立体几何中的空间距离问题

合集下载

暑假立体几何中的距离问题

暑假立体几何中的距离问题

立体几何中的距离问题【要点精讲】1.距离空间中的距离是立体几何的重要内容,其内容主要包括:点点距,点线距,点面距,线线距,线面距,面面距。

其中重点是点点距、点线距、点面距以及两异面直线间的距离.因此,掌握点、线、面之间距离的概念,理解距离的垂直性和最近性,理解距离都指相应线段的长度,懂得几种距离之间的转化关系,所有这些都是十分重要的求距离的重点在点到平面的距离,直线到平面的距离和两个平面的距离可以转化成点到平面的距离,一个点到平面的距离也可以转化成另外一个点到这个平面的距离。

两条异面直线的距离两条异面直线的公垂线在这两条异面直线间的线段的长度,叫做两条异面直线的距离;求法:如果知道两条异面直线的公垂线,那么就转化成求公垂线段的长度点到平面的距离平面外一点P在该平面上的射影为P′,则线段PP′的长度就是点到平面的距离;求法:○1“一找二证三求”,三步都必须要清楚地写出来。

○2等体积法。

直线及平面的距离:一条直线和一个平面平行,这条直线上任意一点到平面的距离,叫做这条直线和平面的距离;平行平面间的距离:两个平行平面的公垂线段的长度,叫做两个平行平面的距离。

求距离的一般方法和步骤:应用各种距离之间的转化关系和“平行移动”的思想方法,把所求的距离转化为点点距、点线距或点面距求之,其一般步骤是:①找出或作出表示有关距离的线段;②证明它符合定义;③归到解某个三角形.若表示距离的线段不容易找出或作出,可用体积等积法计算求之。

异面直线上两点间距离公式,如果两条异面直线a 、b 所成的角为 ,它们的公垂线AA ′的长度为d ,在a 上有线段A ′E =m ,b 上有线段AF =n ,那么EF =θcos 2222mn n m d ±++(“±”符号由实际情况选定)点到面的距离的做题过程中思考的几个方面: ①直接作面的垂线求解;②观察点在及面平行的直线上,转化点的位置求解; ③观察点在及面平行的平面上,转化点的位置求解; ④利用坐标向量法求解⑤点在面的斜线上,利用比例关系转化点的位置求解。

2 第2课时 空间距离与立体几何中的最值(范围)问题(选用)

2 第2课时 空间距离与立体几何中的最值(范围)问题(选用)

第2课时 空间距离与立体几何中的最值(范围)问题(选用)空间中的距离问题如图,平面P AD ⊥平面ABCD ,四边形ABCD 为正方形,△P AD 是直角三角形,且P A =AD =2,点E ,F ,G 分别是线段P A ,PD ,CD 的中点.(1)求证:平面EFG ⊥平面P AB ; (2)求点A 到平面EFG 的距离.【解】 如图,建立空间直角坐标系A -xyz ,则A (0,0,0),B (2,0,0),C (2,2,0),D (0,2,0),P (0,0,2),E (0,0,1),F (0,1,1),G (1,2,0).(1)证明:因为EF →=(0,1,0),AP →=(0,0,2),AB →=(2,0,0),所以EF →·AP →=0×0+1×0+0×2=0,EF →·AB →=0×2+1×0+0×0=0,所以EF ⊥AP ,EF ⊥AB .又因为AP ,AB ⊂平面P AB ,且P A ∩AB =A , 所以EF ⊥平面P AB .又EF ⊂平面EFG ,所以平面EFG ⊥平面P AB . (2)设平面EFG 的一个法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·EF →=(x ,y ,z )·(0,1,0)=0,n ·EG →=(x ,y ,z )·(1,2,-1)=0,所以{y =0,,x +2y -z =0.取n =(1,0,1),又AE →=(0,0,1),所以点A 到平面EFG 的距离d =|AE →·n ||n |=12=22.(1)空间中的各种距离一般都可以转化为求点与点、点与线、点与面的距离.①点点距:点与点的距离,以这两点为起点和终点的向量的模;②点线距:点M 到直线a 的距离,若直线的方向向量为a ,直线上任一点为N ,则点M 到直线a 的距离为d =|MN →|·sin 〈MN →,a 〉;③线线距:两平行线间的距离转化为点线距离,两异面直线间的距离转化为点面距离或者直接求公垂线段的长度;④点面距:点M 到平面α的距离,若平面α的法向量为n ,平面α内任一点为N ,则点M 到平面α的距离d =|MN →||cos 〈MN →,n 〉|=|MN →·n ||n |.(2)利用空间向量求空间距离问题,首先应明确所求距离的特征,恰当选用距离公式求解.1.如图,P ­ABCD 是正四棱锥,ABCD -A 1B 1C 1D 1是正方体,其中AB =2,P A =6,则B 1到平面P AD 的距离为________.解析:以A 1为原点,以A 1B 1所在直线为x 轴,A 1D 1所在直线为y 轴,A 1A 所在直线为z 轴建立空间直角坐标系A 1­xyz ,则AD →=(0,2,0),AP →=(1,1,2),设平面P AD 的法向量是m =(x ,y ,z ),所以由⎩⎪⎨⎪⎧m ·AD →=0,m ·AP →=0,可得⎩⎪⎨⎪⎧2y =0,x +y +2z =0.取z =1,得m =(-2,0,1),因为B 1A →=(-2,0,2),所以B 1到平面P AD 的距离d =|B 1A →·m ||m |=65 5.答案:6552.如图,在长方体ABCD -A 1B 1C 1D 1中,AB =4,BC =3,CC 1=2.(1)求证:平面A 1BC 1∥平面ACD 1; (2)求平面A 1BC 1与平面ACD 1的距离.解:(1)证明:因为AA 1綊CC 1,所以四边形ACC 1A 1为平行四边形,所以AC ∥A 1C 1. 又AC ⊄平面A 1BC 1,A 1C 1⊂平面A 1BC 1,所以AC ∥平面A 1BC 1.同理可证CD 1∥平面A 1BC 1. 又AC ∩CD 1=C ,AC ⊂平面ACD 1,CD 1⊂平面ACD 1, 所以平面A 1BC 1∥平面ACD 1.(2)以B 1为原点,分别以B 1A 1→,B 1C 1→,B 1B →的方向为x 轴,y 轴,z 轴的正方向建立如图所示的空间直角坐标系B 1­xyz ,则A 1(4,0,0),A (4,0,2),D 1(4,3,0),C (0,3,2),A 1A →=(0,0,2),AC →=(-4,3,0),AD 1→=(0,3,-2),设n =(x ,y ,z )为平面ACD 1的一个法向量, 则⎩⎪⎨⎪⎧n ·AC →=0,n ·AD 1→=0,即⎩⎪⎨⎪⎧-4x +3y =0,3y -2z =0,取n =(3,4,6),所以所求距离d =|A 1A →|×|cos 〈n ,A 1A →〉|=|n ·A 1A →||n |=1232+42+62=126161, 故平面A 1BC 1与平面ACD 1的距离为126161.立体几何中的最值(范围)问题(1)(2020·宁波十校联考)如图,平面P AB ⊥平面α,AB ⊂α,且△P AB 为正三角形,点D 是平面α内的动点,ABCD 是菱形,点O 为AB 中点,AC 与OD 交于点Q ,l ⊂α,且l ⊥AB ,则PQ 与l 所成角的正切值的最小值为( )A.-3+372B.3+372C.7 D .3(2)(2020·温州高考模拟)如图,在三棱锥A -BCD 中,平面ABC ⊥平面BCD ,△BAC 与△BCD 均为等腰直角三角形,且∠BAC =∠BCD =90°,BC =2,点P 是线段AB 上的动点,若线段CD 上存在点Q ,使得直线PQ 与AC 成30°的角,则线段P A 长的取值范围是( )A.⎝⎛⎭⎫0,22 B.⎣⎡⎦⎤0,63 C.⎝⎛⎭⎫22,2 D.⎝⎛⎭⎫63,2【解析】 (1)如图,不妨以CD 在AB 前侧为例.以点O 为原点,分别以OB 、OP 所在直线为y 、z 轴建立空间直角坐标系O -xyz ,设AB =2,∠OAD =θ(0<θ<π),则P (0,0,3),D (2sin θ,-1+2cos θ,0),所以Q ⎝⎛⎭⎫23sin θ,23cos θ-13,0, 所以QP →=⎝⎛⎭⎫-23sin θ,13-23cos θ,3, 设α内与AB 垂直的向量n =(1,0,0),PQ 与直线l 所成角为φ, 则cos φ=⎪⎪⎪⎪⎪⎪⎪⎪QP →·n |QP →||n |=⎪⎪⎪⎪⎪⎪-23sin θ329-49cos θ=sin θ8-cos θ=1-cos 2θ8-cos θ.令t =cos θ(-1<t <1),则s =1-t 28-t ,s ′=t 2-16t +1(8-t )2,令s ′=0,得t =8-37,所以当t =8-37时,s 有最大值为16-67. 则cos φ有最大值为16-67,此时sin φ取最小值为67-15.所以正切值的最小值为67-1516-67=3+372.故选B. (2)以C 为原点,CD 所在直线为x 轴,CB 所在直线为y 轴,过C 作平面BCD 的垂线为z 轴,建立空间直角坐标系C ­xyz ,则A (0,1,1),B (0,2,0),C (0,0,0),设Q (q ,0,0),AP →=λAB →=(0,λ,-λ)(0≤λ≤1),则PQ →=CQ →-CP →=CQ →-(CA →+AP →)=(q ,0,0)-(0,1,1)-(0,λ,-λ)=(q ,-1-λ,λ-1),因为直线PQ 与AC 成30°的角, 所以cos 30°=|CA →·PQ →||CA →|·|PQ →|=22·q 2+(1+λ)2+(λ-1)2=2q 2+2λ2+2=32, 所以q 2+2λ2+2=83,所以q 2=23-2λ2∈[0,4],所以⎩⎨⎧23-2λ2≥023-2λ2≤4,解得0≤λ≤33,所以|AP →|=2λ∈⎣⎡⎦⎤0,63,所以线段P A 长的取值范围是⎣⎡⎦⎤0,63. 故选B.【答案】 (1)B (2)B(1)求解立体几何中的最值问题,需要先确定最值的主体,确定题目中描述的相关变量,然后根据所求,确定是利用几何方法求解,还是转化为代数(特别是函数)问题求解.利用几何方法求解时,往往利用几何体的结构特征将问题转化为平面几何中的问题进行求解,如求几何体表面距离的问题.利用代数法求解时,要合理选择参数,利用几何体中的相关运算构造目标函数,再根据条件确定参数的取值范围,从而确定目标函数的值域,即可利用函数最值的求解方法求得结果.(2)用向量法解决立体几何中的最值问题,不仅简捷,更减少了思维量.用变量表示动点的坐标,然后依题意用向量法求其有关几何量,构建有关函数,从而用代数方法即可求其最值.1.(2020·浙江省五校联考模拟)如图,棱长为4的正方体ABCD -A 1B 1C 1D 1,点A 在平面α内,平面ABCD 与平面α所成的二面角为30°,则顶点C 1到平面α的距离的最大值是( )A .2(2+2)B .2(3+2)C .2(3+1)D .2(2+1)解析:选B.如图所示,作C 1O ⊥α,交ABCD 于点O ,交α于点E ,由题得O 在AC 上,则C 1E 为所求,∠OAE =30°, 由题意,设CO =x ,则AO =42-x , C 1O =16+x 2,OE =12OA =22-12x ,所以C 1E =16+x 2+22-12x ,令y = 16+x 2+22-12x ,则y ′=x16+x 2-12=0,可得x =43, 所以x =43时,顶点C 1到平面α的距离的最大值是2(3+2). 2.(2020·浙江省名校协作体高三联考)如图,在梯形ABCD 中,AB ∥CD ,AD =DC =CB =1,∠ABC =60°,四边形ACFE 为矩形,平面ACFE ⊥平面ABCD ,CF =1.(1)求证:BC ⊥平面ACFE ;(2)点M 在线段EF 上运动,设平面MAB 与平面FCB 所成二面角的平面角为θ(θ≤90°),试求cos θ的取值范围.解:(1)证明:在梯形ABCD 中,因为AB ∥CD ,AD =DC =CB =1,∠ABC =60°,所以AB =2,所以AC 2=AB 2+BC 2-2AB ·BC ·cos 60°=3, 所以AB 2=AC 2+BC 2,所以BC ⊥AC ,因为平面ACFE ⊥平面ABCD ,平面ACFE ∩平面ABCD =AC ,BC ⊂平面ABCD ,所以BC ⊥平面ACFE .(2)如图所示,由(1)可建立分别以直线CA ,CB ,CF 为x 轴,y 轴,z 轴的空间直角坐标系C -xyz ,令FM =λ(0≤λ≤3),则C (0,0,0),A (3,0,0),B (0,1,0),M (λ,0,1),所以AB →=(-3,1,0),BM →=(λ,-1,1),设n 1=(x ,y ,z )为平面MAB 的一个法向量,由⎩⎪⎨⎪⎧n 1·AB →=0n 1·BM →=0,得⎩⎪⎨⎪⎧-3x +y =0λx -y +z =0,取x =1,则n 1=(1,3,3-λ),因为n 2=(1,0,0)是平面FCB 的一个法向量, 所以cos θ=|n 1·n 2||n 1|·|n 2|=11+3+(3-λ)2×1=1(λ-3)2+4,因为0≤λ≤3,所以当λ=0时,cos θ有最小值77, 当λ=3时,cos θ有最大值12,所以cos θ∈⎣⎡⎦⎤77,12.[基础题组练]1.(2020·宁波市镇海中学高考模拟)在直三棱柱A 1B 1C 1­ABC 中,∠BAC =π2,AB =AC=AA 1=1,已知点G 和E 分别为A 1B 1和CC 1的中点,点D 与F 分别为线段AC 和AB 上的动点(不包括端点),若GD ⊥EF ,则线段DF 的长度的取值范围为( )A.⎣⎡⎭⎫55,1B.⎣⎡⎦⎤55,1C.⎝⎛⎭⎫255,1D.⎣⎡⎭⎫255,1解析:选A.建立如图所示的空间直角坐标系A -xyz ,则A (0,0,0),E ⎝⎛⎭⎫0,1,12,G ⎝⎛⎭⎫12,0,1, F (x ,0,0),D (0,y ,0), 由于GD ⊥EF ,所以x +2y -1=0, DF =x 2+y 2=5⎝⎛⎭⎫y -252+15, 由x =1-2y >0,得y <12,所以当y =25时,线段DF 长度的最小值是15,当y =0时,线段DF 长度的最大值是1,又不包括端点,故y =0不能取,故选A. 2.(2020·杭州市学军中学高考数学模拟)如图,三棱锥P -ABC 中,已知P A ⊥平面ABC ,AD ⊥BC 于点D ,BC =CD =AD =1,设PD =x ,∠BPC =θ,记函数f (x )=tan θ,则下列表述正确的是( )A .f (x )是关于x 的增函数B .f (x )是关于x 的减函数C .f (x )关于x 先递增后递减D .f (x )关于x 先递减后递增解析:选C.因为P A ⊥平面ABC ,AD ⊥BC 于点D ,BC =CD =AD =1,PD =x ,∠BPC =θ,所以可求得AC =2,AB =5,P A =x 2-1,PC =x 2+1,BP =x 2+4,所以在△PBC 中,由余弦定理知 cos θ=PB 2+PC 2-BC 22BP ·PC=2x 2+42x 2+1x 2+4.所以tan 2θ=1cos 2θ-1=(x 2+1)(x 2+4)(x 2+2)2-1=x 2(x 2+2)2.所以tan θ=x x 2+2=1x +2x ≤12 x ·2x =24(当且仅当x =2时取等号),所以f (x )关于x 先递增后递减.3.(2020·义乌市高三月考)如图,边长为2的正△ABC 的顶点A 在平面γ上,B ,C 在平面γ的同侧,点M 为BC 的中点,若△ABC 在平面γ上的射影是以A 为直角顶点的△AB 1C 1,则M 到平面γ的距离的取值范围是________.解析:设∠BAB 1=α,∠CAC 1=β,则AB 1=2cos α,AC 1=2cos β,BB 1=2sin α,CC 1=2sin β,则点M 到平面γ的距离d =sin α+sin β,又|AM |=3,则|B 1C 1|=23-d 2,即cos 2α+cos 2β=3-(sin 2α+2sin αsin β+sin 2β).也即sin αsin β=12,所以d =sin α+sin β=sin α+12sin α≥2,因为sin α<1,sin β<1,所以12sin α<1,所以12<sin α<1,所以当sinα=12或1时,d =32,则2≤d <32.答案:⎣⎡⎭⎫2,32 4.(2020·杭州市学军中学高考数学模拟)如图,在二面角A -CD -B 中,BC ⊥CD ,BC =CD =2,点A 在直线AD 上运动,满足AD ⊥CD ,AB =3.现将平面ADC 沿着CD 进行翻折,在翻折的过程中,线段AD 长的取值范围是________.解析:由题意得AD →⊥DC →,DC →⊥CB →,设平面ADC 沿着CD 进行翻折的过程中,二面角A ­CD ­B 的夹角为θ,则〈DA →,CB →〉=θ,因为AB →=AD →+DC →+CB →,所以平方得AB →2=AD →2+DC →2+CB →2+2AD →·DC →+2CB →·AD →+2DC →·CB →, 设AD =x ,因为BC =CD =2,AB =3, 所以9=x 2+4+4-4x cos θ, 即x 2-4x cosθ-1=0,即cos θ=x 2-14x .因为-1≤cos θ≤1,所以-1≤x 2-14x≤1,即⎩⎪⎨⎪⎧x 2-1≤4x x 2-1≥-4x ,即⎩⎪⎨⎪⎧x 2-4x -1≤0x 2+4x -1≥0,则⎩⎪⎨⎪⎧2-5≤x ≤2+5,x ≥-2+5或x ≤-2- 5.因为x >0,所以5-2≤x ≤5+2, 即AD 的取值范围是[5-2,5+2]. 答案:[5-2,5+2]5.(2020·金丽衢十二校联考)如图,在三棱锥D -ABC 中,已知AB =2,AC →·BD →=-3,设AD =a ,BC =b ,CD =c ,则c 2ab +1的最小值为________.解析:设AD →=a ,CB →=b ,DC →=c ,因为AB =2,所以|a +b +c |2=4⇒a 2+b 2+c 2+2(a ·b +b ·c +c ·a )=4,又因为AC →·BD →=-3,所以(a +c )·(-b -c )=-3⇒a ·b +b ·c +c ·a +c 2=3,所以a 2+b 2+c 2+2(3-c 2)=4⇒c 2=a 2+b 2+2,所以a 2+b 2+2ab +1≥2ab +2ab +1=2,当且仅当a=b 时,等号成立,即c 2ab +1的最小值是2.答案:26.(2020·温州十五校联合体期末考试)在正四面体P -ABC 中,点M 是棱PC 的中点,点N 是线段AB 上一动点,且AN →=λAB →,设异面直线NM 与AC 所成角为α,当13≤λ≤23时,则cos α的取值范围是________.解析:设点P 到平面ABC 的射影为点O ,以AO 所在直线为y 轴,OP 所在直线为z 轴,过点O 作BC 的平行线为x 轴,建立空间直角坐标系O -xyz ,如图.设正四面体的棱长为43,则有A (0,-4,0),B (23,2,0),C (-23,2,0),P (0,0,42),M (-3,1,22).由AN →=λAB →,得N (23λ,6λ-4,0).从而有NM →=(-3-23λ,5-6λ,22),AC →=(-23,6,0).所以cos α=|NM →·AC →||NM →||AC →|=3-2λ24λ2-4λ+3,设3-2λ=t ,则53≤t ≤73. 则cos α=12 t 2t 2-4t +6=12 6⎝⎛⎭⎫1t 2-4·1t +1,因为13<37≤1t ≤35,所以51938≤cos α≤71938. 答案:⎣⎡⎦⎤51938,71938 7.如图,在△ABC 中,∠B =π2,AB =BC =2,点P 为AB 边上一动点,PD ∥BC 交AC 于点D .现将△PDA 沿PD 翻折至△PDA ′,使平面PDA ′⊥平面PBCD .(1)当棱锥A ′­PBCD 的体积最大时,求P A 的长;(2)若点P 为AB 的中点,点E 为A ′C 的中点,求证:A ′B ⊥DE .解:(1)设P A =x ,则P A ′=x ,所以V A ′­PBCD =13P A ′·S 底面PBCD =13x ⎝⎛⎭⎫2-x 22. 令f (x )=13x ⎝⎛⎭⎫2-x 22=2x 3-x 36(0<x <2), 则f ′(x )=23-x 22.当x 变化时,f ′(x ),f (x )的变化情况如下表: x⎝⎛⎭⎫0,233 233 ⎝⎛⎭⎫233,2 f ′(x )+ 0 - f (x ) 单调递增 极大值 单调递减由上表易知,当P A =x =23时,V A ′­PBCD 取最大值. (2)证明:取A ′B 的中点F ,连接EF ,FP .由已知,得EF 綊12BC 綊PD . 所以四边形EFPD 是平行四边形,所以ED ∥FP .因为△A ′PB 为等腰直角三角形,所以A ′B ⊥PF .所以A ′B ⊥DE .8.(2020·杭州市第一次高考科目数学质量检测)如图,在三棱柱ABC -A 1B 1C 1中,AA 1⊥平面ABC ,平面A 1BC ⊥平面A 1ABB 1.(1)求证:AB ⊥BC ;(2)设直线AC 与平面A 1BC 所成的角为θ,二面角A 1­BC ­A 的大小为φ,试比较θ和φ的大小关系,并证明你的结论.解:(1)证明:过点A 在平面A 1ABB 1内作AD ⊥A 1B 于D ,因为平面A 1BC ⊥平面A 1ABB 1,平面A 1BC ∩平面A 1ABB 1=A 1B ,所以AD ⊥平面A 1BC ,又因为BC ⊂平面A 1BC ,所以AD ⊥BC .因为AA 1⊥平面ABC ,所以AA 1⊥BC .又因为AA 1∩AD =A ,所以BC ⊥侧面A 1ABB 1,又因为AB ⊂平面A 1ABB 1,故AB ⊥BC .(2)连接CD ,由(1)知∠ACD 是直线AC 与平面A 1BC 所成的角.又∠ABA 1是二面角A 1­BC ­A 的平面角.则∠ACD =θ,∠ABA 1=φ.在Rt △ADC 中,sin θ=AD AC ,在Rt △ADB 中, sin φ=AD AB.由AB <AC , 得sin θ<sin φ,又0<θ,φ<π2, 所以θ<φ.[综合题组练]1.(2020·温州市高考数学模拟)如图,在矩形ABCD 中,AB AD=λ(λ>1),将其沿AC 翻折,使点D 到达点E 的位置,且二面角C -AB -E 为直二面角.(1)求证:平面ACE ⊥平面BCE ;(2)设点F 是BE 的中点,二面角E -AC -F 的平面角的大小为θ,当λ∈[2,3]时,求cos θ的取值范围.解:(1)证明:因为二面角C -AB -E 为直二面角,AB ⊥BC,所以BC ⊥平面ABE ,所以BC ⊥AE .因为AE ⊥CE ,BC ∩CE =C ,所以AE ⊥平面BCE .因为AE ⊂平面ACE ,所以平面ACE ⊥平面BCE .(2)如图,以E 为坐标原点,以AD 长为一个单位长度,建立如图所示的空间直角坐标系E -xyz ,则AB =λ,A (0,1,0),B (λ2-1,0,0),C (λ2-1,0,1),E (0,0,0),F ⎝ ⎛⎭⎪⎫λ2-12,0,0, 则EA →=(0,1,0),EC →=(λ2-1,0,1),设平面EAC 的法向量为m =(x ,y ,z ),则⎩⎪⎨⎪⎧y =0λ2-1·x +z =0,取x =1,则m =(1,0,-λ2-1). 同理得平面F AC 的一个法向量为n =(2,λ2-1,-λ2-1). 所以cos θ=m ·n |m |·|n |=λ2+1λ·2(λ2+1)=22·1+1λ2 . 因为λ∈[2,3],所以cos θ∈⎣⎡⎦⎤53,104. 2.如图,在四棱锥P -ABCD 中,已知P A ⊥平面ABCD ,且四边形ABCD 为直角梯形,∠ABC =∠BAD =π2, P A =AD =2,AB =BC =1.(1)求平面P AB 与平面PCD 所成二面角的余弦值;(2)点Q 是线段BP 上的动点,当直线CQ 与DP 所成的角最小时,求线段BQ 的长.解:以{AB →,AD →,AP →}为正交基底建立如图所示的空间直角坐标系A -xyz ,则各点的坐标为B (1,0,0),C (1,1,0),D (0,2,0),P (0,0,2).(1)由题意知,AD ⊥平面P AB ,所以AD →是平面P AB 的一个法向量,AD →=(0,2,0).因为PC →=(1,1,-2),PD →=(0,2,-2).设平面PCD 的法向量为m =(x ,y ,z ),则⎩⎪⎨⎪⎧m ·PC →=0,m ·PD →=0, 即⎩⎪⎨⎪⎧x +y -2z =0,2y -2z =0.令y =1,解得z =1,x =1. 所以m =(1,1,1)是平面PCD 的一个法向量.从而cos 〈AD →,m 〉=AD →·m |AD →||m |=33, 所以平面P AB 与平面PCD 所成二面角的余弦值为33. (2)因为BP →=(-1,0,2),设BQ →=λBP →=(-λ,0,2λ)(0≤λ≤1),又CB →=(0,-1,0),则CQ →=CB →+BQ →=(-λ,-1,2λ),又DP →=(0,-2,2),从而cos 〈CQ →,DP →〉=CQ →·DP →|CQ →||DP →|=1+2λ10λ2+2. 设1+2λ=t ,t ∈[1,3],则cos 2〈CQ →,DP →〉=2t 25t 2-10t +9=29⎝⎛⎭⎫1t -592+209≤910.当且仅当t =95,即λ=25时,|cos 〈CQ →,DP →〉|的最大值为31010. 因为y =cos x 在⎝ ⎛⎭⎪⎫0,π2上是减函数, 所以此时直线CQ 与DP 所成角取得最小值. 又因为BP =12+22=5,所以BQ =25BP =255.。

