解三角形.ppt

合集下载

《解直角三角形》数学教学PPT课件(3篇)

《解直角三角形》数学教学PPT课件(3篇)
b
获取新知
B
对边 a C
c 斜边
b 邻边 A
定义:一般地,直角三角形中,除直角外 还有五个元素,即三条边和两个锐角.由直角三 角形中的已知元素,求出其余未知元素的过程 叫做解直角三角形.
直角三角形中,未知的5个元素之间的关系
B
①三边之间的关系
a
c
a2 b2 c2
C
A
b
已知任意两边可求出第
直角三角形中,未知的5个元素之间的关系
解:过点 A作 AD⊥BC于D.
在△ACD中,∠C=45°,AC=2,
∴CD=AD=sinC·AC=2sin45°= 2 .
在△ABD中,∠B=30°, ∴BD= AD 2 6
tan B 3
∴BC=CD+BD=3 2 + 6
A
D B
归纳总结
C

AD
BB
A D
CE

提 求解非直角三角形的边角问题,常通过添加适 示
解:∵△ABD是等边三角形,∴∠B=60°.
在Rt△ABC中,AB=2,∠B=60°,
BC
AB cosB
2 1

4,AC
AB
tanB
2
3.
2
△ABC的周长为2+ 2 3 +4=6+ 2 3 .
3.在Rt△ABC中,∠C=90°,tanA= 12 ,△ABC 5
的周长为45cm,CD是斜边AB上的高,求CD的长.(精 确到0.1 cm)
例5 在Rt△ABC中,∠C=90°,∠A,∠B,∠C的对边分
别为a,b,c,且c=100,∠A=26°44′.求这个三角形
的其他元素.(长度精确到0.01)

解直角三角形PPT课件

解直角三角形PPT课件
2024/1/25
正切定理
在直角三角形中,锐角的正切值等于其对边比邻边,即 tanα = a/b。
6
02
勾股定理及其逆定 理
2024/1/25
7
勾股定理内容及证明
2024/1/25
勾股定理内容
在直角三角形中,直角边的平方 和等于斜边的平方。
勾股定理证明
可以通过相似三角形、面积法、 向量法等多种方法进行证明。
2024/1/25
正弦、余弦定理
已知任意两边和夹角,可以利用正弦定理$frac{a}{sin A} = frac{b}{sin B} = frac{c}{sin C}$或余弦定理$c^2 = a^2 + b^2 - 2abcos C$求出第三边和角度。
16
已知一边一角求其他元素
正弦、余弦函数
已知一条边和一个锐角,可以利用正弦或余弦函数求出另一条直角边和斜边。例如,已知直角边$a$和锐角$A$ ,则可以利用$sin A = frac{a}{c}$求出斜边$c$,再利用勾股定理求出另一条直角边$b$。
正切函数
正切(tangent)是一个 角的对边长度与邻边长度 的比值,即 tan(θ) = 对边 / 邻边。
12
特殊角度三角函数值
0°、30°、45°、60°、90°等特殊角 度的三角函数值,如 sin(30°) = 1/2 ,cos(45°) = √2/2,tan(60°) = √3 等。
特殊角度三角函数值的推导过程及其 在解题中的应用。
2024/1/25
13
三角函数图像与性质
正弦、余弦、正切函数的图像及其周期性、奇偶性、单调性等性质。 利用三角函数图像解决相关问题的思路和方法。
2024/1/25

2024高中数学解三角形ppt课件

2024高中数学解三角形ppt课件

目录•三角形基本概念与性质•正弦定理及其应用•余弦定理及其应用•三角形面积公式及其应用•解三角形综合应用举例三角形基本概念与性质三角形的分类按边可分为不等边三角形、等腰三角形;按角可分为锐角三角形、直角三角形、钝角三角形。

