垂直关系的判定及其性质 PPT
合集下载
直线与平面垂直的判定与性质(共26张PPT)
直线与平面垂直的判定与性 质(共26张ppt)
目 录
• 直线与平面垂直的判定 • 直线与平面垂直的性质 • 直线与平面垂直的证明 • 直线与平面垂直的应用 • 总结与展望 • 参考文献
01
直线与平面垂直的判定
直线与平面垂直的定义
01
直线与平面垂直是指直线与平面 内的任意一条直线都垂直。
02
如果一条直线与平面内的任意一 条直线都垂直,则这条直线与该 平面垂直。
建筑设计
在建筑设计中,直线与平面垂直的应用非常重要, 如确定建筑物的垂直度和水平面等。
机械制造
在机械制造中,直线与平面垂直的应用可以帮助 制造出精确的机械部件。
道路建设
在道路建设中,直线与平面垂直的应用可以帮助 确保道路的平直度和坡度等。
05
总结与展望
总结直线与平面垂直的判定与性质
判定方法 通过直线与平面内两条相交直线垂直来判定直线与平面垂直。
通过直线与平面内无数条直线垂直来判定直线与平面垂直。
总结直线与平面垂直的判定与性质
• 通过直线与平面垂直的性质定理来判定直线与平面垂直。
总结直线与平面垂直的判定与性质
01
性质定理
02
03
04
直线与平面垂直,则该直线与 平面内任意一条直线都垂直。
直线与平面垂直,则该直线所 在的所有直线都与该平面垂直
证明
假设有一条直线l与平面α垂直,那么直线l与平面α内的任意一条直线m都垂直。 由于直线l与平面α内的直线m都垂直,所以它们之间的夹角为90°,即直线l与平 面α内的任意一条直线都垂直。
直线与平面垂直的性质推论
推论1
证明
推论2
证明
如果一条直线与平面内的两 条相交直线都垂直,那么这
目 录
• 直线与平面垂直的判定 • 直线与平面垂直的性质 • 直线与平面垂直的证明 • 直线与平面垂直的应用 • 总结与展望 • 参考文献
01
直线与平面垂直的判定
直线与平面垂直的定义
01
直线与平面垂直是指直线与平面 内的任意一条直线都垂直。
02
如果一条直线与平面内的任意一 条直线都垂直,则这条直线与该 平面垂直。
建筑设计
在建筑设计中,直线与平面垂直的应用非常重要, 如确定建筑物的垂直度和水平面等。
机械制造
在机械制造中,直线与平面垂直的应用可以帮助 制造出精确的机械部件。
道路建设
在道路建设中,直线与平面垂直的应用可以帮助 确保道路的平直度和坡度等。
05
总结与展望
总结直线与平面垂直的判定与性质
判定方法 通过直线与平面内两条相交直线垂直来判定直线与平面垂直。
通过直线与平面内无数条直线垂直来判定直线与平面垂直。
总结直线与平面垂直的判定与性质
• 通过直线与平面垂直的性质定理来判定直线与平面垂直。
总结直线与平面垂直的判定与性质
01
性质定理
02
03
04
直线与平面垂直,则该直线与 平面内任意一条直线都垂直。
直线与平面垂直,则该直线所 在的所有直线都与该平面垂直
证明
假设有一条直线l与平面α垂直,那么直线l与平面α内的任意一条直线m都垂直。 由于直线l与平面α内的直线m都垂直,所以它们之间的夹角为90°,即直线l与平 面α内的任意一条直线都垂直。
直线与平面垂直的性质推论
推论1
证明
推论2
证明
如果一条直线与平面内的两 条相交直线都垂直,那么这
垂直关系的判定-课件ppt
北师大版必修二第一章第六节第一课时
直线与平面垂直的判定
直线与平面垂直示例
栽树问题
M
E
A C
DP3 OB
F
P1 P2
概念
• 如果一条直线和一个平面内的任何一条直线都垂直,那么称这条 直线和这个平面垂直.
• 如果一条直线与一个平面垂直,那么这条直线和这个平面内的任 何一条直线都垂直.
概念辨析与应用
作业
•作业本作业:课本第41页第4题和第5题;
•课外探究:1、课本第36页第3题; •2、如何证明直线与平面的判定定理
பைடு நூலகம்
• (1)若一条直线与一个平行四边形的两条边垂直, 则这条直线垂直于平行四边形所在的平面.( )
• (2)若一条直线与一个梯形的两边垂直,则这条直 线垂直于梯形所在的平面.( )
• (3)若一条直线与一个三角形的两条边垂直,则这 条直线垂直于三角形的第三边.( )
典例剖析
O
小结
• 1、本节课主要学习了哪些知识? • 概念、定理。 • 2、探究概念定理时所采用了什么方法? • 生活实例、实验演示、类比联想等. • 3、解题过程中用了什么方法?体现了什么思想? • 线线垂直与线面垂直的不断转化, • 从条件出发推理,从问题入手分析. • 4、你觉着本节课还有什么遗憾没有? • 课后探究
•(1)如果一条直线和一个平面内的无数条直线都垂直,则这条 直线和这个平面垂直。
•(2)如果两条平行直线中的一条垂直于一个平面,那么另一条 也垂直于这个平面。
l
判定定理 • 如果一条直线和一个平面内的两条相交直线都垂直,那么该直线 与此平面垂直。
定理应用
• 1、生活实例
• 2、折纸
• 3、判断错对
直线与平面垂直的判定
直线与平面垂直示例
栽树问题
M
E
A C
DP3 OB
F
P1 P2
概念
• 如果一条直线和一个平面内的任何一条直线都垂直,那么称这条 直线和这个平面垂直.
• 如果一条直线与一个平面垂直,那么这条直线和这个平面内的任 何一条直线都垂直.
概念辨析与应用
作业
•作业本作业:课本第41页第4题和第5题;
•课外探究:1、课本第36页第3题; •2、如何证明直线与平面的判定定理
பைடு நூலகம்
• (1)若一条直线与一个平行四边形的两条边垂直, 则这条直线垂直于平行四边形所在的平面.( )
• (2)若一条直线与一个梯形的两边垂直,则这条直 线垂直于梯形所在的平面.( )
• (3)若一条直线与一个三角形的两条边垂直,则这 条直线垂直于三角形的第三边.( )
典例剖析
O
小结
• 1、本节课主要学习了哪些知识? • 概念、定理。 • 2、探究概念定理时所采用了什么方法? • 生活实例、实验演示、类比联想等. • 3、解题过程中用了什么方法?体现了什么思想? • 线线垂直与线面垂直的不断转化, • 从条件出发推理,从问题入手分析. • 4、你觉着本节课还有什么遗憾没有? • 课后探究
•(1)如果一条直线和一个平面内的无数条直线都垂直,则这条 直线和这个平面垂直。
•(2)如果两条平行直线中的一条垂直于一个平面,那么另一条 也垂直于这个平面。
l
判定定理 • 如果一条直线和一个平面内的两条相交直线都垂直,那么该直线 与此平面垂直。
定理应用
• 1、生活实例
• 2、折纸
• 3、判断错对
【数学课件】两个平面垂直的判定和性质
两个平面垂直的判定和性质
面面垂直
线面垂直
两个平面平行的判定定理: 如果一个平面经过另一个平面的一条
垂线,那么这两个平面相互垂直。
β A
B
α
a
? 思考题
已知:ABCD为正方形,SD⊥平面AC, 问:图中所示的7个平面中,共有多少个平面互相平行?
