平均变化率与瞬时变化率

合集下载

变化率简介

变化率简介

变化率简介变化率是学习导数的前提,它在描述各种变化规律的过程中起着非常重要的作用,速度和加速度就是两个典型例子.新教材人教A 版中,对于变化率主要从以下两个方面介绍:1、平均变化率;2、瞬时变化率.一、平均变化率函数()y f x =在区间00[,]x x x +∆或(00[,]x x x +∆)上的平均变化率是商yx∆∆,其中x ∆是自变量x 在0x 处的改变量,可正可负,但不能为0,y ∆是函数值相应的改变量,即00()()y f x x f x ∆=+∆-(y ∆为正、负、零均可)所以00()()f x x f x y x x+∆-∆=∆∆,下面通过举例来进一步加深对概念的理解。

例1、求332-=x y 在0x 到x x ∆+0之间的平均变化率.解:当自变量从0x 到x x ∆+0之间变化时,函数的平均变化率为:x f∆∆=∆-∆+=x x f x x f )()(00xx x x ∆---∆+=]33[]3)(3[2020 x x xx x x ∆+=∆∆+∆⋅=36)(3602评注:此类题目只需要紧扣定义式,注意运算过程就可以了. 评注:⑴函数平均变化率的求法可分两步:①求y ∆;②求yx∆∆.⑵不论0x 、x ∆中的哪一个变化,都会引起函数平均变化率的变化。

拓展:函数()y f x =的平均变化率的几何意义为其图象上割线的斜率。

即:函数()y f x =的图象为曲线C ,曲线C 上有一点00(,)P x y 及邻近一点00(,)Q x x y y +∆+∆,则割线PQ 的斜率0000y y y yk x x x x+∆-∆==+∆-∆。

利用平均变化率的几何意义,可解决一些实际问题,举例如下:例2、某电视机厂有甲、乙两条生产流水线,产量S (单位:台)与时间t (单位:天)的关系如图所示,问:(1)0t 天内,甲、乙两条生产线的平均日产量哪个大?(2)在接近0t 天时,甲、乙两条生产线谁的日产量大?0,)x y y ∆+∆解析:(1) 0t 天内,甲、乙两条生产线的平均日产量,即函数1()S f t =与2()S f t =在0[0,]t 内的平均变化率,其都为直线OA 的斜率,所以0t 天内,甲、乙两条生产线的平均日产量相同。

平均变化率与瞬时变化率详解课件

平均变化率与瞬时变化率详解课件
瞬时变化率
定义与计算
瞬时变化率定义
瞬时变化率是指在某一时刻,函数值随自变量变化的快慢程度。通常用导数来 表示函数的瞬时变化率。
瞬时变化率的计算
对于函数$f(x)$,其瞬时变化率可以通过求导数$f'(x)$来计算。即,如果$f(x)$ 在$x=x_0$处的导数为$f'(x_0)$,则$f'(x_0)$即为在$x=x_0$处的瞬时变化率 。
,可以获得股票价格的预测结果,对于投资决策和风险管理具有重要意义。
机械故障预测
总结词
机械故障预测是基于机械设备运行过程中的数据,通 过分析变化率等信息,来预测设备可能出现的故障时 间和类型。
详细描述
机械故障预测是机械工程领域中的一个重要应用案例 。通过对机械设备运行过程中的数据进行分析,可以 提取出设备的运行特征和故障征兆,从而预测设备可 能出现的故障时间和类型。其中,变化率是一个重要 的指标,它可以反映设备的运行状态和磨损程度。通 过对变化率的计算和分析,可以获得机械故障预测结 果,对于提高设备运行效率和安全性具有重要意义。
感谢观看
THANKS
拐点和极值
函数的拐点可能是导函数的零 点,但并非所有导函数的零点
都是函数的拐点。
导数的计算方法
定义法
根据导数的定义计算导 数。
求导公式
利用常见函数的导数公 式进行计算。
复合函数求导
复合函数的导数可以利 用链式法则和乘法法则
进行计算。
高阶导数
高阶导数的计算需要利 用低阶导数的计算方法
,并逐阶求导。
04
瞬时变化率的性质
瞬时变化率非负性
对于单调递增函数,其瞬时变化率大于等于0;对于单调递减函数,其瞬时变化 率小于等于0。

第1课 平均变化率与瞬时变化率(教师版)

第1课 平均变化率与瞬时变化率(教师版)

第1课 平均变化率与瞬时变化率一、平均变化率 1.引例(1)气球膨胀率:我们都吹过气球回忆一下吹气球的过程,可以发现,随着气球内空气容量的增加,气球的半径增加越来越慢.从数学角度,如何描述这种现象呢?①气球的体积V (单位:L )与半径r (单位:dm )之间的函数关系是334)(r r V π=。

