平面向量的概念、运算及平面向量基本定理

合集下载

高考数学(文)《平面向量》专题复习

高考数学(文)《平面向量》专题复习
专题5 平面向量
第1节 平面向量的概念及线性运算、 平面向量基本定理
600分基础 考点&考法
❖考点29 平面向量的基本概念及线性运算 ❖考点30 平面向量的坐标运算
返回
考点29 平面向量的基本概念及线性运算
❖考法1 平面向量的有关概念 ❖考法2 平面向量的线性运算
返回
考点29 平面向量的基本概念及线性运算
【注意】①向量数乘的特殊情况:当λ=0时,λa=0;当a=0时,λa=0.②实数和向量可 以求积,但不能求和、求差.③正确区分向量数量积与向量数乘的运算律.
返回
考法2 平面向量的线性运算
返回
考点30 平面向量的坐标运算
❖考法3 平面向量基本定理的应用 ❖考法4 平面向量的共线问题 ❖考法5 平面向量的坐标表示与运算
1.向量的有关概念
2.向量的线性运算
考法1 平面向量的有关概念
解决平面向量的有关概念的问题时,应注意以下两点: 1.应正确理解向量的概念 ①向量既有大小,又有方向,任意两个向量不能比较大小,只可以 判断它们是否相等,但它们的模可以比较大小;②大小与方向是向 量的两个要素,分别是向量的代数特征与几何特征;③向量可以自 由平移,任一组平行向量都可以移到同一直线上. 2.正确理解共线向量与平行向量 共线向量就是平行向量,其要求是几个非零向量的方向相同或相反, 当然向量所在直线可以平行,也可以重合,其中“共线”的含义不 同于平面几何中“共线”的含义.
(2)b在a方向上的投影是 一个数量,当0°≤θ< 90°时为正;当90°<θ ≤180°时为负;当θ= 90°时为0.
考点31 平面向量的数量积
【注意】x1y2-x2y1=0与x1x2+y1y2=0不同,前者是两向量a=(x1,y1), b=(x2,y2)共线的充要条件,后者是它们垂直的充要条件.

平面向量的运算法则

平面向量的运算法则

平面向量的运算法则平面向量是解决平面几何问题的重要工具,通过向量的运算可以简化平面几何问题的处理过程。

本文将介绍平面向量的基本概念和运算法则,以及其在几何问题中的应用。

一、平面向量的表示平面向量用有序数对表示,常用形式为A(x₁, y₁)和B(x₂, y₂),其中A和B分别表示向量的起点和终点,(x₁, y₁)和(x₂, y₂)表示向量的坐标。

二、平面向量的加法平面向量的加法指的是将两个向量按照特定的法则相加,得到一个新的向量。

设有向量A(x₁, y₁)和B(x₂, y₂),则向量A与向量B的和C可以表示为C(x₁ + x₂, y₁ + y₂)。

三、平面向量的减法平面向量的减法指的是计算出一个新的向量,使得用该向量加上被减向量等于另一个向量。

设有向量A(x₁, y₁)和B(x₂, y₂),则向量A 与向量B的差D可以表示为D(x₁ - x₂, y₁ - y₂)。

四、平面向量的数量乘法平面向量的数量乘法指的是将一个向量乘以一个实数,得到一个新的向量。

设有向量A(x, y)和实数k,kA可以表示为kA(kx, ky)。

五、平面向量的点乘平面向量的点乘指的是两个向量的对应坐标相乘后相加的运算。

设有向量A(x₁, y₁)和向量B(x₂, y₂),则向量A与向量B的点乘可以表示为A·B = x₁x₂ + y₁y₂。

六、平面向量的叉乘平面向量的叉乘指的是两个向量按照一定的法则相乘,得到一个新的向量。

设有向量A(x₁, y₁)和向量B(x₂, y₂),则向量A与向量B的叉乘可以表示为A×B = x₁y₂ - x₂y₁。

七、平面向量的模长平面向量的模长指的是一个向量的长度,可以通过勾股定理求得。

设有向量A(x, y),则向量A的模长可以表示为|A| = √(x² + y²)。

八、平面向量的单位向量平面向量的单位向量指的是模长为1的向量,可以通过将向量除以其模长得到。

设有向量A(x, y),则向量A的单位向量可以表示为Â = (x/|A|, y/|A|)。

平面向量基本定理(教案)

平面向量基本定理(教案)

平面向量基本定理(教案)教案章节一:向量的概念回顾1.1 向量的定义向量是有大小和方向的量,通常用箭头表示。

向量可以用坐标形式表示,例如在二维空间中,向量可以表示为(a, b)。

1.2 向量的加法向量的加法是指在同一平面内,将两个向量首尾相接,形成的第三个向量。

向量的加法满足交换律和结合律,即a + b = b + a,(a + b) + c = a + (b + c)。

教案章节二:平面向量的基本定理2.1 定理的定义平面向量的基本定理是指在平面内,任何两个不共线的向量可以作为平面的基底。

基底是线性无关的向量组,可以通过线性组合表示平面内的任意向量。

2.2 基底的性质基底是线性无关的,即不存在非零的线性组合使得向量组的和为零。

基底可以任意选择,但选择不同的基底会导致向量的坐标不同。

教案章节三:向量的线性组合3.1 线性组合的定义向量的线性组合是指将向量与实数相乘后相加的结果。

例如,a u + b v 表示将向量u 乘以实数a,向量v 乘以实数b,将两个结果相加。

3.2 线性组合的性质线性组合满足分配律,即(a u + b v) + c w = a (u + c w) + b v。

线性组合的系数可以是任意实数,包括正数、负数和零。

教案章节四:向量的坐标表示4.1 坐标系的建立坐标系是由两个或多个轴组成的,用于表示向量的位置和方向。

在二维空间中,通常使用x 轴和y 轴作为坐标轴。

4.2 向量的坐标表示向量可以用坐标形式表示,即(x, y),其中x 表示向量在x 轴上的投影,y 表示向量在y 轴上的投影。

向量的长度可以用勾股定理计算,即|u| = √(x^2 + y^2)。

教案章节五:向量的线性相关性5.1 线性相关的定义向量组线性相关是指存在一组不全为零的实数,使得向量组的和为零。

例如,向量组(u, v, w) 线性相关,当存在不全为零的实数a, b, c,使得a u +b v +c w = 0。

5.2 线性相关性的性质如果向量组线性相关,其中任意一个向量都可以表示为其他向量的线性组合。

平面向量知识点归纳

平面向量知识点归纳

平面向量一.向量有关概念:1.向量的概念:既有大小又有方向的量,注意向量与数量的区别。

向量常用有向线段来表示,注意不能说向量就就是有向线段,为什么?(向量可以平移)。

如:2.零向量:长度为0的向量叫零向量,记作:,注意零向量的方向就是任意的;3.单位向量:长度为一个单位长度的向量叫做单位向量(与AB u u u r共线的单位向量就是||AB AB ±u u u r u u u r);4.相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性;5.平行向量(也叫共线向量):方向相同或相反的非零向量、叫做平行向量,记作:∥,规定零向量与任何向量平行。

提醒:①相等向量一定就是共线向量,但共线向量不一定相等;②两个向量平行与与两条直线平行就是不同的两个概念:两个向量平行包含两个向量共线, 但两条直线平行不包含两条直线重合;③平行向量无传递性!(因为有0r);④三点A B C 、、共线⇔ AB AC u u u r u u u r、共线; 6.相反向量:长度相等方向相反的向量叫做相反向量。

的相反向量就是-。

如下列命题:(1)若a b =r r,则a b =r r 。

(2)两个向量相等的充要条件就是它们的起点相同,终点相同。

(3)若AB DC =u u u r u u u r ,则ABCD 就是平行四边形。

(4)若ABCD 就是平行四边形,则AB DC =u u u r u u u r 。

(5)若,a b b c ==r r r r ,则a c =r r。

(6)若//,//a b b c r r r r ,则//a c r r。

其中正确的就是_______(答:(4)(5))二.向量的表示方法:1.几何表示法:用带箭头的有向线段表示,如,注意起点在前,终点在后;2.符号表示法:用一个小写的英文字母来表示,如,,等;3.坐标表示法:在平面内建立直角坐标系,以与x 轴、y 轴方向相同的两个单位向量,j 为基底,则平面内的任一向量可表示为(),a xi y j x y =+=r r r,称(),x y 为向量的坐标,=(),x y 叫做向量的坐标表示。

平面向量基本定理

平面向量基本定理

平面向量基本定理
平面向量基本定理:
1、定义:平面向量基本定理是一种数学定理,它将向量的矢量乘积和其他数学定理结合在一起。

2、证明:平面向量基本定理可以由叉积定理和等价矢量乘积定理来证明:
A×B = C×A+B , 其中A和B是两个向量,C是其叉积。

同时有:A⋅(B×C) = B⋅(C×A) + C⋅(A×B)
将C×A替换成A×B,得到A⋅B×C= B⋅C×A + A⋅A×B,再将A⋅A×B 替换成C×A,即得到A⋅B×C = B⋅C×A + C⋅A×B。

故A×B=C×A+B,即平面向量基本定理得证。

3、应用:平面向量基本定理主要应用于平面向量运算。

它可以用于求解三角形和圆的关系,计算叉积和点面积,求解抛物线的中心,解决线性方程组的特殊解,以及证明连续多边形的属性等。

4、例题:
(1)已知AB、BC、CD是相互垂直的向量,若AB=2,BC=3,则
AC⋅CD的值为?
(2)A、B、C、D四点不共线,且AB⋅BC=2,BC⋅CD=3,若AC=4,求CD的值?
解:(1)由题意可知,ABCD四点不共线,AB、BC、CD相互垂直,由矢量乘积的叉积定理可得,AB×BC=AC×CD,故
AC⋅CD=AB⋅BC=2×3=6。

(2)由题意可知,AB⋅BC=2,BC⋅CD=3,且AC=4,因为AB、BC、CD相互垂直,所以有:AB×BC=AC×CD,由于有AB⋅BC=2,AC=4,故CD=2/4=1/2。

