2019最新精品:打包2018年南京市各区中考一模数学试卷含答案
江苏省南京市建邺区2018届数学中考一模试卷含答案解析
江苏省南京市建邺区2018届数学中考一模试卷一、单选题1.下列各数中,相反数、绝对值、平方根、立方根都等于其本身的是()A. 0B. 1C. 0和1D. 1和-1【答案】A【考点】相反数及有理数的相反数,绝对值及有理数的绝对值,平方根,立方根及开立方【解析】【解答】解:∵相反数等于它本身的数是0,平方根等于它本身的数是0,立方根等于它本身的数是0,±1,∴相反数、平方根、立方根都等于它本身的数是0.故答案为:A.【分析】相反数等于它本身的数是0,平方根等于它本身的数是0,立方根等于它本身的数是0,±1,就可得出相反数、平方根、立方根都等于它本身的数。
2.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=4cm,则球的半径长是()A. 2cmB. 2.5cmC. 3cmD. 4cm【答案】B【考点】垂径定理,切线的性质【解析】【解答】解:由题意,⊙O与BC相切,记切点为G,作直线OG,分别交AD、劣弧EF于点H、I,再连接OF,在矩形ABCD中,AD∥BC,而IG⊥BC,∴IG⊥AD,∴在⊙O中,FH= EF=2,设求半径为r,则OH=4-r,在Rt△OFH中,r2-(4-r)2=22,解得r=2.5,∴这个球的半径是2.5厘米.故答案为:B.【分析】由题意,⊙O与BC相切,记切点为G,作直线OG,分别交AD、劣弧EF于点H、I,再连接OF,根据AD∥BC,而IG⊥BC,可得出IG⊥AD,求出FH的长,利用勾股定理,在Rt△OFH中,建立关于r的方程,求解即可。
3.如图①,是一个每条棱长均相等的三棱锥,图②是它的主视图、左视图与俯视图.若边AB的长度为a,则在这三种视图的所有线段中,长度为a的线段条数是()A. 12条B. 9条C. 6条D. 5条【答案】B【考点】简单几何体的三视图【解析】【解答】解:观察三棱锥的三视图,可得主视图中有3条长度为a的线段,左视图中有3条长度为a 的线段,俯视图中有3条长度为a的线段,所以在这三种视图的所有线段中,长度为a的线段条数是3+3+3=9条.故答案为:B.【分析】观察三棱锥的三视图,可得主视图中有3条长度为a的线段,左视图中有3条长度为a的线段,俯视图中有3条长度为a的线段,就可求出在这三种视图的所有线段中,长度为a的线段条数。
江苏省南京市2018-2019年中考一模数学试题(含答案)
中考第一次模拟测试卷数学注意事项:1 .本试卷共 6 页.全卷满分120 分.考试时间为120 分钟.考生答题所有答在答题卡上,答在本试卷上无效.2.请仔细查对监考教师在答题纸上所粘贴条形码的姓名、考试证号能否与自己相切合,再将自己的姓名、准考据号用 0.5 毫米黑色墨水署名笔填写在答题卡上.3.答选择题一定用 2B 铅笔将答题卡上对应的答案标号涂黑.如需变动,请用橡皮擦洁净后,再选涂其余答案.答非选择题一定用 0.5 毫米黑色墨水署名笔写在答题卡上的指定地点,在其余地点答题一律无效.4.作图一定用 2B 铅笔作答,并请加黑加粗,描绘清楚.一、选择题(本大题共 6 小题,每题 2 分,合计12 分.在每题所给出的四个选项中,恰有一项是切合题目要求的,请将正确选项的序号填涂在答题卡上)....1.以下实数中,无理数是1A .2B.- C.3.14 D . 3 22.以下运算正确的选项是A .a2+a3=a5B.a2a3= a6C.a4÷a2=a2 D . (a2 )4=a63 .不透明的布袋中有 2 个红球和 3 个白球,所有球除颜色外无其余差异.某同学从布袋里随意摸出一个球,则他摸出红球的概率是3 2 2 1A .B.C. D .5 5 3 24 .某篮球兴趣小组7 名学生参加投篮竞赛,每人投10 个,投中的个数分别为:8, 5,7,5 , 8,6 , 8 ,则这组数据的众数和中位数分别为A.5,7 B.6,7 C.8 ,5 D.8,75 .如图,AB是⊙O的弦,半径OC⊥AB,AC∥OB,则∠BOC的度数为A.30 °B.45 °C.60 °D.75 °yAOA BC BO xC(第 5题)(第6题)1k6 .如图,△ABC三个极点分别在反比率函数y=x, y =x的图像上,若∠ C=90°,AC∥y 轴, BC∥x 轴, S△ABC=8,则 k 的值为A.3B.4C.5D.6二、填空题(本大题共10 小题,每题 2 分,共 20 分.不需写出解答过程,请把答案直接填写在答题卡相应地点上).......x-27 .若式子在实数范围内存心义,则x 的取值范围是▲.28 . 2017 南京国际马拉松于 4 月 16 日在本市正式开跑.本次参赛选手共12629 人,将12629 用科学记数法表示为▲.9 .因式分解:a3- 2a2+a=▲.10 48 =▲..计算:-211 .已知 x1, x2是方程 x2-4 x+3=0 的两个实数根,则 x1+ x2=▲.12 .将点 A(2,-1)向左平移 3 个单位,再向上平移 4 个单位获得点A′,则点A′的坐标是▲ .13 .如图,点 A、 B、C、 D 都在方格纸的格点上,若△AOB 绕点 O 按逆时针方向旋转到△COD 的地点,则旋转角为▲°.A DC ABD O(第 13 题) E(第 14 题)B CP14 .如图,在平行四边形ABCD 中,点 E 为 AB 边上一点,将△ AED 沿直线 DE 翻折,点 A落在点 P 处,且 DP ⊥ BC,则∠EDP=▲°.15 .如图,正五边形 ABCDE 的边长为 2 ,分别以点 C 、D 为圆心, CD 长为半径画弧,两⌒▲.弧交于点 F ,则 BF 的长为AA BFEF EOGCDBC(第 15 题)(第 16 题)16 .如图,在等腰△ ABC 中, AB = AC = 5, BC = 6 ,半径为 1 的⊙ O 分别与 AB 、 AC 相切于 E 、F 两点, BG 是⊙ O 的切线,切点为 G ,则 BG 的长为▲ .三、解答题(本大题共11 小题,共 88 分.请在答题卡指定地区 内作答,解答时应写出文.......字说明、证明过程或演算步骤)1m 2+ 2m + 1 ,此中 m = 1.17 . (6 分 )先化简,再求代数式的值:(1-m + 2 )÷m 2 - 4x + 3≥x + 1 ,18 . (7 分 )解不等式组2并把解集在数轴上表示出来.3 +4 (x - 1 )>- 9 ,-4-3 -2 -1 0 1 2 3 419 .(7 分 )某学校以随机抽样的方式展开了“中学生喜爱数学的程度”的问卷检查,检查的结果分为 A (不喜爱)、 B (一般)、 C (比较喜爱)、 D (特别喜爱)四个等级,图 1 、图 2 是依据收集的数据绘制的两幅不完好的统计图.请依据统计图供给的信息,回答以下问题:( 1) C 等级所占的圆心角为▲ °;( 2)请直接在图 2 中补全条形统计图;( 3)若该校有学生 1000 人,请依据检查结果,预计“比较喜爱”的学生人数为多少人.某校“中学生喜爱数学的程度”的扇形统计图某校“中学生喜爱数学的程度”的条形统计图人数(人)D 8064C32%6046B A402023% 10%20ABCD等级图 1图 2(第 19 题)20 .(8 分 )如图,在平行四边形ABCD 中,对角线AC、BD 交于点 O,DE∥AC 交 BC 的延长线于点E.(1)求证:△ABC≌△DCE;(2)若CD=CE,求证:AC⊥BD.A DOB C E(第 20 题)21 . (7 分 )运动会上,甲、乙、丙三位同学进行跳绳竞赛,经过“手心手背”游戏决定谁先跳,规则以下:三个人同时各用一只手随机出示手心或手背,若此中有一个人的手势与此外两个不一样,则这人先进行竞赛;若三个人手势同样,则从头决定.那么经过一次“手心手背”游戏,甲同学先跳绳的概率是多少?22 .(6 分 )如图,已知点P 为∠ABC 内一点,利用直尺和圆规确立一条过点P 的直线,分别交 AB、BC 于点E、F,使得BE= BF.(不写作法,保存作图印迹)APB C(第 22 题)23 . (7 分 )如图,用细线悬挂一个小球,小球在竖直平面内的A 、 C 两点间往返摇动, A 点与地面距离AN = 14cm ,小球在最低点 B 时,与地面距离BM =5cm ,∠=66°,AOB求细线 OB 的长度.(参照数据: sin66 °≈0.91 , cos66 °≈0.40 , tan66 °≈2.25 )OACBNM(第 23 题)24 .(7 分 )某水果店销售樱桃,其进价为 40 元 / 千克,按 60 元/ 千克销售,均匀每日可售出100 千克.经检查发现,这类樱桃每降价 1 元 / 千克,每日可多售出 10 千克,若该水果店销售这类樱桃要想每日赢利2240 元,每千克樱桃应降价多少元?25 . (9 分 )已知一元二次方程 x 2- 4 mx + 4m 2+ 2 m -4 =0 ,此中 m 为常数.( 1)若该一元二次方程有实数根,求m 的取值范围.( 2)设抛物线 y = x 2- 4 mx + 4 m 2+2 m -4 的极点为 M ,点 O 为坐标原点,当m 变化时,求线段 MO 长度的最小值.26 . (12 分 )今年暑期,小勇、小红打算从城市A 到城市B 旅行,他们分别选择以下两种交通方案:方案一: 小勇准备从城市 A 坐飞机先到城市 C ,再从城市 C 坐汽车到城市 B ,整个行程中,乘飞机所花的时间比汽车少用3h .如图 1 所示,城市 A 、B 、 C 在一条直线上,且A 、C两地的距离为 2400km ,飞机的均匀速度是汽车的 8倍.方案二:小红准备坐高铁直抵城市,其离城市 A 的距离 y 2( km )与出发时间 x (h )之B间的函数关系如图 2 所示.( 1)AB两地的距离为▲km ;(2)求飞机飞翔的均匀速度;(3)若两家同时出发,请在图 2 中画出小勇离城市A的距离y1与x之间的函数图像,并求出 y1与 x的函数关系式.y( km )3000240018001200A CB 600图 1O( h)1 2 3 4 5 6 7 8 9 10 11x图 2(第 26 题)OP27 .(12 分)定义:当点P在射线OA上时,把的值叫做点 P 在射线 OA 上的射影值;当OA点 P 不在射线 OA 上时,把射线 OA 上与点 P 近来点的射影值,叫做点P 在射线 OA 上的射影值.比如:如图1,△OAB三个极点均在格点上,BP 是 OA 边上的高,则点P 和点 B 在射线 OA 上的射影值均为OP 1=.OA 3BBBDOO AC OA C P A图1图2图3(第 27 题)( 1)在△OAB中,①点 B 在射线 OA 上的射影值小于 1 时,则△OAB是锐角三角形;②点 B 在射线 OA 上的射影值等于 1 时,则△OAB是直角三角形;③点 B 在射线 OA 上的射影值大于 1 时,则△OAB是钝角三角形.此中真命题有A .①②B.②③C.①③ D .①②③(2)已知:点C是射线OA上一点,CA=OA= 1 ,以O为圆心,OA为半径画圆,点B 是⊙ O 上随意点.1①如图 2,若点B在射线OA上的射影值为.求证:直线BC 是⊙ O 的切线.2②如图3,已知 D 为线段BC 的中点,设点 D 在射线OA 上的射影值为x,点 D在射线OB 上的射影值为y,直接写出y 与x 之间的函数关系式.数学参照答案及评分标准说明:本评分标准每题给出了一种或几种解法供参照,假如考生的解法与本解答不一样,参照本评分标准的精神给分.一、选择题(每题 2 分,合计 12 分)题号 1 2 3 4 5 6答案 D C B D C C二、填空题(每题 2 分,合计 20 分)7 .x≥2 8 .1.2629 ×10 4 9.a (a- 1) 2 10.0 11 .412 .( -1 ,3 13 .90°14 .45 °8 11)15 .π16 .15 3三、解答题(本大题共10 小题,合计88 分)17 .(此题 6 分)m +1 (m+ 2)( m- 2)·····································2分解:原式=(m+ 2) 2m +2m- 2=···············································4分m+ 11- 2 1当 m =1时,原式==-.································6分1+ 1 218 .(此题7 分)解:解不等式①,得x≤1.·········································2分解不等式②,得x>-2.·······································4分因此,不等式组的解集是-2<x≤1 .································5分绘图正确(略).··········································7分19 .(此题7 分)(1 )126 ;·················································2分(2 )图略;·················································4分(3)在抽取的样本中,“比较喜爱”数学的人数所占的百分比为1 - 32% - 10% -23% = 35% ,····································5分由此可预计,该校1000 名学生中,“比较喜爱”数学的人数所占的百分比35% ,1000 ×35% = 350 (人).·······································6分答:预计这些学生中,“比较喜爱”数学的人数约有350 人.····················7分20 .(本小题满分8 分)证明:( 1 )∵ 四边形ABCD是平行四边形,∴AB// CD, AB= DC.∴ ∠ABC=∠DCE.∵AC// DE,∴∠ACB =∠DEC. (3)分在△ABC 和△DCE 中,∠ABC=∠DCE,∠ACB=∠DEC , AB=DC .∴△ABC≌△DCE(AAS).·····································4分(2 )由( 1 )知△ABC≌△DCE,则有BC=CE.∵ CD= CE,∴ BC= CD.∴四边形 ABCD 为菱形. (7)分∴AC⊥ BD .·············································8分21 .(此题7 分)列表或树状图表示正确;·······································3分∵共有 8 种等可能的结果,经过一次“手心手背”游戏,小明先跳绳的有 2 种状况·······················5分2 1∴经过一次“手心手背”游戏,小明先跳绳的概率是:=.8 41答:经过一次“手心手背”游戏,小明先跳绳的概率是.······················7分422 .(此题 6 分)方法 1:方法 2:······················································6分23 .(此题7 分)解:过点 A 作 AD⊥ OB 于点 D.由题意得 AN ⊥ MN ,OB⊥ MN , AD ⊥ OB,∴四边形 ANMD 是矩形,O∴DM = AN ,··············································2分A D C设 OB= OA = x cm,在Rt ? OAD 中,∠ODA =90°,BOD x+5-14N Mcos ∠AOD=OA=x ≈0.6 .··································5分解得 x=15cm.经查验, x=15为原方程的解.答:细线 OB 的长度是15cm.·····································7分24 .(本小题满分7 分)解:设每千克樱桃应降价x 元,依据题意,得 (1)分(60 -x- 40 )( 100 + 10 x)= 2240 ................................4分解得: x1=4, x2=6.. (6)分答:每千克樱桃应降价 4 元或 6 元.·································7分25 .(本小题满分9 分)(1 )解法一:∵对于x的一元二次方程x2- 4 mx+ 4m2+ 2 m- 4 = 0 有实数根,∴△=(-4 m)2-4 (4 m2+ 2 m- 4 )=- 8m+16 ≥0 ,·······················3分∴m ≤2.···············································4分解法二:∵ x2-4mx +4 m 2+2 m -4=0,∴(x-2m )2=4-2 m .··················3分∴m ≤2.···············································4分(2 )解法一:y=x2- 4 mx+4 m2+2 m-4 的极点为M为( 2m, 2m- 4 ),····6分∴MO 2=(2m )2+(2 m -4)2=8( m -1)2+8.·························7分∴MO 长度的最小值为2 2 .·····································9分解法二: y= x2-4 mx +4 m 2+2 m -4的极点为 M 为(2 m ,2m -4),················6分∴点 M 在直线 l: y=x -4上,····································7分∴点 O 到 l 的距离即为MO 长度的最小值22.···························9分26 .(本小题满分12 分)解:( 1) 3000 ;·············································2分( 2 )设汽车的速度为x km/h,则飞机的速度为8x km/h ,依据题意得:3000 - 24002400-= 3 ,······································4分x 8 x解之得: x=100.经查验, x=100为原方程的解.则飞机的速度为8 ×100 =800 km/h.答:飞机的速度为800 km/h.····································6分(3 )图略.·············································8分当 0 ≤x≤3 ,y1=800 x.当 3< x≤9,,设函数关系式为y1= kx+ b ,3 k+b= 2400 ,k=100,代入点( 3, 2400 ),( 9 , 3000 )得:解得9 k+b= 3000 b =2100.∴函数关系式为: y1=100 x+2100 (12)分27 .(此题10 分)解:( 1) B. (2)分( 2 )解法一:过点 B 作 BH 垂直 OC ,垂足为H. B1 OH 1 OH 1∵B 在射线 OA 上的射影值为 2 ,∴OA=2 ,∵OB= OA ,∴OB=2 ,O H ACOB 1 OH OB∵CA=OA ,∴=,∴=.又∵∠O=∠O,OC 2 OB OC∴△OHB ∽△OBC .···········································6分∴∠OBC=∠OHB =90°.∴OB⊥ BC,∵点 B 是圆 O 上的一点,∴BC 是圆 O 的切线.·········································8分解法二:连结AB ,过点B作BH垂直OC,垂足为H.1 OH 1 OH 1∵B 在射线 OA 上的射影值为,∴=,∵OB= OA ,∴== cos ∠O ,2 OA 2 OB 2∴∠O= 60 °.∵OB=OA,∴△OBA是等边三角形,∴∠OAB= 60 °....................4分∵AC= OA ,∴AB = AC ,∴∠ABC=∠C,∴∠C=30°... (6)分∴∠OBC=90°.∴OB ⊥BC,∵点 B 是圆 O 上的一点,∴BC 是圆 O 的切线.·········································8分1 3(3 )y= 0 ( ≤x< );·········································10分2 43 3 3y=2 x-(≤x≤)·······································12分2 4 2。
2018年江苏省南京市玄武区中考数学一模试卷及答案详解