三角形的定义由不在同一直线上的三条线段首尾顺次连接所组成的封闭图形。

三角形的定义与分类三角形内角和定理01三角形内角和定理三角形的三个内角之和等于180°。

02证明方法通过平行线的性质或者撕拼法等方法进行证明。

三角形外角性质三角形外角的定义三角形的一个外角等于与它不相邻的两个内角的和。

三角形外角的性质三角形的外角大于任何一个与它不相邻的内角。

三角形边与角关系01正弦定理在任意三角形中,各边和它所对角的正弦值的比相等且等于外接圆的直径。

02余弦定理在任意三角形中,任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍。

03三角形的面积公式S=1/2absinC,其中a、b为两边长,C为两边夹角。

正弦定理及其应用正弦定理的推导与证明推导过程通过三角形的外接圆和正弦函数的定义,推导出正弦定理的表达式。

证明方法利用三角形的面积公式和正弦函数的性质,证明正弦定理的正确性。

利用正弦定理求解三角形已知两边及夹角求第三边通过正弦定理计算出已知两边夹角对应的第三边的长度。

已知两角及夹边求其他元素利用正弦定理和三角形内角和定理,求出三角形的其他元素。

解决三角形中的角度问题通过正弦定理计算出三角形中的未知角度。

解决三角形中的边长问题利用正弦定理求出三角形中的未知边长。

解决力学问题在力学中,正弦定理可用于解决涉及三角形的问题,如力的合成与分解等。

解决光学问题在光学中,正弦定理可用于解决涉及光的反射和折射等问题。

余弦定理及其应用余弦定理的推导与证明向量法推导余弦定理通过向量的数量积和模长关系,推导余弦定理的表达式。

几何法证明余弦定理利用三角形的面积公式和正弦定理,结合相似三角形的性质,证明余弦定理。

解直角三角形-ppt课件

解直角三角形-ppt课件



,∴




∴CH = ,
∴AH=

∴AB=2AH=



.

=

,∵∠B=30°,

=



26.3 解直角三角形
重 ■题型 解双直角三角形

例 如图,在 Rt△ABC 中,∠C=90°,D 是 AC 上一



点,BD=10
,∠BDC=45°,sinA=
,求 AD 的长.

∴S






AB·AE= ×4×4 =8 ,


CD·DE= ×5 ×15=
四边形 ABDC=S△CDE-S△ABE=






(方法二)如图 2,过点 A 作 AF⊥CD 于点 F,过点
B 作 BG⊥AF 于点 G,则∠ABG=30°,
∴AG=


AB=2,BG= − =2 ,
况讨论,求出不同情况下的答案.
26.3 解直角三角形
■方法:运用割补法求不规则图形的面积


割补法是求不规则图形面积问题的最常用方法,割补法

巧 包含三个方面的内容:一是分割原有图形成规则图形;二

拨 是通过作辅助线将原有图形补为规则图形;三是分割和补
形兼而有之.
26.3 解直角三角形
例 如图,在四边形 ABDC 中,∠ABD=120°,AB⊥AC,


2

=25
26.3 解直角三角形
变式衍生 如图,在Rt△ABC中,∠ACB=90°,D 是 AB

解直角三角形完整版PPT课件

解直角三角形完整版PPT课件

余弦或正切函数计算得出。
已知一边和一角求另一边
02
在直角三角形中,已知一边长和一个锐角大小可以求出另一边
长,通过正弦、余弦或正切函数计算得出。
解直角三角形的实际应用
03
例如测量建筑物高度、计算航海距离等。
三角函数在实际问题中应用
测量问题
在测量问题中,可以利用三角函数计算高度、距离等未知量。例如,利用正切函数可以计算 山的高度或者河的宽度。
直角三角形重要定理
勾股定理
如上所述,勾股定理描述了直角三角 形三边之间的数量关系。
射影定理
相似三角形判定定理
若两个直角三角形的对应角相等,则 这两个直角三角形相似。根据此定理, 可以推导出一些重要的直角三角形性 质和定理。
射影定理涉及直角三角形中斜边上的 高与斜边及两直角边之间的数量关系。
02
三角函数在解直角三角形中应用
• 性质:正弦、余弦函数值域为[-1,1],正切函数值域为R;正弦、余弦函 数在第一象限为正,第二象限正弦为正、余弦为负,第三象限正弦、余 弦都为负,第四象限余弦为正、正弦为负;正切函数在第一、三象限为 正,第二、四象限为负。
利用三角函数求边长和角度
已知两边求角度
01
在直角三角形中,已知两边长可以求出锐角的大小,通过正弦、
注意单位换算和精确度
在求解过程中,要注意单位换算和精确度的控制,避免因单位或精 度问题导致答案错误。
拓展延伸:非直角三角形解法简介
锐角三角形和钝角三角形的解法
对于非直角三角形,可以通过作高线或利用三角函数等方法将其转化为直角三角形进行 求解。
三角形的边角关系和面积公式
了解三角形的边角关系和面积公式,有助于更好地理解和解决非直角三角形问题。

