平行四边形中-构造平行四边形

合集下载

平行四边形的判定知识点小结

平行四边形的判定知识点小结

平行四边形的判定知识点小结一、平行四边形的判定方法。

1. 定义判定。

- 两组对边分别平行的四边形是平行四边形。

- 用符号语言表示:如果AB∥CD,AD∥BC,那么四边形ABCD是平行四边形。

这是平行四边形最基本的判定方法,它是从平行四边形的定义直接得出的。

2. 边的判定。

- 两组对边分别相等的四边形是平行四边形。

- 符号语言:若AB = CD,AD = BC,则四边形ABCD是平行四边形。

- 一组对边平行且相等的四边形是平行四边形。

- 符号语言:若AB∥CD且AB = CD(或者AD∥BC且AD = BC),则四边形ABCD 是平行四边形。

3. 角的判定。

- 两组对角分别相等的四边形是平行四边形。

- 符号语言:若∠A = ∠C,∠B = ∠D,则四边形ABCD是平行四边形。

4. 对角线的判定。

- 对角线互相平分的四边形是平行四边形。

- 符号语言:若OA = OC,OB = OD(其中O为对角线AC、BD的交点),则四边形ABCD是平行四边形。

二、平行四边形判定方法的证明思路。

1. 定义法证明。

- 一般通过已知条件中的平行关系,如角相等推出直线平行(同位角、内错角相等,两直线平行)等方法来证明两组对边分别平行。

- 例如:已知∠1 = ∠2,∠3 = ∠4,可推出AD∥BC,AB∥CD,从而证明四边形ABCD是平行四边形。

2. 边的判定证明。

- 对于两组对边分别相等的判定方法,通常利用三角形全等的知识来证明。

- 例如:连接AC,在△ABC和△CDA中,已知AB = CD,BC = DA,AC = CA(公共边),通过SSS(边 - 边 - 边)全等判定定理证明△ABC≌△CDA,进而得出∠1 = ∠2,∠3 = ∠4,所以AD∥BC,AB∥CD,四边形ABCD是平行四边形。

- 对于一组对边平行且相等的判定方法,可通过平移线段构造平行四边形或者利用三角形全等和平行线的判定来证明。

- 例如:已知AB∥CD且AB = CD,延长AB到E,使BE = CD,连接CE,可证明四边形BECD是平行四边形,从而得出BD∥CE,再结合已知条件证明四边形ABCD是平行四边形。

几何画板如何画平行四边形

几何画板如何画平行四边形

几何画板如何画平行四边形
平行四边形是很常见的图形,在绘制图形时经常要以它为基础作图,那么怎样在几何画板画平行四边形呢?本教程为您解答,旨在让大家熟悉平行线的使用方法。

具体步骤如下:
1.用线段直尺工具中的线段工具,构造平行四边形的两个邻边,并用文本工具对顶点进行标记。

使用线段工具构造平行四边形的两个邻边
2.构造平行线。

选取点A和线段BC,“构造”菜单下选择“平行线”,构造过A 点且与线段BC平行的直线。

用相同的方法构造过C点与线段AB平行的直线。

构造线段AB和BC的平行线
3.得到顶点D。

鼠标在“移动箭头”状态下,在两条直线的相交处单击一下得交点D。

点击两条直线的交点并标记为D点
4.隐藏直线。

选取两条直线,“显示”菜单下选择“隐藏平行线”(可以使用快捷键:Ctrl+H)。

隐藏选中的两条直线
5.构造线段。

隐藏平行线后使用线段工具连接AD、CD。

平行四边形就制作完成了,如图所示。

绘制完成后的平行四边形示例
以上教程讲解了用几何画板绘制平行四边形的方法,操作简单,方便新用户快速入门。

专题3 填空压轴题之几何求值-备战2022年中考数学满分真题模拟题分类之压轴题汇编(深圳专用解析版)

专题3 填空压轴题之几何求值-备战2022年中考数学满分真题模拟题分类之压轴题汇编(深圳专用解析版)

