华师大版图形的相似全章教(学)案
华师大版-数学-九年级上册--24.1相似的图形
《九年级上第二十四章第一节相似的图形》教案【教学课型】:新课◆课程目标导航:【教学目标】:感知相似图形在现实中的应用,认识形状相同的图形,了解相似图形的基本内涵【教学重点】:认识形状相同的图形.【教学难点】:对相似图形概念的理解.【教学工具】:投影仪◆教学情景导入相似图形在实际中是常见的,本单元主要学习相似图形,了解相似图形的特征以及如何判定两个图形相似.前面所学习的全等图形实际上是相似图形的一个特例.学习本单元后,相信同学们将在合情推理与逻辑推理以及解决几何问题方面会得到提升.◆教学过程一、新授:1.播放课件:展示丰富的有关相似图形的图案、相片等.教师活动:操作课件,提出问题.师:同学们通过观察上述实物、图片等生活中的图形,它们有怎样的共性呢?观察联想:通过大量的不同类型的图案、实物图片等,可以非常直观地感受到它们的特征.它们共同的特征是:形状相同,但是大小不一定相等.学生回答:像形状相同、大小不等的图形在生活中随处可见.教师活动:继续操作课件,提出问题.学生活动:观看课件,观察联想、寻找特征.2.回归课本:阅读课本P42~43.观察课本图24.1.3和图24.1.4.点评:明确“相似图形”的概念.动手操作,感悟新知1.做一做:利用下面方法放大图形,请同学们试一试.操作步骤:(1)将2个长短相同的橡皮筋系在一起.(2)选取一个图形,在图形外取一个定点.(3)将系在一起的橡皮筋的一端固定在定点,•把一枝铅笔固定在橡皮筋的另一端.(4)拉动铅笔,使2个橡皮筋的结点沿所选图形的边缘运动,当结点在已知图形上运动一圈时,铅笔就画出了一个新图形,这个新图形与已知图形形状相同.2.教师活动:引导、巡视、关注学生操作.学生活动:动手制图,样图可自己先画,也可以自带.学生形式:四人小组合作交流.二、巩固练习P43练习三、小结1.你对学习本节课内容有什么收获?2.在动手能力上你与同伴谁制图最好?3.在学习中,能联想到什么知识?◆课堂板书设计标题观察图片相似图形的定义课堂练习课堂总结◆练习作业设计(课堂作业设计、课下作业设计)课堂作业:1.将一个五边形各边放大3倍,这个五边形的形状________.(填写“不变”或“改变”)2.下列说法正确的是()A.用同一张底片洗出的不同尺寸的照片,改变了人物的形状B.两个长方体的形状一定相同C.复印一个几何图形,如正方形、长方形等不会改变所复印图形的形状和大小D.所有的五边形形状都相同答案:1.不变 2. C课下作业:将如图所示的图形分成形状、大小完全相同的四部分,且每一部分都与原图形相似,应怎样分?答案:如下图所示:。
华东师大版数学九年上23.2《相似图形》教学设计
2.在判定相似图形时,对判定方法的选择和应用不够熟练,容易混淆。
3.在解决实际问题时,学生可能难以发现相似图形的应用场景,缺乏将理论知识运用到实际中的能力。
针对以上情况,教师在教学过程中应关注以下几点:
1.加强对相似图形定义的讲解,通过实例让学生直观地感受到相似图形的特点。
"提前预习,有助于同学们在课堂上更好地消化吸收新知识,提高学习效率。"
作业布置要求:
1.作业要按时完成,保持字迹清晰,书写规范。
2.对于难题和疑问,要及时与同学或老师交流,确保作业质量。
3.家长要关注孩子的作业进度,给予适当的指导和支持。
"今天我们学习了相似图形,它们具有对应角相等、对应边成比例的性质。我们通过AA、SAS、SSS相似准则来判断两个图形是否相似。这些知识不仅可以帮助我们解决几何问题,还可以应用到生活中的各种场景。"
2.强调相似图形在实际生活中的重要性,激发学生对数学学科的兴趣。
3.鼓励学生在课后继续探索相似图形的知识,为下一节课的学习打下基础。
(2)准备丰富的实物模型,让学生直观地感受相似图形的性质和判定方法。
(3)提供丰富的练习题库,满足不同层次学生的学习需求。
5.教学关注点:
(1)关注学生的几何直观能力培养,提高学生对几何图形的认识和理解。
(2)关注学生的逻辑推理能力,培养学生的几何思维能力。
(3)关注学生的应用意识,将相似图形知识运用到实际问题中,提高学生的实践能力。
2.教学过程:
(1)导入:以生活中的相似图形为例,引导学生观察、思考,导入新课。
(2)新知传授:详细讲解相似图形的定义、性质和判定方法,结合实例进行分析。
华师大版图形的相似全章教学导案
只要是选用同一单位测量线段,不管采用什么单位,它们的比值不变.
(3).求两条线段的比时要注意的问题
①两条线段的长度必须用同一长度单位表示,如果单位长度不同,应先化成同一单位,再求它们的比;
②两条线段的比,没有长度单位,它与所采用的长度单位无关;
23.1.2平行线分线段成比例
第二课时
教学目标
知识技能:在理解的基础上掌握平行线分线段成比例定理和三角形一边平行线的性质与判定定理,并会灵活应用.会作已知线段成已知比的作图题.
数学思考:平行线分线段成比例定理的正确性的说明.
解决问题:通过学习定理再次锻炼类比的数学思想,能把一个稍复杂的图形分成几个基本图形,通过应用锻炼识图能力和推理论证能力.
这就是我们前面所学的平行线等分线段定理,他讨论的是平行线截直线相等的情况,那么如果截的线段不相等呢?这就是我们今天要学习的内容:平行线分线段成比例定理.
活动二.分析探索,新知学习
1.三条平行直线L1//L2//L3截直线AE上的线段AC、CE长度之间(除相等外)存在着什么关系呢?同样截直线BF上的线段BD、DF长度之间存在着什么关系呢?
1.这两个图形有什么联系?
它们都是平面图形,它们的形状相同,大小不相同,是相似形。
2.这两个图形是相似图形,为什么有些图形是相似的,而有的图形看起来相像又不会相似呢?相似的两个图形有什么主要特征呢?为了探究相似图形的特征,本节课先学习线段的成比例。
二、新课讲解
1.两条线段的比
(1)回忆什么叫两个数的比?怎样度量线段的长度?怎样比较两线段的大小?
(2)新安大街与光华大街的图上长度之比是多少?它们的实际长度之比呢?