《解直角三角形》-完整版PPT课件

《解直角三角形》-完整版PPT课件

整理,得4t2-26t+39=0
解之,得
t1
13413,t2
13 13 4
∴台风抵达D港的时间为 1 3 1 3 小时.
B
∵轮船从A处用 1 3
≈25.5.
4
13
4
小时到达D港的速度为60÷
1
3413∴为台风抵达D港之前轮船到D港,轮船至少应提速6里/时.
例7 如图,公路MN和公路N上沿PN方向行驶时,学校是否会受 到噪声影响?请说明理由(2)如果受影响,已知拖拉机的速 度为18千米/时,那么学校受影响的时间为多少秒?
(1)切割法:把图形分成一个或几个直角三角形与 其 他特殊图形的组合;
(2)粘补法:此方法大都通过延长线段来实现
例1 要求tan30°的值,可构造如图所示的直角三角形进行
计算:作Rt△ABC,使∠C=90°,斜边AB=2,直角边AC=1,
那么BC= ,
3
∴tan30°= AC 1 3 BC 3 3
A
D
C
B
祝同学们学习进步! 再见!
∴C1D0=201208(02米)
学校受噪声影响的时间t=120米÷18千米/时= 时=1 24秒
150
小结:
1、将实际问题经提炼数学知识,建立数学模 型转化为数学问题 2、设法寻找或构造可解的直角三角形,尤其 是对于一些非直角三角形图形,必须添加 适当的辅助线,才能转化为直角三角形的 问题来解决
C FG
∵ sinB= ,AG AB
D E
AG=AB•sinB=415•sin37°=415 06=
A
37 °B
249 25cm,
即EF 25cm
答:球的直径约为25cm

解直角三角形的应用(19张ppt)课件

解直角三角形的应用(19张ppt)课件

选择合适的解法
根据实际情况选择合适的解法,如近似计算、 精确计算等。
注意单位统一
在实际应用中,要注意单位统一,避免计算 错误。
考虑多解情况
在某些情况下,解直角三角形可能存在多个 解,需要全面考虑。
06
练习与巩固
基础练习题
总结词
掌握基本概念和公式
直角三角形中的角度和边长关系
理解直角三角形中锐角、直角和钝角之间 的关系,以及边长与角度之间的勾股定理 。
利用三角函数定义求解
总结词
通过已知角度和邻边长度,求对边或 斜边长度。
详细描述
根据三角函数定义,已知一个锐角和它 所对的边,可以通过三角函数求出其他 两边。例如,已知∠A=30°和a=1,可 以通过三角函数sin(30°)求出对边b。
利用勾股定理求解
总结词
通过已知两边的长度,求第三边长度。
详细描述
向。
确定建筑物的角度
在建筑设计中,通过解直角三角形, 可以确定建筑物的角度和方向。
确定建筑物的长度
在建筑设计中,通过解直角三角形, 可以确定建筑物的长度和方向。
物理问题中的运用
确定物体的运动轨迹
在物理问题中,通过解直角三角形,可以确定物体的运动轨 迹和方向。
确定物体的受力情况
在物理问题中,通过解直角三角形,可以确定物体的受力情 况和方向。
04
实际应用案例
测高问题
01
02
03
测量山的高度
通过测量山脚和山顶的仰 角,利用解直角三角形的 知识,可以计算出山的高 度。
测量楼的高度
利用解直角三角形的知识, 通过测量楼底和楼顶的仰 角,可以计算出楼的高度。
测量树的高度
通过测量树底部和树顶部 的仰角,利用解直角三角 形的知识,可以计算出树 的高度。

《解直角三角形(第2课时)》课件 (共29张PPT)

《解直角三角形(第2课时)》课件 (共29张PPT)