专题03 填空压轴题之几何求值1.(2021•深圳)如图,在ABC ∆中,D ,E 分别为BC ,AC 上的点,将CDE ∆沿DE 折叠,得到FDE ∆,连接BF ,CF ,90BFC ∠=︒,若//EF AB ,43AB =,10EF =,则AE 的长为 .【答案】1043-【详解】如图,延长ED 交FC 于G ,延长BA ,DE 交于点M ,将CDE ∆沿DE 折叠,得到FDE ∆,EF EC ∴=,DF DC =,FED CED ∠=∠,EG CF ∴⊥,又90BFC ∠=︒,//BF EG ∴,//AB EF ,∴四边形BFEM 是平行四边形,10BM EF ∴==,1043AM BM AB ∴=-=-,//AB EF ,M FED∴∠=∠,M CED AEM∴∠=∠=∠,1043 AE AM∴==-2.(2020•深圳)如图,在四边形ABCD中,AC与BD相交于点O ,90ABC DAC∠=∠=︒,1tan2ACB∠=,43BOOD=,则ABDCBDSS∆∆=.【答案】332【详解】如图,过点D作//DM BC,交CA的延长线于点M,延长BA交DM于点N,//DM BC,ABC ANM∴∆∆∽,OBC ODM∆∆∽,∴1tan2AB ANACBBC NM==∠=,43BC OBDM OD==,又90ABC DAC∠=∠=︒,90BAC NAD∴∠+∠=︒,90BAC BCA∠+∠=︒,NAD BCA∴∠=∠,ABC DAN∴∆∆∽,∴12AB DNBC NA==,设4BC a=,由43BC OBDM OD==得,3DM a=,2AB a∴=,35DN a=,65AN a=,616255NB AB AN a a a∴=+=+=,∴22313521323225ABDBCDaAB DNSS BC NB a∆∆⋅===⋅.3.(2019•深圳)如图,在正方形ABCD 中,1BE =,将BC 沿CE 翻折,使B 点对应点刚好落在对角线AC 上,将AD 沿AF 翻折,使D 点对应点刚好落在对角线AC 上,求EF = .【答案】6 【详解】如图,作FM AB ⊥于点M .四边形ABCD 是正方形,45BAC CAD ∴∠=∠=︒.将BC 沿CE 翻折,B 点对应点刚好落在对角线AC 上的点X ,1EX EB AX ∴===,90EXC B ∠=∠=︒,222AE AX EX ∴=+=.将AD 沿AF 翻折,使D 点对应点刚好落在对角线AC 上的点Y ,1AM DF YF ∴===,∴正方形的边长21AB FM ==+,21EM =-,2222(21)(21)6EF EM FM ∴=+=-++=.4.(2018•深圳)在Rt ABC ∆中,90C ∠=︒,AD 平分CAB ∠,BE 平分ABC ∠,AD 、BE 相交于点F ,且4AF =,2EF =,则AC = .【答案】8105 【详解】如图,过点E 作EG AD ⊥于G ,连接CF , AD ,BE 是分别是BAC ∠和ABC ∠的平分线, CAD BAD ∴∠=∠,CBE ABE ∠=∠,90ACB ∠=︒,2()90BAD ABE ∴∠+∠=︒,45BAD ABE ∴∠+∠=︒,45EFG BAD ABE ∴∠=∠+∠=︒,在Rt EFG ∆中,2EF =,1FG EG ∴==,4AF =,3AG AF FG ∴=-=,根据勾股定理得,2210AE AG EG =+=,AD 平分CAB ∠,BE 平分ABC ∠,CF ∴是ACB ∠的平分线,45ACF AFE ∴∠=︒=∠,CAF FAE ∠=∠,AEF AFC ∴∆∆∽,∴AE AF AF AC=, 216810510AF AC AE ∴===5.(2017•深圳)如图,在Rt ABC ∆中,90ABC ∠=︒,3AB =,4BC =,Rt MPN ∆,90MPN ∠=︒,点P 在AC 上,PM 交AB 于点E ,PN 交BC 于点F ,当2PE PF =时,AP = .【答案】3【详解】如图作PQ AB ⊥于Q ,PR BC ⊥于R .90PQB QBR BRP ∠=∠=∠=︒,∴四边形PQBR 是矩形,90QPR MPN ∴∠=︒=∠,QPE RPF ∴∠=∠,QPE RPF ∴∆∆∽, ∴2PQ PE PR PF ==, 22PQ PR BQ ∴==,//PQ BC ,::::3:4:5AQ QP AP AB BC AC ∴==,设4PQ x =,则3AQ x =,5AP x =,2BQ x =, 233x x ∴+=,35x ∴=, 53AP x ∴==.6.(2021•深圳模拟)如图,在四边形ABCD 中,AE 平分BAD ∠交CD 于点E ,且AB AE =,12CBA D BAD ∠=∠+∠,过点E 作EG AB ⊥,垂足为G .延长BC 和AE 交于点F ,若:2:1BF ED =,2EG =,三角形ABF 的面积为7,则AD = .【答案】72 【详解】解法一: 如图,过A 作AM BF ⊥于M ,作AN CD ⊥于N ,过E 作EH AD ⊥于H ,90AMB ANE ∴∠=∠=︒,AE 平分BAD ∠交CD 于点E ,12BAE DAE BAD ∴∠=∠=∠, 12CEA DAE ADE BAD ADE ∠=∠+∠=∠+∠, 12CBA D BAD ∠=∠+∠, CEA CBA ∴∠=∠,AED ABM ∴∠=∠,AB AE =,()ABM AEN AAS ∴∆≅∆,AM AN ∴=,12ABF S BF AM ∆=⋅,12AED S DE AN ∆=⋅,且2BF ED =, 2ABF AED S S ∆∆∴=, 7ABF S ∆=,72AED S ∆∴=, AE 平分BAD ∠,EG AB ⊥,EH AD ⊥,2EH EG ∴==,1722AED S AD EH ∆∴=⋅=, 72AD ∴=; 解法二:过D 作DM AE ⊥于M ,过F 作FN AB ⊥,交AB 的延长线于N , AE 平分BAD ∠交CD 于点E ,12BAE DAE BAD ∴∠=∠=∠, 12CEA DAE ADE BAD ADE ∠=∠+∠=∠+∠, 12CBA D BAD ∠=∠+∠, CEA CBA ∴∠=∠,AED FBN ∴∠=∠,90DME FNB ∠=∠=︒,DME FNB ∴∆∆∽,∴12ED DM BF FN ==, 2FN DM ∴=,112722ABF S AB FN AE DM ∆=⋅=⋅=, 7AE DM ∴⋅=,BAE DAE ∠=∠,90AGE AMD ∠=∠=︒,AGE AMD ∴∆∆∽,∴EG AE DM AD =, ∴2AE DM AD=,722DM AE AD ⋅∴==.7.(2021•龙岩模拟)将含30︒角且大小不等的两个三角板按如图摆放,使直角顶点重合,连接AE 、BD ,则AE BD = .【答案】3【详解】EDC ∆与ACB ∆为两个直角三角形,且30DEC BAC ∠=∠=︒,90ACB ECD ∠=∠=︒, ACB DCA ECD DCA ∴∠+∠=∠+∠,DCB ECA ∴∠=∠,在Rt ACB ∆中,tan tan30BC CAB AC∠==︒, 在Rt ECD ∆中,tan tan30DC CED EC ∠==︒, ∴BC DC AC EC=, ∴在ECA ∆与DCB ∆中,DC BC EC AC=, DCB ECA ∠=∠,ECA DCB ∴∆∆∽,∴AE AC BD BC=,在Rt ACB ∆中,tan tan 603AC ABC BC =∠=︒= 8.(2021•南山区一模)如图,在Rt ABC ∆中,90C ∠=︒,BE ,AF 分别是ABC ∠,CAB ∠平分线,BE ,AF 交于点O ,OM AB ⊥,10AB =,8AC =,则OM = .【答案】2【详解】过O 作OG AC ⊥于G ,OH BC ⊥于H ,连接OC ,AF 平分CAB ∠,BE 平分ABC ∠,OG OH OM ∴==,90C ∠=︒,10AB =,8AC =,221086BC ∴=-=11112222ABC S AC BC AB OM AC OG BC OH ∆∴=⋅=⨯⋅+⋅+⋅, ∴11118610862222OM OG OH ⨯⨯=⨯⨯+⨯⨯+⨯⨯, 2OM ∴=9.(2021•深圳模拟)如图,在ABC ∆中,45B ∠=︒,62AB =,D 、E 分别是AB 、AC 的中点,连接DE ,在直线DE 和直线BC 上分别取点F 、G ,连接BF 、DG .若3BF DG =,且直线BF 与直线DG 互相垂直,则BG 的长为 .【答案】4或2【详解】如图,过点B 作BT BF ⊥交ED 的延长线于T ,过点B 作BH DT ⊥于H .DG BF ⊥,BT BF ⊥,//DG BT ∴,AD DB =,AE EC =,//DE BC ∴,∴四边形DGBT 是平行四边形,BG DT ∴=,DG BT =,45BDH ABC ∠=∠=︒, 32AD DB ==, 3BH DH ∴==, 90TBF BHF ∠=∠=︒,90TBH FBH ∴∠+∠=︒,90FBH F ∠+∠=︒,TBH F ∴∠=∠,1tan tan 3BT DG F TBH BF BF ∴∠=∠===, ∴13TH BH =, 1TH ∴=,134DT TH DH ∴=+=+=,4BG ∴=.当点F 在ED 的延长线上时,同法可得312DT BG ==-=.10.(2021•福田区二模)如图,点M 是Rt ABC ∆斜边AB 的中点,过点M 作DM CM ⊥,交AC 于点D ,若2AD =,5BC =,则CD = .【答案】29【详解】延长CM,使CM MN=,连接AN,点M是Rt ABC∆斜边AB的中点,AM BM∴=,在AMN∆和BMC∆中,AM BMAMN BMCMN CM=⎧⎪∠=∠⎨⎪=⎩,()AMN BMC SAS∴∆≅∆,5BC AN∴==,NAM B∠=∠,//AN BC∴,90BCA∠=︒,90NAD∴∠=︒,22225229DN AN AD∴=+=+=,DM CM⊥,CM MN=,29CD DN∴==.11.(2021•深圳模拟)如图,在Rt ABC∆中,90BAC∠=︒,D为BC的中点,过点D作DE DF⊥,交BA的延长线于点E,交AC的延长线于点F.若72CF=,4AC=,2AB=.则AE=.【答案】10【详解】延长FD 至G ,使GD FD =,连接BG ,如图所示: D 为BC 的中点,BD CD ∴=,在BDG ∆和CDF ∆中,BD CD BDG CDF GD FD =⎧⎪∠=∠⎨⎪=⎩,()BDG CDF SAS ∴∆≅∆,72BG CF ∴==,G F ∠=∠, //BG CF ∴, BGH AFH ∴∆∆∽, ∴77271542GH BH BG FH AH AF ====+, ∴411DH FD =,15152211AH AB ==, 90BAC ∠=︒,152AF AC CF =+=, 221515755()()21122HF ∴=+=, 41051511DH FH ∴==, DE DF ⊥,90EDH BAC ∴∠=︒=∠,90E EHD F EHD ∴∠+∠=∠+∠=︒,E F ∴∠=∠,DHE AHF ∴∆∆∽,∴HE DH HF AH=,即10511157551122HE=,解得:12511HE=,12515101111AE HE AH∴=-=-=;12.(2021•宝安区二模)如图,在等腰Rt ABC∆中,90B∠=︒,BA BC=,D为BC上一点,且3BD=,E为AD上一点,连接CE,45CED∠=︒,2CE AE=,则CE的长为.【答案】1855【详解】过A作AN CE⊥的延长线于N,过C作CM AD⊥交AD延长线于M,2CE AE=,∴设AE a=,则2CE a=,3445∠=∠=︒,AN NE ∴=,45ECM ∠=︒,90B ∠=︒,BA BC =,45ACD ∴∠=︒,12∴∠=∠,AEN ∴∆,CEM ∆都是等腰直角三角形, 2CE a =,AE a =, CM EM a ∴==,22AN NE a ==, 12∠=∠,CDM CAN ∴∆∆∽,∴CM CD CN AC=, 22NE a =,2CE a =, 322NC a ∴=, 222213255222AC AN NC a a a a ∴=+=+==, ∴3252aCD a a =,103CD a ∴=, 1033BC a ∴=+, 在Rt ABC ∆中,45BAC ∠=︒,sin BC BAC AC∴∠=, sin45BC AC ∴=︒⋅,即1023532a a +=⨯, 9105a ∴=, 9101852255CE a ∴==⨯=. 13.(2021•宝安区期末)如图,在ABC ∆中,AB AC =,点D 、E 是BC 边上两点,连接AD ,以AD 为腰作等腰直角ADF ∆,90ADF ∠=︒,作FE BC ⊥于点E ,FE CE =,若2BD =,5CE =,则CDF S ∆=. 【答案】30 【详解】过点A 作AH BC ⊥于H ,90AHD ∴∠=︒,FE BC ⊥,90DEF ∴∠=︒,ADF ∆是等腰直角ADF ∆,AD DF ∴=,90ADF ADH EDF ∠=∠+∠=︒,90ADH DAH ∴∠+∠=︒,EDF DAH ∴∠=∠,在ADH ∆和DFE ∆中,DAH EDF AHD DEF AD FD ∠=∠⎧⎪∠=∠⎨⎪=⎩,()ADH DFE AAS ∴∆≅∆,5CE =,5DH EF ∴==,7BH CH ∴==(三线合一), ∴12CDF S DC EF ∆=⨯⨯11252=⨯⨯30=.14.(2021•罗湖区期末)如图,在ABC∆中,90ACB∠=︒,点D 是BC上的一点,AC DC=,AB AE⊥,且AE AB=,连接DE交AC的延长线于点F,32ACCF=,则BDCD=.【答案】43【详解】在DC上截取CG CF=,连接AG,32ACCF=,设3AC x=,2CF x=,AC DC=,3CD x∴=,CG CF=,2CG x∴=,90ACB∠=︒,在Rt ACG∆和Rt DCF∆中,AC CDACD DCFCG CF=⎧⎪∠=∠⎨⎪=⎩,()ACG DCF SAS∴∆≅∆,CAG CDF∴∠=∠,90AGB CAG∠=∠+︒,90EFA CDF∠=︒+∠,AGB EFA∴∠=∠,AB AE⊥,90EAB∴∠=︒,90ACD∠=︒,AC CD=,45CAD∴∠=︒,45EAF BAD ∴∠+∠=︒,45ADC ABC BAD ∠=︒=∠+∠,EAF ABC ∴∠=∠,在EAF ∆和ABG ∆中,EAF ABC EFA AGB AE AB ∠=∠⎧⎪∠=∠⎨⎪=⎩,()EAF ABG AAS ∴∆≅∆,5BG AF x ∴==,32GD x x x =-=,4BD x ∴=, ∴43BDCD =15.(2020•崇州市模拟)如果点P 是ABC ∆内一点,且它到三角形的三个顶点距离之和最小,则P 点叫ABC ∆的费马点.已经证明:在三个内角均小于120︒的ABC ∆中,当120APB APC BPC ∠=∠=∠=︒时,P 就是ABC ∆的费马点.若点P 是腰长为2的等腰直角三角形DEF 的费马点,则PD PE PF ++= .【答案】31+【详解】如图:过点D 作DM EF ⊥于点M ,在BDE ∆内部过E 、F 分别作30MEP MFP ∠=∠=︒,则120EPF FPD EPD ∠=∠=∠=︒,点P 就是费马点, 在等腰Rt DEF ∆中,2DE DF ==,DM EF ⊥,22EF DE ∴==1EM DM ∴==, 故cos30EM PE ︒=, 解得:233PE =,则33PM =, 故313DP =-,同法可得233PF = 则233213133PD PE PF ++=⨯+-=+.16.(2021•深圳模拟)如图,在ABC ∆中,5AB AC ==,45BC =,D 为边AB 上一动点(B 点除外),以CD 为一边作正方形CDEF ,连接BE ,则BDE ∆面积的最大值为 .【答案】8【详解】过点C 作CG BA ⊥于点G ,作EH AB ⊥于点H ,作AM BC ⊥于点M . 