弹性力学平面问题

合集下载

6-3弹性力学平面问题(极坐标)

6-3弹性力学平面问题(极坐标)
可通过微分关系直接由直角坐标系下的几何方程得到。 同前分析,当 0 时,
所以

四. 极坐标系下的物理方程
因、方向正交,则物理方程与直角坐标系下具有相同形式。 即 当为平面应变问题时,E1E、1 。
五. 极坐标系下的相容方程
极坐标系下如果用应力函数表示相容方程,体力必须为零 或关于 ( , ) 有势。
x y
2
f x f y (1 ) x y 0
f f 1 f 1
2
五. 极坐标系下的应力边界条件
设边界S的外法线方向与 、 方向的方向余弦分别为 l1、 l2 ,其上作用的面力沿、方向的分量分别为f、f 。则其 应力边界条件与直角坐标系下具有相同形式。 即
2
2 1 1 2 2 2 2
二. 极坐标系下的平衡微分方程
1. 直角坐标与极坐标系下的应力分量关系
(1)极坐标系下的应力分量和体力分量
O
如图,根据应力状态的定义, 过P 点分别以 方向和 方向为法线的截面 上的应力 、、 , 作为在极坐 标系下的应力分量。 称为径向应力, y 称为环向向应力。 (2)应力分量的坐标转换
d 1 d 2 0 d d
2 2

f 0
1 u
(不计体力)
f f 1
2
应力分量 边界条件
应力分量 (不计体力)
( ) s l1 ( ) s l2 f ( ) s l1 ( ) s l2 f
应力边界条件
位移边界条件

6-1弹性力学平面问题(基本理论)

6-1弹性力学平面问题(基本理论)
l2 cos( N , y) cos
v 0 x x l
x ( sin ) xy cos 0 y cos yx ( sin ) 0
例6-3
图示薄板,在y方向受均匀拉力作用, 证明在板中间突出部分(1 2 )的尖 点A处无应力存在。
(a) (b)
(2) x C ( x 2 y 2 ), y Cy 2, xy 2Cxy;
解:(1) 将式(a)代入平衡方程:
x xy Fbx 0 x y yx y Fby 0 x y
3xy 2 3xy 2 0
y y 0
y
xy
x y y 0 p( x) p0 l (2) BC段(x l): l1 1, l2 0
u |x l 0, v |x l 0
u y 0,
x l
y 0
0
(3) AC段(y x tan):
l1 cos( N , x) cos(90 ) sin
( x ) s l1 ( yx ) s l2 px ( xy ) s l1 ( y ) s l2 p y
px p y 0

x x h 0
xy x h
0
右侧面: x h l1 1, l2 0 px y, p y 0 代入应力边界条件公式,有
l O x a b
z p
y
l a , l b ——近似认为无限长
2. 受力特征
外力(体力、面力)平行于横截面作用,且沿长度 z 方 向不变化。
如水坝、滚柱、厚壁圆筒等。
水坝 3. 简化分析
(1)位移分量

弹性力学-第二章 平面问题基本理论 (徐芝纶第五版)

弹性力学-第二章 平面问题基本理论 (徐芝纶第五版)
基本方程是二维的。
平面应力问题
平面应变问题
3
1.平面应力问题
支承板
z x
y
(2) 受力特性
外力(体力、面力)和约束,仅平行于 板面作用,沿z方向不变化。
(1) 几何特性
一个方向的尺寸比另两个 方向的尺寸小得多。
——平板
4
1.平面应力问题
(3) 应力特征
由于板面上不受力,有
sx =sx(x,y)
sy =sy(x,y)
53
54
55
56
习题
57
第二章 教学参考资料 (一)本章学习要求及重点
本章系统地介绍了平面问题的基本理论: 基本方程和边界条件,及两种基本解法。这 些内容在弹性力学中具有典型性和代表性。 因此,学好平面问题的基本理论,就可以方 便地学习其他各章。为此,我们要求学生深 入地理解本章的内容,掌握好以下几点:
)
f
y
0.
68
(2)用位移表示的应力边界条件
E
1
2
[l
(
u x
v
y
)m12
(
u y
v x
)]s
fx,
E
1
2
[m(
v y
u
x
)l12
(
u y
v x
)]s
fy.
(在s 上ss)
69
(3)位移边界条件
(u)s u , (v)s v.
(在Su上)
70
4、按应力求解平面问题(平面应力问题),
应力分量 σ x , σ y ,t x必y 须满足下列全部条件:
sx =sx(x,y) sy =sy(x,y) txy =txy(x,y) sz =sz (x,y) txz =tyz =0