如果将半径r 表示为体积V 的函数,那么343)(πV V r =, ②当V 从0增加到1时,气球半径增加了33(1)(0)0.62()4r r dm π-=≈,气球的平均膨胀率为3(1)(0)30.62(/)104r r dm L π-=≈- ③当空气容量从V 1增加到V 2时,气球的平均膨胀率是1212)()(V V V r V r --(2)高台跳水:在高台跳水运动中,运动员相对于水面的高度h (单位:m )与起跳后的时间t (单位:s )存在函数关系22618h t t =-++.用运动员在某些时间段内的平均速v 度粗略地描述其运动.思考计算:01t ≤≤的平均速度v在01t ≤≤这段时间里,(1)(0)4(/)10h h v m s -==-;2. 函数的平均变化率(1)定义:对于函数()y f x =,给定自变量的两个值1x 和2x ,当自变量x 从1x 变为2x 时,函数值从()1f x 变为()2f x ,把2121()()f x f x y x x x -∆=∆-称为函数()y f x =从1x 到2x 的平均变化率.习惯上用x ∆表示21x x -,即x ∆=21x x -,可把x ∆看作是相对于x 1的一个“增量”,可用1x x +∆代替x 2;类似地y ∆=()()21f x f x -.于是,平均变化率可表示为yx∆∆. (2)平均变化率的几何意义设(())A x f x 11,,(())B x f x 22,是曲线()y f x =上任意不同的两点,函数()y f x =的平均变化率hto211121()()()()f x f x f x x f x y x x x x-+∆-∆==∆-∆为割线AB 的斜率,如右图所示. 【例1】已知函1()f x x x=+,分别计算()f x 在自变量x 从1变到2和从3变到5时的平均变化率,并判断在哪个区间上函数值变化得较快. 【解析】自变量x 从1变到2时,函数()f x 的平均变化率为 f (2)-f (1)2-1=2+12-(1+1)1=12;自变量x 从3变到5时,函数()f x 的平均变化率为 f (5)-f (3)5-3=5+15-⎝ ⎛⎭⎪⎫3+132=1415.因为12<1415,所以函数1()f x x x =+在自变量x 从3变到5时函数值变化得较快.归纳:计算平均变化率的步骤:①求自变量的增量21x x x ∆=-; ②求函数的增量()()21y f x f x ∆=-;③求平均变化率2121()()f x f x y x x x -∆=∆- 二、瞬时变化率 1. 瞬时速度:(1)引例:在上例“高台跳水”中,22618h t t =-++,计算运动员在03t ≤≤这段时间里的平均速度,并思考以下问题: ①运动员在这段时间内使静止的吗?②你认为用平均速度描述运动员的运动状态有什么问题吗?探究过程:如图是函数22618h t t =-++的图像,结合图形可知,(3)(0)h h =, 所以(3)(0)0(/)30h h v m s -==-,虽然运动员在03t ≤≤这段时间里的平均速度为)/(0m s ,但实际情况是运动员仍然运动,并非静止,可以说明用平均速度不能精确描述运动员的运动状态. (2)定义:我们把物体在某一时刻的速度称为瞬时速度 ③运动员在1t =的瞬时速度v 是多少? 运动员在[1,1]t +∆的平均速度为22(1)(1)2(1)6(1)216122(/)h h t h t t v t m s t t t∆+∆--+∆++∆+⨯-⨯====-⋅∆+∆∆∆所以运动员在1t =的瞬时速度为00limlim(22)2(/)t t hv t m s t ∆→∆→∆==-⋅∆+=∆2. 瞬时变化率:一般地,函数()y f x =在0x x =处的瞬时变化率是0000()()limlimx x f x x f x yx x∆→∆→+∆-∆=∆∆,我们称它为函数()y f x =在0x x =处的导数,记作0()f x '或0|x x y =',即00000()()()lim limx x f x x f x yf x x x ∆→∆→+∆-∆'==∆∆ 【例2】如果某物体的运动路程s 与时间t 满足函数2)2(1(s t s =+的单位为m ,t 的单位为)s ,求此物体在1.2s 末的瞬间速度.【解析】224[()1]2()()21 1.2 1.2.82s t t t ∆∆-==+++∆+∆2,004.82limlim() 4.8t t t st ∆→∆→∆∆=∆+=,即 1.2| 4.8t s ==',故物体在1.2 s 末的瞬时速度为4.8 /m s . 【例3】已知函数()2f x x x =-+(1) 求函数()f x 在1x =-附近的平均变化率 (2) 求函数()f x 在1x =-的瞬时变化率 解:(1)(1)(1)y f x f ∆=-+∆--22(1)(1)[(1)(1)]x x =--+∆+-+∆---+-2()3x x =-∆+⋅∆所以,函数()f x 在1x =-附近的平均变化率为2()33y x xx x x∆-∆+⋅∆==-∆∆∆ (2)函数()f x 在1x =-的瞬时变化率为00(1)limlim(33)x x yf x x ∆→∆→∆'-=-∆==∆【例4】将原油精炼为汽油、柴油、塑胶等各种不同产品,需要对原油进行冷却和加热,如果第xh 时,原油的温度(单位:C )为2()715(08)f x x x x =-+≤≤,计算第2h 时和第6h 时,原油温度的瞬时变化率,并说明它们的意义.解:在第2h 时和第6h 时,原油温度的瞬时变化率就是'(2)f 和'(6)f 根据导数定义,0(2)()f x f x fx x+∆-∆=∆∆ 22(2)7(2)15(27215)3x x x x+∆-+∆+--⨯+==∆-∆所以00(2)limlim(3)3x x ff x x ∆→∆→∆'==∆-=-∆同理可得:(6)5f '=在第2h 时和第6h 时,原油温度的瞬时变化率分别为3-和5,说明在2h 附近,原油温度大约以3/C h 的速率下降,在第6h 附近,原油温度大约以5/C h 的速率上升.第1课 平均变化率与瞬时变化率同步作业1.已知函数21y x =+,则在2x =,0.1x ∆=时,y ∆的值为( ) A .0.40 B .0.41 C .0.43 D .0.44【答案】B【解析】2()(21)0.4120.1y +==+2Δ+1-2.