2018年江苏省南京市玄武区中考数学一模试卷一、选择题(本大题共6小题,每小题2分,共12分)1.(2分)2的相反数是()A.﹣2B.2C.﹣D.2.(2分)下列运算正确的是()A.2a+3b=5ab B.(﹣a2)3=a6C.(a+b)2=a2+b2D.2a2•3b2=6a2b23.(2分)下列几何体中,主视图、俯视图、左视图都相同的是()A.B.C.D.4.(2分)如图,AB∥CD,直线EF与AB,CD分别交于点E,F,FG平分∠EFD,交AB 于点G,若∠1=72°,则∠2的度数为()A.36°B.30°C.34°D.33°5.(2分)已知二次函数y=x2﹣5x+m的图象与x轴有两个交点,若其中一个交点的坐标为(1,0),则另一个交点的坐标为()A.(﹣1,0)B.(4,0)C.(5,0)D.(﹣6,0)6.(2分)如图,点A的反比例函数y=(x>0)的图象上,点B在反比例函数y=(x >0)的图象上,AB∥x轴,BC⊥x轴,垂足为C,连接AC,若△ABC的面积是6,则k 的值为()A.10B.12C.14D.16二、填空题(本大题共10小题,每小题2分,共20分)7.(2分)一组数据1,6,3,4,5的极差是.8.(2分)若分式在实数范围内有意义,则x的取值范围是.9.(2分)国家统计局的相关数据显示,2017年我国国民生产总值约为830000亿元,用科学记数法表示830000是.10.(2分)分解因式:x3﹣4x=.11.(2分)若关于x的一元二次方程x2﹣2x+a﹣1=0有实数根,则a的取值范围是.12.(2分)如图,在▱ABCD中,DB=DC,AE⊥BD,垂足为E,若∠EAB=46°,则∠C =°.13.(2分)一个圆锥的底面半径为3cm,侧面展开图是半圆,则圆锥的侧面积是cm2.14.(2分)如图,在⊙O中,AE是直径,半径OD⊥弦AB,垂足为C,连接CE,若OC =3,△ACE的面积为12,则CD=.15.(2分)某商场销售一种商品,第一个月将此商品的进价提高20%作为销售价,共获利1200元,第二个月商场搞促销活动,将商品的进价提高15%作为销售价,第二个月的销售量比第一个月增加80件,并且商场第二个月比第一个月多获利300元.设此商品的进价是x元,则可列方程.16.(2分)如图,在△ABC中,∠C=90°,AB=6,AD=2,∠A=60°,点E在边AC 上,将△ADE沿DE翻折,使点A落在点A′处,当A′E⊥AC时,A′B2=.三、解答题(本大题共11小题,共计88分)17.(9分)(1)计算﹣2sin45°+(2﹣π)0﹣()﹣1;(2)解方程x2﹣2x﹣1=018.(7分)先化简,再求值:(+1)÷,其中x=.19.(8分)如图,在▱ABCD中,AC,BD相交于点O,点E,F在BD上,且BE=DF,连接AE,CF.(1)求证:△AOE≌△COF;(2)若AC⊥EF,连接AF,CE,判断四边形AECF的形状,并说明理由.20.(8分)某校组织九年级学生参加汉字听写大赛,并随机抽取部分学生成绩作为样本进行分析,绘制成如下的统计表:九年级抽取部分学生成绩的频率分布表成绩x/分频数频率x<6020.0460≤x<7060.1270≤x<809b80≤x<90a0.3690≤x≤100150.30请根据所给信息,解答下列问题:(1)a=,b=;(2)请补全频数分布直方图;(3)已知该年级有400名学生参加这次比赛,若成绩在90分以上(含90分)的为优,估计该年级成绩为优的有多少人?21.(7分)甲、乙两名同学参加1000米比赛,由于参赛选手较多,将选手随机分A,B,C 三组进行比赛.(1)甲同学恰好在A组的概率是;(2)求甲、乙两人至少有一人在B组的概率.22.(6分)如图,将△ABC沿BC方向平移到△DEF,DE交AC于点G,若BC=2,△GEC 的面积是△ABC面积的一半,求△ABC平移的距离.23.(8分)一辆货车从甲地出发以50km/h的速度匀速驶往乙地,行驶1h后,一辆轿车从乙地出发沿同一条路匀速驶往甲地,轿车行驶0.8h后两车相遇,图中折线ABC表示两车之间的距离y(km)与货车行驶时间x(h)的函数关系.(1)甲乙两地之间的距离是km,轿车的速度是km/h;(2)求线段BC所表示的函数表达式;(3)在图中画出货车与轿车相遇后的y(km)与x(h)的函数图象.24.(8分)如图,甲楼AB高20m,乙楼CD高10m,两栋楼之间的水平距离BD=20m,为了测量某电视塔EF的高度,小明在甲楼楼顶A处观测电视塔塔顶E,测得仰角为37°,小丽在乙楼楼顶C处观测电视塔塔顶E,测得仰角为45°,求电视塔的高度EF.(参考数据:sin37°≈0.6,cos37°≈0.8,tan37°≈0.75,≈1.4,结果保留整数)25.(8分)如图,在四边形ABCD中,AB=AD,∠C=90°,以AB为直径的⊙O交AD 于点E,CD=ED,连接BD交⊙O于点F.(1)求证:BC与⊙O相切;(2)若BD=10,AB=13,求AE的长.26.(9分)甲、乙两公司同时销售一款进价为40元/千克的产品,图①中折线ABC表示甲公司销售价y1(元/千克)与销售量x(千克)之间的函数关系,图②中抛物线表示乙公司销售这款产品获得的利润y2(元)与销售量x(千克)之间的函数关系.(1)分别求出图①中线段AB,图②中抛物线所表示的函数表达式;(2)当该产品销售量为多少千克时,甲,乙两公司获得的利润的差最大?最大值为多少?27.(10分)【操作体验】如图①,已知线段AB和直线l,用直尺和圆规在l上作出所有的点P,使得∠APB=30°,如图②,小明的作图方法如下:第一步:分别以点A,B为圆心,AB长为半径作弧,两弧在AB上方交于点O;第二步:连接OA,OB;第三步:以O为圆心,OA长为半径作⊙O,交l于P1,P2;所以图中P1,P2即为所求的点.(1)在图②中,连接P1A,P1B,说明∠AP1B=30°;【方法迁移】(2)如图③,用直尺和圆规在矩形ABCD内作出所有的点P,使得∠BPC=45°,(不写做法,保留作图痕迹).【深入探究】(3)已知矩形ABCD,BC=2.AB=m,P为AD边上的点,若满足∠BPC=45°的点P 恰有两个,则m的取值范围为.(4)已知矩形ABCD,AB=3,BC=2,P为矩形ABCD内一点,且∠BPC=135°,若点P绕点A逆时针旋转90°到点Q,则PQ的最小值为.2018年江苏省南京市玄武区中考数学一模试卷参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分)1.(2分)2的相反数是()A.﹣2B.2C.﹣D.【分析】根据相反数的定义即可求解.【解答】解:2的相反数等于﹣2.故选:A.【点评】本题考查了相反数的知识,属于基础题,注意熟练掌握相反数的概念是关键.2.(2分)下列运算正确的是()A.2a+3b=5ab B.(﹣a2)3=a6C.(a+b)2=a2+b2D.2a2•3b2=6a2b2【分析】直接利用单项式乘以单项式运算法则以及结合完全平方公式、积的乘方运算法则分别计算得出答案.【解答】解:A、2a+3b,无法计算,故此选项错误;B、(﹣a2)3=﹣a6,故此选项错误;C、(a+b)2=a2+4ab+b2,故此选项错误;D、2a2•3b2=6a2b2,故此选项正确;故选:D.【点评】此题主要考查了单项式乘以单项式运算以及结合完全平方公式、积的乘方运算,正确掌握运算法则是解题关键.3.(2分)下列几何体中,主视图、俯视图、左视图都相同的是()A.B.C.D.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:A、三棱柱的主视图是长方形,左视图是长方形,俯视图是三角形,故此选项不符合题意;B、球的主视图、左视图、俯视图都是半径相同的圆,故此选项符合题意;C、圆锥体的主视图是三角形,左视图是三角形,俯视图是圆及圆心,故此选项不符合题意;D、长方体的主视图是长方形,左视图是长方形,俯视图是长方形,但是每个长方形的长与宽不完全相同,故此选项不符合题意;故选:B.【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.4.(2分)如图,AB∥CD,直线EF与AB,CD分别交于点E,F,FG平分∠EFD,交AB 于点G,若∠1=72°,则∠2的度数为()A.36°B.30°C.34°D.33°【分析】先根据角平分线的定义求出∠GFD的度数,再由平行线的性质即可得出结论.【解答】解:∵AB∥CD,∴∠1=∠EFD=72°,∵FG平分∠EFD,∠EFD=72°,∴∠GFD=∠EFD=×72°=36°,∵AB∥CD,∴∠2=∠GFD=36°.故选:A.【点评】本题考查的是平行线的性质,用到的知识点为;两直线平行,内错角相等.5.(2分)已知二次函数y=x2﹣5x+m的图象与x轴有两个交点,若其中一个交点的坐标为(1,0),则另一个交点的坐标为()A.(﹣1,0)B.(4,0)C.(5,0)D.(﹣6,0)【分析】根据二次函数的解析式结合二次函数的性质可找出二次函数图象的对称轴,再利用二次函数图象与x轴的两交点关于对称轴对称,即可求出抛物线与x轴的另一交点坐标,此题得解.【解答】解:二次函数y=x2﹣5x+m的图象的对称轴为直线x=.∵该二次函数图象与x轴的一个交点坐标为(1,0),∴另一交点坐标为(×2﹣1,0),即(4,0).故选:B.【点评】本题考查了抛物线与x轴的交点以及二次函数的性质,牢记抛物线与x轴的两交点关于对称轴对称是解题的关键.6.(2分)如图,点A的反比例函数y=(x>0)的图象上,点B在反比例函数y=(x >0)的图象上,AB∥x轴,BC⊥x轴,垂足为C,连接AC,若△ABC的面积是6,则k 的值为()A.10B.12C.14D.16【分析】延长BA,交y轴于M,作AN⊥x轴于N,根据反比例函数系数k的几何意义得出S四边形ANCB=S四边形OMBC﹣S四边形OMAN=k﹣4=2S△ABC,由已知条件得出k﹣4=2×6,解得k=16.【解答】解:延长BA,交y轴于M,作AN⊥x轴于N,∵点A的反比例函数y=(x>0)的图象上,AB∥x轴,BC⊥x轴,∴S四边形OMAN=4,∵点B在反比例函数y=(x>0)的图象上,∴S四边形OMBC=k,∵S四边形ANCB=S四边形OMBC﹣S四边形OMAN=k﹣4=2S△ABC,∴k﹣4=2×6,解得k=16,故选:D.【点评】本题考查了反比例函数系数k的几何意义,明确图中矩形的面积为即为比例系数k的绝对值.二、填空题(本大题共10小题,每小题2分,共20分)7.(2分)一组数据1,6,3,4,5的极差是5.【分析】根据极差的定义即可求得.【解答】解:由题意可知,极差为6﹣1=5.故答案为:5.【点评】本题考查了极差的定义,极差反映了一组数据变化范围的大小,求极差的方法是用一组数据中的最大值减去最小值.8.(2分)若分式在实数范围内有意义,则x的取值范围是x≠2.【分析】直接利用分式有意义的条件为分母不为零,进而得出答案.【解答】解:∵分式在实数范围内有意义,∴x的取值范围是:x≠2.故答案为:x≠2.【点评】此题主要考查了分式有意义的条件,正确把握分式的定义是解题关键.9.(2分)国家统计局的相关数据显示,2017年我国国民生产总值约为830000亿元,用科学记数法表示830000是8.3×105.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:用科学记数法表示830000是8.3×105.故答案为:8.3×105.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10.(2分)分解因式:x3﹣4x=x(x+2)(x﹣2).【分析】应先提取公因式x,再对余下的多项式利用平方差公式继续分解.【解答】解:x3﹣4x,=x(x2﹣4),=x(x+2)(x﹣2).故答案为:x(x+2)(x﹣2).【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次因式分解,分解因式一定要彻底,直到不能再分解为止.11.(2分)若关于x的一元二次方程x2﹣2x+a﹣1=0有实数根,则a的取值范围是a≤2.【分析】由方程根的情况,根据根的判别式可得到关于a的不等式,则可求得a的取值范围.【解答】解:∵关于x的一元二次方程x2﹣2x+a﹣1=0有实数根,∴△≥0,即(﹣2)2﹣4(a﹣1)≥0,解得a≤2,故答案为:a≤2.【点评】本题主要考查根的判别式,熟练掌握一元二次方程根的个数与根的判别式的关系是解题的关键.12.(2分)如图,在▱ABCD中,DB=DC,AE⊥BD,垂足为E,若∠EAB=46°,则∠C =68°.【分析】先在△ABE中根据直角三角形两锐角互余求出∠ABE=90°﹣∠EAB=44°.再根据平行四边形的性质得出AB∥CD,那么∠BDC=∠ABE=44°,然后根据等边对等角的性质以及三角形内角和定理求出∠C=(180°﹣∠BDC)=68°.【解答】解:在△ABE中,∵AE⊥BD,垂足为E,∠EAB=46°,∴∠ABE=90°﹣∠EAB=44°.∵四边形ABCD是平行四边形,∴AB∥CD,∴∠BDC=∠ABE=44°,∵DB=DC,∴∠C=(180°﹣∠BDC)=68°,故答案为:68°.【点评】此题考查了平行四边形的性质,三角形内角和定理,平行线的性质,等腰三角形的性质,掌握各性质是解题的关键.13.(2分)一个圆锥的底面半径为3cm,侧面展开图是半圆,则圆锥的侧面积是18πcm2.【分析】利用圆锥侧面展开图的弧长=底面周长,可求得圆锥的底面周长以及圆锥母线长,那么圆锥的侧面积=底面周长×母线长÷2.【解答】解:底面半径为3cm,则底面周长=6πcm,侧面展开图是半圆,则母线长=6π×2÷2π=6cm,∴圆锥的侧面积=×6π×6=18πcm2.【点评】本题利用了圆的周长公式和扇形面积公式求解.14.(2分)如图,在⊙O中,AE是直径,半径OD⊥弦AB,垂足为C,连接CE,若OC =3,△ACE的面积为12,则CD=2.【分析】根据三角形的面积得出AC的长,进而利用垂径定理解答即可.【解答】解:∵△ACE的面积为12,∴△AOC的面积=6=,即,解得:AC=4,∵AE是直径,半径OD⊥弦AB,垂足为C,∴在直角三角形AOC中,OA=,∴CD=OD﹣OC=OA﹣OC=5﹣3=2,故答案为:2【点评】此题考查垂径定理,关键是根据三角形的面积得出AC的长.15.(2分)某商场销售一种商品,第一个月将此商品的进价提高20%作为销售价,共获利1200元,第二个月商场搞促销活动,将商品的进价提高15%作为销售价,第二个月的销售量比第一个月增加80件,并且商场第二个月比第一个月多获利300元.设此商品的进价是x元,则可列方程=﹣80.【分析】设此商品的进价是x元,根据第一个月将此商品的进价提高20%作为销售价,共获利1200元.第二个月商场搞促销活动,将商品的进价提高15%作为销售价,第二个月的销售量比第一个月增加了80件,并且商场第二个月比第一个月多获利300元,可列出方程.【解答】解:方程为:=﹣80,故答案为:=﹣80.【点评】本题考查理解题意的能力,关键是以销售量作为等量关系列方程,求出进价和销售多少件.16.(2分)如图,在△ABC中,∠C=90°,AB=6,AD=2,∠A=60°,点E在边AC 上,将△ADE沿DE翻折,使点A落在点A′处,当A′E⊥AC时,A′B2=20﹣8.【分析】过D作DF⊥AC于F,过A'作A'G⊥BC于G,连接A'B,依据在Rt△ABC中,AC=AB=3,BC=3,在Rt△ADF中,AF=AD=1,DF=,∠DEF=×90°=45°,可得在Rt△DEF中,EF=DF=,进而得出AE=1+=A'E=CG,根据CE =3﹣(1+)=2﹣=A'G,BG=BC﹣CG=3﹣(1+)=2﹣1,利用勾股定理即可得到Rt△A'BG中,A'B2=20﹣8,【解答】解:如图,过D作DF⊥AC于F,过A'作A'G⊥BC于G,连接A'B,在Rt△ABC中,AC=AB=3,BC=3,在Rt△ADF中,AF=AD=1,DF=,由A'E⊥AC,可得∠DEF=×90°=45°,∴在Rt△DEF中,EF=DF=,∴AE=1+=A'E=CG,∴CE=3﹣(1+)=2﹣=A'G,BG=BC﹣CG=3﹣(1+)=2﹣1,∴Rt△A'BG中,A'B2=(2﹣)2+(2﹣1)2=20﹣8,故答案为:20﹣8.【点评】本题主要考查了折叠问题,等腰直角三角形的性质,矩形的性质以及勾股定理的综合应用,解题时注意:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,对应边和对应角相等.三、解答题(本大题共11小题,共计88分)17.(9分)(1)计算﹣2sin45°+(2﹣π)0﹣()﹣1;(2)解方程x2﹣2x﹣1=0【分析】(1)根据二次根式的性质,特殊角三角函数值,零次幂,负整数指数幂,可得答案;(2)根据配方法,可得答案.【解答】解:(1)原式=2﹣2×+1﹣3=﹣2;(2)移项,得x2﹣2x=1,配方,得(x﹣1)2=2,开方,得x﹣1=,x1=1+,x2=1﹣.【点评】本题考查了解一元二次方程,利用配方得出(x﹣1)2=2是解题关键.18.(7分)先化简,再求值:(+1)÷,其中x=.【分析】先根据分式混合元算的法则把原式进行化简,再代入进行计算即可.【解答】解:原式=(+)÷=•=,当x=+1时,原式===.【点评】本题考查了分式的化简求值.解题的关键是对分式的分子分母因式分解及分式混合运算顺序和运算法则.19.(8分)如图,在▱ABCD中,AC,BD相交于点O,点E,F在BD上,且BE=DF,连接AE,CF.(1)求证:△AOE≌△COF;(2)若AC⊥EF,连接AF,CE,判断四边形AECF的形状,并说明理由.【分析】(1)根据SAS即可证明;(2)四边形AECF是菱形,根据对角线垂直的平行四边形是菱形即可判断;【解答】(1)证明:∵四边形ABCD是平行四边形,∴AO=OC,BO=OD,∵BE=DF,∴OE=OF,在△AOE和△COF中,,∴△AOE≌△COF.(2)解:结论:四边形AECF是菱形.理由:∵OA=OC,OE=OF,∴四边形AECF是平行四边形,∵AC⊥EF,∴四边形AECF是菱形.【点评】本题考查平行四边形的性质、全等三角形的判定和性质、菱形的判定等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.20.(8分)某校组织九年级学生参加汉字听写大赛,并随机抽取部分学生成绩作为样本进行分析,绘制成如下的统计表:九年级抽取部分学生成绩的频率分布表成绩x/分频数频率x<6020.0460≤x<7060.1270≤x<809b80≤x<90a0.3690≤x≤100150.30请根据所给信息,解答下列问题:(1)a=18,b=0.18;(2)请补全频数分布直方图;(3)已知该年级有400名学生参加这次比赛,若成绩在90分以上(含90分)的为优,估计该年级成绩为优的有多少人?【分析】(1)由x<60的频数及其频率求出被调查的学生总数,再根据频数=频率×总数求解可得;(2)根据(1)中所求结果补全图形可得;(3)总人数乘以样本中90≤x≤100的频率即可得.【解答】解:(1)本次调查的总人数为2÷0.04=50,则a=50×0.36=18、b=9÷50=0.18,故答案为:18、0.18;(2)补全直方图如下:(3)400×0.30=120,答:估计该年级成绩为优的有120人.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.21.(7分)甲、乙两名同学参加1000米比赛,由于参赛选手较多,将选手随机分A,B,C 三组进行比赛.(1)甲同学恰好在A组的概率是;(2)求甲、乙两人至少有一人在B组的概率.【分析】(1)直接利用概率公式求出甲投放的垃圾恰好是A类的概率;(2)首先利用树状图法列举出所有可能,进而利用概率公式求出答案.【解答】解:(1)因为共有A、B、C三组,而甲同学在A组的只有1种结果,所以甲同学恰好在A组的概率是,故答案为:;(2)画树状图如下:可得一共有9种可能,甲、乙两人至少有一人在B组的有5种,所以甲、乙两人至少有一人在B组的概率为.【点评】此题主要考查了树状图法求概率,正确利用列举出所有可能并熟练掌握概率公式是解题关键.22.(6分)如图,将△ABC沿BC方向平移到△DEF,DE交AC于点G,若BC=2,△GEC 的面积是△ABC面积的一半,求△ABC平移的距离.【分析】直接利用平移的性质得出DE∥AB,进而利用相似三角形的判定与性质得出答案.【解答】解:由平移的性质可知:DE∥AB,则△GEC∽△ABC,故==()2,则=,∵BC=2,∴BE=2﹣.【点评】此题主要考查了平移的性质以及相似三角形的判定与性质,正确得出△GEC∽△ABC是解题关键.23.(8分)一辆货车从甲地出发以50km/h的速度匀速驶往乙地,行驶1h后,一辆轿车从乙地出发沿同一条路匀速驶往甲地,轿车行驶0.8h后两车相遇,图中折线ABC表示两车之间的距离y(km)与货车行驶时间x(h)的函数关系.(1)甲乙两地之间的距离是150km,轿车的速度是75km/h;(2)求线段BC所表示的函数表达式;(3)在图中画出货车与轿车相遇后的y(km)与x(h)的函数图象.【分析】(1)根据函数图象可以解答本题;(2)根据函数图象中的数据可以求得线段BC所表示的函数表达式;(3)根据题意和函数图象可以中画出货车与轿车相遇后的y(km)与x(h)的函数图象.【解答】解:(1)由题意可得,甲乙两地之间的距离是150km,轿车的速度是;(150﹣50×1.8)÷0.8=75km/h,故答案为:150,75;(2)点B的纵坐标是:150﹣50×1=100,∴点B的坐标为(1,100),设线段BC所表示的函数表达式是y=kx+b,,得,∴线段BC所表示的函数表达式是y=﹣125x+225;(3)货车到达乙地用的时间为:150÷50=3(小时),轿车到达甲地用的时间为:150÷75=2,因为货车提前1小时出发,所以它们同时到达目的地,货车与轿车相遇后的y(km)与x(h)的函数图象如右图所示.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.24.(8分)如图,甲楼AB高20m,乙楼CD高10m,两栋楼之间的水平距离BD=20m,为了测量某电视塔EF的高度,小明在甲楼楼顶A处观测电视塔塔顶E,测得仰角为37°,小丽在乙楼楼顶C处观测电视塔塔顶E,测得仰角为45°,求电视塔的高度EF.(参考数据:sin37°≈0.6,cos37°≈0.8,tan37°≈0.75,≈1.4,结果保留整数)【分析】作AM⊥EF、CN⊥EF,设EN=xm,由∠ECN=45°知CN=EN=xm,根据BD =20m、AB=MF=10m、CD=NF=10m可得AM=x+20、EM=x﹣10,由tan∠EAM=列出关于x的方程,解之求得x的值即可得.【解答】解:如图所示,过点A作AM⊥EF于点M,过点C作CN⊥EF于点N,设EN=xm,∵∠ECN=45°,∴CN=EN=xm,∵BD=20m,AB=MF=10m,CD=NF=10m,∴AM=BF=BD+DF=BD+CN=x+20(m),EM=EN﹣MN=EN﹣(MF﹣NF)=x﹣10(m),∵tan∠EAM=,∴=0.75,解得:x=100,则EF=110m,答:电视塔的高度EF约为110m.【点评】此题考查了解直角三角形的应用﹣仰角俯角问题,熟练掌握直角三角形的性质是解本题的关键.25.