华师大版图形的相似全章教案解读
第23章 图形的相似23.1 相似图形的特征 第一课时 成比例线段教学目标 :知识与技能:了解成比例线段的意义,会判断四条线段是否成比例。
利用比例的性质,会求出未知线段的长。
过程与方法:培养学生灵活解题及合作探究的能力 情感态度价值观:感受数学逻辑推理的魅力教学重点:成比例线段的定义;比例的基本性质及直接运用 教学难点:比例的基本性质的灵活运用,探索比例的其它性质 教学准备:白卡纸、作图工具、 课 型:新授课教学过程:一、复习引入: 挂上两张照片,问: 1.这两个图形有什么联系?它们都是平面图形,它们的形状相同,大小不相同,是相似形。
2.这两个图形是相似图形,为什么有些图形是相似的,而有的图形看起来相像又不会相似呢?相似的两个图形有什么主要特征呢?为了探究相似图形的特征,本节课先学习线段的成比例。
二、新课讲解1.两条线段的比(1)回忆什么叫两个数的比?怎样度量线段的长度?怎样比较两线段的大小?如果选用同一个长度单位量得两条线段AB 、CD 的长度分别是m 、n ,那么就说这两条线段的比 AB ∶CD =m ∶n ,或写成CD AB =nm,其中,线段AB 、CD 分别叫做这两个线段比的前项和后项.如果把n m 表示成比值k ,则CDAB =k 或AB =k ·CD . 注意:在量线段时要选用同一个长度单位.(2).做一做量出数学书的长和宽(精确到0.1cm ),并求出长和宽的比. 改用m 作单位,则长为0.211m ,宽为0.148m ,长与宽的比为0.211∶0.148=211∶148只要是选用同一单位测量线段,不管采用什么单位,它们的比值不变. (3).求两条线段的比时要注意的问题①两条线段的长度必须用同一长度单位表示,如果单位长度不同,应先化成同一单位,再求它们的比;②两条线段的比,没有长度单位,它与所采用的长度单位无关; ③两条线段的长度都是正数,所以两条线段的比值总是正数.问:两条线段长度的比与所采用的长度单位有没有关系?(学生讨论) (答:线段的长度比与所采用的长度单位无关) 2.成比例线段的定义你还记得八年级上册中“变化的鱼”吗?如果将点的横坐标和纵坐标都乘以(或除以)同一个非零数,那么用线段连接这些点所围成的图形的边长如何变化?四条线段a ,b ,c ,d 中,如果a 与b 的比等于c 与d 的比,即dcb a =,那么这四条线段a ,b ,c ,d 叫做成比例线段,简称比例线段.3.比例的基本性质两条线段的比实际上就是两个数的比.如果a ,b ,c ,d 四个数满足d cb a =,那么ad =bc 吗?反过来,如果ad =bc ,那么dcb a =吗?与同伴交流.如果dcb a =,那么ad =bc 。
23.2相似图形-华东师大版九年级数学上册教案
23.2 相似图形-华东师大版九年级数学上册教案一、教学目标1.了解相似图形的定义与性质;2.能够判断两个图形是否相似;3.掌握相似比的概念;4.能够求解相似图形的周长、面积等问题。
二、教学重点1.相似图形的概念与性质;2.相似比的概念及应用。
三、教学难点1.基于相似图形的周长、面积的应用问题的解决方法。
四、教学内容及安排第一课时相似图形的认识1.通过例子引入相似图形的概念与性质;2.讲解相似图形的定义和相似性的性质;3.讨论两个图形是否相似的判断方法。
第二课时相似比1.引入相似比的概念及性质;2.对于已知两个相似图形的相似比,能够求解任意长度的比例;3.应用相似比解决相似图形的周长、面积等问题。
第三课时相似图形的周长和面积1.讲解相似图形的周长、面积的计算公式;2.利用相似图形的性质解决已知条件求周长、面积的问题;3.针对应用题解决周长、面积问题。
五、教学方法针对教学目标和难点,本课程采用讲解、引导探究和解题演练相结合的方法。
通过举例说明、让学生进行讨论、引导学生自主思考获取相关知识点,并通过练习巩固学生学习内容。
六、教学效果评估1.提问检测:对学生提出相似图形的性质、定义和相似比等问题,检查学生的基本概念掌握情况;2.练习检测:选取相似图形的性质、相似比及周长、面积等作业题目,检查学生对知识点的掌握情况;3.课堂测试:设立简单的模拟考试,检查学生在时间限制下的自主解题能力和应用能力。
七、教学资源及参考书目教学资源1.多媒体教学设备;2.相关教学工具书。
参考书目1.《初中数学九年级下册》,华东师范大学出版社,张宇等编著;2.《初中数学九年级下册》,人教版,高俊芳主编;3.《初中数学九年级下册》,北师大版,吕新华等编著。
华师大版数学九年级上册23.2《相似图形》参考教案2
1、刻度尺动手量一量有关线段,从中得到AB,A′B′,BC与B′C′的长度,用量角器量一量∠ABC和∠A′B′C′,然后进展比的比拟,从中得到 ,∠ABC=∠A′B′C′,再拓展到两张相似地图中的对应线段都成比例,对应角都相等.
这样的结论对一般的相似多边形是否成立呢?
教案
课题
课型
新授课
教学
目标
知识与能力
掌握两个相似图形之间的性质,学会应用相似图形性质解决问题.
过程与方法
经历相似图形的认识过程,观察相似图形的关系,得到相似多边形对应边成比例,对应角相等的性质.
情感态度与价值观
培养良好的几何认知,以及合作探究意识,感受几何学的应用价值
内容
分析
教学重点
相似图形的性质.
2、验证所得,形成概念
教师活动:引导学生完成课本P58问题,然后再概括出相似多边形性质;对应边成比例,对应角相等.
学生活动:阅读理解课本P58问题,从中领悟出相似多边形性质.
三、合作交流、尝试练习
由此可以得到两个相似多边形的性质:
对应边成比例,对应角相等.
实际上这也是我们判定两个多边形是否相似的方法,
五、归纳小结、稳固练习
本节课你学会了什么?收获是什么?
练习:书60页练习1、2
板书
引入:相似多边形的性质:例
相似多边形的判定:
作业设计
1、书60页习题4、5
2、
教后
反思
教学难点
理解和应用相似图形的性质
教法
学法
启发诱导式
教具学具
PPT三角板
教பைடு நூலகம்
学
过
华师大版-数学-九年级上册-24.1相似的图形 教案
华师大版九年级(上)第二十四章第一节24.1 图形的相似教案【三维教学目标】知识与技能:理解相似形的概念,了解相似形是两个图形之间的关系。
由于需要的不同,要制定出大小不一定相同的图形,培养学生的观察能力。
过程与方法:引导-自学-探究-交流-展示(探究结果确立与班级内分享)情感态度与价值观:经历知识产生的过程,探索新知识。
教学重点:理解相似形的概念,了解相似形是两个图形之间的关系。
教学难点:由于需要的不同,要制定出大小不一定相同的图形,培养学生的观察能力。
【课堂导入】挂上大小不一样的中国地图两张及两张大小不同的长城图片,供同学观察,并看课本第64页的图,提出问题:这几组图片有什么相同的地方呢?这些图片大小虽然不一样,但形状是相同。
【教学过程】A自学:请同学们用10---15分钟时间自学教科书上本节内容。
B交流:请几个同学上台总结满足什么条件的两个图形是相似图形。
点评:(1)形状相同(2)大小不一定相同(3)大小一样的是特殊的相似图形(也可以称为全等图形)C探究:例1:观察下列图形,图形相似的是()(1) (2) (3) (4)A.(1)(3)B.(3)(4)C.(1)(2)D.(1)(4)分析:相似图形是指形状相同,大小不一定相同,难度在多边形(四边形及以上)上,必须角相同,边成比例。
第一组是,二是,三不是,形状不同(或说边不成比例),四和三一样也不是答案:C例2:下列图形相似的是()(1)放大镜下的图片与原来的图片;(2)幻灯的底片与投影在屏幕上的图像;(3)同一棵树上的两片树叶;(4)同一角度远距离和近距离拍摄的二七纪念塔A.4组B.3组C.2组D.1组分析:找的方法和例一相同,(1)、(2)、(4)是。
(3)不是答案:B【课堂作业】1、你能画出两个相似图形吗?2、判断下列图形是不是相似3、如果两个图形相似应该具备哪些条件?《作业答案与解析》1.略2.都不相似3.边数相同,形状相同,大小不一定相同【教学反思】形状相同而大小不一定相同的图形称为相似形,相似形在日常生活中经常碰到。
23.2相似图形教学设计-2024-2025学年华东师大版数学九年级上册
- 《相似图形的判定方法解析》:这篇文章详细解析了相似图形的判定方法,通过阅读,学生可以巩固和加深对相似图形判定方法的理解。
2. 鼓励学生进行课后自主学习和探究:
- 相似图形的性质和判定方法:学生可以进一步研究相似图形的性质和判定方法,通过查阅资料或进行实验,探索更多的性质和判定方法。
此外,我也会根据学生的兴趣和需求,调整教学内容和教学方式。如果我发现学生对某个相关的话题或问题感兴趣,我会增加相关的教学内容,提供更多的学习资源和学习机会,让学生可以更深入地学习和探索。如果学生对某个教学方式有更好的建议或意见,我也会积极地考虑和尝试,以提高教学的效果和学生的学习积极性。
5.数据分析:通过观察和分析相似图形,学生能够培养数据分析能力,理解和处理图形信息。
学情分析
