量子力学 态和力学量表象
量子力学课件:4.1 态的表象
量子力学 表象
基本矢量
不同表象波函数
→
u1(x), u2(x),..., un(x), ...
a1(t), a2(t),..., an(t), ...
量子状态Ψ(x,t)
态矢量
坐标系 不同坐标系的一组分量 i, j, k, Ax, Ay, Az 矢量 A
所以我们可以把状态Ψ看成是一个矢量——态矢量。 选取一个特定力学量 Q 表象,相当于选取特定的坐标系,
同样
x 在自身表象即坐标表象中对应
有确定值 x’本征函数是
δ(x'-x)。
这可由本征 值方程看出:
所以,在动量表象中, 具有确定动量p’的粒 子的波函数是以动量
p为变量的δ- 函数。
换言之,动量本征函 数在自身表象中是一 个δ函数。
x ( x x) x ( x x)
所以
x ( x) ( x x)
u1(x), u2(x), ..., un(x), ... 是 Q 表象 的基本矢量简称基矢。
波函数
a1 (t )
a2(t)
an(t)
是态矢量Ψ在Q表象中沿各基矢方 向上的“分量”。Q表象的基矢有 无限多个,所以态矢量所在的空 间是一个无限维的抽象的函数空 间,称为Hilbert空间。
设 算符Q的本征值为: Q1, Q2, ..., Qn, ...,
相应本征函数为:u1(x), u2(x), ..., un(x), ...。
将Ψ(x,t) 按 Q 的 本征函数展开:
(x, t) an(t)un( x)
n
若Ψ, un都是归一化的,
则 an(t) 也是归一化的。
证:
1 *( x, t)( x.t)dx
动量表象 C(p,t)=δ(p'-p)exp[-iE't/] C(p)=δ(p'-p)
态和力学量的表象
动量表象下的薛定谔方程(一维) 动量表象下的薛定谔方程(一维)
在动量表象中, 在动量表象中,动量算符就是动量自身 是势能算符, 是势能算符,即以坐标算符 对应于势能函数) 数(对应于势能函数) 为变量的算符函
√
动量表象(2/4) 动量表象(2/4)
谐振子势
坐标表象中的薛定谔方程
动量表象中的薛定谔方程
对于谐振子势,在动量表象中是二阶微分方程,求解类似于 对于谐振子势,在动量表象中是二阶微分方程,求解类似于 二阶微分方程 在坐标表象中的求解,不能简化求解过程 在坐标表象中的求解,不能简化求解过程
√
动量表象(3/4) 动量表象(3/4)
线性势
坐标表象、 坐标表象、动量表象中的薛定谔方程
对于线性势,在动量表象中的方程是简单的一阶微分方程 对于线性势,在动量表象中的方程是简单的一阶微分方程 与第二章“一维线性势阱”的结果一致) 求解 (与第二章“一维线性势阱”的结果一致)
算符 的表示的变换 表象中: 在 F 表象中:基矢为 表象中: 在 F' 表象中:基矢为
,算符 的矩阵元为 ,算符 的矩阵元为
√
线性谐振子与占有数表象(1/2) 线性谐振子与占有数表象(1/2)
线性谐振子的能级和波函数 湮灭算符 和产生算符
Microsoft Word 文档
为单位改变, 谐振子能量以 为单位改变,将这个 看作一个粒子 即粒子数减一, 使体系由 态变到 态,即粒子数减一,称湮灭算符 即粒子数加一, 使体系由 态变到 态,即粒子数加一,称产生算符
√
动量表象(1/4) 动量表象(1/4)
坐标表象和动量表象的对比
坐标表象的优点 容易写出边界条件,例如: 容易写出边界条件,例如:区分束缚态和散射态 容易表述常用的势,例如:方势、线性势、 容易表述常用的势,例如:方势、线性势、谐振子势 动量表象的优点 某些势场下的薛定谔方程比较简单, 某些势场下的薛定谔方程比较简单,容易求解
周世勋《量子力学教程》(第2版)-态和力学量的表象笔记和课后习题(含考研真题)详解(圣才出品)
圣才电子书 十万种考研考证电子书、题库视频学习平台
变换矩阵的物理意义:通过变换矩阵,可将 A 表象的基矢 n 变换为 B 表象的基矢 。
2.幺正算符
在量子力学中,状态随时间的变化可写为 (t) U (t) (0) ,U (t) eiHt/ 是幺正算符。
圣才电子书
十万种考研考证电子书、题库视频学习平台
第 4 章 态和力学量的表象
4.1 复习笔记
一、态的表象及量子力学中的矩阵表示 1.表象 在量子力学中,称态和力学量的具体表示方式为表象。
2.态函数在 Q 表象中的矩阵表示
选定表象后,算符和量子态可以用矩阵表示。在矩阵力学中,Q 表象是以 Q 的本征函
p ] , a
2
[x
1 i 2
p ]
它 们 满 足 有 下 列 关 系 : [a, a ] 1,
x 1 (a a ), 2
H
(a a
1)
(N;
2
2
| n 1 (a)n | 0 。 n!