空间距离及立体几何中的探索性问题

空间距离及立体几何中的探索性问题

§7.8 空间距离及立体几何中的探索性问题学习目标1.会求空间中点到直线以及点到平面的距离.2.以空间向量为工具,探究空间几何体中线、面的位置关系或空间角存在的条件.知识梳理1.点到直线的距离如图,已知直线l 的单位方向向量为u ,A 是直线l 上的定点,P 是直线l 外一点,设AP →=a ,则向量AP →在直线l 上的投影向量AQ →=(a·u )u ,在Rt △APQ 中,由勾股定理,得PQ =|AP →|2-|AQ →|2=a 2-(a·u )2.2.点到平面的距离如图,已知平面α的法向量为n ,A 是平面α内的定点,P 是平面α外一点.过点P 作平面α的垂线l ,交平面α于点Q ,则n 是直线l 的方向向量,且点P 到平面α的距离就是AP →在直线l 上的投影向量QP →的长度,因此PQ =⎪⎪⎪⎪AP →·n |n |=⎪⎪⎪⎪⎪⎪AP →·n |n |=|AP →·n ||n |.思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)平面α上不共线的三点到平面β的距离相等,则α∥β.( × ) (2)点到直线的距离也就是该点与直线上任一点连线的长度.( × ) (3)直线l 平行于平面α,则直线l 上各点到平面α的距离相等.( √ ) (4)直线l 上两点到平面α的距离相等,则l 平行于平面α.( × ) 教材改编题1.已知平面α的一个法向量n =(-2,-2,1),点A (-1,3,0)在α内,则P (-2,1,4)到α的距离为( )A .10B .3 C.83 D.103答案 D解析 由条件可得P (-2,1,4)到α的距离为 |AP →·n ||n |=|(-1,-2,4)·(-2,-2,1)|3=103. 2.正方体ABCD -A 1B 1C 1D 1的棱长为2,则A 1A 到平面B 1D 1DB 的距离为( ) A. 2 B .2 C.22 D.322答案 A解析 由正方体性质可知,A 1A ∥平面B 1D 1DB ,A 1A 到平面B 1D 1DB 的距离就是点A 1到平面B 1D 1DB 的距离,连接A 1C 1,交B 1D 1于O 1(图略),A 1O 1的长即为所求,由题意可得A 1O 1= 12A 1C 1= 2. 3.已知直线l 经过点A (2,3,1)且向量n =⎝⎛⎭⎫22,0,22为l 的一个单位方向向量,则点P (4,3,2)到l 的距离为________. 答案22解析 ∵P A →=(-2,0,-1),n =⎝⎛⎭⎫22,0,22为l 的一个单位方向向量,∴点P 到l 的距离d =|P A →|2-(P A →·n )2=5-⎝⎛⎭⎫-2-222=22.题型一 空间距离例1 如图,在正三棱柱ABC -A 1B 1C 1中,各棱长均为4,N 是CC 1的中点.(1)求点N 到直线AB 的距离; (2)求点C 1到平面ABN 的距离. 解 建立如图所示的空间直角坐标系,则A (0,0,0),B (23,2,0),C (0,4,0),C 1(0,4,4), ∵N 是CC 1的中点,∴N (0,4,2). (1)AN →=(0,4,2),AB →=(23,2,0), 则|AN →|=25,|AB →|=4.设点N 到直线AB 的距离为d 1,则d 1=|AN →|2-⎝⎛⎭⎪⎪⎫ AN →·AB →||AB→2=20-4=4.(2)设平面ABN 的一个法向量为n =(x ,y ,z ), 则由n ⊥AB →,n ⊥AN →, 得⎩⎪⎨⎪⎧n ·AB →=23x +2y =0,n ·AN →=4y +2z =0,令z =2,则y =-1,x =33,即n =⎝⎛⎭⎫33,-1,2. 易知C 1N —→=(0,0,-2),设点C 1到平面ABN 的距离为d 2, 则d 2=|C 1N —→·n ||n |=|-4|433= 3.教师备选1.如图,P 为矩形ABCD 所在平面外一点,P A ⊥平面ABCD .若已知AB =3,AD =4,P A =1,则点P 到直线BD 的距离为________.答案135解析 如图,分别以AB ,AD ,AP 所在直线为x 轴、y 轴、z 轴建立空间直角坐标系,则P (0,0,1),B (3,0,0), D (0,4,0),则BP →=(-3,0,1),BD →=(-3,4,0), 故点P 到直线BD 的距离 d =|BP →|2-⎝ ⎛⎭⎪⎫BP →·BD →|BD →|2=10-⎝⎛⎭⎫952=135,所以点P 到直线BD 的距离为135.2.如图,已知△ABC 为等边三角形,D ,E 分别为AC ,AB 边的中点,把△ADE 沿DE 折起,使点A 到达点P ,平面PDE ⊥平面BCDE ,若BC =4.求直线DE 到平面PBC 的距离.解 如图,设DE 的中点为O ,BC 的中点为F ,连接OP ,OF ,OB , 因为平面PDE ⊥平面BCDE , 平面PDE ∩平面BCDE =DE , 所以OP ⊥平面BCDE .因为在△ABC 中,点D ,E 分别为AC ,AB 边的中点, 所以DE ∥BC .因为DE ⊄平面PBC ,BC ⊂平面PBC , 所以DE ∥平面PBC . 又OF ⊥DE ,所以以点O 为坐标原点,OE ,OF ,OP 所在直线分别为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系,则O ()0,0,0,P ()0,0,3,B ()2,3,0, C ()-2,3,0,F ()0,3,0,所以PB →=()2,3,-3,CB →=()4,0,0. 设平面PBC 的一个法向量为n =(x ,y ,z ), 由⎩⎪⎨⎪⎧n ·PB →=2x +3y -3z =0,n ·CB →=4x =0,得⎩⎪⎨⎪⎧x =0,y =z ,令y =z =1, 所以n =(0,1,1). 因为OF →=(0,3,0),设点O 到平面PBC 的距离为d , 则d =||OF →·n|n |=32=62. 因为点O 在直线DE 上,所以直线DE 到平面PBC 的距离等于62. 思维升华 点到直线的距离(1)设过点P 的直线l 的单位方向向量为n ,A 为直线l 外一点,点A 到直线l 的距离d = |P A →|2-(P A →·n )2.(2)若能求出点在直线上的射影坐标,可以直接利用两点间距离公式求距离.跟踪训练1 (1)(多选)已知正方体ABCD -A 1B 1C 1D 1的棱长为1,点E ,O 分别是A 1B 1,A 1C 1的中点,P 在正方体内部且满足AP →=34AB →+12AD →+23AA 1—→,则下列说法正确的是( )A .点A 到直线BE 的距离是55B .点O 到平面ABC 1D 1的距离为24C .平面A 1BD 与平面B 1CD 1间的距离为33D .点P 到直线AB 的距离为2536答案 BC解析 如图,建立空间直角坐标系,则A (0,0,0),B (1,0,0),D (0,1,0),A 1(0,0,1),C 1(1,1,1),D 1(0,1,1),E ⎝⎛⎭⎫12,0,1,所以BA →=(-1,0,0),BE →=⎝⎛⎭⎫-12,0,1. 设∠ABE =θ,则cos θ=BA →·BE →|BA →||BE →|=55,sin θ=1-cos 2θ=255. 故点A 到直线BE 的距离d 1=|BA →|sin θ=1×255=255,故A 错误;易知C 1O —→=12C 1A 1—→=⎝⎛⎭⎫-12,-12,0, 平面ABC 1D 1的一个法向量DA 1—→=(0,-1,1), 则点O 到平面ABC 1D 1的距离 d 2=|DA 1—→·C 1O —→||DA 1—→|=122=24,故B 正确;A 1B —→=(1,0,-1),A 1D —→=(0,1,-1), A 1D 1—→=(0,1,0).设平面A 1BD 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·A 1B —→=0,n ·A 1D —→=0,所以⎩⎪⎨⎪⎧x -z =0,y -z =0,令z =1,得y =1,x =1,所以n =(1,1,1).所以点D 1到平面A 1BD 的距离 d 3=|A 1D 1—→·n ||n |=13=33.因为平面A 1BD ∥平面B 1CD 1,所以平面A 1BD 与平面B 1CD 1间的距离等于点D 1到平面A 1BD 的距离,所以平面A 1BD 与平面B 1CD 1间的距离为33,故C 正确; 因为AP →=34AB →+12AD →+23AA 1—→,所以AP →=⎝⎛⎭⎫34,12,23, 又AB →=(1,0,0),则AP →·AB →|AB →|=34,所以点P 到直线AB 的距离d 4=|AP →|2-⎝ ⎛⎭⎪⎫AP →·AB →|AB →|2=181144-916=56,故D 错误. (2)(2022·枣庄检测)在长方体ABCD -A 1B 1C 1D 1中,AA 1=AB =2,AD =1,点F ,G 分别是AB ,CC 1的中点,则△D 1GF 的面积为________. 答案142解析 以D 为坐标原点,DA 所在直线为x 轴,DC 所在直线为y 轴,DD 1所在直线为z 轴,建立空间直角坐标系(图略), 则D 1(0,0,2),G (0,2,1),F (1,1,0), FD 1—→=(-1,-1,2),FG →=(-1,1,1), ∴点D 1到直线GF 的距离 d =|FD 1—→|2-⎝⎛⎭⎪⎪⎫FD 1—→·FG → |FG →|2 =6-⎝⎛⎭⎫232=423.∴点D 1到直线GF 的距离为423, 又|FG →|=3,∴1D GF S △=12×3×423=142.题型二 立体几何中的探索性问题例2 (2021·北京)已知正方体ABCD -A 1B 1C 1D 1,点E 为A 1D 1中点,直线B 1C 1交平面CDE 于点F .(1)求证:点F 为B 1C 1的中点;(2)若点M 为棱A 1B 1上一点,且二面角M -CF -E 的余弦值为53,求A 1MA 1B 1的值. (1)证明 如图所示,取B 1C 1的中点F ′,连接DE ,EF ′,F ′C ,由于ABCD -A 1B 1C 1D 1为正方体,E ,F ′为中点,故EF ′∥CD , 从而E ,F ′,C ,D 四点共面, 平面CDE 即平面CDEF ′,据此可得,直线B 1C 1交平面CDE 于点F ′,当直线与平面相交时只有唯一的交点,故点F 与点F ′重合, 即点F 为B 1C 1的中点.(2)解 以点D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系,不妨设正方体的棱长为2, 设A 1MA 1B 1=λ(0≤λ≤1), 则M (2,2λ,2),C (0,2,0),F (1,2,2),E (1,0,2), 从而MC →=(-2,2-2λ,-2),CF →=(1,0,2), FE →=(0,-2,0),设平面MCF 的法向量为m =(x 1,y 1,z 1),则 ⎩⎪⎨⎪⎧m ·MC →=-2x 1+(2-2λ)y 1-2z 1=0,m ·CF →=x 1+2z 1=0,令z 1=-1可得m =⎝⎛⎭⎫2,11-λ,-1(λ≠1),设平面CFE 的法向量为n =(x 2,y 2,z 2),则 ⎩⎪⎨⎪⎧n ·FE →=-2y 2=0,n ·CF →=x 2+2z 2=0,令z 2=-1可得n =(2,0,-1), 从而m ·n =5,|m |=5+⎝⎛⎭⎫11-λ2,|n |=5,则cos 〈m ,n 〉=m ·n|m ||n |=55+⎝⎛⎭⎫11-λ2×5=53. 整理可得(λ-1)2=14,故λ=12⎝⎛⎭⎫λ=32舍去. 所以A 1M A 1B 1=12.教师备选(2022·盐城模拟)如图,三棱柱ABC -A 1B 1C 1的所有棱长都为2,B 1C =6,AB ⊥B 1C .(1)求证:平面ABB 1A 1⊥平面ABC ;(2)在棱BB 1上是否存在点P ,使直线CP 与平面ACC 1A 1所成角的正弦值为45,若不存在,请说明理由;若存在,求BP 的长.(1)证明 如图,取AB 的中点D ,连接CD ,B 1D .因为三棱柱ABC -A 1B 1C 1的所有棱长都为2,所以AB ⊥CD ,CD =3,BD =1. 又因为AB ⊥B 1C ,且CD ∩B 1C =C ,CD ,B 1C ⊂平面B 1CD , 所以AB ⊥平面B 1CD . 又因为B 1D ⊂平面B 1CD , 所以AB ⊥B 1D .在Rt △B 1BD 中,BD =1,B 1B =2, 所以B 1D = 3.在△B 1CD 中,CD =3,B 1D =3,B 1C =6, 所以CD 2+B 1D 2=B 1C 2, 所以CD ⊥B 1D ,又因为AB ⊥B 1D ,AB ∩CD =D ,AB ,CD ⊂平面ABC , 所以B 1D ⊥平面ABC . 又因为B 1D ⊂平面ABB 1A 1, 所以平面ABB 1A 1⊥平面ABC .(2)解 假设在棱BB 1上存在点P 满足条件.以DC ,DA ,DB 1所在直线分别为x ,y ,z 轴建立如图所示的空间直角坐标系,则A (0,1,0),B (0,-1,0),C (3,0,0),B 1(0,0,3),因此BB 1—→=(0,1,3),AC →=(3,-1,0),AA 1—→=BB 1—→=(0,1,3),CB →=(-3,-1,0). 因为点P 在棱BB 1上,设BP →=λBB 1—→=λ(0,1,3),其中0≤λ≤1.则CP →=CB →+BP →=CB →+λBB 1—→=(-3,-1+λ,3λ). 设平面ACC 1A 1的法向量为n =(x ,y ,z ), 由⎩⎪⎨⎪⎧n ·AC →=0,n ·AA 1—→=0,得⎩⎨⎧3x -y =0,y +3z =0,取x =1,则y =3,z =-1,所以平面ACC 1A 1的一个法向量为n =(1,3,-1).因为直线CP 与平面ACC 1A 1所成角的正弦值为45,所以|cos 〈n ,CP →〉|=|n ·CP →||n ||CP →|=|-23|5×3+(λ-1)2+3λ2=45,化简得16λ2-8λ+1=0, 解得λ=14,所以|BP →|=14|BB 1—→|=12,故BP 的长为12.思维升华 (1)对于存在判断型问题的求解,应先假设存在,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等.(2)对于位置探究型问题,通常借助向量,引进参数,综合已知和结论列出等式,解出参数. 跟踪训练2 如图,四棱锥S -ABCD 的底面是正方形,每条侧棱的长都是底面边长的2倍,P 为侧棱SD 上的点.(1)求证:AC ⊥SD ;(2)若SD ⊥平面P AC ,求平面P AC 与平面DAC 夹角的大小;(3)在(2)的条件下,侧棱SC 上是否存在一点E ,使得BE ∥平面P AC .若存在,求SE ∶EC 的值;若不存在,试说明理由.(1)证明 如图,连接BD ,设AC 交BD 于点O ,连接SO .由题意知,SO ⊥平面ABCD ,以O 为坐标原点,以OB ,OC ,OS 所在直线分别为x 轴、y 轴、z 轴,建立空间直角坐标系.设底面边长为a ,则高SO =62a ,于是S ⎝⎛⎭⎫0,0,62a ,D ⎝⎛⎭⎫-22a ,0,0,C ⎝⎛⎭⎫0,22a ,0. 于是OC →=⎝⎛⎭⎫0,22a ,0,SD →=⎝⎛⎭⎫-22a ,0,-62a .则OC →·SD →=0,故OC ⊥SD ,从而AC ⊥SD .(2)解 由题设知,平面P AC 的一个法向量DS →=⎝⎛⎭⎫22a ,0,62a ,平面DAC 的一个法向量OS→=⎝⎛⎭⎫0,0,62a . 设平面P AC 与平面DAC 的夹角为θ, 则cos θ=|cos 〈OS →,DS →〉|=|OS →·DS →||OS →||DS →|=32,所以平面P AC 与平面DAC 夹角的大小为30°. (3)解 假设在棱SC 上存在一点E 使BE ∥平面P AC . 根据第(2)问知DS →是平面P AC 的一个法向量, 且DS →=⎝⎛⎭⎫22a ,0,62a ,CS →=⎝⎛⎭⎫0,-22a ,62a .设CE →=tCS →(0≤t ≤1), 因为B ⎝⎛⎭⎫22a ,0,0,C ⎝⎛⎭⎫0,22a ,0,所以BC →=⎝⎛⎭⎫-22a ,22a ,0,则BE →=BC →+CE →=BC →+tCS →=⎝⎛⎭⎫-22a ,22a (1-t ),62at . 又BE →·DS →=0, 得-a 22+0+64a 2t =0,则t =13,当SE ∶EC =2∶1时,BE →⊥DS →. 由于BE ⊄平面P AC ,故BE ∥平面P AC .因此在棱SC 上存在点E ,使BE ∥平面P AC ,此时SE ∶EC =2∶1.课时精练1.如图,在梯形ABCD 中,AD ∥BC ,∠ABC =π2,AB =BC =13AD =a ,P A ⊥平面ABCD ,且P A =a ,点F 在AD 上,且CF ⊥PC .(1)求点A 到平面PCF 的距离; (2)求AD 到平面PBC 的距离.解 (1)由题意知AP ,AB ,AD 两两垂直,建立空间直角坐标系,如图,则A (0,0,0),B (a,0,0),C (a ,a,0),D (0,3a ,0), P (0,0,a ).设F (0,m ,0),0≤m ≤3a ,则CF →=(-a ,m -a ,0),CP →=(-a ,-a ,a ). ∵PC ⊥CF ,∴C F →⊥CP →,∴CF →·CP →=(-a )·(-a )+(m -a )·(-a )+0·a =a 2-a (m -a )=0, ∴m =2a ,即F (0,2a ,0).设平面PCF 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·CF →=-ax +ay =0,n ·CP →=-ax -ay +az =0,解得⎩⎪⎨⎪⎧x =y ,z =2x .取x =1,得n =(1,1,2).设点A 到平面PCF 的距离为d ,由AC →=(a ,a ,0), 得d =|AC →·n ||n |=a ×1+a ×1+0×26=63a .(2)由于BP →=(-a ,0,a ),BC →=(0,a ,0), AP →=(0,0,a ).设平面PBC 的法向量为n 1=(x 0,y 0,z 0), 由⎩⎪⎨⎪⎧n 1·BP →=-ax 0+az 0=0,n 1·BC →=ay 0=0,得⎩⎪⎨⎪⎧x 0=z 0,y 0=0. 取x 0=1,得n 1=(1,0,1). 设点A 到平面PBC 的距离为h ,∵AD ∥BC ,AD ⊄平面PBC ,BC ⊂平面PBC , ∴AD ∥平面PBC ,∴h 为AD 到平面PBC 的距离, ∴h =|AP →·n 1||n 1|=a 2=22a .2.如图,在四棱锥P -ABCD 中,底面ABCD 是边长为2的正方形,PB ⊥BC ,PD ⊥CD ,且P A =2,E 为PD 的中点.(1)求证:P A ⊥平面ABCD ;(2)求直线PC 与平面ACE 所成角的正弦值;(3)在线段BC 上是否存在点F ,使得点E 到平面P AF 的距离为255若存在,确定点的位置;若不存在,请说明理由.(1)证明 因为四边形ABCD 为正方形,则BC ⊥AB ,CD ⊥AD , 因为PB ⊥BC ,BC ⊥AB ,PB ∩AB =B ,PB ,AB ⊂平面P AB , 所以BC ⊥平面P AB ,因为P A ⊂平面P AB ,所以P A ⊥BC ,因为PD ⊥CD ,CD ⊥AD ,PD ∩AD =D ,PD ,AD ⊂平面P AD , 所以CD ⊥平面P AD ,因为P A ⊂平面P AD ,所以P A ⊥CD , 因为BC ∩CD =C ,BC ,CD ⊂平面ABCD ,所以P A ⊥平面ABCD .(2)解 因为P A ⊥平面ABCD ,AB ⊥AD ,不妨以点A 为坐标原点,AB ,AD ,AP 所在直线分别为x ,y ,z 轴建立如图所示的空间直角坐标系,则A (0,0,0),C (2,2,0),P (0,0,2),E (0,1,1), 设平面ACE 的法向量为m =(x ,y ,z ), 则AC →=(2,2,0),AE →=(0,1,1),PC →=(2,2,-2), 由⎩⎪⎨⎪⎧m ·AC →=2x +2y =0,m ·AE →=y +z =0,取y =1,可得m =(-1,1,-1), cos 〈m ,PC →〉=m ·PC →|m ||PC →|=23×23=13,所以直线PC 与平面ACE 所成角的正弦值为13.(3)解 设点F (2,t ,0)(0≤t ≤2),设平面P AF 的法向量为n =(a ,b ,c ), AF →=(2,t ,0),AP →=(0,0,2), 由⎩⎪⎨⎪⎧n ·AF →=2a +tb =0,n ·AP →=2c =0,取a =t ,则n =(t ,-2,0),所以点E 到平面P AF 的距离为d =|AE →·n ||n |=2t 2+4=255,因为t >0,所以t =1.因此,当点F为线段BC 的中点时,点E 到平面P AF 的距离为255.3.(2022·湖南雅礼中学月考)如图,在四棱台ABCD -A 1B 1C 1D 1中,底面四边形ABCD 为菱形,AA 1=A 1B 1=12AB =1,∠ABC =60°,AA 1⊥平面ABCD .(1)若点M 是AD 的中点,求证:C 1M ⊥A 1C ;(2)棱BC 上是否存在一点E ,使得平面EAD 1与平面DAD 1夹角的余弦值为13若存在,求线段CE 的长;若不存在,请说明理由.(1)证明 如图,取BC 的中点Q ,连接AQ ,AC , ∵四边形ABCD 为菱形,则AB =BC , ∵∠ABC =60°,∴△ABC 为等边三角形, ∵Q 为BC 的中点,则AQ ⊥BC , ∵AD ∥BC ,∴AQ ⊥AD ,由于AA 1⊥平面ABCD ,以点A 为坐标原点,以AQ ,AD ,AA 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,如图,则A (0,0,0),A 1(0,0,1),D 1(0,1,1),Q (3,0,0), C (3,1,0),C 1⎝⎛⎭⎫32,12,1,M (0,1,0),C 1M —→=⎝⎛⎭⎫-32,12,-1,A 1C —→=(3,1,-1),∴C 1M —→·A 1C —→=-32+12+(-1)2=0,∴C 1M ⊥A 1C .(2)解 如图,假设点E 存在,设点E 的坐标为(3,λ,0),其中-1≤λ≤1, AE →=(3,λ,0),AD 1—→=(0,1,1), 设平面AD 1E 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·AE →=0,n ·AD 1—→=0,即⎩⎨⎧3x +λy =0,y +z =0,取y =-3,则x =λ,z =3, ∴n =(λ,-3,3),平面ADD 1的一个法向量为m =(1,0,0), ∴|cos 〈m ,n 〉|=|m ·n ||m ||n |=|λ|λ2+6=13, 解得λ=±32,即CE =1-32或CE =1+32.因此,棱BC 上存在一点E ,使得平面EAD 1与平面DAD 1夹角的余弦值为13,此时CE =1-32或CE =1+32.4.(2022·潍坊模拟)如图,在四棱锥P -ABCD 中,底面ABCD 是边长为4的正方形,△P AD 是正三角形,CD ⊥平面P AD ,E ,F ,G ,O 分别是PC ,PD ,BC ,AD 的中点.(1)求证:PO ⊥平面ABCD ;(2)求平面EFG 与平面ABCD 夹角的大小;(3)在线段P A 上是否存在点M ,使得直线GM 与平面EFG 所成的角为π6,若存在,求线段PM的长度;若不存在,请说明理由.(1)证明 因为△P AD 是正三角形,O 是AD 的中点, 所以PO ⊥AD .又因为CD ⊥平面P AD ,PO ⊂平面P AD , 所以PO ⊥CD .又AD ∩CD =D ,AD ,CD ⊂平面ABCD , 所以PO ⊥平面ABCD .(2)解 如图,连接OG ,以O 点为坐标原点,分别以OA ,OG ,OP 所在直线为x 轴、y 轴、z 轴建立空间直角坐标系,则O (0,0,0),A (2,0,0),B (2,4,0), C (-2,4,0),D (-2,0,0),G (0,4,0),P (0,0,23),E (-1,2,3),F (-1,0,3), EF →=(0,-2,0),EG →=(1,2,-3), 设平面EFG 的法向量为m =(x ,y ,z ), 则⎩⎪⎨⎪⎧EF →·m =0,EG →·m =0,即⎩⎨⎧-2y =0,x +2y -3z =0,令z =1,则m =(3,0,1), 又平面ABCD 的法向量n =(0,0,1), 设平面EFG 与平面ABCD 的夹角为θ, 所以cos θ=|m ·n ||m ||n |=1(3)2+12×1=12,所以θ=π3,所以平面EFG 与平面ABCD 的夹角为π3.(3)解 不存在,理由如下: 假设在线段P A 上存在点M ,使得直线GM 与平面EFG 所成的角为π6,即直线GM 的方向向量与平面EFG 法向量m 所成的锐角为π3,设PM →=λP A →,λ∈[0,1], GM →=GP →+PM →=GP →+λP A →, 所以GM →=(2λ,-4,23-23λ),所以cos π3=|cos 〈GM →,m 〉|=324λ2-6λ+7,整理得2λ2-3λ+2=0, Δ<0,方程无解, 所以不存在这样的点M .。