第七章_弹性力学平面问题的极坐标系解答讲解

第七章_弹性力学平面问题的极坐标系解答讲解
在r = b边界(外径):
r= -qb,r=0
本问题仍为轴对称问题,且体力为零,
可采用前述的应力函数求解方程,也可按位移法求解。
1.按应力函数法求解
按应力函数求解前面已导出应力分量和位移表达式:
, ,
平面应力问题的位移:
法求解:
由基本方程 得
代入应力与位移之间关系式,对于平面应力问题,有
其中Brsin=By可略去。
将( r,)代入应力分量表达式
A、C、D由力的边界条件来定。
力的边界条件:在主要边界上,
在r = a:r= 0,r= 0, 2Aa+C/a-2D/a3= 0
在r = b:r= 0,r= 0, 2Ab+C/b-2D/b3= 0
在次要边界上,
在=0,环向方向的面力为零, 满足。
在= 0: 由于主要边界满足,则此式自然满足;
在= 0:
(3)
主要边界满足时,由(1)、(2)、(3)求出A、B、C,应力求出后,依次可求出应变和位移表达式,详细推导在徐芝纶(上册)P.91-92。
在徐芝纶(4-13)中I、K、H为刚体位移,I = u0、K = v0, H =。
可利用约束确定,如令r0=(a+b)/2,= 0处
应力分量表达代入几何方程的第一式并积分,得
——(b)
考虑位移单值性比较(a)和(b)式:
4Br-F=0B=F=0
轴对称问题的应力和位移解为:
, ,

A、C由两个力的边界条件确定。
对于无体力圆盘(或圆柱)的轴对称问题,
则根据圆盘(或圆柱)中心应力和
位移有限值,得
A=0
图示圆盘受力情况,得应力为r==2C= -q
然后,利用r = a时, ,得

弹性力学第二章平面问题的基本理论

弹性力学第二章平面问题的基本理论
应力边界条件:
在应力约束 面上: 设 面法线与x轴正向夹角
的余玄为l,与y轴正向夹角
的余玄为m。
混合条件:
位移约束与应力约束的组合。
边界条件举例
x
y q
x
y
p
圣维南原理及其应用
圣 维 南 ( Adhémar Jean Claude Barré de Saint-Venant , 1797~1886)原理:如果把物体的一小部分边界上的面力, 变换为分布不同但静力等效的面力(主矢量相同,对于同 一点的主矩也相同),那么近处的应力分布将有显著改变, 但是远处所受的影响可以忽略不计。
— 边界条件
按位移求解平面应力问题(5)
— 小结
按位移求解平面问题需要:
1. 位移分量满足微分方程:
2.边界条件:
按位移求解平面问题(5)
— 举例
x
ρg
y=h y
按位移求解平面问题(6)
— 举例
x
ρg
y=h y
按应力求解平面应力问题(1)
— 用位移表达应变(几何方程)
形变协调方程或相容方程 连续体的形变分量不是相互独立的,它们之间必须满足 相容方程,才能保证真实的位移分量存在。
因此,由 中第一式:
最后得到:
由 中第二式:
常体力情况下的简化(5)
— 平衡方程的解
通解
特解
常体力情况下的简化(6)
— 艾里应力函数表示的相容方程
应力调和方程 代入
得到:
简写为:
常体力情况下的平面问题
常体力情况下的平面问题需要满足:
1.艾里应力函数表示的相容方程:
2.边界条件
3.位移单值条件
弹性力学第二章平面问题的基本理论