一运动物体的运动路程()s t 与时间x 的函数关系为2()2s t t t =-+,则()s t 从2到2t +∆的平均速度为( )A .t -2ΔB .t --2ΔC .t +2ΔD .()t t -2Δ2Δ【答案】B【解析】因为s (2)=-22+2×2=0,所以s (2+Δt )=-(2+Δt )2+2(2+Δt )=-2Δt-(Δt )2, 所以s (2+Δt )-s (2)2+Δt -2=-2-Δt .3.一个物体的运动方程为1s t t =-+2,其中s 的单位是:m t ,的单位是:s ,那么物体在t =3s 时的瞬时速度为( )A .7 m/sB .6 m/sC .5 m/sD .8 m/s 【答案】C【解析】:因为221(3)(3)(133)5t t t s t t∆=∆=∆∆-+∆++--++∆所以()005l i 5i /ml m()t t st t ∆→∆→=+=∆∆∆m s4.若函数f (x )=-x 2+10的图象上一点331,24⎛⎫⎪⎝⎭及邻近一点331,24x y ⎛⎫+∆+∆ ⎪⎝⎭,则y x ∆∆=( )A .3B .-3C .-3-()2x ∆ D .-x ∆-3【答案】D【详解】()233322y f x f x x ⎛⎫⎛⎫∆=+∆-=-∆-∆ ⎪ ⎪⎝⎭⎝⎭,()233x x y x x x-∆-∆∆∴==--∆∆∆.故选:D. 5. 一直线运动的物体,从时间t 到t t ∆+时,物体的位移为s ∆,则tst ∆∆→∆0lim为( )A .从时间t 到t t ∆+一段时间内物体的平均速度B .在t 时刻时该物体的瞬时速度C .当时间为t ∆时物体的速度D .在时间t t ∆+时刻物体的瞬时速度 6.(多选)一球沿某一斜面自由滚下,测得滚下的垂直距离h (单位:m)与时间t (单位:s)之间的函数表达式为h (t )=2t 2+2t ,则下列说法正确的是( ) A .前3 s 内球滚下的垂直距离的增量Δh =24 m ;B .在时间[2,3]内球滚下的垂直距离的增量Δh =12 m ;C .前3 s 内球的平均速度为6 m/s ;D .在时间[2,3]内球的平均速度为12 m/s. 【答案】ABD【解析】前3 s 内,Δt =3 s ,Δh =h (3)-h (0)=24(m),此时平均速率为Δh Δt =243=8(m/s),故A 正确,C 不正确;在时间[2,3]内,Δt =3-2=1(s),Δh =h (3)-h (2)=12(m),故平均速度为ΔhΔt=12(m/s),所以BD 正确.综上,A BD都正确.7.2019年4月5日,某地上午9:20的气温为23.4 ℃,下午1:30的气温为15.9 ℃,则在这段时间内气温的平均变化率为__________℃/min. 【答案】-0.03【解析】从上午9:20到下午1:30,共250 min ,这段时间内气温的变化量为15.9-23.4=-7.5(℃)(即气温下降7.5 ℃),所以在这段时间内气温的平均变化率为-7.5250=-0.03(℃/min).8.一做直线运动的物体,其位移()s m 与时间()t s 的关系是23s t t =-,则该物体的初速度是________. 【答案】3 m/s【解析】2000(0)(0)00333lim lim lim() /t t t t t V s t tt ∆→∆→∆→+=∆-==-+⨯=∆+-∆23ΔΔΔm s 初,故物体的初速度为3 m/s.9.如图所示,函数y =f (x )在[x 1,x 2],[x 2,x 3],[x 3,x 4]这几个区间内,平均变化率最大的一个区间是________. 【答案】[x 3,x 4]【解析】由平均变化率的定义可知,函数y =f (x )在区间[x 1,x 2],[x 2,x 3],[x 3,x 4]上的平均变化率分别为:f (x 2)-f (x 1)x 2-x 1,f (x 3)-f (x 2)x 3-x 2,f (x 4)-f (x 3)x 4-x 3,结合图象可以发现函数y =f (x )的平均变化率最大的一个区间是[x 3,x 4].10.某河流在一段时间min x 内流过的水量为3m y ,已知y 是x 的函数,且()y f x ==x 从1变到8时,y 关于x 的平均变化率是多少?它代表什么实际意义?【详解】当x 从1变到8时,y 关于x 的平均变化率为()()()381211m /min 8177f f --==-,它表示时间从1min 增加到8min 的过程中,每增加1min ,水流量平均增加31m 7. 11.求函数2()24y f x x x +==在3x =处的瞬时变化率.解:()()()y x x ⨯⨯22Δ23Δ43Δ2343=+++-+()()x x x x x 2212Δ2Δ4Δ2Δ16Δ=++=+, 所以Δy Δx =2(Δx )2+16Δx Δx=2Δx +16.所以函数2()24y f x x x +==在3x =处的瞬时变化率为00limlim()16216x x yx x ∆→∆→∆+∆==∆12.已知()0)(f x kx b k =+≠在区间[-2,6]上的平均变化率为2,且函数图象过点(0)2,,试求该一次函数的表达式.【解析】因为函数()f x 的图象过点(0,2),所以b =2,即f (x )=kx +2. 因为Δy Δx =f (6)-f (-2)6-(-2)=2,即(6k +2)-(-2k +2)8=2,解得k =2,所以该一次函数的表达式为f (x )=2x +2. 13.求函数()2x f x =与1()12g x x =-在区间[1,](0)a a a -<上的平均变化率,并比较它们的大小.【详解】()2x f x =在区间[1,](0)a a a -<上的平均变化率为11()(1)222(1)a a a f f a f a x a a --∆--==-=∆--; 1()12g x x =-在区间[1,](0)a a a -<上的平均变化率为: 111(1)1()(1)122(1)12a a g g a g a x a a ⎛⎫⎡⎤---- ⎪⎢⎥∆--⎝⎭⎣⎦===∆--. 0,11a a <∴-<-111222a --∴<=,()2x f x ∴=在区间[1,](0)a a a -<上的平均变化率比1()12g x x =-在区间[1,](0)a a a -<上的平均变化率小.。

