2018年上海高考理科数学试题word版

合集下载

2018年普通高等学校招生全国统一考试数学试题(上海卷,含答案)

2018年普通高等学校招生全国统一考试数学试题(上海卷,含答案)

2018年普通高等学校招生全国统一考试数学试题(上海卷)一、填空题(本大题共有12题,满分54分第1-6题每题4分,第7-12题每题5分)1.行列式4125的值为 。

2.双曲线2214x y -=的渐近线方程为 。

3.在(1+x )7的二项展开式中,x ²项的系数为 。

(结果用数值表示) 4.设常数a R ∈,函数f x x a =+()㏒₂(),若f x ()的反函数的图像经过点31(,),则a= 。

5.已知复数z 满足117i z i +=-()(i 是虚数单位),则∣z ∣= 。

6.记等差数列{} n a 的前几项和为S n ,若87014a a a =+=₃,,则S 7= 。

7.已知21123α∈---{,,,,,,},若幂函数()nf x x =为奇函数,且在0+∞(,)上速减,则α=_____8.在平面直角坐标系中,已知点A (-1,0),B (2,0),E ,F 是y 轴上的两个动点,且|EF |=2,则AE ·BF 的最小值为______9.有编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,则这三个砝码的总质量为9克的概率是______(结果用最简分数表示)10.设等比数列{}的通项公式为a n =q ⁿ+1(n ∈N*),前n 项和为S n 。

若1Sn 1lim2n n a →∞+=,则q=____________11.已知常数a >0,函数222()(2)f x ax =+的图像经过点65p p ⎛⎫ ⎪⎝⎭,、15Q q ⎛⎫- ⎪⎝⎭,,若236p q pq +=,则a =__________12.已知实数x ₁、x ₂、y ₁、y ₂满足:²²1x y +=₁₁,²²1x y +=₂₂,212x x y y +=₁₂₁,则的最大值为__________二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.设P 是椭圆²5x + ²3y =1上的动点,则P 到该椭圆的两个焦点的距离之和为( ) (A )2(B )2(C )2(D )414.已知a R ,则“1a ﹥”是“1a1﹤”的( ) (A )充分非必要条件 (B )必要非充分条件 (C )充要条件(D )既非充分又非必要条件15.《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马.设AA ₁是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点,以AA ₁为底面矩形的一边,则这样的阳马的个数是( )(A )4(B )8 (C )12 (D )1616.设D 是含数1的有限实数集,f x ()是定义在D 上的函数,若f x ()的图像绕原点逆时针旋转π6后与原图像重合,则在以下各项中,1f ()的可能取值只能是( )(A(B(C (D )0三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.(本题满分14分,第1小题满分6分,第2小题满分8分)已知圆锥的顶点为P ,底面圆心为O ,半径为2 (1)设圆锥的母线长为4,求圆锥的体积;(2)设PO =4,OA ,OB 是底面半径,且∠AOB =90°,M 为线段AB 的中点,如图,求异面直线PM 与OB 所成的角的大小.18.(本题满分14分,第1小题满分6分,第2小题满分8分) 设常数a R ∈,函数f x ()22?asin x cos x =+ (1)若f x ()为偶函数,求a 的值;(2)若4f π〔〕1=,求方程1f x =()ππ-[,]上的解。

2018年高考数学上海卷高考真题(含答案)

2018年高考数学上海卷高考真题(含答案)

数学试卷 第1页(共18页) 数学试卷 第2页(共18页)绝密★启用前上海市2018年普通高等学校招生全国统一考试数 学本试卷满分150分,考试时间120分钟.一、填空题(本大题共有12题,满分54分第1-6题每题4分,第7-12题每题5分)1.行列式4125的值为 。

2.双曲线2214x y -=的渐近线方程为 。

3.在71x +()的二项展开式中,2x 项的系数为 。

(结果用数值表示) 4.设常数a R ∈,函数()2()f x log x a =+,若()f x 的反函数的图像经过点(3,1),则a = 。

5.已知复数z 满足(1)17i z i +=-(i 是虚数单位),则z = 。

6.记等差数列{}n a 的前几项和为Sn ,若3870,14a a a =+= ,则7S = 。

7.已知112,1,,,1,2,322α⎧⎫∈---⎨⎬⎩⎭,若幂函数()n f x x =为奇函数,且在()0,+∞上递减,则α= 。

8.在平面直角坐标系中,已知点(1,0),(2,0),,A B E F -是y 轴上的两个动点,且2EF =,则AE BF ⋅的最小值为 。

9.有编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,则这三个砝码的总质量为9克的概率是______(结果用最简分数表示)10.设等比数列{}n a 的通项公式为n 1N*n a q n =+∈(),前n 项和为n S 。

若1Sn 1lim 2n n a →∞+=,则q = 。

11.已知常数0a >,函数()222()|2f x ax =+的图像经过点6,5p p ⎛⎫ ⎪⎝⎭、1,5Q q ⎛⎫- ⎪⎝⎭,若236p q pq +=,则a = 。

12.已知实数x x y y ₁、₂、₁、₂满足:22111x y +=,22221x y +=,121212x x y y +=,则的最大值为 。

二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项.13.设P 是椭圆22153x y +=上的动点,则P 到该椭圆的两个焦点的距离之和为( )A.B.C.D.14.已知a R ∈,则“1a >”是“11a<”的( )A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件15.《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马.设AA ₁是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点,以AA ₁为底面矩形的一边,则这样的阳马的个数是( )A.4B.8C.12D.1616.设D 是含数1的有限实数集,()f x 是定义在D 上的函数,若()f x 的图像绕原点逆时针旋转6π后与原图像重合,则在以下各项中,1f ()的可能取值只能是 ( )D.0三、解答题(本大题共5小题,满分76分)17.(本题满分14分,第1小题满分6分,第2小题满分8分) 已知圆锥的顶点为P ,底面圆心为O ,半径为2 (1)设圆锥的母线长为4,求圆锥的体积;(2)设4PO =,OA ,OB 是底面半径,且90AOB ∠=︒,M 为线段AB 的中点,如图,求异面直线PM 与OB 所成的角的大小.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共18页) 数学试卷 第4页(共18页)18.(本题满分14分,第1小题满分6分,第2小题满分8分) 设常数a R ∈,函数2()sin 22cos f x a x x =+ (1)若()f x 为偶函数,求a 的值;(2)若14f π⎛⎫= ⎪⎝⎭,求方程()1f x =-[]ππ-上的解。

2018年上海市高考数学试卷(含详细答案解析)

2018年上海市高考数学试卷(含详细答案解析)

