁)如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为.【考点】简单空间图形的三视图;棱锥的结构特征.【专题】计算题;作图题;压轴题.【分析】结合题意及图形,可知几何体为一个底面边长为2的正方形且有一条长为2的侧棱垂直于底面的四棱锥,还原几何体,求解即可.【解答】解:由三视图可知,此多面体是一个底面边长为2的正方形,且有一条长为2的侧棱垂直于底面的四棱锥,所以最长棱长为.【点评】本题考查了三视图视角下多面体棱长的最值问题,考查了同学们的识图能力以及由三视图还原物体的能力.三、解答题(共8小题,满分90分)17.(12分)(2010•辽宁)在△ABC中,a、b、c分别为内角A、B、C的对边,且2asinA=(2b+c)sinB+(2c+b)sinC(Ⅰ)求A的大小;(Ⅱ)若sinB+sinC=1,试判断△ABC的形状.【考点】解三角形;三角函数的化简求值.【专题】计算题.【分析】(Ⅰ)利用正弦定理把题设等式中的角的正弦转化成边,求得a,b和c关系式,代入余弦定理中求得cosA 的值,进而求得A.(Ⅱ)把(Ⅰ)中a,b和c关系式利用正弦定理转化成角的正弦,与sinB+sinC=1联立求得sinB和sinC的值,进而根据C,B的范围推断出B=C,可知△ABC是等腰的钝角三角形.【解答】解:(Ⅰ)由已知,根据正弦定理得2a2=(2b+c)b+(2c+b)c即a2=b2+c2+bc由余弦定理得a2=b2+c2﹣2bccosA故(Ⅱ)由(Ⅰ)得sin2A=sin2B+sin2C+sinBsinC.变形得=(sinB+sinC)2﹣sinBsinC又sinB+sinC=1,得sinBsinC=上述两式联立得因为0°<B<60°,0°<C<60°,故B=C=30°所以△ABC是等腰的钝角三角形.【点评】本题主要考查了正弦定理和余弦定理的应用.在解三角形问题中一般借助正弦定理和余弦定理边化角,角化边达到解题的目的.18.(12分)(2010•辽宁)为了比较注射A,B两种药物后产生的皮肤疱疹的面积,选200只家兔做试验,将这200只家兔随机地分成两组,每组100只,其中一组注射药物A,另一组注射药物B.(Ⅰ)甲、乙是200只家兔中的2只,求甲、乙分在不同组的概率;(Ⅱ)下表1和表2分别是注射药物A和B后的试验结果.(疱疹面积单位:mm2)完成下面2×2列联表,并回答能否有99.9%的把握认为“注射药物A后的疱疹面积与注射药物B后的疱疹面积有差异”.附:K2=.【考点】独立性检验的应用.【专题】应用题;图表型.【分析】(1)利用组合数找出所有事件的个数n,基本事件的个数m,代入古典概率计算公式p=(2)由频数分布表中的频数求出每组的,画出频率分布直方图,完成2×2列联表,代入计算随机变量值后与临界点比较判断两变量的相关性的大小.【解答】解:(Ⅰ)从200选100的组合数C200100,记:“甲、乙两只家兔分在不同组”为事件A,则事件A包含的情况有2C19899∴(4分)(Ⅱ)(i)图Ⅰ注射药物A后皮肤疱疹面积的频率分布直方图图Ⅱ注射药物B后皮肤疱疹面积的频率分布直方图可以看出注射药物A后的疱疹面积的中位数在65至70之间,而注射药物B后的疱疹面积的中位数在70至75之间,所以注射药物A后疱疹面积的中位数小于注射药物B后疱疹面积的中位数.(8分)B后的疱疹面积有差异”.(12分)【点评】本题考查的内容为:利用组合数求古典概率,由频数分布表画频率分布直方图及2×2列联表,考查独立性检验的计算公式与临界值比较以判断两个变量的关联性.要注意频率分布直方图的纵轴是19.(12分)(2010•辽宁)如图,棱柱ABC﹣A1B1C1的侧面BCC1B1是菱形,B1C⊥A1B(Ⅰ)证明:平面AB1C⊥平面A1BC1;(Ⅱ)设D是A1C1上的点,且A1B∥平面B1CD,求A1D:DC1的值.【考点】平面与平面垂直的判定;直线与平面平行的性质.【专题】作图题;证明题;综合题.【分析】(Ⅰ)证明平面AB1C内的直线B1C垂直平面A1BC1,内的两条相交直线A1B,BC1,即可证明平面AB1C⊥平面A1BC1;(Ⅱ)D是A1C1上的点,且A1B∥平面B1CD,BC1交B1C于点E,连接DE,E是BC1的中点,推出D为A1C1的中点,可得A1D:DC1的值.【解答】(Ⅰ)证明:因为侧面BCC1B1是菱形,所以B1C⊥BC1又已知B1C⊥A1B,且A1B∩BC1=B,又B1C⊥平面A1BC1,又B1C⊂平面AB1C,所以平面AB1C⊥平面A1BC1.(Ⅱ)解:设BC1交B1C于点E,连接DE,则DE是平面A1BC1与平面B1CD的交线,因为A1B∥平面B1CD,所以A1B∥DE.又E是BC1的中点,所以D为A1C1的中点.即A1D:DC1=1.【点评】本题考查平面与平面垂直的判定,直线与平面平行的性质,考查空间想象能力,逻辑思维能力,是中档题.20.(12分)(2010•辽宁)设F1,F2分别为椭圆(a>b>0)的左、右焦点,过F2的直线l与椭圆C相交于A,B两点,直线l的倾斜角为60°,F1到直线l的距离为.