导数——平均变化率与瞬时变化率

导数——平均变化率与瞬时变化率

导数——平均变化率与瞬时变化率本讲教育信息】⼀. 教学内容:导数——平均变化率与瞬时变化率⼆. 本周教学⽬标:1、了解导数概念的⼴阔背景,体会导数的思想及其内涵.2、通过函数图象直观理解导数的⼏何意义.三. 本周知识要点:(⼀)平均变化率1、情境:观察某市某天的⽓温变化图2、⼀般地,函数f(x)在区间[x1,x2]上的平均变化率平均变化率是曲线陡峭程度的“数量化”,曲线陡峭程度是平均变化率“视觉化”.(⼆)瞬时变化率——导数1、曲线的切线如图,设曲线c是函数的图象,点是曲线 c 上⼀点作割线PQ,当点Q 沿着曲线c⽆限地趋近于点P,割线PQ⽆限地趋近于某⼀极限位置PT我们就把极限位置上的直线PT,叫做曲线c在点P 处的切线割线PQ的斜率为,即当时,⽆限趋近于点P的斜率.2、瞬时速度与瞬时加速度1)瞬时速度定义:运动物体经过某⼀时刻(某⼀位置)的速度,叫做瞬时速度.2)确定物体在某⼀点A处的瞬时速度的⽅法:要确定物体在某⼀点A处的瞬时速度,从A点起取⼀⼩段位移AA1,求出物体在这段位移上的平均速度,这个平均速度可以近似地表⽰物体经过A点的瞬时速度.当位移⾜够⼩时,物体在这段时间内的运动可认为是匀速的,所得的平均速度就等于物体经过A点的瞬时速度.我们现在已经了解了⼀些关于瞬时速度的知识,现在已经知道物体做直线运动时,它的运动规律⽤函数表⽰为s=s(t),也叫做物体的运动⽅程或位移公式,现在有两个时刻t0,t0+Δt,现在问从t0到t0+Δt这段时间内,物体的位移、平均速度各是:位移为Δs=s(t0+Δt)-s(t0)(Δt称时间增量)平均速度根据对瞬时速度的直观描述,当位移⾜够⼩,现在位移由时间t来表⽰,也就是说时间⾜够短时,平均速度就等于瞬时速度.现在是从t0到t0+Δt,这段时间是Δt. 时间Δt⾜够短,就是Δt⽆限趋近于0.当Δt→0时,位移的平均变化率⽆限趋近于⼀个常数,那么称这个常数为物体在t= t0的瞬时速度同样,计算运动物体速度的平均变化率,当Δt→0时,平均速度⽆限趋近于⼀个常数,那么这个常数为在t= t0时的瞬时加速度.3、导数3、导数设函数在(a,b)上有定义,.若⽆限趋近于0时,⽐值⽆限趋近于⼀个常数A,则称f(x)在x=处可导,并称该常数A为函数在处的导数,记作.⼏何意义是曲线上点()处的切线的斜率.导函数(导数):如果函数在开区间内的每点处都有导数,此时对于每⼀个,都对应着⼀个确定的导数,从⽽构成了⼀个新的函数,称这个函数为函数在开区间内的导函数,简称导数,也可记作.【典型例题】例1、⽔经过虹吸管从容器甲中流向容器⼄,t s后容器甲中⽔的体积(单位:),计算第⼀个10s内V的平均变化率.解:在区间[0,10]上,体积V的平均变化率为即第⼀个10s内容器甲中⽔的体积的平均变化率为.例2、已知函数,,分别计算在区间[-3,-1],[0,5]上函数及的平均变化率.解:函数在[-3,-1]上的平均变化率为在[-3,-1]上的平均变化率为函数在[0,5]上的平均变化率为在[0,5]上的平均变化率为例3、已知函数,分别计算函数在区间[1,3],[1,2],[1,1.1],[1,1.001]上的平均变化率.解:函数在区间[1,3]上的平均变化率为函数在[1,2]上的平均变化率为函数在[1,1.1]上的平均变化率为函数在[1,1.001]上的平均变化率为例4、物体⾃由落体的运动⽅程s=s(t)=gt2,其中位移单位m,时间单位s,g=9.8 m/s2. 求t=3这⼀时段的速度.解:取⼀⼩段时间[3,3+Δt],位置改变量Δs=g(3+Δt)2-g·32=(6+Δt)Δt,平均速度g(6+Δt)当Δt⽆限趋于0时,⽆限趋于3g=29.4 m/s.例5、已知质点M按规律s=2t2+3做直线运动(位移单位:cm,时间单位:s),(1)当t=2,Δt=0.01时,求.(1)当t=2,Δt=0.01时,求.(2)当t=2,Δt=0.001时,求.(3)求质点M在t=2时的瞬时速度.分析:Δs即位移的改变量,Δt即时间的改变量,即平均速度,当Δt越⼩,求出的越接近某时刻的速度.解:∵=4t+2Δt∴(1)当t=2,Δt=0.01时,=4×2+2×0.01=8.02 cm/s.(2)当t=2,Δt=0.001时,=4×2+2×0.001=8.002 cm/s.(3) Δt0,(4t+2Δt)=4t=4×2=8 cm/s例6、曲线的⽅程为y=x2+1,那么求此曲线在点P(1,2)处的切线的斜率,以及切线的⽅程.解:设Q(1+,2+),则割线PQ的斜率为:斜率为2∴切线的斜率为2.切线的⽅程为y-2=2(x-1),即y=2x.【模拟试题】1、若函数f(x)=2x2+1,图象上P(1,3)及邻近点Q(1+Δx,3+Δy),则=()A. 4B. 4ΔxC. 4+2ΔxD. 2Δx2、⼀直线运动的物体,从时间到时,物体的位移为,那么时,为()A. 从时间到时,物体的平均速度;B. 在时刻时该物体的瞬时速度;C. 当时间为时物体的速度;D. 从时间到时物体的平均速度3、已知曲线y=2x2上⼀点A(1,2),求(1)点A处的切线的斜率.(2)点A处的切线⽅程.4、求曲线y=x2+1在点P(-2,5)处的切线⽅程.5、求y=2x2+4x在点x=3处的导数.6、⼀球沿⼀斜⾯⾃由滚下,其运动⽅程是s=s(t)=t2(位移单位:m,时间单位:s),求⼩球在t=5时的瞬时速度7、质点M按规律s=2t2+3做直线运动(位移单位:cm,时间单位:s),求质点M在t=2时的瞬时速度.【试题答案】1、B2、B3、解:(1)时,k=∴点A处的切线的斜率为4.(2)点A处的切线⽅程是y-2=4(x-1)即y=4x-24、解:时,k=∴切线⽅程是y-5=-4(x+2),即y=-4x-3.5、解:Δy=2(3+Δx)2+4(3+Δx)-(2×32+4×3)=2(Δx)2+16Δx,=2Δx+16∴时,y′|x=3=166、解:时,瞬时速度v=(10+Δt)=10 m/s.∴瞬时速度v=2t=2×5=10 m/s.7、解:时,瞬时速度v==(8+2Δt)=8cm/s。

第一讲平均变化率、瞬时变化率、导数

第一讲平均变化率、瞬时变化率、导数

1 练习2:求函数y = 的导数 x
1 y′ = − 2 x
2
物理中的公式:vt = v0 + at是怎样得到的? 思考: 思考:
我们研究一下上例中质 点在t到t + ∆t内的平均速度 探索: 探索:
S (t + ∆t ) − S (t ) 2(t &) − 2t 2 + 4t v= = (t + ∆t ) − t ∆t
2
l称为函数y = f ( x )在点x0的瞬时变化率。
导数: 导数:
函数y = f ( x )在点x0的瞬时变化率也称为f ( x )在点x 0 的导数。 记作f ′(x0 ), 这时又称f ( x )在点x0处可导,即 f ( x0 + ∆x ) − f ( x0 ) ∆y lim = lim = f ′( x 0 ) ∆x →0 ∆x ∆x →0 ∆x
(2)函数y = x 2 − 2 x − 3在x = 2附近的平均变化率是( A.2 B.∆x C.∆x + 2 D.1
D.9 + ∆t
)C
例2:瞬时变化率
(1)函数 y = x 2 − 2 x − 3在x = 2处的导数是 (
)B )B
A.1
B.2
C.3
D.4
(2)曲线 y = 2 x 2在点(1,)处的瞬时变化率为 ( 2
) B
f (x0 − 2∆x ) − f ( x0 ) = 2, ( 2)设f ( x )是可导函数,且 lim ∆x → 0 ∆x 则f ′(x0 )等于( ) C
A.0.5
B0
C.C.-1
D.D.-2
练习1: 练习 :求函数
y=
x