(8分)如图,在四边形ABCD中,AB=AD,∠C=90°,以AB为直径的⊙O交AD 于点E,CD=ED,连接BD交⊙O于点F.(1)求证:BC与⊙O相切;(2)若BD=10,AB=13,求AE的长.【分析】(1)连接BE,根据全等三角形的性质和判定求出∠ADB=∠CDB=∠CBA,求出∠CBA=90°,根据切线的判定得出即可;(2)连接AF,根据相似三角形的判定和性质求出CD长,即可得出答案.【解答】(1)证明:连接BE,∵AB是⊙O的直径,∴∠AEB=90°,∵∠C=90°,∴∠C=∠BED=90°,在Rt△BED和Rt△BCD中∴Rt△BED≌Rt△BCD(HL),∴∠ADB=∠CDB,∵AD=AB,∴∠ADB=∠DBA,∴∠CDB=∠DBA,∴DC∥AB,∵∠C=90°,∴∠ABC=90°,∵AB是⊙O直径,∴BC与⊙O相切;(2)解:连接AF,∵AB为直径,∠C=90°,∴∠AFB=∠C=90°,∵∠CDB=∠DBA,∴△AFB∽△BCD,∴=,∴=,∴CD=,∴AE=AD﹣DE=AD﹣DC=13﹣=.【点评】本题考查了切线的判定、圆周角定理、平行线的性质和判定、全等三角形的性质和判定、相似三角形的性质好判定等知识点,能灵活运用性质进行推理和计算是解此题的关键.26.(9分)甲、乙两公司同时销售一款进价为40元/千克的产品,图①中折线ABC表示甲公司销售价y1(元/千克)与销售量x(千克)之间的函数关系,图②中抛物线表示乙公司销售这款产品获得的利润y2(元)与销售量x(千克)之间的函数关系.(1)分别求出图①中线段AB,图②中抛物线所表示的函数表达式;(2)当该产品销售量为多少千克时,甲,乙两公司获得的利润的差最大?最大值为多少?【分析】(1)根据题意和函数图象中的数据可以分别求得图①中线段AB,图②中抛物线所表示的函数表达式;(2)根据(1)中的函数表达式和图象中的数据可以求得各段甲,乙两公司获得的利润的差最大值,从而可以解答本题.【解答】解:(1)设图①中线段AB函数解析式为y1=kx+b,,得,即图①中线段AB的函数解析式为y1=﹣0.6x+120,设图②中抛物线所表示的函数表达式为y2=a(x﹣75)2+2250,∵该抛物线过原点,∴0=a(0﹣75)2+2250,得a=﹣0.4,即图②中抛物线所表示的函数表达式为y2=﹣0.4(x﹣75)2+2250;(2)由(1)和函数图象可得,y1=,当0≤x≤80时,甲公司的利润为:(﹣0.6x+120﹣40)x=﹣0.6x2+80x,当80<x≤84时,甲公司的利润为:(72﹣40)x=32x,∴当0≤x≤80时,甲,乙两公司获得的利润的差为:(﹣0.6x2+80x)﹣[﹣0.4(x﹣75)2+2250]=,∴当x=50时,取得最大值500,当80<x≤84时,甲,乙两公司获得的利润的差为:32x﹣[﹣0.4(x﹣75)2+2250]=,∴当x=84时,取得最大值470.4,答:当该产品销售量为50千克时,甲,乙两公司获得的利润的差最大,最大值为500元.【点评】本题考查二次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用二次函数的性质解答.27.(10分)【操作体验】如图①,已知线段AB和直线l,用直尺和圆规在l上作出所有的点P,使得∠APB=30°,如图②,小明的作图方法如下:第一步:分别以点A,B为圆心,AB长为半径作弧,两弧在AB上方交于点O;第二步:连接OA,OB;第三步:以O为圆心,OA长为半径作⊙O,交l于P1,P2;所以图中P1,P2即为所求的点.(1)在图②中,连接P1A,P1B,说明∠AP1B=30°;【方法迁移】(2)如图③,用直尺和圆规在矩形ABCD内作出所有的点P,使得∠BPC=45°,(不写做法,保留作图痕迹).【深入探究】(3)已知矩形ABCD,BC=2.AB=m,P为AD边上的点,若满足∠BPC=45°的点P 恰有两个,则m的取值范围为2≤m<1+.(4)已知矩形ABCD,AB=3,BC=2,P为矩形ABCD内一点,且∠BPC=135°,若点P绕点A逆时针旋转90°到点Q,则PQ的最小值为﹣2.【分析】(1)先根据等边三角形得:∠AOB=60°,则根据圆周角定理可得:∠AP1B=30°;(2)先作等腰直角三角形BEC、BFC,再作△EBC的外接圆,可得圆心角∠BOC=90°,则所对的圆周角都是45°;(3)先确定⊙O,根据同弧所对的圆周角相等可得AD在四边形GEFH内部时符合条件;(4)先确定⊙O,根据圆周角定理正确画出∠BPC=135°,利用勾股定理求OF的长,知道A、P、O在同一直线上时,AP最小,则PQ的值最小,求AE的长,即是AP的长,可得PQ的最小值.【解答】解:(1)∵OA=OB=AB,∴△OAB是等边三角形,∴∠AOB=60°,由图②得:∠AP1B=∠AOB=30°;(2)如图③,①以B、C为圆心,以BC为半径作圆,交AB、DC于E、F,②作BC的中垂线,连接EC,交于O,③以O为圆心,OE为半径作圆,则上所有的点(不包括E、F两点)即为所求;(3)如图④,同理作⊙O,∵BE=BC=2,∴CE=2,∴⊙O的半径为,即OE=OG=,∵OG⊥EF,∴EH=1,∴OH=1,∴GH=﹣1,∴BE≤AB<MB,∴2≤m<2+﹣1,即2≤m<+1,故答案为:2≤m<+1;(4)如图⑤,构建⊙O,使∠COB=90°,在优弧上取一点H,则∠CHB=45°∴∠CPB=135°,由旋转得:△APQ是等腰直角三角形,∴PQ=AP,∴PQ取最小值时,就是AP取最小值,当P与E重合时,即A、P、O在同一直线上时,AP最小,则PQ的值最小,在Rt△AFO中,AF=1,OF=3+1=4,∴AO==,∴AE=﹣=AP,∴PQ=AP=(﹣)=﹣2.故答案为:﹣2.【点评】本题是圆的综合题,也是阅读材料问题,运用类比的思想依次解决问题,本题熟练掌握圆周角定理是关键,是一道不错的几何压轴题.。
江苏省南京市玄武区2018-2019学年第二学期九年级数学一模试卷
一模数学 共6页 第1页2018~2019学年度第二学期九年级测试卷(一)数 学注意事项:1.本试卷共6页.全卷满分120分.考试时间为120分钟.考生答题全部答在答题卡上,答在本试卷上无效. 2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上.3.答选择题必须用2B 铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效. 4.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置.......上) 1.PM 2.5是指大气中直径小于或等于0.000 0025 m 的颗粒物,将数据0.000 0025用科学记数法表示为A .25×10-7B .0.25×10-6C .2.5×10-6D .2.5×10-52.下列计算正确的是A .a ·a 2=a 3B .a +a 2=a 3C .(a 2)3=a 5D .a 2(a +1)=a 3+1 3.数轴上点A 、B 表示的数分别是a 、3,它们之间的距离可以表示为A .a +3B .a -3C .||a +3D .||a -34.下列水平放置的四个几何体中,左视图是四边形的几何体共有A .1个B .2个C .3个D .4个5.一辆汽车从A 地驶往B 地,前13路段为普通公路,其余路段为高速公路.已知汽车在普通公路上行驶的速度为60 km/h ,在高速公路上行驶的速度为100 km/h ,汽车从A 地到B 地一共行驶了2.2 h .设普通公路长、高速公路长分别为x km 、y km ,则可列方程组为A .⎩⎪⎨⎪⎧x =2y ,x 100+y 60=2.2.B .⎩⎪⎨⎪⎧x =2y ,x 60+y 100=2.2.C .⎩⎪⎨⎪⎧2x =y ,x 60+y 100=2.2.D .⎩⎪⎨⎪⎧2x =y ,x 100+y60=2.2. 6.如图,四边形ABCD 和四边形AEFG 均为正方形,连接CF ,DG ,则DGCF=A .23B .22C .33D .32二、填空题(本大题共10小题,每小题2分,共20分.不需写出正方体球圆锥圆柱A BCDEF G(第6题)解答过程,请把答案直接填写在答题卡相应.....位置..上)7.要使二次根式x-1在实数范围内有意义,则实数x的取值范围是▲ .8.方程32x-2x+1=0的解为▲ .9.分解因式:2x2-8x+8=▲ .10.若一个反比例函数的图像经过点(3,2),则该反比例函数图像也经过点(-1,▲ ).11.如图,在△ABC中,点M、N分别在边AB、AC上,且MN∥BC.若AM=2,BM=5,MN=2,则BC=▲ .12.设x1,x2是一元二次方程x2-6x+m=0的两个根,且x1+x2-x1x2=-1,则m=▲ .13.如图,在⊙O中,OA是半径,弦BC⊥OA,D为⌒BmC上一点,连接OB、AD、CD,若∠OBC=50°,则∠ADC=▲ °.14.如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形.若圆锥的底面圆半径r=2cm,扇形的圆心角θ=120°,则该圆锥的母线长l为▲ cm.15.如图,在正八边形ABCDEFGH中,连接AG、HE交于点M,则∠GME=▲ °.16.在△ABC中,AB=AC=5,BC=6,P、Q分别为边BC、AB上的两个点,若△APQ是等腰三角形且△BPQ是直角三角形,则AQ=▲ .三、解答题(本大题共11小题,共88分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)17.(8分)(1)计算:(3.14-π)0+⎝⎛⎭⎫12-1-8×2.(2)解不等式组:⎩⎪⎨⎪⎧2x+3≤x+5,x+23>2-x.18.(6分)先化简,再求值:⎝⎛⎭⎫1+1x-1÷xx2-1,其中x=3-1.19.(9分)甲乙两人在相同条件下完成了10次射击训练,两人的成绩如图所示.AB CM N(第11题)A BCDEHGM(第15题)(第13题)(第14题)乙10次射击训练成绩统计图/环甲10次射击训练成绩条形统计图成绩/一模数学 共6页 第3页根据以上信息,整理分析数据如下:(2)根据训练成绩,你认为选派哪一名队员参赛更好?为什么?20.(7分)一只不透明的袋子中装有分别标注数字为1、2、3的三个小球,这些球除标注的数字外都相同.(1)搅匀后从中任意摸出一个球,标注的数字恰好为2的概率是 ▲ ;(2)搅匀后从中任意摸出一个球,记录下数字后放回袋中并搅匀,再从袋中任意摸出一个球,求两次数字的和大于3的概率.21.(8分)如图,在□ABCD 中,E 、F 为边BC 上两点,BF =CE ,AE =DF .(1)求证 △ABE ≌△DCF ; (2)求证:四边形ABCD 是矩形.(第21题)AB DCE F一模数学 共6页 第4页22.(8分)甲、乙两地之间有一条笔直的公路,快车和慢车分别从甲、乙两地同时出发,沿这条公路匀速相向而行,快车到达乙地后停止行驶,慢车到达甲地后停止行驶.已知快车速度为120 km/h .下图为两车之间的距离y (km )与慢车行驶时间x (h )的部分函数图像. (1)甲、乙两地之间的距离是 ▲ km ;(2)点P 的坐标为(4, ▲ ),解释点P 的实际意义. (3)根据题意,补全函数图像(标明必要的数据).23.(7分)如图,为了测量建筑物CD 的高度,小明在点E 处分别测出建筑物AB 、CD 顶端的仰角∠AEB =30°,∠CED =45°,在点F 处分别测出建筑物AB 、CD 顶端的仰角∠AFB =45°,∠CFD =70°.已知建筑物AB的高度为14 m ,求建筑物CD 的高度(精确到0.1m ).(参考数据:tan70°≈2.75,2≈1.41,3≈1.73.)24.(8分)已知二次函数y =x 2-2mx +2m -1(m 为常数).(1)求证:不论m 为何值,该二次函数的图像与x 轴总有公共点.(2)求证:不论m 为何值,该二次函数的图像的顶点都在函数y =-(x -1)2的图像上.(3)已知点A (a ,-1)、B (a +2,-1),线段AB 与函数y =-(x -1)2的图像有公共点,则a 的取值范围是▲ .(第23题)F BAEDC(第22题)25.(9分)如图,在△ABC中,AB=AC,以AB为直径的⊙O交边AC于点D(点D不与点A重合),交边BC 于点E,过点E作EF⊥AC,垂足为F.(1)求证:EF是⊙O的切线;(2)若AD=7,BE=2.①求⊙O的半径;②连接OC交EF于点M,则OM=▲.(第25题)26.(9分)某企业销售某商品,以“线上”与“线下”相结合的方式一共销售了100件.设该商品线下的销售量为x(10≤x≤90)件,线下销售的每件利润为y1元,线上销售的每件利润为y2元.下图中折线ABC、线段DE分别表示y1、y2与x之间的函数关系.(1)当x=40时,线上的销售量为▲ 件;(2)求线段BC所表示的y1与x之间的函数表达式;(3)当线下的销售量为多少时,售完这100件商品所获得的总利润最大?最大利润是多少?(第26题)一模数学共6页第5页27.(9分)如图,一张半径为3cm的圆形纸片,点O为圆心,将该圆形纸片沿直线l折叠,直线l交⊙O于A、B两点.(1)若折叠后的圆弧恰好经过点O,利用直尺和圆规在图中作出满足条件的一条直线l(不写作法,保留作图痕迹),并求此时线段AB的长度.(2)已知M是⊙O内一点,OM=1cm.①若折叠后的圆弧经过点M,则线段AB长度的取值范围是▲.②若折叠后的圆弧与直线OM相切于点M,则线段AB的长度为▲cm.(备用图)(第27题)一模数学共6页第6页一模数学 共6页 第7页(玄武区)2018~2019学年度第二学期九年级测试卷(一)数学参考答案及评分标准说明:本评分标准每题给出了一种或几种解法供参考.如果考生的解法与本解答不同,参照本评分标准的精神给分.一、选择题(本大题共6小题,每小题2分,共12分)二、填空题(本大题共10小题,每小题2分,共20分)7.x ≥1 8.x =3 9.2(x -2)2 10.-6 11.712.7 13.20 14. 6 15. 67.5 16.209或207三、解答题(本大题共11小题,共88分) 17.(本题8分)(1)解:原式=1+2-4=-1. 4分 (2)解:由①得:x ≤2,由②得:x >1,∴不等式组的解集为1<x ≤2. 8分18.(本题6分)解:⎝⎛⎭⎫1+1x -1÷x x 2-1=⎝ ⎛⎭⎪⎫x -1x -1+1x -1÷x (x +1)(x -1)=x x -1·(x +1)(x -1)x =x +1. 当x =3-1时,原式=3-1+1=3. 6分19.(本题9分)6分(2)我选择甲去参赛.因为甲乙两人平均成绩一样,甲射击成绩的方差小于乙,所以甲的成绩更加稳定,所以选择甲去参赛. 9分20.(本题7分)解:(1)13; 2分(2)所有可能出现的结果有:(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),共有9种,它们出现的可能性相同,所有的结果中,满足“两次数字的和大于3”(记为事件A )的结果有6种,所以P (A )=69=23. 7分21.(本题8分)(1)证明:∵四边形ABCD 是平行四边形, ∴AB =DC . ∵BF =CE ,∴BF -EF =CE -EF ,∴BE =CF . ∵在△ABE 和△DCF 中,⎩⎪⎨⎪⎧AB =DC ,AE =DF ,BE =CF .∴△ABE≌△DCF . 4分一模数学 共6页 第8页(2)证明:∵△ABE ≌△DCF ,∴∠B =∠C . ∵四边形ABCD 是平行四边形, ∴AB ∥CD .∴∠B +∠C =180°. ∴∠B =∠C =90°.∵四边形ABCD 是平行四边形,∠B =90°,∴四边形ABCD 是矩形. 8分 22.(本题8分)解:(1)480;2分 (2)320,两车出发了4小时后,相距320km ,此时快车到达了乙地.5分(3)8分23.(本题7分)解:设CD =xm .∵在Rt △BAE 中,tan ∠AEB =AB AE ,∴AE =ABtan30°=143.∵在Rt △BAF 中,∠AFB =45°,∴AF =AB =14,∴EF =AE +AF =143+14.∵在Rt △DCE 中,∠CED =45°,∴EC =CD =x .∵在Rt △DCF 中,tan ∠CFD =CD CF ,∴CF =CD tan70°=xtan70°.∴x -xtan70°=143+14.∴x =(143+14)×tan70° tan70°-1≈(14×1.73+14)×2.75 2.75-1=22×2.73=60.06≈60.1 m . 因此,建筑物CD 的高度为60.1 m . 7分24.(本题8分)(1)证明:令y =0,则x 2-2mx +2m -1=0.∵a =1,b =-2m ,c =2m -1,∴b 2-4ac =(2m )2-4(2m -1)=4m 2-8m +4=4(m -1)2. ∵ 4(m -1)2≥0, ∴b 2-4ac ≥0.∴一元二次方程x 2-2mx +2m -1=0有实数根.故不论m 取何值,函数y =x 2-2mx +2m -1与x 轴总有公共点. 3分(2)证明:∵y =x 2-2mx +2m -1=(x -m )2-m 2+2m -1=(x -m )2-(m -1)2.∴该函数的顶点坐标为(m ,-(m -1)2)把x =m 代入y =-(x -1)2,得y =-(m -1)2.∴不论m 为何值,该二次函数的顶点坐标都在函数y =-(x -1)2上. 6分 (3)-2≤a ≤2. 8分 25.(本题9分)h一模数学 共6页 第9页(1)证明:连接OE .∵在△ABC 中,AB =AC ,∴∠B =∠C . ∵OB =OE ,∴∠OBE =∠OEB . ∴∠OEB =∠C ,∴OE ∥AC . ∴∠OEF +∠AFE =180°.∵EF ⊥AC 于点F ,∴∠EF A =90°. ∴∠OEF =90°,∴OE ⊥EF .∵OE ⊥EF 于点E ,OE 是⊙O 的半径,∴EF 是⊙O 的切线. 4分(另解:连接OE ,AE ,证OE 是△ABC 的中位线.) (2)①解:连接BD ,AE .∵AB 是⊙O 的直径,∴∠ADB =90°,∠AEB =90°.∴AE ⊥BC . ∵在△ABC 中,AB =AC ,∴CE =BE =2. ∴BC =2BE =4.∵∠ADB +∠CDB =180°,∴∠CDB =90°. 在Rt △ADB 中,∠ADB =90°, ∴BD 2=AB 2-AD 2.在Rt △CDB 中,∠CDB =90°, ∴BD 2=BC 2-CD 2.∴AB 2-AD 2=BC 2-CD 2.设CD =x ,则AB =AC =7+x . ∴(7+x )2-72=42-x 2,∴x =1. ∴AB =7+x =8.∴r =12AB =4.7分(另解:连接ED .易证△EDC 是等腰三角形.设CD =x .易证△ABC ∽△EDC ,∴AB ED =BCCD .∴7+x 2=4x ,∴x =1.∴AB =AC =7+1=8.∴r =12AB =4.) ②OM =1669. 9分26.(本题9分)解:(1)60; 2分(2)设y 1=kx +b (k 、b 为常数,k ≠0),∵图像过点B (70,125)、C (90,105),∴⎩⎪⎨⎪⎧70k +b =125,90k +b =105.解得:⎩⎪⎨⎪⎧k =-1,b =195.∴y 1=-x +195(70≤x ≤90). 5分 (3)设总利润为W 元.因为线下的销售量为x 件,所以线上的销售量为(100-x )件; 根据图像知,线上的每件利润y 2为100元.当10≤x ≤70时,设y 1=k 1x +b 1(k 1、b 1为常数,k 1≠0),∵图像过点A (10,155)、B (70,125),∴⎩⎪⎨⎪⎧10k 1+b 1=155,70k 1+b 1=125.解得:⎩⎪⎨⎪⎧k 1=-12,b 1=160.∴y 1=-12x +160(10≤x ≤70).∴W 1=-12x 2+160x +100(100-x )=-12x 2+60x +10000=-12( x -60)2+11800.一模数学 共6页 第10页∴当x =60时,此时W 1的最大值为11800. 当70≤x ≤90时,y 1=-x +195,∴W 2=-x 2+195x +100(100-x )=-x 2+95x +10000=-(x -47.5)2+12256.25. ∵a =-1<0,∴当70≤x ≤90时,W 2随x 的增大而减小, ∴当x =70时,此时W 2的最大值为11750, 综上,当x =60时,W 的最大值为11800.答:当线下的销售量为60件时,总利润最大,最大值为11800元. 9分27.(本题9分)解:(1)如图,直线l 为所求. 连接AO .∵点P 与点O 关于直线l∴直线l 垂直平分PO . ∴OH =12PO =32. 在Rt △AHO 中,∵AH 2+HO 2=AO 2,∴AH =AO 2-HO 2=332.在⊙O 中,∵PO ⊥AB ,PO 为半径, ∴AB =2AH =33. 分 (2)25≤AB ≤42; 分 (3)26. 9分。
【秦淮区】2018-2019学年下学期中考一模数学试卷及答案
25.(8 分)如图,在□ABCD 中,过 A、B、C 三点的 O 交 AD 于点 E,连接 BE、CE, BE=BC. ⑴求证△BEC∽△CED; ⑵若 BC=10,DE=3.6,求 O 的半径.
8 2 4 (人) 1 4
⑵ 250 25 (人) 50
答:全校九年级男生引体向上测试不及格的人数为 25 人 22、
3 ⑴ (提示:树状图,写出所有等可能的两位数结果)
7
所有两位数的等可能结果有 7 种:30、21、21、12、21、12、12,其中十位数 3
字为 1 占其中 3 种,所以十位数字为 1 的概率为 . 7
x
12.设 x1 、 x2 是 x2 mx 3 0 方程的两个根,且 x1 1 ,则 m x2 =______________.
13.如图,O 的半径为 6,AB 是 O 的弦,半径 OC⊥AB,D 是 O 上一点,∠CDB=22.5°, 则 AB=__________.