高考数学 平面向量的概念及线性运算、平面向量基本定理及坐标表示 高考真题

高考数学    平面向量的概念及线性运算、平面向量基本定理及坐标表示    高考真题

专题六 平面向量6.1 平面向量的概念及线性运算、平面向量基本定理及坐标表示考点一 平面向量的概念及线性运算1.(2022全国乙文,3,5分)已知向量a =(2,1),b =(-2,4),则|a -b |= ( )A.2B.3C.4D.5答案D 由题意知a -b =(4,-3),所以|a -b |=√42+(−3)2=5,故选D .2.(2022新高考Ⅰ,3,5分)在△ABC 中,点D 在边AB 上,BD =2DA.记CA ⃗⃗⃗⃗⃗ =m ,CD ⃗⃗⃗⃗⃗ =n ,则CB ⃗⃗⃗⃗⃗ = ( )A.3m -2nB.-2m +3nC.3m +2nD.2m +3n答案B 由题意可知,DA ⃗⃗⃗⃗⃗ =CA ⃗⃗⃗⃗⃗ −CD ⃗⃗⃗⃗⃗ =m -n ,又BD =2DA ,所以BD ⃗⃗⃗⃗⃗⃗ =2DA ⃗⃗⃗⃗⃗ =2(m -n ),所以CB ⃗⃗⃗⃗⃗ =CD ⃗⃗⃗⃗⃗ +DB⃗⃗⃗⃗⃗⃗ =n -2(m -n )=3n -2m ,故选B .3.(2015课标Ⅰ理,7,5分)设D 为△ABC 所在平面内一点,BC ⃗⃗⃗⃗ =3CD ⃗⃗⃗⃗ ,则( ) A.AD ⃗⃗⃗⃗ =-13AB ⃗⃗⃗⃗ +43AC ⃗⃗⃗⃗ B.AD ⃗⃗⃗⃗ =13AB ⃗⃗⃗⃗ -43AC ⃗⃗⃗⃗ C.AD⃗⃗⃗⃗ =43AB ⃗⃗⃗⃗ +13AC ⃗⃗⃗⃗ D.AD ⃗⃗⃗⃗ =43AB ⃗⃗⃗⃗ -13AC ⃗⃗⃗⃗ 答案 A AD⃗⃗⃗⃗ =AB ⃗⃗⃗⃗ +BD ⃗⃗⃗⃗ =AB ⃗⃗⃗⃗ +BC ⃗⃗⃗⃗ +CD ⃗⃗⃗⃗ =AB ⃗⃗⃗⃗ +43BC ⃗⃗⃗⃗ =AB ⃗⃗⃗⃗ +43(AC ⃗⃗⃗⃗ -AB ⃗⃗⃗⃗ )=-13AB ⃗⃗⃗⃗ +43AC ⃗⃗⃗⃗ .故选A. 4.(2014课标Ⅰ文,6,5分)设D,E,F 分别为△ABC 的三边BC,CA,AB 的中点,则EB ⃗⃗⃗⃗ +FC ⃗⃗⃗⃗ =( ) A.AD ⃗⃗⃗⃗ B.12AD ⃗⃗⃗⃗ C.BC ⃗⃗⃗⃗ D.12BC⃗⃗⃗⃗ 答案 A 设AB⃗⃗⃗⃗ =a,AC ⃗⃗⃗⃗ =b,则EB ⃗⃗⃗⃗ =-12b+a,FC ⃗⃗⃗⃗ =-12a+b,从而EB ⃗⃗⃗⃗ +FC ⃗⃗⃗⃗ =(−12b +a )+(−12a +b )=12(a+b)=AD ⃗⃗⃗⃗ ,故选A.5.(2015课标Ⅱ理,13,5分)设向量a ,b 不平行,向量λa +b 与a +2b 平行,则实数λ= . 答案12解析 由于a ,b 不平行,所以可以以a ,b 作为一组基底,于是λa +b 与a +2b 平行等价于λ1=12,即λ=12.6.(2015北京理,13,5分)在△ABC 中,点M,N 满足AM⃗⃗⃗⃗⃗ =2MC ⃗⃗⃗⃗⃗ ,BN ⃗⃗⃗⃗ =NC ⃗⃗⃗⃗ .若MN ⃗⃗⃗⃗⃗ =x AB ⃗⃗⃗⃗ +y AC ⃗⃗⃗⃗ ,则x = ,y = .答案12;-16解析 由AM⃗⃗⃗⃗⃗ =2MC ⃗⃗⃗⃗⃗ 知M 为AC 上靠近C 的三等分点,由BN ⃗⃗⃗⃗ =NC ⃗⃗⃗⃗ 知N 为BC 的中点,作出草图如下:则有AN⃗⃗⃗⃗ =12(AB ⃗⃗⃗⃗ +AC ⃗⃗⃗⃗ ),所以MN ⃗⃗⃗⃗⃗ =AN ⃗⃗⃗⃗ -AM ⃗⃗⃗⃗⃗ =12(AB ⃗⃗⃗⃗ +AC ⃗⃗⃗⃗ )-23·AC ⃗⃗⃗⃗ =12AB ⃗⃗⃗⃗ -16AC ⃗⃗⃗⃗ , 又因为MN ⃗⃗⃗⃗⃗ =x AB ⃗⃗⃗⃗ +y AC⃗⃗⃗⃗ ,所以x=12,y=-16. 7.(2013江苏,10,5分)设D,E 分别是△ABC 的边AB,BC 上的点,AD=12AB,BE=23BC.若DE⃗⃗⃗⃗ =λ1AB ⃗⃗⃗⃗ +λ2AC ⃗⃗⃗⃗ (λ1,λ2为实数),则λ1+λ2的值为 . 答案12解析 DE ⃗⃗⃗⃗ =DB ⃗⃗⃗⃗ +BE ⃗⃗⃗⃗ =12AB ⃗⃗⃗⃗ +23BC ⃗⃗⃗⃗ =12AB ⃗⃗⃗⃗ +23(AC ⃗⃗⃗⃗ -AB ⃗⃗⃗⃗ )=-16AB ⃗⃗⃗⃗ +23AC ⃗⃗⃗⃗ , ∵DE⃗⃗⃗⃗ =λ1AB ⃗⃗⃗⃗ +λ2AC ⃗⃗⃗⃗ ,∴λ1=-16,λ2=23,故λ1+λ2=12. 考点二 平面向量的基本定理及坐标运算1.(2015课标Ⅰ文,2,5分)已知点A(0,1),B(3,2),向量AC⃗⃗⃗⃗ =(-4,-3),则向量BC ⃗⃗⃗⃗ =( ) A.(-7,-4) B.(7,4) C.(-1,4) D.(1,4)答案 A 根据题意得AB ⃗⃗⃗⃗ =(3,1),∴BC ⃗⃗⃗⃗ =AC ⃗⃗⃗⃗ -AB⃗⃗⃗⃗ =(-4,-3)-(3,1)=(-7,-4).故选A. 2.(2014北京文,3,5分)已知向量a =(2,4),b =(-1,1),则2a -b =( ) A.(5,7) B.(5,9) C.(3,7) D.(3,9)答案 A 由a =(2,4)知2a =(4,8),所以2a -b =(4,8)-(-1,1)=(5,7).故选A. 3.(2014广东文,3,5分)已知向量a =(1,2),b =(3,1),则b -a =( ) A.(-2,1) B.(2,-1) C.(2,0) D.(4,3) 答案 B b -a =(3,1)-(1,2)=(2,-1).故答案为B.4.(2014福建理,8,5分)在下列向量组中,可以把向量a =(3,2)表示出来的是( )A.e 1=(0,0),e 2=(1,2)B.e 1=(-1,2),e 2=(5,-2)C.e 1=(3,5),e 2=(6,10)D.e 1=(2,-3),e 2=(-2,3) 答案 B 设a=k 1e 1+k 2e 2,A 选项,∵(3,2)=(k 2,2k 2),∴{k 2=3,2k 2=2,无解.B 选项,∵(3,2)=(-k 1+5k 2,2k 1-2k 2), ∴{−k 1+5k 2=3,2k 1−2k 2=2,解之得{k 1=2,k 2=1. 故B 中的e 1,e 2可把a 表示出来. 同理,C 、D 选项同A 选项,无解.5.(2021全国乙文,13,5分)已知向量a =(2,5),b =(λ,4),若a ∥b ,则λ= .答案85解题指导:利用“若a =(x 1,y 1),b =(x 2,y 2),则a ∥b ⇔x 1y 2=x 2y 1”解题.解析由已知a ∥b 得2×4=5λ,∴λ=85.解题关键:记准两平面向量共线的充要条件是解这类问题的关键.6.(2017山东文,11,5分)已知向量a =(2,6),b =(-1,λ).若a ∥b ,则λ= . 答案 -3解析 本题考查向量平行的条件. ∵a=(2,6),b =(-1,λ),a ∥b , ∴2λ-6×(-1)=0,∴λ=-3.7.(2016课标Ⅱ文,13,5分)已知向量a =(m,4),b =(3,-2),且a ∥b ,则m= . 答案 -6解析 因为a ∥b ,所以m 3=4−2,解得m=-6. 易错警示 容易把两个向量平行与垂直的条件混淆. 评析 本题考查了两个向量平行的充要条件.8.(2014陕西,13,5分)设0<θ<π2,向量a =(sin 2θ,cos θ),b =(cos θ,1),若a ∥b ,则tan θ= . 答案12解析∵a∥b,∴sin 2θ×1-cos2θ=0,∴2sin θcos θ-cos2θ=0,∵0<θ<π2,∴cos θ>0,∴2sin θ=cos θ,∴tan θ=1 2 .。

(完整版)平面向量全部讲义

(完整版)平面向量全部讲义

第一节平面向量的概念及其线性运算1.向量的有关概念(1)向量:既有大小,又有方向的量叫向量;向量的大小叫做向量的模.(2)零向量:长度为0的向量,其方向是任意的.(3)单位向量:长度等于1个单位的向量.(4)平行向量:方向相同或相反的非零向量,又叫共线向量,规定:0与任一向量共线.(5)相等向量:长度相等且方向相同的向量.(6)相反向量:长度相等且方向相反的向量.例1.若向量a与b不相等,则a与b一定()A.有不相等的模B.不共线C.不可能都是零向量D.不可能都是单位向量例2..给出下列命题:①若|a|=|b|,则a=b;②若A,B,C,D是不共线的四点,则AB=DC等价于四边形ABCD为平行四边形;③若a=b,b=c,则a=c;④a=b等价于|a|=|b|且a∥b;⑤若a∥b,b∥c,则a∥c.其中正确命题的序号是()A.②③B.①②C.③④D.④⑤CA2.向量的线性运算向量运算定义法则(或几何意义)运算律加法求两个向量和的运算三角形法则平行四边形法则(1)交换律:a+b=b+a;(2)结合律:(a+b)+c=a+(b+c)减法求a与b的相反向量-b的和的运算叫做a与b的差三角形法则a-b=a+(-b)数乘求实数λ与向量a的积的运算(1)|λa|=|λ||a|;(2)当λ>0时,λa的方向与a的方向相同;当λ<0时,λa的方向与a的方向相反;λ(μa)=(λμ)a;(λ+μ)a=λa+μa;λ(a+b)=λa+λb例3:化简AC→-BD→+CD→-AB→得() A.AB→B.DA→C.BC→D.0例4:(1)如图,在正六边形ABCDEF中,BA+CD+EF=()A.0B.BE C.AD D.CF(2)设D,E分别是△ABC的边AB,BC上的点,AD=12AB,BE=23BC.若DE=λ1AB+λ2AC(λ1,λ2为实数),则λ1+λ2的值为________.巩固练习:1.将4(3a+2b)-2(b-2a)化简成最简式为______________.2.若|OA→+OB→|=|OA→-OB→|,则非零向量OA→,OB→的关系是() A.平行B.重合C.垂直D.不确定3.若菱形ABCD的边长为2,则|AB-CB+CD|=________4.D是△ABC的边AB上的中点,则向量CD等于()A.-BC+12BA B.-BC-12BA C.BC-12BA D.BC+12BA5.若A,B,C,D是平面内任意四点,给出下列式子:①AB+CD=BC+DA;②AC+BD=BC+AD;③AC-BD=DC+AB.其中正确的有()A.0个B.1个C.2个D.3个6.如图,在△ABC中,D,E为边AB的两个三等分点,CA→=3a,CB→=2b,求CD→,CE→.DD12巩固练习1。

平面向量的运算

平面向量的运算

平面向量的运算在数学中,平面向量是由大小和方向确定的量,常用于表示物体在平面上的位移或力的作用方向。

平面向量的运算是指对平面向量进行加法、减法、数乘和点乘等操作。

本文将介绍平面向量的基本概念和运算规则。

一、平面向量的表示方法平面向量通常用有向线段表示,由两个点确定,例如AB表示从点A到点B的平面向量。

可以用字母加箭头(如→)表示平面向量,如:AB →其中A为向量的起点,B为终点。

二、平面向量的加法对于两个平面向量AB → 和CD →,它们的和可以通过平行四边形法则得到。

具体步骤如下:1. 将向量CD → 的起点与向量AB → 的终点相重合,得到新的向量AC →;2. 连接向量AB → 的起点和向量CD → 的终点,得到新的向量AD →;3. 新的向量AD → 就是原始向量AB → 和CD → 的和,即AD → = AB → + CD →。

三、平面向量的减法向量的减法可以通过向量加法的逆运算得到。

对于向量AB → 和CD →,它们的差可以表示为AB → - CD →,具体步骤如下:1. 取向量CD → 的终点B为新向量的起点,向量AB → 的起点A为新向量的终点,得到新的向量BA →;2. 新的向量BA → 就是原始向量AB → 和CD → 的差,即BA → = AB → - CD →。

四、平面向量的数乘平面向量的数乘是指将向量的长度乘以一个实数,从而改变向量的大小。

设有向量AB → 和实数k,它们的数乘表示为kAB →,其具体步骤如下:1. 将向量AB → 的长度乘以实数k,得到新向量AC →;2. 新的向量AC → 的方向与原来向量AB → 相同,而长度为原来的k倍,即AC → = kAB →。

五、平面向量的点乘平面向量的点乘(内积)运算可以得到两个向量的乘积,结果为一个实数。

设有向量AB → 和CD →,它们的点乘表示为AB → · CD →,具体计算方法如下:1. 将向量AB → 和CD → 的长度相乘,得到实数AC;2. 计算向量AB → 与向量CD → 之间夹角的余弦值,得到实数cosθ;3. 点乘的结果为AB → · CD → = ACcosθ。