九年级的学生在数学学习方面已经具备了一定的基础,对一些基本的数学概念和运算规则有一定的了解。然而,他们在相似图形的理解和应用方面可能还存在一些困难。首先,学生可能对相似图形的定义和性质不够清晰,需要通过具体的示例和操作来加深理解。其次,学生在解决与相似图形相关的实际问题时,可能缺乏有效的解题策略和方法,需要通过练习和指导来提高解决问题的能力。此外,学生的逻辑推理和数学建模能力也需要进一步培养和提高。
2.新课讲解(15分钟):
- 使用多媒体课件,讲解相似图形的定义和性质。
- 通过示例和练习题,让学生理解和掌握相似图形的判定方法。
3.课堂练习(10分钟):
- 分发练习题,让学生独立完成,巩固对相似图形知识的理解和应用。
4.应用拓展(10分钟):
- 提供一些实际问题,让学生运用相似图形的知识解决。
华东师大版九年级上册数学第23章《图形的相似》教案1
第23章图形的相似课题成比例线段【学习目标】1.理解比例线段的概念和比例的基本性质;2.掌握比例线段的判定方法,会运用比例的基本性质进行变形;3.通过图形来推导成比例线段,发展学生的逻辑推理能力.通过例题的学习,培养学生的灵活运用知识能力;4.学生通过经历、观察、操作、欣赏,感受图形的相似,让学生自己去体会生活中的相似,从而理解相似的概念,探索它的基本特征,学会在实践中发现规律.【学习重点】比例线段及比例的基本性质的应用.【学习难点】比例性质的推导与应用.一、情景导入生成问题你瞧,那些大大小小的图形是多么地相像!日常生活中,我们经常会看到这种相似的图形,那么它们有什么主要特征与关系呢?二、自学互研生成能力知识模块一图形的相似阅读教材P48~P50的内容.探讨1:日常生活中,我们会碰到很多形状相同、大小不一定相同的图形,例如右面两张照片,右边的照片是由左边的照片放大得来的,尽管它们大小不同,但形状相同.你还能举出类似的例子吗?结论:把这种具有相同形状的图形称为相似图形.探讨2:由如图的格点图可知,ABA′B′=__2__,BCB′C′=__2__.这样ABA′B′与BCB′C′之间有什么关系?结论:对于给定的四条线段a、b、c、d,如果其中两条线段的长度之比等于另外两条线段的长度之比,如ab=cd(或a∶b=c∶d),那么,这四条线段叫做成比例线段,简称比例线段(proportionalsegments).此时也称这四条线段成比例.归纳:1.相似图形的特征:形状相同,大小可以相同,也可以不同.如果是两个相似多边形,那么它们的对应角也相同,对应边成比例.2.四条线段成比例,它们是有顺序的,比如a,b,c,d成比例,必须写成式子:a∶b=c∶d.范例:判断下列线段a、b、c、d是否是成比例线段:(1)a=4,b=8,c=5,d=10;(2)a=2,b=215,c=5,d=5 3.解:(1)∵ab=48=12,cd=510=12,∴ab=cd,∴线段a、b、c、d是成比例线段.(2)∵ac=25=255,bd=21553=255,∴ac=bd,∴这四条线段是成比例线段.知识模块二比例的性质求证:已知a,b,c,d是四条线段.(1)如果ab=cd(或a∶b=c∶d),那么ad=bc;(2)如果ad=bc,那么ab=cd.归纳:比例的基本性质:(1)如果ab=cd,那么ad=bc.(2)如果ad=bc,那么ab=cd.范例:证明(1)如果ab=cd,那么a+bb=c+dd;(2)如果ab=cd,那么aa-b=cc-d(a≠b).证明:(1)∵ab=cd,在等式两边同加上1,得ab+1=cd+1,∴a+bb=c+dd.(2)∵ab=cd,∴ad=bc,在等式两边同减去ac,得ad-ac=bc-ac.∴ac-ad=ac-bc,∴a(c-d)=(a-b)c.由a≠b,且ab=cd,知c≠d,从而a-b≠0,且c-d≠0,在上式两边同除以(a-b)(c-d),得aa-b=cc-d.三、交流展示生成新知1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上.并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一图形的相似知识模块二比例的性质四、检测反馈达成目标见《名师测控》学生用书.五、课后反思查漏补缺1.收获:__________________________________________________2.存在困惑:______________________________________________课题平行线分线段成比例【学习目标】1.使学生掌握平行线分线段成比例定理及推论;2.会用平行线分线段成比例定理及推论进行计算或者证明;3.通过定理的变式图形,进一步提高学生分析问题和解决问题的能力.【学习重点】平行线等分线段定理.【学习难点】平行线等分线段定理.一、情景导入生成问题1.同学们,我们的作业本每一页都是由一些距离相等的平行线组成,下面请同学们在作业本上画一条直线m和相邻的三条平行线交于A,B,C三点,AB与BC相等吗?2.再画一条直线n与这三条平行线交于点D,E,F,DE与EF相等吗?二、自学互研生成能力知识模块一平行线分线段成比例阅读教材P51~P54的内容.范例:选择作业本上不相邻的三条平行线,任意画两条直线m、n与它们相交.如果m、n这两条直线平行(如图1),观察并思考这时所得的AD、DB、FE、EC这四条线段的长度有什么关系;如果m、n这两条直线不平行(如图2),你再观察一下,也可以量一量,算一算,看看它们是否存在类似的关系.结论:两条直线被一组平行线所截,所得的对应线段成比例.(简称“平行线分线段成比例”)范例:如图,若AB∥CD∥EF,则下列结论中,与ADAF相等的是(D)A.ABEF B.CDEF C.BOOE D.BCBE仿例:如图,已知直线a∥b∥c,直线m、n与直线a、b、c分别交于点A、C、E、B、D、F,AC=4,CE=6,BD=3,则BF=7.5.知识模块二平行线分线段成比例定理的推论如图,当图中的点A与点F重合时,就形成一个三角形的特殊情形,此时AD、DB、AE、EC 这四条线段之间会有怎样的关系呢?如图,当图中的直线m、n相交于第二条平行线上某点时,是否也有类似的成比例线段呢?结论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例.范例:如图所示,l1∥l2∥l3,AB=4,DE=3,EF=6.求BC的长.解:∵l1∥l2∥l3,∴ABBC=DEEF(平行线分线段成比例).∵AB=4,DE=3,EF=6,∴4BC=36,∴BC=8.仿例:如图,E为▱ABCD的边CD延长线上的一点,连结BE,交AC于点O,交AD于点F.求证:BOFO=EOBO.证明:∵AF∥BC,∴BOFO=COAO(平行线分线段成比例).∵AB∥CE.∴EOBO=COAO(平行线分线段成比例).∴BOFO=EOBO三、交流展示生成新知1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上.并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一平行线分线段成比例知识模块二平行线分线段成比例定理的推论四、检测反馈达成目标见《名师测控》学生用书.五、课后反思查漏补缺1.收获:____________________________________________________2.存在困惑:________________________________________________课题相似图形【学习目标】1.从生活中形状相同的图形的实例中认识图形的相似,理解相似图形的性质和概念;2.会利用相似图形的性质和概念进行计算和证明.【学习重点】相似图形的性质和概念.【学习难点】相似图形的性质的运用.一、情景导入生成问题两个相似的平面图形之间有什么关系呢?为什么有些图形是相似的,而有些不是呢?相似图形有什么主要性质呢?二、自学互研生成能力知识模块一相似图形的性质阅读教材P57~P59的内容.如图是大小不同的两张地图,当然,它们是相似的图形,设在大地图中有A、B、C三地,在小地图中相应的三地记为A′、B′、C′,试用刻度尺量一量两张地图中A(A′)与B(B′)两地之间的图上距离和B(B′)与C(C′)两地之间的图上距离.AB=______cm,BC=______cm;A′B′=______cm,B′C′=______cm.然后计算:ABA′B′和BCB′C′的值,你发现了什么?结论:ABA′B′=BCB′C′,继续测量和计算,会发现所有的对应线段的比都相等.如图1中两个四边形是相似图形,仔细观察这两个图形,它们的对应边之间是否有以上关系呢?对应角之间又有什么关系?图1图2再看如图2中两个相似的五边形,是否与你观察图1所得到的结果一样?结论:相似多边形的性质:相似多边形的对应边成比例,对应角相等.知识模块二相似图形的性质的应用范例:在下图所示的相似四边形中,求边x的长度和角α的大小.