(第 13 题)
∴ x m 1=0 ,即 m 1
∴当 m 1时,该函数的图像关于 y 轴对称
20、⑴连接 AC、BD
∵E、F、G、H 分别是 AB、BC、CD、DA 的中点
∴△ABD 中 EH 是中位线, △CBD 中 FG 是中位线
1
1
∴ EH BD , FG BD
2
2
加群获取更多资料 初一:416773028 初二:164205578 初三:312453784 添加微信公众号“南京爱智康”了解更多资讯
2018届南京市联合体中考数学一模试卷含答案解析
题号
1
2
3
4
5
6
答案
D
A
C
C
B
B
二、填空题(本大题共 10 小题,每小题 2 分,共 20 分)
7.±3
8.x≥-3
9.3
10.3(a-1)2
11.5;5.5
12.1;-3
13.(-2, -3); 14.37
15.30
16.6
三、解答题(本大题共 11 小题,共 88 分)
17.(本题 6 分) 解:解①,得 x>-1. ·······································································································2 分 解②,得 x≤3. ···················································································································4 分 2 ∴不等式组的解集为-1<x≤32. ····················································································· 6 分
22.(7 分)如图,在△ABC 中,AD 是 BC 边上的中线,点 E 是 AD 的中点,过点 A 作 AF∥BC 交 BE 的延长线于 F,连接 CF.
(1)求证:△AEF≌△DEB; (2)若∠BAC=90°,求证:四边形 ADCF 是菱形.
(第 22 题)
23.(8 分)如图,在建筑物 AB 上,挂着 35 m 长的宣传条幅 AE,从另一建筑物 CD 的顶 部 D 处看条幅顶端 A 处,仰角为 45°,看条幅底端 E 处,俯角为 37°.求两建筑物间的距离 BC. (参考数据:sin37°≈0.6,cos37°≈0.8, tan37°≈0.75)
2018年南京市玄武区中考数学一模试卷解析版
2018年江苏省南京市玄武区中考数学一模试卷解析版一、选择题(本大题共6小题,每小题2分,共12分)1.(2分)2的相反数是()A.﹣2B.2C.﹣D.【解答】解:2的相反数等于﹣2.故选:A.2.(2分)下列运算正确的是()A.2a+3b=5ab B.(﹣a2)3=a6C.(a+b)2=a2+b2D.2a2•3b2=6a2b2【解答】解:A、2a+3b,无法计算,故此选项错误;B、(﹣a2)3=﹣a6,故此选项错误;C、(a+b)2=a2+4ab+b2,故此选项错误;D、2a2•3b2=6a2b2,故此选项正确;故选:D.3.(2分)下列几何体中,主视图、俯视图、左视图都相同的是()A.B.C.D.【解答】解:A、三棱柱的主视图是长方形,左视图是长方形,俯视图是三角形,故此选项不符合题意;B、球的主视图、左视图、俯视图都是半径相同的圆,故此选项符合题意;C、圆锥体的主视图是三角形,左视图是三角形,俯视图是圆及圆心,故此选项不符合题意;D、长方体的主视图是长方形,左视图是长方形,俯视图是长方形,但是每个长方形的长与宽不完全相同,故此选项不符合题意;故选:B.【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.4.(2分)如图,AB∥CD,直线EF与AB,CD分别交于点E,F,FG平分∠EFD,交AB 于点G,若∠1=72°,则∠2的度数为()A.36°B.30°C.34°D.33°【分析】先根据角平分线的定义求出∠GFD的度数,再由平行线的性质即可得出结论.【解答】解:∵AB∥CD,∴∠1=∠EFD=72°,∵FG平分∠EFD,∠EFD=72°,∴∠GFD=∠EFD=×72°=36°,∵AB∥CD,∴∠2=∠GFD=36°.故选:A.【点评】本题考查的是平行线的性质,用到的知识点为;两直线平行,内错角相等.5.(2分)已知二次函数y=x2﹣5x+m的图象与x轴有两个交点,若其中一个交点的坐标为(1,0),则另一个交点的坐标为()A.(﹣1,0)B.(4,0)C.(5,0)D.(﹣6,0)【分析】根据二次函数的解析式结合二次函数的性质可找出二次函数图象的对称轴,再利用二次函数图象与x轴的两交点关于对称轴对称,即可求出抛物线与x轴的另一交点坐标,此题得解.【解答】解:二次函数y=x2﹣5x+m的图象的对称轴为直线x=.∵该二次函数图象与x轴的一个交点坐标为(1,0),∴另一交点坐标为(×2﹣1,0),即(4,0).故选:B.【点评】本题考查了抛物线与x轴的交点以及二次函数的性质,牢记抛物线与x轴的两交点关于对称轴对称是解题的关键.6.(2分)如图,点A的反比例函数y=(x>0)的图象上,点B在反比例函数y=(x >0)的图象上,AB∥x轴,BC⊥x轴,垂足为C,连接AC,若△ABC的面积是6,则k 的值为()A.10B.12C.14D.16【分析】延长BA,交y轴于M,作AN⊥x轴于N,根据反比例函数系数k的几何意义得出S四边形ANCB=S四边形OMBC﹣S四边形OMAN=k﹣4=2S△ABC,由已知条件得出k﹣4=2×6,解得k=16.【解答】解:延长BA,交y轴于M,作AN⊥x轴于N,∵点A的反比例函数y=(x>0)的图象上,AB∥x轴,BC⊥x轴,∴S四边形OMAN=4,∵点B在反比例函数y=(x>0)的图象上,∴S四边形OMBC=k,∵S四边形ANCB=S四边形OMBC﹣S四边形OMAN=k﹣4=2S△ABC,∴k﹣4=2×6,解得k=16,故选:D.【点评】本题考查了反比例函数系数k的几何意义,明确图中矩形的面积为即为比例系数k的绝对值.二、填空题(本大题共10小题,每小题2分,共20分)7.(2分)一组数据1,6,3,4,5的极差是5.【分析】根据极差的定义即可求得.【解答】解:由题意可知,极差为6﹣1=5.故答案为:5.【点评】本题考查了极差的定义,极差反映了一组数据变化范围的大小,求极差的方法是用一组数据中的最大值减去最小值.8.(2分)若分式在实数范围内有意义,则x的取值范围是x≠2.【分析】直接利用分式有意义的条件为分母不为零,进而得出答案.【解答】解:∵分式在实数范围内有意义,∴x的取值范围是:x≠2.故答案为:x≠2.【点评】此题主要考查了分式有意义的条件,正确把握分式的定义是解题关键.9.(2分)国家统计局的相关数据显示,2017年我国国民生产总值约为830000亿元,用科学记数法表示830000是8.3×105.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:用科学记数法表示830000是8.3×105.故答案为:8.3×105.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10.(2分)分解因式:x3﹣4x=x(x+2)(x﹣2).【分析】应先提取公因式x,再对余下的多项式利用平方差公式继续分解.【解答】解:x3﹣4x,=x(x2﹣4),=x(x+2)(x﹣2).故答案为:x(x+2)(x﹣2).【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次因式分解,分解因式一定要彻底,直到不能再分解为止.11.(2分)若关于x的一元二次方程x2﹣2x+a﹣1=0有实数根,则a的取值范围是a≤2.【分析】由方程根的情况,根据根的判别式可得到关于a的不等式,则可求得a的取值范围.【解答】解:∵关于x的一元二次方程x2﹣2x+a﹣1=0有实数根,∴△≥0,即(﹣2)2﹣4(a﹣1)≥0,解得a≤2,故答案为:a≤2.【点评】本题主要考查根的判别式,熟练掌握一元二次方程根的个数与根的判别式的关系是解题的关键.12.(2分)如图,在▱ABCD中,DB=DC,AE⊥BD,垂足为E,若∠EAB=46°,则∠C =68°.【分析】先在△ABE中根据直角三角形两锐角互余求出∠ABE=90°﹣∠EAB=44°.再根据平行四边形的性质得出AB∥CD,那么∠BDC=∠ABE=44°,然后根据等边对等角的性质以及三角形内角和定理求出∠C=(180°﹣∠BDC)=68°.【解答】解:在△ABE中,∵AE⊥BD,垂足为E,∠EAB=46°,∴∠ABE=90°﹣∠EAB=44°.∵四边形ABCD是平行四边形,∴AB∥CD,∴∠BDC=∠ABE=44°,∵DB=DC,∴∠C=(180°﹣∠BDC)=68°,故答案为:68°.【点评】此题考查了平行四边形的性质,三角形内角和定理,平行线的性质,等腰三角形的性质,掌握各性质是解题的关键.13.(2分)一个圆锥的底面半径为3cm,侧面展开图是半圆,则圆锥的侧面积是18πcm2.【分析】利用圆锥侧面展开图的弧长=底面周长,可求得圆锥的底面周长以及圆锥母线长,那么圆锥的侧面积=底面周长×母线长÷2.【解答】解:底面半径为3cm,则底面周长=6πcm,侧面展开图是半圆,则母线长=6π×2÷2π=6cm,∴圆锥的侧面积=×6π×6=18πcm2.【点评】本题利用了圆的周长公式和扇形面积公式求解.14.(2分)如图,在⊙O中,AE是直径,半径OD⊥弦AB,垂足为C,连接CE,若OC =3,△ACE的面积为12,则CD=2.【分析】根据三角形的面积得出AC的长,进而利用垂径定理解答即可.【解答】解:∵△ACE的面积为12,∴△AOC的面积=6=,即,解得:AC=4,∵AE是直径,半径OD⊥弦AB,垂足为C,∴在直角三角形AOC中,OA=,∴CD=OD﹣OC=OA﹣OC=5﹣3=2,故答案为:2【点评】此题考查垂径定理,关键是根据三角形的面积得出AC的长.15.(2分)某商场销售一种商品,第一个月将此商品的进价提高20%作为销售价,共获利1200元,第二个月商场搞促销活动,将商品的进价提高15%作为销售价,第二个月的销售量比第一个月增加80件,并且商场第二个月比第一个月多获利300元.设此商品的进价是x元,则可列方程=﹣80.【分析】设此商品的进价是x元,根据第一个月将此商品的进价提高20%作为销售价,共获利1200元.第二个月商场搞促销活动,将商品的进价提高15%作为销售价,第二个月的销售量比第一个月增加了80件,并且商场第二个月比第一个月多获利300元,可列出方程.【解答】解:方程为:=﹣80,故答案为:=﹣80.【点评】本题考查理解题意的能力,关键是以销售量作为等量关系列方程,求出进价和销售多少件.16.(2分)如图,在△ABC中,∠C=90°,AB=6,AD=2,∠A=60°,点E在边AC 上,将△ADE沿DE翻折,使点A落在点A′处,当A′E⊥AC时,A′B2=20﹣8.【分析】过D作DF⊥AC于F,过A'作A'G⊥BC于G,连接A'B,依据在Rt△ABC中,AC=AB=3,BC=3,在Rt△ADF中,AF=AD=1,DF=,∠DEF=×90°=45°,可得在Rt△DEF中,EF=DF=,进而得出AE=1+=A'E=CG,根据CE =3﹣(1+)=2﹣=A'G,BG=BC﹣CG=3﹣(1+)=2﹣1,利用勾股定理即可得到Rt△A'BG中,A'B2=20﹣8,【解答】解:如图,过D作DF⊥AC于F,过A'作A'G⊥BC于G,连接A'B,在Rt△ABC中,AC=AB=3,BC=3,在Rt△ADF中,AF=AD=1,DF=,由A'E⊥AC,可得∠DEF=×90°=45°,∴在Rt△DEF中,EF=DF=,∴AE=1+=A'E=CG,∴CE=3﹣(1+)=2﹣=A'G,BG=BC﹣CG=3﹣(1+)=2﹣1,∴Rt△A'BG中,A'B2=(2﹣)2+(2﹣1)2=20﹣8,故答案为:20﹣8.【点评】本题主要考查了折叠问题,等腰直角三角形的性质,矩形的性质以及勾股定理的综合应用,解题时注意:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,对应边和对应角相等.三、解答题(本大题共11小题,共计88分)17.(9分)(1)计算﹣2sin45°+(2﹣π)0﹣()﹣1;(2)解方程x2﹣2x﹣1=0【分析】(1)根据二次根式的性质,特殊角三角函数值,零次幂,负整数指数幂,可得答案;(2)根据配方法,可得答案.【解答】解:(1)原式=2﹣2×+1﹣3=﹣2;(2)移项,得x2﹣2x=1,配方,得(x﹣1)2=2,开方,得x﹣1=,x1=1+,x2=1﹣.【点评】本题考查了解一元二次方程,利用配方得出(x﹣1)2=2是解题关键.18.(7分)先化简,再求值:(+1)÷,其中x=.【分析】先根据分式混合元算的法则把原式进行化简,再代入进行计算即可.【解答】解:原式=(+)÷=•=,当x=+1时,原式===.【点评】本题考查了分式的化简求值.解题的关键是对分式的分子分母因式分解及分式混合运算顺序和运算法则.19.(8分)如图,在▱ABCD中,AC,BD相交于点O,点E,F在BD上,且BE=DF,连接AE,CF.(1)求证:△AOE≌△COF;(2)若AC⊥EF,连接AF,CE,判断四边形AECF的形状,并说明理由.【分析】(1)根据SAS即可证明;(2)四边形AECF是菱形,根据对角线垂直的平行四边形是菱形即可判断;【解答】(1)证明:∵四边形ABCD是平行四边形,∴AO=OC,BO=OD,∵BE=DF,∴OE=OF,在△AOE和△COF中,,∴△AOE≌△COF.(2)解:结论:四边形AECF是菱形.理由:∵OA=OC,OE=OF,∴四边形AECF是平行四边形,∵AC⊥EF,∴四边形AECF是菱形.【点评】本题考查平行四边形的性质、全等三角形的判定和性质、菱形的判定等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.20.(8分)某校组织九年级学生参加汉字听写大赛,并随机抽取部分学生成绩作为样本进行分析,绘制成如下的统计表:九年级抽取部分学生成绩的频率分布表成绩x/分频数频率x<6020.0460≤x<7060.1270≤x<809b80≤x<90a0.3690≤x≤100150.30请根据所给信息,解答下列问题:(1)a=18,b=0.18;(2)请补全频数分布直方图;(3)已知该年级有400名学生参加这次比赛,若成绩在90分以上(含90分)的为优,估计该年级成绩为优的有多少人?【分析】(1)由x<60的频数及其频率求出被调查的学生总数,再根据频数=频率×总数求解可得;(2)根据(1)中所求结果补全图形可得;(3)总人数乘以样本中90≤x≤100的频率即可得.【解答】解:(1)本次调查的总人数为2÷0.04=50,则a=50×0.36=18、b=9÷50=0.18,故答案为:18、0.18;(2)补全直方图如下:(3)400×0.30=120,答:估计该年级成绩为优的有120人.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.21.(7分)甲、乙两名同学参加1000米比赛,由于参赛选手较多,将选手随机分A,B,C 三组进行比赛.(1)甲同学恰好在A组的概率是;(2)求甲、乙两人至少有一人在B组的概率.【分析】(1)直接利用概率公式求出甲投放的垃圾恰好是A类的概率;(2)首先利用树状图法列举出所有可能,进而利用概率公式求出答案.【解答】解:(1)因为共有A、B、C三组,而甲同学在A组的只有1种结果,所以甲同学恰好在A组的概率是,故答案为:;(2)画树状图如下:可得一共有9种可能,甲、乙两人至少有一人在B组的有5种,所以甲、乙两人至少有一人在B组的概率为.【点评】此题主要考查了树状图法求概率,正确利用列举出所有可能并熟练掌握概率公式是解题关键.22.(6分)如图,将△ABC沿BC方向平移到△DEF,DE交AC于点G,若BC=2,△GEC 的面积是△ABC面积的一半,求△ABC平移的距离.【分析】直接利用平移的性质得出DE∥AB,进而利用相似三角形的判定与性质得出答案.【解答】解:由平移的性质可知:DE∥AB,则△GEC∽△ABC,故==()2,则=,∵BC=2,∴BE=2﹣.【点评】此题主要考查了平移的性质以及相似三角形的判定与性质,正确得出△GEC∽△ABC是解题关键.23.(8分)一辆货车从甲地出发以50km/h的速度匀速驶往乙地,行驶1h后,一辆轿车从乙地出发沿同一条路匀速驶往甲地,轿车行驶0.8h后两车相遇,图中折线ABC表示两车之间的距离y(km)与货车行驶时间x(h)的函数关系.(1)甲乙两地之间的距离是150km,轿车的速度是75km/h;(2)求线段BC所表示的函数表达式;(3)在图中画出货车与轿车相遇后的y(km)与x(h)的函数图象.【分析】(1)根据函数图象可以解答本题;(2)根据函数图象中的数据可以求得线段BC所表示的函数表达式;(3)根据题意和函数图象可以中画出货车与轿车相遇后的y(km)与x(h)的函数图象.【解答】解:(1)由题意可得,甲乙两地之间的距离是150km,轿车的速度是;(150﹣50×1.8)÷0.8=75km/h,故答案为:150,75;(2)点B的纵坐标是:150﹣50×1=100,∴点B的坐标为(1,100),设线段BC所表示的函数表达式是y=kx+b,,得,∴线段BC所表示的函数表达式是y=﹣125x+225;(3)货车到达乙地用的时间为:150÷50=3(小时),轿车到达甲地用的时间为:150÷75=2,因为货车提前1小时出发,所以它们同时到达目的地,货车与轿车相遇后的y(km)与x(h)的函数图象如右图所示.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.24.(8分)如图,甲楼AB高20m,乙楼CD高10m,两栋楼之间的水平距离BD=20m,为了测量某电视塔EF的高度,小明在甲楼楼顶A处观测电视塔塔顶E,测得仰角为37°,小丽在乙楼楼顶C处观测电视塔塔顶E,测得仰角为45°,求电视塔的高度EF.(参考数据:sin37°≈0.6,cos37°≈0.8,tan37°≈0.75,≈1.4,结果保留整数)【分析】作AM⊥EF、CN⊥EF,设EN=xm,由∠ECN=45°知CN=EN=xm,根据BD =20m、AB=MF=10m、CD=NF=10m可得AM=x+20、EM=x﹣10,由tan∠EAM=列出关于x的方程,解之求得x的值即可得.【解答】解:如图所示,过点A作AM⊥EF于点M,过点C作CN⊥EF于点N,设EN=xm,∵∠ECN=45°,∴CN=EN=xm,∵BD=20m,AB=MF=10m,CD=NF=10m,∴AM=BF=BD+DF=BD+CN=x+20(m),EM=EN﹣MN=EN﹣(MF﹣NF)=x﹣10(m),∵tan∠EAM=,∴=0.75,解得:x=100,则EF=110m,答:电视塔的高度EF约为110m.【点评】此题考查了解直角三角形的应用﹣仰角俯角问题,熟练掌握直角三角形的性质是解本题的关键.25.(8分)如图,在四边形ABCD中,AB=AD,∠C=90°,以AB为直径的⊙O交AD 于点E,CD=ED,连接BD交⊙O于点F.(1)求证:BC与⊙O相切;(2)若BD=10,AB=13,求AE的长.【分析】(1)连接BE,根据全等三角形的性质和判定求出∠ADB=∠CDB=∠CBA,求出∠CBA=90°,根据切线的判定得出即可;(2)连接AF,根据相似三角形的判定和性质求出CD长,即可得出答案.【解答】(1)证明:连接BE,∵AB是⊙O的直径,∴∠AEB=90°,∵∠C=90°,∴∠C=∠BED=90°,在Rt△BED和Rt△BCD中∴Rt△BED≌Rt△BCD(HL),∴∠ADB=∠CDB,∵AD=AB,∴∠ADB=∠DBA,∴∠CDB=∠DBA,∴DC∥AB,∵∠C=90°,∴∠ABC=90°,∵AB是⊙O直径,∴BC与⊙O相切;(2)解:连接AF,∵AB为直径,∠C=90°,∴∠AFB=∠C=90°,∵∠CDB=∠DBA,∴△AFB∽△BCD,∴=,∴=,∴CD=,∴AE=AD﹣DE=AD﹣DC=13﹣=.【点评】本题考查了切线的判定、圆周角定理、平行线的性质和判定、全等三角形的性质和判定、相似三角形的性质好判定等知识点,能灵活运用性质进行推理和计算是解此题的关键.26.(9分)甲、乙两公司同时销售一款进价为40元/千克的产品,图①中折线ABC表示甲公司销售价y1(元/千克)与销售量x(千克)之间的函数关系,图②中抛物线表示乙公司销售这款产品获得的利润y2(元)与销售量x(千克)之间的函数关系.(1)分别求出图①中线段AB,图②中抛物线所表示的函数表达式;(2)当该产品销售量为多少千克时,甲,乙两公司获得的利润的差最大?最大值为多少?【分析】(1)根据题意和函数图象中的数据可以分别求得图①中线段AB,图②中抛物线所表示的函数表达式;(2)根据(1)中的函数表达式和图象中的数据可以求得各段甲,乙两公司获得的利润的差最大值,从而可以解答本题.【解答】解:(1)设图①中线段AB函数解析式为y1=kx+b,,得,即图①中线段AB的函数解析式为y1=﹣0.6x+120,设图②中抛物线所表示的函数表达式为y2=a(x﹣75)2+2250,∵该抛物线过原点,∴0=a(0﹣75)2+2250,得a=﹣0.4,即图②中抛物线所表示的函数表达式为y2=﹣0.4(x﹣75)2+2250;(2)由(1)和函数图象可得,y1=,当0≤x≤80时,甲公司的利润为:(﹣0.6x+120﹣40)x=﹣0.6x2+80x,当80<x≤84时,甲公司的利润为:(72﹣40)x=32x,∴当0≤x≤80时,甲,乙两公司获得的利润的差为:(﹣0.6x2+80x)﹣[﹣0.4(x﹣75)2+2250]=,∴当x=50时,取得最大值500,当80<x≤84时,甲,乙两公司获得的利润的差为:32x﹣[﹣0.4(x﹣75)2+2250]=,∴当x=84时,取得最大值470.4,答:当该产品销售量为50千克时,甲,乙两公司获得的利润的差最大,最大值为500元.【点评】本题考查二次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用二次函数的性质解答.27.(10分)【操作体验】如图①,已知线段AB和直线l,用直尺和圆规在l上作出所有的点P,使得∠APB=30°,如图②,小明的作图方法如下:第一步:分别以点A,B为圆心,AB长为半径作弧,两弧在AB上方交于点O;第二步:连接OA,OB;第三步:以O为圆心,OA长为半径作⊙O,交l于P1,P2;所以图中P1,P2即为所求的点.(1)在图②中,连接P1A,P1B,说明∠AP1B=30°;【方法迁移】(2)如图③,用直尺和圆规在矩形ABCD内作出所有的点P,使得∠BPC=45°,(不写做法,保留作图痕迹).【深入探究】(3)已知矩形ABCD,BC=2.AB=m,P为AD边上的点,若满足∠BPC=45°的点P 恰有两个,则m的取值范围为2≤m<1+.(4)已知矩形ABCD,AB=3,BC=2,P为矩形ABCD内一点,且∠BPC=135°,若点P绕点A逆时针旋转90°到点Q,则PQ的最小值为﹣2.【分析】(1)先根据等边三角形得:∠AOB=60°,则根据圆周角定理可得:∠AP1B=30°;(2)先作等腰直角三角形BEC、BFC,再作△EBC的外接圆,可得圆心角∠BOC=90°,则所对的圆周角都是45°;(3)先确定⊙O,根据同弧所对的圆周角相等可得AD在四边形GEFH内部时符合条件;(4)先确定⊙O,根据圆周角定理正确画出∠BPC=135°,利用勾股定理求OF的长,知道A、P、O在同一直线上时,AP最小,则PQ的值最小,求AE的长,即是AP的长,可得PQ的最小值.【解答】解:(1)∵OA=OB=AB,∴△OAB是等边三角形,∴∠AOB=60°,由图②得:∠AP1B=∠AOB=30°;(2)如图③,①以B、C为圆心,以BC为半径作圆,交AB、DC于E、F,②作BC的中垂线,连接EC,交于O,③以O为圆心,OE为半径作圆,则上所有的点(不包括E、F两点)即为所求;(3)如图④,同理作⊙O,∵BE=BC=2,∴CE=2,∴⊙O的半径为,即OE=OG=,∵OG⊥EF,∴EH=1,∴OH=1,∴GH=﹣1,∴BE≤AB<MB,∴2≤m<2+﹣1,即2≤m<+1,故答案为:2≤m<+1;(4)如图⑤,构建⊙O,使∠COB=90°,在优弧上取一点H,则∠CHB=45°∴∠CPB=135°,由旋转得:△APQ是等腰直角三角形,∴PQ=AP,∴PQ取最小值时,就是AP取最小值,当P与E重合时,即A、P、O在同一直线上时,AP最小,则PQ的值最小,在Rt△AFO中,AF=1,OF=3+1=4,∴AO==,∴AE=﹣=AP,∴PQ=AP=(﹣)=﹣2.故答案为:﹣2.【点评】本题是圆的综合题,也是阅读材料问题,运用类比的思想依次解决问题,本题熟练掌握圆周角定理是关键,是一道不错的几何压轴题.第21 页共21 页。