平面向量的基本定理及坐标运算

平面向量的基本定理及坐标运算

一、平面向量的基本定理(1)平面向量基本定理:如果1e 和2e 是一平面内的两个不平行的向量,那么该平面内的任一向量a ,存在唯一的一对实数1a ,2a ,使a =1122a e a e +.(2) 基底:我们把不共线向量1e ,2e 叫做表示这一平面内所有向量的一组基底,记作{}12,e e .1122a e a e +叫做向量a 关于基底{}12,e e 的分解式. 注:①定理中1e ,2e 是两个不共线向量;②a 是平面内的任一向量,且实数对1a ,2a 是惟一的; ③平面的任意两个不共线向量都可作为一组基底.(3)平面向量基本定理的证明:在平面内任取一点O ,作11OE e =,22OE e =,OA a =.由于1e 与2e 不平行,可以进行如下作图:过点A 作2OE 的平行(或重合)直线,交直线1OE 于点M ,过点A 作1OE 的平行(或重合)直线,交直线2OE 于点N ,于是依据平行向量基本定理,存在两个唯一的实数1a 和2a 分别有11OM a e =,22ON a e =,所以1122a OA OM ON a e a e ==+=+证明表示的唯一性:如果存在另对实数x ,y 使12OA xe ye =+,则112212a e a e xe ye +=+,即1122()()0x a e y a e -+-=,由于1e 与2e 不平行,如果1x a -与2y a -中有一个不等于0,不妨设20y a -≠,则1212x a e e y a -=--,由平行向量基本定理,得1e 与2e 平行,这与假设矛盾,因此10x a -=,20y a -=,即1x a =,2y a =.二、向量的正交分解与向量的直角坐标运算:(1)向量的直角坐标:如果基底的两个基向量1e ,2e 互相垂直,则称这个基底为正交基底.在正交基底下分解向量,叫做正交分解.(2)向量的坐标表示:在直角坐标系中,一点A 的位置被点A 的位置向量OA 所唯一确定.设点A 的坐标为(,)x y ,由平面向量基本定理,有12(,)OA xe ye x y =+=,即点A 的位置向量OA 的坐标(,)x y ,也就是点A 的坐标;反之,点A 的坐标也是点A 相对于坐标原点的位置向量OA 的坐标.E 2E 1e 2e 1O ANMae1e 2axyO O yxae 2e 1平面向量的基本定理及坐标运算(3)向量的直角坐标运算:设12(,)a a a =,12(,)b b b =,则 ①1122(,)a b a b a b +=++;②1122(,)a b a b a b -=--;③1212(,)(,)a a a a a λλλλ==注:①两个向量的和与差的坐标等于两个向量相应坐标的和与差;②数乘向量的积的坐标等于数乘以向量相应坐标的积.(4)若11(,)A x y ,22(,)B x y ,则向量2121(,)AB OB OA x x y y =-=--;即:一个向量的坐标等于向量的终点的坐标减去始点的坐标.(5)用平面向量坐标表示向量共线条件:设12(,)a a a =,12(,)b b b =,则12210a b a b -=就是两个向量平行的条件.若向量b 不平行于坐标轴,即10b ≠,20b ≠,则两个向量平行的条件是,相应坐标成比例.题型一、平面向量的基本定理【例1】 若已知1e 、2e 是平面上的一组基底,则下列各组向量中不能作为基底的一组是( )A .1e 与2e -B .31e 与22eC .1e +2e 与1e —2eD .1e 与21e【例2】 线段与互相平分,则可以表示为( )A .B .C .D . 【例3】 已知ABCD □的两条对角线交于点O ,设AB a =,AD b =,用向量a 和b 表示向量BD ,AO .【例4】 如图,平行四边形ABCD 中,E F 、分别是BC DC 、的中点,G 为DE BF 、的交点,若AB =a ,AD =b ,试以a ,b 为基底表示DE 、BF 、CG .AB CD BD AB CD -1122AB CD -+1()2AB CD -()AB CD --GFE DCBA【例5】 设P 是正六边形OABCDE 的中心,若OA a =,OE b =,试用向量a ,b 表示OB 、OC 、OD【例6】 已知向量a ,b 不共线,()R c ka b k =+∈,d a b =-,如果c d ∥,那么( )A .1k =且c 与d 同向B .1k =且c 与d 反向C .1k =-且c 与d 同向D .1k =-且c 与d 反向【例7】 已知四边形ABCD 是菱形,点P 在对角线AC 上(不包括端点A ,C ),则AP 等于( )A .()AB AD λ+,(01)λ∈, B .()AB BC λ+,202λ⎛⎫∈ ⎪ ⎪⎝⎭, C .()AB AD λ+,202λ⎛⎫∈ ⎪ ⎪⎝⎭,D .()AB BC λ-,202λ⎛⎫∈ ⎪ ⎪⎝⎭, 【例8】 已知向量a b ,不共线,m n ,为实数,则当0ma nb +=时,有m n += 【例9】 在平行四边形ABCD 中,E 和F 分别是边CD 和BC 的中点.若AC AE AF λμ=+,其中λ,R μ∈,则λμ+= .【例10】证明:若向量,,OA OB OC 的终点A B C 、、共线,当且仅当存在实数,λμ满足等式1λμ+=,使得OC OB OA λμ=+.POE DCBAFEDCBAOCBA题型二、平面向量的坐标表示与运算【例11】设向量(23),AB =,且点A 的坐标为(12),,则点B 的坐标为 . 【例12】若(21),a =,(34),b =-则34a b +的坐标为_________. 【例13】设平面向量()()3,5,2,1a b ==-,则2a b -=( )A .()6,3B .()7,3C .()2,1D .()7,2【例14】已知(2,3),(1,2)a x b y =-=+,若a b =,则x = ,y = . 【例15】若()0,1A ,()1,2B ,()3,4C ,则AB -2BC = 【例16】若()3,2M -,()5,1N --且12MP =MN ,求P 点的坐标.【例17】已知向量()1,0a =,()0,1b =,()R c ka b k =+∈,d a b =-,如果那么( )A .且与同向B .且与反向C .且与同向D .且与反向【例18】已知向量()11a =,,()2b x =,若a b +与42b a -平行,则实数的值是( ) A .2- B .0 C .1 D .2【例19】在平面直角坐标系xoy 中,四边形ABCD 的边AB DC ∥,AD BC ∥,已知点()2,0A -,()6,8B ,()8,6C ,则D 点的坐标为___________.【例20】已知向量()3,1a =,()1,3b =,(),7c k =,若()a c -∥b ,则= . 【例21】已知()12a =,,()32b =-,,当ka b +与3a b -平行,k 为何值( )A .14 B .-14 C .-13 D .13【例22】已知(1,2),(3,2)a b ==-,当实数k 取何值时,k a +2b 与2a -4b 平行?//c d 1k =c d 1k =c d 1k =-c d 1k =-c d x k【例23】点(23),A 、(54),B 、(710),C ,若()R AP AB AC λλ=+∈,试求λ为何值时,点P 在一、三象限角平分线上.【练1】 在ABC △中,AB c =,AC b =.若点D 满足2BD DC =,则AD =( )A .2133b c +B .5233c b -C .2133b c -D .1233b c +【练2】 如图,在ABC △中,点O 是BC 的中点,过点O 的直线分别交直线AB ,AC 于不同的两点M N ,,若AB mAM =,AC nAN =,则m n +的值为.【练3】 已知两个向量()()121a b x ==,,,,若a b ∥,则x 的值等于( ) A .12-B .12C .2-D .2【练4】 若平面向量a ,b 满足1a b +=,a b +平行于轴,()21b =-,,则a = .DCBAONMCBAx 随堂练习【题1】 若向量()1,1a =,()1,1b =-,()4,2c =,则c = ( )A .3a +bB . 3a -bC .-a +3bD .a +3b【题2】 已知a =(4,2),b =(x ,3),且a ∥b ,则x 等于( )A .9B .6C .5D .3【题3】 已知平面向量a =(x ,1),b =(-x ,x 2),则向量a +b ( )A .平行于x 轴B .平行于第一、三象限的角平分线C .平行于y 轴D .平行于第一、四象限的角平分线【题4】 已知向量e 1与e 2不共线,实数x ,y 满足(3x -4y )e 1+(2x -3y )e 2=6e 1+3e 2,则x -y 等于( )A .3B .-3C .0D .2【题5】 已知向量(1,2)a =,(0,1)b =,设u a kb =+,2v a b =-,若u ∥v ,则实数k 的值为( )A .-1B .-12C .12D .1【题6】 设点A (2,0),B (4,2),若点P 在直线AB 上,且|AB |=2|AP |,则点P 的坐标为( )A .(3,1)B .(1,-1)C .(3,1)或(1,-1)D .无数多个【题7】 设(1,2),(2,3),a b ==若向量a b λ+与向量(4,7)c =--共线,则λ=.【题8】 已知向量a =(2,-1),b =(-1,m ),c =(-1,2),若(a +b )∥c ,则m =________.【题9】 已知A (-2,4),B (3,-1),C (-3,-4).设AB →=a ,BC →=b ,CA →=c ,且CM →=3c ,CN→=-2b .(1)求:3a +b -3c ;(2)求满足a =m b +n c 的实数m ,n .【题10】 在平行四边形ABCD 中,AC 与BD 交于点O ,E 是线段OD 的中点,AE 的延长线与CD 交于点F .若AC →=a ,BD →=b ,则AF →=( ) A .14a +12b B .23a +13b C .12a +14bD .13a +23b课后作业。

(完整版)高中数学平面向量知识点总结

(完整版)高中数学平面向量知识点总结

高中数学必修4之平面向量知识点归纳一.向量的基本概念与基本运算1、向量的概念:①向量:既有大小又有方向的量向量不能比较大小,但向量的模可以比较大小.②零向量:长度为0的向量,记为0,其方向是任意的,0与任意向量平行③单位向量:模为1个单位长度的向量④平行向量(共线向量):方向相同或相反的非零向量⑤相等向量:长度相等且方向相同的向量2、向量加法:设,ABa BCb uu u ru uu r r r ,则a +b r =AB BC u u u r u u u r =ACuu u r (1)a a a 00;(2)向量加法满足交换律与结合律;AB BCCDPQQRAR u u u r u u u r u uu r u u u r u u u r u u u rL,但这时必须“首尾相连”.3、向量的减法:①相反向量:与a 长度相等、方向相反的向量,叫做a 的相反向量②向量减法:向量a 加上b 的相反向量叫做a 与b 的差,③作图法:b a可以表示为从b 的终点指向a 的终点的向量(a 、b 有共同起点)4、实数与向量的积:实数λ与向量a 的积是一个向量,记作λa ,它的长度与方向规定如下:(Ⅰ)a a ;(Ⅱ)当0时,λa 的方向与a 的方向相同;当时,λa 的方向与a 的方向相反;当0时,0a,方向是任意的5、两个向量共线定理:向量b 与非零向量a 共线有且只有一个实数,使得b =a6、平面向量的基本定理:如果21,e e 是一个平面内的两个不共线向量,那么对这一平面内的任一向量a ,有且只有一对实数21,使:2211e ea,其中不共线的向量21,e e 叫做表示这一平面内所有向量的一组基底二.平面向量的坐标表示1平面向量的坐标表示:平面内的任一向量a r可表示成axi yj r rr ,记作a r=(x,y)。