立体几何中的求距离问题

立体几何中的求距离问题

**立体几何中的求距离问题**1. **定义与公式**在立体几何中,距离是一个重要的概念。

它表示点与点之间、线与线之间、面与面之间的最短距离。

对于两点A和B,它们之间的距离称为AB的距离,用公式表示为:AB = sqrt[(x2 - x1)² + (y2 - y1)² + (z2 - z1)²]。

2. **求解方法**求两点间的距离主要依赖于坐标变换和勾股定理。

首先,需要确定两点的三维坐标,然后通过计算两坐标之间的差的平方,再开方得到距离。

3. **实际应用**在实际生活中,距离的概念广泛应用于各种场景,如地理学中的地球距离、物理学中的物体间距离、工程学中的结构尺寸等。

在科学研究和工程实践中,计算距离是一个必不可少的步骤。

4. **易错点**在计算距离时,容易出现错误的地方包括单位不一致、坐标表示错误或计算错误等。

为了避免这些问题,需要仔细检查并确保所有的单位和坐标都是正确的。

5. **真题演练**给定两点A(1,2,3)和B(4,5,6),求AB的距离。

解:根据公式,AB的距离为:sqrt[(4-1)² + (5-2)² + (6-3)²] = sqrt(9+9+9) = 3*sqrt(3)6. **知识点总结**求两点间的距离主要依赖于坐标变换和勾股定理。

在实际应用中,计算距离是一个重要的步骤。

为了避免错误,需要仔细检查坐标和单位。

7. **未来学习建议**在未来的学习中,可以进一步探索距离在不同领域的应用,如医学影像分析、地理信息系统等。

同时,可以尝试解决更复杂的几何问题,如多维空间中的距离计算、曲面上的最短路径等。

此外,可以学习更多关于向量和矩阵的知识,这些工具对于解决复杂的几何问题非常有帮助。

立体几何中的向量方法二空间距离问题数学选修

立体几何中的向量方法二空间距离问题数学选修

空间“距离”问题
1. 空间两点之间的距离
根据两向量数量积的性质和坐标运算,
利用公式
x2 y2 z2
(其中
a
(x,
y,
z)
)
,可将两点距离问题
转化为求向量模长问题
例1:如图1:一个结晶体的形状为四棱柱,其中,以顶点A为端点 的三条棱长都相等,且它们彼此的夹角都是60°,那么以这个顶点 为端点的晶体的对角线的长与棱长有什么关系?
1 1 1 2(cos60 cos60 cos60)
6
所以 | AC1 | 6
回到图形问题
这个晶体的对角线 AC1 的长是棱长的 6倍。
2、向量法求点到平面的距离:
如图 A , 空间一点 P 到平面 的距离为 d,已知平面 的
一个法向量为 n ,且 AP 与 n 不共线,能否用 AP 与 n 表示 d ?
AA EA, AA AF < EA, AF >=π-θ(或θ),
l 2
EA2
2
AA
AF 2
2EA
AF
m2 d 2 n2 2mncos
当E,F在公垂线同一侧时取负号 当d等于0是即为“余弦定理”
d l2 m2 n2 2mncos
3. 异面直线间的距离
已知a,b是异面直线,n为的 法向量
n (1 , 3
1 3
EG
2x 2y 0 2x 4 y 2Z
,1) ,BE (2,0,0)
F
0
A
E
| n BE| 2 11
B
y
d
.
n
11
答:点 B 到平面 EFG 的距离为 2 11 .
11
2.(课本第107页练习2)如图,60°的二面角的棱上有A、B两点, 直线AC、BD分别在这个二面角的两个半平面内,且都垂直AB,已 知AB=4,AC=6,BD=8,求CD的长.

高中数学立体几何空间距离问题

高中数学立体几何空间距离问题

立体几何空间距离问题空间中距离的求法是历年高考考查的重点,其中以点与点、点到线、点到面的距离为基础,求其他几种距离一般化归为这三种距离.●难点磁场(★★★★)如图,已知ABCD是矩形,AB=a,AD=b,P A⊥平面ABCD,P A=2c,Q 是P A的中点.求:(1)Q到BD的距离;(2)P到平面BQD的距离.P为RT△ABC所在平面α外一点,∠ACB=90°(如图)(1)若PC=a,∠PCA=∠PCB=60°,求P到面α的距离及PC和α所成的角(2)若PC=24,P到AC,BC的距离都是6√10,求P到α的距离及PC和α所成角(3)若PC=PB=PA,AC=18,P到α的距离为40,求P到BC的距离●案例探究[例1]把正方形ABCD沿对角线AC折起成直二面角,点E、F分别是AD、BC 的中点,点O 是原正方形的中心,求:(1)EF 的长;(2)折起后∠EOF 的大小.命题意图:考查利用空间向量的坐标运算来解决立体几何问题,属★★★★级题目.知识依托:空间向量的坐标运算及数量积公式. 错解分析:建立正确的空间直角坐标系.其中必须保证x 轴、y 轴、z 轴两两互相垂直.技巧与方法:建系方式有多种,其中以O 点为原点,以OB 、OC 、OD 的方向分别为x 轴、y 轴、z 轴的正方向最为简单.解:如图,以O 点为原点建立空间直角坐标系O —xyz ,设正方形ABCD 边长为a ,则A (0,-22a ,0),B (22a ,0,0),C (0, 22a ,0),D (0,0, 22a ),E (0,-42a , a ),F (42a , 42a ,0) 21||||,cos ,2||,2||8042)42)(42(420)0,42,42(),42,42,0()2(23,43)420()4242()042(||)1(22222-=>=<==-=⋅+-+⨯=⋅=-==∴=-+++-=OF OE OF OE OF OE a OF a OE a a a a a OF OE a a OF a a OE a EF a a a a a EF∴∠EOF =120°[例2]正方体ABCD —A 1B 1C 1D 1的棱长为1,求异面直线A 1C 1与AB 1间的距离.命题意图:本题主要考查异面直线间距离的求法,属★★★★级题目. 知识依托:求异面直线的距离,可求两异面直线的公垂线,或转化为求线面距离,或面面距离,亦可由最值法求得.错解分析:本题容易错误认为O 1B 是A 1C 与AB 1的距离,这主要是对异面直线定义不熟悉,异面直线的距离是与两条异面直线垂直相交的直线上垂足间的距离.技巧与方法:求异面直线的距离,有时较难作出它们的公垂线,故通常采用化归思想,转化为求线面距、面面距、或由最值法求得.解法一:如图,连结AC 1,在正方体AC 1中,∵A 1C 1∥AC ,∴A 1C 1∥平面AB 1C ,∴A 1C 1与平面AB 1C 间的距离等于异面直线A 1C 1与AB 1间的距离.连结B 1D 1、BD ,设B 1D 1∩A 1C 1=O 1,BD ∩AC =O ∵AC ⊥BD ,AC ⊥DD 1,∴AC ⊥平面BB 1D 1D∴平面AB 1C ⊥平面BB 1D 1D ,连结B 1O ,则平面AB 1C ∩平面BB 1D 1D =B 1O 作O 1G ⊥B 1O 于G ,则O 1G ⊥平面AB 1C∴O 1G 为直线A 1C 1与平面AB 1C 间的距离,即为异面直线A 1C 1与AB 1间的距离.在Rt △OO 1B 1中,∵O 1B 1=22,OO 1=1,∴OB 1=21121B O OO += 26∴O 1G =331111=⋅OB B O O O ,即异面直线A 1C 1与AB 1间距离为33.解法二:如图,在A 1C 上任取一点M ,作MN ⊥AB 1于N ,作MR ⊥A 1B 1于R ,连结RN ,∵平面A 1B 1C 1D 1⊥平面A 1ABB 1,∴MR ⊥平面A 1ABB 1,MR ⊥AB 1 ∵AB 1⊥RN ,设A 1R =x ,则RB 1=1-x ∵∠C 1A 1B 1=∠AB 1A 1=45°,∴MR =x ,RN =NB 1=)1(22x - 31)31(23)1(2122222+-=-+=+=x x x RN MR MN (0<x <1)∴当x =31时,MN 有最小值33即异面直线A 1C 1与AB 1距离为33.●锦囊妙计空间中的距离主要指以下七种: (1)两点之间的距离. (2)点到直线的距离. (3)点到平面的距离. (4)两条平行线间的距离. (5)两条异面直线间的距离.(6)平面的平行直线与平面之间的距离. (7)两个平行平面之间的距离.七种距离都是指它们所在的两个点集之间所含两点的距离中最小的距离.七种距离之间有密切联系,有些可以相互转化,如两条平行线的距离可转化为求点到直线的距离,平行线面间的距离或平行平面间的距离都可转化成点到平面的距离.在七种距离中,求点到平面的距离是重点,求两条异面直线间的距离是难点.求点到平面的距离:(1)直接法,即直接由点作垂线,求垂线段的长.(2)转移法,转化成求另一点到该平面的距离.(3)体积法.求异面直线的距离:(1)定义法,即求公垂线段的长.(2)转化成求直线与平面的距离.(3)函数极值法,依据是两条异面直线的距离是分别在两条异面直线上两点间距离中最小的.●歼灭难点训练 一、选择题1.(★★★★★)正方形ABCD 边长为2,E 、F 分别是AB 和CD 的中点,将正方形沿EF 折成直二面角(如图),M 为矩形AEFD 内一点,如果∠MBE =∠MBC ,MB 和平面BCF 所成角的正切值为21,那么点M 到直线EF 的距离为( )21 D. 23C. B.1 22A.2.(★★★★)三棱柱ABC —A 1B 1C 1中,AA 1=1,AB =4,BC =3,∠ABC =90°,设平面A 1BC 1与平面ABC 的交线为l ,则A 1C 1与l 的距离为( )A.10B.11C.2.6D.2.4二、填空题3.(★★★★)如左下图,空间四点A 、B 、C 、D 中,每两点所连线段的长都等于a ,动点P 在线段AB 上,动点Q 在线段CD 上,则P 与Q 的最短距离为_________.4.(★★★★)如右上图,ABCD与ABEF均是正方形,如果二面角E—AB—C 的度数为30°,那么EF与平面ABCD的距离为_________.三、解答题5.(★★★★★)在长方体ABCD—A1B1C1D1中,AB=4,BC=3,CC1=2,如图:(1)求证:平面A1BC1∥平面ACD1;(2)求(1)中两个平行平面间的距离;(3)求点B1到平面A1BC1的距离.6.(★★★★★)已知正四棱柱ABCD—A1B1C1D1,点E在棱D1D上,截面EAC∥D1B且面EAC与底面ABCD所成的角为45°,AB=a,求:(1)截面EAC的面积;(2)异面直线A1B1与AC之间的距离;(3)三棱锥B1—EAC的体积.7.(★★★★)如图,已知三棱柱A1B1C1—ABC的底面是边长为2的正三角形,侧棱A1A与AB、AC均成45°角,且A1E⊥B1B于E,A1F⊥CC1于F.(1)求点A到平面B1BCC1的距离;(2)当AA1多长时,点A1到平面ABC与平面B1BCC1的距离相等.8.(★★★★★)如图,在梯形ABCD 中,AD ∥BC ,∠ABC =2π,AB = 31AD =a ,∠ADC =arccos552,P A ⊥面ABCD 且P A =a .(1)求异面直线AD 与PC 间的距离;(2)在线段AD 上是否存在一点F ,使点A 到平面PCF 的距离为36.参考答案 难点磁场解:(1)在矩形ABCD 中,作AE ⊥BD ,E 为垂足 连结QE ,∵QA ⊥平面ABCD ,由三垂线定理得QE ⊥BE ∴QE 的长为Q 到BD 的距离 在矩形ABCD 中,AB =a ,AD =b , ∴AE =22ba ab +在Rt △QAE 中,QA =21P A =c∴QE =22222ba b a c ++∴Q 到BD 距离为22222ba b a c ++.(2)解法一:∵平面BQD 经过线段P A 的中点, ∴P 到平面BQD 的距离等于A 到平面BQD 的距离 在△AQE 中,作AH ⊥QE ,H 为垂足∵BD ⊥AE ,BD ⊥QE ,∴BD ⊥平面AQE ∴BD ⊥AH ∴AH ⊥平面BQE ,即AH 为A 到平面BQD 的距离.在Rt △AQE 中,∵AQ =c ,AE =22ba ab +∴AH =22222)(ba cb a abc ++∴P 到平面BD 的距离为22222)(ba cb a abc ++解法二:设点A 到平面QBD 的距离为h ,由 V A —BQD =V Q —ABD ,得31S △BQD ·h =31S △ABD ·AQ h =22222)(ba cb a abc S AQS BQDABD ++==⋅∆∆歼灭难点训练一、1.解析:过点M 作MM ′⊥EF ,则MM ′⊥平面BCF ∵∠MBE =∠MBC∴BM ′为∠EBC 为角平分线, ∴∠EBM ′=45°,BM ′=2,从而MN =22 答案:A2.解析:交线l 过B 与AC 平行,作CD ⊥l 于D ,连C 1D ,则C 1D 为A 1C 1与l 的距离,而CD 等于AC 上的高,即CD =512,Rt △C 1CD 中易求得C 1D =513=2.6 答案:C二、3.解析:以A 、B 、C 、D 为顶点的四边形为空间四边形,且为正四面体,取P 、Q 分别为AB 、CD 的中点,因为AQ =BQ =22a ,∴PQ ⊥AB ,同理可得PQ ⊥CD ,故线段PQ 的长为P 、Q 两点间的最短距离,在Rt △APQ 中,PQ =22)2()23(2222=-=-a a AP AQ a 答案:22a4.解析:显然∠F AD 是二面角E —AB —C 的平面角,∠F AD =30°,过F 作FG ⊥平面ABCD 于G ,则G 必在AD 上,由EF ∥平面ABCD .∴FG 为EF 与平面ABCD 的距离,即FG =2a . 答案:2a三、5.(1)证明:由于BC 1∥AD 1,则BC 1∥平面ACD 1 同理,A 1B ∥平面ACD 1,则平面A 1BC 1∥平面ACD 1(2)解:设两平行平面A 1BC 1与ACD 1间的距离为d ,则d 等于D 1到平面A 1BC 1的距离.易求A 1C 1=5,A 1B =25,BC 1=13,则cos A 1BC 1=652,则sin A 1BC 1=6561,则S 111C B A ∆=61,由于111111D C A B BC A D V V --=,则31S 11BC A ∆·d =)21(31111D C AD ⋅·BB 1,代入求得d =616112,即两平行平面间的距离为616112. (3)解:由于线段B 1D 1被平面A 1BC 1所平分,则B 1、D 1到平面A 1BC 1的距离相等,则由(2)知点B 1到平面A 1BC 1的距离等于616112. 6.解:(1)连结DB 交AC 于O ,连结EO , ∵底面ABCD 是正方形 ∴DO ⊥AC ,又ED ⊥面ABCD ∴EO ⊥AC ,即∠EOD =45° 又DO =22a ,AC =2a ,EO =︒45cos DO =a ,∴S △EAC =22a (2)∵A 1A ⊥底面ABCD ,∴A 1A ⊥AC ,又A 1A ⊥A 1B 1 ∴A 1A 是异面直线A 1B 1与AC 间的公垂线 又EO ∥BD 1,O 为BD 中点,∴D 1B =2EO =2a ∴D 1D =2a ,∴A 1B 1与AC 距离为2a(3)连结B 1D 交D 1B 于P ,交EO 于Q ,推证出B 1D ⊥面EAC ∴B 1Q 是三棱锥B 1—EAC 的高,得B 1Q =23a32422322311a a a V EAC B =⋅⋅=-7.解:(1)∵BB 1⊥A 1E ,CC 1⊥A 1F ,BB 1∥CC 1 ∴BB 1⊥平面A 1EF 即面A 1EF ⊥面BB 1C 1C 在Rt △A 1EB 1中, ∵∠A 1B 1E =45°,A 1B 1=a∴A 1E =22a ,同理A 1F =22a ,又EF =a ,∴A 1E =22a 同理A 1F =22a ,又EF =a∴△EA 1F 为等腰直角三角形,∠EA 1F =90°过A 1作A 1N ⊥EF ,则N 为EF 中点,且A 1N ⊥平面BCC 1B 1 即A 1N 为点A 1到平面BCC 1B 1的距离 ∴A 1N =221a =又∵AA 1∥面BCC 1B ,A 到平面BCC 1B 1的距离为2a ∴a =2,∴所求距离为2(2)设BC 、B 1C 1的中点分别为D 、D 1,连结AD 、DD 1和A 1D 1,则DD 1必过点N ,易证ADD 1A 1为平行四边形.∵B 1C 1⊥D 1D ,B 1C 1⊥A 1N ∴B 1C 1⊥平面ADD 1A 1 ∴BC ⊥平面ADD 1A 1得平面ABC ⊥平面ADD 1A 1,过A 1作A 1M ⊥平面ABC ,交AD 于M , 若A 1M =A 1N ,又∠A 1AM =∠A 1D 1N ,∠AMA 1=∠A 1ND 1=90° ∴△AMA 1≌△A 1ND 1,∴AA 1=A 1D 1=3,即当AA 1=3时满足条件. 8.解:(1)∵BC ∥AD ,BC ⊂面PBC ,∴AD ∥面PBC从而AD 与PC 间的距离就是直线AD 与平面PBC 间的距离. 过A 作AE ⊥PB ,又AE ⊥BC ∴AE ⊥平面PBC ,AE 为所求. 在等腰直角三角形P AB 中,P A =AB =a ∴AE =22a(2)作CM ∥AB ,由已知cos ADC =552 ∴tan ADC =21,即CM =21DM ∴ABCM 为正方形,AC =2a ,PC =3a过A 作AH ⊥PC ,在Rt △P AC 中,得AH =36 下面在AD 上找一点F ,使PC ⊥CF取MD 中点F ,△ACM 、△FCM 均为等腰直角三角形∴∠ACM +∠FCM =45°+45°=90°∴FC ⊥AC ,即FC ⊥PC ∴在AD 上存在满足条件的点F .[学法指导]立体几何中的策略思想及方法近年来,高考对立体几何的考查仍然注重于空间观点的建立和空间想象能力的培养.题目起点低,步步升高,给不同层次的学生有发挥能力的余地.大题综合性强,有几何组合体中深层次考查空间的线面关系.因此,高考复习应在抓好基本概念、定理、表述语言的基础上,以总结空间线面关系在几何体中的确定方法入手,突出数学思想方法在解题中的指导作用,并积极探寻解答各类立体几何问题的有效的策略思想及方法.一、领悟解题的基本策略思想高考改革稳中有变.运用基本数学思想如转化,类比,函数观点仍是考查中心,选择好典型例题,在基本数学思想指导下,归纳一套合乎一般思维规律的解题模式是受学生欢迎的,学生通过熟练运用,逐步内化为自己的经验,解决一般基本数学问题就会自然流畅.二、探寻立体几何图形中的基面立体几何图形必须借助面的衬托,点、线、面的位置关系才能显露地“立”起来.在具体的问题中,证明和计算经常依附于某种特殊的辅助平面即基面.这个辅助平面的获取正是解题的关键所在,通过对这个平面的截得,延展或构造,纲举目张,问题就迎刃而解了.三、重视模型在解题中的应用学生学习立体几何是从认识具体几何模型到抽象出空间点、线、面的关系,从而培养空间想象能力.而数学问题中许多图形和数量关系都与我们熟悉模型存在着某种联系.它引导我们以模型为依据,找出起关键作用的一些关系或数量,对比数学问题中题设条件,突出特性,设法对原图形补形,拼凑、构造、嵌入、转化为熟知的、形象的、直观的模型,利用其特征规律获取优解.。