5AB AC ==,45BC =,25BM CM ∴==,易证AMB CGB ∆∆∽,∴BM AB GB CB=, 即25545GB = 8GB ∴=,设BD x =,则8DG x =-,易证()EDH DCG AAS ∆≅∆,8EH DG x ∴==-,2111(8)(4)8222BDE S BD EH x x x ∆∴==-=--+, 当4x =时,BDE ∆面积的最大值为8.17.(2021•光明区二模)如图,扇形OPQ 可以绕着正六边形ABCDEF 的中心O 旋转,若120POQ ∠=︒,OP 等于正六边形ABCDEF 边心距的2倍,2AB =,则阴影部分的面积为 .【答案】423π-【详解】连接OE ,OD ,OC .设EF 交OP 于T ,CD 交OQ 于J .120POQ EOC ∠=∠=︒,EOT COJ ∴∠=∠,OE OJ =,60OET OCJ ∠=∠=︒,()EOT COJ ASA ∴∆≅∆,2322234OTEDJ OEDC S S ∴==⨯⨯=五边形四边形, 2120(23)23423360OPQ OTEDJ S S S ππ⋅⋅∴=-=-=-阴扇形五边形 18.(2021•深圳二模)如图Rt ABC ∆中,90BAC ∠=︒,3AB =,4AC =,点P 为BC 上任意一点,连接PA ,以PA ,PC 为邻边作平行四边形PAQC ,连接PQ ,则PQ 的最小值为.【答案】12 5【详解】90BAC∠=︒,3AB=,4AC=,225BC AC AB∴=+=,四边形APCQ是平行四边形,PO QO∴=,CO AO=,PQ最短也就是PO最短,∴过O作BC的垂线OP',ACB P CO∠=∠',90CP O CAB∠'=∠=︒,CAB∴∆∽△CP O',∴CO OP BC AB'=,∴253OP' =,65 OP∴'=,∴则PQ的最小值为1225 OP'=,方法二:不用相似的方法,只利用等面积得,OC AB BC OP'=,求得OP',而其他部分的步骤共用.19.(2020•九龙坡区校级月考)如图,Rt ABC∆中,AB BC⊥,6AB=,4BC=,点D是ABC∆内一个动点,且满足DAB DBC∠=∠,当线段CD取最小值时,记BCDα∠=,线段AB 上一动点E绕着点D顺时针旋转得到点F,且满足EDFα∠=,则AF的最小值 .【答案】125 【详解】AB BC ⊥,6AB =、4BC =, 90DBC ABD ∴∠+∠=︒,DAB DBC ∠=∠,设DAB DBC β∠=∠=,90DAB ABD ∴∠+∠=︒,90ADB ∴∠=︒,∴点D 在以AB 为直径的圆上,设圆心为O ,半径为132AB =,则当O 、D 、C 三点共线时CD 最小,3OD OB OA ∴===,225OC OB BC ∴=+=,将DA 绕点D 逆时针旋转α,得到DG ,连接GE ,DG DA ∴=,GDA EDF α∠=∠=,GDE ADF ∴∠=∠,DE DF =,()GDE ADF SAS ∴∆≅∆,GE AF ∴=,∴当GE AB ⊥时,GE 最小,即AF 最小,过点D 作DM AB ⊥于M ,过点G 作GH DM ⊥,交DM 的延长线于点H ,//DM BC ∴,四边形GHME 为矩形.OMD OBC ∴∆∆∽,GE HM =,∴DM OM OD BC OB OC ==, ∴3435DM OM ==, 125DM ∴=,95OM =, 924355AM OM OA ∴=+=+=, DAB DBC β∠=∠=,OA OD =,ODA OAD β∴∠=∠=,2BOC ODA OAD β∴∠=∠+∠=.在Rt OBC ∆中,90OCB BOC ∠=︒-∠,902αβ∴=︒-,90MAD MDA ∠+∠=︒,90GDH βα∴++∠=︒,GDH DAM β∴∠==∠,90DHG AMD ∠=∠=︒,AD DG =,()GDH DAM AAS ∴∆≅∆.245DH AM ∴==, 125HM DH DM ∴=-=,即AF 的最小值为125. 20.(2021•南山区二模)矩形ABCD 中,4AB =,6BC =,点E 为BC 的中点,沿AE 将AEB ∆翻折得到AFE ∆,sin FCE ∠= .【答案】45【详解】如图,过E 作EH CF ⊥于H ,由折叠的性质得:BE EF =,BEA FEA ∠=∠,点E 是BC 的中点,3CE BE ∴==,3EF CE ∴==,FEH CEH ∴∠=∠,90AEB CEH ∴∠+∠=︒,在矩形ABCD 中,90B ∠=︒,90BAE BEA ∴∠+∠=︒,BAE CEH ∴∠=∠,B EHC ∠=∠,ABE EHC ∴∆∆∽, ∴AB AE EH CE =, 22435AE =+=,125EH ∴=, 4sin 5EH ECF CE ∴∠==. 21.(2021•龙岗区二模)如图,已知在菱形ABCD ,9BC =,60ABC ∠=︒,点E 在BC 上,且6BE =,将ABE ∆沿AE 折叠得到△AB E ',其中B E '交CD 于点F ,则CF = .【答案】95【详解】过点A 作AG BC ⊥交BC 于G ,取HG 使HG GE =,过H 作HM AE ⊥于H ,过F 作FN BC ⊥交BC 延长线于N ,四边形ABCD 是菱形,在Rt ABG ∆中,60B ∠=︒, 3sin sin 602AG B AB ∴=︒==, 39322AG AB ∴==, 1cos cos602BG B AB =︒==, 1922BG AB ∴==, 6BE =,922()2(6)32HE GE BE BG ∴==-=⨯-=, 在Rt AGE ∆中,222439633744AE AG GE =+=+==, 1122AHE S HE AG AE HM ∆=⨯⨯=⨯⨯, ∴131337222HM ⨯⨯=⨯⨯, 解得,92114HM =, HG GE =,AG HE ⊥,AHE ∴∆是等腰三角形,AH AE ∴=,AHE HEA ∠=∠,在Rt AHM ∆中,222229211064739763()1419614AM AH HM AE HM =-=-=-==, //AB CD ,60FCN B ∴∠=∠=︒,∴tan 603FN CN=︒=, 折叠,AEB HEA ∴∠'=∠,在Rt AHE ∆中,1801802HAE HEA AHE HEA ∠=︒-∠-∠=︒-∠,又1801802FEN HEA AEB HEA ∠=︒-∠-∠'=︒-∠,设CN x =,3FN x =, tan tan FN HM FEC HAM EN AM ∠=∠==,∴921314339714x x =+, ∴333313x x =+, 910x ∴=, 9931010CN FN ∴==, 22189105CF CN FN ∴=+==. 22.(2021•深圳模拟)如图,矩形ABCD 中,13AE AD =,将ABE ∆沿BE 折叠后得到GBE ∆,延长BG 交CD 于F 点,若3CF FD ==,则BC 的长为 .【答案】66【详解】延长BF 交AD 的延长线于点H ,四边形ABCD 是矩形,AD BC ∴=,//AD BC ,90A BCF ∠=∠=︒, H CBF ∴∠=∠,在BCF ∆和HDF ∆中,CBF H BCF DFH CF DF ∠=∠⎧⎪∠=∠⎨⎪=⎩,()BCF HDF AAS ∴∆≅∆,将ABE ∆沿BE 折叠后得到GBE ∆,90A BGE ∴∠=∠=︒,AE EG =,90EGH ∴∠=︒, 13AE AD =, ∴设AE EG x ==,则3AD BC DH x ===, 2ED x ∴=,5EH ED DH x ∴=+=, 在Rt EGH ∆中,1sin 55EG x H EH x ∠===, 1sin 5CF CBF BF ∴∠==, ∴315BF =, 15BF ∴=,222215366BC BF CF ∴=-=-=23.(2021•葫芦岛二模)如图,在矩形ABCD 中,15AB =,8AD =,E 为AB 边上一点,将BEC ∆沿CE 翻折,点B 落在点F 处,当AEF ∆为直角三角形时,AE = .【答案】7或515【详解】①如图,若90AEF ∠=︒,90B BCD AEF ∠=∠=︒=∠,∴四边形BCFE 是矩形,将BEC ∆沿着CE 翻折,∴四边形BCFE 是正方形,8BE BC AD ∴===,1587AE AB BE ∴=-=-=;②如图,若90AFE ∠=︒,将BEC ∆沿着CE 翻折,8CB CF ∴==,90B EFC ∠=∠=︒,BE EF =, 180AFE EFC ∠+∠=︒,∴点A ,点F ,点C 三点共线, 222215817AC AB BC ∴=+=+=,9AF AC CF ∴=-=,222AE AF EF =+,2281(15)AE AE ∴=+-,515AE ∴=, ③若90EAF ∠=︒,158CD CF BC =>==,∴点F 不可能落在直线AD 上,∴不存在90EAF ∠=︒,综上所述:7AE =或515. 24.(2020•青羊区校级期末)如图1,在矩形ABCD 中,8AB =,10BC =,P 是边AD 上一点,将ABP ∆沿着直线BP 翻折得到△A BP '.当8AP =时,A D '= .如图2,连接A C ',当2AP =时,此时△A BC '的面积为 .【答案】217;60017 【详解】如图1,当8AP =时,由折叠知AB AP =,APB BPA '∠=∠,ABP A BP '∠=∠,90A BA P '∠=∠=︒, ∴四边形ABA P '是正方形,8A P '∴=,2PD =,222282217A D A P PD ''∴=+=+=.如图2,当2AP =时,过点A '作//MN AB ,交AD 于点M ,交BC 于点N ,∴四边形ABNM 为矩形,8AB MN ∴==,AM BN =,90AMN BNM ∠=∠=︒, 设A M x '=,则8A N x '=-,设BN y =,则2PM y =-, 在Rt PMA '∆中,222PM A M PA ''+=,222(2)2y x ∴-+=①,在Rt BNA '∆中,222BN A N A B ''+=,222(8)8y x ∴+-=②,由①②可得,4y x =,把4y x =代入①得,222(42)2x x -+=, 解得,1617x =, 1612081717A N '∴=-=, 1112060010221717A BC S BC A N ''∴=⨯⨯=⨯⨯=. 25.(2021•坪山区二模)如图,在ABC ∆和ADE ∆中,90BAC DAE ∠=∠=︒,60C E ∠=∠=︒,点D 在BC 边上,AC 与DE 相交于点F ,3DF CF =,则AD BD= .【答案】3【详解】连接EC ,如图,90BAC DAE ∠=∠=︒,60ACB AED ∠=∠=︒, AED ACB ∴∆∆∽,∴AE AD AC AB=, 即AE AC AD AB=, 90BAC DAE ∠=∠=︒,BAC CAD DAE CAD ∴∠-∠=∠-∠,EAC DAB ∴∠=∠,EAC DAB ∴∆∆∽,∴AD BD AE EC=,ACE ABD ADE ∠=∠=∠, 在Rt EAD ∆中,60AED ∠=︒,∴3AD AE=,∴3BD EC =, ∴33EC BD=,EFCAFD ∠=∠,ECF ADF ∠=∠, EFC AFD ∴∆∆∽,∴3AD DF EC CF==, ∴3333AD AD EC BD EC BD =⋅=⨯= 26.(2021•深圳模拟)如图所示的网格是正方形网格,则BAC DAE ∠-∠= ︒(点A ,B ,C ,D ,E 是网格线交点).【答案】45【详解】如图,连接CG 、AG ,由勾股定理得:2222125AC AG ==+=,2221310CG =+=, 222AC AG CG ∴+=,90CAG ∴∠=︒,CAG ∴∆是等腰直角三角形,45ACG ∴∠=︒,//CF AB ,ACF BAC ∴∠=∠,在CFG ∆和ADE ∆中,90CF AD CFG ADE FG DE =⎧⎪∠=∠=︒⎨⎪=⎩,()CFG ADE SAS∴∆≅∆,FCG DAE∴∠=∠,45BAC DAE ACF FCG ACG∴∠-∠=∠-∠=∠=︒27.(2021•深圳模拟)如图,矩形ABCD中,E是AB上一点,连接DE,将ADE∆沿DE翻折,恰好使点A落在BC边的中点F处,在DF上取点O,以O为圆心,OF长为半径作半圆与CD相切于点G.若4AD=,则图中阴影部分的面积为.【答案】23 9【详解】连接OG,QG,将ADE∆沿DE翻折,恰好使点A落在BC边的中点F处,4AD DF∴==,2BF CF==,矩形ABCD中,90DCF∠=︒,30FDC∴∠=︒,60DFC∴∠=︒,O与CD相切于点G,OG CD∴⊥,BC CD⊥,//OG BC∴,DOG DFC∴∆∆∽,∴DO OG DF FC=,设OG OF x==,则442x x-=,解得:43x =,即O 的半径是43. 连接OQ ,作OH FQ ⊥, 60DFC ∠=︒,OF OQ =, OFQ ∴∆为等边三角形;同理OGQ ∆为等边三角形; 60GOQ FOQ ∴∠=∠=︒,32323OH OQ ==, 3232333QH ∴=⨯=, 23CQ ∴= 四边形OHCG 为矩形,233OH CG ∴==, 232311222339CGQ S S CQ CG ∆∴==⨯⨯=⨯⨯=阴影. 28.(2020•扬州)如图,在ABCD 中,60B ∠=︒,10AB =,8BC =,点E 为边AB 上的一个动点,连接ED 并延长至点F ,使得14DF DE =,以EC 、EF 为邻边构造EFGC ,连接EG ,则EG 的最小值为 .【答案】93【详解】作CH AB ⊥于点H ,在ABCD 中,60B ∠=︒,8BC =,43CH ∴=,四边形ECGF 是平行四边形,//EF CG ∴,EOD GOC ∴∆∆∽,∴EO DO ED GO OC GC==,14DF DE =, ∴45DE EF =, ∴45ED GC =, ∴45EO GO =, ∴当EO 取得最小值时,EG 即可取得最小值,当EO CD ⊥时,EO 取得最小值,CH EO ∴=,43EO ∴=,53GO ∴=,EG ∴的最小值是9329.(2021•锡山区一模)如图,在平行四边形ABCD 中,60B ∠=︒,4BC =,点E 为边AB上的一个动点,连接ED 并延长至点F ,使得13DF DE =,以EC 、EF 为邻边构造平行四边形EFGC ,连接EG ,则EG 的最小值为 .【答案】1433【详解】作CH AB ⊥于点H ,在ABCD 中,60B ∠=︒,4BC =,23CH ∴=,四边形ECGF 是平行四边形,//EF CG ∴,EOD GOC ∴∆∆∽, ∴EO DO ED GO CO GC ==, 13DF DE =, ∴34DE EF =, ∴34ED GC =, ∴34EO GO =, ∴当EO 取得最小值时,EG 即可取得最小值,当EO CD ⊥时,EO 取得最小值,CH EO ∴=,23EO ∴=,833GO ∴=, EG ∴的最小值是814233333+=30.(2021•龙岗区校级一模)如图,在矩形ABCD 中,5AC =,AE 平分DAC ∠交CD 于E ,CF 平分ACD ∠交AE 于点F ,且:1:2EF AF =,则CF = .【答案】10【详解】作FG AC ⊥于点G ,作FM CD ⊥于点M ,作FN AD ⊥于点N , CF 平分ACD ∠交AE 于点F ,且:1:2EF AF =,:1:2CE CA ∴=,5AC =, 52CE ∴=, AE 平分DAC ∠,CF 平分ACD ∠, FG FM FN ∴==, FM CD ⊥,AD CD ⊥,:1:2EF AF =, EMF EDA ∴∆∆∽,∴13MF EF DA EA ==, 设FM x =,则3AD x =,同理可得,ANF AED ∆∆∽,则32DE x =, 5322CD x ∴=+, 90D ∠=︒,3AD x =,5AC =, 22253()(3)522x x ∴++=, 解得11x =,253x =-(舍去), 1FM ∴=,5311322CM =+⨯-=, 又90CMF ∠=︒,221310CF ∴=+=,故答案为:10.。