B
α=30° 120 D β=60°
A
C
P
Q
α O·
1. 如图,沿AC方向开山修路.为了加快施工进度,要在小山的另一边同 时施工,从AC上的一点B取∠ABD = 140°,BD = 520m,∠D=50°,那 么开挖点E离D多远正好能使A,C,E成一直线(精确到0.1m) A B 140° C E
50° D
3. 如图,太阳光与地面成60度角,一棵倾斜的大树 AB与地面成30度角,这时测得大树在地面上的影长 为10m,请你求出大树的高.
P
30°
A
200米
45°
O
B
L U D
合作与探究
变题2:如图,直升飞机在高为200米的大楼AB 左侧P点处,测得大楼的顶部仰角为45°,测得 大楼底部俯角为30°,求飞机与大楼之间的水 A 平距离.
P
45° 30°
200米 D
O
B
例2:热气球的探测器 显示,从热气球看阳光 宾馆顶部的仰角为 30°,看它的底部的俯 角为60°,热气球与阳 光宾馆的水平距离为 120m,阳光宾馆有多 高?

a
b

温故而知新
如图,Rt△ABC中,∠C=90°,
(1)若∠A=30°,BC=3,则AC= 3 3 (2)若∠B=60°,AC=3,则BC=
3
(3)若∠A=α°,AC=3,则BC= 3 tan
m (4)若∠A=α°,BC=m,则AC= tan
B
A
┌ C
例题 例4: 2008年10月15日“神舟”7号载人航天飞船发射 成功.当飞船完成变轨后,就在离地球表面350km的 圆形轨道上运行.如图,当飞船运行到地球表面上P 点的正上方时,从飞船上最远能直接看到地球上的点 在什么位置?这样的最远点与P点的距离是多少? (地球半径约为6 400km,结果精确到0.1km) F

解三角形PPT课件

解三角形PPT课件
第13页/共40页
解 法 三: a2 b2 c2 2bccos A
(1) 2
2
2 2
32 c2 22
3 c cos45
c2 2 6c 4 0.解 得c 6 2 ABC有 两 解
(2) 112 222 c2 2 22 c cos30
c2 22 3c 363 0. 解 得c 11 3 ABC有 一 解
A. 0 a 4 3
B. a 6
C. a 4 3或a 6 D. 0 a 4 3或a 6
点评:可通过正弦定理或几何作图很容易 看出三角形有一个解的情况有两种。这些 有些同学容易出现误区,直接令关于C的一 元二次方程有一解,很容易少考虑a>b的情 况,以后做题时要注意。
第15页/共40页
2 sin15 sin45
6 2
2
第19页/共40页
方 法 二用 余 弦 定 理
b2 a2 c2 2accosB 2 3 c2 2 3 cos45 即c2 6c 1 0 解 之 , 得c 6 2
2
点评:此类问题求解需要主要解的个数的讨论,比 较上述两种解法,解法二比较简便。
2
2
cos A B sinC ;
2
2
tan A B cotC
2
2
(5)在ABC中,tanA tanB tanC tanA tanB tanC
第4页/共40页
(6)ABC 中,A、B、C成等差数列的充要条件
是B=60
(7) ABC为正三角形的充要条件是A、B、C成等差数 列,a、b、c成等比数列.
(3) 182 202 c2 2 20 c cos150 c2 20 3c 76 0. 解 得c 10 3 4 11 10 3 4 11 0 ABC无 解

解三角形-PPT课件

解三角形-PPT课件
2023最新整理收集 do something
本 章 优 化 总 结
本章优化总结
知识体系网络
专题探究精讲
知识体系网络
专题探究精讲
判断三角形形状 判断三角形的形状,一般有以下两种途径: (1)将已知条件统一化成边的关系,用代数方法 求解; (2)将已知条件统一化成角的关系,用三角方法 求解. 在解三角形时的常用结论有:
【解】 (1)依题意,PA-PB=1.5×8=12 (km), PC-PB=1.5×20=30 (km). 因此 PB=(x-12) km,PC=(18+x) km. 在△PAB 中,AB=20 km, cos∠PAB=PA2+2PAAB·A2-B PB2=x2+2022-x·20x-122 =3x+ 5x32.
(1)设A到P的距离为x km,用x表示B、C到P 的距离,并求x的值; (2)求静止目标P到海防警戒线a的距离.(结果 精确到0.01 km)
【思路点拨】 (1)PA、PB、PC长度之间的关 系可以通过收到信号的先后时间建立起来; (2)作PD⊥a,垂足为D,要求PD的长,只需要 求出PA的长和cos∠APD,即cos∠PAB的 值.由题意,PA-PB,PC-PB都是定值,因 此,只需要分别在△PAB和△PAC中,求出 cos∠PAB,cos∠PAC的表达式,建立方程即可.
例4 如图所示,a是海面上一条南北方向的 海防警戒线,在a上点A处有一个水声监测点, 另两个监测点B、C分别在A的正东方向20 km 处和54 km处,某时刻,监测点B收到发自静 止目标P的一个声波,8 s后监测点A、20 s后 监测点C相继收到这一信号,在当时的气象条 件下,声波在水中的传播速度是1.5 km/s.
(1) 在 △ ABC 中 , ∠ A> ∠ B⇔ a>b ⇔ sinA>sinB ⇔

人教版高中数学必修5第1章《解三角形》PPT课件

人教版高中数学必修5第1章《解三角形》PPT课件

数学 必修5
第一章 解三角形
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
由sina A=sinc C得,
c=assiinnAC=8×sinsin457°5°=8×
2+ 4 2
6 =4(
3+1).
2
∴A=45°,b=4 6,c=4( 3+1).
数学 必修5
第一章 解三角形
自主学习 新知突破
高效测评 知能提升
当B=60°时,C=90°, c= a2+b2=4 3; 当B=120°时,C=30°,c=a=2 3. 所以B=60°,C=90°,c=4 3或 B=120°,C=30°,c=2 3.
8分 10分
12分
数学 必修5
第一章 解三角形
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
第一章 解三角形
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
解析: 正弦定理适用于任意三角形,故①②均不正确; 由正弦定理可知,三角形一旦确定,则各边与其所对角的正弦 的比就确定了,故③正确;由比例性质和正弦定理可推知④正 确.
答案: B
数学 必修5
第一章 解三角形
自主学习 新知突破
合作探究 课堂互动
自主学习 新知突破
合作探究 课堂互(1)已知b=4,c=8,B=30°,求C,A,a; (2)在△ABC中,B=45°,C=75°,b=2,求a,c,A.
解析: (1)由正弦定理得sin C=c·sinb B=8sin430°=1. ∵30°<C<150°,∴C=90°, 从而A=180°-(B+C)=60°, a= c2-b2=4 3.