x = 1 处的导数

1 函数的平均变化率、瞬时速度、导数的概念

1  函数的平均变化率、瞬时速度、导数的概念

求函数在某点处的导数
例2.求函数 f (x)=3x2+ax+b在x=1处的导数
一作差:
下结论
求物体运动的瞬时速度
例3.一个物体的运动方程为s=(2t+1)2,其中s的单位是米,t 的单位是秒,求该物体在1秒末的瞬时速度.
【归纳】求物体的瞬时速度的心得体会. 提示:Δt 趋近于0,是指时间间隔Δt
(3)从平均速度到瞬时速度 平均变化率的物理意义是把位移s看成时间t的函数s=s(t ),
在时间段[t1,t2]上的平均速度,即 v s(t2 ) s(t1) . t2 t1
lim y lim f x0 x f x0
x x0
x0
x
求函数的平均变化率
例1.已知函数f(x)=3x+1,计算f(x)在-3到-1之间和在1 到1+Δx之间的平均变化率.
越来越短,能越过任意小的时间间隔,但 始终不能为0.Δt,Δs在变化中都趋近于0,
s 但t 趋近于一个常数,这是极限思想,
即求函数 s(t)在某一点处的导数.
平均速度与瞬时速度的求解 【典例】一做直线运动的物体,其位移s与时间t的关系是s(t )= 3t-t2. (1)求此物体的初速度; (2)求此物体在t=2时的瞬时速度; (3)求t=0到t=2时的平均速度.
C (34, 33.4)
30
B (32, 18.6) 20
10 A (1, 3.5)
2
02
10
20
30
34 t(d)
情景 2:在爬山过程中,我们都有这样的感觉:当 山坡平缓时,步履轻盈;当山坡陡峭时,气喘吁吁, 那么,我们如何反映山坡的平缓与陡峭程度呢?
1.函数y=f(x)从x1到x2的平均变化率

新教材2023版高中数学北师大版选择性必修第二册:平均变化率与瞬时变化率课件

新教材2023版高中数学北师大版选择性必修第二册:平均变化率与瞬时变化率课件

2.质点运动规律s(t)=t2+3,则从3到3.3内,质点运动的平均速度
为( )
A.6.3
B.36.3
C.3.3
D.9.3
答案:A
解析:s(3)=12,s(3.3)=13.89
∴vത=s
3.3 −s 3.3−3
3
=10.8.39=6.3,故选A.
3.如果质点M按照规律s=3t2运动,则在t=3时的瞬时速度为( )
跟踪训练2 某手机配件生产流水线共有甲、乙两条,产量s(单位: 个)与时间t(单位:天)的关系如图所示,则接近t0天时,下列结论中正 确的是( )
A.甲的日生产量大于乙的日生产量 B.甲的日生产量小于乙的日生产量 C.甲的日生产量等于乙的日生产量 D.无法判定甲的日生产量与乙的日生产量的大小
答案:B
f x2 − f x1
即ΔΔyx=____x_2 _−_x_1____.我们用它来刻画函数值在区间[x1,x2]上变化 的___快__慢___.
状元随笔
函数的平均变化率可正可负,反映函数y=f(x)在[x1,x2]上变化的快 慢,变化快慢是由平均变化率的绝对值决定的,且绝对值越大,函数
值变化得越快.
=8.
题型探究·课堂解透
题型一 求函数的平均变化率 例1 已知函数f(x)=2x2+1, (1)求函数f(x)在[2,2.01]上的平均变化率; (2)求函数f(x)在[x0,x0+Δx]上的平均变化率.
解析:(1)由f(x)=2x2+1
得Δy=f(2.01)-f(2)=0.080 2
Δx=2.01-2=0.01
∴Δy=2Δx+ Δx
Δx
Δx
2
=2+Δx.
故选C.
题型二 平均变化率的实际应用

高中数学第2章导数及其应用1平均变化率与瞬时变化率1-1平均变化率1-2瞬时变化率北师大版选择性必修

高中数学第2章导数及其应用1平均变化率与瞬时变化率1-1平均变化率1-2瞬时变化率北师大版选择性必修

对点训练❷ 一辆汽车按规律s=2t2+3做直线运动,求这辆 汽车在t=2时的瞬时速度.(时间单位:s,位移单位:m)
[解析] 设这辆汽车在 t=2 附近的时间改变量为 Δt,则位移的改变 量 Δs=[2(2+Δt)2+3]-(2×22+3)=8Δt+2(Δt)2,则ΔΔst=8+2Δt.当 Δt 趋 于 0 时,平均变化率ΔΔst趋于 8.
第二章 导数及其应用
§1 平均变化率与瞬时变化率 1.1 平均变化率 1.2 瞬时变化率
素养目标•定方向 必备知识•探新知 关键能力•攻重难 课堂检测•固双基
素养目标•定方向
1.理解函数的平均变化率和瞬时变化率的概念. 2.会求物体运动的平均速度并估计瞬时速度. 3.会求函数在某点附近的平均变化率.
练一练: 1.如图,函数y=f(x)在A,B两点间的平均变化率是( B )
A.1 C.2
[解析]
B.-1 D.-2 ΔΔxy=f33--f11=1-2 3=-1.
2.一质点的运动方程是s=5-3t2,则在一段时间[1,1+Δt]内相应的
平均速度为( D )
A.3Δt+6
B.-3Δt+6
C.3Δt-6
[规律方法] 求函数平均变化率的步骤 (1)求自变量的改变量 Δx=x2-x1. (2)求函数值的改变量 Δy=f(x2)-f(x1). (3)求平均变化率ΔΔxy=fxx22- -fx1x1.
对点训练❶ 球的半径从1增加到2时,球的体积平均膨胀率
28π 为___3___.
[解析]
因为 Δy=43π×23-43π×13=283π,
28π 所以ΔΔyx=2-3 1=283π.
题型二
瞬时变化率(瞬时速度)的求法
典例 2 以初速度 v0(v0>0)竖直上抛的物体,t 秒时的高度 s 与 t 的 函数关系为 s=v0t-12gt2,求物体在时刻 t0 处的t)-12g(t0+Δt)2-v0t0-12gt20=(v0-gt0)Δt-

高中数学1-1平均变化率1-2瞬时变化率北师大版选择性必修第二册

高中数学1-1平均变化率1-2瞬时变化率北师大版选择性必修第二册
=4a+aΔt,
Δ
当Δt趋于0时,4a+aΔt趋于4a,
∴4a=8,解得a=2.
角度2.求函数的瞬时变化率
1
【例4】 估算函数y=x- 在x=1处的瞬时变化率.