2平面向量的坐标运算:(1)若1122,,,ax y bx y rr ,则1212,a bx x y y r r (2)若2211,,,y x B y x A ,则2121,AB x x y y u u u r(3)若a r =(x,y),则a r =(x, y)(4)若1122,,,a x y b x y r r ,则1221//0a b x y x y rr (5)若1122,,,ax y bx y rr ,则1212a bx x y y r r 若ab rr ,则02121y y x x 三.平面向量的数量积1两个向量的数量积:已知两个非零向量a r 与b r,它们的夹角为,则a r ·b r =︱a r︱·︱b r ︱cos 叫做a r与b r 的数量积(或内积)规定00ar r 2向量的投影:︱b r ︱cos =||a b a r r r ∈R ,称为向量b r 在a r方向上的投影投影的绝对值称为射影3数量积的几何意义:a r ·b r 等于a r 的长度与b r 在a r方向上的投影的乘积4向量的模与平方的关系:22||a a a a r r r r 5乘法公式成立:2222a b ab a b a b r r r r r r r r ;2222abaa bb r r r r r r 222aa bbr r r r 6平面向量数量积的运算律:①交换律成立:a bb arr r r ②对实数的结合律成立:a b a b a bRr r r r r r ③分配律成立:abca cb c r r r r r r r ca br r r 特别注意:(1)结合律不成立:ab ca b c r r r r r r ;(2)消去律不成立a ba cr r r r 不能得到bc rr (3)a b r r =0不能得到a r =0r或b r =0r 7两个向量的数量积的坐标运算:已知两个向量1122(,),(,)ax y b x y rr,则a r ·b r=1212x x y y 8向量的夹角:已知两个非零向量a r与b r ,作OA u u u r =a r , OB uuu r =b r ,则∠AOB=(01800)叫做向量a r 与b r 的夹角cos =cos,a b a ba b??r r r r r r =222221212121y x y x y y x x 当且仅当两个非零向量a r 与b r 同方向时,θ=00,当且仅当a r与b r 反方向时θ=1800,同时0r与其它任何非零向量之间不谈夹角这一问题9垂直:如果a r 与b r 的夹角为900则称a r 与b r 垂直,记作a r⊥br 10两个非零向量垂直的充要条件:a ⊥ba ·b =O02121y y x x 平面向量数量积的性质一、选择题1.在△ABC 中,AB =AC ,D ,E 分别是AB ,AC 的中点,则().A .AB 与AC 共线B .DE 与CB 共线C .AD 与AE 相等D .AD 与BD 相等2.下列命题正确的是().A .向量AB 与BA 是两平行向量B .若a ,b 都是单位向量,则a =bC .若AB =DC ,则A ,B ,C ,D 四点构成平行四边形D .两向量相等的充要条件是它们的始点、终点相同3.平面直角坐标系中,O 为坐标原点,已知两点A(3,1),B(-1,3),若点C满足OC =OA +OB ,其中,∈R ,且+=1,则点C 的轨迹方程为().A .3x +2y -11=0B .(x -1)2+(y -1)2=5C .2x -y =0D .x +2y -5=04.已知a 、b 是非零向量且满足(a -2b)⊥a ,(b -2a)⊥b ,则a 与b 的夹角是A .6B .3C .23D .565.已知四边形ABCD 是菱形,点P 在对角线AC 上(不包括端点A ,C ),则AP =A .λ(AB +AD ),λ∈(0,1)B .λ(AB +BC ),λ∈(0,22)C .λ(AB -AD ),λ∈(0,1)D .λ(AB -BC ),λ∈(0,22)6.△ABC 中,D ,E ,F 分别是AB ,BC ,AC 的中点,则DF =().(第1题)A.EF+ED B.EF-DE C.EF+AD D.EF+AF7.若平面向量a与b的夹角为60°,|b|=4,(a+2b)·(a-3b)=-72,则向量a的模为().A.2 B.4 C.6 D.128.点O是三角形ABC所在平面内的一点,满足OA·OB=OB·OC=OC·OA,则点O是△ABC的().A.三个内角的角平分线的交点B.三条边的垂直平分线的交点C.三条中线的交点D.三条高的交点9.在四边形ABCD中,AB=a+2b,BC=-4a-b,DC=-5a-3b,其中a,b不共线,则四边形ABCD为().A.平行四边形B.矩形C.梯形D.菱形10.如图,梯形ABCD中,|AD|=|BC|,EF∥AB∥CD则相等向量是().A.AD与BC B.OA与OBC.AC与BD D.EO与OF二、填空题11.已知向量OA=(k,12),OB=(4,5),OC=(-k,10),且A,B,C三点共线,则k=.12.已知向量a=(x+3,x2-3x-4)与MN相等,其中M(-1,3),N(1,3),则x=.13.已知平面上三点A,B,C满足|AB|=3,|BC|=4,|CA|=5,则AB·BC +BC·CA+CA·AB的值等于.14.给定两个向量a=(3,4),b=(2,-1),且(a+mb)⊥(a-b),则实数m 等于.15.已知A,B,C三点不共线,O是△ABC内的一点,若OA+OB+OC=0,则O是△ABC的.16.设平面内有四边形ABCD和点O,OA=a,OB=b,OC=c, OD=d,若a+c=b+d,则四边形ABCD的形状是.三、解答题17.已知点A(2,3),B(5,4),C(7,10),若点P满足AP=AB+λAC(λ∈R),试求λ为何值时,点P在第三象限内?(第10题)18.如图,已知△ABC,A(7,8),B(3,5),C(4,3),M,N,D分别是AB,AC,BC的中点,且MN与AD交于F,求DF.(第18题)19.如图,在正方形ABCD中,E,F分别为AB,BC的中点,求证:AF⊥DE(利用向量证明).(第19题) 20.已知向量a=(cos θ,sin θ),向量b=(3,-1),则|2a-b|的最大值.一、选择题1.B 解析:如图,AB 与AC ,AD 与AE 不平行,AD 与BD 共线反向.2.A解析:两个单位向量可能方向不同,故B 不对.若AB =DC ,可能A ,B ,C ,D 四点共线,故C 不对.两向量相等的充要条件是大小相等,方向相同,故D 也不对.3.D解析:提示:设OC =(x ,y),OA =(3,1),OB =(-1,3),OA =(3,),OB =(-,3),又OA +OB =(3-,+3),∴(x ,y)=(3-,+3),∴33+=-=y x ,又+=1,由此得到答案为D .4.B解析:∵(a -2b)⊥a ,(b -2a)⊥b ,∴(a -2b)·a =a 2-2a ·b =0,(b -2a)·b =b 2-2a ·b =0,∴a 2=b 2,即|a|=|b|.∴|a|2=2|a||b|cos θ=2|a|2cos θ.解得cos θ=21.∴a 与b 的夹角是3π.5.A解析:由平行四边形法则,AB +AD =AC ,又AB +BC =AC ,由λ的范围和向量数乘的长度,λ∈(0,1).6.D解析:如图,∵AF =DE ,∴DF =DE +EF =EF +AF .7.C解析:由(a +2b)·(a -3b)=-72,得a 2-a ·b -6b 2=-72.而|b|=4,a ·b =|a||b|cos 60°=2|a|,∴|a|2-2|a|-96=-72,解得|a|=6.8.D 解析:由OA ·OB =OB ·OC =OC ·OA ,得OA ·OB =OC ·OA ,即OA ·(OC -OB )=0,故BC ·OA =0,BC ⊥OA ,同理可证AC ⊥OB ,∴O 是△ABC 的三条高的交点.9.C解析:∵AD =AB +BC +D C =-8a -2b =2BC ,∴AD ∥BC 且|AD |≠|BC |.∴四边形ABCD 为梯形.10.D解析:AD 与BC ,AC 与BD ,OA 与OB 方向都不相同,不是相等向量.(第1题)二、填空题11.-32.解析:A ,B ,C 三点共线等价于AB ,BC 共线,AB =OB -OA =(4,5)-(k ,12)=(4-k ,-7),BC =OC -OB =(-k ,10)-(4,5)=(-k -4,5),又A ,B ,C 三点共线,∴5(4-k)=-7(-k -4),∴k =-32.12.-1.解析:∵M(-1,3),N(1,3),∴MN =(2,0),又a =MN ,∴=4-3-2=3+2x x x 解得4=1=-1=-x x x 或∴x =-1.13.-25.解析:思路1:∵AB =3,BC =4,CA =5,∴△ABC 为直角三角形且∠ABC =90°,即AB ⊥BC ,∴AB ·BC =0,∴AB ·BC +BC ·CA +CA ·AB=BC ·CA +CA ·AB =CA ·(BC +AB )=-(CA )2=-2CA =-25.思路2:∵AB =3,BC =4,CA =5,∴∠ABC =90°,∴cos ∠CAB =CAAB =53,cos ∠BCA =CABC=54.根据数积定义,结合图(右图)知AB ·BC =0,BC ·CA =BC ·CA cos ∠ACE =4×5×(-54)=-16,CA ·AB =CA ·AB cos ∠BAD =3×5×(-53)=-9.∴AB ·BC +BC ·CA +CA ·AB =0―16―9=-25.14.323.解析:a +mb =(3+2m ,4-m),a -b =(1,5).∵(a +mb)⊥(a -b),∴ (a +mb)·(a -b)=(3+2m)×1+(4-m)×5=0m =323.15.答案:重心.解析:如图,以OA ,OC 为邻边作□AOCF交AC 于点E ,则OF =OA +OC ,又OA +OC =-OB ,(第15题)D(第13题)∴OF =2OE =-OB .O 是△ABC 的重心.16.答案:平行四边形.解析:∵a +c =b +d ,∴a -b =d -c ,∴BA =CD .∴四边形ABCD 为平行四边形.三、解答题17.λ<-1.解析:设点P 的坐标为(x ,y),则AP =(x ,y)-(2,3)=(x -2,y -3).AB +λAC =(5,4)-(2,3)+λ[(7,10)-(2,3)]=(3,1)+λ(5,7)=(3+5λ,1+7λ).∵AP =AB +λAC ,∴ (x -2,y -3)=(3+5λ,1+7λ).∴713532yx 即7455yx 要使点P 在第三象限内,只需74055解得λ<-1.18.DF =(47,2).解析:∵A(7,8),B(3,5),C (4,3),AB =(-4,-3),AC =(-3,-5).又D 是BC 的中点,∴AD =21(AB +AC )=21(-4-3,-3-5)=21(-7,-8)=(-27,-4).又M ,N 分别是AB ,AC 的中点,∴F 是AD 的中点,∴DF =-FD =-21AD =-21(-27,-4)=(47,2).19.证明:设AB =a ,AD =b ,则AF =a +21b ,ED =b -21a .∴AF ·ED =(a +21b)·(b -21a)=21b 2-21a 2+43a ·b .又AB ⊥AD ,且AB =AD ,∴a 2=b 2,a ·b =0.∴AF ·ED =0,∴AF ⊥ED .本题也可以建平面直角坐标系后进行证明.20.分析:思路1:2a -b =(2cos θ-3,2sin θ+1),∴|2a -b|2=(2cos θ-3)2+(2sin θ+1)2=8+4sin θ-43cos θ.又4sin θ-43cos θ=8(sin θcos3π-cos θsin3π)=8sin(θ-3π),最大值为8,∴|2a -b|2的最大值为16,∴|2a -b|的最大值为4.思路2:将向量2a ,b 平移,使它们的起点与原点重合,则|2a -b|表示2a ,b终点间的距离.|2a|=2,所以2a 的终点是以原点为圆心,2为半径的圆上的动点P ,b 的终点是该圆上的一个定点Q ,由圆的知识可知,|PQ|的最大值为直径的长为4.(第18题)(第19题)。

§5.1 平面向量的概念及线性运算、平面向量基本定理

§5.1 平面向量的概念及线性运算、平面向量基本定理

考点二 平面向量基本定理及坐标表示
1.平面向量基本定理 如果 e1 ,e2 是同一平面内的两个不共线向量,那么对于这一
平面内的任意向量 a,有且只有一对实数 λ1 ,λ2 ,使a = λ1 e1 +λ2 e2 .
������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
{∴

-λk

0, ⇒8

2λ2
⇒λ

±
2.
k-2λ = 0
∴ k = 2λ = ±4.
(3) 证法一:∵ M、N、P 三点共线,
∴ 存在实数 μ,使得M→P = μ P→N,

O→P

O→M+μ O→N =
1+μ
1m+μa+1μ+nμb.
∵ a,b 为不共线的非零向量,
ìïïα = 1m+μ,

í îïïβ
y1 ) . (2)平面向量共线的坐标表示.若 a = ( x1,y1 ),b = ( x2,y2 ),
b≠0,则 a 与 b 共线⇔x1 y2 -x2 y1 = 0.
需注意的几点:
①若 a = ( x1 ,y1 ) ,b = ( x2 ,y2 ) ,则 a∥b 的充要条件不能表示
成 x1 x2

y1 y2
③P 为△ABC 的垂心⇔→PA·P→B = P→B·P→C = P→C·→PA;

平面向量知识点总结(精华)

平面向量知识点总结(精华)

平面向量知识点总结(精华)一、向量的基本概念1. 向量的定义向量是既有大小又有方向的量。

例如,物理学中的力、位移等都是向量。

我们可以用有向线段来表示向量,有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向。

向量的表示:几何表示:用有向线段AB表示,其中\(A为起点,\(B为终点。

字母表示:用小写字母a、b、c等表示。

2. 向量的模向量AB或a的大小称为向量的模,记作AB或a。

模是一个非负实数,例如,若a=(x,y),则a=x^2+y^2。

3. 零向量长度为\(0的向量称为零向量,记作0。

零向量的方向是任意的。

4. 单位向量模等于\(1的向量称为单位向量。

对于非零向量a,与它同方向的单位向量记作e=aa。

例如,向量a=(3,4),则a= 5,同方向的单位向量e=(35,45)。

5. 平行向量(共线向量)方向相同或相反的非零向量称为平行向量。

规定:零向量与任意向量平行。

若向量a与b平行,记作a。

例如,a=(1,2),b=(2,4),因为b = 2a,所以a。

6. 相等向量长度相等且方向相同的向量称为相等向量。

若AB=CD,则\(A与\(C重合,\(B与\(D重合,且AB=CD,方向相同。

二、向量的运算1. 向量的加法三角形法则:已知向量a、b,在平面内任取一点\(A,作AB=a,BC=b,则AC=a+b。

平行四边形法则:已知向量a、b,以同一点\(O为起点作OA=a,OB=b,以\(OA、\(OB为邻边作平行四边形\(OACB,则OC=a+b。

向量加法的运算律:交换律:a+b=b+a。

结合律:\((a+b)+c=a+(b+c)。

2. 向量的减法相反向量:与向量a长度相等,方向相反的向量称为a 的相反向量,记作a。

向量减法的定义:ab=a+(b)。

其几何意义是:已知向量a、b,在平面内任取一点\(O,作OA=a,OB=b,则BA=ab。

3. 向量的数乘定义:实数\(与向量a的乘积是一个向量,记作a。

平面向量的概念与平面向量基本定理

平面向量的概念与平面向量基本定理

移 项 、合 并 同 类项 的 变形 手 段 在平 面 向量 的线 性 运算 中仍然 有 效 .

有关 向量 共 线 或 三 点 共 线 的 问 题, 常利用 向量共线定 理( 向 量b 与
交分 解 的理 论 依 据 。也 是 向量 坐 标
表 示 的 基 础 .用 平 面 向 量 基 本 定 理 解 决 问题 的 一 般思 路 是 :先 选 择 一 组 基 底 ,并 运 用 平 面 向量 的基 本 定 理 将 条 件 和 结论 表 示 成 基 底 的线 性
及 其 表 示.
1 .饮 水 思 源—— 运 算律 法
量 的起 点 必 须 重 合 :运 用 三 角 形 法 则 时两 个 向量 必须 首 尾相 接 。 否 则就
则包 括共 线 ( 重合 ) 的情 况.
4 .移 花 接 木 — — 平 面 向 量 基 本
定理
பைடு நூலகம்
向 量 加 、减 法 的 运算 法 则 在形
破解 非零 向量n 和b 互 为 相反
f  ̄ - P A与c B平行 且 l l = 2 l l , 故
△ABP的 面 积 为 △ABC的 面 积 的 一
D.AABC 的 内部
思 索 边 A B的 中点 为D . 利 用 平
行 四 边 形 法 则 . 把 向 量P 转 化 为 向
1 0) 设D. E分 别 是 AA BC的边AB. B C 的起
转化为向量力 . 的关 系. 从而把 已
知 向 量 等 式化 简 ;最后 利 用 向量 共
线 定理 . 即 可 判 断 点P的 位 置 .
2 .平面 向量 的 线性 运算
如 图1 , 向量