平行四边形定则公式

平行四边形定则公式

平行四边形定则公式(实用版)目录1.平行四边形定则公式的概念2.平行四边形定则公式的推导过程3.平行四边形定则公式的应用4.总结正文1.平行四边形定则公式的概念平行四边形定则公式,又称平行四边形法则,是一种用于计算两个向量之和的数学公式。

它是基于平行四边形法则得出的,即两个向量之和等于以这两个向量为邻边的平行四边形的对角线。

2.平行四边形定则公式的推导过程假设有两个向量 A 和 B,它们的大小分别为|A|和|B|,方向分别为α和β。

根据平行四边形法则,我们可以构造一个平行四边形,使得向量A 和 B 分别对应平行四边形的两条邻边。

那么,平行四边形的对角线就是一个新的向量 C,它的大小和方向可以通过平行四边形的性质得出。

根据平行四边形的性质,对角线 C 的长度等于向量 A 和 B 长度之和,即|C| = |A| + |B|。

同时,对角线 C 的方向可以通过平行四边形的一个角得出。

假设这个角为θ,那么向量 C 的方向与向量 A 和 B 的方向之和相等,即 C = A + B = |A| * cosθ * (A/|A|) + |B| * cosθ * (B/|B|)。

通过三角函数的性质,我们可以将 cosθ表示为平行四边形中另一个角的正切值,即 cosθ = tan(90° - θ)。

将 cosθ替换为 tan(90° - θ),我们可以得到向量 C 的表达式:C = A + B = |A| * tan(90° - θ)* (A/|A|) + |B| * tan(90° - θ) * (B/|B|)。

进一步简化,我们可以得到平行四边形定则公式:C = A + B = |A| * (A/|A|) + |B| * (B/|B|) = |A| * cosα + |B| * cosβ。

3.平行四边形定则公式的应用平行四边形定则公式在向量的加法运算中有广泛的应用。

它可以帮助我们快速计算两个向量的和,以及这个和的方向。

平行四边形解题方法与技巧

平行四边形解题方法与技巧

◆解读平行四边形1.正确理解平行四边形的概念有两组对边分别平行的四边形叫做平行四边形.用数学语言表示为:在四边形ABCD中,若AB∥DC,AD∥BC,则四边形ABCD是平行四边形.记作□ ABCED.平行四边形的定义也是判定一个四边形是不是平行四边形的一种方法.2.掌握平行四边形的性质平行四边形的性质可以从以下三个方面去理解:(1)从边着眼:平行四边形的两组对边分别平行且相等;(2)从角着眼:平行四边形的两组对角分别相等,邻角互补;(3)从对角线着眼:平行四边形的对角线互相平分.事实上,平行四边形的对角线除了互相平分外,它还是将四边形转化为三角形的”桥梁”,在处理许多与平行四边形有关的问题时,常用”对角线”互相平分这一性质解决.如:□ABCD的周长为26,对角线AC 和BD相交于点O,若△AOB的周长比△AOD的周长多1,这样我们就可以利用平行四边形的对边相等和对角线互相平分得到AB+AD=13,,AB-AD=1,从而求得AB=7,AD=6.3.掌握平行四边形的判定方法判定一个四边形是平行四边形的方法主要有:(1)两组对边分别平行;(2)两组对边分别相等;(3)一组对边平行且相等;(4)两组对角分别相等;(5)两条对角线互相平分.◆平行四边形性质的活用平行四边形除了具有一般四边形的性质外,还具有以下特性:(1)对边平行且相等;(2)对角相等,邻角互补;(3)对角线互相平分;(4)是中心对称图形,对角线的交点是它的对称中心;(5)平行四边形被对角线分成的4个三角形的面积相等.例1: 已知:如图,在□ABCD中,E、F分别是AB、CD的中点.求证:(1)△AFD≌△CEB;(2)四边形AECF是平行四边形.例2: 如图,在平行四边形ABCD中,E、F分别是AB、CD上的点,且∠DAF=∠BCE.(1)求证:△DAF≌△BCE;(2)若∠ABC=60°,∠ECB=20°,∠ABC的平分线BN交AF与M,交AD于N,求∠AMN的度数.◆判定平行四边形的五种基本方法判定平行四边形的五种方法1.两组对边分别平行例: 如图1,已知△ABC是等边三角形,D、E分别在边BC、AC上,且CD=CE,连结DE并延长至点F,使EF=AE,连结AF、BE和CF(1)请在图中找出一对全等三角形,并加以证明;(2)判断四边形ABDF是怎样的四边形,并说明理由。

中考数学复习⑦ 平行四边形及矩形、菱形、正方形存在性问题探究

中考数学复习⑦ 平行四边形及矩形、菱形、正方形存在性问题探究

中考数学复习⑦ 平行四边形及矩形、菱形、正方形存在性问题探究在平行四边形的存在性问题中,常会遇到两类探究性的问题。

第一类问题是已知三点的位置,在二次函数上或在坐标平面内找一动点,使这四点构成平行四边形(简称“三定一动”)。

第二类问题是已知两个点的位置,在二次函数上或在坐标平面内找两个动点,使这四点构成平行四边形(简称“两定两动”)。

平行四边形的这四个点有可能是定序的,也有可能没有定序。

在解决这些问题时,容易出现遗漏或方法不当或错解的情况。

因此,需要分清题型并分类讨论且作图,利用几何特征计算,并灵活运用平移坐标法等解题技巧。

可以把存在性问题的基本思路叫做“三步曲”:一“分”二“作”三“算”。

对于“三定一动”,要找出平行四边形第四个顶点,则符合条件的有3个点。

这三个点的找法是以三个定点为顶点画三角形,过每个顶点画对边的平行线,三条直线两两相交,产生所要求的3个点。

对于“两定两动”,要找出平行四边形第三、四个顶点,将两个定点连成定线段,将此线段按照作为平行四边形的边或对角线两种分类讨论。

如果平行四边形的四个顶点都能用坐标来表示,则可以直接利用坐标系中平行四边形的基本特征:即对边平行且相等或对边水平距离相等和竖直距离相等列方程求解。

如果平行四边形的四个顶点中某些点不能用坐标表示,则可以利用列方程组解图形交点的方法解决。

此外,还可以灵活运用平行四边形的中心对称的性质,或者使用平移坐标法。

平移坐标法的具体步骤是先由题目条件探索三点的坐标(若只有两个定点,可设一个动点的坐标),再画出以三点为顶点的平行四边形,根据坐标平移的性质写出第四个顶点的坐标。

最后根据题目的要求(动点在什么曲线上),判断平行四边形的存在性。

除了平行四边形,矩形、菱形和正方形也有存在性问题。

对于矩形,增加对角线相等和邻边垂直的性质,还可以转化为直角三角形的存在性问题。

对于菱形,增加四边相等和对角线垂直的性质,还可以转化为直角三角形或等腰(等边)三角形的存在性问题。

初中数学复习几何模型专题讲解11---构造平行四边形

初中数学复习几何模型专题讲解11---构造平行四边形

初中数学复习几何模型专题讲解专题11 构造平行四边形一、单选题1.如图,菱形ABCD的边长为13,对角线24AC=,点E、F分别是边CD、BC的中点,连接EF并延长与AB的延长线相交于点G,则EG=()A.13 B.10 C.12 D.5【答案】B【分析】连接对角线BD,交AC于点O,求证四边形BDEG是平行四边形,EG=BD,利用勾股定理求出OD的长,BD=2OD,即可求出EG.【详解】连接BD,交AC于点O,由题意知:菱形ABCD的边长为13,点E、F分别是边CD、BC的中点,∴AB=BC=CD=DA=13,EF//BD,∵AC、BD是菱形的对角线,AC=24,∴AC⊥BD,AO=CO=12,OB=OD,又∵AB//CD,EF//BD∴DE//BG,BD//EG在四边形BDEG中,∵DE//BG,BD//EG∴四边形BDEG是平行四边形∴BD=EG在△COD中,∵OC⊥OD,CD=13,CO=12∴OD=OB=5∴BD=EG=10故选B.【点睛】本题主要考查了菱形的性质,平行四边形的性质及勾股定理,熟练掌握菱形、平行四边形的性质和勾股定理是解题的关键.2.在等边三角形ABC中,BC=6cm,射线AG//BC,点E从点A出发,沿射线AG以1cm/s的速度运动,同时点F从点B出发,沿射线BC以2cm/s的速度运动,设运动时间为t,当t为( )s时,以A,F,C,E为顶点的四边形是平行四边形?()A.2 B.3 C.6 D.2或6【答案】D分别从当点F在C的左侧时与当点F在C的右侧时去分析,由当AE=CF时,以A、C、E、F为顶点四边形是平行四边形,可得方程,解方程即可求得答案.【详解】①当点F在C的左侧时,根据题意得:AE=tcm,BF=2tcm,则CF=BC-BF=6-2t(cm),∵AG∥BC,∴当AE=CF时,四边形AECF是平行四边形,即t=6-2t,解得:t=2;②当点F在C的右侧时,根据题意得:AE=tcm,BF=2tcm,则CF=BF-BC=2t-6(cm),∵AG∥BC,∴当AE=CF时,四边形AEFC是平行四边形,即t=2t-6,解得:t=6;综上可得:当t=2或6s时,以A、C、E、F为顶点四边形是平行四边形.故选D.【点睛】本题考查了平行四边形的判定.此题难度适中,注意掌握分类讨论思想、数形结合思想与方程思想的应用.3.如图.在△ABC中,AB=AC,AD为∠BAC的平分线,AN为△ABC外角∠CAM的平分线,CE⊥AN,垂足为E.(1)求证:四边形ADCE是矩形.(2)若连接DE,交AC于点F,试判断四边形ABDE的形状(直接写出结果,不需要证明).(3)△ABC再添加一个什么条件时,可使四边形ADCE是正方形.并证明你的结论.【答案】(1)证明见解析;(2)四边形ABDE是平行四边形;(3)当∠BAC=90°时,四边形ADCE是正方形,证明见解析【分析】(1)由等腰三角形的性质可得AD⊥BC,∠BAD=∠CAD,又由AN为△ABC的外角∠CAM的平分线,可得∠DAE=90°,又由CE⊥AN,由矩形的判定可证四边形ADCE 为矩形;(2)利用(1)中矩形的对角线相等推知:AC=DE;结合已知条件可以推知AB∥DE,又AE=BD,则易判定四边形ABDE是平行四边形;(3)由等腰直角三角形的性质可得AD=CD=BD,即可证四边形ADCE是正方形.【详解】证明:(1)∵在△ABC中,AB=AC,AD为∠BAC的平分线,∴AD⊥BC,∠BAD=∠CAD,∴∠ADC=90°,∵AN为△ABC的外角∠CAM的平分线,∴∠MAN=∠CAN,∴∠DAE=90°,∵CE⊥AN,∴∠AEC=90°,∴四边形ADCE为矩形;(2)四边形ABDE是平行四边形,理由如下:由(1)知,四边形ADCE为矩形,则AE=CD,AC=DE.又∵AB=AC,BD=CD,∴AB=DE,AE=BD,∴四边形ABDE是平行四边形;(3)当∠BAC=90°时,四边形ADCE是正方形,理由:∵∠BAC=90°,AB=AC,AD为∠BAC的平分线,∴AD=CD=BD,又∵四边形ADCE是矩形,∴四边形ADCE是正方形.【点睛】本题考查平行四边形、矩形和正方形的判定方法,掌握特殊四边形的判定定理是解题的关键.4.如图,在△ABC中,已知∠BDC=∠EFD,∠AED=∠ACB.(1)试判断∠DEF与∠B的大小关系,并说明理由;(2)若D、E、F分别是AB、AC、CD边上的中点,S△DEF=4,S△ABC=【答案】(1)∠DEF=∠B,理由见解析;(2)32【分析】(1)延长EF交BC于G,根据平行四边形的判定和性质即可得到结论;(2)根据三角形一边的中线平分三角形的面积,即可得到结论.【详解】(1)∠DEF=∠B,理由如下:延长EF交BC于G,∵∠BDC=∠EFD,∴EF∥BD,∵∠AED=∠ACB,∴DE∥BC,∴四边形DEGB是平行四边形,∴∠DEF=∠B ;(2)∵F 是CD 边上的中点,S △DEF =4,∴S △DEC =2S △DEF =8,∵E 是AC 边上的中点,∴S △ADC =2S △DEC =16,∵D 是AB 边上的中点,∴S △ABC =2S △ACD =32.【点睛】本题考查了平行线的性质和判定,平行四边形的判定和性质,三角形的面积,正确的识别图形是解题的关键.5.已知,菱形ABCD 中,60B ∠=︒,E 、P 分别是边BC 和CD 上的点,且60EAP ∠=︒.(1)求证:BC EC CP =+(2)如图2,F 在CA 延长线上,且FE FB =,求证:AF EC =(3)如图3,在(2)的条件下,6AF =,10BE =,O 是FB 的中点,求OA 的长.【答案】(1)证明见解析;(2)证明见解析;(3)7【分析】(1)连接AC ,如图1,根据菱形的性质得AB=BC ,而∠B=60°,则可判定△ABC 为等边三角形,得到∠BAC=60°,AC=AB ,易得∠ACF=60°,∠BAE=∠CAF ,然后利用ASA 可证明△AEB ≌△AFC ,即可解答;(2)过点F 作FH ∥AB ,交CB 的延长线于点H ,利用平行线的性质求得△FHC 是等边三角形,得到CF=CH=FH ,然后利用AAS 定理求得△HBF ≌△CEF ,从而问题得解; (3)过点B 作BK ∥FC ,交HF 于点K ,根据两组对边分别平行求得四边形KBAF 是平行四边形,从而求得12OA AK =,FK=16,过点A 作AM ⊥FH ,然后利用含30°的直角三角形的性质求得MF=132AF =,AM ==从而求得KM=13,然后利用勾股定理求解即可.【详解】解:(1)连接AC ,如图1,∵四边形ABCD 为菱形,∴AB=BC ,∵∠B=60°,∴△ABC 为等边三角形,∴∠BAC=60°,AC=AB ,∴∠BAE+∠EAC=60°,∵AB ∥CD ,∴∠BAC=∠ACP=60°,∵∠EAP=60°,即∠EAC+∠CAP=60°, ∴∠BAE=∠CAP ,在△AEB 和△APC 中,BAE CAP AB ACB ACD ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AEB ≌△APC ,∴BE=CF∴BC EC BE EC CP =+=+;(2)过点F 作FH ∥AB ,交CB 的延长线于点H∵FH∥AB∴∠H=∠CGH=60°∴△FHC是等边三角形∴CF=CH=FH又∵△ABC是等边三角形∴CA=CB∴AF=BH又∵FB=FE∴∠FEB=∠FEB,即∠FBH=∠FEC在△HBF和△CEF中FBH FECFHB FCE FH FC∠=∠⎧⎪∠=∠⎨⎪=⎩∴△HBF≌△CEF∴BH=EC∴AF=EC(3)过点B作BK∥FC,交HF于点K,∵BK ∥FC ,FH ∥AB∴四边形KBAF 是平行四边形∴KB=AF=EC=6,12OA AK = ∴FK=AB=BC=BE+EC=BE+AF=16过点A 作AM ⊥FH由(2)可知,∠CFH=60°∴在Rt △AMF 中,∠MAF=30°∴MF=132AF =,AM == ∴KM=16-3=13在Rt △AKM 中,14AK ===∴AO=7.【点睛】本题考查全等三角形的判定与性质,等边三角形的判定与性质,及平行四边形的判定和性质,题目有一定的综合性,正确添加辅助线解题是关键的突破点.6.如图,反比例函数y =k x(x >0)过点A (3,4),直线AC 与x 轴交于点C (6,0),过点C 作x 轴的垂线交反比例函数图象于点B ,(1)求反比例函数和直线AC 的解析式;(2)求△ABC的面积;(3)在平面内有点D,使得以A,B,C,D四点为顶点的四边形为平行四边形,请直接写出符合条件的所有D点的坐标.【答案】(1)反比例函数解析式为:y=12x;直线AC的解析式为:y=﹣43x+8;(2)3;(3)符合条件的点D的坐标是:(3,2)或(3,6)或(9,﹣2).【分析】(1)将A点的坐标代入反比例函数y=kx求得k的值,然后将A,C坐标代入直线解析式解答即可;(2)把x=6代入反比例函数解析式求得相应的y的值,即得点B的坐标,进而利用三角形面积公式解答即可;(3)使得以A、B、C、D为顶点的四边形为平行四边形,如图所示,找出满足题意D 的坐标即可.【详解】解:(1)把点A(3,4)代入y=kx(x>0),得k=xy=3×4=12,故该反比例函数解析式为:y=12x,把A(3,4),C(6,0)代入y=mx+n中,可得:34 60 m nm n+=⎧⎨+=⎩,解得:438mn⎧=-⎪⎨⎪=⎩,所以直线AC的解析式为:y=﹣43x+8;(2)∵点C(6,0),BC⊥x轴,∴把x=6代入反比例函数y=12x,得y=126=2,则B(6,2),所以△ABC的面积=1(63)232⨯-⨯=;(3)①如图,当四边形ABCD为平行四边形时,AD∥BC且AD=BC.∵A(3,4)、B(6,2)、C(6,0),∴点D的横坐标为3,y A﹣y D=y B﹣y C即4﹣y D=2﹣0,故y D=2.所以D(3,2).②如图,当四边形ACBD′为平行四边形时,AD′∥CB且AD′=CB.∵A(3,4)、B(6,2)、C(6,0),∴点D的横坐标为3,y D′﹣y A=y B﹣y C即y D﹣4=2﹣0,故y D′=6.所以D′(3,6).③如图,当四边形ACD″B为平行四边形时,AC=BD″且AC∥BD″.∵A(3,4)、B(6,2)、C(6,0),∴x D″﹣x B=x C﹣x A即x D″﹣6=6﹣3,故x D″=9.y D″﹣y B=y C﹣y A即y D″﹣2=0﹣4,故y D″=﹣2.所以D″(9,﹣2).综上所述,符合条件的点D 的坐标是:(3,2)或(3,6)或(9,﹣2).【点睛】本题考查了反比例函数综合题,涉及的知识有:待定系数法确定函数解析式,平行四边形的判定与性质,解答(3)题时,采用了“数形结合”和“分类讨论”的数学思想. 7.如图所示,90BAC DAE ∠=∠=︒,M 是BE 的中点,AB AC =,AD AE =,求证AM CD ⊥.【答案】见解析【分析】延长AM 到F ,使MF =AM ,交CD 于点N ,构造平行四边形,利用条件证明△ABF ≌△CAD ,可得出∠BAF =∠ACD ,再结合条件可得到∠ANC =90°,可证得结论.【详解】证明:延长AM 到F ,使MF =AM ,交CD 于点N ,∵BM =EM ,∴四边形ABFE 是平行四边形,∴BF=AE,∠ABF+∠BAE=180°,∵∠BAC=∠DAE=90°,∴∠CAD+∠BAE=180°,∴∠ABF=∠CAD,∵BF=AE,AD=AE,∴BF=AD,在△ABF和△CAD中,BF ADABF CADAB AC⎧⎪∠∠⎨⎪⎩===,∴△ABF≌△CAD(SAS),∴∠BAF=∠ACD,∵∠BAC=90°,∴∠BAF+∠CAF=90°,∴∠ACD+∠CAF=90°,∴∠AHC=90°,∴AM⊥CD.【点睛】本题考查了平行四边形的判定和性质,全等三角形的判定和性质,通过辅助线构造平行四边形证明三角形全等得到∠BAF =∠ACD 是解题的关键.8.如图所示,CD 是ABC ∆的中线,12∠=∠,求证:AE BC =.