锂离子电池-化成原理及SEI膜的形成

合集下载

SEI膜的成膜机理及影响因素分析

SEI膜的成膜机理及影响因素分析

SEI膜的成膜机理及影响因素分析概述:在液态锂离子电池首次充放电过程中,电极材料与电解液在固液相界面上发生反应,形成一层覆盖于电极材料表面的钝化层。

这种钝化层是一种界面层,具有固体电解质的特征,是电子绝缘体却是Li+的优良导体,Li+可以经过该钝化层自由地嵌入和脱出,因此这层钝化膜被称为“固体电解质界面膜”(solidelectrolyte-interface),简称SEI膜。

正极确实也有层膜形成,只是现阶段认为其对电池的影响要远远小于负极表面的SEI膜,因此本文着重讨论负极表面的SEI膜(以下所出现SEI膜未加说明则均指在负极形成的)。

负极材料石墨与电解液界面上通过界面反应能生成SEI膜,多种分析方法也证明SEI膜确实存在,厚度约为100~120nm,其组成主要有各种无机成分如Li2CO3、LiF、Li2O、LiOH等和各种有机成分如ROCO2Li、ROLi、(ROCO2Li)2等。

SEI膜的形成对电极材料的性能产生至关重要的影响。

一方面,SEI膜的形成消耗了部分锂离子,使得首次充放电不可逆容量增加,降低了电极材料的充放电效率;另一方面,SEI膜具有有机溶剂不溶性,在有机电解质溶液中能稳定存在,并且溶剂分子不能通过该层钝化膜,从而能有效防止溶剂分子的共嵌入,避免了因溶剂分子共嵌入对电极材料造成的破坏,因而大大提高了电极的循环性能和使用寿命。

因此,深入研究SEI膜的形成机理、组成结构、稳定性及其影响因素,并进一步寻找改善SEI膜性能的有效途径,一直都是世界电化学界研究的热点。

1.SEI膜的成膜机理早在上世纪70年代,人们在研究锂金属二次电池时,就发现在金属锂负极上覆盖着一层钝化膜,这层膜在电池充放电循环中起着非常重要的作用,随着对这种现象研究的深入,研究者们提出了这层钝化膜大致的形成机理,并依靠这些机理,相继提出了几种钝化膜的模型。

在这些模型当中,SEI膜模型得到人们普遍的应用,因此人们习惯于把这种钝化膜称为SEI膜。

硅负极sei膜在循环过程的演变

硅负极sei膜在循环过程的演变

硅负极SEI膜(Solid Electrolyte Interphase)是指在锂离子电池中,锂离子在负极(即硅负极)上嵌入和脱嵌的过程中形成的固体电解质界面膜。

SEI膜的性质对电池的循环稳定性和容量保持率具有重要影响。

本文将从SEI膜的形成机理和演变过程入手,探讨硅负极SEI膜在循环过程中的演变,为锂离子电池材料的研究提供参考。

一、SEI膜的形成机理SEI膜的形成主要是由于硅负极在第一次充放电过程中发生了一系列电化学反应,其中包括:1.1 锂离子嵌入硅负极:在充电过程中,锂离子从正极流向负极,在硅负极表面发生嵌入反应,形成金属硅锂化合物。

1.2 电解质分解:电解质中的溶解盐在电场的作用下发生还原和氧化反应,生成固体氧化物和有机化合物,形成SEI膜的基础。

1.3 基团聚合:形成的固体氧化物和有机化合物会发生进一步的重排和聚合反应,形成致密的SEI膜。

二、SEI膜的演变过程在锂离子电池的循环过程中,SEI膜会发生演变,主要包括以下几个阶段:2.1 初始形成阶段:在第一次充放电循环中,SEI膜经历了较大的形成和膨胀过程,形成了比较厚的SEI膜。

2.2 稳定阶段:在经过数次循环后,SEI膜逐渐稳定下来,电池的循环性能得到改善。

2.3 衰减阶段:随着循环次数的增加,SEI膜会逐渐发生衰减,这主要是因为SEI膜的致密程度下降,导致电池容量下降和循环稳定性变差。

三、影响SEI膜演变的因素SEI膜的演变过程受到多种因素的影响,主要包括:3.1 电解液的性质:电解质中的添加剂、溶解盐浓度和溶剂的选择都会对SEI膜的形成和演变产生影响。

3.2 硅负极的结构和形貌:硅负极的表面形貌和结构对SEI膜的形成和稳定性有着重要影响。

3.3 充放电循环条件:电池的充放电循环条件,包括电流密度、温度和充放电速率等因素都会对SEI膜的演变产生影响。

四、改善SEI膜的方法为了改善硅负极SEI膜的稳定性和循环性能,研究者们提出了多种方法,主要包括:4.1 表面涂层:通过在硅负极表面涂覆一层稳定的SEI材料,可以改善SEI膜的稳定性并提高电池循环性能。