平面向量的基本概念和基本定理

平面向量的基本概念和基本定理

【平面向量】(1)平面向量的基本概念和基本定理: 考点..1.重要的概念.....①基本概念向量、向量的模(长度),向量的表示,自由向量、相等向量,相反向量,位置向量,零向量、共线向量、单位向量、基线、数乘向量、基向量、坐标、正交基底、向量的数量积、夹角、正射影 考点..2.重要的定理..... ②基本定理:平行向量基本定理(掌握)、平面向量基本定理(了解)向量共线定理 向量b 与非零向量a共线的充要条件是:有且只有一个非零实数λ,使b =λa ∥b (b≠0)的充要条件是x 1y 2-x 2y 1=0平面向量基本定理:如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1,λ2使a=λ11e +λ22e (2)平面向量的基本运算:(几何运算、代数运算、坐标运算) 考点3重要的运算 ① 向量的加法几何运算:如图,已知向量a 、在平面内任取一点A ,作a AB =,b BC =,则向量AC叫做a 与b 的和,记作b a +,即 AC BC AB b a =+=+特殊情况:(1)BBabba +ba +AABC C)2()3(对于零向量与任一向量a ,有 a a a =+=+00向量加法的运算律:a +b =b +a (a +b ) +c =a + (b +c )向量的加法的代数运算:AC BC AB b a =+=+向量的加法的坐标运算: 若),(11y x a =,),(22y x b =,则b a +),(2121y y x x ++=, ② 向量的减法向量的减法的几何运算: 减法的三角形法则作法:在平面内取一点O , 作OA = a , OB = b , 则BA = a - b即a - b 可以表示为从向量b 的终点指向向量a 的终点的向量注意:1︒AB 表示a - b 强调:差向量“箭头”指向被减数 2︒用“相反向量”定义法作差向量,a - b = a + (-b ) 显然,此法作图较繁,但最后作图可统一a ∥b ∥c a - b = a + (-b ) a - b 向量减法的运算律:向量的减法的代数运算:AB =OB -OA向量的减法的坐标运算:若),(11y x a =,),(22y x b =,则b a -),(2121y y x x --= 若),(11y x A ,),(22y x B ,则()1212,y y x x AB --=一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标AB =OB -OA =( x 2, y 2) - (x 1,y 1)= (x 2- x 1, y 2- y 1)③ 向量的数乘 向量的数乘的几何计算示例:已知非零向量a ,作出a +a +a 和(-a )+(-a )+(-a) OC =BC AB OA ++=a +a +a =3aPN =MN QM PQ ++=(-a )+(-a )+(-a )=-3a向量的数乘的运算律: 结合律:λ(μa )=(λμ)a①第一分配律:(λ+μ)a =λa +μa②第二分配律:λ(a +b )=λa+λb ③向量的数乘的代数运算:实数λ与向量a 的积是一个向量,记作:λa(1)|λa |=|λ||a|(2)λ>0时λa 与a 方向相同;λ<0时λa 与a 方向相反;λ=0时λa=0a -bA AB B B’ O a -ba a bb O A O Ba -ba -b B A O -b向量的数乘的坐标运算若),(y x a =和实数λ,则),(y x a λλλ=④向量的数量积向量的数量积的几何计算:已知两个非零向量a与b,它们的夹角是θ,则数量|a ||b |cos θ叫a与b的数量积,记作a ⋅b ,即有a ⋅b = |a ||b |cos θ,(0≤θ≤π)并规定0与任何向量的数量积为0向量的数量积的几何意义: 数量积a ⋅b 等于a 的长度与b 在a 方向上投影|b |cos θ的乘积 投影”的概念:作图定义:|b |cos θ叫做向量b 在a 方向上的投影投影也是一个数量,不是向量;当θ为锐角时投影为正值;当θ为钝角时投影为负值;当θ为直角时投影为0;当θ = 0︒时投影为 |b |;当θ = 180︒时投影为 -|b | 两个非零向量夹角的概念已知非零向量a与b,作OA =a,OB =b,则∠AOB=θ(0≤θ≤π)叫a与b的夹角说明:(1)当θ=0时,a与b同向;(2)当θ=π时,a与b反向;(3)当θ=2π时,a与b垂直,记a⊥b; (4)注意在两向量的夹角定义,两向量必须是同起点的范围0︒≤θ≤180︒向量的数量积的运算律:数量积a ⋅b 等于a 的长度与b 在a 方向上投影|b |cos θ的乘积 两个向量的数量积的性质:设a 、b 为两个非零向量,e 是与b 同向的单位向量1︒e ⋅a = a ⋅e =|a |cos θ 2︒a ⊥b ⇔ a ⋅b = 03︒当a 与b 同向时,a ⋅b = |a ||b |;当a 与b 反向时,a ⋅b = -|a ||b |特别的a ⋅a = |a |2或a a a ⋅=||4︒cos θ =||||b a ba ⋅C5︒|a ⋅b | ≤ |a ||b |向量的数量积的代数运算: 交换律:a ⋅ b = b ⋅ a数乘结合律:(λa )⋅b =λ(a ⋅b ) = a ⋅(λb ) 分配律:(a + b )⋅c = a ⋅c + b ⋅c一般地,(a·b)с≠a(b·с)a·с=b·с,с≠0a=b有如下常用性质:a2=|a|2, (a+b)(с+d)=a·с+a·d+b·с+b·d(a+b)2=a2+2a·b+b2向量的数量积的坐标运算已知两个非零向量),(11y x a = ,),(22y x b = b a⋅2121y y x x += 设),(11y x a = ,),(22y x b = ,则b a⊥⇔02121=+y y x x 平面内两点间的距离公式(1)设),(y x a = ,则222||y x a +=或22||y x a +=(2)如果表示向量a的有向线段的起点和终点的坐标分别为),(11y x 、),(22y x ,那么221221)()(||y y x x a -+-=(平面内两点间的距离公式).两向量夹角的余弦(πθ≤≤0)co s θ =||||b a ba ⋅⋅222221212121y x y x y y x x +++=典型例题例1如图,一艘船从A 点出发以h km /32的速度向垂直于对岸的方向行驶,同时河水的流速为h km /2,求船的实际航行的速度的大小与方向(用与流速间的夹角表示). 解:例2 已知a(1, 2),b (2, 3),c (-2, 5),求证:△ABC 是直角三角形证明:例3 设a = (5, -7),b = (-6, -4),求a ⋅b解:例4已知a= (3, -1),b = (1, 2),求满足x ⋅a = 9与x ⋅b = -4的向量x解:例5已知a =(1,3),b =(3+1,3-1),则a 与b的夹角是多少?例6 如图,以原点和A (5, 2)为顶点作等腰直角△ABC ,使∠b = 90︒,求点b和向量AB 的坐标 解:例7 在△ABC 中,AB =(2, 3),AC =(1, k ),且△ABC 的一个内角为直角,求k 值 解:例8若非零向量a 和b 满足|a +b |=|a -b |证明:a ⊥b证法一:证法二:例9 已知向量a 是以点A (3,-1)为起点,且与向量b =(-3,4)垂直的单位向量,求a 的终点坐标说明:向量的坐标表示是终点坐标减去起始点的坐标,所以向量的坐标与点的坐标既有联系又有区别,二者不能混淆本章知识网络结构运算 类型 几何方法坐标方法运算性质向 量 的 加 法 1平行四边形法则2三角形法则),(2121y y x x b a ++=+a b b a +=+)()(c b a c b a ++=++ AC BC AB =+向 量 的 减 法三角形法则),(2121y y x x b a --=-)(b a b a -+=-BA AB -= AB OA OB =-向 量 的 乘 法1a λ是一个向量,满足: 2λ>0时,a λ与a 同向;λ<0时,a λ与a 异向;λ=0时, a λ=0),(y x a λλλ=a a )()(λμμλ=a a a μλμλ+=+)(b a b a λλλ+=+)(a ∥b a b λ=⇔向 量 的 数 量 积b a •是一个数 10=a 或0=b 时, b a •=020≠a 且0≠b 时,),cos(||||b a b a b a =•2121y y x x b a +=•a b b a •=•)()()(b a b a b a •=•=•λλλc b c a c b a •+•=•+)( 22||a a =22||y x a +=||||||b a b a ≤•重要定理、公式:........(1)平面向量基本定理21,e e是同一平面内两个不共线的向量,那么,对于这个平面内任一向量,有且仅有一对实数21,λλ,使2211e e aλλ+= (2)两个向量平行的充要条件MO N BAD Ca ∥b ⇔a=λb ⇔01221=-y x y x(3)两个向量垂直的充要条件a ⊥b ⇔a ·b=O ⇔02121=+y y x x平面向量习题1、已知,OAOB a b ,且||||2a b ,∠AOB=60°,则||a b =____;a b 与b 的夹角为_____.2.已知点G 是ABC ∆的重心, ()AG AB AC λμλμ=+∈R ,,那么λμ+=_____; 若︒=∠120A ,2AB AC ⋅=-AG __________ .3.已知△ABC 的三个顶点A 、B 、C 及所在平面内一点P 满足AB PC PB PA =++,则点△BC P 与△ABP 的面积分别为s 1,s 2,则s 1:s 2=_________4.如图,AB 是半圆O 的直径,C , D 是弧AB 三等分点,M , N 是线段AB 的三等分点,若OA = 6,则→MD ·→NC 的值是 .5、在半径为1的圆周上按顺序均匀分布着A 1,A 2,A 3,A 4,A 5,A 6六个点.则122323343445455656616112A A A A A A A A A A A A A A A A A A A A A A A A ⋅+⋅+⋅+⋅+⋅+⋅= .6、已知||1,||2,0,OA OB OA OB ==⋅=点C 在AOB ∠内,且045AOC ∠=,设OC mOA nOB =+,其中,m n R ∈,则mn等于__________. 7、已知在同一平面上的三个单位向量,,a b c ,它们相互之间的夹角均为120o ,且|1ka b c ++>|,则实数k 的取值范围是8.设向量),1,2(),2cos ,1(==b a θ)1,sin 21(),1,sin 4(θθ==d c ,其中)4,0(πθ∈.(1)求d c b a ⋅-⋅的取值范围;(2)若函数)()(|,1|)(d c f b a f x x f ⋅⋅-=与比较的大小9.已知m R ∈, 2 (1, )a x m =-+,1 (1, )b m x =+, (, )x c m x m=-+.(Ⅰ)当1m =-时,求使不等式 1a c ⋅<成立的x 的取值范围; (Ⅱ)求使不等式 0a b ⋅>成立的x 的取值范围.10.在平面直角坐标系中,O 为坐标原点,已知向量(1,2)a =-,又点(8,0),(,),(sin ,)(0)2A B n t C k t πθθ≤≤(1)若,AB a ⊥且||5||AB OA =,求向量OB ;(2)若向量AC 与向量a 共线,当4>时,且sin t θ取最大值为4时,求OA OC • 解:一、考题选析:例1、已知向量(2,3),(3,)a b λ=-=,若//a b ,则λ等于( )A 、23 B 、2- C 、92- D 、23- 例2、设两个向量22(2cos )λλα=+-,a 和sin 2m m α⎛⎫=+ ⎪⎝⎭,b ,其中m λα,,为实数.若2=a b ,则mλ的取值范围是( ) A、[]16,-B、[48],C、]1[,-∞ D、]61[,-例3、在ABC △中,已知D 是AB 边上一点,若123AD DB CD CA CB λ==+,,则λ=( ) A 、23B 、13C 、13-D 、23-例4、设平面向量321,,a a a 的和0321=++a a a 。

第五章 平面向量

第五章 平面向量

第一节平面向量的概念与线性运算一、知识梳理1.向量的有关概念(1).向量:既有 ,又有的量叫向量;通常记为 ;长度为的向量是零向量,记作: ; 的向量,叫单位向量.(2).平行向量(或共线向量)记作: ;规定:零向量与任何向量 .(3).相等向量:(4).相反向量:2.向量加法与减法(1).向量加法按法则或法则;向量加运算律:交换律: ;结合律:(2).向量减法作法:3.实数与向量的积(1). 实数与向量a的积是一个向量,记作,它的长度与方向规定如下:长度:方向:(2).运算律4.共线定理:5.平面向量基本定理:6.基底:二、考点分析考点一:平面向量的基本概念例1.给出下列命题:①若|a|=|b|,则a=b;②若A,B,C,D是不共线的四点,则AB DC是四边形ABCD为平行四边形的充要条件;③若a=b,b=c,则a=c;④a=b的充要条件是|a|=|b|且a//b;⑤若a//b,b//c,则a//c;其中正确的序号是。