(Ⅰ)求椭圆C的焦距;(Ⅱ)如果,求椭圆C的方程.【考点】椭圆的简单性质;椭圆的标准方程.【专题】综合题;压轴题.【分析】(Ⅰ)过F1作F1⊥l可直接根据直角三角形的边角关系得到,求得c的值,进而可得到焦距的值.(Ⅱ)假设点A,B的坐标,再由点斜式得到直线l的方程,然后联立直线与椭圆方程消去x得到关于y的一元二次方程,求出两根,再由可得y1与y2的关系,再结合所求得到y1与y2的值可得到a,b的值,进而可求得椭圆方程.【解答】解:(Ⅰ)设焦距为2c,由已知可得F1到直线l的距离.所以椭圆C的焦距为4.(Ⅱ)设A(x1,y1),B(x2,y2),可设y1<0,y2>0,直线l的方程为.联立,y2+y+﹣1=0解得.因为.即.得.故椭圆C的方程为.【点评】本题主要考查椭圆的基本性质.考查考生对椭圆基本性质的理解和认知,椭圆的基本性质是高考的重点内容,每年必考,一定要熟练掌握并能灵活运用.21.(12分)(2010•辽宁)已知函数f(x)=(a+1)lnx+ax2+1.(Ⅰ)讨论函数f(x)的单调性;(Ⅱ)设a≤﹣2,证明:对任意x1,x2∈(0,+∞),|f(x1)﹣f(x2)|≥4|x1﹣x2|.【考点】利用导数研究函数的单调性;利用导数求闭区间上函数的最值.【专题】计算题.【分析】(1)先求出函数的定义域,然后对函数f(x)进行求导,根据导函数大于0时原函数单调递增、导函数小于0时原函数单调递减对a分3种情况进行讨论.(2)先根据a的范围对函数f(x)的单调性进行判断,然后根据单调性去绝对值,将问题转化为证明函数g(x)=f(x)+4x的单调性问题.【解答】解:(Ⅰ)f(x)的定义域为(0,+∞),.当a≥0时,f′(x)>0,故f(x)在(0,+∞)单调增加;当a≤﹣1时,f′(x)<0,故f(x)在(0,+∞)单调减少;当﹣1<a<0时,令f′(x)=0,解得x=.当x∈(0,)时,f′(x)>0;x∈(,+∞)时,f′(x)<0,故f(x)在(0,)单调增加,在(,+∞)单调减少.(Ⅱ)不妨假设x1≤x2.由于a≤﹣2,故f(x)在(0,+∞)单调递减.所以|f(x1)﹣f(x2)|≥4|x1﹣x2|等价于f(x1)﹣f(x2)≥4x2﹣4x1,即f(x2)+4x2≤f(x1)+4x1.令g(x)=f(x)+4x,则+4=.于是g′(x)≤=≤0.从而g(x)在(0,+∞)单调减少,故g(x1)≥g(x2),即f(x1)+4x1≥f(x2)+4x2,故对任意x1,x2∈(0,+∞),|f(x1)﹣f(x2)|≥4|x1﹣x2|.【点评】本题主要考查函数的单调性与其导函数正负之间的关系,即当导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减.22.(10分)(2010•辽宁)如图,△ABC的角平分线AD的延长线交它的外接圆于点E.(1)证明:△ABE∽△ADC;(2)若△ABC的面积S=AD•AE,求∠BAC的大小.【考点】圆內接多边形的性质与判定.【专题】计算题;证明题.【分析】(1)要判断两个三角形相似,可以根据三角形相似判定定理进行证明,但注意观察已知条件中给出的是角的关系,故采用判定定理1更合适,故需要再找到一组对应角相等,由圆周角定理,易得满足条件的角.(2)根据(1)的结论,我们可得三角形对应对成比例,由此我们可以将△ABC的面积转化为S=AB•AC,再结合三角形面积公式,不难得到∠BAC的大小.【解答】证明:(1)由已知△ABC的角平分线为AD,可得∠BAE=∠CAD因为∠AEB与∠ACB是同弧上的圆周角,所以∠AEB=∠ACD故△ABE∽△ADC.解:(2)因为△ABE∽△ADC,所以,即AB•AC=AD•AE.又S=AB•ACsin∠BAC,且S=AD•AE,故AB•ACsin∠BAC=AD•AE.则sin∠BAC=1,又∠BAC为三角形内角,所以∠BAC=90°.【点评】相似三角形有三个判定定理:判定定理1:两角对应相等的两个三角形相似;判定定理2:三边对应成比例的两个三角形相似;判定定理3:两边对应成比例,并且夹角相等的两个三角形相似.在证明三角形相似时,要根据已知条件选择适当的定理.23.(10分)(2010•辽宁)已知P为半圆C:(θ为参数,0≤θ≤π)上的点,点A的坐标为(1,0),O为坐标原点,点M在射线OP上,线段OM与C的弧的长度均为.(1)以O为极点,x轴的正半轴为极轴建立极坐标系,求点M的极坐标;(2)求直线AM的参数方程.【考点】极坐标系;直线的参数方程;圆的参数方程.【专题】计算题;压轴题.【分析】(1)利用直角坐标与极坐标间的关系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,进行代换即得.(2)先在直角坐标系中算出点M、A的坐标,再利用直角坐标的直线AM的参数方程求得参数方程即可.【解答】解:(Ⅰ)由已知,M点的极角为,且M点的极径等于,故点M的极坐标为(,).