1.平面SAD⊥平面ABCD 2.平面SBD⊥平面ABCD 3.平面SCD⊥平面ABCD 4.平面SAD⊥平面SCD 5.平面SBC⊥平面SCD 6.平面SAB⊥平面SAD 7.平面SAC⊥平面SBD
S
D O
A
C B
两个平面垂直的性质定理:
如果两个平面垂直,那么在第一个平 面内垂直于它们交线的直线垂直于另一个 平面的直线。
β
A
B
α
a
例1已知: α⊥β,P∈α,P∈a, a⊥β.
求证:a α. 证明:设α ∩ β= c,过点P在平面α内 作直线b⊥ c,根据上面的定理有b⊥β.
因为经过一点只能有
一条直线与平面β垂直,
所以直线a应与b直线
重合.
β
所以a α.
α
P
a
b
c
例1已知: α⊥β,P∈α,P∈a, a⊥β.
求证:a α.
如果两个平面垂直,那么经过 第一个平面内的一点垂直于第二 个平面的直线,再第一个平面 。
α
P
a
β
例2 求证:垂直于同一平面的两平面 的交线垂直于这个平面。 已知:α⊥γ,β ⊥γ,α ∩ β= а, 求证: a⊥γ.
证法三:
设α⊥γ于b,β ⊥γ于c.
在α内作 b′ ⊥ b, 所以 b′ ⊥ γ.
同理在β内作c′ ⊥ c,有c ′ ⊥ γ,
面面垂直
线面垂直
两个平面平行的判定定理: 如果一个平面经过另一个平面的一条
垂线,那么这两个平面相互垂直。
β A
B
α
a
? 思考题
已知:ABCD为正方形,SD⊥平面AC, 问:图中所示的7个平面中,共有多少个平面互相平行?
1.平面SAD⊥平面ABCD 2.平面SBD⊥平面ABCD 3.平面SCD⊥平面ABCD 4.平面SAD⊥平面SCD 5.平面SBC⊥平面SCD 6.平面SAB⊥平面SAD 7.平面SAC⊥平面SBD
S
D O
A
C B
两个平面垂直的性质定理:
如果两个平面垂直,那么在第一个平 面内垂直于它们交线的直线垂直于另一个 平面的直线。
β
A
B
α
a
例1已知: α⊥β,P∈α,P∈a, a⊥β.
求证:a α. 证明:设α ∩ β= c,过点P在平面α内 作直线b⊥ c,根据上面的定理有b⊥β.
因为经过一点只能有
一条直线与平面β垂直,
所以直线a应与b直线
重合.
β
所以a α.
α
P
a
b
c
例1已知: α⊥β,P∈α,P∈a, a⊥β.
求证:a α.
如果两个平面垂直,那么经过 第一个平面内的一点垂直于第二 个平面的直线,再第一个平面 。
α
P
a
β
例2 求证:垂直于同一平面的两平面 的交线垂直于这个平面。 已知:α⊥γ,β ⊥γ,α ∩ β= а, 求证: a⊥γ.
证法三:
设α⊥γ于b,β ⊥γ于c.
在α内作 b′ ⊥ b, 所以 b′ ⊥ γ.
同理在β内作c′ ⊥ c,有c ′ ⊥ γ,
线面垂直、面面垂直的性质与判定定理ppt课件
a⊥β α
b
a
B
γ
证明:过a作平面γ交于b, 因为直线a//,所以a//b
β 又因为a⊥AB,所以b⊥AB
A
又⊥β,∩β=AB
辅助线(面):
所以b⊥β
发展条件的使解题过 程获得突破的
进而a⊥β
【课后自测】4、如图,已知SA⊥平面ABC,
平面SAB⊥平面SBC,求证:AB⊥BC
证明:过点A作AD⊥SB于D, ∵平面SAB⊥平面SBC,
直线l在平面α内,那么直线l与平面β
的位置关系有哪几种可能?
α l
β
平行
α
l
β
相交
α
l β
线在面内
知识探究:
思考2:黑板所在平面与地面所在平面垂 直,在黑板上是否存在直线与地面垂直? 若存在,怎样画线?
α
β
证明问题:
已知: , A , C B , 且 D C A . 求D 证:B CD
β
a
l
A α
a
l
a
a l
作用: 面面垂直线面垂直
垂直体系
判定
判定
线线垂直
线面垂直 面面垂直
定义
性质
问题2 , a , a , 判 断 a 与 位 置 关 系
α
a
a //
l
问题3: β
思考:已 , , 知直 平 a,且 线 面 ,A,B
a/ /,aA,B 试判断 a与直 平 的 线 面 位置关
符号语言:
ab
a ,b a //b
α
线面垂直关 系
最新版整理ppt
线线平行关 系
3
平面与平面垂直的性质
温故知新
直线与平面垂直的判定PPT课件
例题二:求点到直线的距离
方法一
利用点到直线的距离公式,通过计算 点到直线上任意一点的向量在直线方 向向量上的投影长度,从而得出点到 直线的距离。
方法二
利用向量的叉积,通过计算点到直线上 两个点的向量与直线方向向量的叉积的 模,再除以直线方向向量的模,从而得 出点到直线的距离。
例题三:解决实际问题中的应用
方法三:结合图形进行判断
• 步骤 • 观察图形中已知直线与平面的位置关系; • 如果看起来垂直,则可以直接判断已知直线与平面垂直。 • 注意:以上三种方法都可以用来判断一条直线是否与一个平
面垂直,但具体使用哪种方法需要根据题目的具体情况来决 定。同时,在实际应用中,还需要注意一些特殊情况的处理, 例如当已知直线在平面内或与平面平行时,需要采用其他方 法进行判断。
点到直线距离公式可以用来辅助判断直线与平面是否垂直。
03
直线与平面垂直的判定方 法
方法一:利用定义直接判断
定义:如果一条直线与一个平面内的任意 一条直线都垂直,那么这条直线与这个平 面垂直。
如果都垂直,则已知直线与平面垂直。
步骤
验证已知直线与这两条相交直线是否垂直;
在平面内任意取两条相交直线;
方法二:利用判定定理进行判断
直线与平面垂直 的判定PPT课件
目录
• 直线与平面垂直的基本概念 • 直线与平面垂直的判定定理 • 直线与平面垂直的判定方法 • 直线与平面垂直的应用举例 • 直线与平面垂直的拓展延伸
01
直线与平面垂直的基本概 念
直线与平面的位置关系
01
02
03
直线在平面内
直线上的所有点都在平面 内。
直线与平面相交
步骤
验证这两条直线是否垂直;
直线、平面垂直的判定及其性质 课件
解:(1)证明:由已知得 AC⊥BD,AD=CD.