2020年高考数学专题复习第2课时空间距离与立体几何中的最值(范围)问题(选用)

2020年高考数学专题复习第2课时空间距离与立体几何中的最值(范围)问题(选用)

空间距离与立体几何中的最值(范围)问题(选用)空间中的距离问题如图,平面PAD ⊥平面ABCD ,四边形ABCD 为正方形,△PAD 是直角三角形,且PA =AD =2,E ,F ,G 分别是线段PA ,PD ,CD 的中点.(1)求证:平面EFG ⊥平面PAB ; (2)求点A 到平面EFG 的距离.【解】 如图,建立空间直角坐标系Axyz ,则A (0,0,0),B (2,0,0),C (2,2,0),D (0,2,0),P (0,0,2),E (0,0,1),F (0,1,1),G (1,2,0).(1)证明:因为EF →=(0,1,0),AP →=(0,0,2),AB →=(2,0,0),所以EF →·AP →=0×0+1×0+0×2=0,EF →·AB →=0×2+1×0+0×0=0,所以EF ⊥AP ,EF ⊥AB .又因为AP ,AB ⊂平面PAB ,且PA ∩AB =A ,所以EF ⊥平面PAB . 又EF ⊂平面EFG ,所以平面EFG ⊥平面PAB . (2)设平面EFG 的一个法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·EF →=(x ,y ,z )·(0,1,0)=0,n ·EG →=(x ,y ,z )·(1,2,-1)=0,所以⎩⎪⎨⎪⎧y =0,x +2y -z =0.取n =(1,0,1),又AE →=(0,0,1),所以点A 到平面EFG 的距离d =|AE →·n ||n |=12=22.(1)空间中的各种距离一般都可以转化为求点与点、点与线、点与面的距离. ①点点距:点与点的距离,以这两点为起点和终点的向量的模;②点线距:点M 到直线a 的距离,若直线的方向向量为a ,直线上任一点为N ,则点M 到直线a 的距离为d =|MN →|·sin〈MN →,a 〉;③线线距:两平行线间的距离转化为点线距离,两异面直线间的距离转化为点面距离或者直接求公垂线段的长度;④点面距:点M 到平面α的距离,若平面α的法向量为n ,平面α内任一点为N ,则点M 到平面α的距离d =|MN →||cos 〈MN →,n 〉|=|MN →·n ||n |.(2)利用空间向量求空间距离问题,首先应明确所求距离的特征,恰当选用距离公式求解.1.如图,P ­ABCD 是正四棱锥,ABCD ­A 1B 1C 1D 1是正方体,其中AB =2,PA =6,则B 1到平面PAD 的距离为________.解析:以A 1B 1所在直线为x 轴,A 1D 1所在直线为y 轴,A 1A 所在直线为z 轴建立空间直角坐标系,则AD →=(0,2,0),AP →=(1,1,2),设平面PAD 的法向量是m =(x ,y ,z ), 所以由⎩⎪⎨⎪⎧m ·AD →=0,m ·AP →=0,可得⎩⎪⎨⎪⎧2y =0,x +y +2z =0.取z =1,得m =(-2,0,1),因为B 1A →=(-2,0,2),所以B 1到平面PAD 的距离d =|B 1A →·m ||m |=65 5.答案:6552.如图,在长方体ABCD ­A 1B 1C 1D 1中,AB =4,BC =3,CC 1=2.(1)求证:平面A 1BC 1∥平面ACD 1; (2)求平面A 1BC 1与平面ACD 1的距离.解:(1)证明:因为AA 1綊CC 1,所以四边形ACC 1A 1为平行四边形,所以AC ∥A 1C 1. 又AC ⊄平面A 1BC 1,A 1C 1⊂平面A 1BC 1, 所以AC ∥平面A 1BC 1.同理可证CD 1∥平面A 1BC 1. 又AC ∩CD 1=C ,AC ⊂平面ACD 1,CD 1⊂平面ACD 1, 所以平面A 1BC 1∥平面ACD 1.(2)以B 1为原点,分别以B 1A 1→,B 1C 1→,B 1B →的方向为x 轴,y 轴,z 轴的正方向建立如图所示的空间直角坐标系,则A 1(4,0,0),A (4,0,2),D 1(4,3,0),C (0,3,2),A 1A →=(0,0,2),AC →=(-4,3,0),AD 1→=(0,3,-2),设n =(x ,y ,z )为平面ACD 1的一个法向量, 则⎩⎪⎨⎪⎧n ·AC →=0,n ·AD 1→=0,即⎩⎪⎨⎪⎧-4x +3y =0,3y -2z =0,取n =(3,4,6),所以所求距离d =|A 1A →|×|cos 〈n ,A 1A →〉|=|n ·A 1A →||n |=1232+42+62=126161,故平面A 1BC 1与平面ACD 1的距离为126161.立体几何中的最值(范围)问题(1)(2019·宁波十校联考)如图,平面PAB ⊥平面α,AB ⊂α,且△PAB 为正三角形,点D 是平面α内的动点,ABCD 是菱形,点O 为AB 中点,AC 与OD 交于点Q ,l ⊂α,且l ⊥AB ,则PQ 与l 所成角的正切值的最小值为( )A . -3+372B . 3+372C .7D .3(2)(2019·温州高考模拟)如图,在三棱锥A ­BCD 中,平面ABC ⊥平面BCD ,△BAC 与BCD 均为等腰直角三角形,且∠BAC =∠BCD =90°,BC =2,点P 是线段AB 上的动点,若线段CD 上存在点Q ,使得直线PQ 与AC 成30°的角,则线段PA 长的取值范围是( )A .⎝ ⎛⎭⎪⎫0,22 B .⎣⎢⎡⎦⎥⎤0,63 C .⎝⎛⎭⎪⎫22,2 D .⎝⎛⎭⎪⎫63,2 【解析】 (1)如图,不妨以CD 在AB 前侧为例.以O 为原点,分别以OB 、OP 所在直线为y 、z 轴建立空间直角坐标系,设AB =2,∠OAD =θ(0<θ<π),则P (0,0,3),D (2sin θ,-1+2cos θ,0),所以Q ⎝ ⎛⎭⎪⎫23sin θ,23cos θ-13,0,所以QP →=⎝ ⎛⎭⎪⎫-23sin θ,13-23cos θ,3,设α内与AB 垂直的向量n =(1,0,0),PQ 与l 所成角为φ,则cos φ=⎪⎪⎪⎪⎪⎪⎪⎪QP →·n |QP →||n |=⎪⎪⎪⎪⎪⎪⎪⎪-23sin θ329-49cos θ=sin θ8-cos θ=1-cos 2θ8-cos θ.令t =cos θ(-1<t <1),则s =1-t 28-t ,s ′=t 2-16t +1(8-t )2,令s ′=0,得t =8-37,所以当t =8-37时,s 有最大值为16-67.则cos φ有最大值为16-67,此时sin φ取最小值为67-15. 所以正切值的最小值为67-1516-67=3+372.故选B.(2) 以C 为原点,CD 所在直线为x 轴,CB 所在直线为y 轴,过C 作平面BCD 的垂线为z 轴,建立空间直角坐标系,则A (0,1,1),B (0,2,0),C (0,0,0),设Q (q ,0,0),AP →=λAB →=(0,λ,-λ)(0≤λ≤1),则PQ →=CQ →-CP →=CQ →-(CA →+AP →)=(q ,0,0)-(0,1,1)-(0,λ,-λ)=(q ,-1-λ,λ-1),因为直线PQ 与AC 成30°的角, 所以cos 30°=|CA →·PQ →||CA →|·|PQ →|=22·q 2+(1+λ)2+(λ-1)2=2q 2+2λ2+2=32, 所以q 2+2λ2+2=83,所以q 2=23-2λ2∈[0,4],所以⎩⎪⎨⎪⎧23-2λ2≥023-2λ2≤4,解得0≤λ≤33,所以|AP →|=2λ∈⎣⎢⎡⎦⎥⎤0,63,所以线段PA 长的取值范围是⎣⎢⎡⎦⎥⎤0,63. 故选B.【答案】 (1)B (2)B(1)求解立体几何中的最值问题,需要先确定最值的主体,确定题目中描述的相关变量,然后根据所求,确定是利用几何方法求解,还是转化为代数(特别是函数)问题求解.利用几何方法求解时,往往利用几何体的结构特征将问题转化为平面几何中的问题进行求解,如求几何体表面距离的问题.利用代数法求解时,要合理选择参数,利用几何体中的相关运算构造目标函数,再根据条件确定参数的取值范围,从而确定目标函数的值域,即可利用函数最值的求解方法求得结果.(2)用向量法解决立体几何中的最值问题,不仅简捷,更减少了思维量.用变量表示动点的坐标,然后依题意用向量法求其有关几何量,构建有关函数,从而用代数方法即可求其最值.1.(2019·浙江省五校联考模拟)如图,棱长为4的正方体ABCD ­A 1B 1C 1D 1,点A 在平面α内,平面ABCD 与平面α所成的二面角为30°,则顶点C 1到平面α的距离的最大值是( )A .2(2+2)B .2(3+2)C .2(3+1)D .2(2+1)解析:选B.如图所示,作C 1O ⊥α,交ABCD 于O ,交α于E ,由题得O 在AC 上,则C 1E 为所求,∠OAE =30°, 由题意,设CO =x ,则AO =42-x ,C 1O =16+x 2,OE =12OA =22-12x ,所以C 1E =16+x 2+22-12x ,令y =16+x 2+22-12x ,则y ′=x16+x 2-12=0,可得x =43,所以x =43时,顶点C 1到平面α的距离的最大值是2(3+2).2.(2019·浙江省名校协作体高三联考)如图,在梯形ABCD 中,AB ∥CD ,AD =DC =CB =1,∠ABC =60°,四边形ACFE 为矩形,平面ACFE ⊥平面ABCD ,CF =1.(1)求证:BC ⊥平面ACFE ;(2)点M 在线段EF 上运动,设平面MAB 与平面FCB 所成二面角的平面角为θ(θ≤90°),试求cos θ的取值范围.解:(1)证明:在梯形ABCD 中,因为AB ∥CD ,AD =DC =CB =1,∠ABC =60°,所以AB =2,所以AC 2=AB 2+BC 2-2AB ·BC ·cos 60°=3, 所以AB 2=AC 2+BC 2,所以BC ⊥AC ,因为平面ACFE ⊥平面ABCD ,平面ACFE ∩平面ABCD =AC ,BC ⊂平面ABCD ,所以BC ⊥平面ACFE .(2)如图所示,由(1)可建立分别以直线CA ,CB ,CF 为x 轴,y 轴,z 轴的空间直角坐标系,令FM =λ(0≤λ≤3),则C (0,0,0),A (3,0,0),B (0,1,0),M (λ,0,1),所以AB →=(-3,1,0),BM →=(λ,-1,1),设n 1=(x ,y ,z )为平面MAB 的一个法向量,由⎩⎪⎨⎪⎧n 1·AB →=0n 1·BM →=0,得⎩⎨⎧-3x +y =0λx -y +z =0,取x =1,则n 1=(1,3,3-λ),因为n 2=(1,0,0)是平面FCB 的一个法向量, 所以cos θ=|n 1·n 2||n 1|·|n 2|=11+3+(3-λ)2×1 =1(λ-3)2+4,因为0≤λ≤3,所以当λ=0时,cos θ有最小值77, 当λ=3时,cos θ有最大值12,所以cos θ∈⎣⎢⎡⎦⎥⎤77,12.空间中的距离(1)点与点之间的距离⎩⎪⎨⎪⎧利用空间两点间的距离公式利用空间向量的模长利用辅助线转化为平面距离(2)点线距离⎩⎪⎨⎪⎧转化为两点间距离求解利用向量法求解(3)点面之间距离⎩⎪⎨⎪⎧等积法求解向量法求解立体几何中的最值(范围)问题 (1)几何体的面积、体积的最值(范围) (2)空间角(或空间角三角函数值)的最值(范围) (3)空间距离的最值(范围) 求解方法⎩⎪⎨⎪⎧①构造函数法②转化为平面问题③引入参数利用向量法[基础达标]1.(2019·宁波市镇海中学高考模拟)在直三棱柱A 1B 1C 1­ABC 中,∠BAC =π2,AB =AC=AA 1=1,已知G 和E 分别为A 1B 1和CC 1的中点,D 与F 分别为线段AC 和AB 上的动点(不包括端点),若GD ⊥EF ,则线段DF 的长度的取值范围为( )A .⎣⎢⎡⎭⎪⎫55,1 B .⎣⎢⎡⎦⎥⎤55,1 C .⎝⎛⎭⎪⎫255,1 D .⎣⎢⎡⎭⎪⎫255,1 解析:选A.建立如图所示的空间直角坐标系,则A (0,0,0),E ⎝ ⎛⎭⎪⎫0,1,12,G ⎝ ⎛⎭⎪⎫12,0,1, F (x ,0,0),D (0,y ,0),由于GD ⊥EF ,所以x +2y -1=0,DF =x 2+y 2=5⎝ ⎛⎭⎪⎫y -252+15, 由x =1-2y >0,得y <12,所以当y =25时,线段DF 长度的最小值是15,当y =0时,线段DF 长度的最大值是1,又不包括端点,故y =0不能取,故选A. 2. (2019·杭州市学军中学高考数学模拟)如图,三棱锥P ­ABC 中,已知PA ⊥平面ABC ,AD ⊥BC 于D ,BC =CD =AD =1,设PD =x ,∠BPC =θ,记函数f (x )=tan θ,则下列表述正确的是( )A .f (x )是关于x 的增函数B .f (x )是关于x 的减函数C .f (x )关于x 先递增后递减D .f (x )关于x 先递减后递增解析:选C.因为PA ⊥平面ABC ,AD ⊥BC 于D ,BC =CD =AD =1,PD =x ,∠BPC =θ, 所以可求得AC =2,AB =5,PA =x 2-1,PC =x 2+1,BP =x 2+4, 所以在△PBC 中,由余弦定理知cos θ=PB 2+PC 2-BC 22BP ·PC =2x 2+42x 2+1x 2+4. 所以tan 2θ=1cos 2θ-1=(x 2+1)(x 2+4)(x 2+2)2-1=x2(x 2+2)2.所以tan θ=x x 2+2=1x +2x ≤12x ·2x=24(当且仅当x =2时取等号),所以f (x )关于x 先递增后递减.3.(2019·义乌市高三月考)如图,边长为2的正△ABC 的顶点A 在平面γ上,B ,C 在平面γ的同侧,M 为BC 的中点,若△ABC 在平面γ上的射影是以A 为直角顶点的△AB 1C 1,则M 到平面γ的距离的取值范围是________.解析:设∠BAB 1=α,∠CAC 1=β,则AB 1=2cos α,AC 1=2cos β,BB 1=2sin α,CC 1=2sin β,则点M 到平面γ的距离d =sin α+sin β,又|AM |=3,则|B 1C 1|=23-d 2,即cos 2α+cos 2β=3-(sin 2α+2sin αsin β+sin 2β).也即sin αsin β=12,所以d=sin α+sin β=sin α+12sin α≥2,因为sin α<1,sin β<1,所以12sin α<1,所以12<sin α<1,所以当sin α=12或1时,d =32,则2≤d <32.答案:⎣⎢⎡⎭⎪⎫2,324. (2019·杭州市学军中学高考数学模拟)如图,在二面角A ­CD ­B 中,BC ⊥CD ,BC =CD =2,点A 在直线AD 上运动,满足AD ⊥CD ,AB =3.现将平面ADC 沿着CD 进行翻折,在翻折的过程中,线段AD 长的取值范围是________.解析:由题意得AD →⊥DC →,DC →⊥CB →,设平面ADC 沿着CD 进行翻折的过程中,二面角A ­CD ­B 的夹角为θ,则〈DA →,CB →〉=θ,因为AB →=AD →+DC →+CB →,所以平方得AB →2=AD →2+DC →2+CB →2+2AD →·DC →+2CB →·AD →+2DC →·CB →, 设AD =x ,因为BC =CD =2,AB =3, 所以9=x 2+4+4-4x cos θ,即x 2-4x cos θ-1=0,即cos θ=x 2-14x.因为-1≤cos θ≤1,所以-1≤x 2-14x≤1,即⎩⎪⎨⎪⎧x 2-1≤4x x 2-1≥-4x ,即⎩⎪⎨⎪⎧x 2-4x -1≤0x 2+4x -1≥0,则⎩⎨⎧2-5≤x ≤2+5,x ≥-2+5或x ≤-2- 5.因为x >0,所以5-2≤x ≤5+2, 即AD 的取值范围是[5-2,5+2]. 答案:[5-2,5+2]5.(2019·金丽衢十二校联考)如图,在三棱锥D ­ABC 中,已知AB =2,AC →·BD →=-3,设AD =a ,BC =b ,CD =c ,则c 2ab +1的最小值为________.解析:设AD →=a ,CB →=b ,DC →=c ,因为AB =2,所以|a +b +c |2=4⇒a 2+b 2+c 2+2(a ·b +b ·c +c ·a )=4,又因为AC →·BD →=-3,所以(a +c )·(-b -c )=-3⇒a ·b +b ·c +c ·a +c 2=3,所以a 2+b 2+c 2+2(3-c 2)=4⇒c 2=a 2+b 2+2,所以a 2+b 2+2ab +1≥2ab +2ab +1=2,当且仅当a=b 时,等号成立,即c 2ab +1的最小值是2.答案:26.(2019·温州十五校联合体期末考试)在正四面体P ­ABC 中,点M 是棱PC 的中点,点N 是线段AB 上一动点,且AN →=λAB →,设异面直线NM 与AC 所成角为α,当13≤λ≤23时,则cos α的取值范围是________.解析:设点P 到平面ABC 的射影为点O ,以AO 所在直线为y 轴,OP 所在直线为z 轴,过点O 作BC 的平行线为x 轴,建立空间直角坐标系,如图.设正四面体的棱长为43,则有A (0,-4,0),B (23,2,0),C (-23,2,0),P (0,0,42),M (-3,1,22).由AN →=λAB →,得N (23λ,6λ-4,0).从而有NM →=(-3-23λ,5-6λ,22),AC →=(-23,6,0). 所以cos α=|NM →·AC →||NM →||AC →|=3-2λ24λ2-4λ+3,设3-2λ=t ,则53≤t ≤73.则cos α=12t 2t 2-4t +6=126⎝ ⎛⎭⎪⎫1t 2-4·1t+1,因为13<37≤1t ≤35,所以51938≤cos α≤71938.答案:⎣⎢⎡⎦⎥⎤51938,719387.如图,在△ABC 中,∠B =π2,AB =BC =2,P 为AB 边上一动点,PD ∥BC 交AC 于点D .现将△PDA 沿PD 翻折至△PDA ′,使平面PDA ′⊥平面PBCD .(1)当棱锥A ′­PBCD 的体积最大时,求PA 的长; (2)若P 为AB 的中点,E 为A ′C 的中点,求证:A ′B ⊥DE . 解:(1)设PA =x ,则PA ′=x ,所以V A ′­PBCD =13PA ′·S 底面PBCD =13x ⎝ ⎛⎭⎪⎫2-x 22.令f (x )=13x ⎝⎛⎭⎪⎫2-x 22=2x 3-x36(0<x <2),则f ′(x )=23-x22.当x 变化时,f ′(x ),f (x )的变化情况如下表:(2) 证明:取A ′B 的中点F ,连接EF ,FP .由已知,得EF 綊12BC 綊PD .所以四边形EFPD 是平行四边形,所以ED ∥FP . 因为△A ′PB 为等腰直角三角形,所以A ′B ⊥PF . 所以A ′B ⊥DE .8. (2019·杭州市第一次高考科目数学质量检测)如图,在三棱柱ABC ­A 1B 1C 1中,AA 1⊥平面ABC ,平面A 1BC ⊥平面A 1ABB 1.(1)求证:AB ⊥BC ;(2)设直线AC 与平面A 1BC 所成的角为θ,二面角A 1­BC ­A 的大小为φ,试比较θ和φ的大小关系,并证明你的结论.解:(1)证明:过点A 在平面A 1ABB 1内作AD ⊥A 1B 于D , 因为平面A 1BC ⊥平面A 1ABB 1, 平面A 1BC ∩平面A 1ABB 1=A 1B , 所以AD ⊥平面A 1BC , 又因为BC ⊂平面A 1BC , 所以AD ⊥BC .因为AA 1⊥平面ABC ,所以AA 1⊥BC . 又因为AA 1∩AD =A , 所以BC ⊥侧面A 1ABB 1, 又因为AB ⊂平面A 1ABB 1, 故AB ⊥BC .(2)连接CD ,由(1)知∠ACD 是直线AC 与平面A 1BC 所成的角. 又∠ABA 1是二面角A 1­BC ­A 的平面角. 则∠ACD =θ,∠ABA 1=φ.在Rt △ADC 中,sin θ=AD AC,在Rt △ADB 中, sin φ=AD AB.由AB <AC ,得sin θ<sin φ,又0<θ,φ<π2,所以θ<φ. [能力提升]1.(2019·温州市高考数学模拟)如图,在矩形ABCD 中,AB AD=λ(λ>1),将其沿AC 翻折,使点D 到达点E 的位置,且二面角C ­AB ­E 为直二面角.(1)求证:平面ACE ⊥平面BCE ;(2)设F 是BE 的中点,二面角E ­AC ­F 的平面角的大小为θ,当λ∈[2,3]时,求cosθ的取值范围.解:(1)证明:因为二面角C ­AB ­E 为直二面角,AB ⊥BC, 所以BC ⊥平面ABE ,所以BC ⊥AE .因为AE ⊥CE ,BC ∩CE =C ,所以AE ⊥平面BCE . 因为AE ⊂平面ACE ,所以平面ACE ⊥平面BCE .(2)如图,以E 为坐标原点,以AD 长为一个单位长度,建立如图所示的空间直角坐标系,则AB =λ,A (0,1,0),B (λ2-1,0,0),C (λ2-1,0,1),E (0,0,0),F ⎝ ⎛⎭⎪⎫λ2-12,0,0,则EA →=(0,1,0),EC →=(λ2-1,0,1), 设平面EAC 的法向量为m =(x ,y ,z ),则⎩⎨⎧y =0λ2-1·x +z =0,取x =1,则m =(1,0,-λ2-1). 同理得平面FAC 的一个法向量为n =(2,λ2-1,-λ2-1).所以cos θ=m ·n |m |·|n |=λ2+1λ·2(λ2+1)=22·1+1λ2.因为λ∈[2,3], 所以cos θ∈⎣⎢⎡⎦⎥⎤53,104.2.如图,在四棱锥P ­ABCD 中,已知PA ⊥平面ABCD ,且四边形ABCD 为直角梯形,∠ABC =∠BAD =π2, PA =AD =2,AB =BC =1.(1)求平面PAB 与平面PCD 所成二面角的余弦值;(2)点Q 是线段BP 上的动点,当直线CQ 与DP 所成的角最小时,求线段BQ 的长. 解:以{AB →,AD →,AP →}为正交基底建立如图所示的空间直角坐标系A ­xyz ,则各点的坐标为B (1,0,0),C (1,1,0),D (0,2,0),P (0,0,2).(1)由题意知,AD ⊥平面PAB ,所以AD →是平面PAB 的一个法向量,AD →=(0,2,0). 因为PC →=(1,1,-2),PD →=(0,2,-2). 设平面PCD 的法向量为m =(x ,y ,z ), 则m ·PC →=0,m ·PD →=0,即⎩⎪⎨⎪⎧x +y -2z =0,2y -2z =0.令y =1,解得z =1,x =1. 所以m =(1,1,1)是平面PCD 的一个法向量.从而cos 〈AD →,m 〉=AD →·m |AD →||m |=33,所以平面PAB 与平面PCD 所成二面角的余弦值为33. (2)因为BP →=(-1,0,2),设BQ →=λBP →=(-λ,0,2λ)(0≤λ≤1), 又CB →=(0,-1,0),则CQ →=CB →+BQ →=(-λ,-1,2λ), 又DP →=(0,-2,2),从而cos 〈CQ →,DP →〉=CQ →·DP →|CQ →||DP →|=1+2λ10λ2+2. 设1+2λ=t ,t ∈[1,3],则cos 2〈CQ →,DP →〉=2t 25t 2-10t +9=29⎝ ⎛⎭⎪⎫1t -592+209≤910.当且仅当t =95,即λ=25时,|cos 〈CQ →,DP →〉|的最大值为31010.因为y =cos x 在⎝⎛⎭⎪⎫0,π2上是减函数,所以此时直线CQ 与DP 所成角取得最小值. 又因为BP =12+22=5, 所以BQ =25BP =255.。