【答案】见解析【解析】【分析】要证AE BC =,可设法将AE 、BC 集中到一个图形中,由已知CD 是ABC ∆的中线,故倍长中线可得到平行四边形AFBC .【详解】证明:延长CD 至F ,使DF CD =,连AF ,BF ,又∵DA DB =,∴四边形AFBC 为平行四边形,21AFC ∴∠=∠=∠,AE AF BC ∴==.【点睛】中线倍长,利用平行四边形的判定定理对角线互相平分的四边形是平行四边形,据此达到转移线段或角的目的.9.如图所示,ABCD 中,E 是BC 的中点,9AE =,12BD =,10AD =.求证:AE BD ⊥.【答案】见解析【解析】【分析】过D 作DF AE ∥交BC 的延长线于F ,得四边形AEFD 为平行四边形,由已知可得△BDF 三边长,再由勾股定理可知∠BDF =90°,即可证明结论.【详解】证明:过D 作DF AE ∥交BC 的延长线于F ,AE DF ∴∥,又AD EF ,∴四边形AEFD 为平行四边形,10EF AD ∴==,9DF AE ==,15BF ∴=.22222129225BD DF BF +=+==,90BDF ∴∠=︒,∴AE BD ⊥.【点睛】此题主要考查了勾股定理逆定理,平行四边形的性质,关键是平移AE 构造△DBF ,证出△BDF 是直角三角形.10.如图所示,ABC ∆中,90C ∠=︒,D ,E 分别为BC ,AC 上一点,BD CE =,AE BC =,求证:AD .【答案】见解析【解析】【分析】过A 作AG BD ,且AG BD =,连BG ,EG ,则ADBG 为平行四边形.再证明AEG CBE ∆∆≌,则GE =BE ,得△ADF 为等腰直角三角形即可证明结论【详解】证明:过A 作AG BD ,且AG BD =,连BG ,EG ,则四边形ADBG 为平行四边形,∵∠C =90°,∴∠GAE =∠C =90°,在△AEG 和△CBE 中,AG=CE AE=CB GAE C ⎧⎪∠=∠⎨⎪⎩,AEG CBE ∆∆≌,∴GE =BE ,∠GEA =∠EBC ,∴∠GEB =90°. BEG ∴为等腰直角三角形,∴AD BG ==【点睛】本题考查了等腰直角三角形的性质的运用,平角的性质的运用,平行四边形的判定及性质的运用,全等三角形的判定及性质的运用,解答时证明三角形全等是关键. 11.如图所示,四边形ACED 中,CE AD ∥,以DC ,DE 为边作平行四边形DCFE ,EC 的延长线交AF 于B ,求证:AB FB =.【答案】见解析【解析】【分析】延长FC 交AD 于点G ,可证明四边形CEDG 为平行四边形,可得FC =DE =CG ,可知BC 为△F AG 的中位线,可证明AB =FB .【详解】证明:如图,延长FC 交AD 于点G ,∵四边形CDEF 为平行四边形,∴CF ∥DE ,CF =DE ,又∵CE ∥AD ,∴四边形CEDG 为平行四边形,∴CG =DE ,∴CF =CG ,且BC ∥AG ,∴BC 是△F AG 的中位线,∴B 为AF 的中点,即AB =FB .【点睛】本题主要考查平行四边形的性质和判定,掌握平行四边形的性质和判定是解题的关键,即①两组对边分别平行的四边形⇔平行四边形,②两组对边分别相等的四边形⇔平行四边形,③一组对边分别平行且相等的四边形⇔平行四边形,④两组对角分别相等的四边形⇔平行四边形,⑤对角线互相平分的四边形⇔平行四边形.12.如图所示,ABC ∆中,90ACB ∠=︒,CD AB ⊥于D ,AE 平分CAB ∠交BC 于E ,交CD 于F ,FG AB ∥交BC 于G .求证:CE BG =.【答案】见解析【解析】【分析】要证CE BG∥,故过F作=,可设法将CE、BG集中到一个图形中,由已知FG ABFM BC,从而得到平行四边形FMBG.【详解】证明:过F作FM BC交AB于M,又FG AB∥,∴四边形FMBG是平行四边形,B BAC ACD BAC∠+∠=︒=∠+∠,∴=,由90BG FM∴∠=∠=∠,又AE平分CABB ACD AMF∠,∴=,又CEF B BAE ACD CAE CFE∠=∠+∠=∠+∠=∠,∴∆≅∆,CF MFACF AMF∴=,CE CF∴=.CE BG【点睛】此题主要考查平行四边形性质和判断理解及运用.利用平行四边形的判定定理作平行线,可构造平行四边形来达到转移线段或角的目的. 正确作出辅助线是解答本题的关键.13.如图所示,四边形ACED中,CE AD∥,以DC,DE为边作平行四边形DCFE,EC的延长线交AF于B,求证:2.AF BF【答案】见解析【解析】【分析】∥交CB的延长线于M,连结FM,先证明四边形AMED是平行四边形,过A作AM DE再证明四边形AMFC为平行四边形,然后根据平行四边形的性质即可得证.【详解】∥交CB的延长线于M,连结FM,证明:过A作AM DE∥,∵CE AD∴四边形AMED是平行四边形,∴AM=ED,∵四边形DCFE是平行四边形,∴DE∥CF,DE=CF,∴AM平行且等于CF,∴四边形AMFC为平行四边形,∴AB FB=,∴2=.AF BF【点睛】本题考查了平行四边形的判定与性质,平行四边形的判定方法有:①两组对边分别平行的四边形是平行四边形;②一组对边平行且相等的四边形是平行四边形;③两组对边分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形.=.14.如图所示,在三角形ABC中,AD是中线及角平分线,求证:AB AC【答案】见解析【解析】【分析】=,连结BE,CE,证四边形ABEC是平行四边形,得到BE=AC,延长AD至E,使DE ADBE∥AC,再证明△ABE是等腰三角形即可.【详解】证明:延长AD到E,使AD=DE,连接BE,CE,∵ BC、AE,相互平分,∴ ABEC是平行四边形,∴BE=AC,BE∥AC,∴∠BAD=∠DAC=∠BED,∴ AB=BE ,∴ AB=AC.【点睛】本题考查了平行四边形的判定与性质,及等腰三角形的判定,正确作出辅助线是解答本题的关键.15.如图所示,ABC ∆中,90ACB ∠=︒,CD AB ⊥于D ,AE 平分CAB ∠交BC 于E ,交CD 于F ,FG AB ∥交BC 于G .求证:CG BE =.【答案】见解析【解析】【分析】过F 作FM BC 交AB 于M ,可证四边形BMFG 为平行四边形,从而FM BG =,再证明AFM AFC ∆≅∆,可证CF FM =,再证明CE=CF ,即可得出结论.【详解】证明:过F 作FM BC 交AB 于M ,∵FG AB∥,∴四边形BMFG为平行四边形,∴FM BG=,∵∠ACD+∠BAC=90°,∠B+∠BAC=90°,∴∠B=∠ACD,∵FM BC,∴AMF B∠=∠.∠=∠=∠.∴AMF B ACD∵AE平分CAB∠,∴∠CAF=∠BAF,∆≅∆.∴AFM AFC=.∴CF FM∠=∠+∠+∠=∠,又CEF B ACF CAE CFE∴CE=CF,∴CE CF BG==,∴CG BE=.【点睛】本题考查了平行四边形的判定与性质,全等三角形的判定与性质,三角形外角的性质及等腰三角形的的判定,正确作出辅助线是解答本题的关键.16.如图,已知AD 为△ABC 的中线,点E 为AC 上一点,连接BE 交AD 于点F ,且AE =FE.求证:BF =AC .【答案】证明见解析【分析】方法一:当题中有三角形中线时,常加倍中线构造平行四边形,利用平行四边形和等腰三角形的性质证得结论.方法二:向中线作垂线,证明BDG CDH ∆≅∆,得到BG CH =,再根据AE =FE ,得到角的关系,从而证明BGF CHA ∆≅∆,最终得到结论.【详解】方法一:延长AD 到G ,使DG =AD ,连接BG ,CG ,∵DG =AD ,BD =DC ,∴四边形ABGC 是平行四边形,∴AC//BG ,∠CAD =∠BGD ,又∵AE =FE ,∴∠CAD =∠AFE ,∴∠BGD =∠AFE =∠BFG ,∴BG =BF ,∵BG =A C ,∴BF =AC方法二:如图,分别过点B 、C 作BG AD ⊥,CH AD ⊥,垂足为G 、H ,则90BGD CHD ∠=∠=︒.BD CD =,BDG CDH ∠=∠,BDG CDH ∴∆≅∆,BG CH ∴=.AE FE =,EAF EFA ∴∠=∠,BFG EFA ∠=∠,BFG CAH ∴∠=∠,又90BGF CHA ∠=∠=︒,BGF CHA ∴∆≅∆,BF AC ∴=.【点睛】本题是较为典型的题型,至少可以用到两种方法来解题,此题的特点就是必须有中线这个条件才能构造平行四边形或双垂线.17.如图,D 为ABC 的AB 边上一点,E 为AC 延长线上的一点,且CE=BD . (1)当AB=AC 时,求证:DE>BC(2)当AB≠AC 时,DE 与BC 有何大小关系?给出结论,画出图形,并证明.【答案】(1)见解析;(2)见解析【解析】试题分析:(1)如图1,过点D作DF∥BC,过点C作CF∥AB,连接EF,从而可得DF=BC,这样就把分散的线段集中到了△DEF中,只需证DE>DF即可;易证∠1=∠2,∠3=∠4,∠3>∠5,从而可得∠DFE>∠DEF,∴DE>DF,从而得到:DE>BC;(2)当AB AC时,我们要分AB>AC和AB<AC两种情况来讨论,其中:①当AB>AC,且AB=AE时,如图2,结合已知条件此时我们易证△ABC≌△AED,从而得到BC=DE;②当AB>AC,且AB>AE时,如图3,延长AE到F,使AF=AB,在AB上截取AN=AC,易证△ABC≌△AFN,得到∠F=∠B;再过D作DM∥BC,过C作CM∥BD,得到四边形DBCM是平行四边形,由此可得∠DMC=∠B=∠F,DM=BC;连接ME,则法通过在△DME中证∠DEM>∠DME得到DM>DE,从而得到BC>DE;③当AB>AC,且AB<AE时,如图4,延长AB到F,使AF=AE,在AE上截取AN=AD,连接NF,易证△AFN≌△AED,可得∠F=∠AED,由∠ABC>∠F得到∠ABC>∠AED;再作DM∥BC,CM∥AB,可得四边形DBCM是平行四边形,得到DM=BC,∠DMC=∠ABC,就可得∠DMC>∠AED;连接ME,在△DME中通过证∠DME>∠DEM,得到DE>DM,就可得到DE>BC;④当AB<AC<AE时,如图5,延长AB至F,使AF=AE,在AC上截取AN=AD;过点D作DM∥BC,过点C作CM∥AB,连接ME;同上可证:DE>BC.试题解析:(1)作DF∥BC,CF∥BD(如图1),得□BCFD,从而∠DFC=∠B,DF=BC,CF=BD.又BD=CE,∴CF=CE,∴∠1=∠2.∵AB=AC,∴∠ACB=∠B.而∠DFE=∠DFC+∠1=∠B+∠1=∠ACB+∠2>∠AED+∠2=∠DEF,即在△DEF中,∵∠DFE>∠DEF,∴DE>DF,即DE>BC.(2)当AB≠AC时,DE与BC的大小关系如下:当AB>AC但AB=AE时,DE=BC;当AB>AC且AB>AE时,DE<BC;当AB>AC但AB<AE时,DE>BC;当AB<AC时,DE>BC.证明如下:①当AB>AC但AB=AE时(如图2),∵BD=CE,∴AB-BD=AE-CE,即AD=AC.在△ABC和△AED中,∵AB=AE,∠A=∠A,AC=AD,∴△ABC≌△AED(SAS),∴BC=ED;②当AB>AC且AB>AE时,延长AE到F,使AF=AB,在AB上截取AN=AC(如图3),连结NF.在△ABC和△AFN中,∵AB=AF,∠A=∠A,AC=AN,∴△ABC≌△AFN(SAS),∴∠B=∠F.∵∠AED>∠F,∴∠AED>∠B.过D点作DM∥BC,过点C作CM∥AB,连结EM,则四边形DBCM为平行四边形,∴∠DMC=∠B,CM=BD,DM=BC,∵BD=CE,∴CM=CE,∴∠CME=∠CEM,∵∠DMC=∠B<∠AED,∴∠CME+∠DMC<∠AED+∠CEM,即∠DME<∠DEM,∴DE<DM,∴DE<BC;③当AB>AC但AB<AE时,延长AB到F,使AF=AE,在AE上截取AN=AD(如图4),连结NF,在△AFN和△AED中,∵AF=AE,∠A=∠A,AN=AD,∴△AFN≌△AED(SAS),∴∠F=∠AED,∵∠ABC>∠F,∴∠ABC>∠AED,过D点作DM∥BC,过点C作CM∥AB,连接EM,则四边形DBCM为平行四边形,∴∠DMC=∠ABC,CM=BD,∵BD=CE,∴CM=CE,∴∠CME=∠CEM,∵∠DMC=∠ABC>∠AED,∴∠DMC+∠CME>∠AED+∠CEM,即∠DME>∠DEM,∴ DE>DM,∴ DE>BC;④当AB<AC时,此时,AB必小于AE,即AB<AE延长AB到F,使AF=AE,在AE上截取AN=AD(如图5).连结NF.在△AFN和△AED中,∵AF=AE,∠A=∠,AN=AD,∴△AFN≌△AED(SAS),∴∠F=∠AED,即∠F=∠4.∵∠ABC>∠F,∴∠ABC>∠AED,过D作DM∥BC,过点C作CM∥AB,连结CM,则四边形DBCM平行四边形,∴∠DMC=∠ABC,CM=BD,DM=BC,∵BD=CE,∴CM=CE,∴∠CME=∠CEM.∵∠DMC=∠ABC>∠AED,∴∠DMC+∠CDE>∠AED+∠CEM,即∠DME>∠DEM,∴DE>DM,∴DE>BC.点睛:本题这种由一个“基本情形”(特殊情形)推广到“一般情形”的探究型问题,首要的是要弄清基本问题的解题思路(本题就是把线段BC通过平移到DM的位置,从而使两条分散的线段集中到一个△DME中,再利用“在同一个三角形中,较大的角所对的边也较大”来解决问题的);而在推广到“一般情形”时,就是通过作辅助线把“一般情形”转化为“基本情形”来解(本题中第二问就是按这样的思路来寻找到解题方法的).三、填空题18.如图,在梯形ABCD 中,AB CD AD BC =,∥ ,对角线AC BD ⊥,且AC =则梯形ABCD 的中位线的长为_________.【答案】5【解析】【详解】解:过C 作CE ∥BD 交AB 的延长线于E ,∵AB ∥CD ,CE ∥BD ,∴四边形DBEC 是平行四边形,∴CE=BD ,BE=CD∵等腰梯形ABCD 中,AC=BD ∴CE=AC∵AC ⊥BD ,CE ∥BD ,∴CE ⊥AC∴△ACE是等腰直角三角形,∵AC=∴AC=10,∴AB+CD =AB+BE=10,∴梯形的中位线=12AE=5,故答案为:5.【点睛】本题考查了梯形的中位线定理,牢记定理是解答本题的重点,难点是题目中的辅助线的做法.。