p i (a a ) , 2
3.其他常用关系式
(1)粒子数算符本征方程 N | n n | n ;
a
* 2
(t
),...,
an*
(t))
。
说明:上述表达只针对分立谱情况。当具有连续谱时,任意波函数 (x, t) 可表示为:
(x,t) an (t)un (x) aq (t)uq (x)dq , n
其中 an (t)
(
x,
t
)u
* n
(
x)dx
,
aq
(t)
(
x,
t
)u
* q
量子力学 态和力学量的表象
ˆ x, h u ( x ) Q u ( x ) , Q n n n i x
{un }构成正交归一的完全系,
( x, t ) an (t )un ( x),
n
an (t ) un* ( x) ( x, t )dx bn (t ) un ( x)( x, t )dx
的表示,
L a1 (t ) a (t ) F2 n L 2 M M Fmn L an (t ) M M F1n
ˆ 在 Q 表象中的矩阵元,矩阵 F 为 F ˆ 在 Q 表象中 Fmn 即为 F
F 。
第四章 态和力学量的表象 4.2、 算符的矩阵表示
4.1.3、任意 表象,态的矩阵表示
ˆ所 由此可知 | an |2 是在 ( x ,t ) 所描写的态中测量力学量 Q
得结果为 Qn 的几率。 数列, ,就是 ( x, t ) 所描写的态在 Q 表象中的表示。可写为矩阵形式,
a1 (t ) a (t ) 2 M , an (t ) M
第四章 态和力学量的表象 4.1、 态的表象
4.1.3、任意 表象,态的矩阵表示
的共轭矩阵是一个行矩阵,用 † 标记,
* * * † (a1 (t ), a2 (t ),L , an (t ),L ) 。
态的表象
本章目的: 本章目的:
给出用各种方式平行描述体系状态、 给出用各种方式平行描述体系状态、力学量等的方 案 表象; 表象; 找出不同表象之间的相互关系和变换规则 么正 变换; 变换; 建立一套用态矢量描述量子态的方案 Dirac算符 引入产生、 引入产生、湮灭算符重新讨论简谐振子。 湮灭算符重新讨论简谐振子。 研究表象的意义: 研究表象的意义: 根据不同问题选择不同表象, 根据不同问题选择不同表象,还可以进行表象变换。 还可以进行表象变换。 量子力学中态和力学量的具体表示方式称为表象 量子力学中态和力学量的具体表示方式称为表象。 表象。 以前所采用的表象是坐标表象。 以前所采用的表象是坐标表象。 这一章我们讨论其他表象, 这一章我们讨论其他表象,并介绍文献中常用的狄喇克 符号。 符号。
2 ′ p E p′ = 2µ − iE p ′ t h
= ∫ψ p * ( x )ψ p′ ( x )e
p
∫
−
iE p ′t h
=e
−
iE p ′t h
∫ψ
dx
p
* ( x )ψ p′ ( x )dx
=e
− iE p ′t / h
δ ( p − p′)
α 12 − ) e 谐振子基点: 谐振子基点: ψ ( x ) = ( π
动量表象波函数 c(p, t) ψ p (x) = 动量本征函数: 动量本征函数:
|c(p, t)| 2dp : 是在Ψ(x,t)所描写的状态中, 所描写的状态中,测量粒子的动 量所得结果在 p → p+dp 范围内的几率。 范围内的几率。 Ψ(x, t)与 c(p, t)一 一 对应, 对应,描述同一状态。 描述同一状态。 Ψ(x, t)是该状态在坐标表象中的波函数; 是该状态在坐标表象中的波函数; 而 c(p, t)|就是该状态在动量表象中的波函数 动量表象中的波函数。 就是该状态在动量表象中的波函数。
第四章 表象理论1
(4.2-6)
因此算符 在Q表象中是一个矩阵, (4.2-6)式也可简写为:
称为矩阵元。
(4.2-7)
说明: 力学量算符 于表象基矢
在 表象中的矩阵元 依赖
2. 厄密矩阵 对其取复共轭得到 根据厄密算符的定义
故有:
(4.2-8)
(4.2-8)式表示算符在Q表象中的表示是一个厄密矩阵 。
补充: 1、转置矩阵:矩阵A的行列互换,所得的新矩阵称 为矩阵A的转置矩阵,用符号 表示。 即:如果,则由(43) 得到(4.1-5)
在动量表象中, 粒子具有确定动量p’ 的波函数是以动 量p为变量的函数: 同理可得: 在坐标表象中, 粒子具有确定坐标x’ 的波函数是以坐标x 为变量的函数: 坐标算符的本征值方程为:
(4.1-6)
2. 一般情况 在任意力学量Q 的表象中, 假设具有分立的本征值, 对应的本征函数是 :
体系的归一化条件 写成矩阵形式: 对表象的理解: (1) 状态ψ : 态矢量
(4.1-13)
(2) Q表象: 坐标系 (无限维希耳伯特空间)。
(3) 本征函数: (4) 基矢量的分量。
坐标系的基矢量。 是态矢量ψ 在表象中沿各
态矢 在 表象基矢上的分量
构成了 在 表象中的
表示 ,由于
构成的空间维数可以是无穷的,甚至是不
故有:
内容小节
1、表象:量子力学中状态和力学量的具体表示方式 2、ψ(x,t) 态在动量表象中的表示:
其中: 3、ψ(x,t) 态在Q表象中的波函数是:
4、力学量F在Q表象中的表示 力学量F在Q表象中的表示是一个矩阵:
其中矩阵元: 算符在自身表象中是一个对角矩阵。
§4.3 量子力学公式的矩阵表述