2018届南京市联合体数学中考一模试卷((有答案))
江苏省南京市联合体2018届数学中考一模试卷一、单选题1.计算│-5+3│的结果是()A. -8B. 8C. -2D. 2【答案】D【考点】绝对值及有理数的绝对值【解析】【解答】原式= .故答案为:D.【分析】首先根据有理数的加法法则,算出绝对值符号里面的加法,再根据一个负数的绝对值等于它的相反数即可得出答案,2.计算(-xy2)3的结果是()A. -x3y6B. x3y6C. x4y5D. -x4y5【答案】A【考点】积的乘方【解析】【解答】原式= .故答案为:A.【分析】根据积的乘方等于把积中的每一个因式分别乘方,再把所得的幂相乘,即可得出答案。
3.中国是严重缺水的国家之一.若每人每天浪费的水量为0.4 L,那么8 000 000人每天浪费的水量用科学记数法表示为()A. 3.2×108 LB. 3.2×107 LC. 3.2×106 LD. 3.2×105 L【答案】C【考点】科学记数法—表示绝对值较大的数【解析】【解答】由题意可得:(L).故答案为:C.【分析】根据科学记数法的定义,科学记数法的表示形式为a×10 n,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值。
在确定n的值时,等于这个数的整数位数减1,4.如果m=,那么m的取值范围是()A. 3<m<4B. 4<m<5C. 5<m<6D. 6<m<7【答案】C【考点】估算无理数的大小【解析】【解答】∵,,∴.故答案为:C.【分析】的被开方数介于两个完全平方式25,36之间,根据算术平方根的性质,被开方数越大,其算数根也就越大,得出 5 << 6,从而得出答案。
5.在平面直角坐标系中,点A的坐标是(1,3),将点A绕原点O顺时针旋转90°得到点A′,则点A′的坐标是()A. (-3,1)B. (3,-1)C. (-1,3)D. (1,-3)【答案】B【考点】全等三角形的判定与性质,坐标与图形变化﹣旋转【解析】【解答】如图,过点A作AB⊥x轴于点B,过点A′作A′C⊥x轴于点C,∴∠ABO=∠A′CO=90°,∵点A′是由点A绕点O顺时针旋转90°得到的,∴∠AOA′=90°,AO=A′O,∴∠A′OC+∠A′OB=90°,∠A′OB+∠AOB=90°,∴∠A′OC=∠AOB,∴△A′OC≌△AOB,∴OC=OB,A′C=AB,∵点A的坐标为(1,3),∴OC=OB=1,A′C=AB=3,又点A′在第四象限,∴点A′的坐标为(3,-1).故答案为:B.【分析】过点A作AB⊥x轴于点B,过点A′作A′C⊥x轴于点C,根据旋转的性质得出∠AOA′=90°,AO=A′O,根据同角的余角相等得出∠A′OC=∠AOB,然后根据AAS判断出△A′OC≌△AOB,根据全等三角形对应边相等得出OC=OB=1,A′C=AB=3,从而根据点所在的象限得出坐标。
2018年南京市建邺区中考一模数学试卷含答案 精品
2018年初三学情调研试卷(Ⅰ)数 学注意事项:1.本试卷共6页.全卷满分120分.考试时间为120分钟.考生答题全部答在答题卡上,答在本试卷上无效.2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上. 3.答选择题必须用2B 铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效.4.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡...相应位置....上) 1.下列计算结果为负数的是 A .-1+2 B .|-1| C .(-2)2D .-2-12.计算a 5·(-1a)2的结果是A .-a 3B .a 3C .a 7D .a 10 3.若a <22<b ,其中a 、b 为两个连续的整数,则ab 的值为 A .2 B .5 C .6 D .12 4.如图是一几何体的三视图,这个几何体可能是 A .三棱柱B .三棱锥C .圆柱D .圆锥5.如图,已知a ∥b ,∠1=115°,则∠2的度数是 A .45°B .55°C .65°D .85°6.在学习“一次函数与二元一次方程”时,我们知道了两个一次函数图像的交点坐标与其相应的二元一次方程组的解之间的关系.请通过此经验推断:在同一平面直角坐标系中,函数y =5x 2-3x +4与y =4x 2-x +3的图像交点个数有A .0个B .1个C .2个D .无数个主视图左视图俯视图(第4题)a b12(第5题)二、填空题(本大题共10小题,每小题2分,共计20分.不需写出解答过程,请把答案直接填写在答题卡...相应位置....上) 7.若式子x -2在实数范围内有意义,则x 的取值范围是 ▲ . 8.若a -b =3, a +b =-2,则a 2-b 2= ▲ .9.据统计,2018年春节“黄金周”(2月7日至13日)期间,南京共接待游客4 880 000人. 将4 880 000用科学记数法表示为 ▲ .10.若△ABC ∽△A'B'C',相似比为1:3,则△ABC 与△A'B'C'的面积比为 ▲ . 11.已知圆锥的底面半径为1cm ,母线长为3cm ,则其侧面积为 ▲ cm 2(结果保留π). 12.已知关于x 的方程x 2+mx -3=0的一个根是1,则它的另一个根是 ▲ . 13.某校射击队从甲、乙、丙、丁四人中选拔一人参加市运会射击比赛.在选拔赛中,每人射击10次,他们10次成绩的平均数及方差如下表所示.请你根据表中数据选一人参加比赛,最合适的人选是 ▲ .14.在同一平面直角坐标系中,正比例函数y =k 1x 的图像与反比例函数y =k 2x的图像一个交点的坐标是(-2,3),则它们另一个交点的坐标是 ▲ .15.如图,在正十边形A 1A 2A 3A 4A 5A 6A 7A 8A 9A 10中,连接A 1A 4、A 1A 7,则∠A 4A 1A 7= ▲ °. 16.如图①,在等边△ABC 中,CD ⊥AB ,垂足为D ,⊙O 的圆心与点D 重合,⊙O 与线段CD 交于点E ,且CE =4cm .将⊙O 沿DC 方向向上平移1cm 后,如图②,⊙O 恰与△ABC 的边AC 、BC 相切,则等边△ABC 的边长为 ▲ cm .A 5A 6 A 7 A 8A 910A 1 A 2A 3 A 4(第15题)三、解答题(本大题共有11小题,共计88分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.(6分)先化简,再求值:(1a -1b )÷a 2-b2ab,其中a =2+1,b =2-1.18.(6分)解不等式组⎩⎪⎨⎪⎧ x +92≥4,2x -3<0,并写出不等式组的整数解.19.(7分)如图,在四边形ABCD 中,AB ∥CD ,点E 、F 在对角线AC 上,且∠ABF =∠CDE , AE =CF .(1)求证:△ABF ≌△CDE ;(2)当四边形ABCD 满足什么条件时,四边形BFDE 是菱形?为什么?20.(8分)“低碳环保,你我同行”.近两年,南京市区的公共自行车给市民出行带来了极大的方便.图①是公共自行车的实物图,图②是公共自行车的车架示意图,点A 、D 、C 、E 在同一条直线上,CD =30cm ,DF =20cm ,AF =25cm ,FD ⊥AE 于点D ,座杆CE =15cm ,且∠EAB =75°. (1)求AD 的长;(2)求点E 到AB 的距离.(参考数据:sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)图①(第20题)21.(7分)甲、乙两名同学从《奔跑吧兄弟》、《极限挑战》、《最强大脑》三个综艺节目中随机选择一个观看.(1)甲同学观看《最强大脑》的概率是 ▲ ; (2)求甲、乙两名同学观看同一节目的概率.22.(8分)“世界那么大,我想去看看”一句话红遍网络,随着国际货币基金组织正式宣布人民币2018年10月1日加入SDR (特别提款权),以后出国看世界更加方便.为了解某区6 000名初中生对“人民币加入SDR ”知晓的情况,某校数学兴趣小组随机抽取区内部分初中生进行问卷调查,将问卷调查的结果划分为“非常了解”、“比较了解”、“基本了解”、“不了解”四个等级,并将调查结果整理分析,得到下列图表:(1)本次问卷调查抽取的学生共有 ▲ 人,其中“不了解”的学生有 ▲ 人; (2)在扇形统计图中,学生对“人民币加入SDR ”基本了解的区域的圆心角为 ▲ °; (3)根据抽样的结果,估计该区6 000名初中生对“人民币加入SDR ”了解的有多 少人(了解是指“非常了解”、“比较了解”和“基本了解”)?23.(8分)某商场将进货价为每只30元的台灯以每只40元售出,平均每月能售出600只.调查表明,这种台灯的售价每上涨1元,其销售量将减少10只.当这种台灯的售价定为多少元时,每个月的利润恰为10 000元?某区抽取学生对“人民币加入SDR ”知晓情况扇形统计图非常了解 26%比较了解 基本了解不了解24.(9分)货车和轿车分别从甲、乙两地同时出发,沿同一公路相向而行.轿车出发2.4 h后休息,直至与货车相遇后,以原速度继续行驶.设货车出发x h 后,货车、轿车分别到达离甲地y 1 km 和y 2 km 的地方,图中的线段OA 、折线BCDE 分别表示y 1、y 2与x 之间的函数关系.(1)求点D 的坐标,并解释点D 的实际意义; (2)求线段DE 所在直线的函数表达式; (3)当货车出发 ▲ h 时,两车相距20025.(8分)数学活动课上,小君在平面直角坐标系中对二次函数图像的平移进行了研究. 图①是二次函数y =(x -a )2+a3(a为常数)当a =-1、0、1、2时的图像.当a 取不同值时,其图像构成一个“抛物线簇”.小君发现这些二次函数图像的顶点竟然在同一条直线上!(1)小君在图①中发现的“抛物线簇”的顶点所在直线的函数表达式为 ▲ ; (2)如图②,当a =0时,二次函数图像上有一点P (2,4).将此二次函数图像沿着(1) 中发现的直线平移,记二次函数图像的顶点O 与点P 的对应点分别为O 1、P 1.若点P 1到x 轴的距离为5,求平移后二次函数图像所对应的函数表达式. (第25题)26.(10分)如图,直线AB 交⊙O 于C 、D 两点,CE 是⊙O 的直径,CF 平分∠ACE 交⊙O 于点F ,连接EF ,过点F 作FG ∥ED 交AB 于点G . (1)求证:直线FG 是⊙O 的切线;(2)若FG =4,⊙O 的半径为5,求四边形FGDE27.(11分)问题提出平面上,若点P 与A 、B 、C 三点中的任意两点均构成等腰三角形,则称点P 是A 、B 、C 三点的巧妙点.若A 、B 、C 三点构成三角形,也称点P 是△ABC 的巧妙点. 初步思考(1)如图①,在等边△ABC 的内部和外部各作一个△ABC 的巧妙点.(尺规作图,不写作法,保留作图痕迹)(2)如图②,在△ABC 中,AB =AC ,∠BAC =36°,点D 、E 是△ABC 的两个巧妙点, 其中AD =AB ,AE =AC ,BD =BC =CE ,连接DE ,分别交AB 、AC 于点M 、N . 2(3)在△ABC 中,AB =AC ,若存在一点P ,使PB =BA ,P A =PC .点P 可能为△ABC 的巧妙点吗?若可能,请画出示意图,并直接写出∠BAC 的度数;若不可能,请说明理由.建邺区2018年九年级学情分析卷数学参考答案及评分标准说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.一、选择题(每小题2分,共计12分)二、填空题(每小题2分,共计20分)7.x ≥2 8.-6 9.4.88×106 10.1: 9 11.3π 12.-3 13.丁 14.(2,-3) 15.54° 16.1433三、解答题(本大题共11小题,共计88分) 17.(本题6分)解:原式=(b -a ab )·ab(a +b )(a -b )································································ 2分=-1a +b . ···················································································· 4分当a =2+1,b =2-1时,原式=- 1 (2+1)+(2-1)=- 1 22=- 24. ··································· 6分18.(本题6分)解:解不等式①,得x ≥-1. ···································································· 2分解不等式②,得x <32. ······································································· 4分所以不等式组的解集是-1≤x <32. ························································ 5分不等式组的整数解为-1、0、1. ·························································· 6分19.(本题7分)解:(1)∵AB ∥CD ,∴∠BAC =∠DCA .∵AE =CF ,∴AE +EF =CF +EF ,即AF =CE . 又∵∠ABF =∠CDE ,∴△ABF ≌△CDE . ····································································· 3分 (2)当四边形ABCD 满足AB =AD 时,四边形BEDF 是菱形. ·················· 4分连接BD 交AC 于点O ,由(1)△ABF ≌△CDE 得AB =CD ,BF =DE ,∠AFB =∠CED , ∴BF ∥DE .∵AB ∥CD ,AB =CD ,∴四边形ABCD 是平行四边形. 又∵AB =AD ,∴□ABCD 是菱形. ∴BD ⊥AC .∵BF =DE ,BF ∥DE , ∴四边形BEDF 是平行四边形,∴□BEDF 是菱形. ······································································ 7分20.(本题8分)解:(1)在Rt △ADF 中,由勾股定理得,AD =AF 2-FD 2=252-202=15(cm ). ······································· 3分 (2)AE =AD +CD +EC =15+30+15=60(cm ). ···································· 4分过点E 作EH ⊥AB 于H , 在Rt △AEH 中,sin ∠EAH =EHAE, ··················································· 6分 ∴EH =AE ·sin ∠EAH =AB ·sin75°≈ 60×0.97=58.2(cm ).答:点E 到AB 的距离为58.2 cm . ·················································· 8分21.(本题7分)解:(1)13 . ·························································································· 2分(2)分别用A ,B ,C 表示《奔跑吧兄弟》、《极限挑战》、《最强大脑》三个综艺节目,用表格列出所有可能出现的结果:一共有9种可能的结果,它们是等可能的,其中符合要求的有3种.P (甲、乙两名同学观看同一节目)= 39 = 13.答:甲、乙两名同学观看同一节目的概率为 13. ································· 7分22.(本题8分)解:(1)100,20. ··················································································· 2分 (2)72. ·························································································· 4分 (3)6 000×80%=4 800人.答:估计该校6 000名初中生中对“人民币加入SDR ”了解的有4 800人.···· 8分 23.(本题8分)解法一:设这种台灯的售价上涨x 元,( 600-10x ) ( 40+x -30)=10 000, ················································· 4分 解得x 1 =10,x 2=40, ·································································· 6分 ∴当x =10时,40+x =50,当x =40时,40+x =80; ························ 7分解法二:设这种台灯的售价为x 元,[600-10(x -40)] (x -30)=10 000, ·················································· 4分 解得x 1 =50,x 2=80, ·································································· 7分答:当这种台灯的售价定为50或80元时,每个月的利润恰为10 000元. ··········· 8分 24.(本题9分)解:(1)求出点坐标D ( 4,300 ). ······························································ 2分 点D 是指货车出发4h 后,与轿车在距离A 地300 km 处相遇. ·············· 3分 (2)求出点坐标E ( 6.4,0 ). ······························································· 4分 设DE 所在直线的函数表达式为y =kx +b ,将点D ( 4,300 ),E ( 6.4,0)代入y =kx +b 得:⎩⎪⎨⎪⎧4k +b =300,6.4k +b =0, 解得 ⎩⎪⎨⎪⎧b =800,k =-125, ∴DE 所在直线的函数表达式为y =-125x +800. ····························· 7分 (3) 2或5. ····················································································· 9分25.(本题8分)解:(1)y = 13x . ··················································································· 2分(2)点O 1的坐标为 ( 3,1) 或 (-27,-9) ············································· 4分平移后的二次函数的表达式为y =(x -3)2 +1或y =(x +27)2 -9. ·········· 8分26.(本题10分)证明:(1)连接FO ,∵ OF =OC , ∴ ∠OFC =∠OCF . ∵CF 平分∠ACE , ∴∠FCG =∠FCE . ∴∠OFC =∠FCG . ∵ CE 是⊙O 的直径, ∴∠EDG =90°, 又∵FG ∥ED ,∴∠FGC =180°-∠EDG =90°, ∴∠GFC +∠FCG =90° ∴∠GFC +∠OFC =90°, 即∠GFO =90°,∴OF ⊥GF , ···················································································· 4分 又∵OF 是⊙O 半径,∴FG 与⊙O 相切. ··········································································· 5分 (2)延长FO ,与ED 交于点H ,由(1)可知∠HFG =∠FGD =∠GDH =90°, ∴四边形FGDH 是矩形.∴FH ⊥ED , ∴HE =HD .又∵四边形FGDH 是矩形,FG =HD , ∴HE =FG =4.∴ED =8. ························································································· 7分 ∵在R t △OHE 中,∠OHE =90°, ∴OH =OE 2-HE 2=52-42=3.∴FH =FO +OH =5+3=8. ······························································· 9分 S 四边形FGDH =12(FG +ED )·FH =12×(4+8)×8=48. ································ 10分27.(本题11分)解:(1)画对1个巧妙点给一分. ······························································· 2分(2)∵AB =AC ,∠BAC =36°,∴∠ABC =∠ACB =72°,∵AD =AB ,AB =AC ,BD =BC , ∴△ADB ≌△ABC . 同理:△ACE ≌△ABC .∴∠BAD =∠BAC =∠CAE =36°,∠ADB =∠ABD =∠ABC =72°, ∴∠DAE =∠BAD +∠BAC +∠CAE =108°, ∵AD =AB =AC =AE ,∴∠ADE =∠AED =36°=∠BAD ,∴∠BDM =∠BDA -∠MDA =36°,∠BMD =∠ADM +∠DAM =72°=∠ABD ,∴DB =DM . ············································································· 5分 ∵∠DBM =∠ABD ,∠AED =∠BAD ,∴△DAM ∽△DEA ,∴DM DA =DADE,DA 2 =D M ·DE ,∵DM =DB ,∴DA 2 =D B ·DE . ··················································· 7分(3)第一种如图①或图②(只需画一个即可),∠BAC =60°.第二种如图③,∠BAC =36°; 第三种如图④,∠BAC =108°; 第四种如图⑤,∠BAC =120°.(第27题)图①BACPBACP CBPBACPC(第27题)图⑤图④图③以上共四种:60°、36°、108°、120°.········································11分。