利用空间向量解决空间距离问题

利用空间向量解决空间距离问题

2x, 3x,
D A
x
得A1E与BD1的距离
d D1A1 n n
14 14
Cy
B
B1到面A1BE的距离
2)A1E
=(-1,1 2
,0),A1B=(0,1,-1)设n

(
x,
y,
z
)为面A1BE的法向量,

n

A1E

0,
n A1B 0,
x 1 y 0, 2 y z 0,
则D1
(0,
Hale Waihona Puke 0,1),B(1,1,
0),
A1
(1,
0,1),
E(0,
1 2
,1)
z

A1E


1,
1 2
,
0

,
D1B 1,1, 1
D1
E
C1
n

A1E

0,
x 1 y 0, 2
A1
B1
n D1B 0, x y z 0,
即zy
n
P
四种距离的统一向量形式:
点到平面的距离:
直线到平面的距离:
d

|
AP n |
平面到平面的距离:
n
异面直线的距离:
AB (x1 x2 )2 ( y1 y2 )2 (z1 z2 )2
例1、已知正方形ABCD的边长为4,
CG⊥平面ABCD,CG=2,E、F分别是AB、 AD的中点,求点B到平面GEF的距离。 z
即zy

2x, 2x,
z
D1 A1

立体几何中的向量方法(距离问题)

立体几何中的向量方法(距离问题)
解:如图1,设 AB AA1 AD 1,BAD BAA1 DAA1 60
化为向量问题
D1 A1 D A 图1
B B1
C1
依据向量的加法法则, AC1 AB AD AA1
进行向量运算
C
AC1 ( AB AD AA1 ) 2
2 2 2
2
AB AD AA1 2( AB AD AB AA1 AD AA1 )
由 A1 AB A1 AD BAD 且 AB AD AA1 H 在 AC上.
AC ( AB BC )2 1 1 2cos 60 3
2
D1 A1 B1 H D B
C1
C
A
AC 3
AA1 AC AA1 ( AB BC ) AA1 AB AA1 BC cos60 cos60 1.
即 a 2 3 x 2 2(3 x 2 cos ) x
1 a 3 6cos
∴ 这个四棱柱的对角线的长可以确定棱长.
思考(3)本题的晶体中相对的两个平面之间的距离是多少? 分析:面面距离转化为点面距离来求
解: 过 A1点作 A1 H 平面 AC 于点 H . 则 A1 H 为所求相对两个面之间 的距离 .
A1 B1 D C D1 C1
(3)本题的晶体中相对的两个平面之间的距离 A B 是多少? (提示:求两个平行平面的距离,通常归结为求点到平 面的距离或两点间的距离)
思考(1)分析: BD BA BC BB 1 1 其中 ABC ABB1 120 , B1 BC 60
空间“距离”问题
复习回顾:
1.异面直线所成角:
C

专题12立体几何中的距离问题11月19日终稿

专题12立体几何中的距离问题11月19日终稿

专题12立体几何中的距离问题知识点一 距离问题之点到点 空间的距离共分六类:点到点,点到线,点到面,线到线,线到面,面到面;后两类均为平行状态下的计算,可以统一为点到面的距离,本节不做赘述.空间中的距离问题不但能解决长度问题,也能解决体积、夹角问题.(1)墙角体顶点到底面的距离为h ,墙角的三侧棱长分别为a ,b ,c 则有22221111h a b c =++ (2)设墙角体底面ABC △内一点M 到各侧面的距离分别为1h ,2h ,3h ,则点M 到顶点P 的距离:d 【例1】在三棱锥P ABC -中,2APC CPB BPA π∠=∠=∠=,并且3PA PB ==,4PC =,又D 是底面ABC内一点,则D 到三棱锥三个侧面的距离的平方和的最小值是 .【例2】(浦东新区校级开学)如图,在直三棱柱111ABC A B C -中,2BAC π∠=,11AB AC AA ===,已知G 与E 分别为11A B 和1CC 的中点,D 和F 分别为线段AC 和AB 上的动点(不包括端点),若GD EF ⊥,则线段DF 的长度的平方取值范围为( )A .(1B .11[)52,C .1(52,D .1[1)5,【例3】(浦东新区校级模拟)三棱锥P ABC -中,侧棱PA 、PB 、PC 两两垂直,底面ABC 内一点M 到三个侧面的距离分别是2、3、6,那么PM = .知识点二 距离问题之点到线【例4】如图,AB 垂直于BCD △所在的平面,AC AD =,:3:4BC BD =.当BCD △的面积最大时,点A 到直线CD 的距离为 .题型三 距离问题之点到面点到面的距离通常可以利用等体积法或建系法处理,在小题中也可借助面面垂直将点到面的距离转化为点到线的距离,当遇到特殊几何体如墙角体还可以利用公式:墙角体顶点到底面的距离为h ,墙角的三侧棱长分别为a ,b ,c 则有22221111h a b c =++ 【例5】点A ,B 到平面α距离分別为12,20,若斜线AB 与α成30︒的角,则AB 的长等于 .【例6】如图1,在棱长为2的正方体1111ABCD A B C D -中,E 为AB 的中点,则点1B 到平面11EAC 的距离为 .【例7】如图1,在四面体A BCD -中,60DAB ∠=︒,45BAC ∠=︒,45CAD ∠=︒,4AB =,3AC =,4AD =. (1)求点C 到平面ABD 的距离; (2)求AB 与平面ACD 所成角.题型四 距离问题之折线段问题【例8】(浦东新区校级月考)如图,正方体1111ABCD A B C D -的棱长为2,P 是面对角线1BC 上一动点,Q 是底面ABCD 上一动点,则1D P PQ +的最小值是 .图1图2图1图2图3【例9】如图1,在棱长均为ABCD 中,M 为AC 的中点,E 为AB 的中点,P 是DM 上的动点,Q 是平面ECD 上的动点,则AP PQ +的最小值是( )A B C D .【例10】(兴庆区校级三模)如图,在长方体1111ABCD A B C D -中,1||||AA AD =||2AB =,E 为线段1B C 的中点,F 是棱11C D 上的动点,若点P 为线段1BD 上的动点,则||||PE PF +的最小值为 .题型五 距离问题之异面直线距离 线到线之间的距离分为两类:当两直线平行时,两直线之间的距离等同于点到直线之间的距离(同题型二) 当两直线异面时,异面直线的公垂线段的长度,叫做两条异面直线之间的距离.法一:四面体体积1sin 6V abd θ=,a ,b 为四面体的一组对棱长,d 为对棱的公垂线段长,θ为异面直线夹角. 法二:转化为线到平行平面之间的距离,进一步转化为点到面的距离.注:(1)和两条异面直线都垂直且相交的的直线叫做两条直线的公垂线,公垂线与两条直线相交的点所形成的线段即为两条异面直线的公垂线段;(2)任意两条异面直线有且只有一条公垂线;证明:①存在性设m 、n 是两条异面直线,过m 上一点P 作直线a n ∥,则m 和a 确定一个平面α. 过P 作直线b α⊥,则b m ⊥,b a ⊥,b n ⊥,且b 和m 确定一个平面β.因为m 、n 异面,所以n 不在β内,且n 不会与β平行,这是因为如果n β∥,则a β∥或a β⊂. 因为P β∈,P a ∈,所以a 与β不平行,若a β⊂,因为b m ⊥,b a ⊥,m a P =,所以a 和m 重合,即m n ∥,矛盾, 所以n 与β不平行,即n 和β相交设这个交点为Q ,即Q β∈,过Q 作直线l m ⊥,则l b ∥所以l n ⊥,即l 同时垂直m 、n ,且l 和m 、n 交点分别为P 、Q ②唯一性由存在性的证明可知n 和β只有一个交点Q ,经过Q 点有且只有一条直线l m ⊥,因此异面直线的公垂线有且只有一条.(3)两条异面直线的公垂线段长是分别连接两条异面直线上两点的线段中最短的一条.【例11】如图1,正方体ABCD A B C D ''''-的棱长为1,点M ,N 分别在线段A D ',D C '上,且满足MN ∥平面A ACC '',则线段MN 长度的取值范围为 .【例12】已知正方体ABCD A B C D -''''的棱长为1,点M ,N 分别为线段AB ',AC 上的动点,点T 在平面 BCC B ''内,则||||MT NT +的最小值是( )A B C D .1同步训练1.如图,与正方体1111ABCD A B C D -的三条棱AB ,1CC ,11A D 所在直线的距离相等的点( ) A .有且只有1个 B .有且只有2个C .有且只有3个D .有无数个2.已知平面α∥平面β.直线m α⊂,直线n β⊂,点A m ∈,点B n ∈.记点A ,B 之间距离为a ,点A 到直线n 的距离为b .直线m 和n 的距离为c ,则( ) A .b c a ≤≤ B .a c b ≤≤C .c a b ≤≤D .c b a ≤≤3.(义乌市校级期中)一条线段AB 的两端点A ,B 和平面α的距离分别是30cm 和50cm ,P 为线段AB 上一点,且:3:7PA PB =,则P 到平面α的距离为( )A .36cmB .6cmC .36cm 或6cmD .以上都不对4.(广陵区校级月考)在棱长为a 的正方体1111ABCD A B C D -中,M 是AB 的中点,则点C 到平面1A DM 的距离为 .5.如图,在单位正方体ABCD A B C D -''''中,E 为B C '中点,F 为棱D C ''上动点,P 为BD '上动点,求||||PE PF +的最小值.6.如图,在单位正方体ABCD A B C D -''''中,E ,F 为两动点,求C E EF '+的最小值 .。

1.4.2-用空间向量研究距离、夹角问题

1.4.2-用空间向量研究距离、夹角问题

探究 已知直线l的单位方向向量为u, A是直线l上的定点,P是直线l外一点. 如何利
用这些条件求点P到直线l的距离? 如图示,向量AP在直线l上的投影向量为 AQ ,则△APQ是直角
u
P
三角形,因为A,P都是定点,所以|AP|,AP 与 u 的夹角∠PAQ都
dn
是确定的. 于 是可求 |AQ|. 再利用勾股定理,可以求出点P到直线l
点C1到平面AB1 E
的距离为 |
C1B1 |n|
n
|
1 3
.
D
A x
F
C
y
B
即直线FC1到平面AB1
E的距离为
1 3
.
3. 如图,在棱长为1的正方体ABCD-A1B1C1D1中,求平面A1DB与平面D1CB1的距离.
解 : 平面A1DB//平面D1CB1,平面A1DB与平面D1CB1的距离 z
MN AN AM
1 ( AB AF ) 1 ( AB AD)
2
2
1 (c b) 2
∴|MN|2 1 (c b )2 1 ,
4
2
∴|MN| 2 ,即MN 2 .
2
2
【巩固训练4】如图,两条异面直线a, b所成的角为θ,在直线a, b上分别取点A′, E和
点A, F,使AA′⊥a,且AA′⊥b (AA′称为异面直线a, b的公垂线). 已知A′E=m, AF=n,
易得C1 (0, 1, 1),
A(1,
0, 0),
E(0,
0,
1 ). 2
E
∴C1 A
(1,
1, 1),
AE
(1, 0,
1 ). 2
D
F

空间几何体的距离问题(答案版)

空间几何体的距离问题(答案版)

专题:空间几何体的距离问题一、点到直线的距离(点线距)1、点在直线上的射影自点A向直线l引垂线,垂足A叫做点A在直线l上的射影.1点A到垂足的距离叫点到直线的距离.2、点线距的求法:点到直线的距离问题主要是将空间问题转化为平面问题,利用解三角形的方法求解距离。

二、点到平面的距离(点面距)1、点到平面的距离:已知点P是平面α外的任意一点,过点P作PAα⊥,垂足为A,则PA唯一,则PA是点P 到平面α的距离。

即:一点到它在一个平面内的正射影的距离叫做这一点到这个平面的距离(转化为点到点的距离)结论:连结平面α外一点P与α内一点所得的线段中,垂线段PA最短2、点面距的求解问题,主要有三个方法:(1)定义法(直接法):找到或者作出过这一点且与平面垂直的直线,求出垂线段的长度;(2)等体积法:通过点面所在的三棱锥,利用体积相等求出对应的点线距离;(3)转化法:转化成求另一点到该平面的距离,常见转化为求与面平行的直线上的点到面的距离.三、异面直线的距离(线线距)1、公垂线:两条异面直线的公垂线在这两条异面直线间的线段(公垂线段)的长度,叫做两条异面直线间的距离.两条异面直线的公垂线有且只有一条.2、两条异面直线的距离:两条异面直线的公垂线段的长度.四、直线到平面的距离(线面距)直线到与它平行平面的距离:一条直线上的任一点到与它平行的平面的距离,叫做这条直线到平面的距离(转化为点面距离).如果一条直线l平行与平面α,则直线l上的各点到平面的垂线段相等,即各点到α的距离相等;垂线段小于或等于l上任意一点与平面α内任一点间的距离;五、平面到平面的距离(面面距)1、两个平行平面的公垂线、公垂线段:(1)两个平面的公垂线:和两个平行平面同时垂直的直线,叫做两个平面的公垂线.(2)两个平面的公垂线段:公垂线夹在平行平面间的的部分,叫做两个平面的公垂线段.(3)两个平行平面的公垂线段都相等.(4)公垂线段小于或等于任一条夹在这两个平行平面间的线段长.2、两个平行平面的距离:两个平行平面的公垂线段的长度叫做两个平行平面的距离.题型一点到直线的距离【例1】【解析】ABC 的两条直角边3BC =,4AC =,22345AB ∴=+=.过C 作CM AB ⊥,交AB 于M ,连接PM ,因,,∩,,AB CM AB PC CM PC C CM PC ⊥⊥=⊂平面PCM ,则AB ⊥平面PCM .又PM ⊂平面PCM ,则PM AB ⊥,∴点P 到斜边AB 的距离为线段PM 的长.由1122ABC S AC BC CM =⋅=⋅△,得431255AC BC CM AB ⋅⨯===,228114432525PM PC CM =+=+=.∴点P 到斜边AB 的距离为3.故选:B.【变式1-1】【解析】将四面体SABC 补成正方体SDBG EAFC -,连接DE 交AS 于点M ,连接FG 交BC 于点N ,连接MN ,如图,则M ,N 分别为DE ,BC 的中点,因为BD CE ∥且BD CE =,故四边形BDEC 为平行四边形,则BC DE ∥且BC DE =,又因为M ,N 分别为DE ,BC 的中点,所以DM BN ∥且DM BN =,故四边形BDMN 为平行四边形,故MN BD ∥且52MN BD SG ===因为BD ⊥平面SDAE ,AS ⊂平面SDAE ,所以BD AS ⊥,即MN AS ⊥,同理可得MN BC ⊥,故P 到BC 的距离最小值为52MN =故选:C【变式1-2】【解析】因为PB ⊥平面ABCD ,BC ⊂平面ABCD ,所以PB BC ⊥,又因为AB BC ⊥,且AB PB B ⋂=,,AB PB ⊂平面PAB ,所以BC ⊥平面PAB ,因为PA ⊂平面PAB ,所以PA BC ⊥,取PA 的中点E ,因为PB AB =,所以PA BE ⊥,又因为BE BC B = ,且,BE BC ⊂平面BCE ,所以PA ⊥平面BCE ,因为CE ⊂平面BCE ,所以CE PA ⊥,所以CE 即为点C 到直线PA 的距离,在等腰直角PAB 中,由4PB AB ==,可得22BE=,在直角BCE 中,由2BC =,可得2223CE BC BE =+=所以点C 到直线PA 的距离为23故选:B.【变式1-3】【解析】(1)取AB 的中点E ,连接CE ,如图所示:因为AD DC ⊥,122AD DC AB ===,则四边形AECD 为正方形,所以222222AC BC =+=因为222AC BC AB +=,所以BC AC ⊥.因为AD DC ⊥,AD DB ⊥,CD BD D =I ,,CD BD ⊂平面BCD ,所以AD ⊥平面BCD .又因为BC ⊂平面BCD ,所以AD BC ⊥.因为BC AC ⊥,BC AD ⊥,AD AC A = ,,AC AD ⊂平面ACD ,所以BC ⊥平面ACD ,又因为BC ⊂平面ABC ,所以平面ABC ⊥平面ADC .(2)取,AC CD 的中点,F H ,连接,,EF FH HE ,因为BC ⊥平面ACD ,//EF BC ,所以EF ⊥平面ACD ,又因为CD ⊂平面ACD ,所以EF CD ⊥.因为,//AD CD AD FH ⊥,所以FH CD ⊥.因为EF CD ⊥,FH CD ⊥,EF FH F ⋂=,,EF FH ⊂平面EFH ,所以CD ⊥平面EFH ,又因为EH ⊂平面EFH ,所以CD EH ⊥.因为112HF AD ==,122EF BC ==,且HF EF ⊥,所以()22123HE +=,即点E 到直线CD 3题型二直线到直线的距离【例2】【解析】如图,该四棱柱为长方体,因为11//A B D C ,所以1AD C ∠为异面直线1A B 与1AD 所成角,设底面正方形边长为a,则11,AC AD CD ===,在1AD C 中,22211121184cos 2285AD CD AC AD C AD CD a +-∠===+,解得1a =,因为该四棱柱为长方体,所以AB ⊥平面11BCC B ,1B C ⊂平面11BCC B ,所以1AB B C ⊥,同理1AB AD ⊥,所以直线1AD 与直线1B C 的距离为1AB a ==,故选:B.【变式2-1】【解析】,P Q 在,BD SC 上移动,则当PQ 为,BD SC 公垂线段时,,P Q 两点的距离最小; 四棱锥S ABCD -为正四棱锥,SO ⊥平面ABCD ,O ∴为正方形ABCD 的中心,BD AC ∴⊥,又SO BD ⊥,SO AC O = ,BD ∴⊥平面SOC ,过O 作OM SC ⊥,垂足为M ,OM ⊂ 平面SOC ,OM BD ∴⊥,OM ∴为,BD SC 的公垂线,又5SO OC OM SC ⋅===,,P Q ∴.故选:B.【变式2-2】【解析】连接1AC 交1AC 于点O ,连接OM ,∵,O M 分别为1,AC BC 的中点,则OM 1A B ,、且OM ⊂平面1AMC ,1A B ⊄平面1AMC ,∴1A B 平面1AMC ,则点P 到平面1AMC 的距离相等,设为d ,则P ,Q 两点之间距离的最小值为d ,即点1A 到平面1AMC 的距离为d ,∵1AC 的中点O 在1AC 上,则点C 到平面1AMC 的距离为d ,由题意可得为1111,AC CM C M AC AM MC ======由11C AMC C ACM V V --=,则11111113232d ⨯⨯=⨯⨯⨯⨯,解得d =故P ,Q两点之间距离的最小值为3d =.故选:A.【变式2-3】【解析】如图所示:连接EH ,且1EH =,设2HEF θ∠=,1EHG θ∠=,作GR AB⊥于,R EH的中点为O,连接OR,在Rt ROG△中,可求得2OG=,在Rt OGH中,可求得GH=由此可知121cos cos2θθ===延长EA到K使AK EA=,连接,GK GF,则易知四边形EKGF为平行四边形,∴GK EF//,且GK EF=,则KGHθ∠=就是EF与GH所成的角,连接KH与AB交于R,则KH=,在GKH△中,由余弦定理可求得1cos3θ=,则28sin9θ=,根据公式(2)得2d=,∴EF与GH间的距离是2.题型三点到平面的距离【例3】【解析】在棱长为2的正方体1111ABCD A B C D-中,1BB⊥平面1111DCBA,1B P⊂平面1111DCBA,则11BB B P⊥,由3BP=,得1B P===在11Rt B C P△中,1190B C P∠= ,则11C P==,即点P为11C D中点,又111//,AA BB BB⊂平面1BB P,1AA⊄平面1BB P,因此1//AA平面1BB P,于是点A到平面1BB P的距离等于点1A到平面1BB P的距离,同理点C到平面1BB P的距离等于点1C到平面1BB P的距离,连接1A P,过11,A C分作1B P的垂线,垂足分别为1,O O,如图,由1111111111122A PBS B P A O A BA D=⋅=⋅1122O=⨯,解得115AO=,在11Rt B C P△中,111115B CC PC OB P⋅==,则111555AO C O+=+=,所以点,A C到平面1BB P故选:B【变式3-1】【解析】1113D C BE C BEV S DC-=⋅⋅,111112122C BES C E BC=⋅⋅=⨯⨯=,2DC=,则123D C BEV-=.在BED中,由题意及图形结合勾股定理可得BE DE==,BD=则由余弦定理可得222125cos BE DE BD BED BE DE +-∠==⋅,则1261255sin BED ∠=-=.则162sin BDE S BE DE BED =⋅⋅∠= .设1C 到平面EBD 的距离为d ,则113C BDE BDE V S d -=⋅ .又11D C BE C BDE V V --=,则11226333C BDE BDE BDE V S d d S -=⋅=⇒== .故选:D 【变式3-2】【解析】(1)连接BD ,交AC 于点O ,连接OE ,∵四边形ABCD 是平行四边形,∴O 是BD 的中点,又∵E 为PD 的中点,∴OE 是三角形PBD 的中位线,∴//PB OE ,又∵PB ⊂/平面AEC ,OE ⊂平面AEC ,∴//PB 平面AEC ;(2)∵平行四边形ABCD 中,60ABC ∠=︒,2BC AD ==,1AB =,∴222cos 3AC AB BC AB BC ABC =+-⋅∠=,则222AC AB BC +=,故90ACD ∠=︒,又∵PA ⊥平面ABCD ,∴PAB ,PAD ,PAC △都是直角三角形,∵1==PA AB ,∴2PB =,2PC =,5PD =,∴222PD PC CD =+,∴90PCD ∠=︒,∴52EA EC ==,因为O 是AC 的中点,所以OE AC ⊥,且1222OE PB ==,所以112632224EAC S AC OE =⋅=⨯⨯=△,11331222DAC S AC CD =⋅=⨯⨯=△,设点D 到平面AEC 的距离为h ,由12D ACE E ACD P ACD V V V ---==得:16113134232h ⨯⨯=⨯⨯⨯,解得22h =.【变式3-3】【解析】(1)连接CO ,如图,由3AD DB =知,点D 为AO 的中点,又∵AB 为圆O 的直径,∴AC CB ⊥,由3AC BC =知,60CAB ∠=︒,∴ACO △为等边三角形,从而CD AO ⊥.∵点P 在圆O 所在平面上的正投影为点D ,∴PD ⊥平面ABC ,又CD ⊂平面ABC ,∴PD CD ⊥,又PD AO D = ,,PD AO ⊂平面PAB ,所以CD ⊥平面PAB .(2)因为2AO =,所以CD =3PD DB ==,∴1111133332322P BDC BDC V S PD DB DC PD -=⋅=⋅⋅⋅=⨯⨯=.又PB ==,PC ==,BC ==∴PBC 为等腰三角形,则12PBC S =⨯ 设点D 到平面PBC 的距离为d ,由P BDC D PBC V V --=得,132PBC S d ⋅=△,解得5d =,即点D 到平面PBC 5题型四直线到平面的距离【例4】【解析】在正三棱柱111ABC A B C -中,在底面ABC 内作AD BC ⊥,因为平面11BB C C ⊥底面ABC ,平面11BB C C 底面ABC BC =,所以AD ⊥平面11BB C C ,因为11AA CC ∥,1AA ⊄平面11BB C C ,1CC ⊂平面11BB C C ,所以1AA ∥ 平面11BB C C ,所以AD 即为直线1AA 到平面11BB C C 的距离,因为ABC 为等边三角形,且2AB =,所以直线1AA 到平面11BB C C 的距离为AD ==.【变式4-1】【解析】因为//,BC AD AD ⊂平面PAD ,BC 不在平面PAD 内,所以//BC 平面PAD ,则BC 到平面PAD 的距离即为点B 到平面PAD 的距离,设点B 到平面PAD 的距离为d ,因为B PAD P ABD V V --=,2PD AD ==,PD ⊥平面ABCD ,60BAD ∠= ,四边形ABCD 为菱形,所以11112222232322d ⨯⨯⨯=⨯⨯⨯⨯,解得d =即BC 到平面PAD【变式4-2】【解析】(1)因为PA ⊥平面ABC ,连接AM ,则PMA ∠即为直线PM 与平面ABC 所成的角,又3PA AB ==,4AC =,AB AC ⊥,M 为BC 中点,可得5BC =,52AM =,所以6tan 5PA PMA AM ∠==,即直线PM 与平面ABC 所成的角的正切值为65.(2)由题知,//ME 平面PAB ,//MF 平面PAB ,ME MF M = ,,ME MF ⊂平面MEF ,所以平面//MEF 平面PAB .因为PA ⊥平面ABC ,AC ⊂平面ABC ,所以PA AC ⊥,又AC AB ⊥,,AB PA ⊂平面PAB ,AB PA A = ,所以AC ⊥平面PAB ,又//ME 平面PAB ,所以AE 就是直线ME 到平面PAB 的距离,又M 为BC 122AE AC ==,即直线ME 到平面PAB 的距离为2.【变式4-3】【解析】(1)连接BD 交AC 于O ,连接FO ,∵F 为AD 的中点,O 为BD 的中点,则//OF PB ,∵PB ⊄平面ACF ,OF ⊂平面ACF ,∴//PB 平面ACF .(2)因为平面PAD ⊥平面ABCD ,平面PAD ⋂平面ABCD AD =,PA AD ⊥,PA ⊂平面PAD ,所以PA ⊥平面ABCD .由于//PB 平面ACF ,则PB 到平面ACF 的距离,即P 到平面ACF 的距离.又因为F 为PD 的中点,点P 到平面ACF 的距离与点D 到平面ACF 的距离相等.取AD 的中点E ,连接EF ,CE,则//EF PA ,因为PA ⊥平面ABCD ,所以EF ⊥平面ABCD ,因为CE ⊂平面ABCD ,所以EF CE ⊥,因为菱形ABCD 且60ABC ∠= ,2PA AD ==,所以3CE =,1EF =,则22132CF EF CE =+=+=,2AC =,1144222AF PD ==+=,11724222ACF S =⨯⨯-=△,设点D 到平面ACF 的距离为D h ,由D ACF F ACD V V --=得113122133772ACD ACF D ACD D ACF S EF S h S EF h S ⨯⨯⨯=⨯⇒===△△△△即直线PB 到平面ACF 的距离为2217.题型五平面到平面的距离【例5】【解析】如图,过点A 作AE β⊥,垂足为E ,过点C 作CF β⊥,垂足为F ,由题意可知,5BE =,16DF =,设AB x =,33CD x =-,则()222533256x x -=--,解得:13x =,∴平面α与平面β间的距离2213512AE =-=【变式5-1】【解析】如图所示:将鲁班锁放入正方体1111ABCD A B C D -中,则正方体的边长为222+,连接1BD ,1CD ,11D I D J =,故1D C IJ ⊥,BC ⊥平面11CDD C ,IJ ⊂平面11CDD C ,则BC ⊥IJ ,1BC D C C ⋂=,1,BC D C ⊂平面1BCD ,故IJ ⊥平面1BCD ,1D B ⊂平面1BCD ,故1IJ D B ⊥,同理可得1IH D B ⊥,HI IJ I = ,,HI IJ ⊂平面HIJ ,故1D B ⊥平面HIJ ,同理可得1BD ⊥平面EFG ,132236BD =+=,设B 到平面EFG 的距离为h ,则111122222sin 603232h ⨯=⨯⨯⨯⨯︒⨯,则63h =,故两个相对三角形面间的距离为1422363BD h -=.【变式5-2】【解析】分别取,BC AD 的中点,M N ,连接,,,MN MG NE EG ,根据半正多面体的性质可知,四边形EGMN 为等腰梯形;根据题意可知,BC MN BC MG ⊥⊥,而,,MN MG M MN MG =⊂ 平面EGMN ,故BC ⊥平面EGMN ,又BC ⊂平面ABCD ,故平面ABCD ⊥平面EGMN ,则平面EFGH ⊥平面EGMN ,作MS EG ⊥,垂足为S ,平面EFGH 平面EGMN EG =,MS ⊂平面EGMN ,故MS ⊥平面EFGH ,则梯形EGMN 的高即为平面ABCD 与平面EFGH 之间的距离;322223212,2M G S G ====,故22243(21)228MS MG SG =-=--==,即平面ABCD 与平面EFGH 48B11【变式5-3】【解析】(1)证明:连接11,B D NF M N ,、分别为1111A B A D 、的中点,E F 、分别是1111,C D B C 的中点,11////MN EF B D ∴,MN ⊄ 平面EFBD ,EF ⊂平面EFBD ,//MN ∴平面EFBD ,NF 平行且等于AB ,ABFN ∴是平行四边形,//AN BF ∴,AN ⊄ 平面EFBD ,BF ⊂平面EFBD ,//AN ∴平面EFBD ,AN MN N ⋂= ,∴平面//AMN 平面EFBD ;(2)平面AMN 与平面EFBD 的距离B =到平面AMN 的距离h .AMN中,AM AN ==MN =12AMN S = ∴由等体积可得1112313232h ⋅=⋅⋅⋅⋅,h ∴=。

立体几何中的向量方法-—求空间距离

立体几何中的向量方法-—求空间距离

立体几何中的向量方法------距离问题一、求点到平面的距离 1.(一般)传统方法:利用定义先作出过这个点到平面的垂线段, 再计算这个垂线段的长度; 2.还可以用等积法求距离; 3.向量法求点到平面的距离.在PAO Rt ∆中,θθsin ||||sin AP d AP =⇒=又|||||sin n AP n AP =θ||n d =∴(其中AP 为斜向量,n 为法向量)二、直线到平面的距离 转化为点到线的距离:||n d =(其中AP 为斜向量,n 为法向量)三、平面到平面的距离也是转化为点到线的距离:||n d =AP 为斜向量,n 为法向量)四、异面直线的距离如图,异面直线也是转化为点到线的距离:||n d =(其中AP 为两条异面直线上各取一点组成的向量,n 是与b a ,都垂直的向量) 例1.如图,在正方体1111D C B A ABCD -中,棱长为1,E 为11D C 的中点,求下列问题: (1) 求1B 到面BE A 1的距离;解:如图,建立空间直角坐标系xyz D -,则•αOP),1,1,0(),0,21,1(11-=-=∴B A E A ,设),,(z y x n =为面BE A 1的法向量则⎪⎩⎪⎨⎧=-=+-⇒⎪⎩⎪⎨⎧=⋅=⋅0210011z y y x B A n E A n 取1=x ,得2,2==z y ,)2,2,1(=∴n选点1B 到面BE A 1的斜向量为)0,1,0(11=B A 得点1B 到面BE A 1的距离为32||11==n d (2)求C D 1到面BE A 1的距离;)2,2,1()1(:1=n BE A 的法向量知平面由解)0,0,1(11=A D 斜向量 311111==∴nn A D d BE A D 的距离为到面点 (3) 求面DB A 1与面11CB D 的距离;)1,1,1(:11-==AC n BD A 的法向量为由图知平面解)0,0,1(11=A D 又斜向量 311111==∴nn A D d BD A D 的距离为到面点 33111的距离为与即面CB D BD A (4) 求异面直线B D 1与E A 1的距离.xyz D -系如图建立空间直角坐标解:)1,1,1(),0,21,1(11-=-=∴B D E Axxxx111(0,0,1),(1,1,0),(1,0,1),(0,,1)2D B AE 则B D E A z y x n 11,),,(是与设=都垂直的向量,则⎩⎨⎧==⇒⎪⎩⎪⎨⎧=⋅=⋅x z x y B D n E A n 320011,取1=x ,得一个法向量为)3,2,1(=n 选11BD E A 与的两点向量)0,0,1(11=A D得11BD E A 与的距离为1414||11==n n A D d 练习1:1.如图在直三棱柱111C B A ABC -中,1==BC AC ,∠ACB 面BC A 1的距离.2.已知棱长为1的正方体1111D C B A ABCD -,求平面11C DA 和平面C AB 1间的距离3.已知棱长为1的正方体1111D C B A ABCD -,求直线1DA 和AC 间的距离。

空间距离及立体几何中的探索性问题(含解析)

空间距离及立体几何中的探索性问题(含解析)