2018年上海市高考数学试卷一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)考生应在答题纸的相应位置直接填写结果.1.(4分)行列式的值为.2.(4分)双曲线﹣y2=1的渐近线方程为.3.(4分)在(1+x)7的二项展开式中,x2项的系数为(结果用数值表示).4.(4分)设常数a∈R,函数f(x)=1og2(x+a).若f(x)的反函数的图象经过点(3,1),则a=.5.(4分)已知复数z满足(1+i)z=1﹣7i(i是虚数单位),则|z|=.6.(4分)记等差数列{a n}的前n项和为S n,若a3=0,a6+a7=14,则S7=.7.(5分)已知α∈{﹣2,﹣1,﹣,1,2,3},若幂函数f(x)=xα为奇函数,且在(0,+∞)上递减,则α=.8.(5分)在平面直角坐标系中,已知点A(﹣1,0)、B(2,0),E、F是y轴上的两个动点,且||=2,则的最小值为.9.(5分)有编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,则这三个砝码的总质量为9克的概率是(结果用最简分数表示).10.(5分)设等比数列{a n}的通项公式为a n=q n﹣1(n∈N*),前n项和为S n.若=,则q=.11.(5分)已知常数a>0,函数f(x)=的图象经过点P(p,),Q(q,).若2p+q=36pq,则a=.12.(5分)已知实数x1、x2、y1、y2满足:x12+y12=1,x22+y22=1,x1x2+y1y2=,则+的最大值为.二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.(5分)设P是椭圆=1上的动点,则P到该椭圆的两个焦点的距离之和为()A.2 B.2 C.2 D.414.(5分)已知a∈R,则“a>1”是“<1”的()A.充分非必要条件 B.必要非充分条件C.充要条件D.既非充分又非必要条件15.(5分)《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马,设AA1是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点、以AA1为底面矩形的一边,则这样的阳马的个数是()A.4 B.8 C.12 D.1616.(5分)设D是函数1的有限实数集,f(x)是定义在D上的函数,若f(x)的图象绕原点逆时针旋转后与原图象重合,则在以下各项中,f(1)的可能取值只能是()A.B.C.D.0三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.(14分)已知圆锥的顶点为P,底面圆心为O,半径为2.(1)设圆锥的母线长为4,求圆锥的体积;(2)设PO=4,OA、OB是底面半径,且∠AOB=90°,M为线段AB的中点,如图.求异面直线PM与OB所成的角的大小.18.(14分)设常数a∈R,函数f(x)=asin2x+2cos2x.(1)若f(x)为偶函数,求a的值;(2)若f()=+1,求方程f(x)=1﹣在区间[﹣π,π]上的解.19.(14分)某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均用时.某地上班族S中的成员仅以自驾或公交方式通勤.分析显示:当S中x%(0<x<100)的成员自驾时,自驾群体的人均通勤时间为f(x)=(单位:分钟),而公交群体的人均通勤时间不受x影响,恒为40分钟,试根据上述分析结果回答下列问题:(1)当x在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤时间?(2)求该地上班族S的人均通勤时间g(x)的表达式;讨论g(x)的单调性,并说明其实际意义.20.(16分)设常数t>2.在平面直角坐标系xOy中,已知点F(2,0),直线l:x=t,曲线Γ:y2=8x(0≤x≤t,y≥0).l与x轴交于点A、与Γ交于点B.P、Q 分别是曲线Γ与线段AB上的动点.(1)用t表示点B到点F的距离;(2)设t=3,|FQ|=2,线段OQ的中点在直线FP上,求△AQP的面积;(3)设t=8,是否存在以FP、FQ为邻边的矩形FPEQ,使得点E在Γ上?若存在,求点P的坐标;若不存在,说明理由.21.(18分)给定无穷数列{a n},若无穷数列{b n}满足:对任意n∈N*,都有|b n ﹣a n|≤1,则称{b n}与{a n}“接近”.(1)设{a n}是首项为1,公比为的等比数列,b n=a n+1+1,n∈N*,判断数列{b n}是否与{a n}接近,并说明理由;(2)设数列{a n}的前四项为:a1=1,a2=2,a3=4,a4=8,{b n}是一个与{a n}接近的数列,记集合M={x|x=b i,i=1,2,3,4},求M中元素的个数m;(3)已知{a n}是公差为d的等差数列,若存在数列{b n}满足:{b n}与{a n}接近,且在b2﹣b1,b3﹣b2,…,b201﹣b200中至少有100个为正数,求d的取值范围.2018年上海市高考数学试卷参考答案与试题解析一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)考生应在答题纸的相应位置直接填写结果.1.(4分)行列式的值为18.【分析】直接利用行列式的定义,计算求解即可.【解答】解:行列式=4×5﹣2×1=18.故答案为:18.【点评】本题考查行列式的定义,运算法则的应用,是基本知识的考查.2.(4分)双曲线﹣y2=1的渐近线方程为±.【分析】先确定双曲线的焦点所在坐标轴,再确定双曲线的实轴长和虚轴长,最后确定双曲线的渐近线方程.【解答】解:∵双曲线的a=2,b=1,焦点在x轴上而双曲线的渐近线方程为y=±∴双曲线的渐近线方程为y=±故答案为:y=±【点评】本题考察了双曲线的标准方程,双曲线的几何意义,特别是双曲线的渐近线方程,解题时要注意先定位,再定量的解题思想3.(4分)在(1+x)7的二项展开式中,x2项的系数为21(结果用数值表示).【分析】利用二项式展开式的通项公式求得展开式中x2的系数.【解答】解:二项式(1+x)7展开式的通项公式为T r+1=•x r,令r=2,得展开式中x2的系数为=21.故答案为:21.【点评】本题考查了二项展开式的通项公式的应用问题,是基础题.4.(4分)设常数a∈R,函数f(x)=1og2(x+a).若f(x)的反函数的图象经过点(3,1),则a=7.【分析】由反函数的性质得函数f(x)=1og2(x+a)的图象经过点(1,3),由此能求出a.【解答】解:∵常数a∈R,函数f(x)=1og2(x+a).f(x)的反函数的图象经过点(3,1),∴函数f(x)=1og2(x+a)的图象经过点(1,3),∴log2(1+a)=3,解得a=7.故答案为:7.【点评】本题考查实数值的求法,考查函数的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.5.(4分)已知复数z满足(1+i)z=1﹣7i(i是虚数单位),则|z|=5.【分析】把已知等式变形,然后利用复数代数形式的乘除运算化简,再由复数求模公式计算得答案.【解答】解:由(1+i)z=1﹣7i,得,则|z|=.故答案为:5.【点评】本题考查了复数代数形式的乘除运算,考查了复数模的求法,是基础题.6.(4分)记等差数列{a n}的前n项和为S n,若a3=0,a6+a7=14,则S7=14.【分析】利用等差数列通项公式列出方程组,求出a1=﹣4,d=2,由此能求出S7.【解答】解:∵等差数列{a n}的前n项和为S n,a3=0,a6+a7=14,∴,解得a1=﹣4,d=2,∴S7=7a1+=﹣28+42=14.故答案为:14.【点评】本题考查等差数列的前7项和的求法,考查等差数列的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.7.(5分)已知α∈{﹣2,﹣1,﹣,1,2,3},若幂函数f(x)=xα为奇函数,且在(0,+∞)上递减,则α=﹣1.【分析】由幂函数f(x)=xα为奇函数,且在(0,+∞)上递减,得到a是奇数,且a<0,由此能求出a的值.【解答】解:∵α∈{﹣2,﹣1,﹣,1,2,3},幂函数f(x)=xα为奇函数,且在(0,+∞)上递减,∴a是奇数,且a<0,∴a=﹣1.故答案为:﹣1.【点评】本题考查实数值的求法,考查幂函数的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.8.(5分)在平面直角坐标系中,已知点A(﹣1,0)、B(2,0),E、F是y轴上的两个动点,且||=2,则的最小值为﹣3.【分析】据题意可设E(0,a),F(0,b),从而得出|a﹣b|=2,即a=b+2,或b=a+2,并可求得,将a=b+2带入上式即可求出的最小值,同理将b=a+2带入,也可求出的最小值.【解答】解:根据题意,设E(0,a),F(0,b);∴;∴a=b+2,或b=a+2;且;∴;当a=b+2时,;∵b2+2b﹣2的最小值为;∴的最小值为﹣3,同理求出b=a+2时,的最小值为﹣3.故答案为:﹣3.【点评】考查根据点的坐标求两点间的距离,根据点的坐标求向量的坐标,以及向量坐标的数量积运算,二次函数求最值的公式.9.(5分)有编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,则这三个砝码的总质量为9克的概率是(结果用最简分数表示).【分析】求出所有事件的总数,求出三个砝码的总质量为9克的事件总数,然后求解概率即可.【解答】解:编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,3个数中含有1个2;2个2,没有2,3种情况,所有的事件总数为:=10,这三个砝码的总质量为9克的事件只有:5,3,1或5,2,2两个,所以:这三个砝码的总质量为9克的概率是:=,故答案为:.【点评】本题考查古典概型的概率的求法,是基本知识的考查.10.(5分)设等比数列{a n}的通项公式为a n=q n﹣1(n∈N*),前n项和为S n.若=,则q=3.【分析】利用等比数列的通项公式求出首项,通过数列的极限,列出方程,求解公比即可.【解答】解:等比数列{a n}的通项公式为a=q n﹣1(n∈N*),可得a1=1,因为=,所以数列的公比不是1,,a n=q n.+1可得====,可得q=3.故答案为:3.【点评】本题考查数列的极限的运算法则的应用,等比数列求和以及等比数列的简单性质的应用,是基本知识的考查.11.(5分)已知常数a>0,函数f(x)=的图象经过点P(p,),Q(q,).若2p+q=36pq,则a=6.【分析】直接利用函数的关系式,利用恒等变换求出相应的a值.【解答】解:函数f(x)=的图象经过点P(p,),Q(q,).则:,整理得:=1,解得:2p+q=a2pq,由于:2p+q=36pq,所以:a2=36,由于a>0,故:a=6.故答案为:6【点评】本题考查的知识要点:函数的性质的应用,代数式的变换问题的应用.12.(5分)已知实数x1、x2、y1、y2满足:x12+y12=1,x22+y22=1,x1x2+y1y2=,则+的最大值为+.【分析】设A(x1,y1),B(x2,y2),=(x1,y1),=(x2,y2),由圆的方程和向量数量积的定义、坐标表示,可得三角形OAB为等边三角形,AB=1,+的几何意义为点A,B两点到直线x+y﹣1=0的距离d1与d2之和,由两平行线的距离可得所求最大值.【解答】解:设A(x1,y1),B(x2,y2),=(x1,y1),=(x2,y2),由x12+y12=1,x22+y22=1,x1x2+y1y2=,可得A,B两点在圆x2+y2=1上,且•=1×1×cos∠AOB=,即有∠AOB=60°,即三角形OAB为等边三角形,AB=1,+的几何意义为点A,B两点到直线x+y﹣1=0的距离d1与d2之和,显然A,B在第三象限,AB所在直线与直线x+y=1平行,可设AB:x+y+t=0,(t>0),由圆心O到直线AB的距离d=,可得2=1,解得t=,即有两平行线的距离为=,即+的最大值为+,故答案为:+.