(5分)(Ⅱ)M点的直角坐标为(),A(1,0),故直线AM的参数方程为(t为参数)(10分)【点评】本题考查点的极坐标和直角坐标的互化,能在极坐标系中用极坐标刻画点的位置,体会在极坐标系和平面直角坐标系中刻画点的位置的区别,能进行极坐标和直角坐标的互化.24.(10分)(2010•辽宁)已知a,b,c均为正数,证明:≥6,并确定a,b,c为何值时,等号成立.【考点】基本不等式.【专题】证明题;压轴题.【分析】证法一:两次利用基本不等式放小,此处不用考虑等号成立的条件,因等号不成立不影响不等号的传递性.证法二:先用基本不等式推出a2+b2+c2≥ab+bc+ac与两者之和用基本不等式放小,整体上只用了一次放缩法.其本质与证法一同.【解答】证明:证法一:因为a,b,c均为正数,由平均值不等式得①所以②故.又③所以原不等式成立.当且仅当a=b=c时,①式和②式等号成立.当且仅当时,③式等号成立.即当且仅当a=b=c=时,原式等号成立.证法二:因为a,b,c均为正数,由基本不等式得所以a2+b2+c2≥ab+bc+ac①同理②故③所以原不等式成立.当且仅当a=b=c时,①式和②式等号成立,当且仅当a=b=c,(ab)2=(bc)2=(ac)2=3时,③式等号成立.即当且仅当a=b=c=时,原式等号成立.【点评】考查放缩法在证明不等式中的应用,本题在用缩法时多次用到基本不等式,请读者体会本题证明过程中不考虑等号是否成立的原理,并与利用基本不等式求最值再据最值成立的条件求参数题型比较.深入分析等号成立的条件什么时候必须考虑,什么时候可以不考虑.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2010年辽宁省高考数学试卷(文科)一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2010•辽宁)已知集合U={1,3,5,7,9},A={1,5,7},则∁U A=()A.{1,3} B.{3,7,9} C.{3,5,9} D.{3,9}2.(5分)(2010•辽宁)设a,b为实数,若复数,则()A.B.a=3,b=1 C.D.a=1,b=33.(5分)(2010•辽宁)设S n为等比数列{a n}的前n项和,已知3S3=a4﹣2,3S2=a3﹣2,则公比q=()A.3 B.4 C.5 D.64.(5分)(2010•辽宁)已知a>0,函数f(x)=ax2+bx+c,若x0满足关于x的方程2ax+b=0,则下列选项的命题中为假命题的是()A.∃x∈R,f(x)≤f(x0) B.∃x∈R,f(x)≥f(x0)C.∀x∈R,f(x)≤f(x0)D.∀x∈R,f(x)≥f(x0)5.(5分)(2010•辽宁)如果执行右面的程序框图,输入n=6,m=4,那么输出的p等于()A.720 B.360 C.240 D.1206.(5分)(2010•辽宁)设ω>0,函数y=sin(ωx+)+2的图象向右平移个单位后与原图象重合,则ω的最小值是()A.B.C.D.37.(5分)(2010•辽宁)设抛物线y2=8x的焦点为F,准线为l,P为抛物线上一点,PA⊥l,A为垂足.如果直线AF的斜率为,那么|PF|=()A.B.8 C. D.168.(5分)(2010•辽宁)平面上O,A,B三点不共线,设,则△OAB的面积等于()A.B.C.D.9.(5分)(2010•辽宁)设双曲线的﹣个焦点为F,虚轴的﹣个端点为B,如果直线FB与该双曲线的一条渐近线垂直,那么此双曲线的离心率为()A.B.C.D.10.(5分)(2010•辽宁)设2a=5b=m,且,则m=()A. B.10 C.20 D.10011.(5分)(2010•辽宁)已知S,A,B,C是球O表面上的点,SA⊥平面ABC,AB⊥BC,SA=AB=1,,则球O的表面积等于()A.4πB.3πC.2πD.π12.(5分)(2010•辽宁)已知点P在曲线y=上,α为曲线在点P处的切线的倾斜角,则α的取值范围是()A.[0,) B.C.D.二、填空题(共4小题,每小题5分,满分20分)13.(5分)(2010•辽宁)三张卡片上分别写上字母E、E、B,将三张卡片随机地排成一行,恰好排成英文单词BEE的概率为.14.(5分)(2010•辽宁)设S n为等差数列{a n}的前n项和,若S3=3,S6=24,则a9=.15.(5分)(2010•辽宁)已知﹣1<x+y<4且2<x﹣y<3,则z=2x﹣3y的取值范围是.(答案用区间表示)16.(5分)(2010•辽宁)如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为.三、解答题(共8小题,满分90分)17.(12分)(2010•辽宁)在△ABC中,a、b、c分别为内角A、B、C的对边,且2asinA=(2b+c)sinB+(2c+b)sinC(Ⅰ)求A的大小;(Ⅱ)若sinB+sinC=1,试判断△ABC的形状.18.