解:∵两个四边形相似,∴1812=x18,∴x=27,根据对应角相等,可得α=360°-(77°+83°+116°)=84°.仿例1:如图,四边形ABCD和EFGH相似,求角α、β的大小和EH的长度x.解:∵四边形ABCD与EFGH相似.∴α=∠C=83°,∠A=∠E=118°,在四边形ABCD中,β=360°-(78°+83°+118°)=81°.∵四边形ABCD与EFGH相似,∴EHAD=EFAB即x21=2418,∴x=28仿例2:如图,△ABC与△DEF相似,∠B、∠E为钝角,求未知边x,y的长度.解:(1)∵△ABC∽△DEF,∴ABDE=ACDF=BCEF即14y=24x=168,∴x=12,y=7.(2)∵△ABC∽△FED,∴ABEF=ACDF=BCDE即148=24x=16y,∴x=967,y=647.三、交流展示生成新知1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上.并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一相似图形的性质知识模块二相似图形的性质的应用四、检测反馈达成目标见《名师测控》学生用书.五、课后反思查漏补缺1.收获:__________________________________________________2.存在困惑:______________________________________________课题相似三角形【学习目标】1.理解相似三角形的概念及性质;2.掌握判定两个三角形相似的方法:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似;3.培养学生的观察、动手探究、归纳总结的能力,感受相似三角形与相似多边形,相似三角形与全等三角形的区别与联系,体验事物间特殊与一般的关系;4.让学生经历从实验探究到归纳证明的过程,发展学生的推理能力.【学习重点】判定两个三角形相似的预备定理.【学习难点】探究两个三角形相似的预备定理的过程.一、情景导入生成问题问题:1.相似多边形有什么特征?2.三角形是最简单的多边形,相似三角形有什么特征?二、自学互研生成能力知识模块一相似三角形的有关概念阅读教材P61~P63的内容.归纳:在相似多边形中,最简单的就是相似三角形(similar triangles),它们是对应边成比例、对应角相等的三角形.相似用符号“∽”来表示,读作“相似于”,如图所示的两个三角形中,AB A′B′=BCB′C′=CAC′A′,∠A=∠A′,∠B=∠B′,∠C=∠C′.此时△ABC与△A′B′C′相似,记作△ABC∽△A′B′C′.读作:△ABC相似于△A′B′C′.如果记ABA′B′=BCB′C′=CAC′A′=k,那么,这个比值k就表示这两个相似三角形的相似比.1.对应边成比例,对应角相等的两个三角形是相似三角形.2.相似三角形的对应边的比是相似比,两个相似三角形的比是前者与后者的对应边的比,它有顺序性.3.当两个相似三角形的相似比为1时,这两个三角形全等,即全等三角形是相似三角形的特例.知识模块二相似三角形的预备定理问题:如图所示,在△ABC中,D为边AB上的任一点,作DE∥BC,交边AC于点E,用刻度尺和量角器量一量,判断△ADE与△ABC是否相似.用演绎推理来证明这个结论:已知:如图DE∥BC,并分别交AB、AC于点D、E.求证:△ADE∽△ABC.证明:∵DE∥BC.∴∠ADE=∠B,∠AED=∠C.ADDB=AEEC(平行线分线段成比例).∴ADAB=AEAC,过点D作AC的平行线交BC于点F.∴FCBF=DABD(平行线分线段成比例),∴FCBC=ADAB.∴FCBC=ADAB=AEAC,∵DE∥BC,DF∥AC,∴四边形DFCE是平行四边形,∴DE=FC,∴DEBC=ADAB=AEAC,又∵∠ADE=∠B,∠AED=∠C,∠A=∠A,∴△ADE∽△ABC(相似三角形的定义).思考:如图:DE∥BC,△AED与△ABC是否还是相似的?结论:平行于三角形一边的直线,和其他两边(或两边的延长线)相交所构成的三角形与原三角形相似.范例:如图,在△ABC中,点D是边AB的三等分点,DE∥BC,DE=5,求BC的长.解:∵DE∥BC,∴△ADE∽△ABC,∴DEBC=ADAB=13,∴BC=3DE=15三、交流展示生成新知1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上.并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一相似三角形的有关概念知识模块二相似三角形的预备定理四、检测反馈达成目标见《名师测控》学生用书.五、课后反思查漏补缺1.收获:_________________________________________________________ 2.存在困惑:_____________________________________________________。
《图形的相似复习教案 (公开课获奖)2022华师大版
图形的相似【知识与技能】能理清本章的知识及其联系,画出知识结构图.会运用相似三角形的判定、性质进行有关问题的简单的说理或计算,提高解决实际问题的能力,培养应用数学知识的意识.【过程与方法】能用坐标来表示物体的位置,感受点的坐标由于图形的变化而相应地发生变化,让学生体会到数与形之间的关系.【情感态度】培养学生学数学爱数学的情感.【教学重点】相似三角形的特征,相似三角形的判定方法的应用.【教学难点】相似图形的判定方法的灵活应用,比例式的转换方法.一、知识结构框图,整体把握二、释疑解惑,加深理解1.相似三角形的性质:①对应边成比例.②对应角相等.③对应线段的比等于相似比,面积比等于相似比的平方.相似三角形的性质可用来证明线段成比例、角相等,也可用来计算周长、边长等.2.相似三角形的判定(1)定义法:对应角相等,对应边成比例的两个三角形相似.(2)平行法:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似.(3)判定定理1:两角对应相等,两三角形相似.(4)判定定理2:两边对应成比例且夹角相等,两三角形相似.(5)判定定理3:三边对应成比例,两三角形相似.灵活应用各种判定方法,注意在应用判定定理2时,两边对应成比例,一个角对应相等,这个角必须是这两边的夹角.在证明时,有时需要对比例式进行变换,如把等积式化为比例式.3.相似三角形的应用构造相似三角形,建立数学模型,利用相似的有关知识解决实际问题.4.图形与坐标(1)用坐标确定位置.①建立适当的直角坐标系,用坐标来确定物体的位置.②用“角度(方向)、距离”刻画物体的位置.(2)图形变换与坐标①点(x,y)关于x轴对称点的坐标为(x,-y),关于y轴对称点的坐标为(-x,y),关于原点对称点的坐标为(-x,-y).②点(x,y)沿x轴向右平移a个单位的点的坐标为(x+a,y),沿y轴向上平移b个单位的点的坐标为(x,y+b).③图形以原点为位似中心缩放k倍,点(x,y)的对应点的坐标为(kx,ky)或(-kx,-ky).三、典例精析,复习新知1.如图,D是AC上的点,BE∥AC,BE=AD,AE分别交BD、BC于F、G,∠1=∠2.(1)图中哪个三角形与△FAD全等?证明你的结论.(2)求证:BF2=FG·EF.【分析】(1)BE∥AC,BE=AD,易证△ADF≌△EBF.(2)把BF 2=FG ·EF 化为等比式BFEFFG BF ,易猜想△BFG ∽△EFB.由(1)知△ADF ≌△EBF,∴∠E=∠1,又∵∠1=∠2,∴∠2=∠E.∵∠EFB=∠BFG,∴△BFG ∽△EFB ,易得BF2=FG ·EF.2.已知:如图所示,PN ∥BC,AD ⊥BC 交PN 于点E ,交BC 于点D. (1)当AP ∶PB=1∶2,S △ABC=18cm 2时,S △APN= ; (2)若S △APN:S 四边形PBCN=1:2,求AE:AD 的值; (3)若BC=15cm,AD=10cm ,且PN=ED=x,求x 的值.四、复习训练,巩固提高1.若如图所示的两个四边形相似,则α的度数是( ) A.97° B.87° C.77° D.90°2.如图,在正方形网格中,有△ABC 、△DEF 、△GHP ,则下列说法正确的是( ) A.△ABC ∽△DEFB.△DEF ∽△PGHC.△ABC ∽△GHPD.△ABC ∽△PGH 3.若52=+b a a ,则a ∶b= . 4.如图,AB=8,AC=6,点D 在AB 上,点E 在AC 上,且AD=2,若△ADE 与△ABC 相似,则AE= .5.点A (-2,3)先向上平移2个单位,再向左平移2个单位,得到B 点的坐标为 ,B 点关于x 轴对称点的坐标为 .6.已知△ABC 和△A ′B ′C ′中,C B BCC A AC B A AB ''=''='',且△ABC 和△A ′B ′C ′的周长之差是4,求△ABC 和△A ′B ′C ′的周长.7.如图,在6×8网格中,每个小正方形边长均为1,点O 和△ABC 的顶点均为小正方形的顶点.(1)以O 为位似中心,在网格图中作△A ′B ′C ′,使△A ′B ′C ′和△ABC 位似,且相似比为1∶2.(2)连接(1)中的AA ′,求四边形AA ′C ′C 的周长(结果保留根号).8.如图,Rt △AB ′C ′是由Rt △ABC 绕点A 顺时针旋转而得到的,连接CC ′交斜边于点E ,CC ′的延长线交BB ′于点F.(1)证明:△ACE ∽△FBE;(2)设∠ABC=α,∠CAC ′=β,试探索α、β满足什么关系时△ACE 与△FBE 全等,并说明理由.【答案】1.A 2.D 3.2∶3 4.23或385.(-4,5)(-4,-5)6.C △ABC=24,C △A ′B ′C ′=207.(1)略(2)4+628.解:(1)证明:∵Rt △AB ′C ′是由Rt △ABC 绕点A 顺时针旋转得到的,∴AC=AC ′,AB=AB ′,∠CAB=∠C ′AB ′.∴∠CAC ′=∠BAB ′, ∴△CAC ′∽△BAB ′, ∴∠ACC ′=∠ABB ′, 又∠AEC=∠FEB, ∴△ACE ∽△FBE.(2)当β=2α时,△ACE ≌△FBE. 在△ACC ′中,∵AC=AC ′, ∴∠ACC ′=2 180C CA '∠-︒=2180β-︒=90°-α.在Rt △ABC 中,∠ACC ′+∠BCE=90°, 即90°-α+∠BCE=90°,∴∠BCE=α. ∵∠ABC=α,∴∠ABC=∠BCE, ∴CE=BE.由(1)知△ACE ∽△FBE,∴△ACE ≌△FBE. 五、师生互动,课堂小结本节课你学到了哪些知识?有哪些收获?1.布置作业:从教材本章“复习题”中选取.2.完成练习册中“本章热点专题训练”.本节课通过复习归纳本章内容,让学生进一步系统掌握相似三角形的性质与判定,让学生懂得如何构造相似三角形来解决实际问题,培养学生的归纳分析、应用知识的能力.有理数的乘法和除法教学目标:1、了解有理数除法的意义,理解有理数的除法法则,会进行有理数的除法运算,会求有理数的倒数。
华师大版九年级数学上第23章图形的相似23.3.2(第二节)相似三角形的判定公开课优秀教学案例
2.利用多媒体技术和实物模型,为学生提供丰富的直观资源,提高学生的直观表达能力。
3.组织小组合作学习,培养学生的问题解决能力和团队合作精神。
4.注重过程性评价与终结性评价相结合,全面评价学生的学习过程和结果。
五、教学过程
1.导入:通过复习相似图形的概念,引导学生自然过渡到相似三角形的学习。
2.新课导入:介绍相似三角形的定义和性质,引导学生理解和掌握。
2.设计具有层次性的问题,引导学生自主探究相似三角形的判定方法。
3.组织小组合作学习,培养学生的问题解决能力和团队合作精神。
4.利用多媒体技术,展示相似三角形的动态变化过程,提高学生的直观表达能力。
5.在教学过程中,关注学生的个体差异,给予不同的学生不同的指导和鼓励。
6.引导学生对自己的学习过程进行反思,发现自己的优点和不足,及时调整学习策略。
3.通过本节课的学习,使学生认识到数学在生活中的重要性,培养学生的数学素养。
三、教学重点与难点
1.教学重点:相似三角形的定义和性质,相似三角形的判定方法。
2.教学难点:相似三角形的判定方法的灵活运用,相似三角形在实际问题中的解决。
四、教学策略
1.采用问题驱动的教学模式,引导学生自主探究相似三角形的判定方法。
3.判定方法探索:设计一系列具有层次性的问题,引导学生自主探究相似三角形的判定方法。
4.实例讲解与应用:运用多媒体技术和实物模型,讲解相似三角形的判定过程,并引导学生运用所学知识解决实际问题。
华师大版九年级数学上第23章图形的相似23.3.2(第二节)相似三角形的判定公开课教学设计
2.引导学生通过观察、猜想、验证等途径,自主探究相似三角形的判定方法,培养学生的动手操作能力和观察力。
3.鼓励学生积极参与课堂讨论,培养学生的团队协作能力和表达能力,提高学生对知识的理解和运用能力。
4.注重培养学生的问题解决能力,引导学生运用所学知识解决实际问题时,能够灵活选择和运用判定方法。
-目的:拓展学生的知识面,提高学生解决复杂问题的能力。
4.小组合作题:分组讨论,共同解决一道相似三角形判定的问题,要求每组提交一份解题报告。
-目的:培养学生的团队协作能力和交流表达能力,共同提高。
5.思考题:请同学们思考,相似三角形判定方法在平面几何中还有哪些应用?举例说明。
-目的:激发学生的思考,提高学生对相似三角形知识体系的认识。
(四)课堂练习
1.设计练习:教师设计具有代表性的练习题,涵盖相似三角形的判定方法,让学生进行巩固。
-教师设计:这里有一些关于相似三角形判定的练习题,请同学们独立完成。
2.互动解答:学生互相讨论,解答练习题,教师巡回指导,解答学生疑问。
-教师指导:在解答练习题的过程中,如果遇到问题,可以与周围的同学讨论,我也会巡回解答你们的疑问。
-教师提问:同学们,我们之前学习了全等三角形的判定方法,谁能来说一说有哪些判定方法?
-学生回答:SSS、SAS、ASA、AAS等。
2.生活实例:展示生活中含有相似三角形的图片,如建筑物的立面图、摄影作品等,引导学生观察并发现相似三角形的美。
-教师引导:同学们,观察这些图片,它们有什么共同的特点?
-学生回答:它们都包含了相似的三角形。
(二)教学设想
1.创设情境,激发兴趣:以生活中的实例,如摄影中的构图、建筑物的相似结构等,引出相似三角形的判定问题,激发学生的学习兴趣。
华师大版初三上册相似的图形教学计划
华师大版初三上册相似的图形教学计划一、创设问题情景,引入新课(片1)我们先来观赏两张漂亮的图片。
观赏完图片后,有一个小小的问题:这两张图片之间有什么特点?生:外形相同,大小不同。
(片2)再观测图片,发觉问题:这些图片想告知我们什么?刚才大家所看见的外形相同、大小不同的图形,我们叫做相像图形。
第四章讨论的就是相像图形以及与之有关的问题。
从两个大小不同的正方形来看,它们之所以大小不同,是由于它们的边长的长度不同,因此相像图形与对应线段的长度有关。
所以,我们讨论相像图形要从线段的比开始学习。
(片3)下面,就让大家一起走进第四章:相像图形的第一节:线段的比。
二、新课讲解1、两条线段的比的概念:(片4):有两个喇叭,甲喇叭高16分米,乙喇叭高75厘米,哪个喇叭高?生:甲喇叭。
师:确定吗?莫非75还比16小吗?生:16分米和75厘米的单位不全都,要化为同一长度单位才能进行比较。
师:对。
这两个喇叭的高就是两条线段,在它们长度单位不全都的时候是不能比较大小的,只有先将它们的长度单位化为相同长度单位后才能进行比较大小。
不难看出要比较两条线段的大小,事实上是比较这两条线段什么的大小?(长度)由比较两条线段的大小就是比较两条线段长度的大小。
大家能猜想两条线段的比吗?生:两条线段的比就是两条线段长度的比。
(片5)有两条线段AB和CD,AB=6厘米,CD=5厘米,线段AB、CD的比如何表示?单位是什么?表示为:AB:CD=6:5 或一个长为30厘米,宽为21厘米的长方形,你能表示出这个长方形的长与宽的比吗?那么,应怎样定义两条线段的比呢?(定义由幻灯片6展示)那我们在求两条线段的比的时候应留意什么问题呢?留意:长度单位要统一。
(片7)线段a的'长度为3厘米,线段b的长度为6米,所以两线段a、b的比为3:6=1:2,对吗?为什么?不对。
由于a、b的长度单位不全都。
因此,我们在求两条线段的比的时候肯定要留意它们的长度单位是否全都。
华师大版数学九年级上册《23.2 相似图形》教学设计2
华师大版数学九年级上册《23.2 相似图形》教学设计2一. 教材分析华师大版数学九年级上册《23.2 相似图形》是学生在学习了平面几何基本概念和性质的基础上,进一步研究图形的相似性质。
本节课的主要内容有:相似图形的定义、相似图形的性质、相似多边形的性质和判定。
通过本节课的学习,学生能够理解相似图形的概念,掌握相似图形的性质,并能够运用相似图形的性质解决一些实际问题。
二. 学情分析九年级的学生已经具备了一定的几何知识基础,对平面几何的基本概念和性质有一定的了解。
但是,对于相似图形的概念和性质,学生可能还比较陌生,需要通过实例和练习来逐步理解和掌握。
此外,学生可能对于如何运用相似图形的性质解决实际问题还有一定的困难,需要教师的引导和讲解。
三. 教学目标1.了解相似图形的概念,能够识别相似图形。
2.掌握相似图形的性质,能够运用相似图形的性质解决一些实际问题。
3.培养学生的观察能力、思考能力和解决问题的能力。
四. 教学重难点1.相似图形的概念和性质。
2.如何运用相似图形的性质解决实际问题。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过观察、思考和讨论来发现和总结相似图形的性质。
2.使用多媒体课件和实物模型,帮助学生直观地理解相似图形的概念和性质。
3.通过实例和练习,让学生运用相似图形的性质解决实际问题,巩固所学知识。
六. 教学准备1.多媒体课件和实物模型。
2.练习题和测试题。
七. 教学过程1.导入(5分钟)教师通过展示一些图形,让学生观察和思考:这些图形有什么共同的特点?引导学生发现这些图形都是相似的,从而引入相似图形的概念。
2.呈现(15分钟)教师通过多媒体课件和实物模型,呈现相似图形的性质,如:相似图形的对应边成比例,对应角相等。
让学生观察和思考:这些性质是如何得出的?引导学生通过观察、思考和讨论,总结出相似图形的性质。
3.操练(15分钟)教师出示一些图形,让学生判断它们是否相似。
学生通过观察和思考,运用相似图形的性质进行判断。
华师大版-数学-九年级上册- 相似图形 精品教案1
23.2 相似图形教学目标:知识与技能:知道相似图形的两个特征:对应边成比例,对应角相等。
识别两个多边形是否相似的方法。
过程与方法:在推出相似多边形性质时,让学生用量角器、刻度尺来测量,锻炼动手能力情感态度价值观:让学生感受数学知识源于生活、用于生活。
教学重点:相似多边形的性质教学难点:理解和应用相似多边形的性质教学准备:地图、作图工具、电子白板课型:新授课教学过程:一、复习:1.若线段a=6cm,b=4cm,c=3.6cm,d=2.4cm,那么线段a、b,c、d会成比例吗?2.两张相似的地图中的对应线段有什么关系?(都成比例)二、新课相似的两张地图中的对应线段都会成比例,对于一般的相似多边形,这个结论是否成立呢?同学们动手量一量,算一算,用刻度尺和量角器量一量课本第58页两个相似四边形的边长,量一量它们的内角,由一位同学把量得的结果写在黑板上,其他同学把量得的结果与同伴交流。
同学们会发现有什么关系呢?经过观察、计算得出这两个相似四边形的对应边会成比例,对应角会相等,再观察课本中两个相似的五边形,是否也具有一样的结果?反映它们的边之间、角之间的关系是什么关系?同学用格点图画相似的两个三角形,也观察、度量,它们是否也具有这种关?对应边成比例,对应角相等。
由此可以得到两个相似多边形的特征:(由同学回答,教师板书)对应边成比例,对应角相等。
实际上这两个特征,也是我们识别两个多边形是否相似的方法。
即如果两个多边形的对应边都成比例,对应角都分别相等,那么这两个多边形相似。
识别两个多边形是否相似的标准有:(边数相同),对应边要(成比例),对应角要(都相等)。
(填号内要求同学填)想一想:(1)两个三角形一定是相似形吗?两个等腰三角形呢?两个等边三角形呢?两个等腰直角三角形呢?(2)所有的菱形都相似吗?所有矩形呢?正方形呢?例1:矩形ABCD与矩形A′B′C′D′中,AB=1.5cm,BC=4.5cm,A′B′=0. 8cm,B′C′=2.4cm,这两个矩形相似吗?为什么?例2:(课本第59页例题) 在图23.2.4所示的相似四边形中,求未知边x的长度和角度α的大小.图23.2.4三、练习:1.课本第60页练习。
华东师大版九年级上册数学第23章《图形的相似》教案2
课题相似三角形的判定(一)【学习目标】1.初步掌握两个三角形相似的判定条件,能够运用三角形相似的条件解决简单的问题;2.经历两个三角形相似条件的探索过程,进一步发展学生的探究、交流能力,以及动手、动脑、手脑协调一致的习惯;3.发展学生的合情推理能力和初步的逻辑推理意识,体会数学思维的价值.【学习重点】掌握有两个角相等的相似三角形判定定理.【学习难点】应用三角形相似的判定定理.一、情景导入生成问题问题:1.根据相似多边形的定义,你知道什么样的两个三角形相似吗?2.还有判断两个三角形相似的方法吗?3.思考:有没有其他简单的办法判断两个三角形相似?二、自学互研生成能力知识模块一两角对应相等的两个三角形相似阅读教材P64~P67的内容.问题:已知:如右图,在△ABC和△A1B1C1中,∠A=∠A1,∠B=∠B1.求证:△ABC∽△A1B1C1.证明:在边AB或它的延长线上截取AD=A1B1,过点D作BC的平行线交AC于点E,则△ADE∽△ABC.∵DE∥BC,∴∠ADE=∠B.在△ADE与△A1B1C1中,∵∠A=∠A1,∠ADE=∠B=∠B1,AD=A1B1,∴△ADE≌△A1B1C1,∴△ABC∽△A1B1C1.问题:如果两个三角形仅有一个角对应相等,那么这两个三角形相似吗?归纳:三角形相似的判定定理1:两个角对应相等的两个三角形相似.知识模块二两角对应相等的两个三角形相似的应用范例:如图,在Rt△ABC和Rt△A′B′C′中,∠C与∠C′都是直角,∠A=∠A′,求证:△ABC∽△A′B′C′.证明:∵∠C=∠C′=90°,∠A=∠A′.∴△ABC∽△A′B′C′(两角分别相等的两个三角形相似).仿例1:如右图,在△ABC中,DE∥BC,EF∥AB.求证:△ADE∽△EFC.证明:∵DE∥BC,∴∠ADE=∠B,∠AED=∠C.又∵EF∥AB,∴∠EFC=∠B,∴∠ADE =∠EFC,∴△ADE∽△EFC(两角分别相等的两个三角形相似).仿例2:如图,已知在△ABC中,∠BAC=90°,BC的垂线交BC于D,交AC于E,交BA的延长线于F,求证:BD·DC=DE·DF.证明:∵∠BAC=90°,∴∠B+∠C=90°,∵FD⊥BC,∴∠BDF=∠CDE=90°,∠B+∠F=90°,∴∠F=∠C,∴△BDF∽△EDC,∴BDDE=DFDC,∴BD·DC=DE·DF三、交流展示生成新知1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上.并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一两角对应相等的两个三角形相似知识模块二两角对应相等的两个三角形相似的应用仿例(方法二)还可利用对顶角相等:∠AEF=∠CED四、检测反馈达成目标见《名师测控》学生用书.五、课后反思查漏补缺1.收获:____________________________________________________2.存在困惑:________________________________________________课题相似三角形的判定(二)【学习目标】1.经历两个三角形相似的探索过程,进一步发展学生的探究、交流能力.2.掌握“两组对应边的比相等且它们的夹角相等的两个三角形相似”及“三边对应成比例,两个三角形相似”的判定方法.3.能够灵活运用三角形相似的条件解决简单的问题.【学习重点】三角形相似的判定方法.【学习难点】三角形相似的判定方法的灵活运用.一、情景导入生成问题到目前为止,我们学会了哪些判定三角形相似的方法?二、自学互研生成能力知识模块一两边成比例且夹角相等的两个三角形相似阅读教材P67~P69的内容.问题:1.观察右图,如果有一点E在边AC上移动,那么点E在什么位置时能使△ADE与△ABC相似呢?2.图中△ADE与△ABC的一组对应边AD与AB的长度的比值为13,将点E由点A开始在AC上移动,可以发现当AE等于AC的三分之一时,△ADE与△ABC似乎相似,此时AD∶AB=__1∶3__.猜想:如果一个三角形的两边与另一个三角形的两边对应成比例,并且夹角相等,那么这两个三角形相似.下面我们来证明上述猜想.已知:如图,在△ABC和△A1B1C1中,∠A=∠A1,ABA1B1=ACA1C1.求证:△ABC∽△A1B1C1.证明:在边AB或它的延长线上截取AD=A1B1,过点D作BC的平行线交AC于点E,则△ADE∽△ABC,∴ABAD=ACAE,∵ABA1B1=ACA1C1,AD=A1B1,∴AE=A1C1,在△ADE和△A1B1C1中,∵AD=A1B1,∠A=∠A1,AE=A1C1,∴△ADE≌△A1B1C1,∴△ABC∽△A1B1C1.结论:相似三角形判定定理2:两边成比例且夹角相等的两个三角形相似.范例:证明如图中的△AEB和△FEC相似.证明:∵AEFE=5436=1.5,BECE=4530=1.5,∴AEFE=BECE,又∵∠AEB=∠FEC,∴△AEB∽△FEC(两边成比例且夹角相等的两个三角形相似)知识模块二三边对应成比例的两个三角形相似探索:三边对应相等的两个三角形全等,那么三边对应成比例的两个三角形相似吗?在如图所示的方格图中任画一个三角形,再画出第二个三角形,使它的三边长都是原来三角形三边长的相同倍数,画完之后,用量角器度量并比较两个三角形对应角的大小,你得出了什么结论?结论:相似三角形的判定定理3:三边对应成比例的两个三角形相似.范例:在△ABC和△A′B′C′中,AB=6cm,BC=8cm,AC=10cm,A′B′=18cm,B′C′=24cm,A′C′=30cm,试证明△ABC与△A′B′C′相似.证明:∵ABA′B′=618=13,BCB′C′=824=13,ACA′C′=1030=13,∴ABA′B′=BCB′C′=ACA′C′.∴ABA′B′=BCB′C′=ACA′C′.∴△ABC∽△A′B′C′(三边成比例的两个三角形相似).三、交流展示生成新知1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上.并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一相似三角形的判定定理2知识模块二相似三角形的判定定理3四、检测反馈达成目标见《名师测控》学生用书.五、课后反思查漏补缺1.收获:______________________________________________________2.存在困惑:__________________________________________________课题相似三角形的性质【学习目标】1.掌握相似三角形的性质定理的内容及证明,使学生进一步理解相似三角形的概念;2.能运用相似三角形的性质定理来解决有关问题;3.通过由特殊情况猜想到一般情况,渗透由特殊到一般的数学思想,让学生感受数学的和谐美,并进一步养成严谨科学的学习品质.【学习重点】理解相似三角形的性质定理并能初步运用.【学习难点】相似三角形的性质定理的证明.一、情景导入生成问题1.什么叫相似三角形?2.如何判定两个三角形相似?3.相似三角形的对应边有什么特征?对应角有什么特征?二、自学互研生成能力知识模块一相似三角形对应边上的高之比等于相似比,面积之比等于相似比的平方阅读教材P71~P72的内容.问题:两个三角形相似,除了对应边成比例,对应角相等之外,还可以得到许多有用的结论.例如在右图中,△ABC和△A′B′C′是两个相似三角形,相似比是k,其中AD、A′D′分别为BC、B′C′边上的高,那么AD、A′D′之间有什么关系?这两个三角形的面积之比又是多少?归纳:△ABD和△A′B′D′都是直角三角形,且∠B=∠B′,因为有两个角对应相等,所以这两个三角形相似,因此ADA′D′=ABA′B′=k.由此可以得出结论:相似三角形对应边上的高的比等于相似比.由ADA′D′=BCB′C′=k,可得S△ABCS△A′B′C′=12AD·BC12A′D′·B′C′=ADA′D′·BCB′C′=k2.由此可以得出结论:相似三角形面积的比等于相似比的平方.知识模块二相似三角形对应角的平分线之比等于相似比、对应边上的中线之比等于相似比、周长之比等于相似比思考:如图,△ABC与△A′B′C′相似,AD、A′D′分别为对应边上的中线,BE、B′E′分别为对应角的平分线,那么它们之间是否有与对应边上的高类似的关系?这两个三角形的周长又有什么关系?以周长为例探究一下:∵△ABC∽△A′B′C′,∴ABA′B′=BCB′C′=ACA′C′=k,∴AB=kA′B′,BC=kB′C′,AC=kA′C′,∴C△ABCC△A′B′C′=AB+BC+ACA′B′+B′C′+A′C′=kA′B′+kB′C′+kA′C′A′B′+B′C′+A′C′=k结论:相似三角形对应角的平分线之比等于相似比.相似三角形对应边上的中线之比等于相似比.相似三角形的周长之比等于相似比.三、交流展示生成新知1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上.并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一相似三角形对应边上的高之比等于相似比,面积之比等于相似比的平方知识模块二相似三角形对应角的平分线之比、对应边上的中线之比、周长之比等于相似比四、检测反馈达成目标见《名师测控》学生用书.五、课后反思查漏补缺1.收获:__________________________________________________2.存在困惑:______________________________________________课题相似三角形的应用【学习目标】1.通过例题教学使学生进一步理解和应用相似三角形的判定和性质,并熟练应用这些判定和性质解决实际生活中的有关问题;2.在教学过程中,通过鼓励学生个性化学习和大胆发言,让学生能主动参与、乐于探究、勤于思考.培养其分析问题和解决问题的能力,以及合作交流自主探索的新型学习观;3.通过对生活中数学问题的探讨,使学生经历理论与实际相结合的全过程,体验数学的实践性,知道数学来源于生活,而又服务于生活,从而激发其对数学学习的浓厚兴趣.【学习重点】通过建立相似三角形模型解决实际问题.【学习难点】如何从实际问题中抽象出相似三角形的模型.一、情景导入生成问题问题:1.识别两个三角形相似的方法有哪些?2.相似三角形有哪些性质?二、自学互研生成能力知识模块一相似三角形的应用一阅读教材P72~P74的内容.范例:古代一位数学家想出了一种测量金字塔高度的方法:如图,为了测量金字塔的高度OB,先竖一根已知长度的木棒O′B′与金字塔的影长AB垂直,即可近拟算出金字塔的高度OB,如果O′B′=1米,A′B′=2米,AB=274米,求金字塔的高度OB.解:∵太阳光线是平行光线,∴∠OAB=∠O′A′B′.∵∠ABO=∠A′B′O′=90°,∴△OAB∽△O′A′B′(两角分别相等的两个三角形相似).∴OBO′B′=ABA′B′,∴OB=AB×O′B′A′B′=274×12=137(米).答:金字塔的高度OB为137米.范例:如右图,为了估算河的宽度,我们可以在河对岸选定一个目标作为点A,再在河的这一边选定点B和C,使AB⊥BC,然后,再选定点E,使EC⊥BC,用视线确定BC和AE的交点D,此时如果测得BD=120米,DC=60米,EC=50米,求两岸间的大致距离AB.解:∵∠ADB=∠EDC,∠ABD=∠ECD=90°,∴△ABD∽△ECD(两角分别相等的两个三角形相似).∴ABEC=BDCD.解得AB=BD×ECCD=120×5060=100(米).知识模块二相似三角形的应用二范例:如右图,已知D、E分别是△ABC的边AB、AC上的点.且∠ADE=∠C.求证:AD·AB=AE·AC.证明:∵∠ADE=∠C,∠A=∠A,∴△ADE∽△ACB(两角分别相等的两个三角形相似).∴ADAC=AEAB,∴AD·AB=AE·AC.仿例1:如图,AE=12EC,AD=12DB,测得DE=20米,求池塘宽BC是多少米?解:∵AC=12EC,AD=12DB,∠A=∠A,∴△ADE∽△ABC,∴DEBC=AEAC=13,∵DE=20米,∴BC=60米.答:池塘宽BC为60米.仿例2:小明在打网球时,使球恰好能过网,而且落在离网5米的位置上,已知如图,求球拍击球的高度h?(设网球作直线运动)解:∵DE⊥AB,CB⊥AB,∴DE∥BC,∴DEBC=ADAB,∵DE=0.8,AD=5,AB=15,∴0.8BC=515,∴BC=2.4米.答:球拍击球高度为2.4米.三、交流展示生成新知1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上.并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一相似三角形的应用一知识模块二相似三角形的应用二四、检测反馈达成目标见《名师测控》学生用书.五、课后反思查漏补缺1.收获:______________________________________________________2.存在困惑:__________________________________________________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第23章 图形的相似23.1 相似图形的特征 第一课时 成比例线段教学目标 :知识与技能:了解成比例线段的意义,会判断四条线段是否成比例。
利用比例的性质,会求出未知线段的长。
过程与方法:培养学生灵活解题及合作探究的能力 情感态度价值观:感受数学逻辑推理的魅力教学重点:成比例线段的定义;比例的基本性质及直接运用 教学难点:比例的基本性质的灵活运用,探索比例的其它性质 教学准备:白卡纸、作图工具、 课 型:新授课教学过程:一、复习引入: 挂上两照片,问: 1.这两个图形有什么联系?它们都是平面图形,它们的形状相同,大小不相同,是相似形。
2.这两个图形是相似图形,为什么有些图形是相似的,而有的图形看起来相像又不会相似呢?相似的两个图形有什么主要特征呢?为了探究相似图形的特征,本节课先学习线段的成比例。