锂离子电池SEI膜形成机理

锂离子电池SEI膜形成机理
说服力的说法。 1.电解液中的锂离子到达SEI膜界面后,借助SEI膜上的锂盐组分进 行阳离子互换传递。 2.电解液中的锂离子去溶剂化后直接穿越SEI膜微孔向电极材料本体 迁移。
SEI膜的特征
1.SEI膜的高温特性 当电池温度升高时,SEI膜和电解液、电极材料发生化学反应,导致其成分、 厚度变化,而且这些反应会放出大量的热,使电池内部发热,甚至起火爆炸。 SEI膜高温时的反应主要有一下两种:
全隐患。
3.SEI膜对石墨表面的影响 SEI膜对石墨表面的钝化可使活性物质表面具有良好的动力稳定性, 同时可确保电池良好的循环性能。但是,有时因SEI膜的形态和结构发 生变化会使石墨表面钝化层破坏,文献中提到的导致钝化层破坏的原因 主要为:
电解液溶剂分子和锂离子形成溶剂化离子,共同在石墨层间脱嵌,这种溶 剂化离子会导致石墨层的有序结构发生扭曲、变形,使电池性能变差。
2.3杂质对SEI膜的影响
锂离子电池电解液对纯度要求很高,因为0.01%以内的杂质就会对电极电化学 性能产生显著的负面影响,如:电解液中的痕量水可以改变SEI膜的组成,痕量 酸对电极表面SEI膜有腐蚀作用,会增加电极的不可逆循环容量。
此外,电池在使用过程中产生的杂质也会对SEI膜产生影响,如:电解液溶剂 组份在充电过程中可能在正极材料表面氧化产生有机酸,这些有机酸一方面会对 电极材料产生腐蚀,引起正极材料表面溶解、剥落;同时也会腐蚀石墨负极表面 的SEI膜。
2.电解液对SEI膜的影响
电解液的组成很大程度上决定了SEI膜的化学组成,所以电解液组成是 影响SEI膜结构和性质的关键因素。
2.1锂盐的影响 Aurbach等通过研究不同锂盐(LiAsF6、LiPF6、LiPF4、LiClO4)的1mol/L
EC+DEC(体积比1:1)电解液对石墨电极SEI膜组成的影响,发现锂盐不同时不 仅SEI膜的形成电位和化学组成有差别,而且溶剂还原产物的相对量也有差别。 由此可见,不通锂盐阴离子不仅改变了SEI膜的成分,也影响溶剂的还原形式, 从而影响电极的可逆容量和循环寿命。

锂离子电池-SEI膜知识介绍

锂离子电池-SEI膜知识介绍

SEI膜形成电压
锂离子嵌入,石墨负极 电极电位变负,并最终 趋于0V。第一次充电时, 0.8V处有电位平台,第 二次充电时,该电位平 台消失,且第二次放电 容量明显低于第一次, 出现不可逆容量。一般 认为0.8V处的电位平台 是溶剂分解和SEI膜形 成所引起的
SEI膜形成电压
预化成0.5C充电5min,负极仍在0.8V以上,并不会生成 SEI膜。0.5C充电电流不会影响SEI的致密程度,不会造成 性能影响
Relationship Between Capacity and IR with Aging Time
105% 100%
%Capacity %Impedance
95%
112% 110% 108% 106%
90% 85%
104% 102% 100%
80% 0
98%
5
10
15
20
25
30
Aging Time(day)
SEI膜知识浅解
浅解要点:
1 SEI在正极还是负极,主要成份及作用 2 SEI膜的形成及破坏条件 3 SEI膜生成工序,工序流程对其是否影响 4 材料对与SEI稳定性的影响
SEI膜定义
在锂离子电池首次充放电过程中,电极材料与电解液在固
液相界面上发生反应,形成一层覆盖于电极材料表面的 钝化层(passivating fi膜形成机理
当电池进行化成(首次充 电时),由EC、DMC、痕 量水分及HF 等与锂离子 反应形成(CH2OCO2Li)2、 LiCH2CH2OCO2Li、 CH3OCO2Li、LiOH、 Li2CO3、LiF等覆盖在负极 表面构成SEI 膜,同时产 生乙烯、氢气、一氧化碳 等气体。主要的化学反应 如下(电解液以EC/DMC + 1mol/L LiPF6为例) :

sei膜和cei成膜的机理

sei膜和cei成膜的机理

sei膜和cei成膜的机理SEI(Solid Electrolyte Interface)膜的形成机理和CEI (Charging Electrolyte Interface)膜的形成机理都与电池中的锂离子和电解液的反应有关。

SEI膜的形成是一个复杂的化学反应过程,在电池首次充电时,电解液中的部分溶剂会在负极表面发生还原反应,与锂离子结合形成新的化学产物。

这些新生成的产物在负极表面经过沉淀形成固体电解质相界面(SEI)膜。

SEI膜的形成是一个自限性过程,当达到一定厚度时,电解液中的锂离子无法继续嵌入负极,从而停止SEI 膜的生长。

SEI膜具有有机溶剂不溶性,在有机电解质溶液中能稳定存在,并且溶剂分子能通过该层钝化膜,从而能有效防止溶剂分子的共嵌入,避免了因溶剂分子共嵌入对电极材料造成的破坏,因而大大提高了电极的循环性能和使用寿命。