「量子力学的矩阵形式和表象变换」
§4.5 量子力学的矩阵形式和表象变换态和力学量算符的不同表示形式称为表象。
态有时称为态矢量。
力学量算符对态的作用实际上是对矢量量进行变换,因此可与代数中线性变换进行类比。
1、量子态的不同表象 幺正变换 (1)直角坐标系中的类比取平面直角坐标系21X OX 其基矢(我们过去称之为单位矢)可表示为21,e e,见图其标积可写成下面的形式)2,1,(),(==j i e e ijj i δ我们将其称之为基矢的正交归一关系。
平面上的任一矢量A可以写为2211e A e A A +=其中),(11A e A =,),(22A e A=称为投影分量。
而),(21A A A = 称为A在坐标系21X OX 中的表示。
现在将坐标系21X OX 沿垂直于自身面的轴顺时针转θ角度,则单位基矢变为','21e e,且同样有)2,1,()','(==j i e e ijj i δ而平面上的任一矢量A此时可以写为 ''''2211e A e A A +=其中投影分量是),'('11A e A =,),'('22A e A=。
而)','(21A A A = 称为A在坐标系'X 'OX 21中的表示。
现在的问题是:这两个表示有何关系?显然,22112211''''e A e A e A e A A+=+=。
用'1e 、'2e分别与上式中的后一等式点积(即作标积),有),'(),'('2121111e e A e e A A+= ),'(),'('2221212e e A e e A A+=表成矩阵的形式为⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛212212211121),'(),'(),'(),'(''A A e e e e e e e e A A由于'1e 、1e 及'2e 、2e的夹角为θ,显然有⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛21212212211121cos sin sin cos ),'(),'(),'(),'(''A A A A e e e e e e e e A A θθθθ或记为⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛2121)(''A A R A A θ 其中⎪⎪⎭⎫⎝⎛-=θθθθθcos sin sin cos )(R 是把A在两坐标中的表示⎪⎪⎭⎫ ⎝⎛''21A A 和⎪⎪⎭⎫⎝⎛21A A 联系起来的变换矩阵。
量子力学[第四章态和力学量的表象] 山东大学期末考试知识点复习
第四章态和力学量的表象第三章中介绍了量子力学中的力学量用厄米算符表示,力学量的测量值为算符的本征值,力学量取唯一确定值的状态为算符的本征函数,力学量本征函数的集合具有正交性和完备性,微观粒子的任何态函数可以用力学量算符的本征函数进行展开,展开系数为在该状态中取值的概率幅。
前面所用的波函数ψ(x,t)本身可以看成微观状态用坐标算符的本征函数展开的概率幅,由此可以求出它用任意力学量(或者力学量完全集)的本征函数展开的概率幅。
反之,如果知道了概率幅,也可以还原出波函数。
从这个意义上说,粒子微观状态可以用任意力学量的概率幅来完全描述,波函数只是一个特例。
我们把概率幅称为状态在相应力学量中的表象,量子力学中常用的表象有坐标表象、动量表象和能量表象。
相应地,量子力学中的算符也可以有不同的表示形式,力学量算符的表象为厄米矩阵。
不同表象之间可以通过线性变换来相互联系,由于本征函数具有正交归一性,因此表象变换矩阵为幺正矩阵。
我们也可以脱离具体的表象来进行量子力学研究,这时状态用抽象的态矢量来表示,力学量用作用在态矢量空间上的抽象厄米算符来表示。
利用狄拉克方法,可以脱离具体表象来直接计算力学量的本征值和状态的演化规律,非常简洁。
本章的主要知识点有1.微观状态的表象(1)离散谱情况设力学量Q的本征方程为 (x)=qn un(x),n∈Z,任意波函数ψ(x,t)取值qn 的概率幅为cn(t)=∫un*(x)ψ((x,t)dx,概率幅的全体可以用一个列向量ψ=(…,c(t),c1(t),c2(t),…)T,简写为ψ=({cn(t)}) (4-1)来表示,称为状态ψ((x,t)在Q表象下的形式,简称状态ψ((x,t)的Q表象。
在离散谱的Q表象中,状态的归一化条件为(3)典型表象典型的离散表象有束缚态能量表象和角动量表象。
(3)混合谱情况有时候,力学量Q的本征值既有离散谱,又有连续谱。
这时Q表象下的波函数为归一化条件为力学量为具有分块矩阵形式.力学量对状态的作用为3.量子力学的抽象理论采用具体表象后,量子力学状态、力学量和物理公式都表现为矩阵的形式,历史上称之为矩阵力学。
量子力学态和力学量的表象
4.1 态的表象
The representation of the state
研 究 内 容
4.2 算符的矩阵表示
Matrix representation of operators
4.3 量子力学公式的矩阵表示 4.4 幺正变换
Unitary transformation
Matrix representation of formula for quantum mechanism
2
Chap.4 The representation for the states and dynamical variable
常 用 的 表 象
坐 标 表 象
动
能
量
表
量
表
象
象
角 动 量 表 象
3
Chap.4 The representation for the states and dynamical variable
7
§4.1 态的表象(续1)
(r , t ) 称为坐标表象中的状态波函数, C (P , t ) 称为动量表象中的状态波函数。
Chap.4 The representation for the states and dynamical variable
粒子的位置所得结果为 r 的几率。 2 是在 (r , t ) 所描写的状态中,测量 C ( P, t ) 粒子的动量所得结果为 P 的几率。
Chap.4 The representation for the states and dynamical variable
Chapter.4 Chapter.4 态和力学量的表象 态和力学量的表象
4.态和力学量的表象
例1:矢量 的性质(大小和方向)与所选的坐标系无关 直角坐标系: ,极坐标系: 例2:态Y描述的体系性质(能量、动量等)与所选的表象无关 A表象(un(x)):
B表象(vn(x)) :
当描写态和力学量的时候,不用具体的表象,而用狄拉克引用的 一套与表象无关的符号,称为狄拉克符号(Dirac notation) 狄拉克符号中的态 普通情况:右矢(bra) 代表 ,左矢(ket) 代表 在坐标表象中: 在Q表象(un(x))中: 特殊情况:加入波函数符号或本征值或相应量子数,区别不 同的态,如
占有数表象
的本征值是n,对应的本征态是 ,该态表示n个能量为 的粒子,称 为粒子数算符 以 为基矢的表象称为占有数表象 占有数表象中的算符
占2/2
作业
4.1,4.2,4.3
作1/1
例:d势阱
普通的性方程
最适当的表象依赖于具体的问题
动2/2
算符的矩阵表示
Q的表象(只有分立本征值Qn,本征函数是un(x))下的算符
厄密算符在Q表象中的表示是厄密矩阵
算符Q在自身的表象中是对角矩阵——求解薛定谔方程
算1/2
Q的表象(只有连续本征值q,本征函数是uq(x))下的算符
态的表象
动量表象中,具有确定动量p'的波函数是以p为变量的d函数 例4:坐标表象中,位置固定的粒子(坐标x')波函数
坐标表象中,具有确定坐标x'的波函数是以x为变量的d函数 例5:动量表象中的坐标算符 动量表象中,动量算符就是自身 对易关系在不同的表象中都一样
量子力学4态和力学量的表象
(x,t) 2dx 1
C( p,t) 2dp 1
C( p,t) 2 dp 是 (x, t)所描写的态中测量粒子动量在 p dp
范围的几率.C( p, t)与 (x, t) 描述的是同样的态,C( p, t)
为在动量表象中的波函数。
2、推广到一般情况
在任意力学量 Q 的表象中,态的表示:(x,t)
的表象不同波函数形式也不同, 但它们描写同一态。
经典力学 矢量
( Ax , Ay , Az )
普通三维空间
特定坐标系 i , j,k
比较:
量子力学
态矢量
a1 (t) a2 (t)
an (t)
希尔伯特(Hilbert)空间
特定 Q 表象
本征函数 u1 (x), u2 (x), ,un (x),
A1 A2
R(
)
A1 A2
R(
)
cos sin
sin cos
R( ) 有什么性质?
det R 1
R~R RR~ 1 (真正交矩阵)
R R RR 1 幺正矩阵
同一矢量在不同坐标系中的表示通过一个幺正矩阵联系起来。
二. 态的表象与表象变换
表象: 态和力学量的具体表示方式。
量子力学中,量子态可看成Hilbert空间一矢量。
a
1
(t
)
a2 (t)
an (t)
a
1
(t)a1 (t)
a2
(t)a2
(t)
对于即有分立谱又有连续谱的情况:
(x,t) an (t)un (x) aq (t)uq (x)dx n
an (t) (un (x), (x,t))
aq (t) (uq (x), (x,t))
态和力学量的表象
r 称为矢量A在球坐标中的表示。
基矢或者说基底有无穷多种取法, 因此一个矢量有无穷多种表示。
4.1 态的表象
4.1.2 波函数ψ ( x , t ) 在Q表象的表示(分立谱) 1、定义 波函数 ψ ( x , t ) 用力学量算符Q的本征函数展开所得到的 全部展开系数组,称为量子态 ψ ( x , t ) 在Q表象的表示。 2、矩阵表示 若
= ∫ dpC ( p, t )C ( p, t )
*
4.1 态的表象
例:自由粒子的波函数 自由粒子的德布洛意平面波是 它在动量表象中的表示是 r
* r p
ψ =
1
(2πh ) 2
3
i r r ( p ′ ⋅ r − E ′t ) h
e
i r r ( p′⋅ r − E ′t ) h
C ( p , t ) = ∫ ψ ( x )ψ d τ = =
ψ ( x ) = ∫ ψ ( x ′ )δ ( x − x ′ )dx ′
可见 ψ ( x )就是波函数在坐标表象 中的表示 。
4.1 态的表象
v 4.1.5 动量表象的波函数——c ( p , t )
ˆ ψ p ( x ) = pψ p ( x ) p
动量表象基底为
ψ p ( x) =
1 2πh
ˆ u ( x) = Q u ( x) Q n n n
n
ψ ( x , t ) = ∑ a n ( t )u n ( x )
∫u
n
* ( x )um ( x )dx = δ nm
a n ( t ) = ∫ u n * ( x )ψ ( x , t )dx
在Q表象中的表示
a n (t ) 是 ψ ( x , t )
量子力学第六章
当代入(1)式得,,则本征函数为
利用归一化条件来确定常数 : ,即
取 因此,对应于的本征函数是 当时代入(1)式得,,本征函数为 利用归一化条件求常数:
,即 取 因此对应于的本征函数是
同理可求对应的本征函数为 现在求的本征值和本征函数。设的本征函数为
本征值为,则本征方程为 即
而
即
将以上两式与(1)与(2)式对比可知 ,
,
以上是用特殊的方法求得。 6.12 已知在和共同表象中,算符和的矩阵分别为 ,
求它们的本征值和归一化本征矢,最后将矩阵和分别对角化。 解 设的本征函数(在和的共同表象中)为
本征值为,则本征方程为 即
(1) 齐次方程组有非零解的条件是系数行列式等于零,即 展开整理后得
解 (1)因为和都是对称的实矩阵,故和都是厄密矩阵,即 ,
(2)
可见与对易,即 (3)求和的共同本征矢 因为是对角矩阵,故,,是的本征矢,分别对应本征值,,,而且 ,, , 也是的本征矢,对应本征值为,这是因为
但,都不是的本征矢,将,重新组合:
(+)
()
则有
,
可见,,就是的本征矢。
因为,是,的线性组合,当然仍是的本征矢。这样,我们就找到了
与的共同本征矢:
本征值 本征值
(+) () 6.10 粒子在力学量的三个本征矢和所张成的三维态空间中运动,其 Hamiltonian和另一力学量算符的形式如下: (为实数) (1)求的本征值和相应的本征矢;(2)若时粒子处于
所描述的状态,求时粒子的态矢,问它是否定态?(3)求时,的平
均,并讨论随时间变化的规律。
代入(1)式得
于是得到 (3)利用平均值公式 则
态和力学量的表象
.n n nc ψφ=∑第四章 态和力学量的表象量子力学中态和力学量的具体表示方式称为表象。
在前面,我们采用的表象是坐标表象,还可以用其它表象表示体系状态。
在选定了一定的表象后,力学量算符用矩阵表示,算符的运算归结为矩阵的运算。
因此,引入表象理论后的量子力学也称为矩阵力学。
本章首先给出态、算符和量子力学公式的表象表示,以及它们在不同表象间的变换关系,并证明量子力学在幺正变换下的不变性。
之后介绍文献中常见的狄拉克(Dirac )符号,最后在粒子数表象中重新讨论了线形谐振子问题。
§4.1态的表象表示由前两章讨论可知,任意波函数可按某力学量的本征函数做完全性展开例如,动量的本征函数表示组成完全系,任意波函数(,)x t ψ可以按 ()x p x ψ展开为(,)(,)()xx p x x t c p t x dp ψψ=⎰ ,展开系数(,)x c p t 由下式给出()(),(),x x p c p t x x t dx ψψ*=⎰. 设 (,)x t ψ已归一化,则容易证明(,)x c p t 也是归一化的,2(,)x t dx ψ代表体系处于(,)x t ψ所描写的态中,发现粒子位置在x x dx →+范围内的几率;2(,)x x c p t dp 代表在该态下发现粒子动量在 x x x p p dp →+范围内的几率。
(,)x c p t 和 (,)x t ψ描写同一状态。
我们称(,)x t ψ是这个状态在x -表象(坐标表象)中的波函数;(,)x c p t 是同一状态在p -表象(动量表象)中的波函数。
动量表象中的波函数(,)x c p t 以动量为自变量,它的获得是通过动量本征函数系的完全性展开取得展开系数得来的。
在量子力学中,选定一组本征函数系作为基失,就称为选定了一个表象。
这与三维空间中的坐标系类似。
表象中的基矢与坐标系中的单位矢量一样具有正交归一完全性。
所不同的是本征函数有多个,所以态矢量所在的空间是多维的函数空间。
量子力学专题--态的表象
(二)力学量表象
推广上述讨论: x, p都是力学量,分别对应有坐标表象和动量表象, 因此可以对任何力学量Q都建立一种表象,称为力 学量 Q 表象。
问题
那末,在任一力学量Q表象中, Ψ(x,t) 所描写的态又如何表示呢?
(1)具有分立本征值的情况 (2)含有连续本征值情况
(1)具有分立本征值的情况
a2(t)
a1(t ) * a2 (t ) * an (t ) *
an
(t
)
an (t ) * an (t ) 1
n
(2)含有连续本征值情况
例如氢原子能量就是这样一种力学量,
即有分立也有连续本征值。
设力学量 Q 的本征值和本征函数分别为:
Q1, Q2, ..., Qn, ..., q u1(x), u2(x), ..., un(x), ..., uq(x)
思考
• 力学量的表象如何表示?即算符在各种表 象下的表示。
量子力学 表象
基本矢量
不同表象波函数
→
u1(x), u2(x),..., un(x), ...
a1(t), a2(t),..., an(t), ...
量子状态Ψ(x,t)
态矢量
坐标系 不同坐标系的一组分量 i, j, k, Ax, Ay, Az 矢量 A
所以我们可以把状态Ψ看成是一个矢量——态矢量。 选取一个特定力学量 Q 表象,相当于选取特定的坐标系,
x → x + d x 范围内的几率。
|C(p,t)| 2 d p 是在Ψ(x,t)所描写的状态中,测量粒子的动量所得结果在
p → p + d p 范围内的几率。
Ψ(x,t) 与 C(p,t) 一 一 对应,描述同一状态。 Ψ(x,t) 是该状态在坐标表象中的波函数; 而 C(p,t) 就是该状态在动量表象中的波函数。
第四章 态和力学量的表象
章 >> 第一节§4.1 态的表象一.矢量的表示矢量基矢是矢量在坐标系中的表示。
对另一坐标系,是矢量在坐标系中的表示,同一矢量在不同坐标系中表示有什么关系?有什么性质?(真正交矩阵)幺正矩阵同一矢量在不同坐标系中的表示通过一个幺正矩阵联系起来。
二.态的表象与表象变换表象: 态和力学量的具体表示方式。
量子力学中,量子态可看成Hilbert空间一矢量。
, 是波函数和力学量在坐标表象中的表示,这种表示方法并不是唯一的。
(一).态的表象1.特例动量本征函数组成完全基任意态利用:是所描写的态中测量粒子动量在范围的几率. 与描述的是同样波函数。
2推广到一般情况在任意力学量的表象中,态的表示:分立本征值:本征函数:是态中测量力学量所得结果为的几率。
为态在表象中的表示。
用矩阵表示:同一态可以在不同表象中用波函数来描写,所取的表象不同波函数形式也不同, 但它们描写同一态。
经典力学量子力学矢量态矢量普通三维空间希尔伯特(Hilbert)空间特定坐标系特定表象本征函数(二)态的表象变换态矢量在力学量的完备基下,即在表象下表象:另一力学量的完备基下,表象:二表象之间的的关系:左乘取标积,对积分即:矩阵表示幺正矩阵同一个量子态在表象中的不同表示的关系通过一幺正矩阵S相联系。
[证明]即:。
§4.2 力学量算符的矩阵表示与表象变换一.力学量的矩阵表示设一力学量作用于态得到另一态在坐标表象中在任一表象下本征值:两边左乘对积分利用正交归一性是算符在表象中的表示力学量算符为厄密算符: 即厄密算符在表象中的矩阵特点:利用厄密算符性质即即: 力学量算符的矩阵表示为厄密矩阵。
算符在自身表象的矩阵:算符在其自身表象中是一对角矩阵。
如具有连续本征值,本征函数为在坐标表象中例:求一维谐振子的坐标,动量及Hamilton量在能量表象中的矩阵表示。
[解]线性谐振子的能级为对应的能量本征函数,利用公式(1)(2)(3)二.力学量的表象变换力学量算符在表象中: 算符的本征函数在表象中: 算符的本征函数§4.3 量子力学中一些关系式的矩阵表示态矢量和力学量算符已用矩阵表示出来,也就是说态矢量和力学量算符在一确定的表象下可用矩阵表示。
§4 态和力学量的表象
1.平均值公式 将 Ψ ( x, t ) 按 Q 的本征函数展开,
Ψ ( x , t ) = ∑ a n (t )u n ( x)
n ∗ ∗ Ψ ∗ ( x, t ) = ∑ an ( t )u n (x ) n
(4.3.1a) (4.3.1b)
F = ∫ Ψ ∗ ( x, t ) F ( x,
h ∂ ) Ψ ( x, t ) dx i ∂x ∧ h ∂ ∗ = ∫ ∑ am (t ) u ∗ ( x ) F ( x, ) an (t ) u n ( x )dx m i ∂x mn
或简写为
F = Ψ + FΨ
(4.3.4)
2. 本征值方程
F ( x,
∧
h ∂ ) Ψ( x, t ) = λΨ ( x , t ) i ∂x
矩阵形式可由(4.2.7)式中令Φ = λΨ 得出
FΨ = λΨ
(4.3.5)
显示地写出为
F11 F21 M Fn1 M
F12 L F1n F22 L F2n M M Fn 2 L Fnn M L
(4.2.3)
引进记号
Fnm = ∫ u ∗ n ( x ) F (x ,
∧
h ∂ )u m ( x ) dx i ∂x
(4.2.4)
(4.2.3)可写为
bn ( t ) = ∑ Fnma m (t )
m
(4.2.5)
(4.2.5)就是(4.2.1)在 Q 表象中的表示,将它写为矩阵的形式
b1 ( t ) F11 b2 ( t ) F21 M =L bn ( t ) Fn1 M L F12 F22 L Fn2 L L F1m L F2m L L L Fnm L L L a1 ( t ) L a 2t ) L M L am ( t ) L M
量子力学(第四章)
5
③同一个态可以在不同的表象中表示,表象不 同一个态可以在不同的表象中表示, 波函数的形式也不同,但它们完全等价。 同,波函数的形式也不同,但它们完全等价。 坐标表象:ψ ( x, t ) 坐标表象: 动量表象: Φ ( p, t ) 动量表象:
RETURN
6
§ 4.2
算符的矩阵表示
一、算符在一般表象中的表示 二、算符在自身表象中的表示 三.算符表示矩阵的性质
H mn ˆ ψ dx = E ψ *ψ dx = (n + 1 )hω δ = ∫ψ m H n n∫ m n mn 2
*
1 2 0 ( H mn ) = 0 M
0 3 2 0 M
0 0 L 0 0 L hω 5 0 L 2 M M M
∫u
* m
un dτ = δ mn
3
可知量) 任何一个态ψ (可知量)可按该基矢展开
ψ = ∑ anun
* 展开系数 an (t ) = ∫ψ un dτ 上的投影, 其中 a n 是矢量ψ 在基 un 上的投影,这一 组数 (a1, a2 ,L, an ,L)就是矢量 ψ 在Q表象中的表 示,记为一矩阵形式
† Fmn = Fnm* = Fmn
F† = F
结论:表示厄米算符的矩阵是厄米矩阵。 结论:表示厄米算符的矩阵是厄米矩阵。
12
[例题] 求一维谐振子的坐标 ,动量 及哈密顿 例题] 求一维谐振子的坐标x,动量p及哈密顿 在能量表象中的矩阵表示。 量H在能量表象中的矩阵表示。 在能量表象中的矩阵表示 [解 ] 利用厄米多项式的递推关系 xmn = ∫ψ m* xψ n dx
n
a1 (t ) a 2 (t ) ψ = M a n (t ) M
量子力学中几种表象及其之间的关系
c 由(p,t)可知,粒子动量在 p 到 p+dp 之间的概率
w( p,t)dp c( p,t) 2 dp
如果ψ(x,t)所描写的状态是具有动量 p’的自由粒子的状态,即ψ(x,t)=
ψp’(x,t),则
c(
p,
t)
p'
(
x,
t
)
p
(
x)dx
p'
(
x)
p
则含时 Schrodinger 方程的一般解为
x, t
C eiEnt / n
nx
n
Cn 为迭加常数,由初始条件决定。
若 x,t 0 x
则
Cn
dx
* n
x
x
x
x
其相应的本征态为 P,本征函数为
1
2
eipx /
p (x) 构成正交完备集,体系的波函数 (x,t) 可以用 p (x) 展开,即
bmnm
m
bn
表象变换
a1
设表象“A”中
A
a2
其基为
n
算符 Lmn dxm* xLˆ x x
显然,任意波函数
x,t ann bn n
n
n
dx
* m
:
an
dx
*
mn
bnmn bm
n
n
记 Smn
dx
*
mn
则
Smnan bm 或 B S A
n
S 矩阵式么正的
(x)eiEp't
/
dx
( p' p)eiEp 't /
在动量表象中,粒子具有确定动量 p’的波函数是以动量 p 为变量 的δ函数。 那么,态在任意力学量 Q 的表象中的描写方式又是什么样呢? 设力学量 Q 具有分立的本征值 Q1,Q2,…Qn…,对应的本征函数为 u1(x),u2(x),…,un(x),…,并组成正交归一的完全系。将态在坐标表象中 的波函数ψ(x,t)按{un(x)}展开成
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 *( x, t)( x.t)dx
[ am (t)um ( x)]* an(t)un( x)dx
m
n
就是Ψ(x,t)所描写状态 在Q表象中的表示。
am * (t )an (t ) um * ( x)un ( x)dx
mn
am * (t )an (t ) mn
mn
an * (t )an (t )
u1(x), u2(x), ..., un(x), ... 是 Q 表象 的基本矢量简称基矢。
波函数
a1 (t )
a2(t)
an(t)
是态矢量Ψ在Q表象中沿各基矢方 向上的“分量”。Q表象的基矢有 无限多个,所以态矢量所在的空 间是一个无限维的抽象的函数空 间,称为Hilbert空间。
C( p, t)*C( p, t)dpdp p *( x) p( x)dx C( p, t)*C( p, t)dpdp ( p p)
C( p, t)*C( p, t)dp
C(p,t) 物理意义
|Ψ(x,t)| 2d x 是在Ψ(x,t)所描写的状态中,测量粒子的位置所得结果在
?F
bn (t )
Fnm am (t )
m
F 在 Q 表象中是一个矩阵, Fnm 是其矩阵元
n 1,2,
简写成
写成矩阵形式
b1(t) F11 F12 F1m a1m a2(t)
bn(t)
Fn1
Fn2
Fnm
2 算符的矩阵表示
(1)力学量算符的矩阵表示 (2)Q 表象中力学量算符F的性质 (3)Q 有连续本征值的情况
(1)力学量算符的矩阵表示
坐标表象:
Q表象:
假设只有分立本征值,将 Φ, Ψ按{un(x)}展开:
( x, t) Fˆ ( x, pˆ )( x, t) 代入
Fˆ
(
x,
i
x
)(
x,
t
波函数也可以选用其它变量的函数, 力学量则相应的表示为作用于这种函数上的算符。
表象:量子力学中态和力学量的具体表示方式称为表象。以前采用 的是坐标表象,下面我们要介绍其他表象。
(1)动量表象 (2)力学量表象 (3)讨论
(1)动量表象
在坐标表象中,体系的状态用波函数Ψ(x,t)描写,这样一个态如 何用动量为变量的波函数描写在前面几章中已经有所介绍。
(t
)
m
m
bm (t ) nm Fnm am (t )
m
m
bn (t ) Fnm am (t )
m
Fnm
un
*
(
x
)Fˆ
(
x,
i
x
)um
(
x
)dx
Q表象的 表达方式
Q表象的表达方式
Q 表象 {a m (t)} {b n (t)} Hn m Fn m
坐标表象
→ Φ(x,t)
→
Ψ (x,t)
n
|an(t)|2 是在 Ψ(x,t) 态中测量力学量 Q 所得结果为 Qn 的几率;
在这样的表象中,Ψ 仍可以用一个列矩阵 表示:
|aq(t)|2dq 是在Ψ(x,t) 态中
a1 (t )
测量力学量 Q 所得结果在 q → q + d q之间的几率。
a2(t)
a1(t)*
a2(t)*
Qnm un *( x)Qˆum ( x)dx
Qm un *( x)um ( x)dx
Qm nm
Q1 0
0 Q2 0
Q
0 0 Qn
(3) Q 有连续本征值的情况
1)只有连续本征值
如果 Q只有连续本征值q ,上面的讨论仍然适用, 只需将u, a, b的角标从可数的 n, m 换成连续变 化的q,求和换成积分,见下表。
an(t)*
an
(
t
)
归一化仍可表为:Ψ+Ψ= 1
aq (t )
aq (t ) *
3)讨论
同一状态可以在不同表象用波函数描写,表象不同, 波函数的形式也不同,但是它们描写同一状态。
动量本 征函数
不含时 动量本 征函数
本征 方程
坐标表象 Ψ p ' ( x , t ) = [ 1 / ( 2 π ) ] 1 / 2 e x p [ i ( p ' x - E ' t ) / ] ψp'(x)= [1/(2π)]1/2 exp[ip'x/]
n
由此可知,| an| 2 表示 在Ψ(x,t)所描述的状态 中测量Q得Qn的几率。
写成 矩阵形式
a1(t )
a2(t)
an(t)
共轭矩阵
a1(t)* a2(t)*
an(t)*
归一化可写为
a1 (t ) * a2 (t ) *
an (t ) * an (t ) 1
分立谱
连续谱
算符F在Q表象仍是一个矩阵, 矩阵元由下式确定:
un * ( x),um ( x)
an (t ),bm (t )
n
uq * ( x),uq ( x) aq (t ), bq (t )
an (t ) un * ( x )( x, t )dx
aq (t ) uq * ( x )( x, t )dx
则 ( x, t ) an (t )un ( x) aq (t )uq ( x)dq n
归一化则变为:
an * (t)an (t) aq * (t)aq (t)dq 1
am (t )
Φ=FΨ
例 1:求 Lx 在 L2, Lz 共同表象, =1子空间中的矩阵表示。
令: u1 = Y11 , u2 = Y10 , u3 = Y1-1 则 Lx 的矩阵元可如下计算:
( Lx )ij ui * Lˆ xu jd
Lx矩阵是3×3矩阵
i, j 1,2,3
Lx
1 2
相应本征函数为:u1(x), u2(x), ..., un(x), ...。
若Ψ, un都是归一化的,
则 an(t) 也是归一化的。
将Ψ(x,t) 按 Q 的 本征函数展开:
(x, t) an(t)un( x)
n
an(t) un *(x)(x.t)dx
证:
a1(t), a2(t), ..., an(t), ...
0 1
由此得Lx矩阵元
(Lx)11 = (Lx)22 = (Lx)33 = 0 (Lx)13 = (Lx)31 = 0
Lz在自身表象中具有最简 单形式,是一个对角矩阵,
对角元素就是 Lz的本征值。
(Lx)12 = (Lx)21 = (Lx)23 = (Lx)32 =
/21/2
0 同理可得Ly Lz
1 0
第四章 态和力学量表象
1 态的表象 2 算符的矩阵表示 3 量子力学公式的矩阵表述 4 Dirac 符号 5 Hellmann – Feynman 定理及应用 6 占有数表象 7 么正变换矩阵
1.态的表象
到目前为止,体系的状态都用坐标(x,y,z)的函数表示,也就是说描写 状态的波函数是坐标的函数。力学量则用作用于坐标函数的算符表示。但 是这种描述方式在量子力学中并不是唯一的,正如几何学中选用坐标系不 是唯一的一样。坐标系有直角坐标系、球坐标系、柱坐标系等,但它们对 空间的描写是完全是等价的。
Fmn * F~nm * ( F )nm
所以厄密算符的矩阵 表示是一厄密矩阵。
Ly
0 i
2 0
i 0
0 i i 0
0 i
2 0
i
0
*
0 i
i 0
例2:在例1中给出了 Lx, Ly在 L2,Lz表象中的矩阵 形式,下面我们验证一下
这两个矩阵是厄密矩阵。
L x
0 1
2 0
1 0 1
(
Lˆ
Lˆ )
计算中 使用了
Lx
u1
1 2
( Lˆ
Lˆ
)Y11
1 2 Y10
LYlm l(l 1) m(m 1)Yl,m1
公式
Lx
u2
1 2
( Lˆ
Lˆ
)Y10
1 2 (Y11 Y11 )
写 成
Lxu3
1 2
( Lˆ
Lˆ
)Y11
1 2 Y10
矩 阵
0 1
Lx
1 2 0
0 i 0
Ly
i 0 2 0 i
i 0
1 0 0 Lz 0 0 0
0 0 1
(2)Q表象中力学量算符 F 的性质
1)力学量算符用厄密矩阵表示
Fnm un * ( x)Fˆum ( x)dx
[ un ( x)(Fˆum ( x))* dx]* [ um * ( x)Fˆun ( x)dx]*
)
( x, t )
m
am (t )um ( x)
( x, t)
bm (t )um ( x)
m
bm
(t
)um
(
x)
Fˆ
(
x,i
x
)
am (t)um ( x)
两边左乘 u*n(x) 并对 x 积分
m
m
bm (t) un * um ( x)dx
[
un
*
Fˆ
(
x,i
x
)um
(
x
)dx]am
(2)力学量表象
推广上述讨论: x, p都是力学量,分别对应有坐标表象和动量表象,
因此可以对任何力学量Q都建立一种表象,称为力
问题
学量 Q 表象。
是: 在任一力学量Q表象中, Ψ(x,t) 所描写的态又如何表示呢?