∥3套精选试卷∥南京某大学附属中学2018-2019中考一模数学试题
中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.小强是一位密码编译爱好者,在他的密码手册中,有这样一条信息:a﹣b,x﹣y,x+y,a+b,x2﹣y2,a2﹣b2分别对应下列六个字:昌、爱、我、宜、游、美,现将(x2﹣y2)a2﹣(x2﹣y2)b2因式分解,结果呈现的密码信息可能是()A.我爱美B.宜晶游C.爱我宜昌D.美我宜昌【答案】C【解析】试题分析:(x2﹣y2)a2﹣(x2﹣y2)b2=(x2﹣y2)(a2﹣b2)=(x﹣y)(x+y)(a﹣b)(a+b),因为x﹣y,x+y,a+b,a﹣b四个代数式分别对应爱、我,宜,昌,所以结果呈现的密码信息可能是“爱我宜昌”,故答案选C.考点:因式分解.2.若23,则a的值可以是()A.﹣7 B.163C.132D.12【答案】C【解析】根据已知条件得到4<a-2<9,由此求得a的取值范围,易得符合条件的选项.【详解】解:∵23,∴4<a-2<9,∴6<a<1.又a-2≥0,即a≥2.∴a的取值范围是6<a<1.观察选项,只有选项C符合题意.故选C.【点睛】考查了估算无理数的大小,估算无理数大小要用夹逼法.3.若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有两个不相等的实数根,则k的取值范围是()A.k>12B.k≥12C.k>12且k≠1D.k≥12且k≠1【答案】C【解析】根据题意得k-1≠0且△=2²-4(k-1)×(-2)>0,解得:k>12且k≠1.故选C 【点睛】本题考查了一元二次方程ax²+bx+c=0(a≠0)的根的判别式△=b²-4ac,关键是熟练掌握:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.4.关于x的一元二次方程x2﹣23x+m=0有两个不相等的实数根,则实数m的取值范围是()A.m<3 B.m>3 C.m≤3D.m≥3【答案】A【解析】分析:根据关于x的一元二次方程x2-23x+m=0有两个不相等的实数根可得△=(-23)2-4m >0,求出m的取值范围即可.详解:∵关于x的一元二次方程x2-23x+m=0有两个不相等的实数根,∴△=(-23)2-4m>0,∴m<3,故选A.点睛:本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2-4ac.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.5.在数轴上标注了四段范围,如图,则表示8的点落在()A.段①B.段②C.段③D.段④【答案】C【解析】试题分析:1.21=2.32;1.31=3.19;1.5=3.44;1.91=4.5.∵ 3.44<4<4.5,∴1.5<4<1.91,∴1.481.9,8③段上.故选C考点:实数与数轴的关系6.一个不透明的袋子里装着质地、大小都相同的3个红球和2个绿球,随机从中摸出一球,不再放回袋中,充分搅匀后再随机摸出一球.两次都摸到红球的概率是()A.310B.925C.920D.35【答案】A【解析】列表或画树状图得出所有等可能的结果,找出两次都为红球的情况数,即可求出所求的概率:【详解】列表如下:红红红绿绿∵所有等可能的情况数为20种,其中两次都为红球的情况有6种, ∴63P 2010==两次红, 故选A.7.不等式组123122x x -<⎧⎪⎨+≤⎪⎩的正整数解的个数是( )A .5B .4C .3D .2【答案】C【解析】先解不等式组得到-1<x≤3,再找出此范围内的正整数. 【详解】解不等式1-2x <3,得:x >-1, 解不等式12x +≤2,得:x≤3, 则不等式组的解集为-1<x≤3,所以不等式组的正整数解有1、2、3这3个, 故选C . 【点睛】本题考查了一元一次不等式组的整数解,解题的关键是正确得出 一元一次不等式组的解集. 8.下列对一元二次方程x 2+x ﹣3=0根的情况的判断,正确的是( ) A .有两个不相等实数根 B .有两个相等实数根 C .有且只有一个实数根 D .没有实数根【答案】A【解析】根据方程的系数结合根的判别式,即可得出△=13>0,进而即可得出方程x 2+x ﹣3=0有两个不相等的实数根.【详解】∵a=1,b=1,c=﹣3,∴△=b 2﹣4ac=12﹣4×(1)×(﹣3)=13>0, ∴方程x 2+x ﹣3=0有两个不相等的实数根, 故选A .【点睛】本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.9.函数y=ax 2+1与ay x=(a≠0)在同一平面直角坐标系中的图象可能是( ) A . B . C . D .【答案】B【解析】试题分析:分a >0和a <0两种情况讨论:当a >0时,y=ax 2+1开口向上,顶点坐标为(0,1);ay x =位于第一、三象限,没有选项图象符合; 当a <0时,y=ax 2+1开口向下,顶点坐标为(0,1);ay x=位于第二、四象限,B 选项图象符合.故选B .考点:1.二次函数和反比例函数的图象和性质;2.分类思想的应用.10.已知二次函数2(0)y x x a a =-+>,当自变量x 取m 时,其相应的函数值小于0,则下列结论正确的是( )A .x 取1m -时的函数值小于0B .x 取1m -时的函数值大于0C .x 取1m -时的函数值等于0D .x 取1m -时函数值与0的大小关系不确定 【答案】B【解析】画出函数图象,利用图象法解决问题即可; 【详解】由题意,函数的图象为:∵抛物线的对称轴x=1,设抛物线与x轴交于点A、B,2∴AB<1,∵x取m时,其相应的函数值小于0,∴观察图象可知,x=m-1在点A的左侧,x=m-1时,y>0,故选B.【点睛】本题考查二次函数图象上的点的坐标特征,解题的关键是学会利用函数图象解决问题,体现了数形结合的思想.二、填空题(本题包括8个小题)11.如图,在△ABC中,∠A=60°,若剪去∠A得到四边形BCDE,则∠1+∠2=______.【答案】240.【解析】试题分析:∠1+∠2=180°+60°=240°.考点:1.三角形的外角性质;2.三角形内角和定理.12.如图,六边形ABCDEF的六个内角都相等.若AB=1,BC=CD=3,DE=2,则这个六边形的周长等于_________.【答案】2【解析】凸六边形ABCDEF,并不是一规则的六边形,但六个角都是110°,所以通过适当的向外作延长线,可得到等边三角形,进而求解.【详解】解:如图,分别作直线AB、CD、EF的延长线和反向延长线使它们交于点G、H、P.∵六边形ABCDEF的六个角都是110°,∴六边形ABCDEF的每一个外角的度数都是60°.∴△AHF、△BGC、△DPE、△GHP都是等边三角形.∴GC=BC=3,DP=DE=1.∴GH=GP=GC+CD+DP=3+3+1=8,FA=HA=GH-AB-BG=8-1-3=4,EF=PH-HF-EP=8-4-1=1.∴六边形的周长为1+3+3+1+4+1=2.故答案为2.【点睛】本题考查了等边三角形的性质及判定定理;解题中巧妙地构造了等边三角形,从而求得周长.是非常完美的解题方法,注意学习并掌握.13.如图,在平面直角坐标系xOy中,四边形OABC是正方形,点C(0,4),D是OA中点,将△CDO以C为旋转中心逆时针旋转90°后,再将得到的三角形平移,使点C与点O重合,写出此时点D的对应点的坐标:_____.【答案】(4,2).【解析】利用图象旋转和平移可以得到结果.【详解】解:∵△CDO绕点C逆时针旋转90°,得到△CBD′,则BD′=OD=2,∴点D坐标为(4,6);当将点C与点O重合时,点C向下平移4个单位,得到△OAD′′,∴点D向下平移4个单位.故点D′′坐标为(4,2),故答案为(4,2).【点睛】平移和旋转:平移是指在同一平面内,将一个图形整体按照某个直线方向移动一定的距离,这样的图形运动叫做图形的平移运动,简称平移.定义在平面内,将一个图形绕一点按某个方向转动一个角度,这样的运动叫做图形的旋转.这个定点叫做旋转中心,转动的角度叫做旋转角.14.某校园学子餐厅把WIFI密码做成了数学题,小亮在餐厅就餐时,思索了一会,输入密码,顺利地连接到了学子餐厅的网络,那么他输入的密码是______.【答案】143549【解析】根据题中密码规律确定所求即可.【详解】5⊗3⊗2=5×3×10000+5×2×100+5×(2+3)=1510259⊗2⊗4=9×2×10000+9×4×100+9×(2+4)=183654,8⊗6⊗3=8×6×10000+8×3×100+8×(3+6)=482472,∴7⊗2⊗5=7×2×10000+7×5×100+7×(2+5)=143549.故答案为:143549【点睛】本题考查有理数的混合运算,根据题意得出规律并熟练掌握运算法则是解题关键.15.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠P=______°.【答案】30【解析】根据角平分线的定义可得∠PBC=20°,∠PCM=50°,根据三角形外角性质即可求出∠P的度数. 【详解】∵BP是∠ABC的平分线,CP是∠ACM的平分线,∠ABP=20°,∠ACP=50°,∴∠PBC=20°,∠PCM=50°,∵∠PBC+∠P=∠PCM,∴∠P=∠PCM-∠PBC=50°-20°=30°,故答案为:30【点睛】本题考查及角平分线的定义及三角形外角性质,三角形的外角等于和它不相邻的两个内角的和,熟练掌握三角形外角性质是解题关键.16.函数11yx=-的自变量的取值范围是.【答案】x≠1【解析】该题考查分式方程的有关概念根据分式的分母不为0可得X-1≠0,即x≠1那么函数y=的自变量的取值范围是x≠117.如图,从一个直径为1m的圆形铁片中剪出一个圆心角为90°的扇形,再将剪下的扇形围成一个圆锥,则圆锥的底面半径为_____m.2m.【解析】利用勾股定理易得扇形的半径,那么就能求得扇形的弧长,除以2π即为圆锥的底面半径.【详解】解:易得扇形的圆心角所对的弦是直径,∴扇形的半径为:22m,∴扇形的弧长为:2902180π=24πm,∴圆锥的底面半径为:24π÷2π2m.【点睛】本题考查:90度的圆周角所对的弦是直径;圆锥的侧面展开图的弧长等于圆锥的底面周长,解题关键是弧长公式.18.计算tan 260°﹣2sin30°﹣2cos45°的结果为_____. 【答案】1【解析】分别算三角函数,再化简即可.【详解】解:原式=23()-2×12-2×22=1. 【点睛】本题考查掌握简单三角函数值,较基础. 三、解答题(本题包括8个小题)19.如图在由边长为1个单位长度的小正方形组成的12×12网格中,已知点A ,B ,C ,D 均为网格线的交点在网格中将△ABC 绕点D 顺时针旋转90°画出旋转后的图形△A 1B 1C 1;在网格中将△ABC 放大2倍得到△DEF ,使A 与D 为对应点.【答案】(1)见解析(2)见解析【解析】(1)根据旋转变换的定义和性质求解可得; (2)根据位似变换的定义和性质求解可得. 【详解】解:(1)如图所示,△A 1B 1C 1即为所求;(2)如图所示,△DEF 即为所求. 【点睛】本题主要考查作图﹣位似变换与旋转变换,解题的关键是掌握位似变换与旋转变换的定义与性质.20.某景区商店销售一种纪念品,每件的进货价为40元.经市场调研,当该纪念品每件的销售价为50元时,每天可销售200件;当每件的销售价每增加1元,每天的销售数量将减少10件.当每件的销售价为52元时,该纪念品每天的销售数量为件;当每件的销售价x为多少时,销售该纪念品每天获得的利润y最大?并求出最大利润.【答案】(1)180;(2)每件销售价为55元时,获得最大利润;最大利润为2250元.【解析】分析:(1)根据“当每件的销售价每增加1元,每天的销售数量将减少10件”,即可解答;(2)根据等量关系“利润=(售价﹣进价)×销量”列出函数关系式,根据二次函数的性质,即可解答.详解:(1)由题意得:200﹣10×(52﹣50)=200﹣20=180(件),故答案为180;(2)由题意得:y=(x﹣40)[200﹣10(x﹣50)]=﹣10x2+1100x﹣28000=﹣10(x﹣55)2+2250∴每件销售价为55元时,获得最大利润;最大利润为2250元.点睛:此题主要考查了二次函数的应用,根据已知得出二次函数的最值是中考中考查重点,同学们应重点掌握.21.为迎接“世界华人炎帝故里寻根节”,某工厂接到一批纪念品生产订单,按要求在15天内完成,约定这批纪念品的出厂价为每件20元,设第x天(1≤x≤15,且x为整数)每件产品的成本是p元,p与x之间符合一次函数关系,部分数据如表:任务完成后,统计发现工人李师傅第x天生产的产品件数y(件)与x(天)满足如下关系:y=() () 220110401015x x xx x⎧+≤<⎪⎨≤≤⎪⎩,且为整数,且为整数,设李师傅第x天创造的产品利润为W元.直接写出p与x,W与x之间的函数关系式,并注明自变量x 的取值范围:求李师傅第几天创造的利润最大?最大利润是多少元?任务完成后.统计发现平均每个工人每天创造的利润为299元.工厂制定如下奖励制度:如果一个工人某天创造的利润超过该平均值,则该工人当天可获得20元奖金.请计算李师傅共可获得多少元奖金?【答案】(1)W=216260(11020520(1015x x x xx x x⎧-++≤<⎨-+≤≤⎩,为整数),为整数);(2)李师傅第8天创造的利润最大,最大利润是324元;(3)李师傅共可获得160元奖金.【解析】(1)根据题意和表格中的数据可以求得p与x,W与x之间的函数关系式,并注明自变量x的取值范围:(2)根据题意和题目中的函数表达式可以解答本题;(3)根据(2)中的结果和不等式的性质可以解答本题.【详解】(1)设p 与x 之间的函数关系式为p=kx+b ,则有7.538.5k b k b +=⎧⎨+=⎩,解得,0.57k b =⎧⎨=⎩, 即p 与x 的函数关系式为p=0.5x+7(1≤x≤15,x 为整数),当1≤x <10时,W=[20﹣(0.5x+7)](2x+20)=﹣x 2+16x+260,当10≤x≤15时,W=[20﹣(0.5x+7)]×40=﹣20x+520,即W=2x 16260(11020520(1015x x x x x x ⎧-++≤<⎨-+≤≤⎩,为整数),为整数); (2)当1≤x <10时,W=﹣x 2+16x+260=﹣(x ﹣8)2+324,∴当x=8时,W 取得最大值,此时W=324,当10≤x≤15时,W=﹣20x+520,∴当x=10时,W 取得最大值,此时W=320,∵324>320,∴李师傅第8天创造的利润最大,最大利润是324元;(3)当1≤x <10时,令﹣x 2+16x+260=299,得x 1=3,x 2=13,当W >299时,3<x <13,∵1≤x <10,∴3<x <10,当10≤x≤15时,令W=﹣20x+520>299,得x <11.05,∴10≤x≤11,由上可得,李师傅获得奖金的的天数是第4天到第11天,李师傅共获得奖金为:20×(11﹣3)=160(元),即李师傅共可获得160元奖金.【点睛】本题考查了一次函数的应用,二次函数的应用等,明确题意,找出各个量之间的关系,确立函数解析式,利用函数的性质进行解答是关键.22.如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF,求证:AF=DC;若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.【答案】(1)见解析(2)见解析【解析】(1)根据AAS证△AFE≌△DBE,推出AF=BD,即可得出答案.(2)得出四边形ADCF是平行四边形,根据直角三角形斜边上中线性质得出CD=AD,根据菱形的判定推出即可.【详解】解:(1)证明:∵AF∥BC,∴∠AFE=∠DBE.∵E是AD的中点,AD是BC边上的中线,∴AE=DE,BD=CD.在△AFE和△DBE中,∵∠AFE=∠DBE,∠FEA=∠BED,AE=DE,∴△AFE≌△DBE(AAS)∴AF=BD.∴AF=DC.(2)四边形ADCF是菱形,证明如下:∵AF∥BC,AF=DC,∴四边形ADCF是平行四边形.∵AC⊥AB,AD是斜边BC的中线,∴AD=DC.∴平行四边形ADCF是菱形23.为了传承中华优秀传统文化,市教育局决定开展“经典诵读进校园”活动,某校团委组织八年级100名学生进行“经典诵读”选拔赛,赛后对全体参赛学生的成绩进行整理,得到下列不完整的统计图表.组别分数段频次频率A 60≤x<70 17 0.17B 70≤x<80 30 aC 80≤x<90 b 0.45D 90≤x<100 8 0.08请根据所给信息,解答以下问题:表中a=______,b=______;请计算扇形统计图中B组对应扇形的圆心角的度数;已知有四名同学均取得98分的最好成绩,其中包括来自同一班级的甲、乙两名同学,学校将从这四名同学中随机选出两名参加市级比赛,请用列表法或画树状图法求甲、乙两名同学都被选中的概率.【答案】(1)0.3 ,45;(2)108°;(3)16.【解析】(1)首先根据A组频数及其频率可得总人数,再利用频数、频率之间的关系求得a、b;(2)B组的频率乘以360°即可求得答案;(2)画树形图后即可将所有情况全部列举出来,从而求得恰好抽中者两人的概率;【详解】(1)本次调查的总人数为17÷0.17=100(人),则a=30100=0.3,b=100×0.45=45(人).故答案为0.3,45;(2)360°×0.3=108°.答:扇形统计图中B组对应扇形的圆心角为108°.(3)将同一班级的甲、乙学生记为A、B,另外两学生记为C、D,画树形图得:∵共有12种等可能的情况,甲、乙两名同学都被选中的情况有2种,∴甲、乙两名同学都被选中的概率为212=16.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.如图,△ABC中,CD是边AB上的高,且AD CD CD BD.求证:△ACD∽△CBD;求∠ACB的大小.【答案】(1)证明见试题解析;(2)90°.【解析】试题分析:(1)由两边对应成比例且夹角相等的两个三角形相似,即可证明△ACD∽△CBD;(2)由(1)知△ACD∽△CBD,然后根据相似三角形的对应角相等可得:∠A=∠BCD,然后由∠A+∠ACD=90°,可得:∠BCD+∠ACD=90°,即∠ACB=90°.试题解析:(1)∵CD是边AB上的高,∴∠ADC=∠CDB=90°,∵AD CD.CD BD∴△ACD∽△CBD;(2)∵△ACD∽△CBD,∴∠A=∠BCD,在△ACD中,∠ADC=90°,∴∠A+∠ACD=90°,∴∠BCD+∠ACD=90°,即∠ACB=90°.考点:相似三角形的判定与性质.25.省教育厅决定在全省中小学开展“关注校车、关爱学生”为主题的交通安全教育宣传周活动,某中学为了了解本校学生的上学方式,在全校范围内随机抽查了部分学生,将收集的数据绘制成如下两幅不完整的统计图(如图所示),请根据图中提供的信息,解答下列问题.m= %,这次共抽取名学生进行调查;并补全条形图;在这次抽样调查中,采用哪种上学方式的人数最多?如果该校共有1500名学生,请你估计该校骑自行车上学的学生有多少名?【答案】(1)、26%;50;(2)、公交车;(3)、300名.【解析】试题分析:(1)、用1减去其它3个的百分比,从而得出m的值;根据乘公交车的人数和百分比得出总人数,然后求出骑自行车的人数,将图形补全;(2)、根据条形统计图得出哪种人数最多;(3)、根据全校的总人数×骑自行车的百分比得出人数.试题解析:(1)、1﹣14%﹣20%﹣40%=26%;20÷40%=50;骑自行车人数:50-20-13-7=10(名) 则条形图如图所示:(2)、由图可知,采用乘公交车上学的人数最多(3)、该校骑自行车上学的人数约为:1500×20%=300(名).答:该校骑自行车上学的学生有300名.考点:统计图26.解方程(2x+1)2=3(2x+1)【答案】x1=-12,x2=1【解析】试题分析:分解因式得出(2x+1)(2x+1﹣3)=0,推出方程2x+1=0,2x+1﹣3=0,求出方程的解即可.试题解析:解:整理得:(2x+1)2-3(2x+1)=0,分解因式得:(2x+1)(2x+1﹣3)=0,即2x+1=0,2x+1﹣3=0,解得:x1=﹣12,x2=1.点睛:本题考查了解一元一次方程和解一元二次方程的应用,解答此题的关键是把一元二次方程转化成解一元一次方程,题目比较典型,难度不大.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.已知抛物线y=ax 2+bx+c 的图象如图所示,顶点为(4,6),则下列说法错误的是( )A .b 2>4acB .ax 2+bx+c≤6C .若点(2,m )(5,n )在抛物线上,则m >nD .8a+b=0【答案】C【解析】观察可得,抛物线与x 轴有两个交点,可得240b ac - ,即24b ac > ,选项A 正确;抛物线开口向下且顶点为(4,6)可得抛物线的最大值为6,即26ax bx c ++≤,选项B 正确;由题意可知抛物线的对称轴为x=4,因为4-2=2,5-4=1,且1<2,所以可得m<n ,选项C 错误; 因对称轴42b x a=-= ,即可得8a+b=0,选项D 正确,故选C.点睛:本题主要考查了二次函数y=ax 2+bx+c 图象与系数的关系,解决本题的关键是从图象中获取信息,利用数形结合思想解决问题,本题难度适中.2.如图,C ,B 是线段AD 上的两点,若AB CD =,2BC AC =,则AC 与CD 的关系为( )A .2CD AC =B .3CD AC = C .4CD AC = D .不能确定 【答案】B【解析】由AB=CD ,可得AC=BD ,又BC=2AC ,所以BC=2BD ,所以CD=3AC.【详解】∵AB=CD ,∴AC+BC=BC+BD ,即AC=BD ,又∵BC=2AC ,∴BC=2BD ,∴CD=3BD=3AC.故选B .【点睛】本题考查了线段长短的比较,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍转化线段之间的数量关系是十分关键的一点.3.如图所示,点E 是正方形ABCD 内一点,把△BEC 绕点C 旋转至△DFC 位置,则∠EFC 的度数是( )A .90°B .30°C .45°D .60°【答案】C 【解析】根据正方形的每一个角都是直角可得∠BCD=90°,再根据旋转的性质求出∠ECF=∠BCD=90°,CE=CF ,然后求出△CEF 是等腰直角三角形,然后根据等腰直角三角形的性质解答.【详解】∵四边形ABCD 是正方形,∴∠BCD=90°,∵△BEC 绕点C 旋转至△DFC 的位置,∴∠ECF=∠BCD=90°,CE=CF ,∴△CEF 是等腰直角三角形,∴∠EFC=45°.故选:C.【点睛】本题目是一道考查旋转的性质问题——每对对应点到旋转中心的连线的夹角都等于旋转角度,每对对应边相等,故CEF ∆ 为等腰直角三角形.4.某公园里鲜花的摆放如图所示,第①个图形中有3盆鲜花,第②个图形中有6盆鲜花,第③个图形中有11盆鲜花,……,按此规律,则第⑦个图形中的鲜花盆数为()A .37B .38C .50D .51【答案】D【解析】试题解析: 第①个图形中有3 盆鲜花,第②个图形中有336+=盆鲜花,第③个图形中有33511++=盆鲜花,…第n 个图形中的鲜花盆数为23357(21)2n n ++++⋯++=+,则第⑥个图形中的鲜花盆数为26238.+=故选C.5.已知:如图,AD 是△ABC 的角平分线,且AB :AC=3:2,则△ABD 与△ACD 的面积之比为( )A .3:2B .9:4C .2:3D .4:9【答案】A 【解析】试题解析:过点D 作DE ⊥AB 于E ,DF ⊥AC 于F.∵AD 为∠BAC 的平分线,∴DE=DF ,又AB:AC=3:2, 11:():():3:222ABD ACD S S AB DE AC DF AB AC ∴=⋅⋅==, 故选A.点睛:角平分线上的点到角两边的距离相等.6.如图,比例规是一种画图工具,它由长度相等的两脚AC 和BD 交叉构成,利用它可以把线段按一定的比例伸长或缩短.如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使OA=3OC ,OB=3OD ),然后张开两脚,使A ,B 两个尖端分别在线段a 的两个端点上,当CD=1.8cm 时,则AB 的长为( )A .7.2 cmB .5.4 cmC .3.6 cmD .0.6 cm【答案】B 【解析】由已知可证△ABO ∽CDO,故CD OC AB OA = ,即1.813AB =. 【详解】由已知可得,△ABO ∽CDO, 所以,CD OC AB OA= , 所以,1.813AB =, 所以,AB=5.4故选B【点睛】本题考核知识点:相似三角形. 解题关键点:熟记相似三角形的判定和性质.7.某中学为了创建“最美校园图书屋”,新购买了一批图书,其中科普类图书平均每本书的价格是文学类图书平均每本书价格的1.2倍.已知学校用12000元购买文学类图书的本数比用这些钱购买科普类图书的本数多100本,那么学校购买文学类图书平均每本书的价格是多少元?设学校购买文学类图书平均每本书的价格是x元,则下面所列方程中正确的是()A.1200012000100 1.2x x=+B.12000120001001.2x x=+C.1200012000100 1.2x x=-D.12000120001001.2x x=-【答案】B【解析】首先设文学类图书平均每本的价格为x元,则科普类图书平均每本的价格为1.2x元,根据题意可得等量关系:学校用12000元购买文学类图书的本数比用这些钱购买科普类图书的本数多100本,根据等量关系列出方程,【详解】设学校购买文学类图书平均每本书的价格是x元,可得:12000120001001.2x x=+故选B.【点睛】此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.8.如图,△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC的方向平移,得到△A′B′C′,再将△A′B′C′绕点A′逆时针旋转一定角度后,点B′恰好与点C重合,则平移的距离和旋转角的度数分别为()A.4,30°B.2,60°C.1,30°D.3,60°【答案】B【解析】试题分析:∵∠B=60°,将△ABC沿射线BC的方向平移,得到△A′B′C′,再将△A′B′C′绕点A′逆时针旋转一定角度后,点B′恰好与点C重合,∴∠A′B′C=60°,AB=A′B′=A′C=4,∴△A′B′C是等边三角形,∴B′C=4,∠B′A′C=60°,∴BB′=6﹣4=2,∴平移的距离和旋转角的度数分别为:2,60°故选B.考点:1、平移的性质;2、旋转的性质;3、等边三角形的判定9.下列事件中必然发生的事件是( )A .一个图形平移后所得的图形与原来的图形不全等B .不等式的两边同时乘以一个数,结果仍是不等式C .200件产品中有5件次品,从中任意抽取6件,至少有一件是正品D .随意翻到一本书的某页,这页的页码一定是偶数【答案】C【解析】直接利用随机事件、必然事件、不可能事件分别分析得出答案.【详解】A 、一个图形平移后所得的图形与原来的图形不全等,是不可能事件,故此选项错误; B 、不等式的两边同时乘以一个数,结果仍是不等式,是随机事件,故此选项错误;C 、200件产品中有5件次品,从中任意抽取6件,至少有一件是正品,是必然事件,故此选项正确;D 、随意翻到一本书的某页,这页的页码一定是偶数,是随机事件,故此选项错误;故选C .【点睛】此题主要考查了随机事件、必然事件、不可能事件,正确把握相关定义是解题关键.10.若二次函数22y x x m =-+的图像与x 轴有两个交点,则实数m 的取值范围是( )A .m 1≥B .1mC .1mD .1m <【答案】D【解析】由抛物线与x 轴有两个交点可得出△=b 2-4ac >0,进而可得出关于m 的一元一次不等式,解之即可得出m 的取值范围.【详解】∵抛物线y=x 2-2x+m 与x 轴有两个交点,∴△=b 2-4ac=(-2)2-4×1×m >0,即4-4m >0,解得:m <1.故选D .【点睛】本题考查了抛物线与x 轴的交点,牢记“当△=b 2-4ac >0时,抛物线与x 轴有2个交点”是解题的关键.二、填空题(本题包括8个小题)11.若a ,b 互为相反数,则a 2﹣b 2=_____.【答案】1【解析】直接利用平方差公式分解因式进而结合相反数的定义分析得出答案.【详解】∵a ,b 互为相反数,∴a+b=1,∴a 2﹣b 2=(a+b )(a ﹣b )=1,故答案为1.【点睛】本题考查了公式法分解因式以及相反数的定义,正确分解因式是解题关键.12.如图,在正方形ABCD 中,边长为2的等边三角形AEF 的顶点E 、F 分别在BC 和CD 上,下列结论:①CE=CF ;②∠AEB=75°;③BE+DF=EF ;④S 正方形ABCD =23+.其中正确的序号是 (把你认为正确的都填上).【答案】①②④【解析】分析:∵四边形ABCD 是正方形,∴AB=AD 。
江苏省南京市联合体2018届中考一模数学试题(含答案)
0— 50 时为 1 级, 质量为优; 51— 100
时为 2 级,质量为良; 101— 200 时为 3 级,轻度污染; 201 — 300 时为 4 级,中度污染; 300 以上时为 5 级,重度污染.某城市随机抽取了 2015 年某些天的空气质量检测结果,并整理绘制成如下两幅不完
整的统计图.请根据图中信息,解答下列各题: ( 1)本次调查共抽取了 ( 2)补全条形统计图; ( 3)扇形统计图中 3 级空气质量所对应的圆心角为 ____▲ ____° ; 2015 ____ ▲ ___天的空气质量检测结果进行统计;
江苏省南京市联合体
注意事项: 1.本试卷共 无效. 6 页.全卷满分 120 分.考试时间为
2018 届中考一模
数学试题 ( 含答案 )
120 分钟.考生答题全部答在答题卡上,答在本试卷上
2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、 准考证号用 0.5 毫米黑色墨水签字笔填写在答题卡及本试卷上. 3.答选择题必须用 2B 铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他 0.5 毫米黑色墨水签字笔写在答题卡上的指定位置, 在其他位置答题一律无效.
C
(第 19 题)
20. ( 8 分)小明参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道单选题有 二道单选题有 4 个选项,这两道题小明都不会,不过小明还有一个 . ____▲ ______.
3 个选项,第
“ 求助 ” 没有用(使用 “ 求助 ” 可以让
主持人去掉其中一题的一个错误选项) ( 1)如果小明第一题不使用
16.如图, A 、 B 是反比例函数
D ( 0,- 1.5) ,若△ ABC 的面积为 7,则点 B 的坐标为
2018届南京市建邺区数学中考一模试卷(有答案)精选
江苏省南京市建邺区2018届数学中考一模试卷一、单选题1.下列各数中,相反数、绝对值、平方根、立方根都等于其本身的是()A. 0B. 1C. 0和1D. 1和-1【答案】A【考点】相反数及有理数的相反数,绝对值及有理数的绝对值,平方根,立方根及开立方【解析】【解答】解:∵相反数等于它本身的数是0,平方根等于它本身的数是0,立方根等于它本身的数是0,±1,∴相反数、平方根、立方根都等于它本身的数是0.故答案为:A.【分析】相反数等于它本身的数是0,平方根等于它本身的数是0,立方根等于它本身的数是0,±1,就可得出相反数、平方根、立方根都等于它本身的数。
2.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=4cm,则球的半径长是()A. 2cmB. 2.5cmC. 3cmD. 4cm【答案】B【考点】垂径定理,切线的性质【解析】【解答】解:由题意,⊙O与BC相切,记切点为G,作直线OG,分别交AD、劣弧EF于点H、I,再连接OF,在矩形ABCD中,AD∥BC,而IG⊥BC,∴IG⊥AD,∴在⊙O中,FH= EF=2,设求半径为r,则OH=4-r,在Rt△OFH中,r2-(4-r)2=22,解得r=2.5,∴这个球的半径是2.5厘米.故答案为:B.【分析】由题意,⊙O与BC相切,记切点为G,作直线OG,分别交AD、劣弧EF于点H、I,再连接OF,根据AD∥BC,而IG⊥BC,可得出IG⊥AD,求出FH的长,利用勾股定理,在Rt△OFH中,建立关于r的方程,求解即可。
3.如图①,是一个每条棱长均相等的三棱锥,图②是它的主视图、左视图与俯视图.若边AB的长度为a,则在这三种视图的所有线段中,长度为a的线段条数是()A. 12条B. 9条C. 6条D. 5条【答案】B【考点】简单几何体的三视图【解析】【解答】解:观察三棱锥的三视图,可得主视图中有3条长度为a的线段,左视图中有3条长度为a的线段,俯视图中有3条长度为a的线段,所以在这三种视图的所有线段中,长度为a的线段条数是3+3+3=9条.故答案为:B.【分析】观察三棱锥的三视图,可得主视图中有3条长度为a的线段,左视图中有3条长度为a的线段,俯视图中有3条长度为a的线段,就可求出在这三种视图的所有线段中,长度为a的线段条数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018 年鼓楼区中考模拟试卷(一)数学一、选择题(本大题共6 小题,每小题2 分,共12 分)1. 下列图标,是轴对称图形的是()A.B.C.D.2. 如图,数轴上的点A、B 分别表示实数a、b,则下列式子的值一定是正数的是()A.b+a B.b -a C.a b D.b a3. 关于代数式x+2 的值,下列说法一定正确的是()A.比2 大B.比2 小C.比x 大D.比x 小4. 如图,二次函数y=ax2+bx+c 的图像经过点(1,1)和点(3,0) .关于这个二次函数的描述:①a<0,b>0,c<0;②当x=2 时,y 的值等于1;③当x>3 时,y 的值小于0.正确的是()A.①②B.①③C.②③D.①②③5计算999 - 93 的结果更接近()A.999 B.998C.996D.9336. 如图,点P 是⊙O 外任意一点,PM、PN 分别是⊙O 的切线,M、N 是切点.设OP 与⊙O 交于点K.则点K 是△PMN 的()A.三条高线的交点B.三条中线的交点C.三个角的角平分线的交点D.三条边的垂直平分线的交点二、填空题(本大题共10 题,每小题2 分,共20 分)7.13的相反数是,13的倒数是.8. 若△ABC∽△DEF,请写出2 个不同类型的正确的结论:,.9. 如果-2 x m y3 与xy n 是同类项,那么2m -n 的值是.10. 分解因式 2x 2 y - 4xy + 2 y 的结果是.11. 已知 x 1、x 2 是一元二次方程 x 2 + x - 3 = 0 的两个根,则x 1+ x 2 - x 1 x 2= . 12. 用半径为 4 的半圆形纸片恰好围成一个圆锥侧面,则这个圆锥的底面半径为 .13. 如图,点 A 在函数 y =k x( x > 0) 的图像上,点 B 在 x 轴正半轴上,△OAB 是边长为 2 的等 边三角形,则 k 的值为.14. 如图,在□ABCD 中,E 、F 分别是 AB 、CD 的中点,AF 、DE 交于点 G ,BF 、CE 交于点H .当□ABCD 满足 时,四边形 EHFG 是菱形15. 如图,一次函数 y = 43- x + 8 的图像与 x 轴、y 轴分别交于 A 、B 两点.P 是 x 轴上一个动 点,若沿 BP 将△OBP 翻折,点 O 恰好落在直线 AB 上的点 C 处,则点 P 的坐标是 . 16. 如图,将一幅三角板的直角顶点重合放置,其中∠A =30°,∠CDE =45°.若三角板 ACB 的位置保持不动,将三角板 DCE 绕其直角顶点 C 顺时针旋转一周.当△DCE 一边与 AB 平行时,∠ECB 的度数为 .三、解答题(本大题共 11 小题,共 88 分)17. (6 分)求不等式1132x x -≤+的负整数解18. (7 分)⑴化简:24142x x --- ⑵方程的2411=422x x ---解是.19. (7 分)小莉妈妈的支付宝用来生活缴费和网购,如图是小莉妈妈2017 年9 月至12 月支付宝消费情况的统计图(单位:元).⑴11 月支出较多,请你写出一个可能的原因;⑵求这4 个月小莉妈妈支付宝平均每月消费多少元.⑶用⑵中求得的平均数来估计小莉妈妈支付宝2018 年平均每月的消费水平,你认为合理吗?为什么?20. (8 分)我们学习等可能条件下的概率时,常进行转转盘和摸球试验.⑴如图,转盘的白色扇形和黑色扇形的圆心角分别为120°和240°.小莉让转盘自由转动2 次,求指针2 次都落在黑色区域的概率.⑵小刚在一个不透明的口袋中,放入除颜色外其余都相同的18 个小球,其中4 个白球,6 个红球,8 个黄球,搅匀后,从中任意摸出1 个球,若事件A 的概率与⑴中概率相同,请写出事件A.21. (9 分)春天来了,石头城边,秦淮河畔,鸟语花香,柳条飘逸.为给市民提供更好的休闲锻炼环境,决定对一段总长为1800 米的外秦淮河沿河步行道出新改造,该任务由甲、乙两工程队先后接力完成.甲工程队每天改造12 米,乙工程队每天改造8 米,共用了200 天.⑴根据题意,小莉、小刚两名同学分别列出了尚不完整的方程组如下:小莉:____128____x yx y+=⎧⎨+=⎩小刚:________128x yx y+=⎧⎪⎨+=⎪⎩根据两名同学所列的方程组,请你分别指出未知数x、y 表示的意义,然后在横线上补全小莉、小刚两名同学所列的方程组:小莉:x 表示,y 表示;小刚:x 表示,y 表示;⑵求甲、乙两工程队分别出新改造步行道多少米.22. (7 分)如图,爸爸和小莉在两处观测气球(P)的仰角分别为α、β,两人的距离(BD)是100m,如果爸爸的眼睛离地面的距离(AB)为1.6m,小莉的眼睛离地面的距离(CD)为1.2m,那么气球的高度(PQ)是多少?(用含α、β的式子表示).23. (9 分)南京、上海相距300km,快车与慢车的速度分别为100km/h 和50km/h,两车同时从南京出发,匀速行驶,快车到达上海后,原路返回南京,慢车到达上海后停止.设两车出发后的时间为x h,快车、慢车行驶过程中离南京的距离分别为y1、y2km.⑴求y1、y2 与x 之间的函数表达式,并在所给的平面直角坐标系中画出它们的图像;⑵若镇江与南京相距80km,求两车途经镇江的时间间隔;⑶直接写出出发多长时间,两车相距100km.24. (7 分)如图,△ABC 中,AD⊥BC,垂足为D.小莉说:当AB+BD=AC+CD 时,△ABC是等腰三角形,她的说法正确吗,如正确,请证明;如不正确,请举反例说明.25.(8 分)国际慢城,闲静高淳,景区内有一块矩形油菜花田地(数据如图示单位:m),现在其中修建一条观花道(阴影所示),供游人赏花.设改造后剩余油菜花地所占面积为y m2.⑴求y 与x 的函数表达式;⑵若改造后观花道的面积为13m2,求x 的值;⑶若要求0.5≤x≤1,求改造后剩余油菜花地所占面积的最大值.26.(9 分)已知:如图,O 为正方形ABCD 的中心,E 为AB 边上一点,F 为BC 边上一点,△EBF 的周长等于BC 的长.⑴求∠EOF 的度数.⑵连接OA、OC.求证:△AOE∽△CFO.⑶若OE = OF ,求AE 的值.2 CF27.(11 分)在解决数学问题时,我们常常从特殊入手,猜想结论,并尝试发现解决问题的策略与方法.【问题提出】求证:如果一个定圆的内接四边形的对角线互相垂直,那么这个四边形的对边的平方和是一个定值.【从特殊入手】我们不妨设定圆O 的半径是R,四边形ABCD 是⊙O 的内接四边形,AC⊥BD.请你在图①中补全特殊位置时的图形,并借助所画图形探究问题的结论.【问题解决】已知:如图②,定圆O 的半径是R,四边形ABCD 是⊙O 的内接四边形,AC⊥BD.求证:.证明:玄武区2017~2018学年度第二学期九年级测试卷(一)数 学注意事项:1.本试卷共6页.全卷满分120分.考试时间为120分钟.考生答题全部答在答题卡上,答在本试卷上无效.2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上.3.答选择题必须用2B 铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效.4.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡...相应位置....上)1.2的相反数是A .-2B .2C .-12D .122.下列运算正确的是A .2a +3b =5abB .(-a 2)3=a 6C .(a +b )2=a 2+b 2D .2a 2·3b 2=6a 2b 2 3.下列哪个几何体,它的主视图、左视图、俯视图都相同的是 A .B .C .D .4.如图,AB ∥CD ,直线EF 与AB 、CD 分别交于点E 、F ,FG 平分∠EFD ,交AB 于点G ,若∠1=72°,则∠2的度数为A .36°B .30°C .34°D .33°5.已知二次函数y =x 2-5x +m 的图像与x 轴有两个交点,若其中一个交点的坐标为 (1,0),则另一个交点的坐标为A .(-1,0)B .(4,0)C .(5,0)D .(-6,0)6.如图,点A 在反比例函数y =4x (x >0)的图像上,点B 在反比例函数y =kx (x >0)的图像上,AB ∥x 轴,BC ⊥x 轴,垂足为C ,连接AC ,若△ABC 的面积是6,则k 的值为A . 10B .12C .14D .16二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 7.一组数据1,6,3,4,5的极差是 ▲ .8.若式子1x -2在实数范围内有意义,则x 的取值范围是 ▲ .9.国家统计局的相关数据显示,2017年我国国民生产总值约为830 000亿元,用科学记数法表示830 000是 ▲ .10.分解因式x 3-4x 的结果是 ▲ .11.若关于x 的一元二次方程x 2-2x +a -1=0有实数根,则a 的取值范围为 ▲ . 12.如图,在□ABCD 中,DB =DC ,AE ⊥BD ,垂足为E ,若∠EAB =46°,则∠C = ▲ °.CDBABCD GF E1 2(第4题)xyOABC (第6题)E13.某圆锥的底面圆的半径为3 cm ,它的侧面展开图是半圆,则此圆锥的侧面积是 ▲ cm 2.(结果保留π)14.如图,在⊙O 中,AE 是直径,半径OD ⊥弦AB ,垂足为C ,连接CE .若OC =3,△ACE 的面积为12,则CD = ▲ .15.某商场销售一种商品,第一个月将此商品的进价提高20%作为销售价,共获利1 200元,第二个月商场搞促销活动,将此商品的进价提高15%作为销售价,第二个月的销售量比第一个月增加了80件,并且商场第二个月比第一个月多获利300元.设此商品的进价是x 元,则可列方程 ▲ .16.如图,在△ABC 中,∠C =90°,AB =6,AD =2,∠A =60°,点E 在边AC 上,将△ADE 沿DE翻折,使点A 落在点A ′处,当A ′E ⊥AC 时,A ′B 2= ▲ .三、解答题(本大题共11小题,共88分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤) 17.(9分)(1)计算 )8-2sin45°+(2-π)0-13-1; (2)解方程 x 2-2x -1=0.18.(7分)先化简,再求值:1x -2+1÷x2-2x +1x -2,其中x =)3+1.19.(8分)如图,在□ABCD 中,AC 、BD 相交于点O ,点E 、F 在BD 上,且BE =DF .连接AE 、CF .(1)求证△AOE ≌△COF ;(2)若AC ⊥EF ,连接AF 、CE ,判断四边形AECF 的形状,并说明理由. ABCDOEF(第19题)20.(8分)某校组织九年级学生参加汉字听写大赛,并随机抽取部分学生成绩作为样本进行分析,绘制成如下的统计表:请根据所给信息,解答下列问题: (1)a = ▲ ,b = ▲ ; (2)请补全频数分布直方图;(3)已知该年级有400名学生参加这次比赛,若成绩在90分以上(含90分)的为优,估计该年级成绩为优的有多少人?21.(7分)甲、乙两名同学参加1 000米比赛,由于参赛选手较多,将选手随机分A 、B 、C 三组进行比赛.(1)甲同学恰好在A 组的概率是 ▲ ; (2)求甲、乙两人至少有一人在B 组的概率.成绩x /分 频数 频率 x <60 2 0.04 60≤x <70 6 0.1270≤x <80 9 b 80≤x <90 a 0.3690≤x ≤100150.30九年级抽取部分学生成绩的频率分布表九年级抽取部分学生成绩的频数分布直方图频数O50 60 70 80 90 100 4 812 16 成绩(分)20 26 91522.(6分)如图,将△ABC 沿BC 方向平移到△DEF ,DE 交AC 于点G .若BC =2,△GEC 的面积是△ABC 的面积的一半,求△ABC 平移的距离.23.(8分)一辆货车从甲地出发以50 km/h 的速度匀速驶往乙地,行驶1 h 后,一辆轿车从乙地出发沿同一条路匀速驶往甲地.轿车行驶0.8 h 后两车相遇.图中折线ABC 表示两车之间的距离y (km )与货车行驶时间x (h )的函数关系.(1)甲乙两地之间的距离是 ▲ km ,轿车的速度是 ▲ km/h ; (2)求线段BC 所表示的函数表达式;(3)在图中画出货车与轿车相遇后的y (km )与x (h )的函数图像.x (h)y (km)O1C B150 A23(第23题)ABCD EGF(第22题)24.(8分)如图,甲楼AB 高20 m ,乙楼CD 高10 m ,两栋楼之间的水平距离BD =20 m ,为了测量某电视塔EF 的高度,小明在甲楼楼顶A 处观测电视塔塔顶E ,测得仰角为37°,小丽在乙楼楼顶C 处观测电视塔塔顶E ,测得仰角为45°,求电视塔的高度EF .(参考数据:sin37°≈0.6,cos37°≈0.8,tan37°≈0.75,)2≈1.4,结果保留整数)25.(8分)如图,在四边形ABCD 中,AB =AD ,∠C =90°,以AB 为直径的⊙O 交AD 于点E ,CD =ED ,连接BD 交⊙O 于点F . (1)求证:BC 与⊙O 相切;(2)若BD =10,AB =13,求AE 的长.C DEABF37° 45° (第24题)ABCDEO(第25题)Fy (元/千克)Ox (千克)26.(9分)甲、乙两公司同时销售一款进价为40元/千克的产品.图①中折线ABC 表示甲公司销售价y 1(元/千克)与销售量x (千克)之间的函数关系,图②中抛物线表示乙公司销售这款产品获得的利润y 2(元)与销售量x (千克)之间的函数关系.(1)分别求出图①中线段AB 、图②中抛物线所表示的函数表达式;(2)当该产品销售量为多少千克时,甲、乙两公司获得的利润的差最大?最大值为多少? 27.(10分) 【操作体验】如图①,已知线段AB 和直线l ,用直尺和圆规在l 上作出所有的点P ,使得∠APB =30°.x (千克)O75225084 y (元)②①120 7280 84A BC①②ABlOP 1P 2ABl如图②,小明的作图方法如下:第一步:分别以点A 、B 为圆心,AB 长为半径作弧,两弧在AB 上方交于点O ; 第二步:连接OA 、OB ;第三步:以O 为圆心,OA 长为半径作⊙O ,交l 于P 1,P 2. 所以图中P 1,P 2即为所求的点.(1)在图②中,连接P 1A ,P 1 B ,说明∠A P 1B =30°;【方法迁移】(2)如图③,用直尺和圆规在矩形ABCD 内作出所有的点P ,使得∠BPC =45°.(不写作法,保留作图痕迹)【深入探究】(3)已知矩形ABCD ,BC =2,AB =m ,P 为AD 边上的点,若满足∠BPC =45°的点P 恰有两个,则m 的取值范围为 ▲ .(4)已知矩形ABCD ,AB =3,BC =2,P 为矩形ABCD 内一点,且∠BPC =135°,若点P 绕点ABCD③2017~2018学年度第二学期九年级测试卷(一)数学参考答案及评分标准说明:本评分标准每题给出了一种或几种解法供参考.如果考生的解法与本解答不同,参照本评分标准的精神给分.一、选择题(本大题共6小题,每小题2分,共12分)二、填空题(本大题共10小题,每小题2分,共20分)7.5 8.x≠2 9.8.3×105 10.x(x+2)(x―2) 11.a≤212.68 13.18π 14. 2 15. 150015%x―120020%x=80 16.20―8)3三、解答题(本大题共11小题,共88分)17.(本题9分)(1)解:原式=2)2―)2+1―3 ………4分= )2-2 ………5分(2)解:x2-2x=1x2-2x+1=2(x-1)2=2x-1=±2x1=1+)2,x2=1―)2 ………4分18.(本题7分)解:原式=1+x―2x―2•x―2(x―1)2=x―1x―2•x―2(x―1)2=1x―1 ………5分当x=)3+1时原式=)31=)33 ………7分19.(本题8分)(1)证明:∵四边形ABCD是平行四边形,∴OB=OD,OA=OC.又BE=DF,∴OB-BE=OD-DF.∴OE=OF.又∠AOE=∠C OF,∴△AOE≌△COF………4分(2)解:四边形AECF是菱形.………5分理由如下:∵OA=OC,OE=OF.∴四边形AECF是平行四边形.………7分又AC⊥EF,∴四边形AECF是菱形.………8分20.(本题8分)(1)18,0.18.(2)图略.(3)120.………8分21.(本题7分)(1)13.………2分(2)解:所有可能出现的结果有:(A,A),(A,B),(A,C),(B,A),(B,B),(B,C),(C,A),(C,B),(C,C)共有9种,它们出现的可能性相同,所有的结果中,满足“至少有一人抽到B项目”(记为事件A)的结果有5种,所以P(A)=59.………7分22.(本题6分)证明:由平移得:∠B=∠DEF,又∵点B、E、C、F在同一条直线上∴AB∥DE,∴△CGE∽△CAB.∴ S△CGES△CAB=(ECBC)2=EC2BC2=12.∵BC=2,∴EC24=12.∴EC=)2.∴BE =BC ―EC =2―)2.即平移的距离为2―)2. ………6分23.(本题8分)(1)150,75.………2分(2)解:根据题意,C 点坐标为(1.8,0),当x =1时,y =150-50=100,∴B 点坐标为(1,100) 设线段BC 所表示的y 与x 之间的函数表达式为y =kx +b . 因为y =kx +b 的图像过点(1,100)与(1.8,0), 所以1.8k +b =0,k +b =100.) 解方程组得k =-125,b =225.)线段BC 所表示的y 与x 之间的函数表达式为y =-125x +225. ………6分(3)图中线段CD 即为所求.………8分 24.(本题8分)解:如图,分别过点A ,C 作AM ⊥EF ,CN ⊥EF 垂足分别为M 、N .∴MF =AB =20,NF =CD =10.设EF =xm ,则EN =(x ―10)m ,EM =(x ―20)m . 在Rt △ECN 中,∠ECN =45°, ∵tan45°=ENCN ,∴CN =ENtan45°=x―10tan45°. 在Rt △AEM 中,∠EAM =37°, ∵ tan37°=EMAM ,∴AM =EMtan37°=x―20 tan37°. 又 AM ―CN =BD ,∴x―20 tan37°―x―10tan45°=20. ∴x ≈110.答:电视塔的高度为110米. ………8分x (h)y (km)O1C B150 A 23DC DEABF37°45° (第24题)M N25.(本题8分)(1)证明:连接BE.∵AB是直径,∴∠AEB=90°.在Rt△BCD和Rt△BED 中BC=BCEC=DC)∴Rt△BCD≌Rt△BED.∴∠ADB=∠BDC.又AD=AB,∴∠ADB=∠ABD.∴∠BDC=∠ABD.∴AB∥CD.∴∠ABC+∠C=180°.∴∠ABC=180°-∠C=180°―90°=90°.即BC⊥AB.又B在⊙O上,∴BD与⊙O相切.………4分(2)解:连接AF.∵AB是直径,∴∠AFB=90°,即AF⊥BD.∵AD=AB,BC=10,∴BF=5.在Rt△ABF和Rt△BDC中∠ABF=∠BDC∠AFB=∠BCD=90°)∴Rt△ABF∽Rt△BDC.∴ABBD=BFDC.∴1310=5DC.A BCDEO(第25题)FA BCDEO(第25题)F∴DC=5013.∴ED=5013.∴AE=AD―ED=13―5013=11913.………8分26.(本题9分)解:(1)设y1与x之间的函数表达式为y1=kx+b.根据题意,当x=0时,y1=120;当x=80时,y1=72.所以120=b72=80k+b),解得k=-0.6b=120)所以,y1与x之间的函数表达式为y1=-0.6x+120.设y2与x之间的函数表达式为y2=a(x―75)2+2250,当x=0时,y2=0,解得a=―0.4.所以,y2与x之间的函数表达式为y2=―0.4(x―75)2+2250.………4分(2)解:设甲、乙两公司的销售总利润的差为w(元).当0<x≤80时,w=(y1-40)x―y2= (-0.6x+120―40)x-[(-0.4(x―75)2+2250]=-0.2x2+20x=-0.2(x-50)2+500.∵-0.2<0,0<x≤80∴当x=50时,w有最大值,最大值为500.当80<x≤84时,w=(72―40)x―[―0.4(x―75)2+2250]=0.4x2―28x,∵当80<x≤84时,w随x的增大而增大,∴当x=84时,有最大值,最大值为470.4.综上所述,当销售量为50千克时,甲乙两公司获得的利润的差最大,最大是500元.………9分27.(本题10分)(1)解:由作法可知:OA=OB=AB,∴△OAB是等边三角形,∴∠AOB=60°.∴∠A P 1B =30°.………2分(2)如图, ⌒EF 上所有的点即为所求的点(不含点E 、F ).………6分(3)2≤m <)2+1.………8分 (4))34―2. ………10分2018年中考建邺区第一次模拟调研九年级数学学科一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡...相应位置....上)A BCD EF1.下列计算结果为负数的是( )A .(-3)+(-4)B .(-3)-(-4)C .(-3) (-4)D .(-3)-42.计算a 6×(a 2)3÷a 4的结果是( )A .a 3B .a 7C .a 8D .a 93.若锐角三角函数tan55°=a ,则a 的范围是( )A .0<a <1B .1<a <2C .2<a <3D .3<a <44.下列各数中,相反数、绝对值、平方根、立方根都等于其本身的是( )A .0B .1C .0和1D .1和-15.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF =CD =4 cm ,则球的半径长 是( )A .2 cmB .2.5 cmC .3 cmD .4 cm6.如图①,是一个每条棱长均相等的三棱锥,图②是它的主视图、左视图与俯视图.若边AB 的长度为a ,则在这三种视图的所有线段中,长度为a 的线段条数是( )A .12条B .9条C .6条D .5条二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 7.函数y =)1-x 中,自变量x 的取值范围是 .主视图 左视图俯视图 图①图②AB(第6题)(第5题)BODCEAF8.分解因式a 3-a 的结果是 .9.若关于x 的一元二次方程x 2-kx -2=0有一个根是1,则另一个根是 .10.辽宁号是中国人民解放军海军第一艘可以搭载固定翼飞机的航空母舰,其满载排水量为67500吨.用科学记数法表示67 500是 .11.一组数据1、2、3、4、5的方差为S 12,另一组数据6、7、8、9、10的方差为S 22,那么S 12S 22(填“>”、“=”或“<”).12.在同一平面直角坐标系中,反比例函数y 1=kx (k 为常数,k ≠0)的图像与一次函数y 2=-x+a (a 为常数,a ≠0)的图像相交于A 、B 两点.若点A 的坐标为(m ,n ),则点B 的坐标为 .13.如图,四边形ABCD 是⊙O 的内接四边形,若⊙O 的半径为3cm ,∠A =110°,则劣弧⌒的长为cm .14.如图,点F 、G 在正五边形ABCDE 的边上,BF 、CG 交于点H ,若CF =DG ,则∠BHG = °.15.如图,正八边形ABCDEFGH 的边长为a ,I 、J 、K 、L 分别是各自所在边的中点,且四边形IJKL 是正方形,则正方形IJKL 的边长为 (用含a 的代数式表示).D C BAE(第14题)HGF (第13题) CBOAD16.如图,以AB 为直径的半圆沿弦BC 折叠后,AB 与⌒ 相交于点D .若⌒ =13⌒,则∠B= °.三、解答题(本大题共11小题,共88分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤) 17.(6分)计算:1a a +2+÷1a a -.18.(7分)解不等式组5x +122x -132-x >0,+1≥,)并把它的解集在数轴上表示出来.(第16题)DOACBK C E D FBL J GHI A (第15题)123-3 -2 -1(第18题)19.(7分)如图,①四边形ABCD 是平行四边形,线段EF 分别交AD 、AC 、BC 于点E 、O 、F ,②EF ⊥AC ,③AO =CO .(1)求证:四边形AFCE 是平行四边形;(2)在本题①②③三个已知条件中,去掉一个条件,(1)的结论依然成立,这个条件是▲ (直接写出这个条件的序号).20.(8分)某天,一蔬菜经营户用180元钱从蔬菜批发市场批了西红柿和豆角共40千克到菜市场去卖,西红柿和豆角这天的批发价与零售价如下表所示:品名西红柿 豆角 批发价(单位:元/千克) 3.6 4.6 零售价(单位:元/千克)5.47.5问:他当天卖完这些西红柿和豆角能赚多少钱?21.(8分)超市水果货架上有四个苹果,重量分别是100 g 、110 g 、120 g 和125 g .(1)小明妈妈从货架上随机取下一个苹果.恰是最重的苹果的概率是 ▲ ;DCBAE(第19题)OF(2)小明妈妈从货架上随机取下两个苹果.它们总重量超过232g的概率是多少?22.(8分)河西中学九年级共有9个班,300名学生,学校要对该年级学生数学学科学业水平测试成绩进行抽样分析,请按要求回答下列问题:收集数据(1)若从所有成绩中抽取一个容量为36的样本,以下抽样方法中最合理的是▲.①在九年级学生中随机抽取36名学生的成绩;②按男、女各随机抽取18名学生的成绩;③按班级在每个班各随机抽取4名学生的成绩.整理数据(2)将抽取的36名学生的成绩进行分组,绘制频数分布表和成绩分布扇形统计图如下.请根据图表中数据填空:①C类和D类部分的圆心角度数分别为▲ °、▲ °;②估计九年级A、B类学生一共有▲名.成绩(单位:频数频率九年级学生数学成绩分布扇形统计图B类25% A50%分析数据(3)教育主管部门为了解学校教学情况,将河西、复兴两所中学的抽样数据进行对比,得下表:学校平均数(分) 极差(分) 方差A 、B 类的频率和河西中学 71 52 432 0.75 复兴中学71804970.82你认为哪所学校本次测试成绩较好,请说明理由.23.(8分)下图是投影仪安装截面图.教室高EF =3.5 m ,投影仪A 发出的光线夹角∠BAC =30°,投影屏幕高BC =1.2 m .固定投影仪的吊臂AD =0.5 m ,且AD ⊥DE ,AD ∥EF ,∠ACB =45°.求屏幕下边沿离地面的高度CF (结果精确到0.1 m ). (参考数据:tan15°≈0.27,tan30°≈0.58)分) A 类(80~100) 1812B 类(60~79) 914C 类(40~59) 616D 类(0~39)3112ACBF24.(9分)一辆货车从甲地出发以每小时80 km 的速度匀速驶往乙地,一段时间后,一辆轿车从乙地出发沿同一条路匀速驶往甲地.货车行驶2.5 h 后,在距乙地160 km 处与轿车相遇.图中线段AB 表示货车离乙地的距离y 1 km 与货车行驶时间x h 的函数关系. (1)求y 1与x 之间的函数表达式;(2)若两车同时到达各自目的地,在同一坐标系中画出轿车离乙地的距离y 2与x 的图像,求该图像与x 轴交点坐标并解释其实际意义.25.(8分)某超市欲购进一种今年新上市的产品,购进价为20元/件,该超市进行了试销售,得知该产品每天的销售量t (件)与每件销售价x (元/件)之间有如下关系:t =-3x +90. (1)请写出该超市销售这种产品每天的销售利润y (元)与x 之间的函数表达式; (2)当x 为多少元时,销售利润最大?最大利润是多少?26.(9分)Rt △ABC 中,∠ACB =90°,AC :BC =4:3,O 是BC 上一点,⊙O 交AB 于点D ,交BC延长线于点E .连接ED ,交AC 于点G ,且AG =AD . (1)求证:AB 与⊙O 相切;(2)设⊙O 与AC 的延长线交于点F ,连接EF ,若EF ∥AB ,且EF =5,求BD 的长.ABx ∕h(第24题)y ∕km 2.5 O 16027.(10分)图①是一张∠AOB =45°的纸片折叠后的图形,P 、Q 分别是边OA 、OB 上的点,且OP =2 cm .将∠AOB 沿PQ 折叠,点O 落在纸片所在平面内的C 处. (1)①当PC ∥QB 时,OQ = ▲ cm ;②在OB 上找一点Q ,使PC ⊥QB (尺规作图,保留作图痕迹); (2)当折叠后重叠部分为等腰三角形时,求OQ 的长.(第26题)DE GC BAFOAP BOQOP CBABAP O(第27题)①备用图1 备用图22018年中考第一次模拟调研数学参考答案及评分标准说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.一、选择题(每小题2分,共计12分)题号 1 2 3 4 5 6 答案ACBABD二、填空题(每小题2分,共计20分) 7.x ≤1 8.a (a +1)(a -1) 9.-210.6.75×104 11.=12.(n ,m ) 13.7π 3 14.108° 15.2 2+ 2a 16. 18° 三、解答题(本大题共10小题,共计88分) 17.(本题6分)解:原式 =a2+2a +1a ÷a2-1a=a2+2a +1a ·aa2-1 =(a +1) 2a ·a(a +1)(a -1)=a +1a -1. ········································································································ 6分 18.(本题7分)解:解不等式①,得x <2. ······························································································ 2分解不等式②,得x ≥ —1. ·························································································· 4分 所以,不等式组的解集是-1≤x <2. ··································································· 5分 画图 ·········································································································· 7分 19.(本题7分)解:(1)∵四边形ABCD 是平行四边形∴AE ∥CF∴∠DAC =∠BCA ······························································································· 1分 在△AOE 和△COF 中∠DAC=∠ACB AO=CO ∠AOE=∠COF )∴△AOE ≌△COF (ASA ) ···················································································· 3分 ∴AE =CF∴四边形AFCE 是平行四边形 ··········································································· 5分1 2 0 -1(2)② ························································································································· 7分20.(本题8分)解:设批发了西红柿x 千克,豆角y 千克由题意得:..x y x y +=⎧⎨+=⎩403646180 ········································································ 3分解得:x y =⎧⎨=⎩436 ……………………………………………6分(5.4 — 3.6)× 4+(7.5 — 4.6)× 36 = 111.6(元) ·························································· 7分答:卖完这些西红柿和豆角能赚111.6元. ····························································· 8分 21.(本题8分)解:(1)1 4 ······················································································································ 2分 (2)共有6种等可能出现的结果,分别为 ································································ 3分①(100,110);②(100,120);③(100,125);④(110,120); ⑤(110,125);⑥(120,125) ································································· 6分 总重量超过232g 的结果有2种,即(110,125),(120,125) ·············· 7分 因此,总重量超过232g 的概率是1 3 ····························································· 8分22.(本题8分)解:(1)① ················································································································ 2分 (2)① 60°,30° ·········································································································· 4分② 225 ··············································································································· 6分 (3)两所学校都可以选择只要理由正确皆可得分 ···················································· 8分 选择河西中学,理由是平均分相同,河西中学极差和方差较小,河西中学成绩更稳定.选择复兴中学,理由是平均分相同,复兴中学A ,B 类频率和高,复兴中学高分人数更多.23.(本题8分)解:过点A 作AP ⊥EF ,垂足为P∵AD ⊥DE ,∴∠ADE =90°∵AD∥EF,∴∠DEP=90°∵AP⊥EF,∴∠APE=∠APC=90°,∴∠ADE=∠DEP=∠APE=90°∴四边形ADEP为矩形∴EP=AD=0.5m ··········································································································· 2分∠APC=90°,∠ACB=45°∴∠CAP=45°=∠ACB,∠BAP=∠CAP—∠CAB=45°—30°=15°∴AP=CP························································································································ 4分在Rt△APB中tan ∠BAP=BP AP =tan15°=0.27 ··············································································· 5分∴BP=0.27AP=0.27CP,∴BC=CP—BP=CP—0.27CP=0.73CP=1.2m∴CP=1.64m ·················································································································· 7分∴CF=EF—EP—CP=3.5—0.5—1.64=1.36≈1.4m ················································· 8分24.(本题9分)解:(1)由条件可得k1=—80 1分设y1=—80x+b1,过点(2.5,160),可得方程160=—80×2.5+b1解得b1=360 ·········································································································· 3分∴y1=—80x+360 ·································································································· 4分(2)当y1=0时,可得x=4.5轿车和货车同时到达,终点坐标为(4.5,360)设y2=k2x+b2,过点(2.5,160)和(4.5,360)解得k2=100,b2=—90∴y2=100x—90图像如下图。