空间距离及立体几何中的探索性问题培优篇考点1 点到直线的距离如图,已知直线l 的单位方向向量为u ,A 是直线l 上的定点,P 是直线l 外一点,设AP →=a ,则向量AP →在直线l 上的投影向量AQ →=(a·u )u ,在Rt △APQ 中,由勾股定理,得PQ=|AP→|2-|AQ →|2=a 2- a·u 2.空间距离及立体几何中的探索性问题培优篇 考点2 点到平面的距离如图,已知平面α的法向量为n ,A 是平面α内的定点,P 是平面α外一点.过点P 作平面α的垂线l ,交平面α于点Q ,则n 是直线l 的方向向量,且点P 到平面α的距离就是AP →在直线l 上的投影向量QP →的长度,因此PQ =AP n n.【例1】 如图,在平行六面体ABCD -A 1B 1C 1D 1中,以顶点A 为端点的三条棱长都是a ,且AB ⊥AD ,∠A 1AB=∠A 1AD =60°,E 为CC 1的中点,则点E到直线AC 1的距离为( ) ABCD空间距离及立体几何中的探索性问题培优篇 【例2】 如图,在三棱锥P -ABC 中,P A ⊥底面ABC ,∠BAC =90°.点D 、E 、N 分别为棱P A 、PC 、BC 的中点,M 是线段AD 的中点,P A =AC =2,AB =1. (1)求证:MN∥平面BDE ; (2)求点N 到直线ME 的距离;(3)在线段P A 上是否存在一点H ,使得直线NH 与平面MNE ,若存在,求出线段AH 的值,若不存在,说明理由.学霸笔记点到直线的距离(1)设过点P 的直线l 的单位方向向量为n ,A 为直线l 外一点,点A 到直线l的距离d =|P A ,→|2-(P A →·n )2;(2)若能求出点在直线上的射影坐标,可以直接利用两点间距离公式求距离.空间距离及立体几何中的探索性问题培优篇【对点训练1】 如图,在直三棱柱ABC -A 1 B 1C 1中,平面A 1BC ⊥侧面A 1ABB 1,AB =BC =AA 1=3,线段AC 、A 1B 上分别有一点E 、F 且满足2AE =EC ,2BF =F A 1. (1)求证:AB ⊥BC ;(2)求点E 到直线A1B 的距离;(3)求二面角F -BE -C 的平面角的余弦值.空间距离及立体几何中的探索性问题培优篇【例3】 在如图所示的圆锥中,已知P 为圆锥的顶点,O 为底面的圆心,其母线长为6,边长为ABC 内接于圆锥底面,OD⃗=λOP ⃗且1,12. (1)证明:平面DBC ⊥平面DAO ;(2)若E 为AB 中点,射线OE 与底面圆周交于点M ,当二面角A -DB -C的余弦值为519时,求点M 到平面BCD 的距离.空间距离及立体几何中的探索性问题培优篇 【例4】 在多面体ABCC 1 A 1B 1中,四边形BB 1C 1 C 是边长为4的正方形,AB ⊥BB 1,△ABC 是正三角形.(1)若A 1为AB 的中点,求证:直线AC ∥平面A 1BC 1;(2)若点A 1在棱AB 1上且AA 1=2A 1 B 1,求点C到平面A 1BC 1的距离.空间距离及立体几何中的探索性问题培优篇【对点训练2】 已知多面体PQABCD ,四边形ABCD 是等腰梯形,AD ∥BC ,BC=2AD=2AB=4,四边形PQAD 是菱形,π3QAD,E ,F 分别为QA ,BC 的中点,QF =√6. (1)求证:平面QPDA ⊥平面ABCD ;(2)求点E 到平面QFD 的距离.空间距离及立体几何中的探索性问题培优篇【对点训练3】 在四棱锥P -ABCD 中,P A ⊥底面ABCD ,且P A =2,四边形ABCD 是直角梯形,且AB ⊥AD ,BC ∥AD ,AD =AB =2,BC =4,M 为PC 中点,E 在线段BC 上,且BE =1. (1)求证:DM ∥平面 ;(2)求平面PDE 与平面BDE 夹角的余弦值;(3)求点E 到平面PDC 的距离.空间距离及立体几何中的探索性问题培优篇【例5】 如图,在四棱锥O -ABCD 中,底面ABCD 是边长为2的正方形,OA ⊥底面ABCD ,OA =2,M 、N 、R 分别是OA 、BC 、AD 的中点.求: (1)直线MN与平面OCD的距离; (2)平面MNR 与平面OCD 的距离.空间距离及立体几何中的探索性问题培优篇【对点训练4】 直四棱柱ABCD -A 1B 1C 1D 1中,底面ABCD 为正方形,边长为2,侧棱A 1A =3,M 、N 分别为A 1B 1、A 1D 1的中点,E 、F 分别是C1D1,B 1C 1的中点. (1)求证:平面AMN ∥平面EFBD ; (2)求平面AMN 与平面EFBD 的距离.空间距离及立体几何中的探索性问题培优篇空间距离及立体几何中的探索性问题题型一 点到直线距离问题【例1】 如图,在平行六面体1111ABCD A B C D 中,以顶点A 为端点的三条棱长都是a ,且AB AD ,1160A AB A AD,E 为1CC 的中点,则点E到直线1AC 的距离为( )ABC D 【解答】 在平行六面体1111ABCD A B C D 中,不妨设AB d,AD b ,1AA c . 11AC AB AD AA d b c ,112C E c=-,d b c a ,2110,22d b d c b c a a a,所以1AC d b c ,112C E a =,2111122AC d b c d C E c c a c b c c-=-,所以E到直线1AC 的距离为d ,故选:A 【例2】 如图,在三棱锥 P ABC 中,PA 底面ABC ,90BAC .点D ,E ,N 分别为棱PA ,PC ,BC 的中点,M 是线段AD 的中点,2PA AC ,1AB .空间距离及立体几何中的探索性问题培优篇(1)求证://MN 平面BDE ;(2)求点N 到直线ME 的距离;(3)在线段PA 上是否存在一点H ,使得直线NH 与平面MNE ,若存在,求出线段AH 的值,若不存在,说明理由. 【解答】(1)因为PA 底面ABC ,90BAC , 建立空间直角坐标系如图所示,则11(0,0,0),(1,0,0),(0,2,0),(0,0,1),(0,1,1),(0,0,),(,1,0),(0,0,2)22A B C D E M N P ,所以(0,1,0),(1,0,1)DE DB, 设(,,)n x y z为平面BDE 的法向量,则0n DE n DB ,即00y x z ,不妨设1z ,可得(1,0,1)n ,又11,1,22MN,可得0MN n,因为MN 平面BDE , 所以//MN 平面BDE ,空间距离及立体几何中的探索性问题培优篇 (2)因为10,1,2ME,所以点N 到直线ME 的距离d (3)设 0,0,H t , 0,2t ,则1,1,2NH t,设平面MNE 的法向量为 ,,m a b c ,则11022102m MN a b c m ME b c令1b ,则 4,1,2m ,所以cos ,21m NH m NH m NH,即2202830t t ,解得32t 或110t (舍去), 所以32AH. 【对点训练1】 (2023·全国·高三专题练习)如图,直四棱柱1111ABCD A B C D 的底面ABCD为平行四边形,π3DAB,13226AD CD DD ,点P ,M 分别为AB ,1CD 上靠近1,A D 的三等分点.(1)求点M 到直线1PD 的距离;(2)求直线PD 与平面1PCD 所成角的正弦值. 【解答】(1)由题可得AD =2,13CD DD , 又点P 为AB 上靠近A 的三等分点,所以AP =1. 在ADP △中,由余弦定理可得,空间距离及立体几何中的探索性问题培优篇 22312cos 4122132DP AD AP AD AP DAP, 故2224AD AP DP ,所以ADP △为直角三角形,故DP ⊥AB . 因为底面ABCD 为平行四边形,所以DP ⊥CD . 由直四棱柱性质可知1DD DP ,1DD CD , 即DP ,CD ,1DD 两两垂直.故以D 为坐标原点,分别以DP ,DC ,1DD 所在直线为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系Dxyz .则1(0,0,0),(0,0,3),(0,1,2)D P D M .因为1PD,过点M 作1ME PD ,(点到直线的距离即为通过该点向直线做垂线,点到垂足的距离)令 1,0,3PE PD,所以 ,0,3E,故,1,32ME.由133960ME PD ,解得34 ,所以11,4ME,故点M 到直线1PD 的距离为2ME. (2)因为 DP , 10,1,1D M ,1PD ,设平面1PCD 的法向量为 ,,n x y z,则110,0,n D M n PD即0,30,y z z令x 1y ,1z ,故n.设直线PD 与平面1PCD 所成角为 ,空间距离及立体几何中的探索性问题培优篇 则sin |cos ,|||||n DP n DP n DP所以直线PD 与平面1PCD . 【对点训练2】 如图,在直三棱柱111ABC A B C -(侧棱和底面垂直的棱柱)中,平面1A BC 侧面11A ABB ,13AB BC AA ,线段AC 、A 1B 上分别有一点E 、F 且满足12,2AE EC BF FA .(1)求证:AB BC ; (2)求点E 到直线1A B 的距离;(3)求二面角F BE C 的平面角的余弦值.【解答】(1)证明:如图,过点A 在平面A 1ABB 1内作AD ⊥A 1B 于D , 则由平面A 1BC ⊥侧面A 1ABB 1,且平面A 1BC 侧面A 1ABB 1=A 1B ,得 AD ⊥平面A 1BC ,又BC 平面A 1BC ,所以AD ⊥BC .因为三棱柱ABC —A 1B 1C 1是直三棱柱,则AA 1⊥底面ABC ,BC 底面ABC ,所以AA 1⊥BC .又AA 1 AD =A ,1,AA AD 侧面A 1ABB 1,从而BC ⊥侧面A 1ABB 1, 又AB 侧面A 1ABB 1,故AB ⊥BC .(2)由(1)知,以点B 为坐标原点,以BC 、BA 、BB 1所在的直线分别为x 轴、y 轴、z 轴,可建立如图所示的空间直角坐标系, B (0,0,0),A (0,3,0),(3,0,0)C ,1(0,3,3)A有由线段AC 、A 1B 上分别有一点E 、F 且满足12,2AE EC BF FA .则13AE AC ,1(,3,)(3,3,0)3E E E x y z ,1,2,0E E E x y z , 即E (1,2,0),同理得F (0,1,1)(1,1,1),EF1(0,3,3).BA 10EF BA ,所以1EF BA ,空间距离及立体几何中的探索性问题培优篇 所以点E 到直线1A B 的距离为||d EF .(3)设平面FBE 的一个法向量为(,,)m x y z,则10330m EF x y z m BA y z,取1z 得1,2 yx ,即(2,1,1)m, 又平面EBC 的一个法向量为(0,0,1)n,cos ,m n m nm n二面角F BE C 是钝二面角,,所以它的余弦值为6. 题型二 点到平面距离问题【例3】 如图,在四面体ABCD 中,,,2,3,60AD CD AD CD ACAB CAB .点E 为棱AB 上的点,且AC DE ,三棱锥D BCE .(1)求点A 到平面CDE 的距离;(2)求平面BCD 与平面CDE 夹角的余弦值.【解答】(1)取AC 中点F ,连接,FE FD ,因为AD CD ,所以DF AC , 又,,,AC DEDEDF D DE DF 平面DEF ,所以AC 平面DEF ,而FE 平面DEF ,所以AC FE ,空间距离及立体几何中的探索性问题培优篇由已知,601B AF AC ,所以2,1EF AE BE AB AE , 由AC 平面,DEF AC 平面ABC ,得平面ABC 平面DEF , 因此DE 在平面ABC 内的射影就是直线EF , 设D 在面ABC 的射影为H ,则H 在直线EF 上, 由题意知13BE AB,则13BCE ABC S S △△, 所以1111123sin60333926D BCE BCE ABC V S DH S DH DH △△,所以1DH ,又因为1DF ,所以H 与F 重合,所以DF 平面ABC ,以F 为原点,,,FA FE FD 所在直线为,,x y z 轴建立如图所示的空间直角坐标系F xyz , 则0,0,1,1,0,0,1,0,0,D C A E ,11,,22AE EBAE所以B 点坐标为1,1,0,12CD,1,,2,0,02CB CE CA.设平面DEC 的一个法向量是 1,,n x y z,则110n CD x z n CE x,取1y,则x z ,即11,n,所以点A 到平面CDE 的距离11CA n d n. (2)设平面BCD 的法向量为 2,,b c n a,则220102n CD a c n CB a,取1b =-,则a c空间距离及立体几何中的探索性问题培优篇 故 21,n,所以121212cos ,n n n n n n由于平面BCD 与平面CDE 夹角范围为π[0,2,所以平面BCD 与平面CDE夹角的余弦值是385. 【例4】 (2023·江苏苏州·模拟预测)在如图所示的圆锥中,已知P 为圆锥的顶点,O 为底面的圆心,其母线长为6,边长为ABC 内接于圆锥底面,OD OP 且1,12.(1)证明:平面DBC 平面DAO ;(2)若E 为AB 中点,射线OE 与底面圆周交于点M ,当二面角A DB C 的余弦值为519时,求点M 到平面BCD 的距离.【解答】(1)因为P 为圆锥的顶点,O 为底面的圆心,所以PO 面ABC . 又因为BC 面ABC ,所以PO BC ,即DO BC .因为O 为ABC 外接圆圆心,且ABC 为正三角形,所以OA BC . 又因为OA OD O 且OA ,OD 面AOD ,所以BC 面AOD , 因为BC 面BCD ,所以面DBC 面DAO . (2)作OG BC ∥交AB 于G ,取BC 中点为F . 因为OA BC ,OG BC ∥,所以OF OG .因为OD 面ABC ,OG ,OF 面ABC ,所以OD OG ,OD OF.如图,以点O 为坐标原点,OG ,OF ,OD 所在的直线分别为x ,y ,z 轴建立空间直角坐标系O xyz .因为6PA ,AB 3AO ,PO空间距离及立体几何中的探索性问题培优篇 所以 0,0,0O , 0,3,0A,3,022B,3,022C, P .由OD OP,得 0,D,9,02AB,AD,0BC ,3,2DB.设面ABD 的法向量为 111,,m x y z ,则1111902230m AB x y mAD yz,取1y ,则11z ,13x ,所以3,1m.设面BCD 的法向量为222,,x n y z ,则222203022n BC n DB x yz, 取2y ,则23z ,20x ,所以,3n.由5cos ,19m n m n m n,且1,12, 解得23,所以 D ,0,n .又因为3,02M ,所以3,2DM , 所以M到面BCD的距离19DM n d n.空间距离及立体几何中的探索性问题培优篇 【例5】 (2023·重庆·统考模拟预测)在多面体111ABCC A B 中,四边形11BB C C 是边长为4的正方形,1AB B B ,△ABC 是正三角形.(1)若1A 为AB 的中点,求证:直线//AC 平面11A BC ;(2)若点1A 在棱1AB 上且1112AA A B ,求点C 到平面11A BC 的距离.【解答】(1)连接1CB ,设11B D C C B I ,由题意可得D 为1CB 的中点,连接1A D , 因为1,A D 分别为11,AB CB 的中点,则1A D //AC , 1A D 平面11A BC ,AC 平面11A BC ,所以直线//AC 平面11A BC .(2)由题意可得:11,AB B B BC B B ,AB BC B ,,AB BC 平面ABC , 所以1BB 平面ABC , 取AB 的中点H ,连接CH ,因为△ABC 是正三角形,则CH AB ,又因为1BB 平面ABC ,CH 平面ABC ,则1CH BB , 1AB BB B ?,1,AB BB 平面1ABB ,所以CH 平面1ABB ,如图,以H 为坐标原点,,HA HC 为x 轴,z 轴,建立空间直角坐标系,空间距离及立体几何中的探索性问题培优篇则 111282,0,0,0,0,,2,4,0,0,,,,033B C B C A,可得 11482,0,,2,4,,,,033BC BC BA uuu r uuu r uuu r ,设平面11A BC 的法向量 ,,n x y z ,则1124048033n BC x y n BA x y, 令2x ,则1,0y z,即 2,1,0n,所以点C 到平面11A BC 的距离5n BC d nr uu u rr.【例6】 如图,在四棱锥P ABCD 中,PA 平面ABCD ,AD CD ,//AD BC ,2PA AD CD ,3BC .E 为PD 的中点,点F 在PC 上,且12PF FC .(1)求证:平面AEF 平面PCD ;(2)求平面AEF 与平面AEP 所成角的余弦值;(3)若棱BP 上一点G ,满足2PG GB ,求点G 到平面AEF 的距离.【解答】(1)如图,以D 为原点,分别以DA ,DC 为x 轴,y 轴,过D 作AP 平行线为z 轴,建立空间直角坐标系,则 0,0,0D , 2,0,0A , 0,2,0C , 2,0,2P , 1,0,1E , 3,2,0B ,所以 0,2,0DC , 2,2,2PC ,因为12PF FC ,所以13PF PC ,空间距离及立体几何中的探索性问题培优篇 所以 14242,2,22,0,2,,3333DF ,即424,,333F ,所以224,,333AF ,1,0,1AE , 设平面AEF 的法向量为 ,,n x y z ,则22403330n AF x y z n AE x z, 令1x z ,则1y ,所以 1,1,1n,平面PCD 的法向量为 ,,m a b c ,则202220m DC b n PC a b c , 令1a ,则1c ,所以 1,0,1m,所以 1101110n m ,所以n m ,所以平面AEF 平面PCD .(2)易知平面AEP 的一个法向量 0,1,0u,设平面AEF 与平面AEP 所成角为 ,则cos n u n u所以平面AEF 与平面AEP 所成角的余弦值为3. (3)因为棱BP 上一点G ,满足2PG GB ,所以23PG PB,所以222420,0,21,2,2,,33333AG AP PG AP PB, 所以点G 到平面AEF 的距离0n AG d n.【对点训练3】 (2023·湖北襄阳·襄阳四中校考模拟预测)斜三棱柱111ABC A B C -的各棱长都为14,60A AB,点1A 在下底面ABC 的投影为AB 的中点O .空间距离及立体几何中的探索性问题培优篇(1)在棱1BB (含端点)上是否存在一点D 使11A D AC ?若存在,求出BD 的长;若不存在,请说明理由;(2)求点1A 到平面11BCC B 的距离.【解答】(1)因为点1A 在下底面ABC 的投影为AB 的中点O ,故1A O 平面ABC , 连接OC ,由题意ABC为正三角形,故OC AB ,以O 为原点,1OA OC OA ,,分别为x y z 、、轴建立如图所示空间直角坐标系:则1(2,0,0),0,0,,0,A A C ,112,0,0,4,0,,2,B B C ,设11,2,0,BD BB BB,可得22,0,D , 1122,0,,4,A AC D,假设在棱1BB(含端点)上存在一点D 使11A D AC , 则 1114220,5,A D AC,则11455BD BB; (2)由(1)知12,,2,BBBC,设平面11BCC B 的法向量为 ,,n x y z r,空间距离及立体几何中的探索性问题培优篇 则1020,020n BB x n BC x,令x1,1z y , 则1,1n,又 12,0,A B,则1A 到平面11BCC B 的距离为1||||A B n d n,即点1A 到平面11BCC B 距离为5. 【对点训练4】 (2023·天津河西·统考三模)已知直三棱柱111ABC A B C -中,AB BC ,12AB AA ,1BC ,D ,E 分别为111,A B BB 的中点,F 为CD 的中点.(1)求证:EF //平面ABC ;(2)求平面CED 与平面11ACC A 夹角的余弦值; (3)求点1C 到平面CED 的距离.【解答】 (1)在直三棱柱111ABC A B C -中,1BB 平面ABC ,且BC AB ,空间距离及立体几何中的探索性问题培优篇 以点B 为坐标原点,BC ,BA ,1BB 所在直线分别为x ,y ,z 轴建立如下图所示的空间直角坐标系.则 0,0,1E , 1,0,0C , 11,0,2C , 0,1,2D ,11,,122F .11,,022EF易知平面ABC 的一个法向量为 00,0,1m ,则00EF m ,故0EF m,又因为EF 平面ABC ,故EF //平面ABC(2) 1,0,1CE,1,1,2CD 设平面CED 的法向量为 ,,m x y z ,则020m CE x z m CD x y z,不妨设 1,1,1m ,因为 10,0,2CC , 1,2,0CA设平面CED 的法向量为 ,,n a b c ,则12020n CC c n CA a b ,不妨设 2,1,0n则cos cos ,m n m n m n因此,平面CED 与平面11ACC A15. (3)因为 10,0,2CC,根据点到平面的距离公式,则1CC m d m 即点1C 到平面CED 【对点训练5】 已知多面体PQABCD ,四边形ABCD 是等腰梯形,AD BC ∥,224BC AD AB ,四边形PQAD 是菱形,π3QAD,E ,F 分别为QA ,BC 的中点,QF .(1)求证:平面QPDA 平面ABCD ;空间距离及立体几何中的探索性问题培优篇(2)求点E 到平面QFD 的距离.【解答】(1)设O 是线段AD 的中点,连接,QO OF ,过D 作DM BC ,垂足为M , 因为四边形ABCD 为等腰梯形,//AD BC ,224BC AD AB, 所以1CM ,2CD ,因为F 是BC 的中点,可得1,OD MF DM 则//OD MF ,即四边形OFMD 为平行四边形, 可得//,OF DM OF DMOF AD ,又因为四边形PQAD 是边长为2的菱形,且π3QAD, 则QAD 是边长为2的等边三角形,可得,QO AD QO 则222QO FO QF ,可得QO OF ,因为,AD OQ O AD I 平面,QPDA OQ 平面QPDA , 所以OF 平面QPDA ,且OF 平面ABCD ,所以平面QPAD 平面ABCD.(2)以O 为原点、,,OF OD OQ 分别为x 轴、y轴、z 轴建立如图空间直角坐标系O xyz, 则 1,0,1,0,,0,,22Q D FEQ, 可得3,0,,0,22QF DE DQuuu ruuur uuur ,设平面QFD 的法向量为 ,,m x y z ,则0m QF mDQ y,取z,则3,y x ,可得m,空间距离及立体几何中的探索性问题培优篇【对点训练6】 (2023·天津南开·南开中学校考模拟预测)在四棱锥P ABCD 中,PA 底面ABCD ,且2PA ,四边形ABCD 是直角梯形,且AB AD ,//BC AD ,2AD AB ,4BC ,M 为PC 中点,E 在线段BC 上,且1BE .(1)求证://DM 平面PAB ;(2)求平面PDE 与平面BDE 夹角的余弦值; (3)求点E 到平面PDC 的距离.【解答】(1)证明:以A 为坐标原点,AB 为x 轴,AD 为y 轴,AP 为z 轴建立空间直角坐标系,则0,0,0A , 2,0,0B , 0,2,0D , 002P ,,, 2,4,0C , 1,2,1M , 2,1,0E , 1,0,1DM,空间距离及立体几何中的探索性问题培优篇易知平面PAB 的一个法向量为 0,2,0AD ,故0DM AD,则DM AD ,又DM 平面PAB ,故//DM 平面PAB .(2)易知平面BDE 的一个法向量为 0,0,2AP,设平面PDE 的法向量为 ,,m x y z, 且 0,2,2PD , 2,1,0DE ,则22020m PD y z m DE x y ,令2y ,则1x ,2z , 1,2,2m , 设平面PDE 与平面BDE 夹角为 ,易知 为锐角,所以42cos cos ,323m AP m AP m AP,即平面PDE 与平面BDE 夹角的余弦值为23. (3)设平面PDC 的法向量为 ,,n a b c,且 2,2,0DC ,则220220n PD b c n DC a b,令1b ,则1a ,1c ,故1,1,1n , 设点E 到平面PDC 距离为h ,||DE nh n.【对点训练7】 如图,在直四棱柱1111ABCD A B C D 中,底面ABCD 为菱形,13DD ,2AD ,π3BCD,E 为棱1BB 上一点,1BE ,过A ,E ,1C 三点作平面 交1DD 于点G .(1)求点D 到平面1BC G 的距离; (2)求平面AEC 与平面BEC 夹角的余弦值.空间距离及立体几何中的探索性问题培优篇 【解答】(1)如图所示:取F 为AB 中点,ABCD 为菱形,π3BCD, 则222π21221cos33DF ,故DF 222DA DF AF,DF AB ,以DF ,DC,1DD 为,,x y z 轴建立空间直角坐标系,则 1,0A, B, 0,2,0C ,E, 10,2,3C ,设 0,0,G a ,则1AG AE AC,即0,2,1,32,3a ,故1323a,解得112a,故0,0,2G ,设平面1BC G 的法向量为 ,,n x y z ,则13020n BC y z n BG y z,取1y ,得到1,2n,点D 到平面1BCG的距离为53DB nn. (2)设平面AEC 的法向量为 1111,,n x y z ,则1111112030n AEy z n AC y ,空间距离及立体几何中的探索性问题培优篇取11y ,得到12n;设平面BEC 的法向量为 2222,,n x y z,则2222200n BE z n BC y, 取21x ,得到2n;平面AEC 与平面BEC夹角为锐角,余弦值为121212cos ,4n n n n n n .题型三 平行平面间的距离问题【例7】 (2023·全国·高三专题练习)如图,在四棱锥O ABCD 中,底面ABCD 是边长为2的正方形,OA 底面ABCD ,2OA ,M 、N 、R 分别是OA 、BC 、AD 的中点.求:(1)直线MN 与平面OCD 的距离; (2)平面MNR 与平面OCD 的距离.【解答】(1)解:因为OA 平面ABCD ,四边形ABCD 为正方形,以点A 为坐标原点,AB 、AD 、AO 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,则 2,2,0C、 0,2,0D 、 0,0,2O 、 0,0,1M 、 2,1,0N 、 0,1,0R ,空间距离及立体几何中的探索性问题培优篇 因为M 、R 分别为PA 、AD 的中点,则//MR OD ,MR 平面OCD ,OD 平面OCD ,//MR 平面OCD ,因为//AD BC 且AD BC ,R 、N 分别为AD 、BC 的中点,则//CN RD 且CN RD , 所以,四边形CDRN 为平行四边形,//RN CD ,RN 平面OCD ,CD 平面OCD ,//RN 平面OCD ,MR RN R ,MR 、RN 平面MNR , 平面//MNR 平面OCD ,MN 平面MNR ,//MN 平面OCD ,设平面OCD 的法向量为 ,,n x y z, 2,0,0DC , 0,2,2DO ,则20220n DC x n DO y z ,取1y ,可得0,1,1n r ,0,1,0NC ,所以,直线MN 与平面OCD 的距离为12NC n d n. (2)解:因为平面//MNR 平面OCD ,则平面MNR 与平面OCD 的距离为22NC n d n.【对点训练8】 直四棱柱1111ABCD A B C D 中,底面ABCD 为正方形,边长为2,侧棱13A A ,M N 、分别为1111A B A D 、的中点,E F 、分别是1111,C D B C 的中点.(1)求证:平面AMN //平面EFBD ; (2)求平面AMN 与平面EFBD 的距离.【解答】(1)法一:证明:连接11,B D NF M N ,、分别为1111A B A D 、的中点,E F 、分别是1111,C D B C 的中点,11////MN EF B D ,MN 平面EFBD ,EF 平面EFBD ,空间距离及立体几何中的探索性问题培优篇//MN 平面EFBD ,NF 平行且等于AB , ABFN 是平行四边形,//AN BF ,AN 平面EFBD ,BF 平面EFBD ,//AN 平面EFBD , AN MN N , 平面//AMN 平面EFBD ; 法二: 如图所示,建立空间直角坐标系Dxyz ﹣,则 200103220013A M B E ,,,,,,,,,,,, 123213F N ,,,,,, 110110EF MN,,,,,, 103103AM BF ,,,,,,EF MN AM BF ,,//EF MN ,//AM BF ,MN 平面EFBD ,EF 平面EFBD ,//MN 平面EFBD , AN 平面EFBD ,BF 平面EFBD ,//AN 平面EFBD ,又MN AM M , 平面//AMN 平面EFBD ,(2)法一:平面AMN 与平面EFBD 的距离B 到平面AMN 的距离h. AMN中,AMAN MN122AMN S ,由等体积可得111231332,h 法二:设平面AMN 的一个法向量为 n x y z,,,则030n MN x y n AM x z,则可取 331n ,,, 020AB,,,空间距离及立体几何中的探索性问题培优篇平面AMN 与平面EFBD 的距离为19n AB d n题型四 异面直线的距离问题【例8】 如图,在三棱锥 P ABC 中,4AB BC PA PC AC ,平面ABC 平面PAC .(1)求异面直线AC 与PB 间的距离;(2)若点M 在棱BC 上,且二面角M PA C 为30 ,求PC 与平面PAM 所成角的正弦值. 【解答】(1)法一:取AC 中点O ,连接PO ,由PA PC 知PO AC , 又平面ABC 平面PAC ,平面ABC 平面PAC AC ,故PO 平面ABC , 连接BO ,则90POB,又因为,AB BC O 为AC 中点,故BO AC ,,BO PO 面,PBO BO PO O ,故AC面PBO ,在面PBO 中,作OD PB ,则由OD AC 知OD 为异面直线AC 与PB 间的距离,由2,4PO OB PB,PO OB PB OD 知OD 即异面直线AC 与PB法二:取AC 中点O ,连接PO ,由PA PC 知PO AC ,又平面ABC 平面PAC,平面ABC 平面PAC AC ,故PO 平面ABC 以O 为坐标原点,,,OB OC OP 所在直线分别为x 轴,y 轴,z 轴,空间距离及立体几何中的探索性问题培优篇则0,2,0,2,0,0,0,2,0,,2,0,,0,4,0A B C P PB AC, 设,,n x y z ,且0,0n AC n PB, 则020y x,令zn ,又 2,2,0AB ,则异面直线AC 与PB 间的距离为n AB d n(2)由(1)知PO 平面ABC ,可得平面PAC 平面ABC , 如图,在平面ABC 内作MN AC ,垂足为N ,则MN 平面PAC , 在平面PAC 内作FN AP ,垂足为F ,联结MF ,PA 平面PAC ,所以MN PA ,且MN FN N ,MN FN 、平面MFN ,所以PA 平面MFN ,FM 平面MFN ,所以PA FM故MFN 为二面角M PA C 的平面角,即30MFN, 设MN a ,则,4NC a AN a ,在Rt AFN中, 4FN a ,在Rt MFN △中,由30MFN 知FN ,得43a ,法一:设点C 到平面PAM 的距离为h ,由M APC C APM V V ,得1133APC APM S MN S h,即11113232AC MN PO PA MF h ,空间距离及立体几何中的探索性问题培优篇又4,2,AC PA MF MN PO ,解得h PC 与平面PAM 4; 法二:以O 为坐标原点,OB OC OP 、、所在直线分别为x 轴,y 轴,z 轴, 建立空间直角坐标系如图,则 420,2,0,2,0,0,0,2,0,,,,033A B C P M,480,2,,0,2,,,,033PC AP AM,设平面PAM 的法向量为 ,,nx y z ,则由0,0n AP n AM,知204833y x y,令z6,n , 则PC 与n所成角的余弦值为cosn PC n PC, 则PC 与平面PAM 所成角的正弦值sin cos 4.【例9】 如图①菱形ABCD ,60,1B BE EC .沿着AE 将BAE 折起到B AE,使得90DAB ,如图②所示.(1)求异面直线AB 与CD 所成的角的余弦值; (2)求异面直线AB 与CD 之间的距离.空间距离及立体几何中的探索性问题培优篇【解答】(1)图①菱形ABCD ,60,1B BE EC,由余弦定理得2222cos 603AE AB BE AB BE ,所以AE所以222BE AE AB ,即AE BC ,又//AD BC ,所以AE AD ,在图②中,90DAB ,即AD AB ,又,,AB AE A AB AE 平面AB E 所以AD 平面AB E ,即EC 平面AB E ,又B E 平面AB E ,所以B E EC,如图,以E 为原点,,,EC EAEB 分别为,,x y z 轴建立空间直角坐标系,则0,0,0,1,0,0,,0,0,1,E C D B A ,所以0,,AB CD ,故0303cos ,224AB CD AB CD AB CD, 则异面直线AB 与CD 所成的角的余弦值为34;(2)由(1)得1,0AC,设 ,,m x y z是异面直线AB 与CD 公垂线的方向向量,所以0000AB m z z CD m x x,令1y ,则 m所以异面直线AB 与CD 之间的距离为AC mm【例10】如图所示,在空间四边形PABC 中,2AC BC ,90ACB ,AP BP AB ,PC AC .空间距离及立体几何中的探索性问题培优篇 (1)求证:PC AB ;(2)求异面直线PC 与AB 的距离; (3)求二面角B AP C 的大小.【解答】(1)取AB 中点D ,连结PD CD ,.AP BP ,PD AB . AC BC ,CD AB .PD CD D ,,PD CD 平面PCD ,AB 平面PCD .PC 平面PCD ,PC AB .(2)因为PC AB ,PC AC ,AB AC A ,,AB AC 平面ABC ,PC 平面ABC .如图,以C 为原点,分别以,,CB CA CP 为,,x y z 轴建立空间直角坐标系C xyz .则(000)(020)(200),,,,,,,,C A B . 设(0,0,)P t . PB AB 2t ,(0,0,2)P . 所以(0,0,2) CP ,(2,2,0)AB ,设PC 与AB 的公垂线的一个方向向量为(,,)n x y z,则20220n CP z n AB x y,取1x ,得1y ,0z ,即(1,1,0)n ,空间距离及立体几何中的探索性问题培优篇又(0,2,0)CA ,所以异面直线PC 与AB 之间的距离为 CA n d n. (3)取AP 中点E ,连结BE CE ,.AC PC ,AB BP ,CE AP ,BE AP .BEC 是二面角B AP C 的平面角.(011) ,,E ,(011) ,,EC ,(211),,EB ,·cos ·EC EB BEC EC EB二面角B AP C 的大小为【对点训练9】 如图,在长方体111ABCD A BC D 中,11AD AA ,2AB ,求:(1)点1A 到直线BD 的距离; (2)点1A 到平面1BDC 的距离; (3)异面直线1,BD CD 之间的距离.【解答】(1)以点D 为原点,DA,DC ,1DD 为x ,y ,z 轴的正方向建立空间直角坐标系,因为11AD AA ,2AB ,则 1,2,0B , 0,0,0D , 11,0,1A , 10,2,1C , 0,2,0C ,10,0,1D所以 1,2,0BD , 10,2,1A B ,所以1A B uuu r在BD上的投影向量的大小为15A B BD BD,又1A B 所以点1A到直线BD 的距离15d;空间距离及立体几何中的探索性问题培优篇(2)由(1) 1,2,0BD , 10,2,1DC , 10,2,1A B ,设平面1BDC 的法向量 ,,n x y z ,则10n BD n DC ,所以2020x y y z ,取1y ,可得2x ,2z ,所以 2,1,2n是平面1BDC 的一个法向量,向量10,2,1A B 在法向量2,1,2n上的投影为143A B n n,所以点1A 到平面1BDC 的距离为43;(3)由(1) 10,2,1CD , 10,2,1BA ,所以11//CD BA,所以11//CD BA ,又1CD 平面1A BD ,1BA 平面1A BD ,所以1//CD 平面1A BD ,所以异面直线1,BD CD 之间的距离与点C 到平面1A BD 的距离相等,设平面1A BD 的法向量 111,,m x y z ,因为 1,2,0BD ,则10m BD n BA ,所以11112020x y y z ,取11y ,可得12x ,12z ,所以 2,1,2m是平面1A BD 的一个法向量,向量0,2,0CD在法向量 2,1,2m上的投影为23CD m m,所以点C 到平面1A BD 的距离为23;故异面直线1,BD CD 之间的距离为23.【对点训练10】 如图,在底面是菱形的四棱锥P -ABCD 中,∠ABC =60°,P A =AB =a ,PB =PD a ,点E 在PD 上,且PE ∶ED =2∶1,求异面直线PB 与CE 的距离.空间距离及立体几何中的探索性问题培优篇【解答】解:由:2:1PE ED ,知在BD 上取点F 使:2:1BF FD , 根据三角形相似易知PB ∥EF ,又PB 平面CEF ,且EF 平面CEF ,从而PB ∥平面CEF ,于是只需求直线PB 到平面CEF 的距离.以A 为坐标原点,AD 所在直线为y 轴, 建立如图所示的直角坐标系,由已知,(0,0,)P a ,C 1,,0)2a ,F 1,,0)2a ,E 21(0,,)33a a,则PE =22(0,,)33a a ,CE=11(,,)63a a ,CF=(,0,0).设平面CEF 的法向量为(,,)n x y z, 则1126303n CE ax ay az n CF ax020x y z于是令0x ,=2y ,1z,则(0,2,1)n.∴PB 与平面CEF 间的距离||||5n PE d a n,高中 | 数学空间距离及立体几何中的探索性问题培优篇 415【对点训练11】 如图,已知以O 为圆心,2为半径的圆在平面 上,若PO ,且4PO ,OA 、OB 为圆O 的半径,且90AOB ,M 为线段AB 的中点.求:(1)异面直线OB ,PM 所成角的大小; (2)点O 到平面PAB 的距离; (3)异面直线OB ,PM 的距离.【解答】(1)由PO 且90AOB ,以O 为原点,分别以,,OA OB OP 所在的直线为,,x y z 轴,建立空间直角坐标系,如图,由题意 0,0,4,2,0,0,0,2,0P A B ,因为M 为线段AB 的中点,所以 1,1,0M ,所以 1,1,4,0,2,0PMOB,cos 6PM OB PM OB PM OB,,空间距离及立体几何中的探索性问题空间距离及立体几何中的探索性问题培优篇42所以异面直线OB ,PM 所成角的大小为 (2)由题意,1122222OAB SOA OB△, 11622PABS PM AB△, 设点O 到平面PAB 的距离为d ,因为PO , 由P OAB O PAB V V所以1133OAB PAB S PO S d △△,所以1124633d ,解得43d ,所以点O 到平面PAB 的距离43;(3)如上图所示,作//MN OB 交OA 于点N ,因为OB 平面PMN ,MN 平面PMN ,所以//OB 平面PMN , 因此异面直线OB ,PM 的距离就是直线OB 与平面PMN 的距离, 也即是点O 到平面PMN 的距离,因为M 为线段AB 的中点.所以 1,0,0N , 0,1,0NM设平面PMN 的法向量为 ,,n x y z,则040n NM y n PM x y z令1z,则可得 4,0,1n 所以点O 到平面PMN 的距离1,0,04,0,117ON n h n, 即异面直线OB ,PM。