5第三章弹性力学平面问题的解析解法讲解

5第三章弹性力学平面问题的解析解法讲解

2 X Y 2 x y y 2 x 2 ( x y ) (1 )
(平面应力情形)
(3)边界条件:
l ( x ) s m( xy ) s X m( y ) s l ( xy ) s Y
x 2 y
2


y 2 x
2
xy
2 xy
(2-28)
(无体力情形)
(3) 再让 x , y , xy满足应力边界条件和位移单值条件 (多连体问题)。
第三章 弹性力学平面问题的 解析解法
第四节 第五节 逆解法与半逆解法—多项式解答 矩形梁的纯弯曲
(2)边界条件: 位移边界条件: 应力边界条件:
(1 )
u s u , vs v
(2)
E u v 1 u v l m X 2 y s 2 y x s 1 x (3 ) v u 1 v u E m l Y 2 1 y x s 2 x y s
4.
按应力求解平面问题的基本方程 说明:
(1)对位移边界问题,不易按应力 求解。
(1)平衡方程
x xy X 0 x y yx y Y 0 x y
(2)相容方程(形变协调方程)
(2)对应力边界问题,且为单连通 问题,满足上述方程的解是唯 一正确解。
(3)对多连通问题,满足上述方程 外,还需满足位移单值条件, 才是唯一正确解。
按应力求解平面问题(X = 常量、Y = 常量)的归结为: (1) 先由方程(2-27)求出应力函数: ( x ,7) 0 4 2 2 4 x x y y x , y , xy (2) 然后将 ( x , y ) 代入式(2-26)求出应力分量:

有限元2-弹性力学平面问题(24矩形单元,25六节点三角形单元)

有限元2-弹性力学平面问题(24矩形单元,25六节点三角形单元)

u 1 1 2 3 4 u 2 1 2 3 4
u 3 1 2 3 4
u 4 1 2 3 4
有限单元法
土木工程学院
P-9/44
解方程组便可求得待定常数。将这些参数代回式 (2-4-4),经整理得:
(1,1)
有限单元法
土木工程学院
P-6/44
二、结点位移列阵和结点力列阵
每个结点2个位移分量,共8个位移分量, 设结点位移和结点力列阵分别为:
d u v u v u v u v
e
2 4 2 e T F X Y X Y X Y X Y 1 1 2 2 3 3 4 4 2 4 3
有限单元法
土木工程学院
P-18/44
第2章 弹性力学平面问题有限单元法
2.1 三角形单元 2.2 三角形单元中几个问题的讨论 2.3 平面问题有限元程序设计 2.4 矩形单元 2.5 六结点三角形单元 2.6 四结点四边形单元 2.7 八结点曲线四边形等参元 2.8 几个问题的补充
有限单元法
土木工程学院
3

1
2
(1 ,1 )
(1,1)
有限单元法
土木工程学院
P-11/44
如果引进参数: ξ0=ξiξ, η0=ηiη(i=1, 2, 3, 4), (ξi, ηi)是矩形单元4个结点的局部坐标。结点i(ξi, ηi)的 坐标值分别是 (-1,-1), (1,-1),(1,1), (-1,-1)。代入 上式,则可将上式简记成:
Ai Li A
Lj Aj A
Am Lm A
i
m
Aj

弹性力学平面问题总结

弹性力学平面问题总结

P
思考题
① 试证明微分体绕 z 轴的平均转动分量是
1 2 v x u . y
② 当应变为常量时,x=a, y=b, xy=c, 试 求对应的位移分量。
第二章 平面问题的基本理论
2-1 平面应力问题与平面应变问题 2-2 平衡微分方程 2-4 几何方程 刚体位移 2-5 物理方程
物理方程
物理方程描述应力分量和应变分量之间
z
x
y
z
x
y
xy
zx
zy
1 G 1 G 1 G
xy ,
xy
) E
0,
xy ,
zx ,
zx
zy .
zy
0.
物理方程
平面应力问题的物理方程:
x
y
1 E 1 E 2(1
x
y
, ,
y
x
) E
xy
xy .
此外, z
E
x
y
,
zx
zy
0.
平面应力问题,虽然 σz=0,但一般 εz≠0。
物理方程
平面应变问题: z
0,
(在V 中)
xy 存在。
故只有平面应力 σx , σy ,
平面应力问题
(2) 由于板为等厚度,外力、约束沿 z 向不变, 故应力 x , y , xy 仅为 f x , y 。
所以归纳为平面应力问题:
a.应力中只有平面应力 x , y , xy 存在;
b.且仅为 f x , y 。
几何方程
平面问题中的几何方程:
x
u , x
y
v , y
xy
v x
u . y
当弹性体的位移分量完全确定时,应变分 量即完全确定。反之,当应变分量完全确定时, 位移分量却不能完全确定。