平行四边形的性质与分类

平行四边形的性质与分类

平行四边形的性质与分类平行四边形是一个具有特殊性质的四边形,其四条边两两平行。

本文将介绍平行四边形的性质和分类。

1. 基本性质平行四边形的基本性质包括以下几点:- 两对对边分别平行- 两对对边相等- 对角线互相平分- 对角线相等以上性质是平行四边形的重要特点,可以通过这些性质来判断一个四边形是否为平行四边形。

2. 分类平行四边形可以根据其边长和角度分类。

2.1 边长分类根据边长的不同,平行四边形可以分为以下几种情况:- 一般平行四边形:四边不等长- 矩形:四边相等,四个角都为直角- 正方形:四边相等,四个角都为直角,边长相等- 菱形:四边相等,没有角为直角2.2 角度分类根据角度的不同,平行四边形可以分为以下几种情况:- 一般平行四边形:四个角都不为直角- 矩形:四个角都为直角- 菱形:四个角都相等,但不为直角- 平行四边形的角度之和为360度,而不论其是什么形状。

3. 性质运用平行四边形的性质常常用于解决几何问题。

以下是一些常见的应用场景:3.1 面积计算平行四边形的面积计算公式为:面积 = 底边长 ×高其中,底边长为任意一条边的长度,高为这条边到其它平行边的垂直距离。

通过这个公式,我们可以方便地计算平行四边形的面积。

3.2 判断是否为平行四边形通过观察四边形的边长和角度可以判断其是否为平行四边形。

如果四边形的对边平行且对角线相等,则可以确定为平行四边形。

3.3 构造平行四边形利用平行四边形的性质,我们可以通过一些已知条件来构造平行四边形。

例如,已知一个四边形的两对对边相等和平行,我们可以通过画出对角线使得其互相平分来得到一个平行四边形。

综上所述,平行四边形具有独特的性质和分类。

通过对平行四边形的性质的了解,我们可以更好地理解和解决与平行四边形相关的几何问题。

空间几何中的平行四边形

空间几何中的平行四边形

在空间几何中,平行四边形是一种重要的几何图形,是指具有相同长度的对边且对边之间互相平行的四边形。

平行四边形具有独特的性质和特点,应用广泛,是许多几何问题中重要的基本构造。

首先,平行四边形的定义可以由其特点进行描述。

平行四边形的特点是它的对边互相平行且相等。

对边平行意味着两边之间的距离沿着整个长度都保持不变。

而且,对边相等表示两边的长度相同。

这种特殊的属性是平行四边形与其它四边形不同的地方。

其次,平行四边形具有独特的性质。

平行四边形的相邻角、对角线和对边之间有着特殊的关系。

首先,相邻角是指平行四边形中相邻的两个角,使得它们的边是平行四边形的两边。

在平行四边形中,相邻角是互补的,即它们的和是180度。

其次,对角线是连接平行四边形的非相邻顶点的连线。

对角线在平行四边形中互相平分,即将平行四边形一分为二。

最后,平行四边形的对边互相平行,对边之间是等距离的。

平行四边形有着广泛的应用。

首先,平行四边形在建筑和设计中扮演重要的角色。

许多建筑结构中的支撑柱、梁和桥墩都使用了平行四边形的形状,因为平行四边形可以提供更稳定和坚固的支撑结构。

其次,平行四边形也经常出现在地图和平面图中,它们被用于表示各种地理和区域性特征,如道路、河流和建筑物等。

此外,在工程学和机械学中,平行四边形的属性和特性被广泛应用于设计和制造过程。

对平行四边形的研究有助于深入理解几何学的基本概念和原理。

平行四边形是几何学中一类基本图形的代表,通过研究平行四边形的性质和特征,可以扩展和应用到更复杂的几何问题。

此外,平行四边形和其他几何图形之间的关系也是几何学研究的重要内容,能够帮助我们更好地理解几何学的基本原理和定理。

总结起来,空间几何中的平行四边形是一种重要的几何图形,具有独特的性质和特点。

平行四边形在建筑、设计、地理和工程学等领域都有广泛的应用。

对平行四边形的研究有助于深入理解几何学的基本概念和原理,并能够应用到更复杂的几何问题中。

因此,深入研究和理解平行四边形是几何学学习过程中的重要一环。

平行四边形的判定与性质题型总结(归纳的很整齐)

平行四边形的判定与性质题型总结(归纳的很整齐)

平行四边形平行四边形的性质第一课时平行四边形的边、角特征知识点梳理1、有两组对边分别平行的四边形叫做平行四边形,平行四边形ABCD记作□ABCD。

2、平行四边形的对边相等,对角相等,邻角互补。

3、两条平行线中,一条直线上任意一点到另一条直线的距离,叫做这两条直线之间的距离。

知识点训练1.如图,两张对边平行的纸条,随意交叉叠放在一起,转动其中一张,重合的部分构成一个四边形,这个四边形是________.2.如图,在□ABCD中,EF∥BC,GH∥AB,EF,GH相交于点O,那么图中共有平行四边形( )A.6个B.7个C.8个D.9个3.在□ABCD中,AB=6 cm,BC=8 cm,则□ABCD的周长为 cm.4.用40 cm长的绳子围成一个平行四边形,使其相邻两边的长度比为3∶2,则较长的边的长度为 cm.5.在□ABCD中,若∠A∶∠B=1∶5,则∠D=;若∠A+∠C=140°,则∠D=.6.如图,在□ABCD中,DE平分∠ADC,AD=6,BE=2,则□ABCD的周长是.7.如图,在平行四边形ABCD中,过点C的直线CE⊥AB,垂足为E,若∠EAD=53°,则∠BCE的度数为( )A.53°B.37°C.47°D.123°8.如图所示,已知在平行四边形ABCD中,BE=DF.求证:AE=CF.9.如图,点E,F分别是□ABCD中AD,AB边上的任意一点,若△EBC的面积为10 cm²,则△DCF的面积为。

10.如图,梯形ABCD中,AD∥BC,记△ABO的面积为S1,△COD的面积为S2,则S1,S2的大小关系是( )A.S1>S2 B.S1=S2 C.S1<S2 D.无法比较11.在□ABCD中,∠A∶∠B∶∠C∶∠D的值可能是( )A.1∶2∶3∶4 B.1∶2∶2∶1C.2∶2∶1∶1 D.2∶1∶2∶112.如图,将平行四边形ABCD折叠,使顶点D恰落在AB边上的点M处,折痕为AN,那么对于结论:①MN∥BC;②MN=AM,下列说法正确的是( )A.①②都对 B.①②都错 C.①对②错 D.①错②13.如图,在□ABCD中,BE⊥CD,BF⊥AD,垂足分别为E,F,CE=2,DF=1,∠EBF=60°,则□ABCD的周长为__.14.如图,□ABCD与□DCFE的周长相等,且∠BAD=60°,∠F=110°,则∠DAE的度数为。

用尺规作平行四边形四种方法

用尺规作平行四边形四种方法

用尺规作平行四边形四种方法要使用尺规作平行四边形,首先需要明确平行四边形的定义和性质。

平行四边形是指有四条边两两平行的四边形。

常见的作平行四边形的方法有以下四种:方法一:平行线法1.画出任意一边AB;2.从点A和点B分别作一条线段,分别与已知边AB的一端相交,得到点C和点D;3.将线段CD延长,分别得到点E和点F;4.连接点EF,线段EF即为所求平行四边形的对立边。

方法二:对角线法1.画出平行四边形的对角线AC和BD(先确定两种相邻顶点,再画出对应的对角线);2.在对角线AC上任意取一点E,在对角线BD上任意取一点F;3.从点E和点F分别作垂直于对角线的线段,分别与对角线相交,得到点G和点H;4.连接点GH,线段GH即为所求平行四边形的对立边。

方法三:截线法1.画出一条直线AB,并在直线上任意取一点C;2.以点A为圆心,AC为半径作一个圆,并将该圆与直线AB相交于点D;3.以点B为圆心,BC为半径作一个圆,并将该圆与直线AB相交于点E;4.连接点DE,线段DE即为所求平行四边形的对立边。

方法四:三线共点法1.画出一个平行四边形的两条相邻边AB和CD(利用尺规、直尺等工具);2.以点A为圆心,AD为半径作一个圆,该圆与边BC相交于点E;3.以点A为圆心,AB为半径作一个圆,该圆与边CD相交于点F;4.以点F为圆心、EF为半径作一个圆,该圆与边AB相交于点G;5.连接点CG,线段CG即为所求平行四边形的对立边。

以上四种方法都是通过使用尺规工具来构造平行四边形。

不同的方法适用于不同的情况和题目要求,如果其中一种方法不适用,可以尝试其他方法。

这些方法在解决平行四边形问题中有着广泛的应用,通过运用这些方法,我们可以更加灵活地解决各种与平行四边形相关的问题。

平行四边形的性质及相关问题

平行四边形的性质及相关问题

平行四边形的性质及相关问题平行四边形是初中数学中一个重要的几何概念,它具有独特的性质和特点。

掌握平行四边形的性质对于解题和理解几何知识都是至关重要的。

本文将围绕平行四边形的性质展开讨论,并结合实例进行说明,以帮助中学生和他们的父母更好地理解和应用这一知识点。

1. 平行四边形的定义和特点平行四边形是指具有两对对边分别平行的四边形。

根据这一定义,我们可以得出平行四边形的几个重要特点:首先,平行四边形的对边相等。

也就是说,平行四边形的对边长度相等,例如AB=CD,AD=BC。

其次,平行四边形的对角线互相平分。

平行四边形的对角线AC和BD相交于点O,且AO=CO,BO=DO。

再次,平行四边形的内角和为180度。

平行四边形的内角A、B、C、D满足A+B+C+D=180度。

最后,平行四边形的相邻角互补。

平行四边形的相邻角A和B满足A+B=180度,相邻角C和D同理。

2. 平行四边形的应用举例2.1. 证明平行四边形的方法在解题过程中,经常需要证明一个四边形是平行四边形。

有两种常见的方法可以进行证明。

一种是利用已知条件,通过推理和运用几何定理来得出结论。

例如,已知AB//CD,AC与BD相交于点O,需要证明四边形ABCD是平行四边形。

可以利用平行线的性质,推导出对边相等和对角线互相平分的关系,从而得出结论。

另一种方法是通过构造辅助线来简化问题。

例如,已知ABCD是一个四边形,AB=CD,AC与BD相交于点O,需要证明ABCD是平行四边形。

可以通过构造辅助线AD和BC,然后利用三角形的性质和平行线的性质来进行推导,最终得出结论。

2.2. 平行四边形的面积计算计算平行四边形的面积是一个常见的问题。

平行四边形的面积可以通过底边长度和高的乘积来计算。

例如,已知平行四边形ABCD的底边为AB,高为h,需要计算其面积。

可以使用公式S = AB * h来求解。

另外,如果已知平行四边形的两条对边长度分别为a和b,夹角为θ,也可以通过公式S = a * b * sinθ来计算面积。

利用中点法解决平行四边形存在性问题

利用中点法解决平行四边形存在性问题

利用中点法解决平行四边形存在性问题平行四边形作为特殊的四边形,一直是中考试题中的主角。

尤其是在综合了函数知识后动态研究它的存在性问题,对学生分析问题和解决问题的要求较高。

此类题目主要考查平行四边形的判定与性质、函数解析式的确定与性质;考查识图作图、运算求解、数学表达等能力;数形结合、分类讨论、函数与方程等数学思想。

学生在处理问题的时候,往往不能正确分类,导致漏解。

此外,在解题时一般需要添设辅助线,利用平行四边形的性质,转化为全等进行计算,学生顺利完成的难度就更大。

如何才能让他们有目的的进行分类、简单明了的给出解答,从而减轻学习负担呢?借助平行四边形的对角线互相平分,即对角线的中点互相重合,来探究平行四边形的存在性问题就是一个很好的途径,简称“中点法”。

不需画图证明,跨越了复杂的推理过程和艰难的探索发现以及证明过程,学生的思路清晰明了。

一、已知三个定点,探寻平行四边形的第四个顶点。

此类题是解决平行四边形存在性问题的基础题。

由于有三个点A、B、C已经确定,在作图时,一般会分别选择AB、AC、BC为对角线来进行画图,根据平行四边形的中心对称的性质,灵活运用坐标对称来解决问题。

具体求解方法是利用平行四边形的对角线互相平分,即对角线的中点互相重合。

如果平行四边形ABCD的四个顶点的坐标分别为A(, )、B(,)、C(, )、D(, ),则,,化简为,。

即平行四边形每条对角线上两个顶点的横坐标之和相等,纵坐标之和也相等。

简称“中点法”。

例:如图1,抛物线交轴于,两点,交轴于点.若平面内有一点,使得以、、、为顶点的四边形是平行四边形,求点的坐标.图1解:先求出三个点坐标,A(-2,0)、B(4,0)、C(0,-4),再分别以三边为平行四边形对角线构造平行四边形,如图答-1:①以为对角线,,;同理=4,所以;②以为对角线,;③以为对角线,.综上所述,的坐标为.二、已知两个定点,另外两个点一般在抛物线上或抛物线对称轴上或x轴上或y轴上。

高中数学 -空间立体几何中的平行、垂直证明定理总结 (1)

高中数学 -空间立体几何中的平行、垂直证明定理总结 (1)

l n
☺ 简称:线线垂直,线面垂直.
复习定理
空间中的垂直
2.直线与平面垂直性质
判定:如果一条直线和一个平面垂直,则称这条直线和这 个平面内任意一条直线都垂直.
l m
l
m
☺ 简称:线面垂直,线线垂直.
复习定理
空间中的垂直
3.平面与平面垂直判定
判定:如果一个平面经过另一个平面的一条垂线,则这两个 平面互相垂直.
(1)求证:BC1∥平面 CA1D; (2)求证:平面 CA1D⊥平面 AA1B1B. 证明:(1)连结AC1交A1C于E,连结DE.
∵AA1C1C为矩形,则E为AC1的中点. 又D是AB的中点,
∴在△ABC1中,DE∥BC1.
E
又DE⊂平面CA1D,
BC1⊄平面CA1D,
∴BC1∥平面CA1D.
证明:(2)∵AC=BC, D为AB的中点, ∴在△ABC中,AB⊥CD.
空间中的平行与垂直 定理总结
复习定理
空间中的平行
1.直线与平面平行的判定
平面外一条直线与此平面内的一条直线平行,则 该直线与此平面平行.
a
b
a
//
b
a // b
☺ 简称:线线平行,线面平行.
复习定理
空间中的平行
2.直线与平面平行的性质
一条直线与一个平面平行,则过这条直线的任一 平面与此平面的交线与该直线平行.
①若m⊥α,n∥α,则m⊥n;②若α⊥γ,β⊥γ,
则α∥β;
③若m∥α,n∥α,则m∥n;④若α∥β,β∥γ,
m⊥α,则m⊥γ.
正确的命题是( C)
A.①③
B.②③
C.①④
D.②④
解析 ②中平面α与β可能相交,③中m与n可以

平行线与平行四边形的关系解析

平行线与平行四边形的关系解析

平行线与平行四边形的关系解析平行线和平行四边形是几何学中重要的概念,它们之间存在紧密的关联。

本文将从平行线的定义开始,逐步阐述平行线与平行四边形之间的内在关系。

一、平行线的定义与性质平行线指在同一个平面内永不相交的两条直线,它们的方向相同,且间距恒定。

平行线具有以下性质:1. 平行线具有等斜率,即两条平行线的斜率相等。

2. 平行线之间的夹角为0°,也即平行线之间没有相交时的夹角。

二、平行四边形的定义与性质平行四边形是一个具有四个边都是平行线段的四边形。

平行四边形具有以下性质:1. 两组对边平行:平行四边形的相对边都是平行线段。

2. 对角线等长:平行四边形的对角线互相等长。

3. 内角和为360°:平行四边形的四个内角的和为360°。

三、平行线与平行四边形的关系平行线和平行四边形之间的关系可以从两个方面来理解和解释。

1. 平行线引出平行四边形:通过构造平行线,可以得到平行四边形。

具体来说,如果我们在两条平行线AB和CD上分别取两组平行线段AD和BC,然后连接AC和BD,所形成的四边形ABCD就是一个平行四边形。

这是因为平行线的性质保证了对边平行,而连接对边的线段则保证了对角线等长。

2. 平行四边形表明平行线:如果已知一个四边形是平行四边形,那么我们可以推导出其边是平行线。

具体来说,如果四边形ABCD是平行四边形,那么我们可以得知AB与CD是平行线段,同时也得知AD与BC是平行线段。

这是因为平行四边形的定义要求对边必须平行。

综上所述,平行线和平行四边形之间存在着密切的联系。

平行线可以构造平行四边形,而平行四边形的特性则可以推导出平行线的存在。

理解和掌握平行线与平行四边形的关系,有助于我们更深入地理解几何学中的相关概念和性质。

通过对平行线和平行四边形的定义、性质以及它们之间的关系进行分析,我们可以看到平行线和平行四边形是几何学中重要的基础概念。

在实际应用中,平行线和平行四边形的性质可以帮助我们解决各种几何问题,例如线段的延长、角的测量等。

平行线和平行四边形

平行线和平行四边形

平行线和平行四边形平行线和平行四边形是几何学中的重要概念,它们在解决各种几何问题和实际应用中都有着广泛的应用。

本文将介绍平行线和平行四边形的定义、特性以及相关的定理和实例。

一、平行线的定义和性质平行线是指在同一个平面上永远不相交的两条直线。

设有两条直线l₁和l₂,在同一个平面上,如果l₁和l₂没有交点,我们就说l₁和l₂是平行线。

对于平行线有以下几个性质:1. 平行线具有相同的斜率:如果两条直线l₁和l₂是平行线,那么它们的斜率相等。

这是因为平行线在同一平面上,斜率表示了直线的倾斜程度,而两条平行线的倾斜程度是相同的。

2. 平行线之间的任意两条直线互相平分:如果有一条直线与两条平行线相交,那么这条直线将平分两条平行线之间的夹角。

这是因为平行线之间的夹角相等。

3. 平行线之间的两个内角之和为180度:如果有一条直线与两条平行线相交,那么这条直线将形成两个内角和为180度的三角形。

这是因为在同一平面上,一条直线和一对平行线相交形成的内角互补。

二、平行四边形的定义和性质平行四边形是指有四条边都是平行线的四边形。

设有四边形ABCD,如果AB∥CD且AD∥BC,那么四边形ABCD就是一个平行四边形。

关于平行四边形的性质有以下几点:1. 对角线互相平分:平行四边形的对角线互相平分,并且互相交于对角线的中点。

这是因为在平行四边形中,对角线相互重合,将四边形分成的两个三角形是全等的。

2. 对边相等:平行四边形的对边是相等的。

换句话说,两对平行边之间的边长是相等的。

3. 内角和为360度:平行四边形的四个内角之和是360度。

这是因为平行四边形可以看作是两个相似的三角形的并集,而一个三角形的内角和为180度。

三、平行线和平行四边形的应用举例平行线和平行四边形在几何学和实际应用中有着广泛的应用。

以下是几个典型的应用举例:1. 利用平行线的性质证明定理:在几何证明中,平行线的性质经常被运用来证明各种定理。

例如,通过构造平行线,可以证明平行四边形的对边相等,从而得出其他性质。

平行四边形中常见规律性结论

平行四边形中常见规律性结论

有以平行四边形一边中点为端点的线段时常延长此线段.
有平行 可构造平行四边形 例:已知,如图,Rt △ABC ,∠ACB = 90°,CD ⊥AB 于D ,AE 平分∠CAB 交CD 于F ,过F 作FH ∥AB 交BC 于H 求证:CE = BH
已知,如图,AB ∥EF ∥GH ,BE = GC 。

求证:AB = EF +GH
平行四边形对角线的交点到一组对边距离相等 OE = OF
平行四边形一边(或这边所在的直线)上的任意一点与对边的两个端点的连线所构成的三角形的面
积等于平行四边形面积的一半
S △BEC =1/2(S □ABCD )
平行四边形内任意一点与四个顶点的连线所构成的四个三角形中,不相邻的两个三角形的面积之和等于平行四边
形面积的一半.
S △AOB +S △DOC = S △BOC +S △AOD =1/2(S □ABCD )
任意一点与同一平面内的矩形各点的连线中,不相邻的两条线段的平方和相等
如图:AO ²+OC ²= BO ²+DO ²
平行四边形四个内角平分线所围成的四边形为矩

如图:四边形GHMN 是矩形。

平行边形的构造方法及应用

平行边形的构造方法及应用

平行边形的构造方法及应用平行边形是由一对相互平行的边所组成的多边形,具有许多特殊的性质和应用。

在本文中,我们将探讨平行边形的构造方法以及它在几何学和实际生活中的应用。

一、平行边的构造方法要构造一个平行边形,我们可以采用以下几种方法:1. 平行线构造法我们可以利用直尺和圆规来构造平行线,进而构造平行边形。

具体步骤如下:(1)首先,给定一个线段AB和一点C,我们可以以C为圆心,以AB为半径画一个圆。

(2)然后,再以AB为半径,在圆上从A点和B点分别画弧,分别交于点D和点E。

(3)连接线段CD和线段BE,得到平行线段CD∥BE。

(4)最后,通过这组平行线段可以构造出平行四边形。

2. 平移构造法平移构造法是一种根据空间平移的原理来构造平行边形的方法。

具体步骤如下:(1)给定一个线段AB和一个平面内的点C。

(2)以AC为向量平移线段AB,得到新的线段A'B'。

(3)连接线段A'C'和线段BC',即可构造出平行四边形。

3. 对称构造法对称构造法是一种利用对称性来构造平行边形的方法。

具体步骤如下:(1)给定一个线段AB和一条直线l。

(2)以l为对称轴,将点A和点B分别对称到A'和B'。

(3)连接线段A'B',即可构造出平行四边形。

二、平行边形的应用平行边形在几何学和实际生活中有着广泛的应用,下面是其中的一些常见应用:1. 建筑设计平行边形的几何性质使其在建筑设计中得到广泛应用。

例如,高楼大厦的地基平面常常是一个平行四边形,平行四边形的稳定性可以有效分散地基承载的压力。

2. 道路规划平行四边形在道路规划中也有重要应用。

平行边形的特点使得道路可以更加有序地布局,提高交通效率。

例如,高速公路的平行车道就是通过平行边形的布局来实现的。

3. 刷漆施工在进行刷漆施工时,通常会使用平行边形来划定涂料的范围,以保证整体效果的一致性和美观性。

4. 黄金分割黄金分割是一种基于平行边形的比例关系的艺术设计原则。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
E
构造平行四边形
2、已知 : ABCD中,直线MN//AC,分别 交DA延长线于M,DC延长线于N,AB于P, BC于Q。 求证:PM=QN。
M
A
D
P B
思路点拨:
易证明四边形
AMQC,APNC为平
行四边形,
Q
C
则MQ=AC,PN=AC, 则MQ=PN,所以
PM=QN
N
构造平行四边形
3、已知点D、E、F分别在 ABC的边BC、 AB、AC上,且DE AF,DE=AF,G在 FD的延长线上,DG=DF。
图,AD、BC垂直相交于点O,AB∥CD, BC=8,AD=6,求AB+CD的长?
D
O B
C A
思路点拨:延长BA,使 AE=CD,因为AB∥CD,所 以四边形ADCE为平行四 边形,则,CE=AD=6, CD=AE,所以 AB+CD=AB+AE,即BE的 长,可以证明三角形BCE 为直角三角形,利用勾股 定理即可求出BE=10
思路点拨:利用平行线+
角平分线=等腰三角形, 则AE=DE,BF=AE,所以
F
BF=DE, 又DE∥AB,所以
四边形BDEF是平行四边形,
所以EF=BD
B
12
E
D 3C
构造平行四边形
练习:1、如图,D、E分别是△ABC的边AB、AC 上的点,DE=EF,AE=EC, DE ∥ BC,求证: ⑴四边形ADCF是平行四边形; ⑵四边形BCFD是平行四边形。
D
C
F
E
A
B
(1)
构造平行四边形
解:(1)连结BF;
(2)猜想:BF=DE ;
解:如图(2)所示,连结DB、DF、BF,DB、AC交于点O
因为四边形ABCD为平行四边形,则AO=OC,DO=OB
又AE=FC
D
C
AO-AE=OC-FC
O
F
即EO=FO
E
则四边形EBFD为平行四边形 A 所以BF=DE
分别是四条边上的点,且满足BE=DF,CG=AH,连 接EF、GH。 试说明:EF与GH互相平分。
A H
F
D
O
G
B
E
C
B (2)
构造平行四边形
(2)、如图,BD平分∠ABC,DE//BC,EF//AC,试判断BE 与CF是否相等?并简要说明。
A
E
D
D
M
C
N
A
B
B
F
C
第(2)题图
第(3)题图
(3)、如图,□ABCD中,BM垂直AC于M,DN垂直
AC于N, 试说明:四边形BMDN是平行四边形。
构造平行四边形
练习3、如图,在□ABCD中,E、F、G、H
求证:AG与ED互相平分。
A
思路点拨:构造 AEGD,
先利用DE AF,DE=AF证
明四边形AEDF为平行四边
形,再证明AEGD为平行四
边形,对角线互相平分,则
AG与ED互相平分
B
E
H
F
D
C
G
构造平行四边形
已知:AD为△ABC的角平分线,DE∥AB , 在AB上截取BF=AE。 求A 证:EF=BD
A
你能证明吗?
D
E
F
B
C
构造平行四边形
练习2、如图(1)所示,在平行四边形ABCD中, 点E、F在对角线AC上,且AE=CF.请你以F为 一个端点,和图中已标明字母的某一点连成一条 新线段,猜想并说明它和图中已有的某一条线段 相等(只须说明一组线段相等即可). (1)连结____________; (2)猜想:____________=____________; (3)说明所猜想的结论的正确性.
相关文档
最新文档