例2:设0为单位向量,(1)若为平面内的某个向量,则=||·0;(2) 若与a0平行,则=||·0;(3)若与0平行且||=1,则=0。

上述命题中,假命题个数是()A.0 B.1 C.2 D.3考点二:平面向量的线性运算例2:如图所示,已知正六边形ABCDEF,O是它的中心,若BA=a,BC=b,试用a,b将向考点三:平面向量共线定理例3:如图所示,△ABC 中,点M 是BC 的中点,点N 在AC 边上,且AN=2NC,AM 与BN 相交于点P,求AP :PM 的值.三、课堂检测1.(2010•四川)设点M 是线段BC 的中点,点A 在直线BC 外,2BC =16,||||,AB AC AB AC +=-则|AM |=( )A.8B.4C.2D.12.已知△ABC 中,点D 在BC 边上,且2,,CD DB CD r AB sAC ==+则r+s 的值是( )24..33A B C.-3 D.0 3.平面向量a,b 共线的充要条件是( )A.a,b 方向相同B.a,b 两向量中至少有一个为0C.存在λ∈R,使b=λ aD.存在不全为零的实数λ1,λ2,使λ1a+λ2b=04.已知O 、A 、B 是平面上的三个点,直线AB 上有一点C,满足20,AC CB +=则OC 等于( )2112.2.2..3333A OA OB B OA OBC OA OBD OA OB --+--+5.设D 、E 、F 分别是△ABC 的三边BC 、CA 、AB 上的点,且2,2,2,DC BD CE EA AF FB ===则AD BE CF ++与()BCA.反向平行B.同向平行C.不平行D.无法判断6.已知a,b 是不共线的向量,AB =λa+b,AC =a+μb,(λ,μ∈R),那么A 、B 、C 三点共线的充要条件为()A.λ+μ=2B.λ-μ=1C.λμ=-1D.λμ=1 7、关于非零向量,有下列四个命题 ① “||+||=||”的充要条件是“方向相同”; ② “||+||=||”的充要条件是“方向相反”; ③ “||+||=||”的充要条件是“有相等的模”;④“||-||=||”的充要条件是“方向相同”;其中真命题的个数是(A ) 1个 (B )2个 (C )3个 (D )4个8.若点O 是△ABC 所在平面内的一点,且满足|||2|OB OC OB OC OA -=+-,则△ABC 的形状为________.9.在平行四边形ABCD 中,E 、F 分别是边CD 和BC 的中点,若AC =λAE +u ,AF 其中λ,u∈R,则λ+u=________.10.如图,平面内有三个向量OA 、OB 、,OC 其中OA 与OB 的夹角为120°,OA 与OC 的夹角为30°,且|OA |=|OB |=1,|OC |=若OC =λOA +μOB (λ,μ∈R),则λ+μ的值为_______11.如图,在△ABC 中,点O 是BC 的中点,过点O 的直线分别交直线AB,AC 于不同的两点M,N,若,,AB mAM AC nAN ==则m+n 的值为________.第二节 平面向量的基本定理及坐标表示一、知识梳理1.平面向量基本定理如果e 1,e 2是同一平面内的两个 向量,那么对于这一平面内的任意向量a , 一对实数λ1,λ2,使a =λ1e 1+λ2e 2.其中,不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组 . 2.平面向量的坐标运算(1)向量的加法、减法、数乘向量及向量的模: 设a =(x 1,y 1),b =(x 2,y 2),则a +b = ,a -b = , λa = ,|a |= (2)向量坐标的求法:①若向量的起点是坐标原点,则终点坐标即为向量的坐标. ②设A (x 1,y 1),B (x 2,y 2),则AB ―→= , |AB ―→|=(x 2-x 1)2+(y 2-y 1)2. 3.平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0,则a ∥b ⇔ . 基础检测1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)平面内的任何两个向量都可以作为一组基底.( )(2)若a ,b 不共线,且λ1a +μ1b =λ2a +μ2b ,则λ1=λ2,μ1=μ2.( )(3)平面向量的基底不唯一,只要基底确定后,平面内的任何一个向量都可被这组基底唯一表示.( )(4)若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件可表示成x 1x 2=y 1y 2.( )2.已知平面向量a =(1,1),b =(1,-1),则向量12a -32b =( )A .(-2,-1)B .(-2,1)C .(-1,0)D .(-1,2) 3.设向量a =(x,1),b =(4,x ),且a ,b 方向相反,则x 的值是( ) A .2 B .-2 C .±2 D .04.已知平行四边形ABCD 中,AD ―→=(3,7),AB ―→=(-2,3),对角线AC 与BD 交于点O ,则CO ―→的坐标为( )A.⎝⎛⎭⎫-12,5B.⎝⎛⎭⎫12,5C.⎝⎛⎭⎫12,-5D.⎝⎛⎭⎫-12,-5 5.已知向量a =(1,3),b =(-2,k ),且(a +2b )∥(3a -b ),则实数k =________.6.在▱ABCD 中,AB ―→=a ,AD ―→=b ,AN ―→=3NC ―→,M 为BC 的中点,则MN ―→=________(用a ,b 表示).二、考点分析考点一 平面向量基本定理及其应用例1.1.如图,在△ABC 中,BE 是边AC 的中线,O 是边BE 的中点,若AB =a ,AC =b ,则AO =( )A.12a +12b B.12a +13b C.14a +12b D.12a +14b2.已知向量e 1,e 2不共线,实数x ,y 满足(3x -4y )e 1+(2x -3y )e 2=6e 1+3e 2,则2x -y =________.3.如图,已知▱ABCD 的边BC ,CD 的中点分别是K ,L ,且AK ―→=e 1,AL ―→=e 2,试用e 1,e 2表示BC ―→,4.如图,以向量OA ―→=a ,OB ―→=b 为邻边作▱OADB ,BM ―→=13BC ―→,CN ―→=13CD ―→,用a ,b 表示OM ―→,ON ―→,MN ―→.✧ 方法总结1.用平面向量基本定理解决问题的一般思路(1)先选择一组基底,并运用该基底将条件和结论表示为向量的形式,再通过向量的运算来解决. (2)在基底未给出的情况下,合理地选取基底会给解题带来方便.另外,要熟练运用平面几何的一些性质定理.2.应用平面向量基本定理应注意的问题(1)只要两个向量不共线,就可以作为平面向量的一组基底,基底可以有无穷多组.(2)利用已知向量表示未知向量,实质就是利用平行四边形法则或三角形法则进行向量的加减运算或数乘运算.考点二 平面向量的坐标运算例2.1.若向量a =(2,1),b =(-1,2),c =⎝⎭⎫0,52,则c 可用向量a ,b 表示为( ) A.12a +b B .-12a -b C.32a +12b D.32a -12b 2.(2018·江西九校联考)已知O 为坐标原点,向量OA ―→=(2,3),OB ―→=(4,-1),且AP ―→=3PB ―→,则|OP ―→|=________.3.已知A (-2,4),B (3,-1),C (-3,-4).设AB ―→=a ,BC ―→=b ,CA ―→=c ,且CM ―→=3c ,CN ―→=-2b ,(1)求3a +b -3c ;(2)求满足a =m b +n c 的实数m ,n ; (3)求M ,N 的坐标及向量MN ―→的坐标.✧ 方法总结平面向量坐标运算的技巧(1)向量的坐标运算主要是利用向量的加、减、数乘运算的法则来进行求解,若已知有向线段两端点的坐标,则应先求向量的坐标.要注意点的坐标和向量的坐标之间的关系,一个向量的坐标等于向量终点的坐标减去始点的坐标.(2)解题过程中,常利用向量相等则其坐标相同这一原则,通过列方程(组)来进行求解. 考点三 平面向量共线的坐标表示例3.已知a =(1,0),b =(2,1).(1)当k 为何值时,k a -b 与a +2b 共线;(2)若AB ―→=2a +3b ,BC ―→=a +m b ,且A ,B ,C 三点共线,求m 的值.1.平面向量共线的充要条件的2种形式(1)若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件是x 1y 2-x 2y 1=0. (2)若a ∥b (b ≠0),则a =λb .2.共线问题解含参,列出方程求得解向量共线的坐标表示既可以判定两向量平行,也可以由平行求参数.当两向量的坐标均非零时,也可以利用坐标对应成比例来求解.变式3.已知向量a =(1,2),b =(1,0),c =(3,4).若λ为实数,(a +λb )∥c ,则λ=( ) A.14 B.12 C .1 D .2三、课堂检测1.向量a ,b 满足a +b =(-1,5),a -b =(5,-3),则b =( )A .(-3,4)B .(3,4)C .(3,-4)D .(-3,-4)2.若向量AB ―→=(2,4),AC ―→=(1,3),则BC ―→=( )A .(1,1)B .(-1,-1)C .(3,7)D .(-3,-7)3.已知向量a =(5,2),b =(-4,-3),c =(x ,y ),若3a -2b +c =0,则c =( )A .(-23,-12)B .(23,12)C .(7,0)D .(-7,0)4.在平行四边形ABCD 中,AC 为一条对角线,若AB ―→=(2,4),AC ―→=(1,3),则BD ―→=( )A .(-2,-4)B .(-3,-5)C .(3,5)D .(2,4)5.已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,向量m =(a ,3b )与n =(c os A ,sin B )平行,则A =( )A.π6B.π3C.π2D.2π36.在△ABC 中,P ,Q 分别是AB ,BC 的三等分点,且AP =13AB ,BQ =13BC ,若AB ―→=a ,AC ―→=b ,则PQ ―→=( )A.13a +13b B .-13a +13b C.13a -13b D .-13a -13b 7.已知向量a =(2,1),b =(1,-2),若m a +n b =(9,-8)(m ,n ∈R),则m -n 的值为________. 8.设e 1,e 2是平面内一组基向量,且a =e 1+2e 2,b =-e 1+e 2,则向量e 1+e 2可以表示为另一组基向量a ,b 的线性组合,即e 1+e 2=________a +________b .9.已知向量a =(1,2),b =(x,1),u =a +2b ,v =2a -b ,且u ∥v ,则实数x 的值为________. 10.已知梯形ABCD ,其中AB ∥DC ,且DC =2AB ,三个顶点A (1,2),B (2,1),C (4,2),则点D 的坐标为________.5.已知A (-3,0),B (0,3),O 为坐标原点,C 在第二象限,且∠AOC =30°,OC ―→=λOA ―→+OB ―→,则实数λ的值为________.3.(1)a ·b =b ·a .(2)(λa )·b =λ(a ·b )=a ·(λb ). (3)(a +b )·c =a ·c +b ·c . 4.平面向量数量积的有关结论已知非零向量a =(x 1,y 1),b =(x 2,y 2),a 与b 的夹角为θ.(2)两个向量的数量积是一个实数,向量的加、减、数乘运算的运算结果是向量.( ) (3)由a ·b =0可得a =0或b =0.( ) (4)(a ·b )c =a (b ·c ).( )(5)两个向量的夹角的范围是⎣⎡⎦⎤0,π2.( ) 2.已知a ·b =-122,|a |=4,a 和b 的夹角为135°,则|b |的值为( ) A .12 B .6 C .3 3D .33.已知向量a ,b 满足|a |=1,|b |=23,a 与b 的夹角的余弦值为sin 17π3,则b ·(2a -b )等于( ) A .2 B .-1 C .-6D .-184.(2017·全国卷Ⅱ)设非零向量a ,b 满足|a +b |=|a -b |,则( ) A .a ⊥b B .|a |=|b | C .a ∥bD .|a |>|b |5.(2017·全国卷Ⅰ)已知向量a =(-1,2),b =(m,1).若向量a +b 与a 垂直,则m =________. 6.已知|a |=5,|b |=4,a 与b 的夹角θ=120°,则向量b 在向量a 方向上的投影为________.二、考点分析考点一 平面向量的数量积的运算1.设向量a =(-1,2),b =(m,1),如果向量a +2b 与2a -b 平行,那么a 与b 的数量积等于( ) A .-72 B .-12 C.32 D.522.已知向量a 与b 的夹角为60°,且a =(-2,-6),|b |=10,则a ·b =________. 3.已知两个单位向量e 1,e 2的夹角为π3,若向量b 1=e 1-2e 2,b 2=3e 1+4e 2,则b 1·b 2=________.✧ 方法总结向量数量积的2种运算方法4.(2018·云南第一次统一检测)在▱ABCD 中,|AB ―→|=8,|AD ―→|=6,N 为DC 的中点,BM ―→=2MC ―→,则AM ―→·NM ―→=( )A .48B .36C .24D .125.(2018·石家庄质检)在△ABC 中,已知AB ―→与AC ―→的夹角为90°,|AB ―→|=2,|AC ―→|=1,M 为BC 上的一点,且AM ―→=λAB ―→+μAC ―→ (λ,μ∈R),且AM ―→·BC ―→=0,则λμ的值为________.6.(2017·北京高考)已知点P 在圆x 2+y 2=1上,点A 的坐标为(-2,0),O 为原点,则AO ―→·AP ―→的最大值为________. ✧ 方法总结计算有关平面几何中数量积的方法(1)根据图形之间的关系,用长度和相互之间的夹角都已知的向量分别表示出向量a ,b ,然后再根据平面向量的数量积的定义进行计算求解.(2)若图形适合建立平面直角坐标系,可建立坐标系,求出a ,b 的坐标,通过坐标运算法则求得.考点二 平面向量数量积的性质角度(一) 平面向量的模1.(2017·全国卷Ⅰ)已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则|a +2b |=________ 2.如图,在△ABC 中,O 为BC 的中点,若AB =1,AC =3,AB ―→与AC ―→的夹角为60°,则|OA ―→|=________.✧ 方法总结 求向量模的常用方法(2)若向量a ,b 是以非坐标形式出现的,求向量a 的模可应用公式|a |2=a 2=a ·a ,或|a ±b |2=(a ±b )2=a 2±2a ·b +b 2,先求向量模的平方,再通过向量数量积的运算求解.角度(二) 平面向量的夹角3.(2018·成都二诊)已知平面向量a ,b 的夹角为π3,且|a |=1,|b |=12,则a +2b 与b 的夹角是( )A.π6B.5π6C.π4D.3π44.已知平面向量a =(1,2),b =(4,2),c =m a +b (m ∈R),且c 与a 的夹角等于c 与b 的夹角,则m =( )A .-2B .-1C .1D .2 ✧ 方法总结求向量夹角问题的方法(1)当a ,b 是非坐标形式时,求a 与b 的夹角θ,需求出a ·b 及|a |,|b |或得出它们之间的关系; (2)若已知a =(x 1,y 1)与b =(x 2,y 2),则cos 〈a ,b 〉=x 1x 2+y 1y 2x 21+y 21·x 22+y 22. [注意] 〈a ,b 〉∈[0,π].角度(三) 平面向量的垂直5.(2018·湘中名校联考)已知向量a =(x ,3),b =(x ,-3),若(2a +b )⊥b ,则|a |=( )A .1 B. 2 C. 3 D .26.已知向量AB ―→与AC ―→的夹角为120°,且|AB ―→|=3,|AC ―→|=2.若AP ―→=λAB ―→+AC ―→,且AP ―→⊥BC ―→,则实数λ的值为________.✧方法总结1.利用坐标运算证明两个向量的垂直问题坐标运算公式,计算出这两个向量的数量积为0即可.2.已知两个向量的垂直关系,求解相关参数的值根据两个向量垂直的充要条件,列出相应的关系式,进而求解参数.变式2.1.(2018·广东五校协作体诊断)已知向量a =(λ,1),b =(λ+2,1),若|a +b |=|a -b |,则实数λ的值为( )A .-1B .2C .1D .-22.(2017·山东高考)已知e 1,e 2是互相垂直的单位向量.若3e 1-e 2与e 1+λe 2的夹角为60°,则实数λ的值是________.3.已知AB ―→·BC ―→=0,|AB ―→|=1,|BC ―→|=2,AD ―→·DC ―→=0,则|BD ―→|的最大值为________.考点三 平面向量与三角函数的综合例3.(2017·江苏高考)已知向量a =(c os x ,sin x ),b =(3,-3),x ∈[0,π]. (1)若a ∥b ,求x 的值;(2)记f (x )=a ·b ,求f (x )的最大值和最小值以及对应的x 的值.✧ 方法总结平面向量与三角函数的综合问题的解题思路(1)给出的向量坐标中含有三角函数,求角的大小,解题思路是运用向量共线或垂直的坐标表示,或等式成立的条件等,得到三角函数的关系式,然后求解.(2)给出的向量坐标中含有三角函数,求向量的模或者向量的其他表达形式,解题思路是利用向量的运算,结合三角函数在定义域内的有界性或基本不等式进行求解.变式3.已知函数f (x )=a ·b ,其中a =(2cos x ,-3sin 2x ),b =(cos x,1),x ∈R. (1)求函数y =f (x )的单调递减区间;(2)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,f (A )=-1,a =7,且向量m =(3,sin B )与n =(2,sin C )共线,求边长b 和c 的值.三、课堂检测1.(2018·洛阳第一次统一考试)已知平面向量a ,b 满足|a |=2,|b |=1,a 与b 的夹角为2π3,且(a +λb )⊥(2a -b ),则实数λ的值为( )A .-7B .-3C .2D .32.已知平面向量a ,b 的夹角为π3,且a ·(a -b )=2,|a |=2,则|b |等于( )A. 2 B .2 3 C .4 D .23.已知向量a =(-1,2),b =(3,1),c =(x,4),若(a -b )⊥c ,则c ·(a +b )=( ) A .(2,12) B .(-2,12) C .14 D .104.(2018·湘中名校联考)平面向量a 与b 的夹角为45°,a =(1,1),|b |=2,则|3a +b |等于( ) A .13+6 2 B .2 5 C.30 D.345.若单位向量e 1,e 2的夹角为π3,向量a =e 1+λe 2(λ∈R),且|a |=32,则λ=( )A .-12 B.32-1 C.12 D.326.(2018·西安八校联考)已知点A (-1,1),B (1,2),C (-2,-1),D (3,4),则向量CD ―→在BA ―→方向上的投影是( )A .-3 5B .-322C .3 5 D.3227.已知平面向量a ,b 满足a ·(a +b )=3,且|a |=2,|b |=1,则向量a 与b 的夹角的正弦值为________.8.(2018·张掖一诊)已知平面向量a ,b 满足|a |=|b |=1,a ⊥(a -2b ),则|a +b |=________. 9.已知向量m =(λ+1,1),n =(λ+2,2),若(m +n )⊥(m -n ),则向量m ,n 的夹角的余弦值为________.10.如图所示,在等腰直角三角形AOB 中,OA =OB =1,AB ―→=4AC ―→,则OC ―→·(OB ―→-OA ―→)=________.11.(2018·惠州三调)若O 为△ABC 所在平面内任一点,且满足(OB ―→-OC ―→)·(OB ―→+OC ―→-2OA ―→)=0,则△ABC 的形状为( )A .等腰三角形B .直角三角形仁荣中学2019届高三文科数学一轮复习导学案------专题五 平面向量11C .正三角形D .等腰直角三角形12.(2017·全国卷Ⅱ)已知△ABC 是边长为2的等边三角形,P 为平面ABC 内一点,则P A ―→·(PB ―→+PC ―→)的最小值是( )A .-2B .-32C .-43D .-113.(2017·浙江高考)如图,已知平面四边形ABCD ,AB ⊥BC ,AB =BC =AD =2,CD =3,AC 与BD 交于点O .记I 1=OA ―→·OB ―→,I 2=OB ―→·OC ―→,I 3=OC ―→·OD ―→,则( )A .I 1<I 2<I 3B .I 1<I 3<I 2C .I 3<I 1<I 2D .I 2<I 1<I 314.(2018·广东五校协作体第一次诊断考试)已知向量a =(1,3),b =(3,m ),且b 在a 方向上的投影为3,则向量a 与b 的夹角为________.15.已知向量a =⎝⎛⎭⎫-12,32,OA ―→=a -b ,OB ―→=a +b ,若△OAB 是以O 为直角顶点的等腰直角三角形,则△OAB 的面积为________.16.已知|a |=4,|b |=8,a 与b 的夹角是120°.(1)计算:①|a +b |,②|4a -2b |;(2)当k 为何值时,(a +2b )⊥(k a -b ).17.在平面直角坐标系xOy 中,点A (-1,-2),B (2,3),C (-2,-1). (1)求以线段AB ,AC 为邻边的平行四边形两条对角线的长. (2)设实数t 满足(AB ―→-t OC ―→)·OC ―→=0,求t 的值.。

平面向量及运算法则

平面向量及运算法则

平面向量及运算法则1、向量:(1)概念:既有 又有 的量叫做向量(2)表示:可以用有向线段来表示,包含三个要素: 、 和 ;记为AB 或 a (3)模:AB 的长度叫向量的模,记为||AB 或 ||a(4)零向量:零向量的方向是任意的单位向量是____________的向量.(5)相等向量: 的向量叫相等向量;(6)共线向量: 的向量叫平行向量,也叫共线向量 2、向量运算的两个法则: 加法法则:(1)平行四边形法则,要点是:统一起点; (2)三角形法则,要点是:首尾相接;减法法则:向量减法运算满足三角形法则,要点是统一起点,从 指向 。

3、实数λ与向量a 的积是一个向量,这种运算叫做向量的数乘,记作a λ ,其长度与方向规定如下:(1)||a λ = ||||a λ;(2)λ> 0 时,a λ与a 同向;λ< 0 时,a λ与a 反向;(3)λ= 0 时,a λ=04、向量的线性运算满足: (1)()a λμ=(2)(λμ+)a = (3)()a b λ+=5、//a b (0)b a a λ⇔=≠其中R λ∈且唯一随堂练习1.给出下列命题:①向量AB 与CD 是共线向量,则A 、B 、C 、D 四点必在一直线上; ②两个单位向量是相等向量; ③若a =b, b=c,则a=c ;④若一个向量的模为0,则该向量的方向不确定; ⑤若|a |=|b |,则a =b 。

错误!未找到引用源。

若a 与b 共线, b 与c 共线,则a 与c 共线 其中正确命题的个数是( )DBAA .1个B .2个C .3个D .4个2、如图所示,D 、E 、F 分别是△ABC 的边AB 、BC 、CA 的中点,则DB AF -=( )A. B.C.FED.BE3、在平行四边形ABCD 中,下列各式中成立的是( ) A .+=AB BC CA B .+=AB AC BC C .+=AC BA AD D .+=AC AD DC4.下面给出的四个式子中,其中值不一定为0的是( ) A.AB BC CA ++ B.OA OC BO CO +++ C.AB AC BD CD -+- D.NQ QP MN MP ++-5.在平行四边形ABCD 中,若AB AD AB AD +=-则必有 ( ) A. 0AD = B. 00AB AD ==或 C. ABCD 是矩形 D. ABCD 是正方形6、如图所示,OADB 是以向量=,=为边的平行四边形,又BM=31BC ,CN=31CD .试用,表示OM ,ON ,.7、设两个非零向量1e 、2e 不是平行向量(1)如果AB =1e +2e ,BC =21e +82e ,CD =3(21e e -),求证A 、B 、D 三点共线; (2)试确定实数k 的值,使k 1e +2e 和1e +k 2e 是两个平行向量.OADBCMN变式: 已知OA 、OB 不共线,OP =a OA +b OB . 求证:A 、P 、B 三点共线的充要条件是a +b =1.1.平面向量的基本定理:如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1,λ2使a = (2)平面向量的坐标运算: 两个向量和与差的坐标分别等于这两个向量相应坐标的和与差;一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标。

2024年新高考版数学专题1_6.1 平面向量的概念及线性运算、平面向量基本定理及坐标表示

2024年新高考版数学专题1_6.1 平面向量的概念及线性运算、平面向量基本定理及坐标表示

零向量和共线向量不能作基底.
2.平面向量的坐标运算
已知a=(x1,y1),b=(x2,y2).
则a+b=(x1+x2,y1+y2),a-b=(x1-x2,y1-y2),λa=(λx1,λy1),a∥b⇔x1y2-x2y1=0.
3.向量的坐标表示
若A(x1,y1),B(x2,y2),则
AB
=(x2-x1,y2-y1).
1 2
( BD
- BA )= BA +
1 4
BC
-
1 2
BA =
1 2
BA +
1 4
BC
,∴D
错误.故选AC.
答案 AC
考法二 向量共线问题的求解方法
1.两非零向量共线是指存在实数λ,使两向量可以相互表示,在应用时注意
待定系数法和方程思想的应用.
2.证明三点共线问题,可用向量共线来解决,但应注意向量共线和三点共
λ(μa)=(λμ)a; (λ+μ)a=λa+μa; λ(a+b)=λa+λb
2.共线向量定理 向量a(a≠0)与b共线的充要条件是存在唯一一个实数λ,使b=λa.
考点二 平面向量基本定理及坐标运算
1.平面向量基本定理
如果e1,e2是同一平面内的两个不共线向量,那么对于这一平面内的任意向 量a,有且只有一对实数λ1,λ2,使a=λ1e1+λ2e2.我们把{e1、e2}叫做表示这个平 面内所有向量的一个基底.
答案 6
高考 数学
专题六 平面向量
6.1 平面向量的概念及线性运算、平面向量基本定理及坐标表示
基础篇
考点一 平面向量的概念及线性运算 1.向量的线性运算
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