又由 AE=CF 得AADE=CCDF,故 AC∥EF.
由此得 EF⊥HD,故 EF⊥HD′,所以 AC⊥HD′.
(2)由 EF∥AC 得ODHO=AADE=14.
由 AB=5,AC=6 得 DO=BO= AB2-AO2=4.
所以 OH=1,D′H=DH=3.
(说明:取棱 PD 的中点 N,则所找的点可以是直线 MN 上任 意一点)
(2)证明:由已知,PA⊥AB,PA⊥CD,因为 AD∥BC,BC=12AD,所以直线 AB 与 CD 相交, 所以 PA⊥平面 ABCD,所以 PA⊥BD.连接 BM,因为 AD∥BC, BC=12AD,M 为 AD 的中点,所以 BC∥MD,且 BC=MD, 所以四边形 BCDM 是平行四边形, 所以 BM=CD=12AD,所以 BD⊥AB.又 AB∩AP=A, 所以 BD⊥平面 PAB. 又 BD⊂平面 PBD,所以平面 PAB⊥平面 PBD.
和 β 是两个不重合的平面,下面给出的条件中一定能推
出 m⊥β 的是
()
A.α⊥β 且 m⊂α
B.α⊥β 且 m∥α
C.m∥n 且 n⊥β
D.m⊥n 且 α∥β
解析:由线线平行性质的传递性和线面垂直的判定定
理,可知 C 正确.
答案:C
2.如图,S 是 Rt△ABC 所在平面外一点,且 SA= SB=SC.D 为斜边 AC 的中点. (1)求证:SD⊥平面 ABC; (2)若 AB=BC,求证:BD⊥平面 SAC. 证明:(1)如图所示,取 AB 的中点 E,连接 SE,DE, 在 Rt△ABC 中,D,E 分别为 AC,AB 的中点. ∴DE∥BC,∴DE⊥AB,∵SA=SB,∴SE⊥AB. 又 SE∩DE=E,∴AB⊥平面 SDE. 又 SD⊂平面 SDE,∴AB⊥SD. 在△SAC 中,SA=SC,D 为 AC 的中点,∴SD⊥AC. 又 AC∩AB=A,∴SD⊥平面 ABC.
又由 AE=CF 得AADE=CCDF,故 AC∥EF.
由此得 EF⊥HD,故 EF⊥HD′,所以 AC⊥HD′.
(2)由 EF∥AC 得ODHO=AADE=14.
由 AB=5,AC=6 得 DO=BO= AB2-AO2=4.
所以 OH=1,D′H=DH=3.
(说明:取棱 PD 的中点 N,则所找的点可以是直线 MN 上任 意一点)
(2)证明:由已知,PA⊥AB,PA⊥CD,因为 AD∥BC,BC=12AD,所以直线 AB 与 CD 相交, 所以 PA⊥平面 ABCD,所以 PA⊥BD.连接 BM,因为 AD∥BC, BC=12AD,M 为 AD 的中点,所以 BC∥MD,且 BC=MD, 所以四边形 BCDM 是平行四边形, 所以 BM=CD=12AD,所以 BD⊥AB.又 AB∩AP=A, 所以 BD⊥平面 PAB. 又 BD⊂平面 PBD,所以平面 PAB⊥平面 PBD.
和 β 是两个不重合的平面,下面给出的条件中一定能推
出 m⊥β 的是
()
A.α⊥β 且 m⊂α
B.α⊥β 且 m∥α
C.m∥n 且 n⊥β
D.m⊥n 且 α∥β
解析:由线线平行性质的传递性和线面垂直的判定定
理,可知 C 正确.
答案:C
2.如图,S 是 Rt△ABC 所在平面外一点,且 SA= SB=SC.D 为斜边 AC 的中点. (1)求证:SD⊥平面 ABC; (2)若 AB=BC,求证:BD⊥平面 SAC. 证明:(1)如图所示,取 AB 的中点 E,连接 SE,DE, 在 Rt△ABC 中,D,E 分别为 AC,AB 的中点. ∴DE∥BC,∴DE⊥AB,∵SA=SB,∴SE⊥AB. 又 SE∩DE=E,∴AB⊥平面 SDE. 又 SD⊂平面 SDE,∴AB⊥SD. 在△SAC 中,SA=SC,D 为 AC 的中点,∴SD⊥AC. 又 AC∩AB=A,∴SD⊥平面 ABC.
8-4直线与平面垂直的判定及其性质课件共120张PPT
(3)[解] 当F为PC的中点时,满足平面DEF⊥平面ABCD.证明如下: 取PC的中点F,连接DE,EF,DF. 在△PBC中,FE∥PB,在菱形ABCD中,GB∥DE. 而FE⊂平面DEF,DE⊂平面DEF,EF∩DE=E,PB⊂平面PGB,GB⊂平面 PGB,PB∩GB=B, 所以平面DEF∥平面PGB. 因为BG⊥平面PAD,PG⊂平面PAD,所以BG⊥PG. 又因为PG⊥AD,AD∩BG=G, 所以PG⊥平面ABCD.
第四节 直线与平面垂直的判定及其性质
[复习要点] 1.以立体几何的定义、公理和定理为出发点,认识和理解空间中线 面垂直的有关性质与判定定理.
2.能运用公理、定理和已获得的结论证明一些空间图形的垂直关系的简单命 题.
理清教材•巩固基础
知识点一 直线与平面垂直 1.定义:直线l与平面α内的__任__意____一条直线都垂直,就说直线l与平面α互相 垂直.
易/错/问/题
类比思维的应用:注意由平面到空间的思维的变化. (1)已知直线a,b,c,若a⊥b,b⊥c,则a与c的位置关系为_平__行__、__相__交__或__异__面_. (2)已知直线a和平面α,β,若α⊥β,a⊥β,则a与α的位置关系为a_∥__α_或__a_⊂__α__.