距离问题的知识点总结

距离问题的知识点总结

距离问题的知识点总结一、距离的定义在空间中,两点之间的距离是指两点之间的空间间隔。

通常情况下,我们可以利用勾股定理进行计算,即两点之间的距离可以用勾股定理来表示。

设A点坐标为(x1, y1),B点坐标为(x2, y2),则AB的距离为:AB = √((x2 - x1)² + (y2 - y1)²)在三维空间中,两点之间的距离可以用三维空间中的坐标表示,假设两点坐标分别为(x1, y1, z1)和(x2, y2, z2),则两点之间的距离为:AB = √((x2 - x1)² + (y2 - y1)² + (z2 - z1)²)在向量的理论中,两点之间的距离也可以用向量的模表示,即两点之间的距离等于它们的位置矢量的差的模。

二、距离的计算1. 直线距离的计算在平面直角坐标系中,两点之间的直线距离可以用勾股定理进行计算。

如果两点的坐标分别为(x1, y1)和(x2, y2),则直线距离为:AB = √((x2 - x1)² + (y2 - y1)²)在空间直角坐标系中,三维空间中两点之间的直线距离可以用三维坐标表示,即两点坐标分别为(x1, y1, z1)和(x2, y2, z2),则直线距离为:AB = √((x2 - x1)² + (y2 - y1)² + (z2 - z1)²)2. 曲线距离的计算如果两点之间的距离不是直线距离,而是曲线距离,那么就需要对曲线进行积分来求解。

曲线在数学中可以用参数方程或者函数方程表示,在给定曲线方程的情况下,可以通过积分来计算两点之间的曲线距离。

3. 三角形边长的计算在计算三角形的边长时,可以利用两点之间的距离来进行计算。

假设三角形的三个顶点分别为A(x1, y1),B(x2, y2),C(x3, y3),则三角形的三边长度为:AB = √((x2 - x1)² + (y2 - y1)²)BC = √((x3 - x2)² + (y3 - y2)²)AC = √((x3 - x1)² + (y3 - y1)²)三、距离的应用1. 地图测距地图测距是距离问题的一个常见应用,通过测量地图上两点之间的直线距离来计算实际距离。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

又 BC⊂平面 SBC,
图 8-7-5
∴平面 SBC⊥平面 SAD,且平面 SBC∩平面 SAD=SD.
过点 A 作 AH⊥SD 于 H,由平面与平面垂直的性质定理,
可知:AH⊥平面 SBC.于是 AH 即为点 A 到平面 SBC 的距离.
在 Rt△SAD 中,SA=3a,AD=AB×sin60° = 3a, SA×AD 3a× 3a 3 ∴AH= 2 2= 2 2=2a, SA +AD 3a + 3a 3 即点 A 到平面 SBC 的距离为2a.
方法二:设 A 到平面 SBC 的距离为 h,∵VSABC=VASBC, 1 1 ∴3×SA×S△ABC=3×h×S△SBC,其中 SA=3a. 在△ABC 中, AC= AB2+BC2-2AB· BC· cos∠ABC = 4a +4a -2×4a
2 2 2
1 ×-2=2
3a,
5. 异面直线间的距离 : 两条异面直线的 线段 公垂线夹在这两条异面直线间的⑤ 的 长度. 6. 直线与平面间的距离 : 如果一条直线 和一个平面平行 , 从这条直线上任意一点向 这点到垂足间线段 的长度. 平面引垂线,⑥
7.两平行平面间的距离:夹在两平行平 面之ห้องสมุดไป่ตู้的⑦ 公垂线段 的长度.
二、求距离的一般方法
3
(2)因为BC∥AD,BC平面PBC,
所以AD∥平面PBC.
过A作AE⊥PB于E,
又AE⊥BC,PB∩BC=B,
∴sin∠SBC=
1 2 39 1-13= 13 .
1 ∴S△SBC=2×SB×BC×sin∠SBC 1 2 39 =2× 13a×2a× 13 =2
于是 h=
3a2,
3a· 3a2 3 = 2 = a. 2 3a 2
方法三:如图8-7-6,以A 为坐标原点,以AC,AS 所在直
线为y 轴,z 轴,以过 A 点且垂直于yOz 平面的直线为x 轴建 立空间直角坐标系.
例 :如图 8-7-4,S 是△ABC 所在平面外一点,AB=BC
=2a,∠ABC=120°,且 SA⊥平面 ABC,SA=3a,求点 A 到
平面 SBC 的距离.
图 8-7-4
解:方法一:如图8-7-5,作AD⊥BC 交BC 延长线于点D, 连接 SD. ∵SA⊥平面 ABC,∴SA⊥BC. 又 SA∩AD=A,∴BC⊥平面 SAD.
1. 两点间距离、点到直线的距离和两 平行线间的距离其实是平面几何中的问题, 可用平面几何方法求解. 2. 直线与平面间的距离、平行平面间 的距离可归结为求⑧ 点面间 的距离.
一 异面直线的距离
与异面直线都垂直且相交的直线有且只有 一条,它叫两异面直线的公垂线.两条异面 直线的公垂线夹在这两条异面直线间的线段 的长度是两条异面直线的距离.
图8-7-6
∵在△ABC 中,AB=BC=2a,∠ABC=120°,
∴AC= AB2+BC2-2AB×BC×cos∠ABC=2 于是 A(0,0,0),B(a, 3a,0),C(0,2
3a.
3a,0),S(0,0,3a).
设平面 SBC 的一个法向量 n=(x,y,z). → ,n⊥SC → 及SB → =(a, 3a,-3a), 由 n⊥SB → =(0,2 SC 3a,-3a),
→ =a· SB x+ 3a· y-3a· z=0, n· 可得 → =0+2 3a· SC y-3a· z=0, n·
x+ 即 2
3y-3z=0, 不妨取 n=(3, 3,2). 3y-3z=0.
设点 A 到平面 SBC 的距离为 d, →· |AS n| |0+0+6a| 3 则 d= |n| = =2a. 9+3+4
阳春市实验中学 陈育学
一、空间距离 1.两点间的距离:连接两点的① 线段 的长度. 2. 点到直线的距离:从直线外一点向直线引 垂线,② 点到垂足间线段 的长度. 3. 点 到 平面的距离 :自点 向平面引垂线 , ③ 点到垂足间线段 的长度. 4.平行直线间的距离:从两条平行线中的一 点 条上任意取一点向另一条直线引垂线,④___ 到垂足间线段 的长度.
点评 线面距离、面面距离通常情况下
化归为点面距离求解,求空间点面距离, 若利用传统构造法,关键是“找射影”, 一般是应用垂面法求射影,或等积法间 接求 . 若利用向量法,建系和求平面法向 量是关键.
练习2
如 图 , 在 梯 形 ABCD 中 , AD∥BC , ∠ABC= ,AB=BC= 1 AD=1,PA⊥平面ABCD, 且PA=1,点F在AD上,且CF⊥PC. (1)求点A到平面PCF的距离; (2)求AD与平面PBC间的距离.
1 1 3 S△ABC=2AB· BC· sin∠ABC=2×2a×2a× 2 = 3a2. 在△SBC 中,SB= SA2+AB2= 13a,BC=2a,SC=
2 2 2 13 a + 4 a - 21 a 1 2 2 SA +AC = 21a.cos∠SBC= =- , 2× 13a×2a 13
D’ A’ D A B B’ C C’
如图所示:线段 AB __为异面直线AA’ 与BC的距离。
练习1
在 直 三 棱 柱 ABC—A1B1C1 中 , AA1=2 , AB=BC=1,∠ABC=90°.点D是BB1中点, 则异面直线DA1与B1C1的距离是
2 2 ________.

点面距离的求法
2 3
PAC⊥ 平面 PCF ,找到点 A 在平面 PCF 上的射影 H 位于PC上,然后解三角形求AH的长. (2)由于AD∥平面PBC,可考虑依据问 题情境在AD上选择具备特殊位置的点A, 然后推理过 A 点的平面 PAD⊥ 平面 PBC , 找到过点A的垂线.
分析( 1 )通过论证平面
(1)连接AC.因为PA⊥平面ABCD,所 以PA⊥CF. 又CF⊥PC,PA∩PC=P, 所以CF⊥平面PAC, 所以平面PFC⊥平面PAC. 过点A作AH⊥PC于H,所以PH⊥平面PCF, 即AH为点A到平面PCF的距离. 由已知AB=BC=1,所以AC= 2 ,PC= 3 . 6 在Rt△PAC中,得AH= .
相关文档
最新文档