《弹性力学》第二章_平面问题的基本理论

《弹性力学》第二章_平面问题的基本理论

o
xy
x
y
P
yx
y
A
XN
x
设AB面在xy平面内的长度为dS, 厚度为一个单位长度,N为该面的外 法线方向,其方向余弦为:
B
N
N
N
cos(N , x) l , cos(N , y) m
9
YN S
图2 - 4
斜面AB上全应力沿x轴及y轴的投影分别为XN和YN。由PAB 的平衡条件 Fx 0 可得: X N dS xldS yxmdS
2.主应力的方向
1 与 2 互相垂直。
11
§2-4
几何方程、刚体位移
在平面问题中,弹性体中各点都可能产生任意方向的位移。 通过弹性体内的任一点P,取一单元体PAB,如图2-5所示。弹性 体受力以后P、A、B三点分别移动到P′、A′、B′。 一、P点的正应变
u (u dx) u u x x dx x
二、P点的剪应变
线段PA的转角:
同理可得线段PB的转角:
u y
所以
xy
v u x y
13
因此得到平面问题的几何方程:
u x x v y y v u xy x y
由几何方程可见,当物体的位移分量完全确定时,形变 分量即可完全确定。反之,当形变分量完全确定时,位移分 量却不能完全确定。
z

E
( x y )
16
二、平面应变问题的物理方程 1 2 x ( x y ) E 1 1 2 y ( y x ) E 1 2(1 ) xy xy E 三、平面应力的应力应变关系式与平面应变的关系式之间的 变换关系 1 ( ) y 将平面应力中的关系式: x E x

第五章弹性力学平面问题的有限单元法解析

第五章弹性力学平面问题的有限单元法解析
严格地说,实际的弹性结构都是空间结构,并处于空间受力状 态,属于空间问题,然而,对于某些特定问题,根据其结构和外力 特点可以简化为平面问题来处理。这种近似,可大大减少计算工作 工作量,为有限元分析提供方便。弹性力学平面问题可分为两类:
(1) 平面应变问题: 如图柱形管道和长柱形坝体,具有如下特点:a纵向尺寸远大 于横向尺寸,且各横截面尺寸都相同;b 载荷和约束沿纵向不变, 因此可以认为,沿纵向的位移分量 等于零。
一悬臂梁的力学模型简化和单元划分如图: 在确立了力学模型的基础上,再把原来连续的弹性体离散化, 分为有限个单元,这些单元可以是三结点三角形、四结点任意四边 形、八结点曲边四边形等等。单元之间只在结点处相联结。平面问 题的结点为铰结点。完成单元划分以后,需要对所有单元按次序编 号,就得到了有限元的计算模型。
A
S
U
(
A
*
xx
*
yy
xy
* xy
)
t
dx
dy
上面三个积分的意义为:
W 中的第一个积分表示全部体积力作的虚功;第二个积分表示
自由边界S 上的表面力作的虚功。U 中的积分为
dU
(
x
* x
y
* y
xy
* xy
)
t
dx
dy
它表示单面体四个侧面上的应力在虚应变上作的虚功。
1 力学模型的简化 用有限元法研究实际工程结构的强度与刚度问题,首先要从工 程实际问题中抽象出力学模型,即要对实际问题的边界条件,约束 条件和外载荷进行简化,这种简化应尽可能反映实际情况,使简化 后的弹性力学问题的解答与实际相近,但也不要带来运算上的过分 复杂。 在力学模型简化过程中,必须明确以下几点 ①判断实际结构的问题类型,是 二维问题还是三维 问题;对于 平面问题,是平面应变 问题还是平面应力 问题。 ②结构是否对称 。如果是对称的,要充分利用对称条件,以简 化计算。 ③简化的力学模型必是静定 的或超静定的。

弹性力学第六章__平面问题直角坐标解答

弹性力学第六章__平面问题直角坐标解答
界条件即可。平面问题的静力边界条件为:
(6-13) 显然,式(6-6)、式(6-12)、式(6-13)都不含弹性常数。 因此,对于单连域物体,当边界上没有给定的位移约束 条件,且体力为常量或可忽略时,其应力状态与材料的性质 无关。这就是平面光弹性实验应力分析的理论依据。
§6-2 平面问题的应力解法 · 应力函数 (续4)
u,v


x , y , xy yz z x 0
x , y , xy


x , y , xy
yz zx 0
z 0
x , y , xy
w0 yz z x 0 z 0 yz z x 0
x、 y、 xy ,故两类问题
(4) 两类问题中的物理方程形式相同。关于平面应变问 的 E、 换成 E1、1 即可。
题的物理方程,只须将平面应力问题的物理方程中
两类平面问题及其特征
平面应力问题 名 位 称 移 平面应变问题
未知量
已知量
未知量
已知量
u, ,v u v
w0
z ( x y ) z E ( x y ) E
应力函数求解问题基本思路、基本方程和基本解
题技巧。 三:按应力求解平面问题的应用举例。
主要内容
§6-1 平面应变问题 · 平面应力问题
§6-2
§6-3 §6-4 §6-5 §6-6
平面问题的应力解法· 应力函数
用多项式解平面问题 悬臂梁一端受集中力作用 简支梁受均匀分布荷载作用 应力函数确定的“材料力学方法”
变形协调方程 为:
( x y ) 0
2
(6-12)