通/性/通/法
(4)面面垂直的性质定理:如果两个平面垂直,那么在一个平面内垂直于它们交 线的直线垂直于另一个平面(常用方法);
(5)面面平行的性质:如果一条直线垂直于两个平行平面中的一个平面,则这条 直线也垂直于另一个平面(客观题常用);
(6)若两相交平面同时垂直于第三个平面,则这两个平面的交线垂直于第三个平 面(客观题常用).
(2)如果一条直线垂直于平面,我们说它们所成的角为直角.
(3)如果一条直线和平面平行,或在平面内,我们说它们所成的角为0°的角. (4)直线和平面所成角的范围是___0_,__π2_ _.
(完整版)《直线与平面垂直的判定》ppt课件
l
符号表示:
P
m ,n
mn
m nP
l
l m, l n
定理补充 “平面内”,“相交”,“垂直”三个条件必不可少
简记为:线线垂直
线面垂直
例1 如图,已知a∥b,a⊥α,求证:b⊥α.
分析:在平面内作两条相交直线.
证明:在平面 内作两条相交 a
b
直线m,n.
因为直线 a ,
根据直线与平面垂直的定义知 m
A
B
D
C
A
B
D
C
A
B
D
C
A
B
D
C
A
B
D
C
A
B
D
C
A
B
D
C
A
B
D
C
A
B
D
C
A
B
D
C
A
B
D
C
BD,CD都在桌面内,BD∩CD=D, AD⊥CD,AD⊥BD,
直线AD所在的A直线与桌面垂直
l
B
D
C
P
mn
直线和平面垂直的判定定理
一条直线与一个平面内的两条相交直线都垂直,
则该直线与此平面垂直.
直线也是垂直的.
C1 C
α
B1 B
直线和平面垂直的定义
如果直线l与平面α内的任意一条直线都垂直, 我们就说直线l与平面α互相垂直,记作l⊥α.
l
平面α的垂线
A
直线l的垂面 垂足
直线和平面垂直的画法 注:画直线与水平平面垂直时,通常把直线画成 与表示P
α
思考2 若直线与平面内的无数条直线垂直,则直
符号表示:
P
m ,n
mn
m nP
l
l m, l n
定理补充 “平面内”,“相交”,“垂直”三个条件必不可少
简记为:线线垂直
线面垂直
例1 如图,已知a∥b,a⊥α,求证:b⊥α.
分析:在平面内作两条相交直线.
证明:在平面 内作两条相交 a
b
直线m,n.
因为直线 a ,
根据直线与平面垂直的定义知 m
A
B
D
C
A
B
D
C
A
B
D
C
A
B
D
C
A
B
D
C
A
B
D
C
A
B
D
C
A
B
D
C
A
B
D
C
A
B
D
C
A
B
D
C
BD,CD都在桌面内,BD∩CD=D, AD⊥CD,AD⊥BD,
直线AD所在的A直线与桌面垂直
l
B
D
C
P
mn
直线和平面垂直的判定定理
一条直线与一个平面内的两条相交直线都垂直,
则该直线与此平面垂直.
直线也是垂直的.
C1 C
α
B1 B
直线和平面垂直的定义
如果直线l与平面α内的任意一条直线都垂直, 我们就说直线l与平面α互相垂直,记作l⊥α.
l
平面α的垂线
A
直线l的垂面 垂足
直线和平面垂直的画法 注:画直线与水平平面垂直时,通常把直线画成 与表示P
α
思考2 若直线与平面内的无数条直线垂直,则直
直线与平面垂直的性质(共26张PPT)
(52.)A如E⊥图P,D正,那方么体MANBC⊥DP-∵DA. E1BF1⊥C1AD11D中,,MA是1D∥B1C,
同理可证BD1⊥B1C,又AC∩B1C=C,∴BD1⊥平面AB1C.
都A.垂1直的直线有_______∴条B.E2F⊥B1(C.又)EF⊥AC,且AC∩B1C=C,
2.如图,在正方体ABCD-A1B1C1D1中,点E、F
D1
〔1〕a,b同垂直于正方体一个面; A 1
〔2〕a,b分别在正方体两个相对的
面内且共面;
〔3〕a,b平行于同一条棱.
D A
C1 B1
C B
例1 如图α∩β=l,CA⊥α于点A,CB⊥β于点B,
a,aAB求,证:a∥l.
C β
分析:
B
l 平 面 A B C ,a 平 面 A B C .
α
l
A
a
错误的画“×〞.
(1)垂直于同一条直线的两条直线互相平行.
()
(2)垂直于同一个平面的两条直线互相平行.
(
(3)一条直线在平面内,另一条直线和这个平面垂直,那么
×
)√
这两条直线互相垂直.
()
√
3.直线 和平a ,面b ,且
a那b么,a与, b
的位置关系是_____b______或 __b_∥___ .
()
同理DD1⊥平面B1C1D1,那么l∥DD1.
1.线面垂直的性质给我们提供了证明线线平行的方法.
∵EF⊥A1D,A1D∥B1C,
[一点通] 1.线面垂直的性质给我们提供了证明线线平行的方法. 2.证明线线平行的方法 (1)a∥c,b∥c⇒a∥b. (2)a∥α,a β,β∩α=b⇒a∥b. (3)α∥β,α∩γ=a,β∩γ=b⇒a∥b. (4)a⊥α,b⊥α⇒a∥b.
同理可证BD1⊥B1C,又AC∩B1C=C,∴BD1⊥平面AB1C.
都A.垂1直的直线有_______∴条B.E2F⊥B1(C.又)EF⊥AC,且AC∩B1C=C,
2.如图,在正方体ABCD-A1B1C1D1中,点E、F
D1
〔1〕a,b同垂直于正方体一个面; A 1
〔2〕a,b分别在正方体两个相对的
面内且共面;
〔3〕a,b平行于同一条棱.
D A
C1 B1
C B
例1 如图α∩β=l,CA⊥α于点A,CB⊥β于点B,
a,aAB求,证:a∥l.
C β
分析:
B
l 平 面 A B C ,a 平 面 A B C .
α
l
A
a
错误的画“×〞.
(1)垂直于同一条直线的两条直线互相平行.
()
(2)垂直于同一个平面的两条直线互相平行.
(
(3)一条直线在平面内,另一条直线和这个平面垂直,那么
×
)√
这两条直线互相垂直.
()
√
3.直线 和平a ,面b ,且
a那b么,a与, b
的位置关系是_____b______或 __b_∥___ .
()
同理DD1⊥平面B1C1D1,那么l∥DD1.
1.线面垂直的性质给我们提供了证明线线平行的方法.
∵EF⊥A1D,A1D∥B1C,
[一点通] 1.线面垂直的性质给我们提供了证明线线平行的方法. 2.证明线线平行的方法 (1)a∥c,b∥c⇒a∥b. (2)a∥α,a β,β∩α=b⇒a∥b. (3)α∥β,α∩γ=a,β∩γ=b⇒a∥b. (4)a⊥α,b⊥α⇒a∥b.