解直角三角形(复习课)课件

解直角三角形(复习课)课件
分析多个直角三角形之间的关系,解 决较为复杂的几何问题。
结合勾股定理和三角函数计算直角三 角形中的未知量。
利用给定的条件,设计合理的方案解 决实际问题,如设计桥梁、建筑等结 构的支撑体系。
06
复习与总结
重点回顾
直角三角形的定义与性质
回顾直角三角形的定义、性质和判定条件,理解其在几何图形中 的重要地位。
求解角度。
常见错误分析
混淆边和角
在解题过程中,有时会混淆边和角,导致计算错误。
忽视勾股定理的条件
在使用勾股定理时,需要确保三角形是直角三角形,否则会导致错 误。
角度范围错误
在计算角度时,需要注意角度的范围,避免出现负角度或超过180 度的角度。
解题方法总结
勾股定理法
适用于已知两边长度, 求第三边长度的情况。
船只安全航行。
物理实验
测量角度
在物理实验中,经常需要测量各 种角度。解直角三角形的方法可 以用来计算这些角度,确保实验
结果的准确性。
计算力的大小
在物理实验中,经常需要计算力的 大小。通过解直角三角形,可以精 确地计算出力的大小,确保实验结 果的可靠性。
确定物体的位置
在物理实验中,物体的位置是非常 重要的。通过解直角三角形,可以 计算出物体的位置,确保实验的准 确性和可靠性。
04
解题技巧与策略
解题思路
01
02
03
04
明确问题要求
首先需要理解题目的要求,确 定需要求解的是什么。
选择合适的三角形
根据问题描述,选择一个合适 的直角三角形来解决问题。
利用勾股定理
在直角三角形中,勾股定理是 一个重要的工具,可以帮助我
们求解边长。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
的距离A0A)(精确到1mm).
B
A0 A
80
B0
C
例4已知如图,河对岸有两 目标A、B但 不能到达,在岸边选取 相距 3千米的C、D两点 测得ACB 750,BCD 450,ADC 300, ADB 450,(A、B、C、D在同一面内) 求两目标A、B间的距离
课堂练习
3\下图为曲柄连杠机构示意图,当曲柄OA在水平
解:由余弦定理,得
BC2 AB2 AC2 2AB ACcos A
1.952 1.402 21.951.40 cos6620' 3.571 BC 1.89(m)
答:顶杠BC长约为1.89m.
1、飞机的航线和山顶在同一个铅直平面内, 已知飞机的高度为海拔20250m,速度为 180km/h,飞行员先看到山顶的俯角为
位置OB时,连杠端点P在Q的位置 .当OA自OB按顺
时针方向旋转 角 时,P和Q之间的距离是 x
已知OA=25cm,AP=125cm,分别
x 求下列条件下的 值(精确到0.1cm)
(1) 135
(2) OA AP
x 43.9cm
x
Q
P
x 22.5cmA
B
O
课堂小结
1、本节课通过举例说明了解斜三角形在实际中的一些应用。 掌握利用正弦定理及余弦定理解任意三角形的方法。
个有效数字)。
想一想
图中涉及到一个怎样的三角形?
在 ABC中,已知什么?求什么? A
BB
实例讲解Βιβλιοθήκη 分析:这个问题就是在 ABC
C
中,已知AB=1.95m,AC=1.4m,
BAC 60 620' 6620'
求BC的长,由于已知 ABCA
60
620'
的两边和它们的夹角,所以可
B
根据余弦定理求出BC。
2、在分析问题解决问题的过程中关键要分析题意,分清已知
与所求,根据题意画出示意图,并正确运用正弦定理和余
弦定理解题。
3、在解实际问题的过程中,贯穿了数学建模的思想,其流程
图可表示为: 实际问题 画图形
数学模型
实际问题的解
解 三 角 形 检验(答)
数学模型的解
作业:习题5。10 2. 3
AB A1B AA1 28.4 1.5 29.9(m)
答:烟囱的高为 29.9m.
例2、自动卸货汽车的车箱采用液压机构。设计 时需要计算油泵顶杠BC的长度(如图)。已知
车箱的最大仰角为60 ,油泵顶点B与车箱支点
A之间的距离为1.95m,AB与水平线之间的夹角
为 620',AC长为1.40m,计算BC的长(保留三
解斜三角形的问题,通常都要根据题意,从 实际问题中抽象出一个或几个三角形,然后通过 解这些三角形,得出所要求的量,从而得到实际 问题的解。
在这个过程中,贯穿了数学建模的思想。这 种思想即是从实际问题出发,经过抽象概括,把 它转化为具体问题中的数学模型,然后通过推理 演算,得出数学模型的解,再还原成实际问题的 解。
1830' 经过960s后,又看到山顶的俯角为 81, 求山顶的海拔高度 (精确到1m).
答案:3291m
2、如图,一艘船以32.2 nmile/h的速度
向正北航行, 在A处看灯塔S在船的
北偏东 20 ,30min后航行到B处,在B
处看灯塔S在船的北偏东65方向上,
求灯塔S和B处的距离(精确到0.1nmile).
实例讲解
例1、如图,要测底部不能到达的烟囱的高 AB,从与烟囱底部在同一水平直线上的C、
D两处,测得烟囱的仰角分别是 45和
60, CD间的距离
是12m.已知测 角仪器高1.5m, 求烟囱的高。
想一想
图中给出了怎样的 一个几何图形?已 知什么,求什么?
实例讲解
分析:如图,因为AB=AA1+A1B,又
B
已知AA1=1.5m,所以只要求出A1B即可。
解:在BC1D1中,
C1BD1
60
45
15,
由正弦定理可得:
C1
D1
A1
C1D1 BC1 sin B sin D1
C
D
A
BC1
C1D1 sin sin B
D1
12 sin120 sin15
18
26
6
A1B
2 2
BC1
18
6
3 28.4
65
S
答:7.8 n mile
B

20 西
A
东 南
例3. 图中是曲柄连杆机构示意图,当曲柄CB绕
C点旋转时,通 过连杆AB的传递,活塞作直线往
复运动,当曲柄在CB0位置时,曲 柄和连杠成一条 直线,连杠的端点A在A0处。设连杠AB长为340 mm,曲柄CB长为85mm,曲柄自CB0按顺时针方向 旋转80o,求活塞 移动的距离(即连杠的端点A移动
相关文档
最新文档