CEI膜的形成机理与SEI膜类似,也是在电池首次充电过程中发生的。

在充电过程中,正极材料中的锂离子会脱出并与电解液中的阴离子结合形成一种固体电解质界面(CEI)膜。

CEI膜通常具有较低的离子电导率,可以阻止锂离子的进一步嵌入,从而防止正极材料的过度膨胀和破坏。

总之,SEI膜和CEI膜的形成机理都涉及到锂离子和电解液的反应,以及在电极表面形成固体电解质界面的过程。

这些界面膜的形成对于提高电极的循环性能和使用寿命具有重要的意义。

SEI膜和CEI膜的机理各有优缺点。

SEI膜的优点:1.提高电池的循环寿命:SEI膜的形成能够防止电解液对电极的腐蚀,保护电极不受损坏,从而提高了电池的循环寿命。

2.防止锂枝晶的形成:锂枝晶是一种在锂离子电池充电过程中,锂离子在正极表面沉积形成的晶体。

SEI膜可以阻止锂离子在负极表面沉积,从而避免了锂枝晶的形成,使电池工作更加稳定。

SEI膜的缺点:1.形成过程复杂:SEI膜的形成是一个复杂的化学反应过程,需要精确控制反应条件,否则可能会影响电池的性能。

锂电池活化作用原理

锂电池活化作用原理

锂电池活化作用原理:
锂电池的活化作用原理主要是通过给电池充电来平衡电池内部电荷,使电池被激活,从而使电池具有更高的能量效率。

这一过程也称为电池的化成,是锂电池注液后对电池的首次充电过程。

化成时,锂盐与电解液发生副反应,在锂电池的负极侧生成固态电解质界面(SEI)膜。

这层膜可以阻止副反应进一步的发生,从而减少锂电池中活性锂的损失。

SEI膜的形成对电池的电化学性能有重大影响,其稳定性和均匀性对电池的循环性能和贮存性能有着重要影响。

化成时的温度、电流密度都会对SEI膜的形成产生影响。

通常采用阶梯式充放电的方法,在不同的阶段,充放电电流不同,搁置时间也不同,可根据所采用的材料和工艺路线来确定充放电制度和时间。

一般的研究结果表明,高温下SEI膜的稳定性下降,电极循环性能变差,因为高温时SEI膜的溶解和溶剂分子的共嵌入加剧。

而低温条件下SEI膜趋于稳定。

因此,一般锂离子电池生产商生产的电池在化成后,会采用30~60℃之间保温老化,以改善电池的循环性能和优化电池的贮存性能。

总的来说,锂电池的活化作用原理是通过充电过程平衡电池内部电荷,形成稳定的SEI膜,从而提高电池的能量效率和循环性能。

锂离子电池SEI膜形成机理及化成工艺影响

锂离子电池SEI膜形成机理及化成工艺影响

锂离子电池SEI膜形成机理及化成工艺影响杜强;张一鸣;田爽;刘兆平;张治民【期刊名称】《电源技术》【年(卷),期】2018(42)12【摘要】固体电解质相界面(SEI)膜是锂离子电池在化成工艺过程中形成的重要物质,它的形成以及性能优劣对锂离子电池的最终性能有着重要影响,同时,锂离子电池生产中的化成工艺直接影响SEI膜的性质优劣.综述了电池负极上SEI膜的形成概况、化成工艺的参数控制对SEI膜形成过程和性质的作用,以及其对锂离子电池性能的影响.Si基负极材料是未来负极材料的重点发展方向,分析了针对Si基负极材料的SEI膜形成所面临的困难与挑战,以及Si基负极的化成工艺参数控制是改进电池生产的必要手段与基础.【总页数】5页(P1922-1926)【作者】杜强;张一鸣;田爽;刘兆平;张治民【作者单位】中北大学材料工程学院,山西太原030000;中科院宁波材料与工程技术研究所动力锂电池工程实验室,浙江宁波315201;中科院宁波材料与工程技术研究所动力锂电池工程实验室,浙江宁波315201;中科院宁波材料与工程技术研究所动力锂电池工程实验室,浙江宁波315201;中科院宁波材料与工程技术研究所动力锂电池工程实验室,浙江宁波315201;中北大学材料工程学院,山西太原030000【正文语种】中文【中图分类】TM912【相关文献】1.化成工艺对磷酸铁锂锂离子电池性能的影响 [J], 闻人红雁;毛松科;田德祥2.两种不同化成工艺对锂离子电池性能的影响 [J], 张沿江;武行兵;臧强;王双双;姜雨恒3.锂离子电池化成条件对化成效果的影响 [J], 杨娟4.化成工艺对高镍三元锂离子电池的性能影响 [J], 杨涛;马梦月;刘文凤;董红玉;杨书廷5.化成工艺对高功率型锂离子电池性能的影响 [J], 王猛;安冉因版权原因,仅展示原文概要,查看原文内容请购买。

三元锂电池-SEI膜形成机理

三元锂电池-SEI膜形成机理
全隐患。
3.SEI膜对石墨表面的影响 SEI膜对石墨表面的钝化可使活性物质表面具有良好的动力稳定性, 同时可确保电池良好的循环性能。但是,有时因SEI膜的形态和结构发 生变化会使石墨表面钝化层破坏,文献中提到的导致钝化层破坏的原因 主要为:
电解液溶剂分子和锂离子形成溶剂化离子,共同在石墨层间脱嵌,这种溶 剂化离子会导致石墨层的有序结构发生扭曲、变形,使电池性能变差。
其它表征方法
目前使用的SEI膜分析方法有很多,主要可分为以下几类: SEI膜成分分析:XPS(X射线光电子能谱)、SIMS(二次离子质谱)
IR(红外光谱)、Raman Spectra(拉曼光谱)等 SEI膜结构成像分析:AFM(原子力显微镜)、STM(扫描隧道显微镜)
TEM(透射电镜)等 SEI膜热分析: DSC(差热分析)、ARC(加速量热法)、
3.SEI膜的改性 根据SEI膜的形成过程、机理及其性能特征,人们采用各种方法对
SEI 膜进行改性,以求改善其嵌脱锂性能,延缓 SEI膜的溶解破坏,增 强稳定性,同时减少SEI膜形成过程中锂离子的损失。
3.1碳负极预处理
碳负极的预处理方法有多种:包覆、机械研磨、表面成膜都是有效的方法。 对石墨电极表面氧化、气体还原处理、高温热处理、惰性气体清洗以及低温预处 理都能在一定程度上改善电极表面的SEI膜,增强其稳定性与循环性能 ,减少不 可逆容量 ,增大充放电效率。
2.2溶剂对SEI膜的影响 研究表明,电解液的溶剂对SEI膜有着举足轻重的作用,不同的溶剂在形成 SEI膜中的作用不同。在PC溶液中,形成的SEI膜不能完全覆盖表面,电解液很容 易在石墨表面反应,产生不可逆容量。在纯EC做溶剂时,生成的SEI膜主要成分是 (CH2OCOOLi)2 ,而加入DEC或DMC后,形成的SEI膜的主要成分分别为 C2H5COOLi 和 Li2CO3。显然,后二者形成的SEI膜更稳定。在EC/DEC和EC/DMC的混合体系中, EC 是生成SEI膜的主要来源,只有EC发生了分解,DEC和DMC的主要作用是提高溶 液 的电导率和可溶性,而不在于参与SEI膜的形成。

化成原理及SEI膜的形成

化成原理及SEI膜的形成

锂离子电池化成原理及SEI膜的形成丹蝶斌百家号10-2213:21化成原理SEI膜形成机制⑴在一定的负极电位下,电极/电解液相界面的锂离子与电解液中的溶剂分子等发生不可逆反应;⑵不可逆反应主要发生在电池首次充电过程中;⑶电极表面完全被SEI膜覆盖后,不可逆反应即停止;⑷一旦形成稳定的SEI膜,充放电过程可多次循环进行SEI膜组成成分正极确实也有层膜形成,只是现阶段认为其对电池的影响要远远小于负极表面的SEI膜,因此本文着重讨论负极表面的SEI膜(以下所出现SEI膜未加说明则均指在负极形成的)。

负极材料石墨与电解液界面上通过界面反应能生成SEI膜,多种分析方法也证明SEI膜确实存在,厚度约为100~120nm,其组成主要有各种无机成分如Li2CO3、LiF、Li2O、LiOH等和各种有机成分如ROCO2Li、ROLi、(ROCO2Li)2等。

烷基碳酸锂和Li2CO3均为3.5V前形成SEI膜的主要成分,烷基碳酸锂和烷氧基锂为3.5V后形成SEI膜的主要成分。

化成气体产生与电压关系化成过程中其产气总量于电压3.0V处最大,而当化成电压大于3.5V后,则产生的气体就迅速减少.化成电压小于2.5V时,产生的气体主要为H2和CO2等;随着化成电压的升高,在3.0V~3.8V的范围内,气体的组成主要是C2H4,超出3.8V以后,C2H4含量显著下降,此时产生的气体成分主要为C2H6和CH4.其中,3.0V~3.5V之间为SEI层的主要形成电压区间.而在这一电压区间,产生的气体化成产生气体分类化成产生气体成分比较电解液中主要的有机溶剂结构EC为碳酸乙烯酯;PC为碳酸丙烯酯;DEC为二乙基碳酸酯;DMC为二甲基碳酸酯;DME为二甲氧基乙烷;DOL为二氧戊烷;MEC为甲基乙基碳酸酯化成过程中的主要化学反应正极反应:LiCoO2=Li1-xCoO2+xLi++xe-负极反应:6C+xLi++xe-=LixC6电池总反应:LiCoO2+6C=Li1-xCoO2+LixC6电压低于2.5V时H2O+e→OH-+1/2H2(g)OH-+Li+→LiOH(s)LiOH+Li++e→LiO(s)+1/2H2(g)LiPF6→LiF+PF5PF5+H2O→2HF+PF3OLiCO3+2HF→LiF+H2CO3H2CO3→H2O+CO2(g)SEI层形成过程中的主要反应:EC+e→EC˙(EC自由基)2EC˙+2Li+→CH2=CH2(g)+(CH2OCO2Li)2(s) EC+2e→CH2=CH2(g)+CO32-CO32-+2Li+→Li2CO3EC+2Li++2e→CH3OLi(s)+CO(g)DMC+e+Li+→CH3OCO2Li(s)+CH3˙DMC+e+Li+→CH3OLi(s)+CH3OCO2CH3OCO2+CH3˙→CH3OCO2CH3EMC+e+Li+→CH3OCO2Li(s)+C2H5˙CH3˙+1/2H2→CH4C2H5˙+1/2H2→C2H6CH3˙+CH3˙→C2H6C2H5˙+CH3˙→C3H8DMC+2Li++2e→CH3OLi(s)+CO(g)SEI膜形成中的主要化学现象在电池化成的过程中不仅仅是电能与化学能的转换,同时也伴随着热能的转化;在化成中的化学反应产生的气体包括H2,CO,CO2,C2H4,CH4,C2H6˙˙˙,所以在化成时电芯都有一个气囊,目的就是排出化成中产生的气体。