二、新课讲解1.两条线段的比(1)回忆什么叫两个数的比?怎样度量线段的长度?怎样比较两线段的大小?如果选用同一个长度单位量得两条线段AB 、CD 的长度分别是m 、n ,那么就说这两条线段的比 AB ∶CD =m ∶n ,或写成CD AB =nm,其中,线段AB 、CD 分别叫做这两个线段比的前项和后项.如果把n m 表示成比值k ,则CDAB =k 或AB =k ·CD . 注意:在量线段时要选用同一个长度单位.(2).做一做量出数学书的长和宽(精确到0.1cm ),并求出长和宽的比. 改用m 作单位,则长为0.211m ,宽为0.148m ,长与宽的比为0.211∶0.148=211∶148只要是选用同一单位测量线段,不管采用什么单位,它们的比值不变. (3).求两条线段的比时要注意的问题①两条线段的长度必须用同一长度单位表示,如果单位长度不同,应先化成同一单位,再求它们的比;②两条线段的比,没有长度单位,它与所采用的长度单位无关; ③两条线段的长度都是正数,所以两条线段的比值总是正数.问:两条线段长度的比与所采用的长度单位有没有关系?(学生讨论) (答:线段的长度比与所采用的长度单位无关) 2.成比例线段的定义你还记得八年级上册中“变化的鱼”吗?如果将点的横坐标和纵坐标都乘以(或除以)同一个非零数,那么用线段连接这些点所围成的图形的边长如何变化?四条线段a ,b ,c ,d 中,如果a 与b 的比等于c 与d 的比,即dcb a =,那么这四条线段a ,b ,c ,d 叫做成比例线段,简称比例线段.3.比例的基本性质两条线段的比实际上就是两个数的比.如果a ,b ,c ,d 四个数满足d cb a =,那么ad =bc 吗?反过来,如果ad =bc ,那么dcb a =吗?与同伴交流.如果dcb a =,那么ad =bc 。
若ad =bc (a ,b ,c ,d 都不等于0),那么dcb a =.4.线段的比和比例线段的区别和联系线段的比有顺序性,四条线段成比例也有顺序性.如dcb a =是线段a 、b 、c 、d 成比例,而不是线段a 、c 、b 、d 成比例.三、例题讲解例题1:在某市城区地图(比例尺1∶9000)上,新安大街的图上长度与光华大街的图上长度分别是16cm 、10cm .(1)新安大街与光华大街的实际长度各是多少米?(2)新安大街与光华大街的图上长度之比是多少?它们的实际长度之比呢?例题2:如图,已知dc b a ==3,求b b a +和d d c +;例题:3:如果d c b a ==k (k 为常数),那么ddc b b a +=+成立吗?为什么? 四.探究延伸,拓展思维(想一想再回答)(1)如果dc b a =,那么d dc b b a -=-成立吗?为什么? (2)如果f ed c b a ==,那么ba f db ec a =++++成立吗?为什么?(3)如果d c b a =,那么d dc b b a ±=±成立吗?为什么. (4)如果dc b a ==…=n m (b +d +…+n ≠0),那么b an d b m c a =++++++ 成立吗?为什么.(小组讨论完成上面的问题) 五、课堂练习1.已知d c b a ==3,求b b a -和d dc -,b b a -=ddc -成立吗? 2.已知dc b a ==f e =2(b +d +f ≠0),求:(1)f d b e c a ++++;(2)f d b ec a +-+-; (3)f d b e c a 3232+-+-;(4)fb ea 55--.(小组讨论并上黑板)六、课时小结: 1、注意点:(1)两线段的比值总是正数;(2)讨论线段的比时,不指明长度单位;(3)对两条线段的长度一定要用同一长度单位表示. 2、比例尺:图上长度与实际长度的比3、熟记成比例线段的定义;2.掌握比例的基本性质,并能灵活运用. 七、作业 :P 55 :1、2、3; 八、板书设计九、反思及感想:这节课多给学生提供自主学习,自主操作、自主活动的机会。
不论是回顾旧知,还是探究新知,都是教师引导,学生自主探索。
比如画一画、量一量、算一算这些设计都能给学生提供自主探索新知的空间,体现了学生是数学学习的主人的新理念。
23.1.2 平行线分线段成比例第二课时教学目标知识技能:在理解的基础上掌握平行线分线段成比例定理和三角形一边平行线的性质与判定定理,并会灵活应用.会作已知线段成已知比的作图题.数学思考:平行线分线段成比例定理的正确性的说明.解决问题:通过学习定理再次锻炼类比的数学思想,能把一个稍复杂的图形分成几个基本图形,通过应用锻炼识图能力和推理论证能力.情感态度:通过定理的学习知道认识事物的一般规律是从特殊到一般,并能欣赏数学表达式的对称美.教学重点:定理的应用.教学难点:定理的推导证明.教学过程设计:活动一.创设情景,引入新课问题:一组等距离的平行线截直线a所得的线段相等,那么在直线b上所截的线段有什么关系呢?(请同学们观看课件中的验证过程)引导学生回答后教师作如下总结:一组等距离的平行线在直线a所截得的线段相等,那么在直线b上所截得的线段也相等.这就是我们前面所学的平行线等分线段定理,他讨论的是平行线截直线相等的情况,那么如果截的线段不相等呢?这就是我们今天要学习的容:平行线分线段成比例定理.活动二.分析探索,新知学习1.三条平行直线L1//L2//L3截直线AE上的线段AC、CE长度之间(除相等外)存在着什么关系呢?同样截直线BF上的线段BD、DF长度之间存在着什么关系呢?板书:由L 1//L 2//L 3可得:32=CE AC ;32=DF BD 所以:32==DF BD CE AC 2.彷上分析得:板书:由L 1//L 2//L 3可得:53=CE AC ;53=DF BD 所以:53==DF BD CE AC 3.引导学生初步总结出平行线分线段成比例定理,然后师生共同归纳得出定理并板书定理.平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段的比相等。
观察上图我们容易发现下面结论成立.推论:平行于三角形一边的直线截其它两边(或两边的延长线),所得的对应线段的比相等(或成比例). 变式思考:1.如果一条直线截三角形的两边(或两边的延长线)所得的对应线段的比相等(或成比例),那么这条直线平行于三角形的第三边.2.平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形与原三角形三边对应成比例. 活动二.拓展升华,变式思考已知:如图,AD 是△ABC 的角平分线,求证:A B L 1C D L 2E F L 3A B L 1C D L 2E F L 3EAB:AC=BD:DC分析:过C 点做CE 平行于AD 交AB 于点E , 所以∠3=∠2,∠1=∠E ;又因为 ∠1=∠2,所以∠3=∠E ,那么 AC=AE ,根据平行线等分线段定理联单 AB:AE=BD:DC ,将AE 换成AC 就得到了所要证明的结论. 活动三.知识反馈,课堂练习选择题:(1)如右图,已知L 1//L 2//L 3,下列比例式中错误 的是:( )A .DF BD CE AC = B.BF BDAE AC =C. BF DF AE CE =D.ACBDBF AE =(2)如右图,已知L 1//L 2//L 3,下列比例式中成立 的是:( )A .BC CE DF AD = B.AF BCBE AD =C. BC AD DF CE =D.CEBEDF AF =根据学生的回答情况对定理容最进行一 次总结,重点是对应两字. 活动四.知识应用,例题解析例题:如图,已知L 1//L 2//L 3, 证明:DFAC EF BC DE AB ==. 注:通过本例题分析使学生进一步理解定理 中的“对应”.活动五.知识升华,课堂小结今天我们学习了平行线分线段成比例定理,A B L 1C D L 2E F L 3A B L 1C D L 2E F L 3 A D L 1E B L 2L 3 F C事实当两线段的比是1时,即为平行线等分线段定理,可见平行线等分线段定理是平行线分线段成比例定理特殊情况,平行线分线段成比例定理是平行线等分线段定理的推广.活动六.知识反馈,布置作业P55:6.723.2相似的图形第三课时教学目标:知识与技能:理解相似形的概念,了解相似形是两个图形之间的关系。
过程与方法:根据不同需要,能作出大小不一定相同的图形情感态度价值观:培养学生的观察能力。
教学重点:让学生理解相似图形概念,会判断两个图形是否相似。
教学难点:正确理解“形状相同”的含义并画出相似图形。
教学准备:白卡纸、大小不同的同底照片、图片、电子白板课型:新授课教学过程:一、导入新课挂上大小不一样的中国地图两及两大小不同的容相同的图片,供同学观察,并看课本第42页的图,提出问题:这几组图片有什么相同的地方呢?这些图片大小虽然不一样,但形状是相同。
二、讲解新课由于不同的需要,我们用同一底片冲洗、放大得到的相片有1寸的,也有2寸的,也有更大的,这些大小不一样的相片,其形状是相同。
同学们想一想,在毕业证书贴的相片与学籍卡片上的相片、学习证的相片大小不一定一样,但形状相同,如果不相同会有什么后果呢?大小不相同的中国地图或世界地图,其形状也是相同的,只是由于需要的不同,印制成大小不一的图片。
对于某一地区,也经常会绘制成各种大小不同的建筑物、山岗等所处的位置都是相同,同学们想一想,如果两地图(同一地区)的形状不一样,那就会给我们许多错觉,就会产生许多麻烦的事情。
在日常生活中我们会看到许多这样形状相同,而大小不一定相同的图形。
在数学上,我们把具有相同形状的图形称为相似形。
同学们你还能说出哪些相似的图形吗?(同学们思考、讨论、交换意见)国旗、国旗上的五角星。