解 因为
1
1
Δ
Δ
Δy=(1+Δx)-1+Δ-(1-1)=Δx+1+Δ,所以Δ
=
Δ
1+Δ=1+ 1 .
Δ+
Δ
1+Δ
1
(3)瞬时变化率刻画的是函数在某一点处变化的快慢.( √ )
2.如果某物体在某时间段内的平均速度为0,能否判定该物体在此时间段内
的瞬时速度都为0?
提示 不能.
重难探究·能力素养全提升
探究点一
平均变化率
角度1.求物体运动的平均速度
【例1】 某物体运动的位移s与时间t之间的函数关系式为s(t)=sin t,
=
( 0 +Δ)-( 0 )
;
Δ
趋于的那个确定值即为所求函数在某点处的瞬时变
变式训练4已知函数f(x)= √ ,估算f(x)在x=1处的瞬时变化率为
解析 由题意可得
(1+Δ)-(1)
Δ
=
当 Δx 趋于 0
√1+Δ-1
Δ
=
1
,
√1+Δ+1
1
1
时,
趋于 ,因此
2
√1+Δ+1
时速度.


无限趋近于常数v,即为t0时刻的瞬
变式训练3一质点M按函数s(t)=at2+1做直线运动(位移单位:m,时间单位:s),

2.1平均变化率与瞬时变化率(讲义+典型例题+小练)(解析版)

2.1平均变化率与瞬时变化率(讲义+典型例题+小练)(解析版)

2.1平均变化率与瞬时变化率(讲义+典型例题+小练)一、平均变化率设0x 是函数)(x f y =定义域的一点,如果自变量x 在0x 处有增量x ∆,则函数值y 也引起相应的增量)()(00x f x x f y -∆+=∆;比值xx f x x f x y ∆-∆+=∆∆)()(00称为函数)(x f y =在点0x 到x x ∆+0之间的平均变化率;例1:1.若函数()2f x x t =-,当1x m ≤≤时,平均变化率为2,则m 等于( )A .5B .2C .3D .1【答案】D 【解析】 【分析】直接利用平均变化率的公式求解. 【详解】 解:由题得.故选:D2.求函数y =x 3在x 0到x 0+Δx 之间的平均变化率.【答案】320x +3x 0·Δx +(Δx )2【解析】 【分析】利用函数的解析式求出区间两个端点的函数值;利用平均变化率公式求出即可. 【详解】当自变量从x 0到x 0+Δx ,函数的平均变化率为00()()f x x f x x +∆-∆=3300()x x x x +∆-∆ =23233000033()()x x x x x x x x +⋅∆+∆+∆-∆ =2300233()()x x x x x x⋅∆+∆+∆∆ =320x +3x 0·Δx +(Δx )2.举一反三:1.求函数223y x x =-+在区间23,212⎡⎤⎢⎥⎣⎦和252,12⎡⎤⎢⎥⎣⎦上的平均变化率.【答案】在区间23,212⎡⎤⎢⎥⎣⎦和252,12⎡⎤⎢⎥⎣⎦上的平均变化率分别为2312和2512.【解析】【分析】根据题意,由平均变化率的定义求出函数在两个区间上的平均变化率,即可得答案. 【详解】解:根据题意,函数2223(1)2y x x x =-+=-+,在区间23[12,2]的平均变化率为2223[(21)2][(1)2]23122312212y x -+--+==-, 在区间[2,25]12的平均变化率为2225[(1)2][(21)2]25122512212y x -+--+==-. 2.小球在光滑斜面上向下滚动,从开始滚动算起时间t 内所经过的距离为()2s t at =,求小球在时间段[]2,2h +内的平均速度. 【答案】4a ah + 【解析】 【分析】利用平均速度的定义直接可求. 【详解】因为小球在t 内所经过的距离为()2s t at =,所以在时间段[]2,2h +内的平均速度为()()()222222422s h s a h a a ah h h+-+⨯==++--.3.如图,直线l 为经过曲线上点P 和Q 的割线.(1)若(1,2)P ,(5,7)Q ,求l 的斜率;(2)当点Q 沿曲线向点P 靠近时,l 的斜率变大还是变小? 【答案】(1)54(2)斜率变大 【解析】 【分析】(1)直接根据两点的斜率公式计算可得;(2)根据直线的倾斜角的变化及直线的斜率与倾斜角的关系判断即可; (1)解:因为(1,2)P ,(5,7)Q ,所以725514l k -==-; (2)解:当Q 沿曲线向点P 靠近时,直线的倾斜角α(锐角)在变大,又tan k α=,所以直线l 的斜率变大了;二.瞬时变化率设0x 是函数)(x f y =定义域的一点,如果自变量x 在0x 处有增量x ∆,则函数值y 也引起相应的增量)()(00x f x x f y -∆+=∆;当x ∆、△y 都趋向0时。

02 瞬时变化率与平均变化率

02 瞬时变化率与平均变化率

1 02 瞬时变化率与平均变化率
一.平均变化率——割线的斜率
平均变化率,是y 的增量与x 的增量的比。

例题:函数f (x )=-2x +10在区间[-3,-1]内的平均变化率为________.
【解析】Δy Δx =f (-1)-f (-3)(-1)-(-3)
=-2. 二.瞬时变化率——切线的斜率
可以通过减小自变量的该变量,用平均变化率“逼近”瞬时变化率。

形象地理解为函数图像上某点处切线的斜率。

例题:一个物体的运动方程为s =1-t +t 2,其中s 的单位是m ,t 的单位是s ,那么物体在3 s 末的瞬时速度是________m/s.
【解析】
t t t
t t t t t t t t t t t t S ∆++-=∆∆+∆⋅+∆-=∆+--∆++∆+-=∆∆21)(2)1()()(1222 当t ∆趋于0时,即为:瞬时速度t 21+-.因此物体在3 s 末的瞬时速度是5321=⨯+-m/s
你能区分瞬时变化率与平均变化率了吗?。

2.1.1平均变化率与瞬时变化率-优质课件

2.1.1平均变化率与瞬时变化率-优质课件
连线的斜率. (以直代曲思想)
(2)平均变化率是曲线陡峭程度的“数量化”,
或者说曲线陡峭程度是平均变化率“视觉化”