锂离子电池SEI膜成膜机理及其性质

锂离子电池SEI膜成膜机理及其性质

锂离子电池SEI膜成膜机理及其性质锂离子电池的SEI膜对于其安全性、容量、循环次数等都有重要影响,研究SEI膜的成膜机理及其性质不但很有必要且意义重大。

本文从SEI膜的化学组成成分着手,详细地分析了锂离子电池正负极与电解液之间发生的化学反应,进一步研究了SEI膜的成膜步骤及过程。

最后,总结了SEI膜的性质以及多种环境参量对SEI膜的影响。

研究结果表明,SEI膜的形成是电极材料、电解液溶剂以及电解质在化学条件下共同参与的结果,因而电解液体系(包括盐、溶剂和添加剂)、碳材料微细结构和界面性质、电池化成制度(温度、电流)、杂质均对SEI膜的形成电位、化学组成、结构、稳定性、锂离子电导率等产生影响。

标签:锂离子电池,SEI膜,机制,性质1. SEI膜的形成机制SEI膜不仅在负极表面生成,在正极表面也会产生,下面分别进行讨论。

1.1 炭负极/电解质界面SEI膜机制通过深入研究炭负极/电解液相界面SEI膜的化学组成可有效地推测SEI膜形成反应及其机理。

研究证实PC基、EC基电解液在炭负极界面还原反应过程中,由单电子自由基终止反应形成的烷氧基碳酸锂(ROCO2Li)的存在[3]。

电子自旋共振研究表明,溶剂分子的还原反应一般是溶剂化Li+的溶剂分子在炭负极表面结合电子成为阴离子自由基,继而发生溶剂分子的分解、重组或诱发溶剂分子间的自由基聚合反应,在炭负极/电解液相界面上形成多种溶剂不溶性产物。

这种溶剂还原反应是锂离子电池炭负极界面上形成SEI膜的主要原因。

当采用醚、酯、线状烷基碳酸酯作为溶剂,碳电极上不能可逆地进行嵌脱锂离子,主要原因在这些电解质体系中发生了溶剂共嵌,造成石墨层剥落,形成的SEI膜致密性差。

但是采用AFM(原子力显微镜)技术研究PC基电解质体系中碳电极嵌锂过程,未发现石墨层剥落现象,说明这种机理不适合PC溶剂[5]。

在C/PC基电解质界面上,PC在碳边缘面上还原,生成R(OCO2Li)2和丙烯气体,引起内应力,造成石墨颗粒破裂,形成大量活性的边缘面,继续与PC反应。

锂离子电池化成原理及SEI膜的形成20190816

锂离子电池化成原理及SEI膜的形成20190816

锂离子电池化成原理及SEI膜的形成GAOXY一、化成电池制造后,通过一定的充放电方式将其内部正负极物质激活,改善电池的充放电性能及自放电、储存等综合性能的过程称为化成。

什么是化成?锂电芯的化成是电池的初使化,使电芯的活性物质激活,即是一个能量转换的过程。

锂电芯的化成是一个非常复杂的过程,同时也是影响电池性能很重要的一道工序,因为在Li+第一次充电时,Li+第一次插入到石墨中,会在电池内发生电化学反应, 在电池首次充电过程中不可避免地要在碳负极与电解液的相界面上、形成覆盖在碳电极表面的钝化薄层,人们称之为固体电解质相界面或称SEI膜(SOLID ELECTROLYTE INTERFACE)。

SEI膜的形成一方面消耗了电池中有限的锂离子,这就需要使用更多的含锂正极极料来补偿初次充电过程中的锂消耗; 另一方面也增加了电极/电解液界面的电阻造成一定的电压滞后。

二、化成原理三、SEI膜形成机制⑴在一定的负极电位下,电极/电解液相界面的锂离子与电解液中的溶剂分子等发生不可逆反应;⑵不可逆反应主要发生在电池首次充电过程中;⑶电极表面完全被SEI膜覆盖后,不可逆反应即停止;⑷一旦形成稳定的SEI膜,充放电过程可多次循环进行SEI膜组成成分正极确实也有层膜形成,只是现阶段认为其对电池的影响要远远小于负极表面的SEI膜,因此本文着重讨论负极表面的SEI膜(以下所出现SEI膜未加说明则均指在负极形成的)。

负极材料石墨与电解液界面上通过界面反应能生成SEI膜 ,多种分析方法也证明SEI 膜确实存在,厚度约为100~120nm ,其组成主要有各种无机成分如Li2CO3 、LiF、Li2O、LiOH 等和各种有机成分如ROCO2Li 、ROLi 、(ROCO2Li) 2 等。

烷基碳酸锂和Li2CO3均为3.5V前形成SEI膜的主要成分,烷基碳酸锂和烷氧基锂为3.5V后形成SEI膜的主要成分。

三、化成气体产生与电压关系化成过程中其产气总量于电压3.0V处最大,而当化成电压大于3.5V后,则产生的气体就迅速减少.化成电压小于2.5V时,产生的气体主要为H2和CO2等;随着化成电压的升高,在3.0V~3.8V的范围内,气体的组成主要是C2H4,超出3.8V以后,C2H4含量显著下降,此时产生的气体成分主要为C2H6和CH4.其中,3.0V~3.5V之间为SEI层的主要形成电压区间.而在这一电压区间,产生的气体组分主要为C2H4.因此可以认为,这时SEI层的形成机理主要是电解液溶剂中EC的还原分解.化成产生气体分类化成产生气体成分比较四、化成产生气体的原因及机理当电池电解液采用1mol/L LiPF6-EC~DMC~EMC(三者体积比1:1:1)化成电压小于2.5V下,产生的气体主要为H2和CO2等;化成电压为2.5V时,电解液中的EC开始分解,电压3.0~3.5V的范围内,由于EC的还原分解,产生的气体主要为C2H4;而当电压大于3.0V时,由于电解液中DMC和EMC的分解,除了产生C2H4气外,CH4,C2H6等烷烃类气体也开始出现;电压高于3.8V后,DMC和EMC的还原分解成为主反应.此外,当化成电压处3.0~3.5V之间,化成过程中产生的气体量最大;电压大于3.5V后,由于电池负极表面的SEI层已基本形成,因此,电解液溶剂的还原分解反应受抑制,产生的气体的数量也随之迅速下降.电解液中主要的有机溶剂结构EC为碳酸乙烯酯;PC为碳酸丙烯酯;DEC为二乙基碳酸酯;DMC为二甲基碳酸酯;DME为二甲氧基乙烷;DOL为二氧戊烷;MEC为甲基乙基碳酸酯化成过程中的主要化学反应正极反应: LiCoO2=Li1-xCoO2+xLi++xe-负极反应: 6C+xLi++xe-=LixC6电池总反应: LiCoO2+6C=Li1-xCoO2+LixC6电压低于2.5V时 H2O+e→OH-+1/2H2 (g)OH-+ Li+→ LiOH (s)LiOH+Li++e→LiO(s)+1/2H2(g)LiPF6→LiF+PF5PF5+H2O→2HF+PF3OLiCO3+2HF→LiF+H2CO3H2CO3→H2O+CO2(g )SEI层形成过程中的主要反应:EC+ e→EC·(EC自由基)2EC·+2Li+→CH2=CH2 (g)+(CH2OCO2Li)2 (s)EC+2e→CH2=CH2 (g)+CO32-CO32- + 2Li+→Li2CO3EC+2Li++2e→CH3OLi (s) + CO (g)DMC + e+ Li+→CH3OCO2Li (s)+CH3·DMC+ e+ Li+→CH3OLi (s)+CH3OCO2CH3OCO2+CH3·→CH3OCO2CH3EMC+ e+ Li+→CH3OCO2Li (s)+C2H5·CH3·+1/2H2→CH4C2H5·+1/2H2→C2H6CH3·+CH3·→C2H6C2H5·+CH3·→C3H8DMC+2Li++2e→CH3OLi (s) + CO (g)SEI膜形成中的主要化学现象在电池化成的过程中不仅仅是电能与化学能的转换,同时也伴随着热能的转化;在化成中的化学反应产生的气体包括H2,CO,CO2,C2H4,CH4,C2H6···,所以在化成时电芯都有一个气囊,目的就是排出化成中产生的气体。

2017071002-化成形成SEI膜各阶段过程

2017071002-化成形成SEI膜各阶段过程

一、化成的目的化成是为了电池活化,形成稳定的SEI膜,即纯化过程,类似金属处理中的发兰或淬火。

过程产生气体反应式:LiCoO2 充电 LixCoO2+XLi++Xe-放电Li++e-+yC 充电 LiCy放电其中Y=6,X≈0.5X=0.5为满充,电压为4.2VX>0.5为过充,过充导致太多锂离子嵌入碳原子,界面被挤松开不良,放电衰降快,过充过大导致电池起火,过放为电压低于3.0V,电池易坏掉,因为无电荷,SEI易损坏。

二、化学阶段1、注液后未活化,自然形成电压0.3V2、活化时产生气体,形成SEI纯化膜,各阶段如下:0.3V充电到3.4V 绝大部分气体逸出 SEI初步形成3.4V充电到3.9V 全部气体逸出 SEI膜形成,不够稳根据界面稳定程度重复充放电几次再利用3.0V←4.2V,1C放电测容量在充放电转换中,锂离子和SEI膜中锂相互置换而依存。

三、化成流程设计1、卷绕工艺,界面不良,界面指阴阳+隔离+阳极界面。

①0.02C(或0.05C)小电流充电→3.4V ;慢充为稳定形成SEI膜。

0.02C充电450分钟或0.05C充电270分钟。

②0.1C大电池销快充→3.9V;放出全部气体,因前已形成SEI膜与锂离子有置换能力,可稍加大电流;做Degassing(钢壳抽气封口),放出气体,再次封装,这时SEI膜不稳定。

0.1C充电至3.95V,电压控制。

③0.5C 充电快充→4.2V "可多做几次以便稳定SEI膜片,界面差,但液态电解质电导率高"更大电流4.2V,0.5C 放电→3.0V④此后 3.0V,01C充电→4.2V 测试1C容量4.2V,1.0C放电→3.0V电流大小和SEI膜的关系 SEI膜越多,荷电能力强,电流越大SEI膜越少,荷电能力弱,电流越小其中化成和容量测试为不同工序,即①②为化成流程,③④为分容流程。

四、检查方法检验自放电能力1、常温一个月存储荷电能力2、45℃ 7天看OCV或压降值,并稳定SEI膜3、85℃ 4hr ,4.2 V 满充,看存储性能4、笔记本电脑电池用60℃,300 Cycles,80%Cap 标准容量,阻抗,电压,厚度等都检验。

锂离子电池SEI膜形成机理

锂离子电池SEI膜形成机理

其它表征方法
目前使用的SEI膜分析方法有很多,主要可分为以下几类: SEI膜成分分析:XPS(X射线光电子能谱)、SIMS(二次离子质谱)
IR(红外光谱)、Raman Spectra(拉曼光谱)等 SEI膜结构成像分析:AFM(原子力显微镜)、STM(扫描隧道显微镜)
TEM(透射电镜)等 SEI膜热分析: DSC(差热分析)、ARC(加速量热法)、
简述锂离子电池SEI膜
• SEI膜简介
目 • SEI膜的形成机理及特征 录 • SEI膜的影响因素及改性
• SEI膜的表征
1.SEI膜简介
在液态锂离子电池首次充放电过程中,电极材料与电解液在固液 相界面上发生反应,形成一层覆盖于电极材料表面的钝化层。这种钝 化层是一种界面层,具有固体电解质的特征,是电子绝缘体却是Li+的 优良导体,Li+可以经过该钝化层自由地嵌入和脱出,因此这层钝化膜 被称为“固体电解质界面膜”( solid electrolyte interface) ,简称 SEI膜。
1.SEI膜形成过程:
当电池进行化成(首次充电 时),由EC、DMC、痕量水分及 HF 等与锂离子 反应形成 (CH2OCO2Li)2、LiCH2CH2OCO2Li、 CH3OCO2Li、LiOH、Li2CO3、LiF 等覆盖在负极表面构成SEI 膜, 同时产生乙烯、氢气、一氧化碳 等气体。主要的化学反应如(电 解液以EC/DMC + 1mol/L LiPF6 为例) :
全隐患。
3.SEI膜对石墨表面的影响 SEI膜对石墨表面的钝化可使活性物质表面具有良好的动力稳定性, 同时可确保电池良好的循环性能。但是,有时因SEI膜的形态和结构发 生变化会使石墨表面钝化层破坏,文献中提到的导致钝化层破坏的原因 主要为:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

锂离子电池化成原理及SEI膜的形成
为什么要化成?
电池制造后,通过一定的充放电方式将其内部正负极物质激活,改善电池的充放电性能及自放电、储存等综合性能的过程称为化成。

什么是化成?
锂电芯的化成是电池的初使化,使电芯的活性物质激活,即是一个能量转换的过程。

锂电芯的化成是一个非常复杂的过程,同时也是影响电池性能很重要的一道工序,因为在Li+第一次充电时,Li+第一次插入到石墨中,会在电池内发生电化学反应,在电池首次充电过程中不可避免地要在碳负极与电解液的相界面上、形成覆盖在碳电极表面的钝化薄层,人们称之为固体电解质相界面或称SEI膜(SOLIDELECTROLYTEINTERFACE)。

SEI膜的形成一方面消耗了电池中有限的锂离子,这就需要使用更多的含锂正极极料来补偿初次充电过程中的锂消耗;另一方面也增加了电极/电解液界面的电阻造成一定的电压滞后。

化成原理
SEI膜形成机制
⑴在一定的负极电位下,电极/电解液相界面的锂离子与电解液中的溶剂分子等发生不可逆反应;
⑵不可逆反应主要发生在电池首次充电过程中;
⑶电极表面完全被SEI膜覆盖后,不可逆反应即停止;
⑷一旦形成稳定的SEI膜,充放电过程可多次循环进行
SEI膜组成成分
正极确实也有层膜形成,只是现阶段认为其对电池的影响要远远小于负极表面的SEI膜,因此本文着重讨论负极表面的SEI膜(以下所出现SEI膜未加说明则均指在负极形成的)。

负极材料石墨与电解液界面上通过界面反应能生成SEI膜,多种分析方法也证明SEI膜确实存在,厚度约为100~120nm,其组成主要有各种无机成分如Li2CO3、LiF、Li2O、LiOH等和各种有机成分如ROCO2Li、ROLi、(ROCO2Li)2等。

烷基碳酸锂和Li2CO3均为3.5V前形成SEI膜的主要成分,烷基碳酸锂和烷氧基锂为3.5V后形成SEI膜的主要成分。

化成气体产生与电压关系
化成过程中其产气总量于电压3.0V处最大,而当化成电压大于3.5V后,则产生的气体就迅速减少.化成电压小于2.5V时,产生的气体主要为H2和CO2等;随着化成电压的升高,在3.0V~3.8V的范围内,气体的组成主要是C2H4,超出3.8V以后,C2H4含量显著下降,此时产生的气体成分主要为C2H6和CH4.其中,3.0V~3.5V之间为SEI层的主要形成电压区间.而在这一电压区间,产生的气体组分主要为C2H4.因此可以认为,这时SEI层的形成机理主要是电解液溶剂中EC的还原分解.
化成产生气体分类
化成产生气体成分比较
电解液中主要的有机溶剂结构
化成过程中的主要化学反应
正极反应:
LiCoO2=Li1-xCoO2+xLi++xe- 负极反应:
6C+xLi++xe-=LixC6
电池总反应:
LiCoO2+6C=Li1-xCoO2+LixC6 电压低于2.5V时
H2O+e→OH-+1/2H2(g)
OH-+Li+→LiOH(s)
LiOH+Li++e→LiO(s)+1/2H2(g) LiPF6→LiF+PF5
PF5+H2O→2HF+PF3O
LiCO3+2HF→LiF+H2CO3
H2CO3→H2O+CO2(g)
EC+e→EC˙(EC自由基)
2EC˙+2Li+→CH2=CH2(g)+(CH2OCO2Li)2(s) EC+2e→CH2=CH2(g)+CO32-
CO32-+2Li+→Li2CO3
EC+2Li++2e→CH3OLi(s)+CO(g)
DMC+e+Li+→CH3OCO2Li(s)+CH3˙
DMC+e+Li+→CH3OLi(s)+CH3OCO2
CH3OCO2+CH3˙→CH3OCO2CH3
EMC+e+Li+→CH3OCO2Li(s)+C2H5˙
CH3˙+1/2H2→CH4
C2H5˙+1/2H2→C2H6
CH3˙+CH3˙→C2H6
C2H5˙+CH3˙→C3H8
DMC+2Li++2e→CH3OLi(s)+CO(g)
在电池化成的过程中不仅仅是电能与化学能的转换,同时也伴随着热能的转化;在化成中的化学反应产生的气体包括H2,CO,CO2,C2H4,CH4,C2H6˙˙˙,所以在化成时电芯都有一个气囊,目的就是排出化成中产生的气体。

SEI膜形成的质量、稳定性、界面的优化是决定电池寿命不可忽视的重要因素。

化成设备
ATL用于生产的主要的化成设备为杭州可靠性仪器厂生产的锂离子电池化成系统分为2A/2.5A/3A等几种类型,按project又分成气压针床式/装架式/插老化板几种
LIP—3AHB01(512高温)
LIP—3AB01(512常温)
LIP—3AHF04(576高温)
LIP—3AF04(768常温)
LIP—3AP02(3A装架机)
LIP—2AP02(2A装架机)
LIP—3AHB01W(恒功率)
LIP—0.5AHB01(0.5A高温)
化成设备电路原理
采用继电器及稳压管串联,分别给每个工位根据校准流程参数进行充放电,及恒压充电,在这过程中用6.5位的高精度表进行监控。

记录每个工位的实际参数。

同时机器上的控制板也返回每个对应的回检参数。

每个工位根据不同的参数大小需要测试15次以上。

上位机的校准软件根据这两个参数算出K值和B值。

从K.B 值中求出其工位的线性参数。

根据其工位的线性参数来判断其工位的电路元件误差值。

把每个工位的线性参数集合在一起通过校准软件写入AT28C256的芯片里。

每个工位经过校准后,根据其线性参数来执行其工位相对当前的流程值补上差值。

使实际电流电压参数和回检值一致。

化成设备日常监控及维护
通道精度检查
现在ATL-SSL化成设备的精度除开装架机器外,所有的化成机精度电压都在±2mV,电流都在±2mA之内。

化成机器通讯线连接是否良好
高温化成应检查温度表
测试机器高温送风马达运转时声音是否正常
老化板检查
1.夹子
夹子松劲度及弹性是否良好,是否破损,是否掉胶垫
2.金手指
金手指完好无损,光洁度要好,干净清洁,铜箔粘贴要牢固
3.金手指外缘是否平整
金手指外缘的PCB板要平整,不能凹凸不平。

4.老化板是否变形,松动,少螺丝
化成测试流程
第一步休眠
第二步恒流充电
以0.02C恒流充电270min,小电流充电目的使形成的SEI膜质量、界面更好,但形成的SEI膜不稳定,易与前面的分解产物发生反应,需进一步充电使SEI 膜趋于稳定。

第三步休眠
目的是使两次充电有一个转换过程,并达到消除极化的作用;
第四步恒流充电
以0.1C充电到3.95V,在SEI膜基本形成后以稍大一点电流充,不但节约更多时间;且形成的SEI膜致密,热稳定性更好,此时的SEI膜将电解液与石墨完全隔开,只许离子通过到达石墨层。

但此时电压不能充得太高易造成析锂。

名词解释:
休眠:在化成测试中表现为不做充电或放电,起到不同倍率充电流程间的转换作用;
0.1*500则为50mA
电芯在刚发流程休眠结束后,立即检查每个电芯的电流和电压,对电压异常偏低或0电压,电流为0或电流远低于设定值,检查是否没夹好,夹子断线,夹子虚焊,没夹好的重新夹好,夹子断线或虚焊的应立即休眠该电芯将其取出,并在软件中删除其电芯编号。

对电压和电流异常偏高,如电压为4499,电流为2499(1.5A的机器为1499),应立即休眠将该电芯取出,并在软件中删除其电芯编号。

如果是老化板有问题,挑出送维修房维修,如果是通道有问题,应做好记录,等待工程师维修。

2、发流程后电压充不上
如果电芯在化成过成中出现电压和电流异常波动,跳跃,或者电流正常,电压一直充不上去,应立即休眠该电芯,以免引起燃烧。

如果在充电过程中,电压不升反降,应立即休眠。

3、对异常停电处理:
打开机器相应的化成名(必须是断电时机器化成名)
断电保护
自动搜寻历史数据
搜寻完毕后对话框自动关闭,查看机器有否采集到实时数据
依次进行其它机器操作。

4、过充
过度充电和过度放电,将对锂离子电池的正负极造成永久的损坏,从分子层面看,可以直观的理解,过度放电将导致负极碳过度释出锂离子而使得其片层结构出现
塌陷,过度充电将把太多的锂离子硬塞进负极碳结构里去,而使得其中一些锂离子再也无法释放出来。

相关文档
最新文档