垂直关系的判定及其性质ppt课件演示文稿
题型三 面面垂直 【例3】 (2011· 聊城模拟)如图,菱形ABCD所在平面与矩形 ACEF所在平面互相垂直,已知BD=2AF,且点M是线段EF的中点. (1)求证:AM∥平面BDE; (2)求证:平面DEF⊥平面BEF.
(1)如图,设AC∩BD=O,连接OE,由题意得EM= EF= AC=AO. 2 2 ∵EM∥AO, ∴四边形EOAM为平行四边形,EO∥AM. ∵EO⊂平面BDE,AM⊄平面BDE. ∴AM∥平面BDE. (2)如图,连接DM,BM,MO.∵AF⊥AC,EC⊥AC,平面ACEF⊥平面 ABCD,∴AF⊥平面ABCD,EC⊥平面ABCD,∴AF⊥AD,EC⊥DC,又四 边形ABCD为菱形, ∴AD=DC,∴DF=DE. 又点M是EF的中点,∴ DM⊥EF. 1 ∵BD=2AF,∴DO=2 BD=AF=MO, ∴∠DMO=45°,同理,∠BMO=45°, ∴DM⊥BM. 又EF∩BM=M,∴DM⊥平面BEF.
1
1
变式3-1 (2011· 江苏海安如皋联考)如图,在正方体ABCD-A1B1C1D1中, 求证:平面BC1D⊥平面A1ACC1.
证明:因为ABCD-A1B1C1D1是正方体,所以 AC⊥BD,A1A⊥平面ABCD, 而BD⊂平面ABCD,于是BD⊥A1A. 因为AC、A1A⊂平面A1ACC1且AC交A1A于点A, 所以BD⊥平面A1ACC1. 因为BD⊂平面BC1D,所以平面BC1D⊥平面 A1ACC1.
2. 平面与平面垂直 (1)定义:一般地,两个平面相交,如果它们所成的二面角是 ________,就称这两个平面互相垂直. (2)判定定理:如果一个平面过另一个平面的________,则这 两个平面互相垂直. (3)性质定理:如果两个平面互相垂直,那么在一个平面内 __________的直线垂直于另一个平面.
直线与平面垂直判定完整版课件
绘制图表,将实验数据 可视化展示,便于分析 和比较。
03
分析实验数据,总结直 线与平面垂直的判定方 法和规律。
04
根据实验结果,评估实 验方法的准确性和可靠 性,并提出改进意见。
06
课程总结与回顾
知识点梳理
01
直线与平面垂直的定义
如果直线$l$与平面$alpha$内的任意一条直线都垂直,那么我们就说
角的范围
异面直线所成角的取值范围是 (0, 90°]。
异面直线所成角求解方法
01
02
03
平移法
将两条异面直线平移到同 一个起点上,然后用余弦 定理或三角函数求解。
向量法
建立空间直角坐标系,将 异面直线的方向向量表示 出来,然后通过向量的夹 角公式求解。
投影法
将一条直线投影到另一条 直线上,通过投影长度和 原长度之间的关系,利用 三角函数求解。
易错点提示
忽略直线与平面内两条相交直线 都垂直的条件,只考虑与其中一
条直线垂直或平行的情况。
在证明直线与平面垂直时,未明 确说明平面内的两条相交直线, 或者错误地认为只要与平面内无
数条直线垂直即可。
符号使用不规范,如将直线与平 面垂直的符号误写为平行或相交
等。
下一讲预告
下一讲我们将继续深入学习空间几何中的直线与平面的位置关系,包括直线与平面 平行的判定和性质等内容。
确定未知量
根据题目要求,确定需要求解 的未知量。
建立方程
利用已知条件和几何性质,建 立关于未知量的方程。
求解方程
解方程得到未知量的值,注意 解的合理性。
解答题规范步骤和答案
画出图形
根据题意画出相应 的图形,标注已知 量和未知量。
直线与平面垂直的判定定理与性质定理ppt课件
24
7. 如图,在△ABC中,∠ACB=90°,AB=8,∠ABC=60°,PC⊥平 面ABC,PC=4,M是AB上的一个动点,则PM的最小值为________.
M
25
11. 如图,在△ABC中,∠ABC=90°,D是AC的中点,S是△ABC 所在平面外一点,且SA=SB=SC. (1)求证:SD⊥平面ABC; (2)若AB=BC,求证:BD⊥平面SAC.
6
②二面角的平面角
如图,过二面角 α-l-β 的棱 l 上一点 O 在两个半平面内分别 作 BO⊥l,AO⊥l,则__∠__A_O_B__就叫做二面角 α-l-β 的平面角. ③二面角的范围 设二面角的平面角为 θ,则 θ∈_[_0_,__π_]__.
π ④当 θ=___2_____时,二面角叫做直二面角.
7
2.学会三种垂直关系的转化
在证明两平面垂直时一般先从现有的直线中寻找平面的垂 线,若图中不存在这样的直线,则可通过作辅助线来解决.如 有平面垂直时,一般要用性质定理,在一个平面内作交线的 垂线,使之转化为线面垂直,然后进一步转化为线线垂直.
8
1.(2015·高考浙江卷)设 α,β是两个不同的平面,l,m 是
质 个平面的两
定 条直线 理 __平__行____
符号语言
a⊥α b⊥α
⇒a∥
b
3
2.平面与平面垂直的判定定理与性质定理
文字语言
图形语言
一个平面过另一 判定 个平面的_垂_线__,
定理 则这两个平面互
相垂直
两个平面互相垂
直,则一个平面
性质 定理
内垂直于_交__线___
的直线垂直于另
一个平面
符号语言
16
3.如图,在四棱锥 P-ABCD 中,AB∥CD,AB⊥AD, CD=2AB,平面 PAD⊥底面 ABCD,PA⊥AD,E 和 F 分别是 CD 和 PC 的中点.求证: (1)PA⊥底面 ABCD; (2)BE∥平面 PAD; (3)平面 BEF⊥平面 PCD.
7. 如图,在△ABC中,∠ACB=90°,AB=8,∠ABC=60°,PC⊥平 面ABC,PC=4,M是AB上的一个动点,则PM的最小值为________.
M
25
11. 如图,在△ABC中,∠ABC=90°,D是AC的中点,S是△ABC 所在平面外一点,且SA=SB=SC. (1)求证:SD⊥平面ABC; (2)若AB=BC,求证:BD⊥平面SAC.