05—平面向量的概念、运算及平面向量基本定理突破点(一) 平面向量的有关概念知识点:向量、零向量、单位向量、平行向量、相等向量、相反向量平面向量的有关概念[典例] (1)设a ,b 都是非零向量,下列四个条件中,使a |a |=b|b |成立的充分条件是( )A .a =-bB .a ∥bC .a =2bD .a ∥b 且|a |=|b |(2)设a 0为单位向量,下列命题中:①若a 为平面内的某个向量,则a =|a |·a 0;②若a 与a 0平行,则a =|a |a 0;③若a 与a 0平行且|a |=1,则a =a 0.假命题的个数是( )A .0B .1C .2D .3[解析] (1)因为向量a |a |的方向与向量a 相同,向量b |b |的方向与向量b 相同,且a |a |=b|b |,所以向量a 与向量b 方向相同,故可排除选项A ,B ,D.当a =2b 时,a |a |=2b |2b |=b |b |,故a =2b 是a |a |=b|b |成立的充分条件.(2)向量是既有大小又有方向的量,a 与|a |a 0的模相同,但方向不一定相同,故①是假命题;若a 与a 0平行,则a 与a 0的方向有两种情况:一是同向,二是反向,反向时a =-|a |a 0,故②③也是假命题.综上所述,假命题的个数是3.[答案] (1)C (2)D[易错提醒](1)两个向量不能比较大小,只可以判断它们是否相等,但它们的模可以比较大小;(2)大小与方向是向量的两个要素,分别是向量的代数特征与几何特征;(3)向量可以自由平移,任意一组平行向量都可以移到同一直线上.突破点(二) 平面向量的线性运算1.向量的线性运算:加法、减法、数乘2.平面向量共线定理:向量b 与a (a ≠0)共线的充要条件是有且只有一个实数λ,使得b =λa .平面向量的线性运算[例1] (1)在△ABC 中,u u u r AB =c ,u u u r AC =b .若点D 满足u u u r BD =2u u u r DC ,则u u u rAD =( )A.13b +23cB.53c -23bC.23b -13cD.23b +13c (2)在△ABC 中,N 是AC 边上一点且u u u u r AN =12u u u r NC ,P 是BN 上一点,若u u u r AP =m u u u r AB +29u u u rAC ,则实数m 的值是________.[解析] (1)由题可知u u u r BC =u u u r AC -u u u r AB =b -c ,∵u u u r BD =2u u u r DC ,∴u u u r BD =23u u u r BC =23(b -c ),则u u u r AD =u u u rAB +u u u r BD =c +23(b -c )=23b +13c ,故选D.(2)如图,因为u u u u r AN =12u u u r NC ,所以u u u u r AN =13u u u r AC ,所以u u u r AP =m u u u r AB +29u u u rAC =m u u u r AB +23u u u u r AN .因为B ,P ,N 三点共线,所以m +23=1,则m =13.[答案] (1)D (2)13[方法技巧]1.平面向量的线性运算技巧:(1)不含图形的情况:可直接运用相应运算法则求解.(2)含图形的情况:将它们转化到三角形或平行四边形中,充分利用相等向量、相反向量、三角形的中位线等性质,把未知向量用已知向量表示出来求解.2.利用平面向量的线性运算求参数的一般思路:(1)没有图形的准确作出图形,确定每一个点的位置.(2)利用平行四边形法则或三角形法则进行转化,转化为要求的向量形式.(3)比较,观察可知所求.平面向量共线定理的应用[例2] 设两个非零向量a 和b 不共线.(1)若u u u rAB =a +b ,u u u r BC =2a +8b ,uuu r CD =3(a -b ).求证:A ,B ,D 三点共线.(2)试确定实数k ,使ka +b 和a +kb 共线.[解] (1)证明:因为u u u rAB =a +b ,u u u r BC =2a +8b ,uuu r CD =3(a -b ),所以u u u r BD =u u u r BC +uuu r CD =2a +8b +3(a -b )=5(a +b )=5u u u r AB ,所以u u u r AB ,u u u rBD 共线. 又u u u r AB 与u u u rBD 有公共点B ,所以A ,B ,D 三点共线.(2)因为ka +b 与a +kb 共线,所以存在实数λ,使ka +b =λ(a +kb ),即⎩⎪⎨⎪⎧k =λ,1=λk ,解得k =±1.即k =1或-1时,ka +b 与a +kb 共线. [方法技巧]平面向量共线定理的三个应用(1)证明向量共线:对于非零向量a ,b ,若存在实数λ,使a =λb ,则a 与b 共线.(2)证明三点共线:若存在实数λ,使u u u r AB =λu u u r AC ,u u u r AB 与u u u rAC 有公共点A ,则A ,B ,C 三点共线.(3)求参数的值:利用向量共线定理及向量相等的条件列方程(组)求参数的值. [提醒] 证明三点共线时,需说明共线的两向量有公共点.突破点(三) 平面向量基本定理平面向量基本定理:如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.其中,不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底.基底的概念 [例1] 如果e 1,e 2一组基底的是( )A .e 1与e 1+e 2B .e 1-2e 2与e 1+2e 2C .e 1+e 2与e 1-e 2D .e 1+3e 2与6e 2+2e 1[解析] 选项A 中,设e 1+e 2=λe 1,则⎩⎪⎨⎪⎧ 1=λ,1=0无解;选项B 中,设e 1-2e 2=λ(e 1+2e 2),则⎩⎪⎨⎪⎧1=λ,-2=2λ无解;选项C 中,设e 1+e 2=λ(e 1-e 2),则⎩⎪⎨⎪⎧1=λ,1=-λ无解;选项D 中,e 1+3e 2=12(6e 2+2e 1),所以两向量是共线向量,不能作为平面内所有向量的一组基底.[答案] D[易错提醒]某平面内所有向量的一组基底必须是两个不共线的向量,不能含有零向量.平面向量基本定理的应用[例2] (2016·江西南昌二模)如图,在△ABC 中,设u u u rAB =a ,u u u r AC =b ,AP 的中点为Q ,BQ 的中点为R ,CR 的中点恰为P ,则u u u rAP =( )A.12a +12bB.13a +23bC.27a +47bD.47a +27b [解析] 如图,连接BP ,则u u u r AP =u u u r AC +uuu r CP =b +u u u rPR ,① u u u r AP =u u u r AB +u u u r BP =a +u u u r RP -u u u rRB ,②①+②,得2u u u r AP =a +b -u u u rRB ,③又u u u r RB =12uuu r QB =12(u u u r AB -uuu r AQ )=12⎝⎛⎭⎫a -12 u u u r AP ,④ 将④代入③,得2u u u r AP =a +b -12⎝⎛⎭⎫a -12 u u ur AP , 解得u u u r AP =27a +47b .[答案] C[方法技巧]平面向量基本定理的实质及解题思路(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基本定理解决问题的一般思路是先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.突破点(四) 平面向量的坐标表示1.平面向量的坐标运算:(1)向量加法、减法、数乘的坐标运算及向量的模; (2)向量坐标的求法 2.平面向量共线的坐标表示平面向量的坐标运算[例1] 已知A (-2,4),B (3,-1),C (-3,-4).设u u u rAB =a ,u u u r BC =b ,u u u r CA =c ,且u u u u r CM =3c ,u u u r CN=-2b ,(1)求3a +b -3c ;(2)求满足a =mb +nc 的实数m ,n ;(3)求M ,N 的坐标及向量u u u u rMN 的坐标.[解] 由已知得a =(5,-5),b =(-6,-3),c =(1,8).(1)3a +b -3c =3(5,-5)+(-6,-3)-3(1,8)=(15-6-3,-15-3-24)=(6,-42).(2)∵mb +nc =(-6m +n ,-3m +8n ),∴⎩⎪⎨⎪⎧ -6m +n =5,-3m +8n =-5,解得⎩⎪⎨⎪⎧m =-1,n =-1.即所求实数m 的值为-1,n 的值为-1.(3)设O 为坐标原点,∵u u u u r CM =u u u u r OM -u u u r OC =3c ,∴u u u u r OM =3c +u u u rOC =(3,24)+(-3,-4)=(0,20),即M (0,20).又∵u u u r CN =u u u r ON -u u u r OC =-2b ,∴u u u r ON =-2b +u u u rOC =(12,6)+(-3,-4)=(9,2),即N (9,2).∴u u u u rMN =(9,-18).[方法技巧]平面向量坐标运算的技巧(1)向量的坐标运算主要是利用向量加、减、数乘运算的法则来进行求解的,若已知有向线段两端点的坐标,则应先求向量的坐标.(2)解题过程中,常利用向量相等则其坐标相同这一原则,通过列方程(组)来进行求解.平面向量共线的坐标表示[例2] 已知a =(1)当k 为何值时,ka -b 与a +2b 共线;(2)若u u u rAB =2a +3b ,u u u r BC =a +mb ,且A ,B ,C 三点共线,求m 的值.[解] (1)∵a =(1,0),b =(2,1),∴ka -b =k (1,0)-(2,1)=(k -2,-1),a +2b =(1,0)+2(2,1)=(5,2),∵ka -b 与a +2b 共线,∴2(k -2)-(-1)×5=0,∴k =-12.(2)u u u rAB =2a +3b =2(1,0)+3(2,1)=(8,3),u u u r BC =a +mb =(1,0)+m (2,1)=(2m +1,m ). ∵A ,B ,C 三点共线,∴u u u r AB ∥u u u r BC ,∴8m -3(2m +1)=0,∴m =32.[方法技巧]向量共线的坐标表示中的乘积式和比例式(1)若a =(x 1,y 1),b =(x 2,y 2),则a ∥b ⇔x 1y 2-x 2y 1=0,这是代数运算,用它解决平面向量共线问题的优点在于不需要引入参数“λ”,从而减少了未知数的个数,而且它使问题的解决具有代数化的特点和程序化的特征.(2)当x 2y 2≠0时,a ∥b ⇔x 1x 2=y 1y 2,即两个向量的相应坐标成比例,这种形式不易出现搭配错误.(3)公式x 1y 2-x 2y 1=0无条件x 2y 2≠0的限制,便于记忆;公式x 1x 2=y 1y 2有条件x 2y 2≠0的限制,但不易出错.所以我们可以记比例式,但在解题时改写成乘积的形式.[检验高考能力]一、选择题1.设M 是△ABC 所在平面上的一点,且u u u u r MB +32u u u u r MA +32u u u u r MC =0,D 是AC 的中点,则|u u u u rMD ||u u u u r BM |的值为( )A.13B.12C .1D .2解析:选A ∵D 是AC 的中点,如图,延长MD 至E ,使得DE =MD ,∴四边形MAEC 为平行四边形,∴u u u u r MD =12u u u u r ME =12(u u u u r MA +u u u u r MC ),∴u u u u r MA +u u u u r MC =2u u u u r MD .∵u u u u rMB +32u u u u r MA +32u u u u r MC =0,∴u u u u r MB =-32(u u u u r MA +u u u u r MC )=-3u u u u r MD ,∴u u u u r BM =3u u u u r MD ,∴|u u u u rMD ||u u u u r BM |=|u u u u r MD ||3u u u u r MD |=13,故选A. 2.在△ABC 中,u u u r BD =3u u u r DC ,若u u u r AD =λ1u u u rAB +λ2u u u r AC ,则λ1λ2的值为( )A.116B.316C.12D.109解析:选B 由题意得,u u u r AD =u u u r AB +u u u r BD =u u u r AB +34u u u r BC =u u u r AB +34(u u u r AC -u u u r AB )=14u u u r AB +34u u u r AC ,∴λ1=14,λ2=34,∴λ1λ2=316.3.设D ,E ,F 分别是△ABC 的三边BC ,CA ,AB 上的点,且u u u r DC =2u u u r BD , uuu r CE =2u u u r EA ,u u u r AF =2u u u r FB ,则u u u r AD +u u u r BE +u u ur CF 与u u u r BC ( )A .反向平行B .同向平行C .互相垂直D .既不平行也不垂直解析:选A 由题意得u u u r AD =u u u r AB +u u u r BD =u u u r AB +13u u u r BC ,u u u r BE =u u u r BA +u u u r AE =u u u r BA +13u u u r AC ,u u ur CF =uuu r CB +u u u r BF =uuu r CB +13u u u r BA ,因此u u u r AD +u u u r BE +u u u r CF =uuu r CB +13(u u u r BC +u u u r AC -u u u r AB )=uuu r CB +23u u u r BC =-13u u u r BC ,故u u u r AD +u u u r BE +u u ur CF 与u u u r BC 反向平行.4.已知点O 为△ABC 外接圆的圆心,且uuu r OA +uuu r OB +u u u rCO =0,则△ABC 的内角A 等于( )A .30°B .45°C .60°D .90°解析:选A 由uuu r OA +uuu r OB +u u u r CO =0,得uuu r OA +uuu r OB =u u u rOC ,由O 为△ABC 外接圆的圆心,可得|uuu r OA |=|uuu r OB |=|u u u r OC |.设OC 与AB 交于点D ,如图,由uuu r OA +uuu r OB =u u u rOC可知D 为AB 的中点,所以u u u r OC =2u u u r OD ,D 为OC 的中点.又由|uuu r OA |=|uuu rOB |可知OD⊥AB ,即OC ⊥AB ,所以四边形OACB 为菱形,所以△OAC 为等边三角形,即∠CAO =60°,故A =30°.5.已知点G 是△ABC 的重心,过点G 作一条直线与AB ,AC 两边分别交于M ,N 两点,且u u u u rAM =.x u u u r AB ,u u u u r AN =y u u u r AC ,则xyx +y的值为( )A .3 B.13 C .2 D.12解析:选B 由已知得M ,G ,N 三点共线,所以u u u r AG =λu u u u r AM +(1-λ)u u u u r AN =λx u u u rAB +(1-λ)y u u u r AC .∵点G 是△ABC 的重心,∴u u u r AG =23×12(u u u r AB +u u u r AC )=13(u u u r AB +u u u rAC ),∴⎩⎨⎧λx =13,(1-λ)y =13,即⎩⎨⎧λ=13x,1-λ=13y,得13x +13y =1,即1x +1y =3,通分得x +y xy =3,∴xy x +y =13.6.若点M 是△ABC 所在平面内的一点,且满足5u u u u r AM =u u u rAB +3u u u r AC ,则△ABM 与△ABC 的面积的比值为( )A.15B.25C.35D.45解析:选C 设AB 的中点为D ,如图,连接MD ,MC ,由5u u u u r AM =u u u rAB +3u u u r AC ,得5u u u u r AM =2u u u r AD +3u u u r AC ①,即u u u u r AM =25u u u r AD +35u u u r AC ,即25+35=1,故C ,M ,D 三点共线,又u u u u r AM =u u u r AD +u u u u r DM ②,①②联立,得5u u u u rDM =3u u u r DC ,即在△ABM 与△ABC 中,边AB 上的高的比值为35,所以△ABM 与△ABC 的面积的比值为35.二、填空题7.在△ABC 中,点P 在BC 上,且u u u r BP =2u u u r PC ,点Q 是AC 的中点,若 u u u rPA =(4,3),uuu r PQ =(1,5),则u u u rBC =________.解析:uuu r AQ =uuu r PQ -u u u r PA =(1,5)-(4,3)=(-3,2),∴u u u r AC =2uuu r AQ =2(-3,2)=(-6,4).u u u r PC =u u u r PA +u u u rAC =(4,3)+(-6,4)=(-2,7),∴u u u r BC =3u u u rPC =3(-2,7)=(-6,21).答案:(-6,21)8.已知向量u u u r AC ,u u u r AD 和u u u r AB 在正方形网格中的位置如图所示,若u u u r AC =λu u u rAB +μu u u rAD ,则λμ=________.解析:建立如图所示的平面直角坐标系xAy ,则u u u r AC =(2,-2),u u u r AB =(1,2),u u u rAD=(1,0),由题意可知(2,-2)=λ(1,2)+μ(1,0),即⎩⎪⎨⎪⎧ 2=λ+μ,-2=2λ,解得⎩⎪⎨⎪⎧λ=-1,μ=3,所以λμ=-3.答案:-39.P ={a |a =(-1,1)+m (1,2),m ∈R},Q ={b |b =(1,-2)+n (2,3),n ∈R}是两个向量集合,则P ∩Q 等于________.解析:P 中,a =(-1+m,1+2m ),Q 中,b =(1+2n ,-2+3n ).则⎩⎪⎨⎪⎧ -1+m =1+2n ,1+2m =-2+3n .得⎩⎪⎨⎪⎧m =-12,n =-7.此时a =b =(-13,-23).答案:{(-13,-23)}.10.在梯形ABCD 中,已知AB ∥CD ,AB =2CD ,M ,N 分别为CD ,BC 的中点.若u u u r AB =λu u u u rAM +μu u u u rAN ,则λ+μ=________.解析:由u u u r AB =λu u u u r AM +μu u u u r AN ,得u u u r AB =λ·12(u u u r AD +u u u r AC )+μ·12(u u u r AC +u u u r AB ),则⎝⎛⎭⎫μ2-1u u u r AB +λ2u u u r AD +λ2+μ2u u u r AC =0,得⎝⎛⎭⎫μ2-1u u u r AB +λ2u u u r AD +⎝⎛⎭⎫λ2+μ2⎝⎛⎭⎫u u u r AD +12 u u u r AD =0,得⎝⎛⎭⎫14λ+34μ-1u u u r AB +⎝⎛⎭⎫λ+μ2u u u r AD =0.又因为u u u r AB ,u u u rAD 不共线,所以由平面向量基本定理得⎩⎨⎧14λ+34μ-1=0,λ+μ2=0,解得⎩⎨⎧λ=-45,μ=85.所以λ+μ=45.答案:45三、解答题11.如图,以向量uuu r OA =a ,uuu r OB =b 为邻边作▱OADB ,u u u u r BM =13u u ur BC , u u u r CN =13uuu r CD ,用a ,b 表示u u u u r OM , u u u r ON ,u u u u rMN .解:∵u u u r BA =uuu r OA -uuu r OB =a -b ,u u u u r BM =16u u u r BA =16a -16b ,∴u u u u r OM =uuu r OB +u u u u r BM =b +⎝⎛⎭⎫16a -16b =16a +56b .又∵u u u r OD =a +b ,∴u u u r ON =u u u r OC +13uuu r CD =12u u u r OD +16u u u r OD=23u u u r OD =23a +23b ,∴u u u u r MN =u u u r ON -u u u u r OM =23a +23b -16a -56b =12a -16b . 综上,u u u u r OM =16a +56b ,u u u r ON =23a +23b ,u u u u r MN =12a -16b .12.给定两个长度为1的平面向量uuu r OA 和uuu r OB ,它们的夹角为2π3.如图所示,点C 在以O 为圆心的圆弧AB 上运动.若u u u r OC =x uuu r OA +y uuu rOB ,其中x ,y ∈R ,求x +y 的最大值.解:以O 为坐标原点,uuu rOA 所在的直线为x 轴建立平面直角坐标系,如图所示,则A (1,0),B -12,32,设∠AOC =αα∈0,2π3,则C (cos α,sin α),由u u u r OC =x uuu r OA +y uuu rOB ,得⎩⎨⎧cos α=x -12y ,sin α=32y ,所以x =cos α+33sin α,y =233sin α,所以x +y =cos α+3sin α=2sin ⎝⎛⎭⎫α+π6,又α∈⎣⎡⎦⎤0,2π3,则α+π6∈⎣⎡⎦⎤π6,5π6. 所以当α+π6=π2,即α=π3时,x +y 取得最大值2.。

相关文档
最新文档