(12分)(2010•辽宁)为了比较注射A,B两种药物后产生的皮肤疱疹的面积,选200只家兔做试验,将这200只家兔随机地分成两组,每组100只,其中一组注射药物A,另一组注射药物B.(Ⅰ)甲、乙是200只家兔中的2只,求甲、乙分在不同组的概率;(Ⅱ)下表1和表2分别是注射药物A和B后的试验结果.(疱疹面积单位:mm2)表1:注射药物A后皮肤疱疹面积的频数分布表疱疹面积[60,65)[65,70)[70,75)[75,80)频数30 40 20 10表2:注射药物B后皮肤疱疹面积的频数分布表疱疹面积[60,65)[65,70)[70,75)[75,80)[80,85)频数10 25 20 30 15(ⅰ)完成下面频率分布直方图,并比较注射两种药物后疱疹面积的中位数大小;完成下面2×2列联表,并回答能否有99.9%的把握认为“注射药物A后的疱疹面积与注射药物B后的疱疹面积有差异”.表3:疱疹面积小于70mm2疱疹面积不小于70mm2合计注射药物A a= b=注射药物B c= d=合计n=附:K2=.19.(12分)(2010•辽宁)如图,棱柱ABC﹣A1B1C1的侧面BCC1B1是菱形,B1C⊥A1B (Ⅰ)证明:平面AB1C⊥平面A1BC1;(Ⅱ)设D是A1C1上的点,且A1B∥平面B1CD,求A1D:DC1的值.20.(12分)(2010•辽宁)设F1,F2分别为椭圆(a>b>0)的左、右焦点,过F2的直线l与椭圆C相交于A,B两点,直线l的倾斜角为60°,F1到直线l的距离为.(Ⅰ)求椭圆C的焦距;(Ⅱ)如果,求椭圆C的方程.21.(12分)(2010•辽宁)已知函数f(x)=(a+1)lnx+ax2+1.(Ⅰ)讨论函数f(x)的单调性;(Ⅱ)设a≤﹣2,证明:对任意x1,x2∈(0,+∞),|f(x1)﹣f(x2)|≥4|x1﹣x2|.22.(10分)(2010•辽宁)如图,△ABC的角平分线AD的延长线交它的外接圆于点E.(1)证明:△ABE∽△ADC;(2)若△ABC的面积S=AD•AE,求∠BAC的大小.23.(10分)(2010•辽宁)已知P为半圆C:(θ为参数,0≤θ≤π)上的点,点A 的坐标为(1,0),O为坐标原点,点M在射线OP上,线段OM与C的弧的长度均为.(1)以O为极点,x轴的正半轴为极轴建立极坐标系,求点M的极坐标;(2)求直线AM的参数方程.24.(10分)(2010•辽宁)已知a,b,c均为正数,证明:≥6,并确定a,b,c为何值时,等号成立.2010年辽宁省高考数学试卷(文科)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2010•辽宁)已知集合U={1,3,5,7,9},A={1,5,7},则∁U A=()A.{1,3} B.{3,7,9} C.{3,5,9} D.{3,9}【考点】补集及其运算.【分析】从U中去掉A中的元素就可.【解答】解:从全集U中,去掉1,5,7,剩下的元素构成C U A.故选D.【点评】集合补集就是从全集中去掉集合本身含有的元素后所构成的集合.2.(5分)(2010•辽宁)设a,b为实数,若复数,则()A.B.a=3,b=1 C.D.a=1,b=3【考点】复数相等的充要条件.【分析】先化简,然后用复数相等的条件,列方程组求解.【解答】解:由可得1+2i=(a﹣b)+(a+b)i,所以,解得,,故选A.【点评】本题考查了复数相等的概念及有关运算,考查计算能力.是基础题.3.(5分)(2010•辽宁)设S n为等比数列{a n}的前n项和,已知3S3=a4﹣2,3S2=a3﹣2,则公比q=()A.3 B.4 C.5 D.6【考点】等比数列的通项公式.【专题】等差数列与等比数列.【分析】3S3=a4﹣2,3S2=a3﹣2,两式相减得3a3=a4﹣a3,由此能求出公比q=4.【解答】解:∵S n为等比数列{a n}的前n项和,3S3=a4﹣2,3S2=a3﹣2,两式相减得3a3=a4﹣a3,a4=4a3,∴公比q=4.故选:B.【点评】本题考查公比的求法,是基础题,解题时要认真审题,注意等比数列的性质的合理运用.4.(5分)(2010•辽宁)已知a>0,函数f(x)=ax2+bx+c,若x0满足关于x的方程2ax+b=0,则下列选项的命题中为假命题的是()A.∃x∈R,f(x)≤f(x0) B.∃x∈R,f(x)≥f(x0)C.∀x∈R,f(x)≤f(x0)D.∀x∈R,f(x)≥f(x0)【考点】四种命题的真假关系.【专题】简易逻辑.【分析】由x0满足关于x的方程2ax+b=0得出x=x0是二次函数的对称轴,由a>0可知二次函数有最小值.【解答】解:∵x0满足关于x的方程2ax+b=0,∴∵a>0,∴函数f(x)在x=x0处取到最小值是等价于∀x∈R,f(x)≥f(x0),所以命题C错误.答案:C.【点评】本题考查二次函数的最值问题,全称命题和特称命题真假的判断,注意对符号∃和∀的区分和理解.5.(5分)(2010•辽宁)如果执行右面的程序框图,输入n=6,m=4,那么输出的p等于()A.720 B.360 C.240 D.120【考点】循环结构.【专题】阅读型.【分析】讨论k从1开始取,分别求出p的值,直到不满足k<4,退出循环,从而求出p 的值,解题的关键是弄清循环次数.【解答】解:第一次:k=1,p=1×3=3;第二次:k=2,p=3×4=12;第三次:k=3,p=12×5=60;第四次:k=4,p=60×6=360此时不满足k<4.所以p=360.故选B【点评】本题主要考查了直到形循环结构,循环结构有两种形式:当型循环结构和直到型循环结构,当型循环是先判断后循环,直到型循环是先循环后判断,属于基础题.6.(5分)(2010•辽宁)设ω>0,函数y=sin(ωx+)+2的图象向右平移个单位后与原图象重合,则ω的最小值是()A.B.C.D.3【考点】函数y=Asin(ωx+φ)的图象变换.【专题】计算题;待定系数法.【分析】求出图象平移后的函数表达式,与原函数对应,求出ω的最小值.【解答】解:将y=sin(ωx+)+2的图象向右平移个单位后为=,所以有=2kπ,即,又因为ω>0,所以k≥1,故≥,故选C【点评】本题考查了三角函数图象的平移变换与三角函数的周期性,考查了同学们对知识灵活掌握的程度.7.(5分)(2010•辽宁)设抛物线y2=8x的焦点为F,准线为l,P为抛物线上一点,PA⊥l,A为垂足.如果直线AF的斜率为,那么|PF|=()A.B.8 C. D.16【考点】抛物线的简单性质;抛物线的定义.【分析】先根据抛物线方程求出焦点坐标,进而根据直线AF的斜率为求出直线AF 的方程,然后联立准线和直线AF的方程可得点A的坐标,得到点P的坐标,根据抛物线的性质:抛物线上的点到焦点和准线的距离相等可得到答案.【解答】解:抛物线的焦点F(2,0),准线方程为x=﹣2,直线AF的方程为,所以点、,从而|PF|=6+2=8故选B.【点评】本题考查了抛物线的定义、抛物线的焦点与准线、直线与抛物线的位置关系,考查了等价转化的思想.8.(5分)(2010•辽宁)平面上O,A,B三点不共线,设,则△OAB的面积等于()A.B.C.D.【考点】向量在几何中的应用.【专题】计算题.【分析】利用三角形的面积公式表示出面积;再利用三角函数的平方关系将正弦表示成余弦;再利用向量的数量积公式求出向量夹角的余弦化简即得.【解答】解:==•=;故选C.【点评】本题考查三角形的面积公式;同角三角函数的平方关系,利用向量的数量积求向量的夹角.9.(5分)(2010•辽宁)设双曲线的﹣个焦点为F,虚轴的﹣个端点为B,如果直线FB与该双曲线的一条渐近线垂直,那么此双曲线的离心率为()A.B.C.D.【考点】双曲线的简单性质;两条直线垂直的判定.【专题】计算题;压轴题.【分析】先设出双曲线方程,则F,B的坐标可得,根据直线FB与渐近线y=垂直,得出其斜率的乘积为﹣1,进而求得b和a,c的关系式,进而根据双曲线方程a,b和c的关系进而求得a和c的等式,则双曲线的离心率可得.【解答】解:设双曲线方程为,则F(c,0),B(0,b)直线FB:bx+cy﹣bc=0与渐近线y=垂直,所以,即b2=ac所以c2﹣a2=ac,即e2﹣e﹣1=0,所以或(舍去)【点评】本题考查了双曲线的焦点、虚轴、渐近线、离心率,考查了两条直线垂直的条件,考查了方程思想.10.(5分)(2010•辽宁)设2a=5b=m,且,则m=()A. B.10 C.20 D.100【考点】指数式与对数式的互化;对数的运算性质.【专题】计算题;压轴题.【分析】直接化简,用m代替方程中的a、b,然后求解即可.【解答】解:,∴m2=10,又∵m>0,∴.故选A【点评】本题考查指数式和对数式的互化,对数的运算性质,是基础题.11.(5分)(2010•辽宁)已知S,A,B,C是球O表面上的点,SA⊥平面ABC,AB⊥BC,SA=AB=1,,则球O的表面积等于()A.4πB.3πC.2πD.π【考点】直线与平面垂直的性质;球的体积和表面积.【专题】压轴题.【分析】先寻找球心,根据S,A,B,C是球O表面上的点,则OA=OB=OC=OS,根据直角三角形的性质可知O为SC的中点,则SC即为直径,根据球的面积公式求解即可.【解答】解:∵已知S,A,B,C是球O表面上的点∴OA=OB=OC=OS=1又SA⊥平面ABC,AB⊥BC,SA=AB=1,,∴球O的直径为2R=SC=2,R=1,∴表面积为4πR2=4π.故选A.【点评】本题主要考查了直线与平面垂直的性质,以及球的表面积等有关知识,考查空间想象能力、运算能力和推理论证能力,属于基础题.12.(5分)(2010•辽宁)已知点P在曲线y=上,α为曲线在点P处的切线的倾斜角,则α的取值范围是()A.[0,) B.C.D.【考点】导数的几何意义.【专题】计算题;压轴题.【分析】利用导数在切点处的值是曲线的切线斜率,再根据斜率等于倾斜角的正切值求出角的范围.【解答】解:因为y′===,∵,∴e x+e﹣x+2≥4,∴y′∈[﹣1,0)即tanα∈[﹣1,0),∵0≤α<π∴≤α<π故选:D.【点评】本题考查导数的几何意义及直线的斜率等于倾斜角的正切值.二、填空题(共4小题,每小题5分,满分20分)13.(5分)(2010•辽宁)三张卡片上分别写上字母E、E、B,将三张卡片随机地排成一行,恰好排成英文单词BEE的概率为.【考点】排列及排列数公式.【专题】计算题.【分析】由题意知本题是一个古典概型,试验包含的所有事件可以列举出三张卡片随机地排成一行,而满足条件的只有一种,根据概率公式得到结果.【解答】解:由题意知本题是一个古典概型,∵试验包含的所有事件可以列举出三张卡片随机地排成一行,共有三种情况:BEE,EBE,EEB,而满足条件的只有一种,∴概率为:.故答案为:【点评】字母排列问题是概率中经常出现的题目,一般可以列举出要求的事件,古典概型要求能够列举出所有事件和发生事件的个数,而不能列举的可以借助于排列数和组合数来表示.14.(5分)(2010•辽宁)设S n为等差数列{a n}的前n项和,若S3=3,S6=24,则a9=15.【考点】等差数列的前n项和.【专题】计算题.【分析】利用等差数列的前n项和公式求出前3项、前6项和列出方程求出首项和公差;利用等差数列的通项公式求出第9项.【解答】解:,解得,∴a9=a1+8d=15.故答案为15【点评】本题考查等差数列的前n项和公式、等差数列的通项公式.15.(5分)(2010•辽宁)已知﹣1<x+y<4且2<x﹣y<3,则z=2x﹣3y的取值范围是(3,8).(答案用区间表示)【考点】简单线性规划的应用.【专题】计算题;压轴题;数形结合.【分析】本题考查的知识点是线性规划,处理的思路为:根据已知的约束条件画出满足约束条件的可行域,再用角点法,求出目标函数的最大值和最小值,再根据最值给出目标函数的取值范围.【解答】解:画出不等式组表示的可行域如下图示:在可行域内平移直线z=2x﹣3y,当直线经过x﹣y=2与x+y=4的交点A(3,1)时,目标函数有最小值z=2×3﹣3×1=3;当直线经过x+y=﹣1与x﹣y=3的交点B(1,﹣2)时,目标函数有最大值z=2×1+3×2=8.z=2x﹣3y的取值范围是(3,8).故答案为:(3,8).【点评】用图解法解决线性规划问题时,分析题目的已知条件,找出约束条件和目标函数是关键,可先将题目中的量分类、列出表格,理清头绪,然后列出不等式组(方程组)寻求约束条件,并就题目所述找出目标函数.然后将可行域各角点的值一一代入,最后比较,即可得到目标函数的最优解.16.(5分)(2010•辽宁)如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为.【考点】简单空间图形的三视图;棱锥的结构特征.【专题】计算题;作图题;压轴题.【分析】结合题意及图形,可知几何体为一个底面边长为2的正方形且有一条长为2的侧棱垂直于底面的四棱锥,还原几何体,求解即可.【解答】解:由三视图可知,此多面体是一个底面边长为2的正方形,且有一条长为2的侧棱垂直于底面的四棱锥,所以最长棱长为.【点评】本题考查了三视图视角下多面体棱长的最值问题,考查了同学们的识图能力以及由三视图还原物体的能力.三、解答题(共8小题,满分90分)17.(12分)(2010•辽宁)在△ABC中,a、b、c分别为内角A、B、C的对边,且2asinA=(2b+c)sinB+(2c+b)sinC(Ⅰ)求A的大小;(Ⅱ)若sinB+sinC=1,试判断△ABC的形状.【考点】解三角形;三角函数的化简求值.【专题】计算题.【分析】(Ⅰ)利用正弦定理把题设等式中的角的正弦转化成边,求得a,b和c关系式,代入余弦定理中求得cosA的值,进而求得A.(Ⅱ)把(Ⅰ)中a,b和c关系式利用正弦定理转化成角的正弦,与sinB+sinC=1联立求得sinB和sinC的值,进而根据C,B的范围推断出B=C,可知△ABC是等腰的钝角三角形.【解答】解:(Ⅰ)由已知,根据正弦定理得2a2=(2b+c)b+(2c+b)c即a2=b2+c2+bc由余弦定理得a2=b2+c2﹣2bccosA故(Ⅱ)由(Ⅰ)得sin2A=sin2B+sin2C+sinBsinC.变形得=(sinB+sinC)2﹣sinBsinC又sinB+sinC=1,得sinBsinC=上述两式联立得因为0°<B<60°,0°<C<60°,故B=C=30°所以△ABC是等腰的钝角三角形.【点评】本题主要考查了正弦定理和余弦定理的应用.在解三角形问题中一般借助正弦定理和余弦定理边化角,角化边达到解题的目的.18.(12分)(2010•辽宁)为了比较注射A,B两种药物后产生的皮肤疱疹的面积,选200只家兔做试验,将这200只家兔随机地分成两组,每组100只,其中一组注射药物A,另一组注射药物B.(Ⅰ)甲、乙是200只家兔中的2只,求甲、乙分在不同组的概率;(Ⅱ)下表1和表2分别是注射药物A和B后的试验结果.(疱疹面积单位:mm2)表1:注射药物A后皮肤疱疹面积的频数分布表疱疹面积[60,65)[65,70)[70,75)[75,80)频数30 40 20 10表2:注射药物B后皮肤疱疹面积的频数分布表疱疹面积[60,65)[65,70)[70,75)[75,80)[80,85)频数10 25 20 30 15(ⅰ)完成下面频率分布直方图,并比较注射两种药物后疱疹面积的中位数大小;完成下面2×2列联表,并回答能否有99.9%的把握认为“注射药物A后的疱疹面积与注射药物B后的疱疹面积有差异”.表3:疱疹面积小于70mm2疱疹面积不小于70mm2合计注射药物A a= b=注射药物B c= d=合计n=附:K2=.【考点】独立性检验的应用.【专题】应用题;图表型.【分析】(1)利用组合数找出所有事件的个数n,基本事件的个数m,代入古典概率计算公式p=(2)由频数分布表中的频数求出每组的,画出频率分布直方图,完成2×2列联表,代入计算随机变量值后与临界点比较判断两变量的相关性的大小.【解答】解:(Ⅰ)从200选100的组合数C200100,记:“甲、乙两只家兔分在不同组”为事件A,则事件A包含的情况有2C19899∴(4分)(Ⅱ)(i)图Ⅰ注射药物A后皮肤疱疹面积的频率分布直方图图Ⅱ注射药物B后皮肤疱疹面积的频率分布直方图可以看出注射药物A后的疱疹面积的中位数在65至70之间,而注射药物B后的疱疹面积的中位数在70至75之间,所以注射药物A后疱疹面积的中位数小于注射药物B后疱疹面积的中位数.(8分)(ii)表3:疱疹面积小于70mm2疱疹面积不小于70mm2合计注射药物A a=70 b=30 100注射药物B c=35 d=65 100合计105 95 n=200由于K2>10.828,所以有99.9%的把握认为“注射药物A后的疱疹面积与注射药物B后的疱疹面积有差异”.(12分)【点评】本题考查的内容为:利用组合数求古典概率,由频数分布表画频率分布直方图及2×2列联表,考查独立性检验的计算公式与临界值比较以判断两个变量的关联性.要注意频率分布直方图的纵轴是19.(12分)(2010•辽宁)如图,棱柱ABC﹣A1B1C1的侧面BCC1B1是菱形,B1C⊥A1B (Ⅰ)证明:平面AB1C⊥平面A1BC1;(Ⅱ)设D是A1C1上的点,且A1B∥平面B1CD,求A1D:DC1的值.【考点】平面与平面垂直的判定;直线与平面平行的性质.【专题】作图题;证明题;综合题.【分析】(Ⅰ)证明平面AB1C内的直线B1C垂直平面A1BC1,内的两条相交直线A1B,BC1,即可证明平面AB1C⊥平面A1BC1;(Ⅱ)D是A1C1上的点,且A1B∥平面B1CD,BC1交B1C于点E,连接DE,E是BC1的中点,推出D为A1C1的中点,可得A1D:DC1的值.【解答】(Ⅰ)证明:因为侧面BCC1B1是菱形,所以B1C⊥BC1又已知B1C⊥A1B,且A1B∩BC1=B,又B1C⊥平面A1BC1,又B1C⊂平面AB1C,所以平面AB1C⊥平面A1BC1.(Ⅱ)解:设BC1交B1C于点E,连接DE,则DE是平面A1BC1与平面B1CD的交线,因为A1B∥平面B1CD,所以A1B∥DE.又E是BC1的中点,所以D为A1C1的中点.即A1D:DC1=1.【点评】本题考查平面与平面垂直的判定,直线与平面平行的性质,考查空间想象能力,逻辑思维能力,是中档题.20.(12分)(2010•辽宁)设F1,F2分别为椭圆(a>b>0)的左、右焦点,过F2的直线l与椭圆C相交于A,B两点,直线l的倾斜角为60°,F1到直线l的距离为.(Ⅰ)求椭圆C的焦距;(Ⅱ)如果,求椭圆C的方程.【考点】椭圆的简单性质;椭圆的标准方程.【专题】综合题;压轴题.【分析】(Ⅰ)过F1作F1⊥l可直接根据直角三角形的边角关系得到,求得c的值,进而可得到焦距的值.(Ⅱ)假设点A,B的坐标,再由点斜式得到直线l的方程,然后联立直线与椭圆方程消去x得到关于y的一元二次方程,求出两根,再由可得y1与y2的关系,再结合所求得到y1与y2的值可得到a,b的值,进而可求得椭圆方程.【解答】解:(Ⅰ)设焦距为2c,由已知可得F1到直线l的距离.所以椭圆C的焦距为4.(Ⅱ)设A(x1,y1),B(x2,y2),可设y1<0,y2>0,直线l的方程为.联立,y2+y+﹣1=0解得.因为.即.得.故椭圆C的方程为.【点评】本题主要考查椭圆的基本性质.考查考生对椭圆基本性质的理解和认知,椭圆的基本性质是高考的重点内容,每年必考,一定要熟练掌握并能灵活运用.21.(12分)(2010•辽宁)已知函数f(x)=(a+1)lnx+ax2+1.(Ⅰ)讨论函数f(x)的单调性;(Ⅱ)设a≤﹣2,证明:对任意x1,x2∈(0,+∞),|f(x1)﹣f(x2)|≥4|x1﹣x2|.【考点】利用导数研究函数的单调性;利用导数求闭区间上函数的最值.【专题】计算题.【分析】(1)先求出函数的定义域,然后对函数f(x)进行求导,根据导函数大于0时原函数单调递增、导函数小于0时原函数单调递减对a分3种情况进行讨论.(2)先根据a的范围对函数f(x)的单调性进行判断,然后根据单调性去绝对值,将问题转化为证明函数g(x)=f(x)+4x的单调性问题.【解答】解:(Ⅰ)f(x)的定义域为(0,+∞),.当a≥0时,f′(x)>0,故f(x)在(0,+∞)单调增加;当a≤﹣1时,f′(x)<0,故f(x)在(0,+∞)单调减少;当﹣1<a<0时,令f′(x)=0,解得x=.当x∈(0,)时,f′(x)>0;x∈(,+∞)时,f′(x)<0,故f(x)在(0,)单调增加,在(,+∞)单调减少.(Ⅱ)不妨假设x1≤x2.由于a≤﹣2,故f(x)在(0,+∞)单调递减.所以|f(x1)﹣f(x2)|≥4|x1﹣x2|等价于f(x1)﹣f(x2)≥4x2﹣4x1,即f(x2)+4x2≤f(x1)+4x1.令g(x)=f(x)+4x,则+4=.于是g′(x)≤=≤0.从而g(x)在(0,+∞)单调减少,故g(x1)≥g(x2),即f(x1)+4x1≥f(x2)+4x2,故对任意x1,x2∈(0,+∞),|f(x1)﹣f(x2)|≥4|x1﹣x2|.【点评】本题主要考查函数的单调性与其导函数正负之间的关系,即当导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减.22.(10分)(2010•辽宁)如图,△ABC的角平分线AD的延长线交它的外接圆于点E.(1)证明:△ABE∽△ADC;(2)若△ABC的面积S=AD•AE,求∠BAC的大小.【考点】圆內接多边形的性质与判定.【专题】计算题;证明题.【分析】(1)要判断两个三角形相似,可以根据三角形相似判定定理进行证明,但注意观察已知条件中给出的是角的关系,故采用判定定理1更合适,故需要再找到一组对应角相等,由圆周角定理,易得满足条件的角.(2)根据(1)的结论,我们可得三角形对应对成比例,由此我们可以将△ABC的面积转化为S=AB•AC,再结合三角形面积公式,不难得到∠BAC的大小.【解答】证明:(1)由已知△ABC的角平分线为AD,可得∠BAE=∠CAD因为∠AEB与∠ACB是同弧上的圆周角,所以∠AEB=∠ACD故△ABE∽△ADC.解:(2)因为△ABE∽△ADC,所以,即AB•AC=AD•AE.又S=AB•ACsin∠BAC,且S=AD•AE,故AB•ACsin∠BAC=AD•AE.则sin∠BAC=1,又∠BAC为三角形内角,所以∠BAC=90°.【点评】相似三角形有三个判定定理:判定定理1:两角对应相等的两个三角形相似;判定定理2:三边对应成比例的两个三角形相似;判定定理3:两边对应成比例,并且夹角相等的两个三角形相似.在证明三角形相似时,要根据已知条件选择适当的定理.23.(10分)(2010•辽宁)已知P为半圆C:(θ为参数,0≤θ≤π)上的点,点A 的坐标为(1,0),O为坐标原点,点M在射线OP上,线段OM与C的弧的长度均为.(1)以O为极点,x轴的正半轴为极轴建立极坐标系,求点M的极坐标;(2)求直线AM的参数方程.【考点】极坐标系;直线的参数方程;圆的参数方程.【专题】计算题;压轴题.【分析】(1)利用直角坐标与极坐标间的关系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,进行代换即得.(2)先在直角坐标系中算出点M、A的坐标,再利用直角坐标的直线AM的参数方程求得参数方程即可.【解答】解:(Ⅰ)由已知,M点的极角为,且M点的极径等于,故点M的极坐标为(,).(5分)(Ⅱ)M点的直角坐标为(),A(1,0),故直线AM的参数方程为(t为参数)(10分)【点评】本题考查点的极坐标和直角坐标的互化,能在极坐标系中用极坐标刻画点的位置,体会在极坐标系和平面直角坐标系中刻画点的位置的区别,能进行极坐标和直角坐标的互化.24.(10分)(2010•辽宁)已知a,b,c均为正数,证明:≥6,并确定a,b,c为何值时,等号成立.【考点】基本不等式.【专题】证明题;压轴题.【分析】证法一:两次利用基本不等式放小,此处不用考虑等号成立的条件,因等号不成立不影响不等号的传递性.证法二:先用基本不等式推出a2+b2+c2≥ab+bc+ac与两者之和用基本不等式放小,整体上只用了一次放缩法.其本质与证法一同.【解答】证明:证法一:因为a,b,c均为正数,由平均值不等式得①所以②故.又③所以原不等式成立.当且仅当a=b=c时,①式和②式等号成立.当且仅当时,③式等号成立.即当且仅当a=b=c=时,原式等号成立.证法二:因为a,b,c 均为正数,由基本不等式得所以a2+b2+c2≥ab+bc+ac①同理②故③所以原不等式成立.当且仅当a=b=c时,①式和②式等号成立,当且仅当a=b=c,(ab)2=(bc)2=(ac)2=3时,③式等号成立.即当且仅当a=b=c=时,原式等号成立.【点评】考查放缩法在证明不等式中的应用,本题在用缩法时多次用到基本不等式,请读者体会本题证明过程中不考虑等号是否成立的原理,并与利用基本不等式求最值再据最值成立的条件求参数题型比较.深入分析等号成立的条件什么时候必须考虑,什么时候可以不考虑.21。