6
②二面角的平面角
如图,过二面角 α-l-β 的棱 l 上一点 O 在两个半平面内分别 作 BO⊥l,AO⊥l,则__∠__A_O_B__就叫做二面角 α-l-β 的平面角. ③二面角的范围 设二面角的平面角为 θ,则 θ∈_[_0_,__π_]__.
π ④当 θ=___2_____时,二面角叫做直二面角.
7
2.学会三种垂直关系的转化
在证明两平面垂直时一般先从现有的直线中寻找平面的垂 线,若图中不存在这样的直线,则可通过作辅助线来解决.如 有平面垂直时,一般要用性质定理,在一个平面内作交线的 垂线,使之转化为线面垂直,然后进一步转化为线线垂直.
8
1.(2015·高考浙江卷)设 α,β是两个不同的平面,l,m 是
质 个平面的两
定 条直线 理 __平__行____
符号语言
a⊥α b⊥α
⇒a∥
b
3
2.平面与平面垂直的判定定理与性质定理
文字语言
图形语言
一个平面过另一 判定 个平面的_垂_线__,
定理 则这两个平面互
相垂直
两个平面互相垂
直,则一个平面
性质 定理
内垂直于_交__线___
的直线垂直于另
一个平面
符号语言
16
3.如图,在四棱锥 P-ABCD 中,AB∥CD,AB⊥AD, CD=2AB,平面 PAD⊥底面 ABCD,PA⊥AD,E 和 F 分别是 CD 和 PC 的中点.求证: (1)PA⊥底面 ABCD; (2)BE∥平面 PAD; (3)平面 BEF⊥平面 PCD.
直线与平面垂直的判定和性质PPT
4.如图所示:在底面是菱形的四棱锥P-ABCD中,∠ABC= 60 PA=AC=a, PB=PD= 2a 求证:PA⊥面ABCD
解析:利用勾股定理得线线垂直,再由判 P 定定理得线面垂直。
证明:∵底面ABCD是菱形,∠ABC= 60
∴AB=AD=AC=a
A
在△PAB中,由 PA2 AB2 2a2 PB2
1.直线与平面垂直的定义,垂线、垂面、垂足的概念。
2.直线与平面垂直的判定:(三种方法)
(1)用定义:如果直线 l 与平面α内的任意一条直线都垂直,
就说直线 l 与平面α互相垂直。
(2)用直线与平面垂直的判定定理:
一条直线与一个平面内的两相交直线都垂直,则该 直线与此平面垂直。
(3)利用例1的结论:
∴PA 在平面 ABC 上的射影是 OA.
∵BC⊥PA ,∴BC⊥OA. 同理可证 AC⊥OB, ∴O是△ ABC 的垂心.
(4)如图 25,
图 25 P到△ ABC 三边的距离分别是 PD、PE、PF, 则 PD=PE=PF. ∵PO⊥平面 ABC,∴PD、PE、PF 在平面 ABC 上的射影 分别是 OD、OE、OF. ∴OD=OE=OF,且 OD⊥AB,OE⊥BC,OF⊥AC. ∴O是△ ABC 的内心.
A.有且只有一个
B.可能存在也可能不存在
C.有无数多个
D.—定不存在
(2)正方形ABCD,P是正方形平面外的一点,且 PA⊥平面ABCD,则在△PAB、 △PBC、△PCD、△PAD、 △PAC及△PBD中, 为直角三角形有___5___个
知识小结
1.直线与平面垂直的概念 2.直线与平面垂直的判定
在RtA1BO中,A1B
2a, BO 2 a, 2
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
可以互相讨论下,但要小声点
9
题型二 线面垂直 【例2】 如图,已知四棱柱PABCD中,底面ABCD是直角梯 形,AB∥DC,∠ABC=45°,DC=1,AB=2,PA⊥平面ABCD, PA=1. (1)求证:BC⊥平面PAC; (2)若M是PC的中点,求三棱锥MACD的体积.
变式2-1 (2011·潍坊模拟)在四棱锥PABCD中,∠ABC=∠ACD=90°,
题型四 直线、平面垂直的探究性问题 【例4】 在正方体ABCD-A1B1C1D1中,E、F分别为棱BB1和 DD1的中点. (1)求证:平面B1FC1∥平面ADE; (2)试在棱DC上求一点M,使D1M⊥平面ADE.
解:(1)∵AD∥B1C1,又B1C1⊂平面FB1C1, ∴AD∥平面FB1C1,同理,AE∥平面FB1C1,
在四图2
A. AH⊥△EFH所在平面
C. HF⊥△AEF所在平面
B. AG⊥△EFH所在平面 D. HG⊥△EFH所在平面
答案: 1. D 解析:由直线与平面垂直的定义,可知D正确. 2. D 3. A 4. B
5. A 解析:在图2中,AH⊥EH,AH⊥FH,且 EH∩FH=H,所以AH⊥平面EFH.
命题正确的是
()
A. 若l⊥m,m⊂a,则l⊥a B. 若l⊥a,l∥m,则m⊥a
C. 若l∥a,m⊂a,则l∥m D. 若l∥a,m∥a,则l∥m
5. 如图1所示,在正方形ABCD中,E、F分别是BC、CD的中点,
G是EF的中点,现在沿AE、AF及EF把这个正方形折成一个四面体
,使B、C、D三点重合,重合后的点记为H,如图2所示,那么,
经典例题
题型一 线线垂直 【例1】如图,a∩b=CD,EA⊥a,垂足为A,EB⊥b, 垂足为B,求证:CD⊥AB.
证明:∵a∩b=CD,∴CD⊂a,CD⊂b. 又∵EA⊥a,CD⊂a,∴EA⊥CD, 同理EB⊥CD. ∵EA⊥CD,EB⊥CD,EA∩EB=E, ∴CD⊥平面EAB. ∵AB⊂平面EAB,∴AB⊥CD.
变式1-1 (2011·徐州模拟)如图所示,四边形ABCD为矩形,BC⊥平
面ABE,F为CE上的点,且BF⊥平面ACE.求证:AE⊥BE.
证明:∵BC⊥平面ABE, AE⊂平面ABE,
∴BC⊥AE,同理AE⊥BF, ∵BF∩BC=B,∴AE⊥平面 BCE, 又∵BE⊂平面BCE, ∴AE⊥BE.
大家有疑问的,可以询问和交流
链接高考
(2010·山东)在如图所示的几何体中,四边形ABCD是正方形, MA⊥平面ABCD,PD∥MA,E、G、F分别为MB、PB、PC的中 点,且AD=PD=2MA.
求证:平面EFG⊥平面PDC;
知识准备:知道线面垂直和面面垂直 的判定;
证明:由已知MA⊥平面ABCD,PD∥MA,
所以PD⊥平面ABCD.
∠BAC=∠CAD=60°,PA⊥平面ABCD,E为PD的中点, PA=2AB=2.