(数形结合思想)
“数缺形时少直观,形离数时难入微”——华罗庚
数学应用
例1、已知函数f(x)=2x+1, g(x)=-2x ,分别计算 在区间[-3,-1],[0,5]上 f(x)及g(x) 的平均 变化率.
问题探究:设在10米跳台上,运动员跳 离跳台时垂直向上的速度为6.5m/s,运 动员在时刻t距离水面的高度
h(t) 10 1 gt2 6.5t 2
h(t)10 4.9t2 6.5t
计算运动员在0 t 65 这段时间里的平均速度, 49
计算运动员在0 t 65 这段时间里的平均速度, 49
(ft
0(t)0。) 。
当t0时, v 常数
这个常数就是物体在t0时刻的瞬时速度.
思考1:运动员在某一时刻 t0 的瞬时速度怎样表示?
lim h lim h(t0 t) h(t0 )
t t 0
t 0
t
思考2函数f (x)在
(1 x)2 1 (1 x) 1
2 x
当x无限趋近于0时, kPQ无限趋近于常数2 所以点P(1,1)处的切线斜率为2.
利 用 割 线 求 切 线,你学会了吗?
二、物理意义——瞬时速度
在物理学中,我们学过平均速度v s t
平均速度反映了在某一段时间内运 动的快慢程度,那么,如何刻画在某一时 刻运动的快慢程度呢?
本题说明:△y与△t中仅比较一个量的变化是 不行的.
问题情境2
现有某市10年3月和4月某天日最高气温记载.
时间

平均变化率与瞬时变化率详解

平均变化率与瞬时变化率详解

x
2 平均变化率的几何意义:
曲线 y f (x)上两点 (x1, f (x1))、(x2, f (x2)连) 线的斜率.
课后欣赏
青蛙扔进一锅热水 青蛙扔进一锅冷水水后慢慢加热
思考:结局一样吗? 为什么?
数学因运用而美丽! 生活因数学而多彩!
作业:p57 2 (1)(2)
祝同学们学习进步!
请各位专家指正!
c(t) 0.84 0.89 0.94 0.98 1.00 1.00 0.97 0.90 0.79 0.63 0.41
1.求服药30min内,30-40min,80-90min这3段 时间内,药物质量浓度的平均变化率,并回答:哪段时 间血液中药物的质量浓度变化最快?
2、如何刻画药物质量浓度变化的快慢?
函数g(x)在区间[-3,-1]上的平均变化率为-2;
函数g(x)在区间[0,5]上的平均变化率为-2. [结论]:一次函数y = kx + b在区间[p , q]上的平均变化率
为直线的斜率k.
巩固提高
(练习册37页变式探究)已知函数f(x)x22x 求 f (x从) a到b的平均变化率: (1)a=1,b=2; (2)a=3,b=3.1
(1)f(22 ) 1f(1)(222*2)1(122*1)5(2)f(3 3 .1 .1 ) 3 f(3)(3.122*3.0 1 .)1 (322*3)8.1
课后小结
1、平均变化率的计算: yx
f
(x2)f (x1) x2 x1
2、平均变化率的几何意义:
曲线 y f (x)上两点 (x1, f (x1))、(x2, f (x2)) 连线的斜率
=△y
f (x2) f (x1) y
x2 x1

平均变化率和瞬时变化率公式

平均变化率和瞬时变化率公式

平均变化率和瞬时变化率公式
平均变化率和瞬时变化率是描述一个物理量(如速度、加速度、压力等)在一定时间内变化程度的两个指标。

它们之间的关系可以用以下公式表示:
平均变化率 = (1/t) * 总变化量 / 总时间
瞬时变化率 = (1/t) * 变化速度 / 时间
其中,t为时间,总变化量是指在一定时间内变化的数值,变化速度是指单位时间内变化的数值,时间也可以称为变化的时间。

需要注意的是,平均变化率和瞬时变化率的定义仅适用于在一定时间内连续发生的物理量变化。

如果变化不是连续的,或者变化时间段不固定,那么这些指标就无法用上面的定义进行计算。

2020年北京海淀区空中课堂高二数学-平均变化率与瞬时变化率 学案

2020年北京海淀区空中课堂高二数学-平均变化率与瞬时变化率 学案

平均变化率与瞬时变化率一、学习目标1. 结合实例,理解平均变化率和瞬时变化率的概念以及二者的关系。

2. 会求简单函数在某一区间的平均变化率和在某一点处的瞬时变化率.3. 在理解平均变化率的过程中,用直线段代替曲线段,体会“以直代曲”的思想;在理解瞬时速度、瞬时变化率的过程中,体会极限思想(无限逼近思想).二、导学方案1. 阅读教材第3页至4页第6行,回答下列问题:(1)什么叫坡度?(2)若A(x 0,y 0), B(x 1,y 1),则AB ⃗⃗⃗⃗⃗ =____________;假设AB ⃗⃗⃗⃗⃗ 对x 轴的倾斜角为θ,则直线AB 的斜率k=__________=_____________。

(3)山路是弯曲的,为了刻画弯曲山路的陡峭程度,采取的方法是什么?2. 阅读教材第4页第7至13行,回答下列问题:(1)函数f(x)在区间[x 0,x 0+∆x]( ∆x >0)上的平均变化率是____________。

(2)函数f(x)在区间[x 0,x 0+∆x]( ∆x >0)上的平均变化率是否可以为0?为负?(3)f (x 0+∆x )−f (x 0)∆x 可以表示函数f(x)在哪个区间上的平均变化率?这里∆x 的符号是否一定为正?函数f(x)在区间[x 0−∆x,x 0+∆x]( ∆x >0)上的平均变化率是什么?3. 阅读教材第4页例1到页尾,回答下列问题:(1)例1解答之后、例2之前的一段文字想说明什么问题?能否用同样的方法分析“探索与研究”中的问题?(2)在例2中,若x 0=−1,且x 0+∆x =1,则f(x)在区间[x 0,x 0+∆x]上的平均变化率为多少?4. 阅读教材第6页至第8页第2行,回答下列问题:(1)设物体运动路程与时间的关系是s =f (t ),则从t 0到t 0+∆t 这段时间内,物体运动的平均速度怎么表示?它与函数f (t )在区间[t 0,t 0+∆t]上的平均变化有什么关系?(2)如何刻画物体在t 0时刻的瞬时速度?(3)在跳台跳水的例子中,ℎ(t )=10+6.5t −12gt 2中的10表示什么实际意义?运动员在2秒至2.1秒这段时间内的平均速度为-13.59m/s ,这里负数表示什么含义?(4)怎么理解∆t →0?函数ℎ(t)在t 0时刻的瞬时速度是多少?(5)如何理解平均速度和瞬时速度的关系?5. 阅读教材第8页第3行至第18行,回答下列问题:(1)∆t →0和∆t =0有什么区别?(2)物体运动的瞬时速度与对应函数的瞬时变化率有什么关系?f (x 0+∆x )−f (x 0)∆x 是否可以表示函数f(x)在点x 0的瞬时变化率?若不可以,应该用什么形式来表示?三、参考练习题(1)在函数平均变化率的定义中,自变量的增量x ∆满足( ) A .>0x ∆ B .<0x ∆C .=0x ∆D .0x ∆≠ (2)如果质点M 按规律23t s +=运动,则在一小段时间[]1.2,2中相应的平均速度是( )A .4B .4.1C .0.41D .3 (3)已知()21f x x =+和()32g x x =+在区间[],m n 上的平均变化率分别为a 和b ,则( )A .a b >B .a b <C .a b =D .不确定(4)如果质点A 按规律22t s =运动,则在s t 3=时的瞬时速度为( ) A .6 B .12 C .18 D .24(5)将半径为R 的球加热,若球的半径增加量为R ∆,则球的体积增量V ∆=__________.(6)函数y =[,]a b (其中0)a ≥上的平均变化率为________.(7)已知函数2()2f x x =,当[)1,3a ∈- 时,那么函数()f x 在=x a 处的瞬时变化率范围为__________.(8)一个质量为3kg 的物体作直线运动,设运动距离S (单位:m )与时间t (单位:s )的关系可用函数21)(t t S +=表示,并且物体的动能221mv U =.则物体开始运动后第5s 时的动能为_________.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
情景引入一
银杏树
雨后春笋
树高:15米 树龄:1000年 高:1.5米 时间:一年
问题:哪一株植物生长速度快?
情景引入二
在经营某商品中,甲用5年时 间挣到10万元,乙用5个月时间挣 到2万元,如何比较和评价甲,乙 两人的经营成果,你认为哪个人获 利速度最快?
情景引入三
如图,水以恒速(即单位时间内注入水的体积 相同)注入下面四种底面积相同的容器中,请 分别找出与各容器对应的水的高度h和时间t的 函数关系图象,用直线段连接起来。
自主学习
1. 自主学习课本P53页的实例分析1, 思考我们用什么量来衡量物体运动快慢?
2. 自主学习课本P53-54页的实例分析2, 思考我们用什么量来衡量体温的变化快 慢?
函数的平均变化率
对一般的函数y=f(x),当自变量x从 x1 变到x2时, 函数值从f (x1)变到 f (x2) ,它的平均变化率为
x2 x1
x
例题讲解
例1、某婴儿从出生到第12个月的体重变化如图所示,试分
别计算从出生到第3个月与第6个月到第12个月该婴儿体重
的平均变化率,分析增重快慢 实际意义 婴儿出生后,体
重的增加是先快
W(kg) 11
后慢 解: 婴儿从出生到第3个月的平均变化率是:
8.6 6.5
6.5 1)) x2-x1
0
=△x
f(x2)-f(x1) =△y
x
f (x2 ) f (x1) y
x2 x1
x
2 平均变化率的几何意义:
曲线 y f (x)上两点 (x1, f (x1))、(x2, f (x2 )) 连线的斜率.
思考探究:
在高台跳水运动中, 运动员相对于水面的高度 h (单
f
(
x2 ) x2

f( x1
x1
)。
把自变量的变化x2 – x1称为自变量的改变量,记作 △x ,函数值的变化 f (x2) – f (x1) 称作函数值的改变
量,记作△ y 。
自变量的变化△x = x2 – x1 ,
函数值的变化 △ y = f (x2) – f (x1),
平均变化率
y f ( x2 ) f ( x1 )
1.求服药30min内,30-40min,80-90min这3段时间 内,药物质量浓度的平均变化率,并回答:哪段时间血 液中药物的质量浓度变化最快?
2、如何刻画药物质量浓度变化的快慢?
小结:
1 平均变化率的定义:
一般地,函数 f (x)在 [x1, x2] 区间上的平均变化率为:
f (x2 ) f (x1) x2 x1
可 零
不可零
可正 可负
概念理解二
2 、平均变化率的几何意义:
曲线 y f (x)上过两点(x1, f (x1))、(x2, f (x2)) 的割线的 斜率
y
B(x2,f(x2))
f(x2)-f(x1)
A(x1,f(x1))
=△y
0
x2-x1 =△x x
f ( x2 ) f ( x1) y
位:m)与起跳后的时间 t (单位:s) 存在函数关系
h(t ) 4.9t 2 6.5t 10 ,计算运动员在 0 t 65 这段时间
的平均速度。
49
h( 65 ) h(0)
v
49 65 0
=0(m/s)
49
思考:(1) 运动员在这段时间里是静止的吗?
(2) 你认为用平均速度描述运动员的运动状态有什么问题吗?
探讨结论:
(1)不是静止的; (2)平均速度不能反映他在这段时间里运动状态
需要用瞬时速度描述运动状态。 (瞬时速度:物体在某一时刻的速度称之为瞬时速度。)
作业:p59 2 (1)(2)
当堂训练
某人服药物情况可以用血液中的药物质量浓度c(单 位:mg/mL)来表示,它是时间t(单位:min)的函数,表示 为c=c(t).下表给出了c(t)的一些函数值:
t 0 10 20 30 40 50 60 70 80 90 100
c(t) 0.84 0.89 0.94 0.98 1.00 1.00 0.97 0.90 0.79 0.63 0.41
婴儿从第6个月到第12个月的平均变化率是:
3.5
03
6
12 T(月)
11 8.6 0.4 12 6
例题讲解
例2 、已知函数y=f(x)=3x2+1。
(1)求函数f(x) 在区间[ x0 , x0 +△x ] 上的平均变化率。
(2)求函数f(x) 在区间[ 2 , 2.01]上 的平均变化率。
x
x2 x1
概念理解一
1、求函数平均变化率的步骤:
①计算 y f (x2) f (x1) ②计算 x x2 x1
③计算 y f (x2 ) f (x1) 的值
x
x2 x1
其 中x表 示 自 变 量 相 对 于x1的“增 量” y表 示 函 数 的“增 量”
相关文档
最新文档