【点评】本题考查向量数量积的坐标表示和定义,以及圆的方程和运用,考查点与圆的位置关系,运用点到直线的距离公式是解题的关键,属于难题.二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.(5分)设P是椭圆=1上的动点,则P到该椭圆的两个焦点的距离之和为()A.2 B.2 C.2 D.4【分析】判断椭圆长轴(焦点坐标)所在的轴,求出a,接利用椭圆的定义,转化求解即可.【解答】解:椭圆=1的焦点坐标在x轴,a=,P是椭圆=1上的动点,由椭圆的定义可知:则P到该椭圆的两个焦点的距离之和为2a=2.故选:C.【点评】本题考查椭圆的简单性质的应用,椭圆的定义的应用,是基本知识的考查.14.(5分)已知a∈R,则“a>1”是“<1”的()A.充分非必要条件 B.必要非充分条件C.充要条件D.既非充分又非必要条件【分析】“a>1”⇒“”,“”⇒“a>1或a<0”,由此能求出结果.【解答】解:a∈R,则“a>1”⇒“”,“”⇒“a>1或a<0”,∴“a>1”是“”的充分非必要条件.故选:A.【点评】本题考查充分条件、必要条件的判断,考查不等式的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.15.(5分)《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马,设AA1是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点、以AA1为底面矩形的一边,则这样的阳马的个数是()A.4 B.8 C.12 D.16【分析】根据新定义和正六边形的性质可得答案.【解答】解:根据正六边形的性质,则D1﹣A1ABB1,D1﹣A1AFF1满足题意,而C1,E1,C,D,E,和D1一样,有2×4=8,当A1ACC1为底面矩形,有4个满足题意,当A1AEE1为底面矩形,有4个满足题意,故有8+4+4=16故选:D.【点评】本题考查了新定义,以及排除组合的问题,考查了棱柱的特征,属于中档题.16.(5分)设D是函数1的有限实数集,f(x)是定义在D上的函数,若f(x)的图象绕原点逆时针旋转后与原图象重合,则在以下各项中,f(1)的可能取值只能是()A.B.C.D.0【分析】直接利用定义函数的应用求出结果.【解答】解:由题意得到:问题相当于圆上由12个点为一组,每次绕原点逆时针旋转个单位后与下一个点会重合.我们可以通过代入和赋值的方法当f(1)=,,0时,此时得到的圆心角为,,0,然而此时x=0或者x=1时,都有2个y与之对应,而我们知道函数的定义就是要求一个x只能对应一个y,因此只有当x=,此时旋转,此时满足一个x只会对应一个y,因此答案就选:B.故选:B.【点评】本题考查的知识要点:定义性函数的应用.三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.(14分)已知圆锥的顶点为P,底面圆心为O,半径为2.(1)设圆锥的母线长为4,求圆锥的体积;(2)设PO=4,OA、OB是底面半径,且∠AOB=90°,M为线段AB的中点,如图.求异面直线PM与OB所成的角的大小.【分析】(1)由圆锥的顶点为P,底面圆心为O,半径为2,圆锥的母线长为4能求出圆锥的体积.(2)以O为原点,OA为x轴,OB为y轴,OP为z轴,建立空间直角坐标系,利用向量法能求出异面直线PM与OB所成的角.【解答】解:(1)∵圆锥的顶点为P,底面圆心为O,半径为2,圆锥的母线长为4,∴圆锥的体积V===.(2)∵PO=4,OA,OB是底面半径,且∠AOB=90°,M为线段AB的中点,∴以O为原点,OA为x轴,OB为y轴,OP为z轴,建立空间直角坐标系,P(0,0,4),A(2,0,0),B(0,2,0),M(1,1,0),O(0,0,0),=(1,1,﹣4),=(0,2,0),设异面直线PM与OB所成的角为θ,则cosθ===.∴θ=arccos.∴异面直线PM与OB所成的角的为arccos.【点评】本题考查圆锥的体积的求法,考查异面直线所成角的正切值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.18.(14分)设常数a∈R,函数f(x)=asin2x+2cos2x.(1)若f(x)为偶函数,求a的值;(2)若f()=+1,求方程f(x)=1﹣在区间[﹣π,π]上的解.【分析】(1)根据函数的奇偶性和三角形的函数的性质即可求出,(2)先求出a的值,再根据三角形函数的性质即可求出.【解答】解:(1)∵f(x)=asin2x+2cos2x,∴f(﹣x)=﹣asin2x+2cos2x,∵f(x)为偶函数,∴f(﹣x)=f(x),∴﹣asin2x+2cos2x=asin2x+2cos2x,∴2asin2x=0,∴a=0;(2)∵f()=+1,∴asin+2cos2()=a+1=+1,∴a=,∴f(x)=sin2x+2cos2x=sin2x+cos2x+1=2sin(2x+)+1,∵f(x)=1﹣,∴2sin(2x+)+1=1﹣,∴sin(2x+)=﹣,∴2x+=﹣+2kπ,或2x+=π+2kπ,k∈Z,∴x=﹣π+kπ,或x=π+kπ,k∈Z,∵x∈[﹣π,π],∴x=或x=或x=﹣或x=﹣【点评】本题考查了三角函数的化简和求值,以及三角函数的性质,属于基础题.19.(14分)某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均用时.某地上班族S中的成员仅以自驾或公交方式通勤.分析显示:当S中x%(0<x<100)的成员自驾时,自驾群体的人均通勤时间为f(x)=(单位:分钟),而公交群体的人均通勤时间不受x影响,恒为40分钟,试根据上述分析结果回答下列问题:(1)当x在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤时间?(2)求该地上班族S的人均通勤时间g(x)的表达式;讨论g(x)的单调性,并说明其实际意义.【分析】(1)由题意知求出f(x)>40时x的取值范围即可;(2)分段求出g(x)的解析式,判断g(x)的单调性,再说明其实际意义.【解答】解;(1)由题意知,当30<x<100时,f(x)=2x+﹣90>40,即x2﹣65x+900>0,解得x<20或x>45,∴x∈(45,100)时,公交群体的人均通勤时间少于自驾群体的人均通勤时间;(2)当0<x≤30时,g(x)=30•x%+40(1﹣x%)=40﹣;当30<x<100时,g(x)=(2x+﹣90)•x%+40(1﹣x%)=﹣x+58;∴g(x)=;当0<x<32.5时,g(x)单调递减;当32.5<x<100时,g(x)单调递增;说明该地上班族S中有小于32.5%的人自驾时,人均通勤时间是递减的;有大于32.5%的人自驾时,人均通勤时间是递增的;当自驾人数为32.5%时,人均通勤时间最少.【点评】本题考查了分段函数的应用问题,也考查了分类讨论与分析问题、解决问题的能力.20.(16分)设常数t>2.在平面直角坐标系xOy中,已知点F(2,0),直线l:x=t,曲线Γ:y2=8x(0≤x≤t,y≥0).l与x轴交于点A、与Γ交于点B.P、Q 分别是曲线Γ与线段AB上的动点.(1)用t表示点B到点F的距离;(2)设t=3,|FQ|=2,线段OQ的中点在直线FP上,求△AQP的面积;(3)设t=8,是否存在以FP、FQ为邻边的矩形FPEQ,使得点E在Γ上?若存在,求点P的坐标;若不存在,说明理由.【分析】(1)方法一:设B点坐标,根据两点之间的距离公式,即可求得|BF|;方法二:根据抛物线的定义,即可求得|BF|;(2)根据抛物线的性质,求得Q点坐标,即可求得OD的中点坐标,即可求得直线PF的方程,代入抛物线方程,即可求得P点坐标,即可求得△AQP的面积;(3)设P及E点坐标,根据直线k PF•k FQ=﹣1,求得直线QF的方程,求得Q点坐标,根据+=,求得E点坐标,则()2=8(+6),即可求得P点坐标.【解答】解:(1)方法一:由题意可知:设B(t,2t),则|BF|==t+2,∴|BF|=t+2;方法二:由题意可知:设B(t,2t),由抛物线的性质可知:|BF|=t+=t+2,∴|BF|=t+2;(2)F(2,0),|FQ|=2,t=3,则|FA|=1,∴|AQ|=,∴Q(3,),设OQ的中点D,D(,),k QF==﹣,则直线PF方程:y=﹣(x﹣2),联立,整理得:3x2﹣20x+12=0,解得:x=,x=6(舍去),∴△AQP的面积S=××=;(3)存在,设P(,y),E(,m),则k PF==,k FQ=,直线QF方程为y=(x﹣2),∴y Q=(8﹣2)=,Q(8,),根据+=,则E(+6,),∴()2=8(+6),解得:y2=,∴存在以FP、FQ为邻边的矩形FPEQ,使得点E在Γ上,且P(,).【点评】本题考查抛物线的性质,直线与抛物线的位置关系,考查转化思想,计算能力,属于中档题.21.(18分)给定无穷数列{a n},若无穷数列{b n}满足:对任意n∈N*,都有|b n ﹣a n|≤1,则称{b n}与{a n}“接近”.(1)设{a n}是首项为1,公比为的等比数列,b n=a n+1+1,n∈N*,判断数列{b n}是否与{a n}接近,并说明理由;(2)设数列{a n}的前四项为:a1=1,a2=2,a3=4,a4=8,{b n}是一个与{a n}接近的数列,记集合M={x|x=b i,i=1,2,3,4},求M中元素的个数m;(3)已知{a n}是公差为d的等差数列,若存在数列{b n}满足:{b n}与{a n}接近,且在b2﹣b1,b3﹣b2,…,b201﹣b200中至少有100个为正数,求d的取值范围.【分析】(1)运用等比数列的通项公式和新定义“接近”,即可判断;(2)由新定义可得a n﹣1≤b n≤a n+1,求得b i,i=1,2,3,4的范围,即可得到所求个数;(3)运用等差数列的通项公式可得a n,讨论公差d>0,d=0,﹣2<d<0,d≤﹣2,结合新定义“接近”,推理和运算,即可得到所求范围.【解答】解:(1)数列{b n}与{a n}接近.理由:{a n}是首项为1,公比为的等比数列,可得a n=,b n=a n+1+1=+1,则|b n﹣a n|=|+1﹣|=1﹣<1,n∈N*,可得数列{b n}与{a n}接近;(2){b n}是一个与{a n}接近的数列,可得a n﹣1≤b n≤a n+1,数列{a n}的前四项为:a1=1,a2=2,a3=4,a4=8,可得b1∈[0,2],b2∈[1,3],b3∈[3,5],b4∈[7,9],可能b1与b2相等,b2与b3相等,但b1与b3不相等,b4与b3不相等,集合M={x|x=b i,i=1,2,3,4},M中元素的个数m=3或4;(3){a n}是公差为d的等差数列,若存在数列{b n}满足:{b n}与{a n}接近,可得a n=a1+(n﹣1)d,①若d>0,取b n=a n,可得b n+1﹣b n=a n+1﹣a n=d>0,则b2﹣b1,b3﹣b2,…,b201﹣b200中有200个正数,符合题意;②若d=0,取b n=a1﹣,则|b n﹣a n|=|a1﹣﹣a1|=<1,n∈N*,可得b n+1﹣b n=﹣>0,则b2﹣b1,b3﹣b2,…,b201﹣b200中有200个正数,符合题意;③若﹣2<d<0,可令b2n﹣1=a2n﹣1﹣1,b2n=a2n+1,则b2n﹣b2n﹣1=a2n+1﹣(a2n﹣1﹣1)=2+d>0,则b2﹣b1,b3﹣b2,…,b201﹣b200中恰有100个正数,符合题意;④若d≤﹣2,若存在数列{b n}满足:{b n}与{a n}接近,即为a n﹣1≤b n≤a n+1,a n+1﹣1≤b n+1≤a n+1+1,可得b n+1﹣b n≤a n+1+1﹣(a n﹣1)=2+d≤0,b2﹣b1,b3﹣b2,…,b201﹣b200中无正数,不符合题意.综上可得,d的范围是(﹣2,+∞).【点评】本题考查新定义“接近”的理解和运用,考查等差数列和等比数列的定义和通项公式的运用,考查分类讨论思想方法,以及运算能力和推理能力,属于难题.第21页(共21页)。

2018年上海高考数学真题及答案

2018年上海高考数学真题及答案

2018年上海市高考数学试卷参考答案与试题解析一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)考生应在答题纸的相应位置直接填写结果. 1.(4分)(2018?上海)行列式的值为18 .【考点】OM:二阶行列式的定义.菁优网版权所有【专题】11 :计算题;49 :综合法;5R :矩阵和变换.【分析】直接利用行列式的定义,计算求解即可.【解答】解:行列式=4×5﹣2×1=18.故答案为:18.【点评】本题考查行列式的定义,运算法则的应用,是基本知识的考查.2.(4分)(2018?上海)双曲线﹣y2=1的渐近线方程为±.【考点】KC:双曲线的性质.菁优网版权所有【专题】11 :计算题.【分析】先确定双曲线的焦点所在坐标轴,再确定双曲线的实轴长和虚轴长,最后确定双曲线的渐近线方程.【解答】解:∵双曲线的a=2,b=1,焦点在x轴上而双曲线的渐近线方程为y=±∴双曲线的渐近线方程为y=±故答案为:y=±【点评】本题考察了双曲线的标准方程,双曲线的几何意义,特别是双曲线的渐近线方程,解题时要注意先定位,再定量的解题思想3.(4分)(2018?上海)在(1+x)7的二项展开式中,x2项的系数为21 (结果用数值表示).【考点】DA:二项式定理.菁优网版权所有【专题】38 :对应思想;4O:定义法;5P :二项式定理.【分析】利用二项式展开式的通项公式求得展开式中x2的系数.【解答】解:二项式(1+x)7展开式的通项公式为T r+1=?x r,令r=2,得展开式中x2的系数为=21.故答案为:21.【点评】本题考查了二项展开式的通项公式的应用问题,是基础题.4.(4分)(2018?上海)设常数a∈R,函数f (x)=1og2(x+a).若f(x)的反函数的图象经过点(3,1),则a= 7 .【考点】4R:反函数.菁优网版权所有【专题】11 :计算题;33 :函数思想;4O:定义法;51 :函数的性质及应用.【分析】由反函数的性质得函数f(x)=1og2(x+a)的图象经过点(1,3),由此能求出a.【解答】解:∵常数a∈R,函数f(x)=1og2(x+a).f(x)的反函数的图象经过点(3,1),∴函数f(x)=1og2(x+a)的图象经过点(1,3),∴log2(1+a)=3,解得a=7.故答案为:7.【点评】本题考查实数值的求法,考查函数的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.5.(4分)(2018?上海)已知复数z满足(1+i)z=1﹣7i(i是虚数单位),则|z|= 5 .【考点】A8:复数的模.菁优网版权所有【专题】38 :对应思想;4A :数学模型法;5N :数系的扩充和复数.【分析】把已知等式变形,然后利用复数代数形式的乘除运算化简,再由复数求模公式计算得答案.【解答】解:由(1+i)z=1﹣7i,得,则|z|=.故答案为:5.【点评】本题考查了复数代数形式的乘除运算,考查了复数模的求法,是基础题.6.(4分)(2018?上海)记等差数列{a n}的前n 项和为S n,若a3=0,a6+a7=14,则S7= 14 .【考点】85:等差数列的前n项和.菁优网版权所有【专题】11 :计算题;34 :方程思想;4O:定义法;54 :等差数列与等比数列.【分析】利用等差数列通项公式列出方程组,求出a1=﹣4,d=2,由此能求出S7.【解答】解:∵等差数列{a n}的前n项和为S n,a3=0,a6+a7=14,∴,解得a1=﹣4,d=2,∴S7=7a1+=﹣28+42=14.故答案为:14.【点评】本题考查等差数列的前7项和的求法,考查等差数列的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.7.(5分)(2018?上海)已知α∈{﹣2,﹣1,﹣,1,2,3},若幂函数f(x)=xα为奇函数,且在(0,+∞)上递减,则α=﹣1 .【考点】4U:幂函数的概念、解析式、定义域、值域.菁优网版权所有【专题】11 :计算题;34 :方程思想;4O:定义法;51 :函数的性质及应用.【分析】由幂函数f(x)=xα为奇函数,且在(0,+∞)上递减,得到a是奇数,且a<0,由此能求出a的值.【解答】解:∵α∈{﹣2,﹣1,,1,2,3},幂函数f(x)=xα为奇函数,且在(0,+∞)上递减,∴a是奇数,且a<0,∴a=﹣1.故答案为:﹣1.【点评】本题考查实数值的求法,考查幂函数的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.8.(5分)(2018?上海)在平面直角坐标系中,已知点A(﹣1,0)、B(2,0),E、F是y轴上的两个动点,且||=2,则的最小值为﹣3 .【考点】9O:平面向量数量积的性质及其运算.菁优网版权所有【专题】11 :计算题;35 :转化思想;41 :向量法;5A :平面向量及应用.【分析】据题意可设E(0,a),F(0,b),从而得出|a﹣b|=2,即a=b+2,或b=a+2,并可求得,将a=b+2带入上式即可求出的最小值,同理将b=a+2带入,也可求出的最小值.【解答】解:根据题意,设E(0,a),F(0,b);∴;∴a=b+2,或b=a+2;且;∴;当a=b+2时,;∵b2+2b﹣2的最小值为;∴的最小值为﹣3,同理求出b=a+2时,的最小值为﹣3.故答案为:﹣3.【点评】考查根据点的坐标求两点间的距离,根据点的坐标求向量的坐标,以及向量坐标的数量积运算,二次函数求最值的公式.9.(5分)(2018?上海)有编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,则这三个砝码的总质量为9克的概率是(结果用最简分数表示).【考点】CB:古典概型及其概率计算公式.菁优网版权所有【专题】11 :计算题;34 :方程思想;49 :综合法;5I :概率与统计.【分析】求出所有事件的总数,求出三个砝码的总质量为9克的事件总数,然后求解概率即可.【解答】解:编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,3个数中含有1个2;2个2,没有2,3种情况,所有的事件总数为:=10,这三个砝码的总质量为9克的事件只有:5,3,1或5,2,2两个,所以:这三个砝码的总质量为9克的概率是:=,故答案为:.【点评】本题考查古典概型的概率的求法,是基本知识的考查.10.(5分)(2018?上海)设等比数列{a n}的通项公式为a n=q n﹣1(n∈N*),前n项和为S n.若=,则q= 3 .【考点】8J:数列的极限.菁优网版权所有【专题】11 :计算题;34 :方程思想;35 :转化思想;49 :综合法;55 :点列、递归数列与数学归纳法.【分析】利用等比数列的通项公式求出首项,通过数列的极限,列出方程,求解公比即可.【解答】解:等比数列{a n}的通项公式为a=q n ﹣1(n∈N*),可得a=1,1因为=,所以数列的公比不是1,,a n+1=q n.可得====,可得q=3.故答案为:3.【点评】本题考查数列的极限的运算法则的应用,等比数列求和以及等比数列的简单性质的应用,是基本知识的考查.11.(5分)(2018?上海)已知常数a>0,函数f(x)=的图象经过点P(p,),Q(q,).若2p+q=36pq,则a= 6 .【考点】3A:函数的图象与图象的变换.菁优网版权所有【专题】35 :转化思想;51 :函数的性质及应用.【分析】直接利用函数的关系式,利用恒等变换求出相应的a值.【解答】解:函数f(x)=的图象经过点P (p,),Q(q,).则:,整理得:=1,解得:2p+q=a2pq,由于:2p+q=36pq,所以:a2=36,由于a>0,故:a=6.故答案为:6【点评】本题考查的知识要点:函数的性质的应用,代数式的变换问题的应用.12.(5分)(2018?上海)已知实数x1、x2、y1、y2满足:x12+y12=1,x22+y22=1,x1x2+y1y2=,则+的最大值为+.【考点】7F:基本不等式及其应用;IT:点到直线的距离公式.菁优网版权所有【专题】35 :转化思想;48 :分析法;59 :不等式的解法及应用.【分析】设A(x1,y1),B(x2,y2),=(x1,y1),=(x2,y2),由圆的方程和向量数量积的定义、坐标表示,可得三角形OAB为等边三角形,AB=1,+的几何意义为点A,B两点到直线x+y﹣1=0的距离d1与d2之和,由两平行线的距离可得所求最大值.【解答】解:设A(x1,y1),B(x2,y2),=(x1,y1),=(x2,y2),由x12+y12=1,x22+y22=1,x1x2+y1y2=,可得A,B两点在圆x2+y2=1上,且?=1×1×cos∠AOB=,即有∠AOB=60°,即三角形OAB为等边三角形,AB=1,+的几何意义为点A,B两点到直线x+y﹣1=0的距离d1与d2之和,显然A,B在第三象限,AB所在直线与直线x+y=1平行,可设AB:x+y+t=0,(t>0),由圆心O到直线AB的距离d=,可得2=1,解得t=,即有两平行线的距离为=,即+的最大值为+,故答案为:+.【点评】本题考查向量数量积的坐标表示和定义,以及圆的方程和运用,考查点与圆的位置关系,运用点到直线的距离公式是解题的关键,属于难题.二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.(5分)(2018?上海)设P是椭圆=1上的动点,则P到该椭圆的两个焦点的距离之和为()A.2 B.2 C.2 D.4【考点】K4:椭圆的性质.菁优网版权所有【专题】11 :计算题;49 :综合法;5D :圆锥曲线的定义、性质与方程.【分析】判断椭圆长轴(焦点坐标)所在的轴,求出a,接利用椭圆的定义,转化求解即可.【解答】解:椭圆=1的焦点坐标在x轴,a=,P是椭圆=1上的动点,由椭圆的定义可知:则P到该椭圆的两个焦点的距离之和为2a=2.故选:C.【点评】本题考查椭圆的简单性质的应用,椭圆的定义的应用,是基本知识的考查.14.(5分)(2018?上海)已知a∈R,则“a>1”是“<1”的()A.充分非必要条件 B.必要非充分条件C.充要条件 D.既非充分又非必要条件【考点】29:充分条件、必要条件、充要条件.菁优网版权所有【专题】11 :计算题;34 :方程思想;4O:定义法;5L :简易逻辑.【分析】“a>1”?“”,“”?“a>1或a<0”,由此能求出结果.【解答】解:a∈R,则“a>1”?“”,“”?“a>1或a<0”,∴“a>1”是“”的充分非必要条件.故选:A.【点评】本题考查充分条件、必要条件的判断,考查不等式的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.15.(5分)(2018?上海)《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马,设AA1是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点、以AA1为底面矩形的一边,则这样的阳马的个数是()A.4 B.8 C.12 D.16【考点】D8:排列、组合的实际应用.菁优网版权所有【专题】11 :计算题;38 :对应思想;4R:转化法;5O :排列组合.【分析】根据新定义和正六边形的性质可得答案.【解答】解:根据正六边形的性质,则D1﹣A1ABB1,D1﹣A1AFF1满足题意,而C1,E1,C,D,E,和D1一样,有2×6=12,当A1ACC1为底面矩形,有2个满足题意,当A1AEE1为底面矩形,有2个满足题意,故有12+2+2=16故选:D.【点评】本题考查了新定义,以及排除组合的问题,考查了棱柱的特征,属于中档题.16.(5分)(2018?上海)设D是含数1的有限实数集,f(x)是定义在D上的函数,若f(x)的图象绕原点逆时针旋转后与原图象重合,则在以下各项中,f(1)的可能取值只能是()A.B.C.D.0【考点】3A:函数的图象与图象的变换.菁优网版权所有【专题】35 :转化思想;51 :函数的性质及应用;56 :三角函数的求值.【分析】直接利用定义函数的应用求出结果.【解答】解:由题意得到:问题相当于圆上由12个点为一组,每次绕原点逆时针旋转个单位后与下一个点会重合.我们可以通过代入和赋值的方法当f(1)=,,0时,此时得到的圆心角为,,0,然而此时x=0或者x=1时,都有2个y与之对应,而我们知道函数的定义就是要求一个x只能对应一个y,因此只有当x=,此时旋转,此时满足一个x只会对应一个y,因此答案就选:B.故选:B.【点评】本题考查的知识要点:定义性函数的应用.三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.(14分)(2018?上海)已知圆锥的顶点为P,底面圆心为O,半径为2.(1)设圆锥的母线长为4,求圆锥的体积;(2)设PO=4,OA、OB是底面半径,且∠AOB=90°,M为线段AB的中点,如图.求异面直线PM与OB所成的角的大小.【考点】LM:异面直线及其所成的角;L5:旋转体(圆柱、圆锥、圆台);LF:棱柱、棱锥、棱台的体积.菁优网版权所有【专题】11 :计算题;31 :数形结合;41 :向量法;5F :空间位置关系与距离;5G :空间角.【分析】(1)由圆锥的顶点为P,底面圆心为O,半径为2,圆锥的母线长为4能求出圆锥的体积.(2)以O为原点,OA为x轴,OB为y轴,OP为z轴,建立空间直角坐标系,利用向量法能求出异面直线PM与OB所成的角.【解答】解:(1)∵圆锥的顶点为P,底面圆心为O,半径为2,圆锥的母线长为4,∴圆锥的体积V===.(2)∵PO=4,OA,OB是底面半径,且∠AOB=90°,M为线段AB的中点,∴以O为原点,OA为x轴,OB为y轴,OP 为z轴,建立空间直角坐标系,P(0,0,4),A(2,0,0),B(0,2,0),M(1,1,0),O(0,0,0),=(1,1,﹣4),=(0,2,0),设异面直线PM与OB所成的角为θ,则cosθ===.∴θ=arccos.∴异面直线PM与OB所成的角的为arccos.【点评】本题考查圆锥的体积的求法,考查异面直线所成角的正切值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.18.(14分)(2018?上海)设常数a∈R,函数f(x)=asin2x+2cos2x.(1)若f(x)为偶函数,求a的值;(2)若f()=+1,求方程f(x)=1﹣在区间[﹣π,π]上的解.【考点】GP:两角和与差的三角函数;GS:二倍角的三角函数.菁优网版权所有【专题】11 :计算题;38 :对应思想;4R:转化法;58 :解三角形.【分析】(1)根据函数的奇偶性和三角形的函数的性质即可求出,(2)先求出a的值,再根据三角形函数的性质即可求出.【解答】解:(1)∵f(x)=asin2x+2cos2x,∴f(﹣x)=﹣asin2x+2cos2x,∵f(x)为偶函数,∴f(﹣x)=f(x),∴﹣asin2x+2cos2x=asin2x+2cos2x,∴2asin2x=0,∴a=0;(2)∵f()=+1,∴asin+2cos2()=a+1=+1,∴a=,∴f(x)=sin2x+2cos2x=sin2x+cos2x+1=2sin (2x+)+1,∵f(x)=1﹣,∴2sin(2x+)+1=1﹣,∴sin(2x+)=﹣,∴2x+=﹣+2kπ,或2x+=π+2kπ,k∈Z,∴x=﹣π+kπ,或x=π+kπ,k∈Z,∵x∈[﹣π,π],∴x=或x=或x=﹣或x=﹣【点评】本题考查了三角函数的化简和求值,以及三角函数的性质,属于基础题.19.(14分)(2018?上海)某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均用时.某地上班族S中的成员仅以自驾或公交方式通勤.分析显示:当S中x%(0<x<100)的成员自驾时,自驾群体的人均通勤时间为f(x)=(单位:分钟),而公交群体的人均通勤时间不受x影响,恒为40分钟,试根据上述分析结果回答下列问题:(1)当x在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤时间?(2)求该地上班族S的人均通勤时间g(x)的表达式;讨论g(x)的单调性,并说明其实际意义.【考点】5B:分段函数的应用.菁优网版权所有【专题】12 :应用题;33 :函数思想;4C :分类法;51 :函数的性质及应用.【分析】(1)由题意知求出f(x)>40时x 的取值范围即可;(2)分段求出g(x)的解析式,判断g(x)的单调性,再说明其实际意义.【解答】解;(1)由题意知,当30<x<100时,f(x)=2x+﹣90>40,即x2﹣65x+900>0,解得x<20或x>45,∴x∈(45,100)时,公交群体的人均通勤时间少于自驾群体的人均通勤时间;(2)当0<x≤30时,g(x)=30?x%+40(1﹣x%)=40﹣;当30<x<100时,g(x)=(2x+﹣90)?x%+40(1﹣x%)=﹣x+58;∴g(x)=;当0<x<32.5时,g(x)单调递减;当32.5<x<100时,g(x)单调递增;说明该地上班族S中有小于32.5%的人自驾时,人均通勤时间是递减的;有大于32.5%的人自驾时,人均通勤时间是递增的;当自驾人数为32.5%时,人均通勤时间最少.【点评】本题考查了分段函数的应用问题,也考查了分类讨论与分析问题、解决问题的能力.20.(16分)(2018?上海)设常数t>2.在平面直角坐标系xOy中,已知点F(2,0),直线l:x=t,曲线Γ:y2=8x(0≤x≤t,y≥0).l 与x轴交于点A、与Γ交于点B.P、Q分别是曲线Γ与线段AB上的动点.(1)用t表示点B到点F的距离;(2)设t=3,|FQ|=2,线段OQ的中点在直线FP上,求△AQP的面积;(3)设t=8,是否存在以FP、FQ为邻边的矩形FPEQ,使得点E在Γ上?若存在,求点P的坐标;若不存在,说明理由.【考点】KN:直线与抛物线的位置关系.菁优网版权所有【专题】35 :转化思想;4R:转化法;5D :圆锥曲线的定义、性质与方程.【分析】(1)方法一:设B点坐标,根据两点之间的距离公式,即可求得|BF|;方法二:根据抛物线的定义,即可求得|BF|;(2)根据抛物线的性质,求得Q点坐标,即可求得OD的中点坐标,即可求得直线PF的方程,代入抛物线方程,即可求得P点坐标,即可求得△AQP的面积;(3)设P及E点坐标,根据直线k PF?k FQ=﹣1,求得直线QF的方程,求得Q点坐标,根据+=,求得E点坐标,则()2=8(+6),即可求得P点坐标.【解答】解:(1)方法一:由题意可知:设B (t,2t),则|BF|==t+2,∴|BF|=t+2;方法二:由题意可知:设B(t,2t),由抛物线的性质可知:|BF|=t+=t+2,∴|BF|=t+2;(2)F(2,0),|FQ|=2,t=3,则|FA|=1,∴|AQ|=,∴Q(3,),设OQ的中点D,D(,),k QF==﹣,则直线PF方程:y=﹣(x﹣2),联立,整理得:3x2﹣20x+12=0,解得:x=,x=6(舍去),∴△AQP的面积S=××=;(3)存在,设P(,y),E(,m),则k PF==,k FQ=,直线QF方程为y=(x﹣2),∴y Q=(8﹣2)=,Q(8,),根据+=,则E(+6,),∴()2=8(+6),解得:y2=,∴存在以FP、FQ为邻边的矩形FPEQ,使得点E在Γ上,且P(,).【点评】本题考查抛物线的性质,直线与抛物线的位置关系,考查转化思想,计算能力,属于中档题.21.(18分)(2018?上海)给定无穷数列{a n},若无穷数列{b n}满足:对任意n∈N*,都有|b n ﹣a n|≤1,则称{b n}与{a n}“接近”.(1)设{a n}是首项为1,公比为的等比数列,b n=a n+1+1,n∈N*,判断数列{b n}是否与{a n}接近,并说明理由;(2)设数列{a n}的前四项为:a1=1,a2=2,a3=4,a4=8,{b n}是一个与{a n}接近的数列,记集合M={x|x=b i,i=1,2,3,4},求M中元素的个数m;(3)已知{a n}是公差为d的等差数列,若存在数列{b n}满足:{b n}与{a n}接近,且在b2﹣b1,b3﹣b2,…,b201﹣b200中至少有100个为正数,求d的取值范围.【考点】8M:等差数列与等比数列的综合.菁优网版权所有【专题】34 :方程思想;48 :分析法;54 :等差数列与等比数列.【分析】(1)运用等比数列的通项公式和新定义“接近”,即可判断;(2)由新定义可得a n﹣1≤b n≤a n+1,求得b i,i=1,2,3,4的范围,即可得到所求个数;(3)运用等差数列的通项公式可得a n,讨论公差d>0,d=0,﹣2<d<0,d≤﹣2,结合新定义“接近”,推理和运算,即可得到所求范围.【解答】解:(1)数列{b n}与{a n}接近.理由:{a n}是首项为1,公比为的等比数列,可得a n=,b n=a n+1+1=+1,则|b n﹣a n|=|+1﹣|=1﹣<1,n∈N*,可得数列{b n}与{a n}接近;(2){b n}是一个与{a n}接近的数列,可得a n﹣1≤b n≤a n+1,数列{a n}的前四项为:a1=1,a2=2,a3=4,a4=8,可得b1∈[0,2],b2∈[1,3],b3∈[3,5],b4∈[7,9],可能b1与b2相等,b2与b3相等,但b1与b3不相等,b4与b3不相等,集合M={x|x=b i,i=1,2,3,4},M中元素的个数m=3或4;(3){a n}是公差为d的等差数列,若存在数列{b n}满足:{b n}与{a n}接近,可得a n=a1+(n﹣1)d,①若d>0,取b n=a n,可得b n+1﹣b n=a n+1﹣a n=d >0,则b2﹣b1,b3﹣b2,…,b201﹣b200中有200个正数,符合题意;②若d=0,取b n=a1﹣,则|b n﹣a n|=|a1﹣﹣a1|=<1,n∈N*,可得b n+1﹣b n=﹣>0,则b2﹣b1,b3﹣b2,…,b201﹣b200中有200个正数,符合题意;③若﹣2<d<0,可令b2n﹣1=a2n﹣1﹣1,b2n=a2n+1,则b2n﹣b2n﹣1=a2n+1﹣(a2n﹣1﹣1)=2+d>0,则b2﹣b1,b3﹣b2,…,b201﹣b200中恰有100--WORD格式--专业资料--可编辑---个正数,符合题意;④若d≤﹣2,若存在数列{b n}满足:{b n}与{a n}接近,即为a n﹣1≤b n≤a n+1,a n+1﹣1≤b n+1≤a n+1+1,可得b n+1﹣b n≤a n+1+1﹣(a n﹣1)=2+d≤0,b2﹣b1,b3﹣b2,…,b201﹣b200中无正数,不符合题意.综上可得,d的范围是(﹣2,+∞).【点评】本题考查新定义“接近”的理解和运用,考查等差数列和等比数列的定义和通项公式的运用,考查分类讨论思想方法,以及运算能力和推理能力,属于难题.--。

2018年上海高考数学真题试卷(原卷版)

2018年上海高考数学真题试卷(原卷版)

2018年普通高等学校招生全国统一考试(上海卷)数学试卷一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)1.行列式4125的值为_________.2.双曲线2214x y -=的渐近线方程为_________. 3.在7(1)x +的二项展开式中,2x 项的系数为_________.(结果用数值表示)4.设常数a R ∈,函数2()log ()f x x a =+。

若()f x 的反函数的图像经过点(3,1),则 a =_________.5.已知复数z 满足(1)17i z i +=-(i 是虚数单位),则z =_________.6.记等差数列{}n a 的前n 项和为n S ,若30a =,6714a a +=,则7S =_________.7.已知12,1,,1,2,32α⎧⎫∈---⎨⎬⎩⎭。

若幂函数()f x x α=为奇函数,且在(0,)+∞上递减,则 α=_________.8.在平面直角坐标系中,已知点(1,0)A -,(2,0)B ,E 、F 是y 轴上的两个动点,且2EF =,则AE BF •的最小值为_________.9.有编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个。

从中随机选取三个,则这三个砝码的总质量为9克的概率是_________.(结果用最简分数表示)10.设等比数列{}n a 的通项公式为1n n a q -=(*n ∈N ),前n 项和为n S 。

若11lim 2n n n S a →+∞+=,则q =_________. 11.已知常数0a >,函数2()2x x f x ax =+的图像经过点6,5P p ⎛⎫ ⎪⎝⎭、1,5Q q ⎛⎫- ⎪⎝⎭。

若236p q pq +=,则a =_________.12.已知实数1x 、2x 、1y 、2y 满足:22111x y +=,22221x y +=,121212x x y y +=的最大值为_________.二、选择题(本大题共有4题,满分20分,每题5分) 13.设P 是椭圆22153x y +=上的动点,则P 到该椭圆的两个焦点的距离之和为() (A)B)C)D)14.已知a ∈R ,则“1a >”是“11a<”的() (A )充分非必要条件(B )必要非充分条件(C )充要条件(D )既非充分又非必要条件15.《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马。

2018高考数学上海卷(精编)

2018高考数学上海卷(精编)

2018年普通高等学校招生全国统一考试(上海卷)数 学注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效.3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内.写在试题卷、草稿纸和答题卡上的非答题区域均无效.4.考试结束后,请将本试题卷和答题卡一并上交.一、填空题(本大题共有12题,满分54分第1-6题每题4分,第7-12题每题5分)1.行列式4125的值为 .【答案】18,行列式,4145211825=⨯-⨯= 2.双曲线2214x y -=的渐近线方程为 . 【答案】2xy =±,双曲线性质 3.在7(1)x +的二项展开式中,2x 项的系数为 .(结果用数值表示)【答案】21,二项式通项,2721C =4.设常数a ∈R ,函数2()log ()f x x a =+,若()f x 的反函数的图象经过点(3,1),则a = .【答案】7,反函数,待定系数法,原函数图象经过(1,3)点,由23log (1)a =+,解得7a =5.已知复数z 满足(1)17i z i +=-(i 是虚数单位),则||z = . 【答案】5,复数运算,17|17|||||51|1|i i z i i --===++6.记等差数列{}n a 的前几项和为n S ,若30a =,6714a a +=,则S =7 . 【答案】14,等差通项,等差求和,等差性质 由已知解得2d =,∴42a =,∴74714S a == 7.已知11{2,1,,,1,2,3}22α∈---,若幂函数()f x x α=为奇函数,且在(0,)+∞上递减,则α=__________.【答案】1-,幂函数的单调性、奇偶性8.在平面直角坐标系中,已知点(1,0)A -,(2,0)B ,,E F 是y 轴上的两个动点,且||2EF =,则AE BF ⋅的最小值为_________.【答案】3-,平面向量的坐标运算,二次函数最值设(0,)E m ,(0,2)F m ±,则A E B F ⋅(1,)(2,2)m m =⋅-±222m m =±-2(1)3m =±-9.有编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,则这三个砝码的总质量为9克的概率是______(结果用最简分数表示). 【答案】15,古典概型,∵9531=++或9522=++,∴35215C = 10.设等比数列{}n a 的通项公式为11n n a a q -=(n +∈N ),前n 项和为n S .若11l i m 2n n n S a →∞+=,则q =____________.【答案】3,等比求和,数列极限, 当1q =时,111limlim lim n n n n n S nan a a →∞→∞→∞+==,不符合题意.当1q ≠时,1111(1)11lim lim lim n n n n nn n n n n a q S q qa a q q q +→∞→∞→∞+---==-, 当||1q <时,不合题意;当||1q >时,11111limlim lim 1nnn n n n n n n S q q a q q q +→∞→∞→∞+--==--,∴121q-=--,解得3q =.11.已知常数0a >,函数2()2xx f x ax=+的图象经过点6(,)5P p 、1(,)5Q q -,若236p q pq +=,则a =__________.【答案】6,待定系数法,指数运算,方程思想∵2625p p ap =+,2125q q aq =-+,∴26p ap =-,126q aq =-,∴22p q a pq +=,∴236a =,即6a =.12.已知实数1x 、2x 、1y 、2y 满足:22111x y +=,22221x y +=,121212x x y y +=,则 的最大值为__________.设11(,)A x y ,22(,)B x y ,则A 、B 在单位圆上,∵121212x x y y +=,∴12OA OB ⋅=,即∠3AOB π=的几何意义为点A 、B 到直线:l 10x y +-=的距离之和,即12d d +,如图所示方法一:取AB 中点E ,过E 作EH ⊥l 于H ,则122||d d EH +=,当||EH 过圆心O 时,12d d +取得最大值,易求||OE =,||OH =.【说明的再严格些,就是点E 的轨迹是圆2234x y +=】 方法二:重新建立坐标系,使直线l 平行于x 轴,如图所示依题意,设(cos ,sin )A θθ,(cos(),sin())33B ππθθ++,直线l方程2y =,则12|sin ||sin()|232d d πθθ+=-++-,根据图象可知当,A B 都在直线l 下方时,12d d +可以取得最大值,此时12sin sin()3d d πθθ+=-+)6πθ=+,当23πθ=-时,12d d +二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.设P 是椭圆22153x y +=上的动点,则P 到该椭圆的两个焦点的距离之和为( ) A.B.C.D.【答案】C ,椭圆性质. 14.已知a ∈R ,则“1a >”是“11a<”的( ) A .充分非必要条件 B .必要非充分条件 C .充要条件D .既非充分又非必要条件【答案】A ,分式不等式,不等式性质,充要条件.15.《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马.设1AA 是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点,以1AA 为底面矩形的一边,则这样的阳马的个数是( )A .4B .8C .12D .16【答案】D ,点线面的位置关系,空间想象能力,分类以11AA B B 为底面,分别以11,,,D E D E 为顶点,还有一组;以11AACC 为底面分别以11,,,D F D F 为顶点,还有一组.共计16个阳马.16.设D 是含数1的有限实数集,()f x 是定义在D 上的函数,若()f x 的图象绕原点逆时针旋转6后与原图象重合,则在以下各项中,(1)f 的可能取值只能是( ) ABCD .0【答案】B ,函数概念,空间想象能力, 其它选项不满足“唯一y 值”.三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.(本题满分14分,第1小题满分6分,第2小题满分8分) 已知圆锥的顶点为P ,底面圆心为O ,半径为2.1A B1B 1C 1D 1E 1F CD EF1A(Ⅰ)设圆锥的母线长为4,求圆锥的体积;(Ⅱ)设4PO =,,OA OB 是底面半径,且∠90AOB =︒,M 为线段AB 的中点,如图,求异面直线PM 与OB 所成的角的大小.【解】点线面位置关系,圆锥体积, (Ⅰ)在Rt △POB中,PO ==213V OB PO π=⋅⋅=; (Ⅱ)取OA 中点N ,连结MN ,∵AN NO =,AM MB =,∴//MN OB , ∴∠PMN 为异面直线PM 与OB 所成的角的平面角, 在Rt △PON中,PN =tan PMN ∠=∴异面直线PM 与OB所成的角为18.(本题满分14分,第1小题满分6分,第2小题满分8分) 设常数a ∈R ,函数2()sin 22cos f x a x x =+. (Ⅰ)若()f x 为偶函数,求a 的值;(Ⅱ)若()14f π=,求方程()1f x =[,]ππ-上的解.【解】函数的奇偶性,待定系数法,倍角公式,两角和差的三角函数,已知三角函数值求角(Ⅰ)∵()f x 为偶函数,∴()()f x f x -=在x ∈R 上恒成立, 即22sin(2)2cos ()sin 22cos a x x a x x -+-=+在x ∈R 上恒成立, 即sin 20a x =在x ∈R 上恒成立,∴0a =;OABMPN O ABMP(Ⅱ)∵()14f π=,∴2sin2cos 124a ππ+=,解得a =∴2()22cos f x x x =+,由()1f x =222c o s12x x +=222c o s12x x +-=,2cos2x x +=sin(2)62x π+=-, ∴2264x k πππ+=-或32264x k πππ+=-(k ∈Z ),∴524x k ππ=-或1124x k ππ=-,∵[,]x ππ∈-,∴1124x π=-或524π-或1324π或1924π.19.(本题满分14分,第1小题满分6分,第2小题满分8分)某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均用时,某地上班族S 中的成员仅以自驾或公交方式通勤,分析显示:当S 中%x (0100x <<)的成员自驾时,自驾群体的人均通勤时间为30,030()1800290,30100x f x x x x <≤⎧⎪=⎨+-<<⎪⎩(单位:分钟), 而公交群体的人均通勤时间不受x 影响,恒为40分钟,试根据上述分析结果回答下列问题:(Ⅰ)当x 在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤时间? (Ⅱ)求该地上班族S 的人均通勤时间()g x 的表达式;讨论()g x 的单调性,并说明其实际意义.【解】数学建模,开放型问题,一元二次不等式,分段函数,函数单调性 (Ⅰ)由()40f x >,得180029040x x+->(30100x <<), 化简得2659000x x -+>(30100x <<),解得45100x <<,答:当45100x <<时,公交群体的人均通勤时间少于自驾群体的人均通勤时间;(Ⅱ)依题意30%40(1%),030()1800(290)%40(1%),30100x x x g x x x x x x ⋅+-<≤⎧⎪=⎨+-+-<<⎪⎩2400.1,0300.02 1.358,30100x x x x x -<≤⎧=⎨-+<<⎩【注意函数()g x 在30x =时连续】()g x 在(0,32.5]单调递减;在(32.5,100)单调递增.说明当32.5%以上的人自驾时,人均通勤时间开始增加.20.(本题满分16分,第1小题满分4分,第2小题满分6分,第3小题满分6分) 设常数2t >,在平面直角坐标系xOy 中,已知点(2,0)F ,直线:l x t =,曲线Γ:28y x =(0x t ≤≤,0y ≥),l 与x 轴交于点A ,与Γ交于点B ,P 、Q 分别是曲线Γ与线段AB 上的动点.(Ⅰ)用t 为表示点B 到点F 的距离;(Ⅱ)设3t =,||2FQ =,线段OQ 的中点在直线FP 上,求△AQP 的面积; (Ⅲ)设8t =,是否存在以FP 、FQ 为邻边的矩形FPEQ ,使得点E 在Γ上?若存在,求点P 的坐标;若不存在,说明理由.【解】抛物线定义,直线方程-点斜式,直线与曲线相交,直线相交 (Ⅰ)由抛物线定义可知||22B BF x t =+=+;(Ⅱ)依题意Q ,直线PF方程为2)y x =-,由282)y xy x ⎧=⎪⎨=-⎪⎩,解得23p x =,【p x 也可由斜率相等,向量运算得出,计算量比较大】∴112|||3|(3)223AQP P S PQ x ∆=-=-=; (Ⅲ)设2(,)8n P n ,则2816PF n k n =-,∴2168QF n k n-=-,∴QF 方程为216(2)8n y x n-=--, 由216(2)88n y x nx ⎧-=--⎪⎨⎪=⎩,解得23(16)(8,)4n Q n --由FP FQ FE +=,解得2248(6,)84n n E n++,【过程略】由222488(6)()84n n n ++=,解得2165n =,∴P 点坐标为2(,)55.21.(本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分) 给定无穷数列{}n a ,若无穷数列{}n b 满足:对任意n +∈N ,都有||1n n b a -≤,则称{}n b 与{}n a “接近”.(Ⅰ)设{}n a 是首项为1,公比为12的等比数列,11n n b a +=+,n +∈N ,判断数列{}n b 是否与{}n a 接近,并说明理由;(Ⅱ)设数列{}n a 的前四项为:11a =,22a =,34a =,48a =,{}n b 是一个与{}n a 接近的数列,记集合{|,1,2,3,4}i M x x b i ===,求M 中元素的个数m ;(Ⅲ)已知{}n a 是公差为d 的等差数列,若存在数列{}n b 满足:{}n b 与{}n a 接近,且在21b b -,32b b -,…,201200b b -中至少有100个为正数,求d 的取值范围. 【解】等比通项,等差通项,解绝对值不等式,分类讨论,区间长度 (Ⅰ)依题意11()2n n a -=,1121n n n b a +=+=+,∴1||1()12nn n b a -=-<,∴{}n b 与{}n a 接近;(Ⅱ)∵||1n n b a -≤,∴1[0,2]b ∈,2[1,3]b ∈,3[3,5]b ∈,4[7,9]b ∈,1234,,,b b b b 中至多有两个相等,即3m =或4;(Ⅲ)∵||1n n b a -≤,∴[1,1]n n n b a a ∈-+,111[1,1]n n n b a a +++∈-+, ∴111[2,2]n n n n n n b b a a a a +++-∈--++,即1[2,2]n n b b d d +-∈-+, ①当2d ≤-时,有10n n b b +-≤恒成立,不符合题意; ②当2d >-时,令(1)n n n b a =+-, 则12(1)n n n b b d +-=--,当n 为偶数时,120n n b b d +-=-<; 当n 为奇数时,120n n b b d +-=+>,∴存在数列使21b b -,32b b -,…,201200b b -中至少有100个为正数, 综上所述,2d >-.【由于是“存在数列{}n b ”取的是区间的最大长度,思考:设n n n b a p =+,其中||1n p ≤,11()n n n n b b d p p ++-=--,如果对任意的{}n b 呢?】。

2018年上海数学高考试卷—含答案

2018年上海数学高考试卷—含答案

2018年普通高等学校招生全国统一考试上海数学试卷 2018.06.07一、填空题(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分) 1、行列式4125的值为 .18.2、双曲线2214x y -=的渐近线方程为 .12y x =±.3、在()71x +的二项展开式中,2x 项的系数为 .21.4、设常数a ∈R ,函数()()2log f x x a =+.若()f x 的反函数的图像经过点()3,1,则a = 7.5、已知复数z 满足()()117i z ii +=-是虚数单位,则z= .5.6、记等差数列{}n a 的前n 项和为n S .若30a =,6714a a +=,则7S = .14.7、已知112,1,,,1,2,322α⎧⎫∈---⎨⎬⎩⎭.若幂函数()f x x α=为奇函数,且在()0,+∞上递减,则α= .1-.8、在平面直角坐标系中,已知点()1,0A -、()2,0B ,E 、F 是y 轴上的两个动点,且2EF =,则AE BF ⋅的最小值为 .3-.9、有编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个.从中随机选取三个,则这三个砝码的总质量为9克的概率是 .15.10、设等比数列{}n a 的通项公式为()1*1n n a a q n -=∈N ,前n 项和为n S .若11lim 2n n n S a →∞+=,则q = .3q =.11、已知常数0a >,函数()22x x f x ax =+的图像经过点61,,55P p Q q ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭、.若236p q pq +=,则a = .6a =.12、22111x y +=,22221x y +=,12120.5x x y y +=的最大值为 .解:利用两向量乘积、单位圆、点到直线:10l x y +-=二、选择题(本大题共有4题,满分20分,每题5分)13、设P 是椭圆22153x y +=上的动点,则P 到该椭圆的两个焦点的距离之和为( C ). (A) (B) (C) (D)14、已知a ∈R ,则“1a >”是“11a<”的( A ). (A )充分非必要条件 (B )必要非充分条件 (C )充要条件 (D )既非充分又非必要条件 15、《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马.设1AA 是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点,以1AA 为底面矩形的一边,则这样的阳马的个数是( D ).(A )4 (B )8 (C )12 (D )16A 1A16、设D 是含数1的有限实数集,()f x 是定义在D 上的函数.若()f x 的图像绕原点逆时针旋转6π后与原图像重合,则在以下各项中,()1f 的可能取值只能是( B ). (A(B(C(D )0 三、解答题(本大题共有5题,满分76分)17、(本题满分14分,第1小题满分6分,第2小题满分8分) 已知圆锥的顶点为P ,底面圆心为O ,半径为2, (1)设圆锥的母线长为4,求圆锥的体积;(2)设4PO =,OA OB 、是底面半径,且90AOB ∠=,M 为线段AB 的中点,如图,求异面直线PM 与OB 所成的角的大小.17、解(1)V ;(2)18、(本题满分14分,第1小题满分6分,第2小题满分8分)设常数a ∈R ,函数()2sin 22cos f x a x x =+.OMPBA(1)若()f x 为偶函数,求a 的值;(2)若14f π⎛⎫= ⎪⎝⎭,求方程()1f x =在区间[],ππ-上的解.18、解(1)0a =;(2)115131924242424x ππππ=--、、、.19、(本题满分14分,第1小题满分6分,第2小题满分8分)某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均用时.某地上班族S 中的成员仅以自驾或公交方式通勤.分析显示:当S 中()%0100x x <<的成员自驾时,自驾群体的人均通勤时间为:()()30,0301800290,30100x f x x x x <≤⎧⎪=⎨+-<<⎪⎩单位:分钟, 而公交群体的人均通勤时间不受x 影响,恒为40分钟.试根据上述分析结果回答下列问题: (1)当x 在什么范围时,公交群体的人均通勤时间少于自驾群体的人均通勤时间?(2)求该地上班族S 的人均通勤时间()g x 的表达式;讨论()g x 的单调性,并说明其实际意义. 19、解(1)45100x <<;(2)()240,0301011358,301005010x x g x x x x ⎧-<≤⎪⎪=⎨⎪-+<<⎪⎩,()g x 在(]0,32.5x ∈时单调递减,在[)32.5,100x ∈时单调递增.实际意义为:当S 中32.5%的成员自驾时,该地上班族S 的人均通勤时间达到 最小值36.875分钟.20、(本题满分16分,第1小题满分4分,第2小题满分6分,第3小题满分6分)设常数2t >,在平面直角坐标系xOy 中,已知点()2,0F ,直线l :x t =,曲线Γ:28y x =()0,0x t y ≤≤≥,l 与x 轴交于点A 、与Γ交于点B ,P 、Q 分别是曲线Γ与线段AB 上的动点.(1)用t 表示点B 到点F 的距离;(2)设3t =,2FQ =,线段OQ 的中点在直线FP 上,求△AQP 的面积;(3)设8t =,是否存在以FP 、FQ 为邻边的矩形FPEQ ,使得点E 在Γ上?若存在,求点P 的坐标;若不存在,说明理由.20、解(1)、由抛物线的性质可知点B 到点F 的距离为2+t 。

【真题】2018年上海市高考数学试题含答案解析

【真题】2018年上海市高考数学试题含答案解析

2018年高考数学真题试卷(上海卷)一、填空题1.(2018•上海)行列式4125的值为 。

【答案】18【解析】【解答】4125=45-21=18 【分析】a cb d=ad-bc 交叉相乘再相减。

【题型】填空题 【考查类型】中考真题 【试题级别】高三 【试题地区】上海【试题来源】2018年高考数学真题试卷(上海卷)2.(2018•上海)双曲线2214x y -=的渐近线方程为 。

【答案】12y x =±【解析】【解答】2214x y -=,a=2,b=1。

故渐近线方程为12y x =± 【分析】渐近线方程公式。

注意易错点焦点在x 轴上,渐近线直线方程为22221x y ba -=时,by x a=±。

【题型】填空题 【考查类型】中考真题 【试题级别】高三【试题来源】2018年高考数学真题试卷(上海卷)3.(2018•上海)在(1+x )7的二项展开式中,x ²项的系数为 。

(结果用数值表示) 【答案】21【解析】【解答】(1+x )7中有T r+1=7r rC x ,故当r=2时,27C =762⨯=21 【分析】注意二项式系数,与各项系数之间差别。

考点公式()na b +第r+1项为T r+1=r n r rn C ab-。

【题型】填空题 【考查类型】中考真题 【试题级别】高三 【试题地区】上海【试题来源】2018年高考数学真题试卷(上海卷)4.(2018•上海)设常数a R ∈,函数2()log ()f x x a =+,若f x ()的反函数的图像经过点31(,),则a= 。

【答案】7【解析】【解答】f x ()的反函数的图像经过点31(,),故()f x 过点3(1,),则()13f =,()2log 1a +=3,1+a=23所以a=23-1,故a=7.【分析】原函数()f x 与反函数图像关于y=x 对称,如:原函数上任意点()00,x y ,则反函数上点为()00,y x【题型】填空题 【考查类型】中考真题 【试题级别】高三【试题来源】2018年高考数学真题试卷(上海卷)5.(2018•上海)已知复数z 满足117i z i +=-()(i 是虚数单位),则∣z ∣= 。

2018年全国普通高等学校招生统一考试理科数学(上海)

2018年全国普通高等学校招生统一考试理科数学(上海)

2018年全国普通高等学校招生统一考试理科数学(上海)一、单选题1.关于、的二元一次方程组的系数行列式为()A. B. C. D.2.在数列中,,,则()A. 等于B. 等于0C. 等于D. 不存在3.已知、、为实常数,数列的通项,,则“存在,使得、、成等差数列”的一个必要条件是()A. B. C. D.4.在平面直角坐标系中,已知椭圆和. 为上的动点,为上的动点,是的最大值. 记在上,在上,且,则中元素个数为()A. 2个B. 4个C. 8个D. 无穷个二、填空题5.已知集合,集合,则________6.若排列数,则________7.不等式的解集为________8.已知球的体积为,则该球主视图的面积等于________9.已知复数满足,则________10.设双曲线的焦点为、,为该双曲线上的一点,若,则________11.如图,以长方体的顶点为坐标原点,过的三条棱所在的直线为坐标轴,建立空间直角坐标系,若的坐标为,则的坐标为________12.定义在上的函数的反函数为,若为奇函数,则的解为________13.已知四个函数:①;②;③;④. 从中任选2个,则事件“所选2个函数的图像有且仅有一个公共点”的概率为________14.已知数列和,其中,,的项是互不相等的正整数,若对于任意,的第项等于的第项,则________15.设、,且,则的最小值等于________ 16.如图,用35个单位正方形拼成一个矩形,点、、、以及四个标记为“”的点在正方形的顶点处,设集合,点,过作直线,使得不在上的“”的点分布在的两侧. 用和分别表示一侧和另一侧的“”的点到的距离之和. 若过的直线中有且只有一条满足,则中所有这样的为________三、解答题17.如图,直三棱柱的底面为直角三角形,两直角边AB和AC的长分别为4和2,侧棱的长为5.(1)求三棱柱的体积;(2)设M是BC中点,求直线与平面所成角的大小.18.已知函数,.(1)求的单调递增区间;(2)设△ABC为锐角三角形,角A所对边,角B所对边,若,求△ABC的面积.19.根据预测,某地第个月共享单车的投放量和损失量分别为和(单位:辆),其中,,第个月底的共享单车的保有量是前个月的累计投放量与累计损失量的差.(1)求该地区第4个月底的共享单车的保有量;(2)已知该地共享单车停放点第个月底的单车容纳量(单位:辆). 设在某月底,共享单车保有量达到最大,问该保有量是否超出了此时停放点的单车容纳量?20.在平面直角坐标系xOy中,已知椭圆,为的上顶点,为上异于上、下顶点的动点,为x正半轴上的动点.(1)若在第一象限,且,求的坐标;(2)设,若以A、P、M为顶点的三角形是直角三角形,求M的横坐标;(3)若,直线AQ与交于另一点C,且,,求直线的方程.21.设定义在上的函数满足:对于任意的、,当时,都有.(1)若,求的取值范围;(2)若为周期函数,证明:是常值函数;(3)设恒大于零,是定义在上、恒大于零的周期函数,是的最大值.函数. 证明:“是周期函数”的充要条件是“是常值函数”.参考答案1.C【解析】关于的二元一次方程组的系数行列式,故选C.2.B【解析】数列中,,则,故选B.3.A【解析】存在,使得成等差数列,可得,化简可得,所以使得成等差数列的必要条件是.4.D【解析】椭圆和,为上动点,为上动点,可设,,则,当时,取得最大值,则在上,在上,且中的元素有无穷对对,故选D.5.【解析】,,,,,,,6.3【解析】由,所以,解得.7.【解析】由题意,不等式,得,所以不等式的解集为. 8.【解析】由球的体积公式,可得,则,所以主视图的面积为. 9.【解析】由复数满足,则,所以,所以.10.11【解析】由双曲线的方程,可得,根据双曲线的定义可知,又因为,所以.11.【解析】如图所示,以长方体的顶点为坐标原点,过的三条棱所在直线为坐标轴,建立空间直角坐标系,因为的坐标为,所以,所以.12.-8【解析】由,则,所以的解为. 13.【解析】由四个函数①;②;③;④,从中任选个函数,共有种,其中“所选个函数的图像有且仅有一个公共点”共有①③、①④,共有种,所以“所选个函数的图像有且仅有一个公共点”的概率为.14.2【解析】由,若对于任意的第项等于的第项,则,则所以,所以.15.【解析】由三角函数的性质可知,,所以,即,所以,所以.16.、【解析】设记为“”的四个点是,线段的中点分别为,易知为平行四边形,如图所示;又平行四边形的对角线交于点,则符合条件的直线一定过点,且过点的直线有无数条;由过点和的直线有且仅有1条,过和的直线有且仅有1条,所以符合条件的点是,.17.(1)20;(2)【解析】试题分析:(1)三棱柱的体积,由此能求出结果;(2)连结是直线与平面所成角,由此能求出直线与平面所成角的大小.试题分析:(1)(2),线面角为18.(1);(2)【解析】试题分析:(1)由二倍角的余弦公式和余弦函数的递增区间,解不等式可得所求增区间;(2)由,解得A,再由余弦定理解方程可得c,再由三角形的面积公式,计算即可得到所求值.试题解析:(1)函数由,解得时,,可得的增区间为(2)设△ABC为锐角三角形,角A所对边,角B所对边b=5,若,即有解得,即由余弦定理可得a2=b2+c2﹣2bc cos A,化为c2﹣5c+6=0,解得c=2或3,若c=2,则即有B为钝角,c=2不成立,则c=3,△ABC的面积为19.(1)935;(2)见解析.【解析】试题分析:(1)计算和的前项和的差即可得出答案;(2)令得出,再计算第个月底的保有量和容纳量即可得出结论.试题分析:(1)(2),即第42个月底,保有量达到最大,∴此时保有量超过了容纳量.20.(1);(2)【解析】试题分析:(1)设,联立方程组,能求出点坐标.(2)设,由,求出;由,求出或;由,则点在轴负半轴,不合题意,由此能求出点的横坐标.(3)设根据向量,代入椭圆的方程,求得,得到的坐标,直线的方程.试题分析:(1)联立与,可得(2)设,或(3)设,线段的中垂线与轴的交点即,∵,∴,∵,∴,代入并联立椭圆方程,解得,,∴,∴直线的方程为21.(1);(2)见解析;(3)见解析【解析】试题分析:(1)由,可得函数是一个不递减函数,得,即可求解实数的取值范围;(2)利用反证法,假设不是常值函数,令,且存在一个,使得,由函数的性质得到,从而得出矛盾,即可作出证明;(3)充分性及必要性的证明:类似(2)证明充分性;再证必要性,然后分类证明即可.试题分析:(1)因为对于任意的,当时,都有,即可知道函数是一个不递减的函数,即.若,其导函数为,可以得到.(2)假设不是常值函数,并且其周期为.令,且存在一个,使得.由于的性质可知,,且.因为是周期函数,所以,这与前面的结论矛盾,所以假设不成立,即是常值函数.(3)充分性证明:当为常值函数时,令,即,因为是周期函数,所以也是周期函数.必要性证明:当是周期函数时,令周期为.即有,则,又因为是周期函数,所以.即可得到,所以是周期函数,由(2)的结论可知,是常值函数.综上所述,是周期函数的充要条件是是常值函数.点睛:本题考查抽象函数的新定义问题,属于创新题,符合新高考的走向.它考查学生的阅读理解能力,接受新思维的能力,考查学生分析问题与解决问题的能力,新定义的概念实质上只是一个载体,解决新问题时,只要通过这个载体把问题转化为我们已经熟悉的知识即可,着重考查了逻辑思维能力与理论运算能力,及分类讨论的数学思想方法,试题难度较大,属于难题.。

2018年普通高等学校招生全国统一考试(上海卷) 数学试题及详解

2018年普通高等学校招生全国统一考试(上海卷) 数学试题及详解

2018年普通高等学校招生全国统一考试上海 数学试卷一、填空题(本大题共有12题,满分54分第1-6题每题4分,第7-12题每题5分)1.行列式4125的值为 。

2.双曲线2214x y -=的渐近线方程为 。

3.在(1+x )7的二项展开式中,x ²项的系数为 。

(结果用数值表示)4.设常数a R ∈,函数f x x a =+()㏒₂(),若f x ()的反函数的图像经过点31(,),则a= 。

5.已知复数z 满足117i z i +=-()(i 是虚数单位),则∣z ∣= 。

6.记等差数列{} n a 的前几项和为S n ,若87014a a a =+=₃,,则S 7= 。

7.已知21123α∈---{,,,,,,},若幂函数()n f x x =为奇函数,且在0+∞(,)上速减,则α=_____8.在平面直角坐标系中,已知点A (-1,0),B (2,0),E ,F 是y 轴上的两个动点,且|EF u u v |=2,则AE u u u v·BF u u u v 的最小值为______9.有编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,则这三个砝码的总质量为9克的概率是______(结果用最简分数表示)10.设等比数列{a n }的通项公式为a n =q ⁿ+1(n ∈N *),前n 项和为S n 。

若1Sn 1lim2n n a →∞+=,则q=____________11.已知常数a >0,函数222()(2)f x ax =+的图像经过点65p p ⎛⎫⎪⎝⎭,、15Q q ⎛⎫- ⎪⎝⎭,,若236p q pq +=,则a =__________12.已知实数x ₁、x ₂、y ₁、y ₂满足:²²1x y +=₁₁,²²1x y +=₂₂,212x x y y +=₁₂₁的最大值为__________二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.设P 是椭圆 ²5x +²3y =1上的动点,则P 到该椭圆的两个焦点的距离之和为( )(A )2√2 (B )2√3 (C )2√5 (D )4√214.已知a R,则“1a﹥”是“1a1﹤”的()(A)充分非必要条件(B)必要非充分条件(C)充要条件(D)既非充分又非必要条件15.《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马.设AA₁是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点,以AA₁为底面矩形的一边,则这样的阳马的个数是()(A)4 (B)8(C)12 (D)1616.设D是含数1的有限实数集,f x()是定义在D上的函数,若f x()的图像绕原点逆时针旋转π6后与原图像重合,则在以下各项中,1f()的可能取值只能是()(A)3(B)3(C)3(D)0三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.(本题满分14分,第1小题满分6分,第2小题满分8分)已知圆锥的顶点为P ,底面圆心为O ,半径为2(1)设圆锥的母线长为4,求圆锥的体积; (2)设PO =4,OA ,OB 是底面半径,且∠AOB =90°,M 为线段AB 的中点,如图,求异面直线PM 与OB 所成的角的大小.18.(本题满分14分,第1小题满分6分,第2小题满分8分)设常数a R ∈,函数f x ()22?asin x cos x =+ (1)若f x ()为偶函数,求a 的值; (2)若4f π〔〕31=+,求方程12f x =-()在区间ππ-[,]上的解。

高三数学-2018年上海理2018018001 精品

高三数学-2018年上海理2018018001 精品

2018年全国普通高等学校招生统一考试上海 数学试卷(理工农医类)考生注意:本试卷共有22道试题,满分150分一、填空题(本大题满分为48分)本大题共有12题,只要求直接填写结果,每个空格填对得4分,否则一律得零分。

1.若z ∈C ,且 (3+z)i=1 (i 是虚数单位),则z = .2.已知向量a 和b 的夹角为120°,且|a |=2,|b |=5,则(2a —b )· a= .3.方程log 3(1—2·3x )=2x+1的解x= .4.若正四棱锥的底面边长为23cm ,体积为4cm 3,则它的侧面与底面所成的二面角的大小是 .5.在二项式(1+3x)n 和(2x+5)n 的展开式中,各项系数之和分别记为a n 、b n ,n 是正整数,则nn nn n b a b a 432lim--∞→= .6.已知圆 (x+1)2+y 2=1和圆外一点P (0,2),过点P 作圆的切线,则两条切线夹角的正切是 . 7.在某次花样滑冰比赛中,发生裁判受贿事件.竞赛委员会决定将裁判由原来的9名增至14名,但只任取其中7名裁判的评分作为有效分.若14名裁判中有2个受贿,则有效分中没有受贿裁判的评分的概率是 .(结果用数值表示)8.曲线⎩⎨⎧+=-=1212t y t x (t 为参数)的焦点坐标是 .9.若A 、B 两点的极坐标为A (4,3π)、B (6,0),则AB 中点的极坐标是 .(极角用反三角函数表示)10.设函数f (x)=sin2x.若f (x+t)是偶函数,则t 的一个可能值是 .11.若数列}{n a 中,a 1=3,且a n+1=a n 2(n 是正整数),则数列的通项公式a n = . 12.已知函数y=f (x)(定义域为D ,值域为A )有反函数y=f -1(x),则方程f (x)=0有解x=a ,且f (x)>x (x ∈D )的充要条件是y=f -1(x)满足 .二、选择题(本大题满分16分)本大题共有4题,每题都给出代号为A 、B 、C 、D 的四个结论,其中有且只有一个结论是正确的,必须把正确结论的代号写在题后的圆括号内,选对得4分,不选、选错或者选出的代号超过一个(不论是否都写在圆括号内),一律得零分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年 普 通 高 等 学 校 招 生 全 国 统 一 考 试
上海 数学试卷(理工农医类)
一、填空题(本大题共有14题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分. 1、设x R ∈,则不等式13<-x 的解集为______________________ 2、设i
i
Z 23+=
,期中i 为虚数单位,则Im z =______________________ 3、已知平行直线012:,012:21=++=-+y x l y x l ,则21,l l 的距离_______________
4、某次体检,6位同学的身高(单位:米)分别为1.72,1.78,1.75,1.80,1.69,1.77则这组数据的中位数是_________(米)
5、已知点(3,9)在函数x a x f +=1)(的图像上,则________
)()(1=-x f x f 的反函数 6、如图,在正四棱柱1111D C B A ABCD -中,底面ABCD 的边长为3,1BD 与底面所成角的大小为3
2
arctan
,则该正四棱柱的高等于____________ 7、方程3sin 1cos 2x x =+在区间[]π2,0上的解为___________ 学.科.网
8、在n
x x ⎪⎭⎫

⎛-23的二项式中,所有项的二项式系数之和为256,则常数
项等于_________
9、已知ABC ∆的三边长分别为3,5,7,则该三角形的外接圆半径等于_________
10、设.0,0>>b a 若关于,x y 的方程组1
1
ax y x by +=⎧⎨+=⎩无解,则b a +的取值范
围是____________
11.无穷数列{}n a 由k 个不同的数组成,n S 为{}n a 的前n 项和.若对任意
*∈N n ,{}3,2∈n S ,则k 的最大值为.
12.在平面直角坐标系中,已知A (1,0),B (0,-1),P 是曲线21x y -=上一个动点,则⋅的取值范围是.
13.设[)π2,0,,∈∈c R b a ,若对任意实数x 都有()c bx a x +=⎪⎭
⎫ ⎝
⎛-sin 33sin 2π,

满足条件的有序实数组()c b a ,,的组数为.
14.如图,在平面直角坐标系xOy 中,O 为正八边形
821A A A 的中心,()0,11A .任取不同的两点j i A A ,,点P 满
足=++j i OA OA ,则点P 落在第一象限的概率是. 二、选择题(5×4=20)
15.设R a ∈,则“1>a ”是“12>a ”的( )
(A )充分非必要条件 (B )必要非充分条件
(C )充要条件 (D )既非充分也非必要条件
16.下列极坐标方程中,对应的曲线为右图的是( ) (A )θρcos 56+= (B )θρin s 56+= (C )θρcos 56-= (D )θρin s 56-=
17.已知无穷等比数列{}n a 的公比为q ,前n 项和为n S ,且S S n n =∞
→lim
.下列条件中,使得()*∈<N n S S n 2恒成立的是( ) (A )7.06.0,01<<>q a (B )6.07.0,01-<<-<q a (C )8.07.0,01<<>q a (D )7.08.0,01-<<-<q a
18、设()f x 、()g x 、()h x 是定义域为R 的三个函数,对于命题:①若
()()f x g x +、()()f x h x +、()()g x h x +均为增函数,则()f x 、()g x 、()h x 中
至少有一个增函数;②若()()f x g x +、()()f x h x +、()()g x h x +均是以T 为周期的函数,则()f x 、()g x 、()h x 均是以T 为周期的函数,下列判断正确的是( )
A 、①和②均为真命题
B 、①和②均为假命题
C 、①为真命题,②为假命题
D 、①为假命题,②为真命题 学科.

三、解答题(74分)
19.将边长为1的正方形11AAOO (及其内部)绕的1OO 旋转一周形成圆柱,如图,AC 长为2
3π,11A B 长为3
π,其中1B 与C 在平面11AAOO 的同侧。

(1)求三棱锥111C O A B -的体积;学.科网 (2)求异面直线1B C 与1AA 所成的角的大小。

20、(本题满分14)
有一块正方形菜地EFGH ,EH 所在直线是一条小河,收货的蔬菜可送到F 点或河边运走。

于是,菜地分为两个区域
1S 和2S ,其中1S 中的蔬菜运到河边较近,2S 中的蔬菜运到F 点较近,而菜地内1S 和2S 的分界线C 上的点到河边与到F 点的距离相等,现建立平面直角坐标系,其中原点O 为EF 的中点,点F 的坐标为(1,0),如图 (1)求菜地内的分界线C 的方程
(2)菜农从蔬菜运量估计出1S 面积是2S 面积的两倍,由此得到1S 面积的“经验值”为3
8。

设M 是C 上纵坐标为1的点,请计算以EH 为一边、另一边过点M 的矩形的面积,及五边形EOMGH 的面积,并判断哪一个更接近于1S 面积的经验值
21.(本题满分14分)本题共有2个小题,第1小题满分6分,第2
小题满分8分.
双曲线2
2
21(0)y x b b
-=>的左、右焦点分别为12F F 、,直线l 过2F 且与
双曲线交于A B 、两点。

(1)若l 的倾斜角为2
π
,1F AB ∆是等边三角形,求双曲线的渐近线方
程;
(2)设b =l 的斜率存在,且11()0F A F B AB +⋅=,求l 的斜率. 学科&网
22.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.
已知a R ∈,函数21()log ()f x a x
=+.
(1)当5a =时,解不等式()0f x >;
(2)若关于x 的方程2()log [(4)25]0f x a x a --+-=的解集中恰好有一个
元素,求a 的取值范围;
(3)设0a >,若对任意1
[,1]2
t ∈,函数()f x 在区间[,1]t t +上的最大值与最小值的差不超过1,求a 的取值范围.
23. (本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.
若无穷数列{}n a 满足:只要*(,)p q a a p q N =∈,必有11p q a a ++=,则称{}
n a 具有性质P .
(1)若{}n a 具有性质P ,且12451,2,3,2a a a a ====,67821a a a ++=,求
3a ;
(2)若无穷数列{}n b 是等差数列,无穷数列{}n c 是公比为正数的等比数列,151b c ==,5181b c ==,n n n a b c =+判断{}n a 是否具有性质P ,并说明理由;
(3)设{}n b 是无穷数列,已知*1sin ()n n n a b a n N +=+∈.求证:“对任意1,{}
n a a
都具有性质P”的充要条件为“{}
b是常数列”.
n。

相关文档
最新文档