(1)求四棱锥PABCD的体积V; (2)若F为PC的中点,求证:PC⊥平面AEF.
题型三 面面垂直 【例3】 (2011·聊城模拟)如图,菱形ABCD所在平面与矩形 ACEF所在平面互相垂直,已知BD=2AF,且点M是线段EF的中 点. (1)求证:AM∥平面BDE; (2)求证:平面DEF⊥平面BEF.
又AD∩AE=A,AD,AE⊂平面ADE, ∴平面ADE∥平面FB1C1. (2)M应是DC的中点. ∵B1C1⊥平面DD1C1C,D1M⊂平面DD1C1C, ∴B1C1⊥D1M, 由题意知FC1⊥D1M, FC1∩B1C1=C1,FC1,B1C1⊂平面FB1C1, ∴D1M⊥平面FB1C1,又由(1)知平面ADE∥ 平面FB1C1,∴D1M⊥平面ADE.
第五节 垂直关系的判定及其性质
基础梳理
1. 直线与平面垂直 (1)定义:如果直线l与平面a内的__________都垂直,我们就说 直线l与平面a互相垂直.这条直线叫做__________,这个平面叫 做________,交点叫做______.垂线上任意一点到垂足间的线段, 叫做这个点到这个平面的________,垂线段的长度叫做 ____________. (2)性质:如果一条直线垂直于一个平面,那么它就和平面内 的________直线垂直. (3)判定定理:如果一条直线与平面内的__________垂直,则这 条直线与这个平面垂直. (4)推论:如果在两条平行直线中,______________,那么另一 条也垂直于这个平面. (5)性质定理:如果两条直线____________,那么这两条直线平 行.
①若a∥a,则a内的任何直线都与a平行;
②若a⊥a,则a内的任何直线都与a垂直;
③若a∥b,则b内的任何直线都与a平行;
④若a⊥b,则b内的任何直线都与a垂直.
则其中( )
A. ②、③为真
B. ①、②为真
C. ①、④为真
D. ③、④为真
4. (2010·浙江)设l,m是两条不同的直线,a是一个平面,则下列
2. 平面与平面垂直 (1)定义:一般地,两个平面相交,如果它们所成的二面角是 ________,就称这两个平面互相垂直. (2)判定定理:如果一个平面过另一个平面的________,则这两 个平面互相垂直. (3)性质定理:如果两个平面互相垂直,那么在一个平面内 __________的直线垂直于另一个平面.
又BC⊂平面ABCD,
所以PD⊥BC.
因为四边形ABCD为正方形,
所以BC⊥DC.
又PD∩DC=D,因此BC⊥平面PDC.
在△PBC中,因为G、F分别为PB、PC的中点,所以GF∥BC,
因此GF⊥平面1 PDC.
8
又GF⊂平面E3FG,所以平面EF3 G⊥平面PDC.
中,求证:平面BC1D⊥平面A1ACC1.
证明:因为ABCD-A1B1C1D1是正方体,所 以AC⊥BD,A1A⊥平面ABCD,
而BD⊂平面ABCD,于是BD⊥A1A. 因为AC、A1A⊂平面A1ACC1且AC交A1A于 点A,所以BD⊥平面A1ACC1. 因为BD⊂平面BC1D,所以平面BC1D⊥平面 A1ACC1.
∴AF⊥AD,EC⊥DC,又四边形ABCD为菱形,
∴AD=DC,∴DF=DE.
又点M是EF的中点,1 ∴DM⊥EF.
∵BD=2AF,∴DO=2 BD=AF=MO,
∴∠DMO=45°,同理,∠BMO=45°,
∴DM⊥BM.
又EF∩BM=M,∴DM⊥平面BEF.
变式3-1 (2011·江苏海安如皋联考)如图,在正方体ABCD-A1B1C1D1
(1)如图,设AC∩BD=O,连接OE,由题意得EM1 = EF=1 AC=
AO.
2
2
∵EM∥AO,
∴四边形EOAM为平行四边形,EO∥AM.
∵EO⊂平面BDE,AM⊄平面BDE.
∴AM∥平面BDE.
(2)如图,连接DM,BM,MO.∵AF⊥AC,EC⊥AC,平面
ACEF⊥平面ABCD,∴AF⊥平面ABCD,EC⊥平面ABCD,
答案: 1. (1)任意一条直线 平面的垂线 直线的垂面 垂足 垂 线段 点到平面的距离 (2)任意一条 (3)两条相交直线 (4)有一条垂直于一个平面 (5)垂直于同一个平面 2. (1)直二面角 (2)一条垂线 (3)垂直于它们交线
基础达标
1. (教材改编题)下列条件中,能判定直线l⊥平面a的是( )
A. l与平面a内的两条直线垂直
B. l与平面a内无数条直线垂直
C. l与平面a内的某一条直线垂直
D. l与平面a内任意一条直线垂直
2. 直线a⊥直线b,a⊥平面b,则b与b的位置关系是( )
A. b⊥b
B. b∥b
C. b⊂b
D. b⊂b或b∥b
3. 已知直线a和两个平面a,b,给出下列四个命题:
9
题型二 线面垂直 【例2】 如图,已知四棱柱PABCD中,底面ABCD是直角梯 形,AB∥DC,∠ABC=45°,DC=1,AB=2,PA⊥平面ABCD, PA=1. (1)求证:BC⊥平面PAC; (2)若M是PC的中点,求三棱锥MACD的体积.
变式2-1 (2011·潍坊模拟)在四棱锥PABCD中,∠ABC=∠ACD=90°,
题型四 直线、平面垂直的探究性问题 【例4】 在正方体ABCD-A1B1C1D1中,E、F分别为棱BB1和 DD1的中点. (1)求证:平面B1FC1∥平面ADE; (2)试在棱DC上求一点M,使D1M⊥平面ADE.
解:(1)∵AD∥B1C1,又B1C1⊂平面FB1C1, ∴AD∥平面FB1C1,同理,AE∥平面FB1C1,
在四图2
A. AH⊥△EFH所在平面
C. HF⊥△AEF所在平面
B. AG⊥△EFH所在平面 D. HG⊥△EFH所在平面
答案: 1. D 解析:由直线与平面垂直的定义,可知D正确. 2. D 3. A 4. B
5. A 解析:在图2中,AH⊥EH,AH⊥FH,且 EH∩FH=H,所以AH⊥平面EFH.
命题正确的是
()
A. 若l⊥m,m⊂a,则l⊥a B. 若l⊥a,l∥m,则m⊥a
C. 若l∥a,m⊂a,则l∥m D. 若l∥a,m∥a,则l∥m
5. 如图1所示,在正方形ABCD中,E、F分别是BC、CD的中点,
G是EF的中点,现在沿AE、AF及EF把这个正方形折成一个四面体
,使B、C、D三点重合,重合后的点记为H,如图2所示,那么,
经典例题
题型一 线线垂直 【例1】如图,a∩b=CD,EA⊥a,垂足为A,EB⊥b, 垂足为B,求证:CD⊥AB.