弹性力学平面问题的直坐标系解答

弹性力学平面问题的直坐标系解答

物理方程描述了应力与应变之 间的关系,它是通过材料的弹 性常数建立的。在直坐标系中 ,物理方程可以表示为
03
直坐标系中的弹性力学平面问题
直坐标系中的平衡方程
80%
平衡方程概述
在直坐标系中,弹性力学平面问 题的平衡方程描述了物体在受力 作用下的静力平衡状态。
100%
平衡方程的推导
通过分析物体的受力情况,结合 牛顿第二定律,可以推导出平衡 方程的具体形式。
弹性力学的基本概念
应力和应变
在弹性力学中,物体在外力作用下会发生形变,这 种形变程度可以用应力和应变来描述。
胡克定律
胡克定律指出,在弹性范围内,物体的应力和应变 之间存在线性关系,即应力与应变成正比。
边界条件和初始条件
在弹性力学问题中,物体边界上的条件和问题开始 前的初始状态对于确定物体的应力和应变是必要的 。
总结词
考虑弹性体在平面内受拉伸的情况, 分析其应力分布和变形。
详细描述
在直坐标系中,设弹性体受到沿x轴方 向的拉伸力作用,根据弹性力学基本 方程,可以求出弹性体内各点的应力 和应变分布,以及位移场。
圆盘受压问题
总结词
研究圆盘在受到垂直向下的均匀 压力作用下的应力分布和变形。
详细描述
在直坐标系中,设圆盘中心位于 原点,半径为R。根据弹性力学基 本方程,可以求出圆盘内各点的 应力和应变分布,以及位移场。
弹性力学平面问题的直坐标系 解答

CONTENCT

• 引言 • 弹性力学平面问题的基本方程 • 直坐标系中的弹性力学平面问题 • 解法举例 • 结论
01
引言
主题简介
弹性力学平面问题
在弹性力学中,平面问题指的是应变和应力分量在空间中仅随两 个坐标变量变化的情形。

断裂力学讲义第三章弹性力学的平面问题

断裂力学讲义第三章弹性力学的平面问题

第3章 弹性力学的平面问题任何弹性力学问题都是空间问题,但是在某些条件下,它们可以简化为平面问题。

在平面问题中,我们以x,y,z 表示直角坐标系的三个坐标,以u,v,w 表示相应的位移分量,而以xx σ、yy σ…和xx ε、yy ε…分别表示相应的应力分量和应变分量。

§3.1 平衡方程与变形协调方程在平面问题里,所有位移量都只是x , y 的函数,与z 无关,因而所有应变和应力分量也都只是x , y 的函数,与z 无关。

平衡方程(2.40)可简化为⎪⎪⎭⎪⎪⎬⎫=+∂∂+∂∂=+∂∂+∂∂00y yyxy x xyxx f y x f y x σσσσ (3.1)变形协调方程(2.63)只余下yx x y xy yyxx ∂∂ε∂∂ε∂∂ε∂222222=+ (3.2) §3.2平面应力与平面应变3.2.1平面应力问题平面应力问题是指: 发生在物体某一方向(z 方向)的尺寸远小于其余两个方向尺寸的物体中,即物体是一个很薄的平板,此外还要求板的厚度均匀,所有外力都作用在板的中面内,或者所有外力都作用在与中面平行的平面内,且载荷对中面对称。

根据这些前提条件,在物体的两个端面(上下底面)上,进而整个物体内,=zz σ0, 其它应力分量中0==zy zx σσ。

平面应力的应变分量, 根据虎克定律(2.95)式,有0==zx yz εε,)(yy xx zz Eσσνε+-= (3.3)利用(2.95)式,虎克定律可以写成⎪⎪⎪⎭⎪⎪⎪⎬⎫+==-=-=xy xy xy xx yy yy yy xx xx E E E σνσμενσσενσσε121)(1)(1(3.4)3.2.2平面应变问题平面应变问题是指:在弹性体沿某一方向(z 方向)的尺度远大于其余两个方向的尺度,而且物体形状及载荷沿z 方向不变的情况下,在任一远离端部且与xoy 平行的平面内,物体的变形都是相同的。

此外,由于z 方向尺度极大,不能产生z 方向的位移,即0=w ,因此,物体内的变形只发生在与xoy 平行的平面内。

5-第三章-弹性力学平面问题的解析解法

5-第三章-弹性力学平面问题的解析解法

x4 2 x2y2 y4 0
为四阶偏微分方程
三阶及以下的多项式作为应力函数,必定满足相容
方程,不论其系数如何。
应力函数表示的相容方程
4 2 4 4 0 为四阶偏微分方程
x4 x2y2 y4
三阶及以下的多项式作为应力函数,必定满足相容 方程,不论其系数如何。
1. 一次式
a bx cy
(l
x)2
与材料力学中结果相同
说明:(1) 求位移的过程:
(a)将应力分量代入物理方程
x
1 E
( x
y)
y
1 E
( y
x)
xy
xy
G
(b)再将应变分量代入几何方程
x
u x
y
v y
xy
u y
v x
(c)再利用位移边界条件,确定常数。
(2) 若为平面应变问题,则将材料常数E、μ作相应替换。
(3) 若取固定端边界条件为:
第四节 逆解法与半逆解法—多项式解答
(1)逆解法
(1)根据问题的条件(几何形状、受力特点、边界条件等),
假设各种满足应力函数表示相容方程的φ(x,y) 的形式;
(2)然后利用应力分量计算式求出 x , y , xy(具有待定系数);
(3)再利用应力边界条件式,来考察这些应力函数φ(x,y) 对应什么样
(3)对多连通问题,满足上述方程 外,还需满足位移单值条件, 才是唯一正确解。
2 y 2
2 x 2
( x
y
)
(1
)
X x
Y y
(平面应力情形)
(3)边界条件:
l( x )s m( xy )s X m( y )s l( xy )s Y

第6章弹性力学的平面问题

第6章弹性力学的平面问题
2
2
+
∂y
2
4
=0

x d f d f1 d f2 d f + x 4 + 4 +2 2 = 0 4 2 dy dy dy dy
4
值上式都满足, 由于对于任何 x值上式都满足,所以各次 幂的系数都应为零 即
x
d4 f d4 f1 d4 f2 d2 f = 0, = 0, +2 2 = 0 4 4 4 dy dy dy dy
2 2 2
本构方程
τxy 1 ' εx = ( x − µσy) εxy = σ ' E 2G 1 ' εy = ( y − µσx) σ ' E
材料常数
E ’ E = E 1− µ2
平 应 面 力 平 应 面 变
µ ’ µ = µ 1− µ
平 应 面 力 平 应 面 变
代入平面问题本构方程可以得到: 将 ϕ代入平面问题本构方程可以得到: ∂2ϕ ∂2ϕ εx = E ’ 2 −µ ’ 2 y ∂ x ∂
εy εxy
∂2ϕ ∂2ϕ =E ’ 2 −µ ’ 2 x ∂ y ∂ 1 ∂2ϕ =− ⋅ 2 G ∂ ∂ x y
将上式代入应变协调方程
6.3 平面问题应力函数
在平面问题中,当忽略体力时,平衡方程可简化为: 在平面问题中,当忽略体力时,平衡方程可简化为:
∂σ x ∂τ xy + =0 ∂x ∂y ∂τ yx ∂σ y + =0 ∂x ∂y
由平衡方程有
∂ τ yx ∂σ y ∂ τ xy ∂σ x =− (1) =− (2) ∂x ∂y ∂y ∂x ∂A ∂A =σx =− yx τ 引入 ∂y ∂x

弹性力学平面问题ppt课件

弹性力学平面问题ppt课件

(平面应力问题) (2-17)
应力:
(2-18)ZS
2、弹性力学问题的求解方法
(1)按位移求解(位移法、刚度法) 以u、v 为基本未知函数,将平衡方程和边界条件都用u、
v 表示,并求出u、v ,再由几何方程、物理方程求出应力
与形变分量。
(2)按应力求解(力法,柔度法)
以应力分量 为基本未知函数,将所有方程都用应力分 量表示,并求出应力分量 ,再由几何方程、物理方程求出
ZS
§2-5 物理方程


弹性模量, 泊松比
§2-6 边界条件

应力边界,位移边界,混合边界
§2-7 圣维南原理

静力等效, 原理应用
ZS
1. 平衡微分方程
平面问题的基本方程
3. 物理方程
2. 几何方程
(2-2)
(2-15)
(2-9)
4. 边界条件 位移:
(平面应力问题) (2-17)
(2) 常体力下,方程中不含E、μ
(2)相容方程(形变协调方程)
(a)两种平面问题,计算结果
相同(但
(3)边界条件
显然有:
(2-22) —— 形变协调方程(或相容方程)
即:
必须满足上式才能保证位移分量 u、v 的存在与协
调,才能求得这些位移分量。
例:
其中:C为常数。
由几何方程得:
积分得:
由几何方程的第三式得:
显然,此方程是不可能的,因而不可能求出满足几何方程的解。
2、变形协调方程的应力表示
(1)平面应力情形 将物理方程代入相容方程,得:
(a) 利用平衡方程将上述化简:
将上述两边相加:
(b)
(2-15) (2-22)

《弹性力学》第二章平面问题的基本理论

《弹性力学》第二章平面问题的基本理论

平面问题研究方法
01
02
03
解析法
通过弹性力学的基本方程 和边界条件,求解出满足 条件的应力、应变和位移 分量。
数值法
利用计算机进行数值计算, 如有限元法、差分法等, 求解出弹性体的应力、应 变和位移分布。
实验法
通过实验手段,如光弹性 实验、应变电测实验等, 直接测定弹性体的应力、 应变和位移。
02 基本方程与定解条件
物理方程反映了材料的力学性质,是弹性力学中的重要基础。
03
定解条件(边界条件与初始条件)
01
02
03
定解条件是弹性力学问 题中必须满足的附加条 件,包括边界条件和初
始条件。
边界条件描述了物体边 界上的应力、位移等物 理量的已知情况,是求 解弹性力学问题的重要
依据。
初始条件描述了物体在 初始时刻的应力、位移 等物理量的已知情况, 对于动态问题和瞬态问
04 平面问题解法及实例分析
按位移求解平面问题
位移边界条件
在位移边界上,物体受到的约束可以 转化为在给定位移边界上各点的位移。
平衡微分方程
根据弹性力学的基本方程,可以建立 以位移表示的平衡微分方程。
应力边界条件
在应力边界上,物体受到的面力可以 转化为应力边界上各点的应力分量。
求解方法
通过联立平衡微分方程和应力边界条 件,可以求解出位移分量,进而求得 应力分量。
复杂应力函数求解技巧
复杂应力函数的特点
复杂应力函数可能具有复杂的数学形式和边界条件,求解难度较大。
求解技巧
针对复杂应力函数的求解,可以采用变量分离法、积分变换法、复 变函数法等数学工具进行简化处理,降低求解难度。
实例分析
以一个复杂的弹性力学问题为例,介绍如何运用上述技巧求解复杂 应力函数,并给出相应的应力分量分布图。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

x
z 载荷与 z 轴垂直沿 z 轴不变
x , y , xy(x,y) xz= zy=0,z=m(x+ y ) z = yx = zx = 0 x , y , xy (x,y)
u (x,y), v (x,y); w=0
5.1、 5.2 平面应力与平面应变问题
一. 平面应力问题
1.引例: 墙壁、座舱隔板等
x
x
y
y
xy
yx
z
z
由于 1 [ m( )] 0 m( )
zE z
x
y
z
x
y
对于平面应变问体,真正独立的应力分量只有三个。
x , y , xy yx , z zx zy 0
3.平面应变问题的定义
对于无限长柱体, 所有的应变与位移都发生xoy
面内,就称为平面应力问题。这类问题称为平面
1 E
y
m ( z
x)
( ) ( ) x
1 E
x
m
y
m x
m y
1 E
(1 m 2 ) x m(1 m ) y
E
1 /(1
m 2 ) x
m 1 m
y
1 E1
(
x
m1
y)
式中:
简化为图示等厚度板 受载情况--平行于板 面且沿板厚均匀分布 前后板面没有载荷; 此种情况即属平面应 力问题。
2.平面应力问题的特征
y
x
Z
t/2
y
薄板如图:厚度为t,以薄板的中面为xy面,以垂 直于中面的任一直线为z轴,建立坐标系如图所 示。因板面上(z=t/2)不受力,所以有:
( )z z t 0, ( )zx z t 0, ( )zy z t 0
2
2
2
由于板很薄,外力又不沿厚度变化,应力沿板的厚度又是连续
分布的,因此,可以认为在整板的所有各点都有:
z 0, zx 0, zy 0
根据剪应力互等定理可知
xz 0, yz 0,
x
z
t/2 t/2
y
y
所以,在薄板中只剩下平行于x、y面的三个应力 分量,即:
、 x

y
xy

yx
2 x
y 2
2 y
x 2
2 xy
xy
xy
x
1 E
y
1 E
1 G
xy
x my
y mx 2(1 m)
E
平面应变问题:
m m ,E 1 m
xy
1
E
m
2
平面应变问题的物理方程:
( ) z
1 E
z
m
x
y
0
( ) z m x y
( ) x
1 E
x
m
y
z
y
此即为平面应力问题的特征。用单元体可表示如图
y
yx xy
x
x
xy
y yx
xy x
yx y
3.平面应力问题的定义
对于仅有平行于xy面的三个应力分量的均质薄板
类问题,就称为平面应力问题。 x;
; y
xy
xy
二. 平面应变问题
1.引例: 水坝、隧洞等
简化为等长度很长的截面柱体, 载荷垂直于长度方 向,且沿长度方向不变—作为无限长柱体看待。
x
z 载荷与 z 轴垂直沿 z 轴不变
x , y , xy(x,y) xz= zy=0,z=m(x+ y ) z = yx = zx = 0 x , y , xy (x,y)
u (x,y), v (x,y); w=0
弹性力学问题的基本方程
空间问题的基本方程
➢平衡微分方程
ij
x j
fi
0
➢几何方程
平面问题和应力函数
一、平面应力问题和平面应变问题
平面应力问题:
y
平面应变问题:
y
构件特征:
x
z
受力特点: 平行于板面,板面上无载荷
应力分量: 应变分量: 位移分量:
z = xz =zy =0 x , y , xy(x,y) yx = zx = 0 x , y , xy (x,y); z
u (x,y), v (x,y); w
ij
1 ui 2 x j
u j xi
x
x
yx
y
zx
z
fx
0
xy
x
y
y
zy
z
fy
0
xz
x
yz
y
zzΒιβλιοθήκη fz0xu x
xy
v x
u y
y
v y
z
w z
yz
w y
v z
zx
u z
w x
➢物理方程(广义虎克定律)
ij
1
m
E
ij
m
E
kk
ij
( )
x
1 E
x
m
y
z
y
1 E
y
(2)应变分量
yz
1 2
( v z
w y
)
0
zx
1 ( w 2 x
u ) z
0
0,故仅考虑: (x, y); (x, y); (x, y)
z
x
x
y
y
xy
xy
三个应变分量。
(3) 应力分量
(x, y); (x, y); (x, y); (x, y)
xz
y
y
yz
zy zz
y
y
yx
yx
xy
xz
z
x x
zx
xy
2)平面应变问题
z
o
x
y
48
z
x y
2. 平面应变问题的特征
(1)位移分量
对于无限长柱体,由于任一横截面都可看成对称截 面,而对称截面上的各点是不能产生沿Z向的位移 的,因此,对任一截面都应有:
w 0 z 0,且u u(x, y),v v(x, y)
应变问题 x , y , xy yx
平面应力
平面应力问题的基本假设:
x x (x, y) y y (x, y) xy xy(x, y)
z zx zy 0
平面应变问题的基本假设:
x x (x, y) y y (x, y) xy xy(x, y)
z zy zx 0
平面应变
平面问题和应力函数
一、平面应力问题和平面应变问题
平面应力问题:
y
平面应变问题:
y
构件特征:
x
z
受力特点: 平行于板面,板面上无载荷
应力分量: 应变分量: 位移分量:
z = xz =zy =0 x , y , xy(x,y) yx = zx = 0 x , y , xy (x,y); z
u (x,y), v (x,y); w
m ( z
x)
( )
z
1 E
z
m
x
y
xy
xy
G
2(1 E
m ) xy
yz
yz
G
2(1 E
m
)
yz
zx
zx
G
2(1 E
m
)
zx
应变协调方程(相容方程):
2 x
y 2
2 y
x 2
2 xy
xy
2 y
z 2
2 z
y 2
2 yz
yz
2 z
x 2
2 x
z 2
2 zx
zx
x
xy
z
zx
y
yz
x
2 2 x
yz
y
xy
z
yz
x
zx
y
2 2 y
xz
z
yz
x
zx
y
xy
z
2
2 z
xy
二、平面问题的基本方程
➢平衡方程 ➢几何方程: ➢物理方程
x
x
yx
y
fx
0
xy
x
y
y
fy
0
x
u x
y
v y
xy
v x
u y
➢协调方程(相容方程)
相关文档
最新文档