证明:∵a∩b=CD,∴CD⊂a,CD⊂b. 又∵EA⊥a,CD⊂a,∴EA⊥CD, 同理EB⊥CD. ∵EA⊥CD,EB⊥CD,EA∩EB=E, ∴CD⊥平面EAB. ∵AB⊂平面EAB,∴AB⊥CD.
变式1-1 (2011·徐州模拟)如图所示,四边形ABCD为矩形,BC⊥平
面ABE,F为CE上的点,且BF⊥平面ACE.求证:AE⊥BE.
证明:∵BC⊥平面ABE, AE⊂平面ABE,
∴BC⊥AE,同理AE⊥BF, ∵BF∩BC=B,∴AE⊥平面 BCE, 又∵BE⊂平面BCE, ∴AE⊥BE.
大家有疑问的,可以询问和交流
链接高考
(2010·山东)在如图所示的几何体中,四边形ABCD是正方形, MA⊥平面ABCD,PD∥MA,E、G、F分别为MB、PB、PC的中 点,且AD=PD=2MA.
求证:平面EFG⊥平面PDC;
知识准备:知道线面垂直和面面垂直 的判定;
证明:由已知MA⊥平面ABCD,PD∥MA,
所以PD⊥平面ABCD.
∠BAC=∠CAD=60°,PA⊥平面ABCD,E为PD的中点, PA=2AB=2.
(1)求四棱锥PABCD的体积V; (2)若F为PC的中点,求证:PC⊥平面AEF.
题型三 面面垂直 【例3】 (2011·聊城模拟)如图,菱形ABCD所在平面与矩形 ACEF所在平面互相垂直,已知BD=2AF,且点M是线段EF的中 点. (1)求证:AM∥平面BDE; (2)求证:平面DEF⊥平面BEF.
又AD∩AE=A,AD,AE⊂平面ADE, ∴平面ADE∥平面FB1C1. (2)M应是DC的中点. ∵B1C1⊥平面DD1C1C,D1M⊂平面DD1C1C, ∴B1C1⊥D1M, 由题意知FC1⊥D1M, FC1∩B1C1=C1,FC1,B1C1⊂平面FB1C1, ∴D1M⊥平面FB1C1,又由(1)知平面ADE∥ 平面FB1C1,∴D1M⊥平面ADE.
第五节 垂直关系的判定及其性质
基础梳理
1. 直线与平面垂直 (1)定义:如果直线l与平面a内的__________都垂直,我们就说 直线l与平面a互相垂直.这条直线叫做__________,这个平面叫 做________,交点叫做______.垂线上任意一点到垂足间的线段, 叫做这个点到这个平面的________,垂线段的长度叫做 ____________. (2)性质:如果一条直线垂直于一个平面,那么它就和平面内 的________直线垂直. (3)判定定理:如果一条直线与平面内的__________垂直,则这 条直线与这个平面垂直. (4)推论:如果在两条平行直线中,______________,那么另一 条也垂直于这个平面. (5)性质定理:如果两条直线____________,那么这两条直线平 行.
①若a∥a,则a内的任何直线都与a平行;
②若a⊥a,则a内的任何直线都与a垂直;
③若a∥b,则b内的任何直线都与a平行;
④若a⊥b,则b内的任何直线都与a垂直.
则其中( )
A. ②、③为真
B. ①、②为真
C. ①、④为真
D. ③、④为真
4. (2010·浙江)设l,m是两条不同的直线,a是一个平面,则下列
2. 平面与平面垂直 (1)定义:一般地,两个平面相交,如果它们所成的二面角是 ________,就称这两个平面互相垂直. (2)判定定理:如果一个平面过另一个平面的________,则这两 个平面互相垂直. (3)性质定理:如果两个平面互相垂直,那么在一个平面内 __________的直线垂直于另一个平面.
又BC⊂平面ABCD,
所以PD⊥BC.
因为四边形ABCD为正方形,
所以BC⊥DC.
又PD∩DC=D,因此BC⊥平面PDC.
在△PBC中,因为G、F分别为PB、PC的中点,所以GF∥BC,
因此GF⊥平面1 PDC.
8
又GF⊂平面E3FG,所以平面EF3 G⊥平面PDC.
中,求证:平面BC1D⊥平面A1ACC1.
证明:因为ABCD-A1B1C1D1是正方体,所 以AC⊥BD,A1A⊥平面ABCD,
而BD⊂平面ABCD,于是BD⊥A1A. 因为AC、A1A⊂平面A1ACC1且AC交A1A于 点A,所以BD⊥平面A1ACC1. 因为BD⊂平面BC1D,所以平面BC1D⊥平面 A1ACC1.
∴AF⊥AD,EC⊥DC,又四边形ABCD为菱形,
∴AD=DC,∴DF=DE.
又点M是EF的中点,1 ∴DM⊥EF.
∵BD=2AF,∴DO=2 BD=AF=MO,
∴∠DMO=45°,同理,∠BMO=45°,
∴DM⊥BM.
又EF∩BM=M,∴DM⊥平面BEF.
变式3-1 (2011·江苏海安如皋联考)如图,在正方体ABCD-A1B1C1D1
(1)如图,设AC∩BD=O,连接OE,由题意得EM1 = EF=1 AC=
AO.
2
2
∵EM∥AO,
∴四边形EOAM为平行四边形,EO∥AM.
∵EO⊂平面BDE,AM⊄平面BDE.
∴AM∥平面BDE.
(2)如图,连接DM,BM,MO.∵AF⊥AC,EC⊥AC,平面
ACEF⊥平面ABCD,∴AF⊥平面ABCD,EC⊥平面ABCD,
答案: 1. (1)任意一条直线 平面的垂线 直线的垂面 垂足 垂 线段 点到平面的距离 (2)任意一条 (3)两条相交直线 (4)有一条垂直于一个平面 (5)垂直于同一个平面 2. (1)直二面角 (2)一条垂线 (3)垂直于它们交线
基础达标
1. (教材改编题)下列条件中,能判定直线l⊥平面a的是( )
A. l与平面a内的两条直线垂直
B. l与平面a内无数条直线垂直
C. l与平面a内的某一条直线垂直
D. l与平面a内任意一条直线垂直
2. 直线a⊥直线b,a⊥平面b,则b与b的位置关系是( )
A. b⊥b
B. b∥b
C. b⊂b
D. b⊂b或b∥b
3. 已知直线a和两个平面a,b,给出下列四个命题: